WorldWideScience

Sample records for repetitive intense ion

  1. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  2. Progress toward a microsecond duration, repetitively pulsed, intense- ion beam

    International Nuclear Information System (INIS)

    Davis, H.A.; Olson, J.C.; Reass, W.A.; Coates, D.M.; Hunt, J.W.; Schleinitz, H.M.; Greenly, J.B.

    1996-01-01

    A number of intense ion beams applications are emerging requiring repetitive high-average-power beams. These applications include ablative deposition of thin films, rapid melt and resolidification for surface property enhancement, advanced diagnostic neutral beams for the next generation of Tokamaks, and intense pulsed-neutron sources. We are developing a 200-250 keV, 15 kA, 1 μs duration, 1-30 Hz intense ion beam accelerator to address these applications

  3. Progress toward a microsecond duration, repetitively pulsed, intense-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H A; Olson, J C; Reass, W A [Los Alamos National Lab., NM (United States); Coates, D M; Hunt, J W; Schleinitz, H M [DuPont Central Research and Development, Wilmington, DE (United States); Lovberg, R H [Univ. of California, San Diego, CA (United States); Greenly, J B [Cornell Univ., Ithaca, NY (United States). Lab. of Plasma Studies

    1997-12-31

    A number of intense ion beams applications are emerging requiring repetitive high-average-power beams. These applications include ablative deposition of thin films, rapid melt and resolidification for surface property enhancement, advanced diagnostic neutral beams for the next generation of Tokamaks, and intense pulsed-neutron sources. A 200-250 keV, 15 kA, 1 {mu}s duration, 1-30 Hz intense ion beam accelerator is being developed to address these applications. (author). 4 figs., 7 refs.

  4. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    International Nuclear Information System (INIS)

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-01-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10 3 compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second

  5. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  6. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    Science.gov (United States)

    Klim, Adam; Morrison, J.; Orban, C.; Chowdhury, E.; Frische, K.; Feister, S.; Roquemore, M.

    2017-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) glycol sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. These thin targets can be used to produce energetic electrons, light ions, and neutrons as well as x-rays, we present results from liquid glycol targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  7. High repetition rate laser-driven MeV ion acceleration at variable background pressures

    Science.gov (United States)

    Snyder, Joseph; Ngirmang, Gregory; Orban, Chris; Feister, Scott; Morrison, John; Frische, Kyle; Chowdhury, Enam; Roquemore, W. M.

    2017-10-01

    Ultra-intense laser-plasma interactions (LPI) can produce highly energetic photons, electrons, and ions with numerous potential real-world applications. Many of these applications will require repeatable, high repetition targets that are suitable for LPI experiments. Liquid targets can meet many of these needs, but they typically require higher chamber pressure than is used for many low repetition rate experiments. The effect of background pressure on the LPI has not been thoroughly studied. With this in mind, the Extreme Light group at the Air Force Research Lab has carried out MeV ion and electron acceleration experiments at kHz repetition rate with background pressures ranging from 30 mTorr to >1 Torr using a submicron ethylene glycol liquid sheet target. We present these results and provide two-dimensional particle-in-cell simulation results that offer insight on the thresholds for the efficient acceleration of electrons and ions. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  8. The design, operation and application of a low-cost electronic device for the determination of ion-intensity ratios

    International Nuclear Information System (INIS)

    Lawson, A.M.; Bulmer, R.J.; Lowe, A.E.; Pickup, J.F.

    1977-01-01

    A low-cost electronic device to monitor two ions and provide the ratio of their intensities is described. The device operates in two modes, repetitive and accumulative. In the repetitive mode consecutive channels are integrated and their ratios displayed and printed, whereas in the accumulative mode, integrals of ion intensities are summed for a period before ratios are given. The unit has been designed principally for application in quantitative experiments using stable-isotope dilution with mass spectrometry. The precision of the ratios generated are demonstrated using hexachlorobutadiene mass ions and a calibration series of mixtures of phosphate and 18 O-labelled phosphate as internal standard

  9. Materials processing with intense pulsed ion beams

    International Nuclear Information System (INIS)

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-01-01

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 μm) and high-energy density (1-50 J/cm 2 ) of these short-pulsed (≤ 1 μs) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10 10 K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology

  10. Low-Intensity Repetitive Exercise Induced Rhabdomyolysis

    Directory of Open Access Journals (Sweden)

    Mina Tran

    2015-01-01

    Full Text Available Rhabdomyolysis is a rare condition caused by the proteins of damaged muscle cells entering the bloodstream and damaging the kidneys. Common symptoms of rhabdomyolysis are muscle pain and fatigue in conjunction with dark urine; kidney damage is a common symptom among these patients. We present a case of a 23-year-old woman who displayed myalgia in the upper extremities caused by low-intensity and high-repetition exercise. She was successfully diagnosed and treated for exertional rhabdomyolysis. This patient had no significant medical history that would induce this condition. We urge the emergency medical community to observe and monitor patients that complain of myalgia to ensure they are not suffering from rhabdomyolysis even in atypical cases.

  11. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store

    International Nuclear Information System (INIS)

    Chen Jun; Yang Jianhua; Shu Ting; Zhang Jiande; Zhou Xiang; Wen Jianchun

    2008-01-01

    The primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store is studied. The principle of primary power supply circuit and its time diagram of switches are presented. The circuit is analyzed and some expressions are got, especially, the usable voltage scope of capacitance of energy store, and the correlation between the parameters of circuit and time delay, which is between the turn-on of the charging circuit of capacitance of energy store and the circuit of recuperation. The time delay of 256 x 256 lookup table is made with the instruction of theory and the simulation of the actual parameters of circuits. The table is used by the control program to control the repetitive operating of the actual pulsed intense current accelerator. Finally, some conclusions of the primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store are got. (authors)

  12. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm 2 . The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  13. High-intensity low energy titanium ion implantation into zirconium alloy

    Science.gov (United States)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  14. Development and application of high power and high intensity ion beam sources at NPI, Tomsk, Russia

    International Nuclear Information System (INIS)

    Ryabchikov, A.I.

    2007-01-01

    High - current ion beams have become a powerful tool for improving the surface properties of different materials. The prospects of wide commercial use of such beams for material treatment is not only due to the possibility of improving their properties, but, also for economic expediency. To achieve a high throughput and reduce the cost on ion beam material treatment, ion beams of high average and pulsed power are necessary. This paper gives an overview of work on generation of pulsed and repetitively pulsed beams of ion beams with currents ranging from fractions of an ampere to several tens of kA and with pulse duration from several tens of nanoseconds to several hundreds of microseconds. A number of different methods of materials surface properties modification using high power and intense ion beam and plasma are considered. (author)

  15. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  16. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    Buttram, M.T.

    1985-01-01

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  17. Transduction of Repetitive Mechanical Stimuli by Piezo1 and Piezo2 Ion Channels

    Directory of Open Access Journals (Sweden)

    Amanda H. Lewis

    2017-06-01

    Full Text Available Several cell types experience repetitive mechanical stimuli, including vein endothelial cells during pulsating blood flow, inner ear hair cells upon sound exposure, and skin cells and their innervating dorsal root ganglion (DRG neurons when sweeping across a textured surface or touching a vibrating object. While mechanosensitive Piezo ion channels have been clearly implicated in sensing static touch, their roles in transducing repetitive stimulations are less clear. Here, we perform electrophysiological recordings of heterologously expressed mouse Piezo1 and Piezo2 responding to repetitive mechanical stimulations. We find that both channels function as pronounced frequency filters whose transduction efficiencies vary with stimulus frequency, waveform, and duration. We then use numerical simulations and human disease-related point mutations to demonstrate that channel inactivation is the molecular mechanism underlying frequency filtering and further show that frequency filtering is conserved in rapidly adapting mouse DRG neurons. Our results give insight into the potential contributions of Piezos in transducing repetitive mechanical stimuli.

  18. Transport of intense ion beams

    International Nuclear Information System (INIS)

    Lambertson, G.; Laslett, L.J.; Smith, L.

    1977-01-01

    The possibility of using intense bursts of heavy ions to initiate an inertially confined fusion reaction has stimulated interest in the transport of intense unneutralized heavy ion beams by quadrupole or solenoid systems. This problem was examined in some detail, using numerical integration of the coupled envelope equations for the quadrupole case. The general relations which emerge are used to develop examples of high energy transport systems and as a basis for discussing the limitations imposed by a transport system on achievable intensities for initial acceleration

  19. Intense beams of light ions

    International Nuclear Information System (INIS)

    Camarcat, Noel

    1985-01-01

    Results of experiments performed in order to accelerate intense beams of light and heavier ions are presented. The accelerating diodes are driven by existing pulsed power generators. Optimization of the generator structure is described in chapter I. Nuclear diagnostics of the accelerated light ion beams are presented in chapter II. Chapter III deals with the physics of intense charged particle beams. The models developed are applied to the calculation of the performances of the ion diodes described in the previous chapters. Chapter IV reports preliminary results on a multiply ionized carbon source driven by a 0.1 TW pulsed power generator. (author) [fr

  20. Repetition rates in heavy ion beam driven fusion reactors

    Science.gov (United States)

    Peterson, Robert R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.

  1. Repetition rates in heavy ion beam driven fusion reactors

    International Nuclear Information System (INIS)

    Peterson, R.R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10 -4 torr (3 x 10 12 cm -3 ) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors

  2. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  3. Use of Intense Ion Beams for Surface Modification and Creation of New Materials

    CERN Document Server

    Renk, T; Prasad, S V; Provencio, P P; Thompson, M

    2002-01-01

    We have conducted surface treatment and alloying experiments with Al, Fe, and Ti-based metals on the RHEPP-1 accelerator (0.8 MV, 20 W, 80 ns FHWM, up to 1 Hz repetition rate) at Sandia National Laboratories. Ions are generated by the MAP gas-breakdown active anode, which can yield a number of different beam species including H, N, and C, depending upon the injected gas. Beams of intense pulsed high-power ion beams have been used to produce surface modification by changes in microstructure caused by rapid heating and cooling of the surface. Increase of beam power leads to ablation of a target surface, and redeposition of ablated material onto a separate substrate. Experiments are described in which ion beams are used in an attempt to increase high-voltage breakdown of a treated surface. Surface alloying of coated Pt and Hf layers is also described. This mixing of a previously deposited thin-film layer into a Ti-alloy substrate leads to significantly enhanced surface wear durability, compared to either untreat...

  4. Intense pulsed ion beams for fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1980-04-01

    The subject of this review paper is the field of intense pulsed ion beam generation and the potential application of the beams to fusion research. Considerable progress has been made over the past six years. The ion injectors discussed utilize the introduction of electrons into vacuum acceleration gaps in conjunction with high voltage pulsed power technology to achieve high output current. Power levels from injectors exceeding 1000 MW/cm 2 have been obtained for pulse lengths on the order of 10 -7 sec. The first part of the paper treats the physics and technology of intense ion beams. The second part is devoted to applications of intense ion beams in fusion research. A number of potential uses in magnetic confinement systems have been proposed

  5. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    Kutner, V.B.

    1981-01-01

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe 48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe 26+ approximately 4x10 10 h/s, Asub(r)sup(12+) approximately 10 12 h/s intensive ion beams are produced. In the laser source a full number of C 6+ ions during one laser pulse constitutes not less than 10 10 from the 5x10mm 2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe 15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached [ru

  6. Intense Ion Pulses for Radiation Effects Research

    Science.gov (United States)

    2017-04-01

    induction linear accelerator that has been developed to deliver intense, up to 50 nC/pulse/mm2, sub-ns pulses of light ions with kinetic energy up to 1.2...II induction linear accelerator for intense ion beam pulses at Berkeley Lab. Figure 3. Helium current and integrated charge versus time at the...under contracts DE-AC02-205CH11231 and DE-AC52-07NA27344. JOURNAL OF RADIATION EFFECTS, Research and Engineering Vol. 35, No. 1, April 2017 158 INTENSE

  7. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  8. Ion-beam plasma and propagation of intense compensated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gabovich, M D [AN Ukrainskoj SSR, Kiev. Inst. Fiziki

    1977-02-01

    Discussed are the results of investigation of plasma properties received by neutralization of intense ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown that not only dynamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account in solving the problem of obtaining ''superdense'' compensated beams.

  9. Ion-beam plasma and propagation of intense compensated ion beams

    International Nuclear Information System (INIS)

    Gabovich, M.D.

    1977-01-01

    Discussed are the results of investigation of plasma properties recieved by neutralization of intensive ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown, that not only dinamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account at solving the problem of obtaining ''superdense'' compensated beams

  10. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  11. Repetitive Interrogation of 2-Level Quantum Systems

    Science.gov (United States)

    Prestage, John D.; Chung, Sang K.

    2010-01-01

    Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.

  12. A high-intensity plasma-sputter heavy negative ion source

    International Nuclear Information System (INIS)

    Alton, G.D.; Mori, Y.; Takagi, A.; Ueno, A.; Fukumoto, S.

    1989-01-01

    A multicusp magnetic field plasma surface ion source, normally used for H/sup /minus//ion beam formation, has been modified for the generation of high-intensity, pulsed, heavy negative ion beams suitable for a variety of uses. To date, the source has been utilized to produce mA intensity pulsed beams of more than 24 species. A brief description of the source, and basic pulsed-mode operational data, (e.g., intensity versus cesium oven temperature, sputter probe voltage, and discharge pressure), are given. In addition, illustrative examples of intensity versus time and the mass distributions of ion beams extracted from a number of samples along with emittance data, are also presented. Preliminary results obtained during dc operation of the source under low discharge power conditions suggest that sources of this type may also be used to produce high-intensity (mA) dc beams. The results of these investigations are given, as well, and the technical issues that must be addressed for this mode of operation are discussed. 15 refs., 10 figs., 2 tabs

  13. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  14. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1992-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long-pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle energy distributions in large, dense, ignited tokamaks such as ITER

  15. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1993-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle distributions in large, dense, ignited tokamaks such as ITER

  16. High intensity metallic ion beams from an ecr ion source at GANIL

    International Nuclear Information System (INIS)

    Leherissier, P.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lemagnen, F.; Leroy, R.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Jaffres, P.A.

    2001-01-01

    In the recent years, progress concerning the production of high intensity of metallic ions beams ( 58 Ni, 48 Ca, 76 Ge) at Ganil have been performed. The MIV0C method has been successfully used to produce a high intensity nickel beam with the ECR4 ion source: 20 eμA of 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. The oven method has been first tested with natural metallic calcium on the ECR4 ion source, then used to produce a high power beam (740 W on target i.e. 0.13 pμA accelerated up to 60 MeV/u) of 48 Ca still keeping a low consumption (0.09 mg/h). A germanium beam is now under development, using the oven method with germanium oxide. The ionization efficiencies have been measured and compared. (authors)

  17. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    Science.gov (United States)

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-11-01

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. The pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  18. Plasmon band gap generated by intense ion acoustic waves

    International Nuclear Information System (INIS)

    Son, S.; Ku, S.

    2010-01-01

    In the presence of an intense ion acoustic wave, the energy-momentum dispersion relation of plasmons is strongly modified to exhibit a band gap structure. The intensity of an ion acoustic wave might be measured from the band gap width. The plasmon band gap can be used to block the nonlinear cascading channel of the Langmuir wave decay.

  19. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

    International Nuclear Information System (INIS)

    Ferrer, R.; Sonnenschein, V.T.; Bastin, B.; Franchoo, S.; Huyse, M.; Kudryavtsev, Yu.; Kron, T.; Lecesne, N.; Moore, I.D.; Osmond, B.; Pauwels, D.; Radulov, D.; Raeder, S.; Rens, L.

    2012-01-01

    The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63 Cu. A final run under on-line conditions in which the radioactive isotope 59 Cu (T 1/2 = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

  20. Fast-ion transport during repetitive burst phenomena of toroidal Alfven eigenmodes in the Large Helical Device

    International Nuclear Information System (INIS)

    Nishiura, M.; Isobe, M.; Yamamoto, S.

    2008-10-01

    Alfven instabilities induced fast-ion losses have been directly observed for the first time by a newly developed scintillator lost ion probe (SLIP) in the Large Helical Device (LHD). The SLIP can measure the pitch angle and gyro radius of escaped fast ions toward loss region. Neutral beam driven Alfven Eigenmodes (AEs) are excited under the reactor relevant conditions: the ratio of fast ion (beam) speed υ b and Alfven speed υ A is more than 0.3 - 4.0. The beta value for fast ions is considered roughly to be ∼10%. Non-linear phenomena related to Alfven instabilities are observed under such conditions. During repetitive Toroidal Alfven Eigenmode (TAE) bursts, synchronized fast ion losses are observed by SLIP. From the orbit calculation the measured fast ion with pitch angle of 130 degrees and beam energy of 150 keV surely pass through the locations of TAE gaps. The orbit analysis found that the observed fast ions interact strongly with the excited TAEs. This result becomes the first experimental evidence of radial transport of fast ions predicted theoretically during TAE activities. In addition, from the correlation between stored energy degradation and fast-ion loss rate, it is found that fast-ion losses induced by TAE activities with low toroidal mode numbers categorize two phenomena without and with fast- ion loss enhancements, which indicate the fast-ion redistribution and loss. (author)

  1. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  2. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  3. The Effect of Storm Driver and Intensity on Magnetospheric Ion Temperatures

    Science.gov (United States)

    Keesee, Amy M.; Katus, Roxanne M.; Scime, Earl E.

    2017-09-01

    Energy deposited in the magnetosphere during geomagnetic storms drives ion heating and convection. Ions are also heated and transported via internal processes throughout the magnetosphere. Injection of the plasma sheet ions to the inner magnetosphere drives the ring current and, thus, the storm intensity. Understanding the ion dynamics is important to improving our ability to predict storm evolution. In this study, we perform superposed epoch analyses of ion temperatures during storms, comparing ion temperature evolution by storm driver and storm intensity. The ion temperatures are calculated using energetic neutral atom measurements from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission. The global view of these measurements provide both spatial and temporal information. We find that storms driven by coronal mass ejections (CMEs) tend to have higher ion temperatures throughout the main phase than storms driven by corotating interaction regions (CIRs) but that the temperatures increase during the recovery phase of CIR-driven storms. Ion temperatures during intense CME-driven storms have brief intervals of higher ion temperatures than those during moderate CME-driven storms but have otherwise comparable ion temperatures. The highest temperatures during CIR-driven storms are centered at 18 magnetic local time and occur on the dayside for moderate CME-driven storms. During the second half of the main phase, ion temperatures tend to decrease in the postmidnight to dawn sector for CIR storms, but an increase is observed for CME storms. This increase begins with a sharp peak in ion temperatures for intense CME storms, likely a signature of substorm activity that drives the increased ring current.

  4. Production of intense metallic ion beams in order of isotopic separations; Production de faisceaux intenses d'ions metalliques en vue de la separation des isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sarrouy, J L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [French] 0n decrit un separateur d'isotope a secteur magnetique de 60 deg qui permet, grace a un procede de neutralisation de la charge d'espace, d'utiliser efficacement des faisceaux d'ions intenses. Les sources d'ions realisees fournissent des debits ioniques de 10 mA. Ce present travail porte sur l'obtention de faisceaux d'ions faisceaux d'ions intenses (10 a 15 mA), des differents procedes de mesures des courants d'ions, ainsi que l'etude du phenomene de neutralisation de charge d'espace. La deuxieme partie de ce memoire portera sur l'etude et l'adaptation sur la source de divers type de four permettant de vaporiser et d'ioniser directement les metaux. Par ordre de difficulte croissantes de vaporisations, nous avons atteint le chrome. (M.B.)

  5. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  6. Production of intense negative ion beams in magnetically insulated diodes

    International Nuclear Information System (INIS)

    Lindenbaum, H.

    1988-01-01

    Production of intense negative ion beams in magnetically insulated diodes was studied in order to develop an understanding of this process by measuring the ion-beam parameters as a function of diode and cathode plasma conditions in different magnetically insulated diodes. A coral diode, a racetrack diode, and an annular diode were used. The UCI APEX pulse line, with a nominal output of 1MV, 140kA, was used under matched conditions with a pulse length of 50 nsec. Negative-ion intensity and divergence were measured with Faraday cups and CR-39 track detectors. Cathode plasma was produced by passive dielectric cathodes and later, by an independent plasma gun. Negative-ion currents had an intensity of a few A/cm 2 with a divergence ranging between a few tenths milliradians for an active TiH 2 plasma gun and 300 milliradians for a passive polyethelene cathode. Negative ions were usually emitted from a few hot spots on the cathode surface. These hot spots are believed to cause transverse electrical fields in the diode gap responsible for the beam divergence. Mass spectrometry measurements showed that the ion beam consists of mainly H - ions when using a polyethelene or a TiH 2 cathodes, and mainly of negative carbon ions when using a carbon cathode

  7. Ca-48 handling for a cyclotron ECR ion source to produce highly intense ion beams

    International Nuclear Information System (INIS)

    Lebedev, V.Ya.; Bogomolov, S.L.; Dmitriev, S.N.; Kutner, V.B.; Shamanin, A.N.; Yakushev, A.B.

    2002-01-01

    Production of highly intense ion beams of 48 Ca is one of the main tasks in experiments carried out within the framework of the synthesis of new superheavy elements. 48 Ca is very rare and expensive isotope, therefore there is necessity to reach the high intensity of ion beams of the isotope at a low consumption rate. Analysis and our preliminary experiments have showed that the best way of producing highly intense calcium ion beams is evaporation of metallic calcium in an ECR ion source. So we have developed a technique of metallic 48 Ca production by reducing CaO (this chemical form is available at the market with 40-80% of 48 Ca ) with aluminium powder. We used two tantalum crucibles: a larger, with a mixture of CaO + Al heated up to 1250 deg C, which was connected to the smaller (2 mm I.D. and 30 mm long) in which calcium vapour condensed. The temperature distribution in the small crucible was about 50 deg C at the bottom and about 500 deg C in the middle of the crucible. The pressure inside of the set-up was between 0.1 and 1 Pa. The production rate of metallic 48 Ca was 10-20 mg/h. The crucible with the condensed metallic Ca in argon atmosphere was transferred to the ECR-4M ion source, where it was inserted in a wired tubular oven and the calcium evaporation was controlled through the oven power supply. The application of metallic 48 Ca as the working substance for the ECR-4M ion source of the U-400 cyclotron of allowed us to approach a stable high intensity of 48 Ca ion beams: the intensities for the internal and external beams were 10 13 c -1 and 3.10 12 c -1 , respectively, at a consumption rate about 0.4 mg/h. A technique was developed for the reclamation of 48 Ca from the residue inside of the large crucible and from the inner parts of the ECR ion source. Extracting Ca from the inner parts of the ion source enabled us to save up to some 25% of the calcium used in the ECR ion source, so that the actual consumption rate was about 0.3 mg/h at the highest 48

  8. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  9. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  10. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  11. Intense heavy ion beam-induced effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, Katharina

    2016-08-01

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  12. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  13. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  14. Preliminary research results for parameter diagnostics of intense pulsed ion beams

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; He Xiaoping; Tang Junping; Wang Haiyang; Li Jingya; Ren Shuqing; Huang Jianjun; Zhang Jiasheng; Peng Jianchang; Ouyang Xiaoping; Zhang Guoguang; Li Hongyu

    2004-01-01

    The preliminary experimental results for parameter diagnostics of intense pulsed ion beams from the FLASH II accelerator were reported. The ion number of an intense pulsed ion beam were experimentally determined by monitoring delayed radioactivity from protons induced nuclear reactions in a 12 C target. The prompt γ-rays and diode Bremsstrahlung X-rays were measured with PIN semi-conductor detector and a ST401 plastic scintillator detector. The Bremsstrahlung distribution outside of the drift tube was detected with a thermoluminescent detector and the shielding design was also determined. The current densities of beam were measured with biased ion collector array. The ion beams were also recorded with a CR-39 detector. (author)

  15. Fine focusing of intense heavy ions for the production of hot dense matter

    International Nuclear Information System (INIS)

    Heimrich, B.

    1989-02-01

    In order to perform the first experimental studies on the interaction of intense ion beams with matter an electrostatic quadrupole doublet was developed which focuses the space-charge carrying ion beam of the RFQ accelerator at the GSI Darmstadt on an area of 1 mm 2 . By an especially manufactured target holder this intense ion beam was stopped in tungsten targets and the first plasma induced by heavy ions was produced. Electrons and ions which are emitted from the plasmas have been spectroscoped by an especially for this fabricated spectrometer in their energy and time distribution in the eV region by which first comparisons between theory and praxis on the heating of dense matter by intense ion beams could be made. (orig./HSI) [de

  16. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men.

    Science.gov (United States)

    Shimano, Tomoko; Kraemer, William J; Spiering, Barry A; Volek, Jeff S; Hatfield, Disa L; Silvestre, Ricardo; Vingren, Jakob L; Fragala, Maren S; Maresh, Carl M; Fleck, Steven J; Newton, Robert U; Spreuwenberg, Luuk P B; Häkkinen, Keijo

    2006-11-01

    Resistance exercise intensity is commonly prescribed as a percent of 1 repetition maximum (1RM). However, the relationship between percent 1RM and the number of repetitions allowed remains poorly studied, especially using free weight exercises. The purpose of this study was to determine the maximal number of repetitions that trained (T) and untrained (UT) men can perform during free weight exercises at various percentages of 1RM. Eight T and 8 UT men were tested for 1RM strength. Then, subjects performed 1 set to failure at 60, 80, and 90% of 1RM in the back squat, bench press, and arm curl in a randomized, balanced design. There was a significant (p squat than the bench press or arm curl at 60% 1RM for T and UT. At 80 and 90% 1RM, there were significant differences between the back squat and other exercises; however, differences were much less pronounced. No differences in number of repetitions performed at a given exercise intensity were noted between T and UT (except during bench press at 90% 1RM). In conclusion, the number of repetitions performed at a given percent of 1RM is influenced by the amount of muscle mass used during the exercise, as more repetitions can be performed during the back squat than either the bench press or arm curl. Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity.

  17. Bilateral Repetitive Transcranial Magnetic Stimulation Combined with Intensive Swallowing Rehabilitation for Chronic Stroke Dysphagia: A Case Series Study

    Directory of Open Access Journals (Sweden)

    Ryo Momosaki

    2014-03-01

    Full Text Available The purpose of this study was to clarify the safety and feasibility of a 6-day protocol of bilateral repetitive transcranial magnetic stimulation (rTMS combined with intensive swallowing rehabilitation for chronic poststroke dysphagia. In-hospital treatment was provided to 4 poststroke patients (age at treatment: 56-80 years; interval between onset of stroke and treatment: 24-37 months with dysphagia. Over 6 consecutive days, each patient received 10 sessions of rTMS at 3 Hz applied to the pharyngeal motor cortex bilaterally, followed by 20 min of intensive swallowing rehabilitation exercise. The swallowing function was evaluated by the Penetration Aspiration Scale (PAS, Modified Mann Assessment of Swallowing Ability (MMASA, Functional Oral Intake Scale (FOIS, laryngeal elevation delay time (LEDT and Repetitive Saliva-Swallowing Test (RSST on admission and at discharge. All patients completed the 6-day treatment protocol and none showed any adverse reactions throughout the treatment. The combination treatment improved laryngeal elevation delay time in all patients. Our proposed protocol of rTMS plus swallowing rehabilitation exercise seems to be safe and feasible for chronic stroke dysphagia, although its efficacy needs to be confirmed in a large number of patients.

  18. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  19. High intensity metallic ion beam from an ecr ion source using the Mivoc method

    International Nuclear Information System (INIS)

    Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Leherissier, P.; Lemagnen, F.; Jaffres, P.A.

    2000-01-01

    The MIVOC method has been successfully used at GANIL to produce a high intensity nickel beam with the ECR4 ion source: 20 μA 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. Experimental setup, handling and off-line preparation using a residual gas analyzer are described in this report. The ion source behavior, performances and limitations are presented in the case of nickel and iron. The ionization efficiencies have been measured and compared to the oven method usually used at GANIL. (author)

  20. Intense, pulsed, ion-diode sources and their application to mirror machines

    International Nuclear Information System (INIS)

    Prono, D.S.; Shearer, J.W.; Briggs, R.J.

    1975-01-01

    Startup conditions for future mirror fusion experiments require a rapidly formed target plasma of approximately 0.5 coulomb of ions with energy of 50 to 100 keV. Theory suggests that very intense ion-flux emission satisfying these requirements can be extracted from a pulsed ion diode. Developing such sources would be an ideal CTR application of the high-power, single-shot capability of pulsed power technology. Recent experimental results are reviewed in which approximately 2 kA/cm 2 of D + at approximately 50 keV was extracted. In the experiment, an intense relativistic electron beam undergoes many transits through a solid but range-thin anode foil. With each transit the electrons lose energy, causing their trajectories to collapse toward the anode surface. In so doing, the increased space charge extracts an intense ion flux from the anode foil's plasma. Observations are reported on the importance of diode stability. The general agreement between theoretical scaling laws and experimental results are also presented

  1. Injection, compression and stability of intense ion-rings

    International Nuclear Information System (INIS)

    Sudan, R.N.

    1975-01-01

    Recent advances in pulsed high power ion beam technology make possible the creation of intense ion-rings with strong self-magnetic fields by single pulse injection. Such ion rings have several uses in controlled fusion e.g., to produce a min parallel B parallel magnetic geometry with a mirror ratio much higher than is possible with external conductors. For even stronger ion rings a min parallel B parallel with closed lines of force (ASTRON type) can be created. For this purpose, since the ion energies required are much higher than are available from high power sources, magnetic compression can be utilized to increase the ion energy. The success of this scheme depends critically on the stability of the ion ring. The low frequency perturbations of the ring-plasma system is examined by means of a generalization of the energy principle which established sufficient conditions for stability. The high-frequency micro-instabilities and their nonlinear consequences are discussed in terms of conventional techniques

  2. Production of intense metallic ion beams in order of isotopic separations

    International Nuclear Information System (INIS)

    Sarrouy, J.L.

    1955-01-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [fr

  3. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    International Nuclear Information System (INIS)

    Ochiai, Y.; Murata, T.; Ito, H.; Masugata, K.

    2012-01-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device multiple shot operations is realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm, length 25 mm. Capacitor bank of capacitance 3 μF, charging voltage 30 kV was used and the wire was successfully exploded by a discharge current of 15 kA, rise time 5.3 μs. Plasma flux of ion current density around 70 A/cm 2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7x10 4 m/sec, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of ion current density distribution ion flow is found to be concentrated to the direction where ion acceleration gap is placed. From the experiment the device is found to be acceptable for applying PHIB accelerator. (author)

  4. Advances in ion beam intensity at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Bailey, J.E.; Coats, R.S.

    1995-01-01

    In 1993 lithium beam intensities ≥1 TW/cm 2 were achieved and lithium-driven target experiments at the ∼1,400 TW/g level were performed on the Particle Beam Fusion Accelerator II (PBFA II) at Sandia National Laboratories. Hohlraum radiation temperatures of up to 60 eV were achieved using this lithium beam. The 1995 Light-Ion ICF Program milestone of achieving a 100 eV radiation temperature in an ion-driven hohlraum will require a lithium beam intensity of 5 ± 1 TW/cm 2 on a 4 mm diameter cylindrical target; this will require both an increase in coupled lithium power and a decrease in total lithium beam divergence. The lithium beam power has been limited to ∼5--6 TW by a so-called ''parasitic load.'' This parasitic current loss in the ion diodes has recently been identified as being carried by ions that are accelerated from plasmas that are formed when high voltage electrons are lost to anodes with many monolayers of hydrocarbon surface contamination. Control of anode and cathode plasmas on the SABRE accelerator using RF-discharge cleaning, anode heating, and cryogenic cooling of the cathode have increased the efficiency of the production of lithium current by a factor of 2--3. A new ion diode incorporating glow discharge cleaning and titanium gettering pumps has been installed in PBFA II and will be tested in December, 1994. Anode heaters should be available in January, 1995. Circuit model calculations indicate that one can more than double the coupled lithium ion power on PBFA II by eliminating the parasitic current. LiF source divergence presently dominates the total beam divergence. Progress in lithium beam focal intensity using diode cleaning techniques coupled with an active lithium source is reported

  5. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  6. Beam loss studies in high-intensity heavy-ion linacs

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Lessner, E.S.; Mustapha, B.

    2004-01-01

    A low beam-loss budget is an essential requirement for high-intensity machines and represents one of their major design challenges. In a high-intensity heavy-ion machine, losses are required to be below 1 W/m for hands-on-maintenance. The driver linac of the Rare Isotope Accelerator (RIA) is designed to accelerate beams of any ion to energies from 400 MeV per nucleon for uranium up to 950 MeV for protons with a beam power of up to 400 kW. The high intensity of the heaviest ions is achieved by acceleration of multiple-charge-state beams, which requires a careful beam dynamics optimization to minimize effective emittance growth and beam halo formation. For beam loss simulation purposes, large number of particles must be tracked through the linac. Therefore the computer code TRACK has been parallelized and calculations are being performed on the JAZZ cluster recently inaugurated at ANL. This paper discusses how this powerful tool is being used for simulations for the RIA project to help decide on the high-performance and cost-effective design of the driver linac

  7. Bunching and cooling of radioactive ions with REXTRAP

    CERN Document Server

    Schmidt, P; Bollen, G; Forstner, O; Huber, G; Oinonen, M; Zimmer, J

    2002-01-01

    The post-accelerator REX-ISOLDE at ISOLDE/CERN will deliver radioactive ion beams with energies up to 2.2 MeV/u. For this purpose, a Penning trap and an electron-beam ion source are combined with a linear accelerator. REXTRAP—a large gas-filled Penning trap—has started its commissioning phase. First tests have shown that REXTRAP is able to accumulate, cool and bunch stable ISOLDE ion beams covering a large mass range. Fulfilling the REX-ISOLDE demands, it can handle beam intensities from a few hundred up to 1×10 6 ions per pulse at repetition rates up to 50 Hz.

  8. A future, intense source of negative hydrogen ions

    Science.gov (United States)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  9. Characteristics of bipolar-pulse generator for intense pulsed heavy ion beam acceleration

    International Nuclear Information System (INIS)

    Igawa, K.; Tomita, T.; Kitamura, I.; Ito, H.; Masugata, K.

    2006-01-01

    Intense pulsed heavy ion beams are expected to be applied to the implantation technology for semiconductor materials. In the application it is very important to purify the ion beam. In order to improve the purity of an intense pulsed ion beams we have proposed a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)'. A prototype of the experimental system has been developed to perform proof of principle experiments of the accelerator. A bipolar pulse generator has been designed for the generation of the pulsed ion beam with the high purity via the bipolar pulse acceleration and the electrical characteristics of the generator were evaluated. The production of the bipolar pulse has been confirmed experimentally. (author)

  10. A feasible repetitive transcranial magnetic stimulation clinical protocol in migraine prevention.

    Science.gov (United States)

    Zardouz, Shawn; Shi, Lei; Leung, Albert

    2016-01-01

    This case series was conducted to determine the clinical feasibility of a repetitive transcranial magnetic stimulation protocol for the prevention of migraine (with and without aura). Five patients with migraines underwent five repetitive transcranial magnetic stimulation sessions separated in 1- to 2-week intervals for a period of 2 months at a single tertiary medical center. Repetitive transcranial magnetic stimulation was applied to the left motor cortex with 2000 pulses (20 trains with 1s inter-train interval) delivered per session, at a frequency of 10 Hz and 80% resting motor threshold. Pre- and post-treatment numerical rating pain scales were collected, and percent reductions in intensity, frequency, and duration were generated. An average decrease in 37.8%, 32.1%, and 31.2% were noted in the intensity, frequency, and duration of migraines post-repetitive transcranial magnetic stimulation, respectively. A mean decrease in 1.9±1.0 (numerical rating pain scale ± standard deviation; range: 0.4-2.8) in headache intensity scores was noted after the repetitive transcranial magnetic stimulation sessions. The tested repetitive transcranial magnetic stimulation protocol is a well-tolerated, safe, and effective method for migraine prevention.

  11. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, K.; Tomut, M.; Simon, P.; Hubert, C.; Romanenko, A.; Lommel, B.; Trautmann, C.

    2015-01-01

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  12. Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro.

    Science.gov (United States)

    Tang, Alexander D; Hong, Ivan; Boddington, Laura J; Garrett, Andrew R; Etherington, Sarah; Reynolds, John N J; Rodger, Jennifer

    2016-10-29

    Repetitive transcranial magnetic stimulation (rTMS) has become a popular method of modulating neural plasticity in humans. Clinically, rTMS is delivered at high intensities to modulate neuronal excitability. While the high-intensity magnetic field can be targeted to stimulate specific cortical regions, areas adjacent to the targeted area receive stimulation at a lower intensity and may contribute to the overall plasticity induced by rTMS. We have previously shown that low-intensity rTMS induces molecular and structural plasticity in vivo, but the effects on membrane properties and neural excitability have not been investigated. Here we investigated the acute effect of low-intensity repetitive magnetic stimulation (LI-rMS) on neuronal excitability and potential changes on the passive and active electrophysiological properties of layer 5 pyramidal neurons in vitro. Whole-cell current clamp recordings were made at baseline prior to subthreshold LI-rMS (600 pulses of iTBS, n=9 cells from 7 animals) or sham (n=10 cells from 9 animals), immediately after stimulation, as well as 10 and 20min post-stimulation. Our results show that LI-rMS does not alter passive membrane properties (resting membrane potential and input resistance) but hyperpolarises action potential threshold and increases evoked spike-firing frequency. Increases in spike firing frequency were present throughout the 20min post-stimulation whereas action potential (AP) threshold hyperpolarization was present immediately after stimulation and at 20min post-stimulation. These results provide evidence that LI-rMS alters neuronal excitability of excitatory neurons. We suggest that regions outside the targeted region of high-intensity rTMS are susceptible to neuromodulation and may contribute to rTMS-induced plasticity. Copyright © 2016 IBRO. All rights reserved.

  13. Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    Directory of Open Access Journals (Sweden)

    Domanski Jaroslaw

    2018-01-01

    Full Text Available One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.

  14. Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets

    International Nuclear Information System (INIS)

    Fews, A.P.; Norreys, P.A.; Beg, F.N.; Bell, A.R.; Dangor, A.E.; Danson, C.N.; Lee, P.; Rose, S.J.

    1994-01-01

    The fast ion emission from high intensity, picosecond laser plasmas has been measured to give the characteristic ion energy and the amount of laser energy transferred to ions with energies ≥100 keV/nucleon as a function of incident intensity. The characteristic ion energy varies from 0.2 to 1.3 MeV over the range 2.0x10 17 --2.0x10 18 W cm -2 . Ten percent of the laser energy is transferred into MeV ions at 2.0x10 18 W cm -2 . Calculations of stopping power in high density materials are presented that show that fast ions cannot be ignored in modeling fast ignitor schemes

  15. Targets for production of high-intensity radioactive ion-beams

    International Nuclear Information System (INIS)

    Hagebo, E.; Hoff, P.; Steffensen, K.

    1991-01-01

    The recent developments of target systems for production of high intensity radioactive ion-beams at the ISOLDE mass separators is described. Methods for chemically selective production through separation of molecular ions are outlined and the effects of the addition of reactive gases has been studied. Results and further possible applications in the light element region are discussed. (author) 10 refs.; 9 figs.; 1 tab

  16. Informal workshop on intense polarized ion sources: a summary

    International Nuclear Information System (INIS)

    Schultz, P.F.

    1980-01-01

    An Informal Workshop on Intense Polarized Ion Sources was held on March 6, 1980, at the O'Hare Hilton Hotel, Chicago, Illinois. The purpose of the Workshop was to discuss problems in developing higher-intensity polarized proton sources, particularly the optically-pumped source recently proposed by L.W. Anderson of the University of Wisconsin. A summary of the discussions is reported

  17. Emotional response to musical repetition.

    Science.gov (United States)

    Livingstone, Steven R; Palmer, Caroline; Schubert, Emery

    2012-06-01

    Two experiments examined the effects of repetition on listeners' emotional response to music. Listeners heard recordings of orchestral music that contained a large section repeated twice. The music had a symmetric phrase structure (same-length phrases) in Experiment 1 and an asymmetric phrase structure (different-length phrases) in Experiment 2, hypothesized to alter the predictability of sensitivity to musical repetition. Continuous measures of arousal and valence were compared across music that contained identical repetition, variation (related), or contrasting (unrelated) structure. Listeners' emotional arousal ratings differed most for contrasting music, moderately for variations, and least for repeating musical segments. A computational model for the detection of repeated musical segments was applied to the listeners' emotional responses. The model detected the locations of phrase boundaries from the emotional responses better than from performed tempo or physical intensity in both experiments. These findings indicate the importance of repetition in listeners' emotional response to music and in the perceptual segmentation of musical structure.

  18. Control of ion beam generation in intense short pulse laser target interaction

    International Nuclear Information System (INIS)

    Nagashima, T.; Izumiyama, T.; Barada, D.; Kawata, S.; Gu, Y.J.; Wang, W.M.; Ma, Y.Y.; Kong, Q.

    2013-01-01

    In intense laser plasma interaction, several issues still remain to be solved for future laser particle acceleration. In this paper we focus on a control of generation of high-energy ions. In this study, near-critical density plasmas are employed and are illuminated by high intensity short laser pulses; we have successfully generated high-energy ions, and also controlled ion energy and the ion energy spectrum by multiple-stages acceleration. We performed particle-in-cell simulations in this paper. The first near-critical plasma target is illuminated by a laser pulse, and the ions accelerated are transferred to the next target. The next identical target is also illuminated by another identical large pulse, and the ion beam introduced is further accelerated and controlled. In this study four stages are employed, and finally a few hundreds of MeV of protons are realized. A quasi-monoenergetic energy spectrum is also obtained. (author)

  19. Inertial Fusion Driven By Intense Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Sharp, W.M.; Friedman, A.; Grote, D.P.; Barnard, J.J.; Cohen, R.H.; Dorf, M.A.; Lund, S.M.; Perkins, L.J.; Terry, M.R.; Logan, B.G.; Bieniosek, F.M.; Faltens, A.; Henestroza, E.; Jung, J.Y.; Kwan, J.W.; Lee, E.P.; Lidia, S.M.; Ni, P.A.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Takakuwa, J.H.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Gilson, E.P.; Kaganovich, I.D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R.A.; Koniges, A.E.

    2011-01-01

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  20. Intense negative hydrogen ion source for neutral injection into tokamaks

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1975-01-01

    In this scheme negative ions are extracted from a plasma source, accelerated to the required energy and then neutralized by stripping in a gas, metal vapor or plasma jet. One of the most promising direct extraction sources is the magnetron source, operating in the mixed hydrogen-cesium mode. In the present source cathode current densities are up to 20 A/cm 2 at arc voltages between 100 V and 150 V. In order to utilize the discharge more efficiently multislit extraction geometry was adopted. Highest currents were obtained by using six slits, with a total extraction area of 1.35 cm 2 . At an extraction voltage of 18 kV negative hydrogen ion currents close to 1 A were obtained, which corresponds to current densities of about 0.7 A/cm 2 at the extraction aperture. Pulse length was 10-20 ms and the repetition rate 0.1 Hz. The total extracted current was usually 2-3 times the H - current

  1. A High-Intensity, RF Plasma-Sputter Negative Ion Source

    International Nuclear Information System (INIS)

    Alton, G.D.; Bao, Y.; Cui, B.; Lohwasser, R.; Reed, C.A.; Zhang, T.

    1999-01-01

    A high-intensity, plasma-sputter negative-ion source based on the use of RF power for plasma generation has been developed that can be operated in either pulsed or dc modes. The source utilizes a high-Q, self-igniting, inductively coupled antenna system, operating at 80 MHz that has been optimized to generate Cs-seeded plasmas at low pressures (typically, - (610 microA); F - (100 microA); Si - (500 microA); S - (500 microA); P - (125 microA); Cl - (200 microA); Ni - (150 microA); Cu - (230 microA); Ge - (125 microA); As - (100 microA); Se - (200 microA); Ag - (70 microA); Pt - (125 microA); Au - (250 microA). The normalized emittance var e psilon n of the source at the 80% contour is: var e psilon n = 7.5 mm.mrad.(MeV) 1/2 . The design principles of the source, operational parameters, ion optics, emittance and intensities for a number of negative-ion species will be presented in this report

  2. Intense ion beam neutralization using underdense background plasma

    Energy Technology Data Exchange (ETDEWEB)

    Berdanier, William [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Roy, Prabir K. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kaganovich, Igor [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  3. Review of intense-ion-beam propagation with a view toward measuring ion energy

    International Nuclear Information System (INIS)

    Garcia, M.

    1982-01-01

    The subject of this review is intense ion beam propagation and the possibilities of measuring time dependent ion energy in the beam. Propagation effects discussed include charge separation, charge and current autoneutralization, electron thermalization and current neutralization decay. The interaction of a plasma beam with material obstacles, like collimators, and with transverse magnetic fields is also described. Depending on beam energy, density and pulse length, these interactions can include material ablation with plasmadynamic flow and undeflected propagation across transverse magnetic fields by a polarization drift. On the basis of this review I conclude that three diagnostics: a single floating potential probe, net current probes (Faraday cups) and a Rutherford scattering spectrometer appear capable of giving prompt, time dependent ion energy measurements

  4. An intense plane-beam ion source (1963); Source d'ions intense a faisceau plan (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Deicas, R; Valckx, F P.O. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    Experiments are described carried out on the cross-section of a Penning type ion source which is a prototype of the annular ion source intended for the M.M.I.I. device at the Fontenay-aux-Roses Nuclear Research Centre. It is shown that the existence or absence of a very strong concentration depends in particular on the magnetic geometry. With a suitable magnetic and electrical geometry it is possible to concentrate the discharge towards the slit and thus to increase considerably the electrical yield and the gas yield. In pulsed conditions, the current derived from this source can exceed 100 mA with a slit 20 cm long and 0.2 mm wide. The gas yield can attain 20 per cent. The main characteristics of the discharge and of the beam are examined. (authors) [French] On decrit les experiences faites sur une section droite d'une source d'ions type Penning, qui est un prototype pour une source d'ions annulaire, destine au dispositif M.M.I.I. au Centre d'Etudes Nucleaires de Fontenay-aux-Roses. On montre que l'existence ou non d'un regime intense depend surtout de la geometrie magnetique. Avec une geometrie magnetique et electrique convenables on peut concentrer la decharge vers les levres et ainsi augmenter considerablement le rendement electrique et le rendement en gaz. En regime pulse le courant extrait de cette source peut depasser 100 mA avec une fente de 20 cm de long et 0. 2 mm de largeur. Le rendement en gaz peut atteindre 20 pour cent. On etudie les principales caracteristiques de la decharge et du faisceau. (auteurs)

  5. Intense Ion Beams for Warm Dense Matter Physics

    International Nuclear Information System (INIS)

    Heimbucher, Lynn; Coleman, Joshua Eugene

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K + ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of

  6. Repetition and the Concept of Repetition

    Directory of Open Access Journals (Sweden)

    Arne Grøn

    2013-11-01

    Full Text Available This paper offers a description of the meaning of the category of repetition. Firstly, it is pointed out that Constantin uses repetition as a concept that means the creation of epochs; the passing from Greece to Modernity is accomplished distinguishing between recollection, a concept that looks back to the past, and repetition, a concept that looks forward to future. Secondly, it is showed that the category of repetition, as a religious category, relates with what Climacus calls “ethic despair” and with what Vigilius calls “second ethics”; it is through repetition that it can be understood that sin finds its place in ethics and these shows the tension between it and dogmatics. And thirdly, it is showed that the descovery of the new category of repetition is a rediscovery of what Kierkegaard calls category of spirit; repetition has for its object the individuality, and coming to be oneself is what Kierkegaard undertands as liberty. At the end of the paper it is questioned if the category of repetition is inconsistent with the book Repetition.

  7. The wondrous world of transport and acceleration of intense ion beams

    International Nuclear Information System (INIS)

    Siebenlist, F.

    1987-01-01

    A theoretical and experimental study of the transport, bunching and acceleration of intense ion beams in periodic focusing channels is described. The aim is to show the feasibility of accelerating high current ion beams with a Multiple Electrostatic Quadrupole Array Linear ACcelerator (MEQALAC). 83 refs.; 51 figs.; 3 tabs

  8. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward; Davidson, Ronald C.

    2004-01-01

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented

  9. Simulations and experiments of intense ion beam compression in space and time

    International Nuclear Information System (INIS)

    Yu, S.S.; Seidl, P.A.; Roy, P.K.; Lidia, S.M.; Coleman, J.E.; Kaganovich, I.D.; Gilson, E.P.; Welch, Dale Robert; Sefkow, Adam B.; Davidson, R.C.

    2008-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) (P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)). To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an ∼300 keV K + beam and have separately achieved transverse and longitudinal focusing to a radius Z 2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments.

  10. Generation of intense, high-energy ion pulses by magnetic compression of ion rings

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.

    1981-01-01

    A system based on the magnetic compression of ion rings, for generating intense (High-current), high-energy ion pulses that are guided to a target without a metallic wall or an applied external magnetic field includes a vacuum chamber; an inverse reflex tetrode for producing a hollow ion beam within the chamber; magnetic coils for producing a magnetic field, bo, along the axis of the chamber; a disc that sharpens a magnetic cusp for providing a rotational velocity to the beam and causing the beam to rotate; first and second gate coils for producing fast-rising magnetic field gates, the gates being spaced apart, each gate modifying a corresponding magnetic mirror peak (Near and far peaks) for trapping or extracting the ions from the magnetic mirror, the ions forming a ring or layer having rotational energy; a metal liner for generating by magnetic flux compression a high, time-varying magnetic field, the time-varying magnetic field progressively increasing the kinetic energy of the ions, the magnetic field from the second gate coil decreasing the far mirror peak at the end of the compression for extracting the trapped rotating ions from the confining mirror; and a disc that sharpens a magnetic half-cusp for increasing the translational velocity of the ion beam. The system utilizes the self-magnetic field of the rotating, propagating ion beam to prevent the beam from expanding radially upon extraction

  11. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  12. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas

    Directory of Open Access Journals (Sweden)

    K. Mima

    2018-05-01

    Full Text Available The collective interaction between intense ion beams and plasmas is studied by simulations and experiments, where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas. It is found that, depending on its current density, collective effects can significantly alter the propagated ion beam and the stopping power. The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory. The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics. Keywords: Two stream instabilities, Ultra intense short pulse laser, Proton beam, Wake field, Electron plasma wave, Laser plasma interaction, PACS codes: 52.38.Kd, 29.27.Fh, 52.40.Kh, 52.70.Nc

  13. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  14. kHz femtosecond laser-plasma hard X-ray and fast ion source

    International Nuclear Information System (INIS)

    Thoss, A.; Korn, G.; Stiel, H.; Voigt, U.; Elsaesser, T.; Richardson, M.C.; Siders, C.W.; Faubel, M.

    2002-01-01

    We describe the first demonstration of a new stable, kHz femtosecond laser-plasma source of hard x-ray continuum and K α emission using a thin liquid metallic jet target. kHz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot-to-shot and is debris-free. We have solved this requirement with the use of a fine (10-30 μm diameter) liquid metal jet target that provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We will show hard x-ray spectra recorded from liquid Ga targets that show the generation of the 9.3 keV and 10.3 keV, K α and K β lines superimposed on a multi-keV Bremsstrahlung continuum. This source was generated by a 50fs duration, 1 kHz, 2W, high intensity Ti:Sapphire laser. We will discuss the extension of this source to higher powers and higher repetition rates, providing harder x-ray emission, with the incorporation of pulse-shaping and other techniques to enhance the x-ray conversion efficiency. Using the same liquid target technology, we have also demonstrated the generation of forward-going sub-MeV protons from a 10 μm liquid water target at 1 kHz repetition rates. kHz sources of high energy ions will find many applications in time-resolved particle interaction studies, as well as lead to the efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors both in the forward and backward directions up to energies of ∼500 keV. As the intensity of compact high repetition-rate lasers sources increase, we can expect improvements in the energy, conversion efficiency and directionality to occur. The impact of these developments on a number of fields will be discussed. As compact

  15. Short intense ion pulses for materials and warm dense matter research

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Peter A., E-mail: PASeidl@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Persaud, Arun; Waldron, William L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Barnard, John J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Friedman, Alex [Lawrence Livermore National Laboratory, Livermore, CA (United States); Gilson, Erik P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Grote, David P. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2015-11-11

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10{sup 10} ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li{sup +} ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  16. Short intense ion pulses for materials and warm dense matter research

    International Nuclear Information System (INIS)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-01-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10"1"0 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li"+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  17. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  18. Intense Ion Beam for Warm Dense Matter Physics

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Joshua Eugene [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K+ ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally

  19. Nuclear Magnetic Resonance Imaging of Li-ion Battery

    Directory of Open Access Journals (Sweden)

    D. Ohno

    2010-12-01

    Full Text Available Nuclear magnetic resonance (NMR imaging has high sensitivity to proton (1H and lithium (7Li. It is a useful measurement for electrolyte in Li-ion battery. 1H NMR images of lithium ion battery which is composed of LiMn2O4 / LiClO4 + propylene carbonate (PC / Li-metal have been studied. 1H NMR images of electrolyte near cathode material (LiMn2O4 showed anomalous intensity distribution, which was quite inhomogeneous. From NMR images as a function of repetition time (TR, it was concluded that the anomalous intensity distribution was not due to change of relaxation time but an indirect (spatial para-magnetization effect from cathode material. The paramagnetization induced by high magnetic field distorts linearity of magnetic gradient field, leading to apparent intensity variance. This functional image is an easy diagnostic measurement for magnetization of cathode material, which allows the possibility to check uniformity of cathode material and change of magnetization under electrochemical process.

  20. Low-Frequency Repetitive Transcranial Magnetic Stimulation and Intensive Occupational Therapy for Poststroke Patients with Upper Limb Hemiparesis: Preliminary Study of a 15-Day Protocol

    Science.gov (United States)

    Kakuda, Wataru; Abo, Masahiro; Kobayashi, Kazushige; Momosaki, Ryo; Yokoi, Aki; Fukuda, Akiko; Ishikawa, Atsushi; Ito, Hiroshi; Tominaga, Ayumi

    2010-01-01

    The purpose of the study was to determine the safety and feasibility of a 15-day protocol of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with intensive occupational therapy (OT) on motor function and spasticity in hemiparetic upper limbs in poststroke patients. Fifteen poststroke patients (age at study entry 55 [plus…

  1. Ion energy distributions from laser-generated plasmas at two different intensities

    Science.gov (United States)

    Ceccio, Giovanni; Torrisi, Lorenzo; Okamura, Masahiro; Kanesue, Takeshi; Ikeda, Shunsuke

    2018-01-01

    Laser-generated non-equilibrium plasmas were analyzed at Brookhaven National Laboratory (NY, USA) and MIFT Messina University (Italy). Two laser intensities of 1012 W/cm2 and 109 W/cm2, have been employed to irradiate Al and Al with Au coating targets in high vacuum conditions. Ion energy distributions were obtained using electrostatic analyzers coupled with ion collectors. Time of flight measurements were performed by changing the laser irradiation conditions. The study was carried out to provide optimum keV ions injection into post acceleration systems. Possible applications will be presented.

  2. Neutralized drift compression experiments with a high-intensity ion beam

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Waldron, W.L.; Anders, A.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.M.; Thoma, C.; Welch, D.R.

    2007-01-01

    To create high-energy density matter and fusion conditions, high-power drivers, such as lasers, ion beams, and X-ray drivers, may be employed to heat targets with short pulses compared to hydro-motion. Both high-energy density physics and ion-driven inertial fusion require the simultaneous transverse and longitudinal compression of an ion beam to achieve high intensities. We have previously studied the effects of plasma neutralization for transverse beam compression. The scaled experiment, the Neutralized Transport Experiment (NTX), demonstrated that an initially un-neutralized beam can be compressed transversely to ∼1 mm radius when charge neutralization by background plasma electrons is provided. Here, we report longitudinal compression of a velocity-tailored, intense, neutralized 25 mA K + beam at 300 keV. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhances the beam peak current by a factor of 50 and produces a pulse duration of about 3 ns. The physics of longitudinal compression, experimental procedure, and the results of the compression experiments are presented

  3. Generation of an intense ion beam by a pinched relativistic electron beam

    International Nuclear Information System (INIS)

    Gilad, P.; Zinamon, Z.

    1976-01-01

    The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)

  4. Operation and Thermal Modeling of the ISIS H– Source from 50 to 2 Hz Repetition Rates

    CERN Document Server

    Pereira, H; Lettry, J

    2013-01-01

    CERN’s Linac4 accelerator H− ion source, currently under construction, will operate at a 2 Hz repetition rate, with pulse length of 0.5 ms and a beam current of 80 mA. Its reliability must exceed 99 % with a mandatory 3 month uninterrupted operation period. A Penning ion source is successfully operated at ISIS; at 50 Hz repetition rate it reliably provides 55 mA H− pulses of 0.25 ms duration over 1 month. The discharge plasma ignition is very sensitive to the temperatures of the discharge region, especially of its cathode. The investigation by modeling and measurement of operation parameters suitable for arc ignition and H− production at 2 Hz is of paramount importance and must be understood prior to the implementation of discharge ion sources in the Linac4 accelerator. In its original configuration, the ISIS H− source delivers beam only if the repetition rate is above 12.5 Hz, this paper describes the implementation of a temperature control of the discharge region aiming at lower repetition rate op...

  5. New lens system using toroidal magnetic field for intense ion beam

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Fujita, Junji.

    1976-11-01

    The use of toroidal magnetic field as a lens system is proposed for producing intense ion beam. The characteristics of the lens system are obtained both analytically and numerically. Some examples of ray-trajectories are presented for different focal lengths. The system is applicable to neutral beam injection heating and micro-pellet implosion for nuclear fusion, and to the other fields such as ion beam X-ray lasers. (auth.)

  6. Design study on an intense heavy-ion linac system

    International Nuclear Information System (INIS)

    Okamura, M.; Oguri, Y.; Takahashi, Y.; Hattori, T.; Takeda, O.; Satoh, K.; Tanabe, Y.

    1992-01-01

    A four-vane RFQ cavity is designed for an intense heavy-ion linac system. RFQ-vanes with small tip curvatures are applied in order to improve the RF power efficiency. Beam optical and RF parameters are investigated by beams of numerical methods. Using a scale model, the cavity structure is experimentally optimized. (Author) 7 refs., 4 figs

  7. Simulations of multistage intense ion beam acceleration

    International Nuclear Information System (INIS)

    Slutz, S.A.; Poukey, J.W.

    1992-01-01

    An analytic theory for magnetically insulated, multistage acceleration of high intensity ion beams, where the diamagnetic effect due to electron flow is important, has been presented by Slutz and Desjarlais. The theory predicts the existence of two limiting voltages called V 1 (W) and V 2 (W), which are both functions of the injection energy qW of ions entering the accelerating gap. As the voltage approaches V 1 (W), unlimited beam-current density can penetrate the gap without the formation of a virtual anode because the dynamic gap goes to zero. Unlimited beam current density can penetrate an accelerating gap above V 2 (W), although a virtual anode is formed. It was found that the behavior of these limiting voltages is strongly dependent on the electron density profile. The authors have investigated the behavior of these limiting voltages numerically using the 2-D particle-in-cell (PIC) code MAGIC. Results of these simulations are consistent with the superinsulated analytic results. This is not surprising, since the ignored coordinate eliminates instabilities known to be important from studies of single stage magnetically insulated ion diodes. To investigate the effect of these instabilities the authors have simulated the problem with the 3-D PIC code QUICKSILVER, which indicates behavior that is consistent with the saturated model

  8. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  9. High current ion source development at Frankfurt

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1995-11-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H{sup -}-sources each delivering a 70 mA H{sup -}-beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs.

  10. High current ion source development at Frankfurt

    International Nuclear Information System (INIS)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M.

    1995-01-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H - -sources each delivering a 70 mA H - -beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs

  11. Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic.

    Science.gov (United States)

    Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-07-25

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.

  12. Linac4 H− ion sources

    International Nuclear Information System (INIS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.

    2016-01-01

    CERN’s 160 MeV H − linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H − source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H − source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described

  13. Dynamics of plasma ions motion in ultra-intense laser-excited plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Jing

    2013-01-01

    The effects of heavy ions and protons motion in an ultra-intense laser-driven plasma wake are compared by rebuilding a plasma wake model. It is shown that with the same laser and plasma background electron density n 0 , the heavy ions' motion suppresses wake-field resonant excitation less than the protons' motion in their own plasma wake. Though heavy ions obtain more kinetic energy from the plasma wake, its energy density is less than that of the protons due to the ion density being far less than the proton density. As a result, the total energy of heavy ions obtained from the wake-field is far less than that of protons. The dependence of the kinetic energy and the energy density of protons and heavy ions on n 0 is discussed. (paper)

  14. A compact control system to achieve stable voltage and low jitter trigger for repetitive intense electron-beam accelerator based on resonant charging

    Science.gov (United States)

    Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao

    2017-08-01

    A compact control system based on Delphi and Field Programmable Gate Array(FPGA) is developed for a repetitive intense electron-beam accelerator(IEBA), whose output power is 10GW and pulse duration is 160ns. The system uses both hardware and software solutions. It comprises a host computer, a communication module and a main control unit. A device independent applications programming interface, devised using Delphi, is installed on the host computer. Stability theory of voltage in repetitive mode is analyzed and a detailed overview of the hardware and software configuration is presented. High voltage experiment showed that the control system fulfilled the requests of remote operation and data-acquisition. The control system based on a time-sequence control method is used to keep constant of the voltage of the primary capacitor in every shot, which ensured the stable and reliable operation of the electron beam accelerator in the repetitive mode during the experiment. Compared with the former control system based on Labview and PIC micro-controller developed in our laboratory, the present one is more compact, and with higher precision in the time dimension. It is particularly useful for automatic control of IEBA in the high power microwave effects research experiments where pulse-to-pulse reproducibility is required.

  15. An experimental program for collective acceleration of ions using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Vijayan, T.; Raychowdhury, P.; Iyengar, S.K.

    1992-01-01

    A program of collective ion acceleration using intense relativistic electron beam (IREB) of 0.25-1MeV, 6-80kA, 60ns on the Kilo Ampere Linear Injector (KALI) systems to accelerate light and heavy ions to high energies approaching GeV with currents over tens of amperes, is envisaged in this report. The accelerator will make use of the intense space-charge field of electron beam in vacuum for accelerating ions which are injected into it. For ion injection, various alternatives, such as, localized gas puff, dielectric insert, laser plasma, etc. have been considered as present and long-term objectives. Among the variety of diagnostic methods chosen for characterizing the accelerated ions include range-energy in foil, CR-39 track detector, nuclear activation technique and time-of-flight for energy and species determination; ion Faraday cup for current measurement; and Thomson parabola analyzer for determining the post-acceleration charge-state. In the proposed MAHAKALI collective accelerator, protons of energy over 10 MeV and higher charge state metal ions around a GeV are predicted using a REB of 1MeV, 30kA, 60ns from KALI-5000. In present experiments using KALI-200 with REB parameters of 250keV, 60kA, 80ns, protons over a MeV and carbon and fluorine ions respectively for 12MeV and 16MeV in significant currents have been accelerated. (author). 35 refs., figs., tabs

  16. Generation of µW level plateau harmonics at high repetition rate.

    Science.gov (United States)

    Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A

    2011-09-26

    The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America

  17. Proceedings of the workshop on the science of intense radioactive ion beams

    International Nuclear Information System (INIS)

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort

  18. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Wilson, R.; Dance, R. J.; MacLellan, D. A.; Butler, N. M. H.; Capdessus, R.; McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L. C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja s/n. 37185 Villamayor, Salamanca (Spain); Carroll, D. C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Yuan, X. H. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom)

    2016-06-15

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  19. Proceedings of the workshop on the science of intense radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J.B.; Vieira, D.J. (comps.)

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  20. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    Science.gov (United States)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  1. Multipurpose intense 14 MeV neutron source at Bratislava: Design study

    International Nuclear Information System (INIS)

    Pivarc, J.; Hlavac, S.; Kral, J.; Oblozinsky, P.; Ribansky, I.; Turzo, I.

    1980-05-01

    The present state of design of the multipurpose intense 14 MeV neutron source based on a D + ion beam and a metal tritide target is reported. It is essentially a 300 keV electrostatic air insulated accelerator capable to accelerate a deuterium ion beam up to 10 mA. With such a beam and a beam spot of 1 cm 2 , a neutron yield typically 10 12 n/s and a useful target lifetime of around 10 h are expected. Various users requirements are met by means of three beam lines: an intense, low current dc and a low current fast pulsed. The key components of the intense source section are the rotating target and the ion source. The rotating target is proposed, with respect of the heat dissipation and the removal of 3 kW/cm 2 , in continuous operation. A rotation speed up to 1100 rpm is considered. The ion source should deliver about 0.5 kW of extracted D + ion beam power. A duoplasmatron source with an electrostatic beam focusing system has been selected. Low current sections of the neutron source may operate with a high frequency ion source as well. The dc section for maximum yields around 10 10 n/s is designed with special regard to beam monitoring. The fast pulsed section should produce up to 1 ns compressible pulsed D + ion beam on a target spot with 5 MHz repetition rate. The report includes information about other components of the neutron source as a high voltage power supply, a vacuum system, beam transport, a diagnostic and control system and basic information about neutron source cells and radiation protection. (author)

  2. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  3. Lifetime of anode polymer in magnetically insulated ion diodes for high-intensity pulsed ion beam generation

    International Nuclear Information System (INIS)

    Zhu, X. P.; Dong, Z. H.; Han, X. G.; Xin, J. P.; Lei, M. K.

    2007-01-01

    Generation of high-intensity pulsed ion beam (HIPIB) has been studied experimentally using polyethylene as the anode polymer in magnetically insulated ion diodes (MIDs) with an external magnetic field. The HIPIB is extracted from the anode plasma produced during the surface discharging process on polyethylene under the electrical and magnetic fields in MIDs, i.e., high-voltage surface breakdown (flashover) with bombardments by electrons. The surface morphology and the microstructure of the anode polymer are characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The surface roughening of the anode polymer results from the explosive release of trapped gases or newly formed gases under the high-voltage discharging, leaving fractured surfaces with bubble formation. The polyethylene in the surface layer degrades into low-molecular-weight polymers such as polyethylene wax and paraffin under the discharging process. Both the surface roughness and the fraction of low molecular polymers apparently increase as the discharging times are prolonged for multipulse HIPIB generation. The changes in the surface morphology and the composition of anode polymer lead to a noticeable decrease in the output of ion beam intensity, i.e., ion current density and diode voltage, accompanied with an increase in instability of the parameters with the prolonged discharge times. The diode voltage (or surface breakdown voltage of polymer) mainly depends on the surface morphology (or roughness) of anode polymers, and the ion current density on the composition of anode polymers, which account for the two stages of anode polymer degradation observed experimentally, i.e., stage I which has a steady decrease of the two parameters and stage II which shows a slow decrease, but with an enhanced fluctuation of the two parameters with increasing pulses of HIPIB generation

  4. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    Science.gov (United States)

    Barnard, John J.; Schenkel, Thomas

    2017-11-01

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.

  5. Ion acceleration with ultra intense and ultra short laser pulses

    International Nuclear Information System (INIS)

    Floquet, V.

    2012-01-01

    Accelerating ions/protons can be done using short laser pulse (few femto-seconds) focused on few micrometers area on solid target (carbon, aluminum, plastic...). The electromagnetic field intensity reached on target (≥10 18 W.cm -2 ) allows us to turn the solid into a hot dense plasma. The dynamic motion of the electrons is responsible for the creation of intense static electric field at the plasma boundaries. These electric fields accelerate organic pollutants (including protons) located at the boundaries. This acceleration mechanism known as the Target Normal Sheath Acceleration (TNSA) has been the topic of the research presented in this thesis.The goal of this work has been to study the acceleration mechanism and to increase the maximal ion energy achievable. Indeed, societal application such as proton therapy requires proton energy up to few hundreds of MeV. To proceed, we have studied different target configurations allowing us to increase the laser plasma coupling and to transfer as much energy as possible to ions (target with microspheres deposit, foam target, grating). Different experiments have also dealt with generating a pre-plasma on the target surface thanks to a pre-pulse. On the application side, fluorescent material such as CdWO 4 has been studied under high flux rate of protons. These high flux rates have been, up to now, beyond the conventional accelerators capabilities. (author) [fr

  6. Development of bipolar pulse accelerator for intense pulsed ion beam acceleration

    International Nuclear Information System (INIS)

    Fujioka, Y.; Mitsui, C.; Kitamura, I.; Takahashi, T.; Masugata, K.; Tanoue, H.; Arai, K.

    2003-01-01

    To improve the purity of an intense pulsed ion beams a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' was proposed. In the accelerator purity of the beam is expected. To confirm the principle of the accelerator experimental system was developed. The system utilizes B y type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun placed in the grounded anode was used as an ion source, and source plasma (nitrogen) of current density approx. = 25 A/cm 2 , duration approx. = 1.5 μs was injected into the acceleration gap. The ions are successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 180 kV, duration 60 ns to the drift tube. Pulsed ion beam of current density approx. = 40 A/cm 2 , duration approx. 60 ns was obtained at 42 mm downstream from the anode surface. (author)

  7. Two discharge modes of a repetitive nanosecond pulsed helium glow discharge under sub-atmospheric pressure in the repetition frequency range of 20 to 600 kHz

    Science.gov (United States)

    Kikuchi, Yusuke; Maegawa, Takuya; Otsubo, Akira; Nishimura, Yoshimi; Nagata, Masayoshi; Yatsuzuka, Mitsuyasu

    2018-05-01

    Two discharge modes, α and γ, of a repetitive nanosecond pulsed helium glow discharge at a gas pressure of 10 kPa in the repetition frequency range from 20 to 600 kHz are reported for the first time. The pulsed glow discharge is produced in a pair of parallel plate metal electrodes without insertion of dielectrics. The α mode discharge is volumetrically produced in the electrode gap at a low-repetition frequency, whereas the γ mode discharge is localized at the cathode surface at a high-repetition frequency. At high-repetition frequency, the time interval between voltage pulses is shorter than the lifetime of the afterglow produced by the preceding discharge. Then, the γ mode discharge is maintained by a large number of secondary electrons emitted from the cathode exposed to high-density ions and metastable helium atoms in the afterglow. In the α mode discharge with a low-repetition frequency operation, primary electrons due to gas ionization dominate the ionization process. Thus, a large discharge voltage is needed for the excitation of the α mode discharge. It is established that the bifurcation of α-γ discharge mode, accompanied by a decrease in the discharge voltage, occurs at the high-repetition frequency of ∼120 kHz.

  8. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  9. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  10. Measurement of L X-ray intensity ratios in tantalum by proton and Si-ion impact

    International Nuclear Information System (INIS)

    Braich, J.S.; Dhal, B.B.; Singh, B.P.; Padhi, H.C.; Khurana, C.S.; Verma, H.R.

    1996-01-01

    The Lι, Lβ 1,4,6 , Lβ 2,15,3 , Lγ 1 , Lγ 2,3,6 and Lγ 4,4' , X-ray intensities relative to the Lα, caused by the impact of protons of energy 1 to 4.6 MeV and Si-ions of 70 to 98 MeV on Ta targets, h ave been measured. The results show that the intensity ratios drop significantly for all transitions except Lγ 2,3,6 /Lα with Si-ions of the same energy/amu as compared to those of protons. The experimental results have been compared with those based on the ECPSSR theoretical values. From the energy shift and change in the intensity ratios of various transitions caused by Si-ion impact, the number of outer shell vacancies in the M, N and O-shells simultaneous to that of L-shell have been estimat ed. (orig.)

  11. Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus.

    Science.gov (United States)

    Robson, Lynne; Ledingham, Kenneth W D; McKenna, Paul; McCanny, Thomas; Shimizu, Seiji; Yang, Jiamin M; Wahlström, Claes-Göran; Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan

    2005-01-01

    The mechanism of atomic and molecular ionization in intense, ultra-short laser fields is a subject which continues to receive considerable attention. An inherent difficulty with techniques involving the tight focus of a laser beam is the continuous distribution of intensities contained within the focus, which can vary over several orders of magnitude. The present study adopts time of flight mass spectrometry coupled with a high intensity (8 x 10(15) Wcm(-2)), ultra-short (20 fs) pulse laser in order to investigate the ionization and dissociation of the aromatic molecule benzene-d1 (C(6)H(5)D) as a function of intensity within a focused laser beam, by scanning the laser focus in the direction of propagation, while detecting ions produced only in a "thin" slice (400 and 800 microm) of the focus. The resultant TOF mass spectra varies significantly, highlighting the dependence on the range of specific intensities accessed and their volumetric weightings on the ionization/dissociation pathways accessed.

  12. Analysis of intensities of positive and negative ion species from silicon dioxide films using time-of-flight secondary ion mass spectrometry and electronegativity of fragments

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi

    2010-01-01

    Intensities of positive and negative ion species emitted from thermally oxidized and plasma-enhanced chemical vapor deposited (PECVD) SiO 2 films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the Saha-Boltzmann equation. Intensities of positive and negative secondary ion species were normalized to those of 28 Si + and 28 Si - ions, respectively, and an effective temperature of approximately (7.2 ± 0.1) x 10 3 K of the sputtered region bombarded with pulsed 22 kV Au 3 + primary ions was determined. Intensity spectra showed polarity dependence on both n and m values of Si n O m fragments, and a slight shift to negative polarity for PECVD SiO 2 compared to thermally oxidized SiO 2 films. By dividing the intensity ratios of negative-to-positive ions for PECVD SiO 2 by those for thermally oxidized SiO 2 films to cancel statistical factors, the difference in absolute electronegativity (half the sum of ionization potential and electron affinity of fragments) between both films was obtained. An increase in electronegativity for SiO m (m = 1, 2) and Si 2 O m (m = 1-4) fragments for PECVD SiO 2 films compared to thermally oxidized films was obtained to be 0.1-0.2 Pauling units, indicating a more covalent nature of Si-O bonds for PECVD SiO 2 films compared to the thermally oxidized SiO 2 films.

  13. Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks.

    Science.gov (United States)

    D'Arcangelo, G; Panuccio, G; Tancredi, V; Avoli, M

    2005-01-01

    Deep-brain electrical or transcranial magnetic stimulation may represent a therapeutic tool for controlling seizures in patients presenting with epileptic disorders resistant to antiepileptic drugs. In keeping with this clinical evidence, we have reported that repetitive electrical stimuli delivered at approximately 1 Hz in mouse hippocampus-entorhinal cortex (EC) slices depress the EC ability to generate ictal activity induced by the application of 4-aminopyridine (4AP) or Mg(2+)-free medium (Barbarosie, M., Avoli, M., 1997. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J. Neurosci. 17, 9308-9314.). Here, we confirmed a similar control mechanism in rat brain slices analyzed with field potential recordings during 4AP (50 microM) treatment. In addition, we used intrinsic optical signal (IOS) recordings to quantify the intensity and spatial characteristics of this inhibitory influence. IOSs reflect the changes in light transmittance throughout the entire extent of the slice, and are thus reliable markers of limbic network epileptiform synchronization. First, we found that in the presence of 4AP, the IOS increases, induced by a train of electrical stimuli (10 Hz for 1 s) or by recurrent, single-shock stimulation delivered at 0.05 Hz in the deep EC layers, are reduced in intensity and area size by low-frequency (1 Hz), repetitive stimulation of the subiculum; these effects were observed in all limbic areas contained in the slice. Second, by testing the effects induced by repetitive subicular stimulation at 0.2-10 Hz, we identified maximal efficacy when repetitive stimuli are delivered at 1 Hz. Finally, we discovered that similar, but slightly less pronounced, inhibitory effects occur when repetitive stimuli at 1 Hz are delivered in the EC, suggesting that the reduction of IOSs seen during repetitive stimulation is pathway dependent as well as activity dependent. Thus, the activation of limbic networks at low frequency

  14. A scintillating fibre-based profiler for low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Amato, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gu, M. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Raia, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Rovelli, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy)

    1997-01-11

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.).

  15. A scintillating fibre-based profiler for low intensity ion beams

    International Nuclear Information System (INIS)

    Finocchiaro, P.; Amato, A.; Ciavola, G.; Cuttone, G.; Gu, M.; Raia, G.; Rovelli, A.

    1997-01-01

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.)

  16. Interstitial muscle lactate, pyruvate and potassium dynamics in the trapezius muscle during repetitive low-force arm movements, measured with microdialysis

    DEFF Research Database (Denmark)

    Rosendal, L; Blangsted, A K; Kristiansen, J

    2004-01-01

    Local muscle metabolic responses to repetitive low-force contractions and to intense static contractions were studied by microdialysis in humans.......Local muscle metabolic responses to repetitive low-force contractions and to intense static contractions were studied by microdialysis in humans....

  17. Liquid-film stripper for high-intensity heavy-ion beams

    International Nuclear Information System (INIS)

    Leemann, B.T.; Merrill, P.; Syversrud, H.K.; Wada, R.; Yourd, R.B.

    1981-03-01

    Electron strippers are widely used in heavy ion accelerators such as tandem Van de Graaff generators and heavy ion linacs. The SuperHILAC at Lawrence Berkeley Laboratory, employs a fluorocarbon oil vapor stripper at 113 keV/A for its high intensity injector ABEL, while after acceleration to 1.199 MeV/A a 35 μg/cm 2 carbon foil stripper is used. At present, the lifetime of these foils is about 1 hour for an 40 Ar beam of approx. 1 μA average particle current. With higher intensity high mass (100 less than or equal to A less than or equal to 238) beams available from ABEL injector the lifetime is expected to drop drastically and might be as low as one minute. A different approach to solve the stripper foil lifetime problem uses a thin free standing oil film spun from the edge of a sharp-edged rotating disc touching the surface of an oil reservoir. Areas of about 10 cm 2 with areal densities down to 20 μg/cm 2 have been reported. The work described here is based on the same concept, and produces a constantly regenerated, stable, free standing oil film of appropriate thickness for use at the SuperHILAC

  18. A high repetition rate transverse beam profile diagnostic for laser-plasma proton sources

    Science.gov (United States)

    Dover, Nicholas; Nishiuchi, Mamiko; Sakaki, Hironao; Kando, Masaki; Nishitani, Keita

    2016-10-01

    The recently upgraded J-KAREN-P laser can provide PW peak power and intensities approaching 1022 Wcm-2 at 0.1 Hz. Scaling of sheath acceleration to such high intensities predicts generation of protons to near 100 MeV, but changes in electron heating mechanisms may affect the emitted proton beam properties, such as divergence and pointing. High repetition rate simultaneous measurement of the transverse proton distribution and energy spectrum are therefore key to understanding and optimising the source. Recently plastic scintillators have been used to measure online proton beam transverse profiles, removing the need for time consuming post-processing. We are therefore developing a scintillator based transverse proton beam profile diagnostic for use in ion acceleration experiments using the J-KAREN-P laser. Differential filtering provides a coarse energy spectrum measurement, and time-gating allows differentiation of protons from other radiation. We will discuss the design and implementation of the diagnostic, as well as proof-of-principle results from initial experiments on the J-KAREN-P system demonstrating the measurement of sheath accelerated proton beams up to 20 MeV.

  19. Physics of neutralization of intense high-energy ion beam pulses by electrons

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  20. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B.; Lee, E.P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  1. Comparison of concentric and eccentric bench press repetitions to failure.

    Science.gov (United States)

    Kelly, Stephen B; Brown, Lee E; Hooker, Steven P; Swan, Pamela D; Buman, Matthew P; Alvar, Brent A; Black, Laurie E

    2015-04-01

    Eccentric muscle actions (ECC) are characterized by muscle lengthening, despite actin-myosin crossbridge formation. Muscles acting eccentrically are capable of producing higher levels of force compared with muscles acting concentrically. The purpose of this study was to determine whether ECC bench press yields greater strength than concentric (CON) as determined by 1 repetition maximum (1RM). Additionally, a comparison was made examining differences in the number of repetitions to failure at different relative intensities of 1RM. Thirty healthy men (age = 24.63 ± 5.6 years) were tested for 1RM in CON and ECC bench press and the number of repetitions completed at 60, 70, 80, and 90% 1RM. For CON repetitions, the weight was mechanically lowered to the chest, and the participant pressed it up until the elbows were fully extended. The ECC bench press consisted of lowering a barbell from a fully extended elbow position to the chest in a continuous controlled manner for 3 seconds as determined by electronic metronome. Paired t-tests showed that ECC 1RM (115.99 ± 31.08 kg) was significantly (p ≤ 0.05) greater than CON 1RM (93.56 ± 26.56 kg), and the number of repetitions completed at 90% 1RM was significantly (p ≤ 0.05) greater in ECC (7.67 ± 3.24) as compared with CON (4.57 ± 2.21). There were no significant differences in number of completed repetitions during CON and ECC bench press at 60, 70, and 80% 1RM. These data indicate that ECC actions yield increased force capabilities (∼120%) as compared with CON in the bench press and may be less prone to fatigue, especially at higher intensities. These differences suggest a need to develop unique strategies for training eccentrically.

  2. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)

    2004-12-21

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  3. H- Ion Sources For CERN’s Linac4

    CERN Document Server

    Lettry, J; Coutron, Y; Chaudeta, E; Dallocchio, A; Gil Flores, J; Hansen, J; Mahner, E; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; O’Neil, M; Paoluzzi, M; Pasquino, C; Pereira, H; Sanchez Arias, J; Schmitzer, C; Scrivens, R; Steyaert, D

    2013-01-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitabl...

  4. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  5. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  6. Mevva ion source operated in purely gaseous mode

    International Nuclear Information System (INIS)

    Yushkov, G.Y.; MacGill, R.A.; Brown, I. G.

    2003-01-01

    We have operated a vacuum arc ion source in such a way as to form beams of purely gaseous ions. The vacuum arc configuration that is conventionally used to produce intense beams of metal ions was altered so as to form gaseous ion beams, with only minimal changes to the external circuitry and no changes at all internally to the ion source. In our experiments we formed beams from oxygen (O + and O 2 + ), nitrogen (N + and N 2 + ), argon (Ar + ) and carbon dioxide (C + , CO 2 + , O + and O 2 + ) at extraction voltage of 2 to 50 kV. We used a pulsed mode of operation, with beam pulses approximately 50 milliseconds long and repetition rate 10 pulses per second, for a duty cycle of about 50%. Downstream ion beam current as measured by a 5 cm diameter Faraday cup was typically 0.5 mA pulse or about 250 (micro)A time averaged. This time averaged beam current is very similar to that obtained for metal ions when the source is operated in the usual vacuum arc mode. Here we describe the modifications made to the source and the results of our investigations

  7. Repetitive Stress Injuries

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Repetitive Stress Injuries KidsHealth / For Teens / Repetitive Stress Injuries What's ... t had any problems since. What Are Repetitive Stress Injuries? Repetitive stress injuries (RSIs) are injuries that ...

  8. Consideration of fluctuation in secondary beam intensity of heavy ion beam probe measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Hamada, Y.

    1997-01-01

    Heavy ion beam probes have capability to detect local electron density fluctuation in the interior of plasmas through the detected beam intensity fluctuation. However, the intensity fluctuation should suffer a certain degree of distortion from electron density and temperature fluctuations on the beam orbits, and as a result the signal can be quite different from the local density fluctuation. This paper will present a condition that the intensity fluctuation can be regarded as being purely local electron density fluctuation, together with discussion about the contamination of the fluctuation along the beam orbits to the beam intensity fluctuation. (author)

  9. Hydrodynamics of layer structured targets impinged by intense ion beams

    International Nuclear Information System (INIS)

    Davila, J.; Barrero, A.

    1989-01-01

    To minimize the energy loss in the corona outflow, a layer structured spherical hollow shell has been proposed to be used as target in inertial confinement fusion. For ion beam drivers, the major part of the beam energy is absorbed in the middle layer, which is called either absorber or pusher. The outer layer, called tamper, slows down the outward expansion of the absorbed low density region. The materials of the tamper and pusher are usually in the inner layer. The knowledge of the hydrodynamics of the interaction of an intense beam with a structured target is then an essential point in order to achieve break-even conditions in ion-beam fusion. (author) 2 refs., 2 figs

  10. A high-repetition rate LWFA for studies of laser propagation and electron generation

    Science.gov (United States)

    He, Zhaohan; Easter, James; Hou, Bixue; Krushelnick, Karl; Nees, John; Thomas, Alec

    2010-11-01

    Advances in ultrafast optics today have enabled laser systems to deliver ever shorter and more intense pulses. When focused, such laser pulses can easily exceed relativistic intensities where the wakefield created by the strong laser electric field can be used to accelerate electrons. Laser wakefield acceleration of electrons holds promise for future compact electron accelerators or drivers of other radiation sources in many scientific, medical and engineering applications. We present experimental studies of laser wakefield acceleration using the λ-cubed laser at the University of Michigan -- a table-top high-power laser system operating at 500 Hz repetition rate. The high repetition rate allows statistical studies of laser propagation and electron acceleration which are not accessible with typical sub-0.1 Hz repetition rate systems. In addition, we compare the experiments with particle-in-cell simulations using the code OSIRIS.

  11. Vacuum arc ion sources - micro to macro

    International Nuclear Information System (INIS)

    MacGill, R.A.; Dickinson, M.R.; Brown, I.G.

    1995-08-01

    Vacuum arc ion sources provide a convenient tool for the production of intense beams of metal ions. The sources are relatively easy to construct and they can produce beams from all of the solid metals as well as of compounds, alloys and mixtures. We have made a number of different kinds of such sources over the course of our development work at LBL in the past decade, from very small open-quote thumb-size close-quote versions to a very large one with 50-cm diameter extractor. Beam current ranges from a few milliamperes up to almost 10 amperes and extraction voltage from about 1 kV to 100 kV. Multicathode versions have been made so that one can switch between metal ion species simply and quickly. Most of the sources have been operated in a repetitively pulsed mode, and we've tested a dc version also. Here we outline some construction features of the array of vacuum arc ion sources that we've developed and used, and describe their performance and limitations

  12. Program for calculating multi-component high-intense ion beam transport

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Prejzendorf, V.A.

    1985-01-01

    The CANAL program for calculating transport of high-intense beams containing ions with different charges in a channel consisting of dipole magnets and quadrupole lenses is described. The equations determined by the method of distribution function momenta and describing coordinate variations of the local mass centres and r.m.s. transverse sizes of beams with different charges form the basis of the calculation. The program is adapted for the CDC-6500 and SM-4 computers. The program functioning is organized in the interactive mode permitting to vary the parameters of any channel element and quickly choose the optimum version in the course of calculation. The calculation time for the CDC-6500 computer for the 30-40 m channel at the integration step of 1 cm is about 1 min. The program is used for calculating the channel for the uranium ion beam injection from the collective accelerator into the heavy-ion synchrotron

  13. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  14. The intense neutron generator and future factory type ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1968-07-01

    A neutron factory is likely to sell its product in the form of isotopes. To ay neutron factories are nuclear reactors. Ion accelerators may also produce isotopes by direct interaction and, at high enough energies, mesons and hyperons. The challenge of the electrical production of neutrons goes far beyond the isotope market. It challenges the two popular concepts for long term large scale energy, the fast breeder reactor and controlled thermonuclear fusion. For this use about 4% of nuclear generated power would be applied in a feedback loop generating extra neutrons. Competition rests on operating and processing costs. The Intense Neutron Generator proposal now cancelled would have been full scale for such a use, but much further advance in accelerator engineering is required and anticipated. Perhaps most promising is the application of the ion drag principle in which rings of fast electrons are accelerated along their axis dragging ions with them by electrostatic attraction. Due to the much larger mass of the ions they can acquire much higher energy than the electrons and the process could be efficient. Such accelerators have not yet been made but experimental and theoretical studies are promising. (author)

  15. The intense neutron generator and future factory type ion accelerators

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1968-01-01

    A neutron factory is likely to sell its product in the form of isotopes. To ay neutron factories are nuclear reactors. Ion accelerators may also produce isotopes by direct interaction and, at high enough energies, mesons and hyperons. The challenge of the electrical production of neutrons goes far beyond the isotope market. It challenges the two popular concepts for long term large scale energy, the fast breeder reactor and controlled thermonuclear fusion. For this use about 4% of nuclear generated power would be applied in a feedback loop generating extra neutrons. Competition rests on operating and processing costs. The Intense Neutron Generator proposal now cancelled would have been full scale for such a use, but much further advance in accelerator engineering is required and anticipated. Perhaps most promising is the application of the ion drag principle in which rings of fast electrons are accelerated along their axis dragging ions with them by electrostatic attraction. Due to the much larger mass of the ions they can acquire much higher energy than the electrons and the process could be efficient. Such accelerators have not yet been made but experimental and theoretical studies are promising. (author)

  16. Generation of intense ion beams and their application to controlled fusion research

    International Nuclear Information System (INIS)

    Dreike, P.; Ferch, R.L.; Friedman, A.

    1977-01-01

    Successful generation of pulsed multi-kA proton beams in the energy range 0.2 to 1.7 MeV using existing pulsed power technology has been achieved by three different techniques: reflex triodes, pinched electron-beam diodes and magnetically insulated diodes. Peak current densities in excess of 10 kAcm -2 have been observed on the NRL Gamble II machine and over 1.0 kAcm -2 on the Cornell Neptune machine. Peak total ion currents above 200 kA are produced by Gamble II. The potential applications of intense ion beams to magnetic confinement include (i) plasma heating and (ii) ion rings. A summary of continuous theoretical and experimental investigations on these applications is presented. (author)

  17. Electrostatic system of background suppression under detection of low-intensive ion beams

    International Nuclear Information System (INIS)

    Dubrovin, M.M.; Belyaev, V.A.

    2002-01-01

    Paper describes electrostatic system to suppress background at recording of low-intensive particle fluxes with transverse cross section exceeding the area of detector inlet aperture. Electrostatic system comprises 5 electrodes ensuring such spatial distribution of electrostatic field that enables accumulation of beam all ions with 30 x 40 mm 2 cross section at inlet aperture of secondary electron multiplier (SEM) with 9 mm diameter. In this case, ion trajectories prior to enter SEM are turned by 180 deg thus essentially improving signal/background ratio [ru

  18. On the interpretation of the intense emission of tungsten ions at about 5

    International Nuclear Information System (INIS)

    Jonauskas, V; Kucas, S; Karazija, R

    2007-01-01

    The origin of the intense emission band at about 5 nm, dominating the emission spectra of tungsten ions in the ASDEX Upgrade tokamak and EBIT, is discussed. It is shown that the emission spectra of various ions calculated taking into account only the excitations from the ground level agree fairly well with the results obtained in the collisional-radiative model; thus, the contribution of the excitations from the other levels is small. Though the excitation spectrum for all sequence of ions W 29+ -W 37+ corresponds to the same transitions 4p 6 4d N → 4p 5 4d N+1 + 4p 6 4d N-1 4f, its energetic width essentially changes going on from the charge of ion q = 34 to q = 35. It is caused by the appearance of the excitations 4p 1/2 -4d 3/2 to the open 4d N 3/2 subshell, which are not quenched by configuration mixing. The satellite line at about 4.5 nm is explained by the transitions of the same type, although between configurations with one spectator 5s electron. The existence of one more group of intense lines in the region of 2 nm, corresponding to 5s-4p transitions, is predicted

  19. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  20. Measurement of extent of intense ion beam charge neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Engelko, V [Efremov Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Giese, H; Schalk, S [Forschungszentrum Karlsruhe (Germany). INR

    1997-12-31

    Various diagnostic tools were employed to study and optimize the extent of space charge neutralization in the pulsed intense proton beam facility PROFA, comprising Langmuir probes, capacitive probes, and a novel type of the three electrode collector. The latter does not only allow us to measure ion and electron beam current densities in a high magnetic field environment, but also to deduce the density spectrum of the beam electrons. Appropriate operating conditions were identified to attain a complete space charge neutralisation. (author). 5 figs., 4 refs.

  1. Production of intensive negative lithium beam with caesium sputter-type ion source

    Science.gov (United States)

    Lobanov, Nikolai R.

    2018-01-01

    Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.

  2. New developments in metal ion implantation by vacuum arc ion sources and metal plasma immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1996-01-01

    Ion implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a metal plasma immersion configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the in charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from pure ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here the authors review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put. 54 refs., 9 figs

  3. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  4. Intensity limitations of cooled heavy ion beams in the ESR

    International Nuclear Information System (INIS)

    Hofmann, I.; Meyer-Pruessner, R.

    1985-06-01

    We consider the possibility of achieving maximum intensity and phase space density of heavy ions cooled by electrons in the Experimental Storage Ring to be built at GSI. Intrabeam scattering and the longitudinal microwave instability are found to be important limiting effects particularly at low energies. They are evaluated in diagrams, which can serve as a preliminary orientation for the expected performance of experiments. Examples have been calculated for U 92+ at 50 and 500 MeV/u; in the latter case we find that 9 ions at Δp/p=2x10 -4 and epsilon=0.2π mm mrad are on the safe side for an assumed cooling time of 100 msec. We have also analyzed I 20+ as a candidate for generating high energy density in matter. (orig.)

  5. Development of a high intensity sup 4 sup 8 Ca ion beam for the heavy element program

    CERN Document Server

    Wutte, D C; Lyneis, C

    2002-01-01

    A high intensity sup 4 sup 8 Ca ion beam has been developed at the 88 Inch Cyclotron for the synthesis of sup 2 sup 8 sup 3 112 using the reaction sup 2 sup 3 sup 8 U( sup 4 sup 8 Ca, 3n). An ion beam intensity of approx 700 pnA was delivered on target, resulting in a total dose of 2 x 10 sup 1 sup 8 ions over a six day period. Since sup 4 sup 8 Ca is a very expensive and rare isotope minimal consumption is essential. Therefore a new oven [1] and special tantalum liner [2] have been developed for the AECR-U ion source during the last year to improve the metal ion beam efficiency. Both the LBL ECR and the AECR-U ion sources are built with radial access. Six radial slots between the sextupole magnet bars provide additional pumping and easy access to the plasma chamber for ovens and feedthroughs. Two types of radial ovens have been used at LBNL in the past, operating at temperatures up to 2100 C.

  6. Comprehensive diagnostic set for intense lithium ion hohlraum experiments on PBFA II

    International Nuclear Information System (INIS)

    Leeper, R.J.; Bailey, J.E.; Carlson, A.L.

    1994-01-01

    A review of the comprehensive diagnostic package developed at Sandia National Laboratories for intense lithium ion hohlraum target experiments on PBFA II will be presented. This package contains an extensive suite of x-ray spectral and imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics, time-integrated and time-resolved grazing incidence spectrographs, a transmission grating spectrography, an elliptical crystal spectrograph, a bolometer array, an eleven element x-ray diode (XRD) array, and an eleven element PIN diode detector array. A hohlraum temperature measurement technique under development is a shock breakout diagnostic that measures the radiation pressure at the hohlraum wall. The incident Li beam symmetry and an estimate of incident Li beam power density are measured from ion beam-induced characteristic x-ray line and neutron emissions. An attempt to measure the Li beam intensity directly on target used Rutherford scattered ions into an ion movie camera and a magnetic spectrograph. The philosophy used in designing all the diagnostics in the set has emphasized redundant and independent measurements of fundamental physical quantities relevant to the performance of the target. Details of each diagnostic, its integration, data reduction procedures, and recent PBFA-II data will be discussed

  7. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  8. Plasma opening switch for long-pulse intense ion beam

    International Nuclear Information System (INIS)

    Davis, H.A.; Mason, R.J.; Bartsch, R.R.; Greenly, J.B.; Rej, D.J.

    1992-01-01

    A Plasma Opening Switch (POS) is being developed at Los Alamos, as part of an intense ion beam experiment with special application to materials processing. The switch must conduct up to 100 kA for 600 ns, and open quickly to avoid premature gap closure in the ion beam diode load. Power multiplication is not a necessity, but prepulse suppression is. A positive central polarity is desirable, since with it an ion beam can be conveniently launched beyond the switch from the central anode toward a negatively charged target. Thus, otherwise by virtue of traditional scaling rules, a POS was designed with a 1.25 cm radius inner anode, and a 4.75 cm radius outer cathode. This has been constructed, and subjected to circuit, and simulational analysis. The computations are being performed with the 2D ANTHEM implicit code. Preliminary results show a marked difference in switching dynamics, when the central positive polarity is used in place of the more conventional opposite choice. Opening goes by the fast development of a central anode magnetic layer, rather than by the more conventional slow evolution of a cathode gap. With the central anode, higher fill densities are needed to achieve desired conduction times. This has suggested switch design improvements, which are discussed

  9. Plasma opening switch for long-pulse intense ion beam

    International Nuclear Information System (INIS)

    Davis, H.A.; Mason, R.J.; Bartsch, R.R.; Greenly, J.B.; Rej, D.J.

    1993-01-01

    A Plasma Opening Switch (POS) is being developed at Los Alamos, as part of an intense ion beam experiment with special application to materials processing. The switch must conduct up to 100 kA for 400 ns, and open quicky to avoid premature gap closure in the ion beam diode load. Power multiplication is not a necessity, but prepulse suppression is. A positive central polarity is desirable, since with it an ion beam can be conveniently launched beyond the switch from the central anode toward a negatively charged target. Using traditional scaling rules, a POS was designed with a 1.25 cm radius inner anode, and a 5.0 cm radius outer cathode. This has been constructed, and subjected to circuit, and simulational analysis. The computations are being performed with the 2D ANTHEM implicit code. Preliminary results show a marked difference in switching dynamics, when the central positive polarity is used in place of the more conventional opposite choice. Opening is achieved by the fast development of a central anode magnetic layer, rather than by the more conventional slow evolution of a cathode gap. With the central anode, higher fill densities are needed to achieve desired conduction times. This has suggested switch design improvements, which are discussed

  10. Virtual-anode formation by an intense pulsed ion beam incident upon a magnetic barrier

    International Nuclear Information System (INIS)

    Robertson, S.; Wessel, F.

    1980-01-01

    An intense, pulsed, initially space-charge-neutral ion beam (100 kV, 1 kA, 600 nsec) has been propagated into a transversely oriented magnetic barrier. When the magnetic field is adjusted so that (rho/sub i/rho/sub e/)/sup 1/2/ very-much-less-than a < rho/sub i/, a virtual anode is formed whose potential oscillates at approx.ω/sub p/i about a value near the ion accelerating potential, where a is the transverse beam dimension, ω/sub tsp/i is the ion plasma frequency, and rho/sub e/ and rho/sub i/ are the electron and ion gyroradii. This behavior is similar to that predicted by Poukey and Rostoker for virtual cathodes

  11. Ejection dynamics of hydrogen molecular ions from methanol in intense laser fields

    International Nuclear Information System (INIS)

    Okino, T; Furukawa, Y; Liu, P; Ichikawa, T; Itakura, R; Hoshina, K; Yamanouchi, K; Nakano, H

    2006-01-01

    The ejection of hydrogen molecular ions from two-body Coulomb explosion processes of methanol (CH 3 OH, CD 3 OH and CH 3 OD) in an intense laser field (800 nm, 60 fs, 0.2 PW cm -2 ) is investigated by a coincidence momentum imaging method. From the coincidence momentum maps, the ejection processes of hydrogen molecular ions, CH 3 OH 2+ → H m + + CH (3-m) OH + (m = 2, 3), CD 3 OH 2+ → D m + + CH (3-m) OH + (m = 2, 3) and CH 3 OD 2+ → H m + + CH (3-m) OD + (m = 2, 3), are identified. Based on the results obtained with isotopically substituted methanol, the isotope effect on the ejection process of hydrogen molecular ions is discussed. Furthermore, the ejection of H/D exchanged hydrogen molecular ions (HD + , HD 2 + and H 2 D + ) is identified, and the timescales for the H/D exchanging processes are estimated from the extent of anisotropy in the ejection directions

  12. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  13. Electron string ion sources for carbon ion cancer therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Katagiri, K.; Noda, K. [National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  14. DLC coating on stainless steel by pulsed methane discharge in repetitive plasma focus

    International Nuclear Information System (INIS)

    Hassan, M.; Qayyum, A.; Ahmad, S.; Mahmood, S.; Shafiq, M.; Zakaullah, M.; Lee, P.; Rawat, R.S.

    2014-01-01

    Amorphous hydrogenated carbon (a-C:H)/diamond-like carbon (DLC) coatings have been achieved on AISI 304 stainless steel (SS) substrates by employing energetic ions emitted from a repetitive plasma focus operated in CH 4 discharge. The Raman spectroscopy of the coatings exhibits the evolution of a-C:H/DLC coatings with clearly observed D and G peaks centered about 1320–1360 and 1560–1620 cm −1 respectively. The diamond character of the coatings is influenced by the ion flux and repetition rate of the focus device. The repetitive discharge mode of plasma focus has led to the formation of a-C:H/DLC coatings in short duration of time. The coatings transform from a-C to a-C:H depending upon substrate angular position. X-ray diffraction (XRD) analysis confirms the formation of DLC coating owing to stress-induced restructuring in SS. The estimated crystallite size is found to be ∼40–50 nm. Field emission scanning electron micrographs exhibit a layered granular surface morphology of the coatings. The Vickers surface hardness of the DLC coated SS samples has been significantly improved.

  15. DLC coating on stainless steel by pulsed methane discharge in repetitive plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, M., E-mail: hassanjh@gmail.com [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, BLK7, 1 Nanyang Walk, Singapore 637616 (Singapore); Qayyum, A.; Ahmad, S. [National Tokamak Fusion Program, 3329 Islamabad (Pakistan); Mahmood, S. [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, BLK7, 1 Nanyang Walk, Singapore 637616 (Singapore); Department of Physics, University of Karachi, 75270 Karachi (Pakistan); Shafiq, M.; Zakaullah, M. [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Lee, P.; Rawat, R.S. [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, BLK7, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2014-06-01

    Amorphous hydrogenated carbon (a-C:H)/diamond-like carbon (DLC) coatings have been achieved on AISI 304 stainless steel (SS) substrates by employing energetic ions emitted from a repetitive plasma focus operated in CH{sub 4} discharge. The Raman spectroscopy of the coatings exhibits the evolution of a-C:H/DLC coatings with clearly observed D and G peaks centered about 1320–1360 and 1560–1620 cm{sup −1} respectively. The diamond character of the coatings is influenced by the ion flux and repetition rate of the focus device. The repetitive discharge mode of plasma focus has led to the formation of a-C:H/DLC coatings in short duration of time. The coatings transform from a-C to a-C:H depending upon substrate angular position. X-ray diffraction (XRD) analysis confirms the formation of DLC coating owing to stress-induced restructuring in SS. The estimated crystallite size is found to be ∼40–50 nm. Field emission scanning electron micrographs exhibit a layered granular surface morphology of the coatings. The Vickers surface hardness of the DLC coated SS samples has been significantly improved.

  16. Production of intense beams of highly charged heavy ions from RIKEN 18 GHz ECRIS and liquid He free SC-ECRIS

    International Nuclear Information System (INIS)

    Nakagawa, T.; Kidera, M.; Kageyama, T.; Kase, M.; Yano, Y.; Higurashi, Y.; Kurita, T.; Imanaka, M.

    2001-01-01

    We have constructed the high performance ECRISs for RIKEN RI Beam factory project and successfully produced intense beams of highly charged heavy ions. RIKEN 18 GHz ECRIS can especially produce intense beams of medium charge states of heavy ions (1.3 mA of Ar 8+ , 200 eμA of Xe 20+ ) by applying the various techniques, e.g., Al cylinder method, biased electrode method, optimization of the plasma electrode position. Very recently, we successfully produced intense beams of highly charged heavy ions (10 eμA of Xe 30+ , 1 eμA of Xe 36+ ) from the Liquid He free SC-ECRIS with operational frequency of 14 GHz

  17. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  18. Enhancement of Ar sup 8 sup + ion beam intensity from RIKEN 18 GHz electron cyclotron resonance ion source by optimizing the magnetic field configuration

    CERN Document Server

    Higurashi, Y; Kidera, M; Kase, M; Yano, Y; Aihara, T

    2003-01-01

    We successfully produced a 1.55 emA Ar sup 8 sup + ion beam using the RIKEN 18 GHz electron cyclotron resonance ion source at a microwave power of 700 W. To produce such an intense beam, we optimized the minimum magnetic field of mirror magnetic field and plasma electrode position. (author)

  19. High intensity proton injector for facility of antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.; Hollinger, R.; Ivanova, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O.; Tuske, O. [Commissariat à l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191 Gif-sur-Yvette (France); Ullmann, C. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany)

    2016-02-15

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBT is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.

  20. Cluster-assisted multiple ionization of methyl iodide by a nanosecond laser: Influence of laser intensity on the kinetic energy and peak profile of multicharged ions

    International Nuclear Information System (INIS)

    Wen Lihua; Li Haiyang; Luo Xiaolin; Niu Dongmei; Xiao Xue; Wang Bin; Liang Feng; Hou Keyong; Shao Shiyong

    2006-01-01

    The dependences of kinetic energies and peak profiles of multicharged ions of I q+ (q = 2-3) and C 2+ on the laser intensity have been studied in detail by time-of-flight mass spectrometry, those multicharged ions are produced by irradiation of methyl iodide cluster beam with a nanosecond 532 nm Nd-YAG laser. Our experiments show that the kinetic energies released of multicharged ions increase linearly with the laser intensity in the range of 3 x 10 9 -2 x 10 11 W/cm 2 . The peaks of multicharged ions are split to forward ions and backward ions, and the ratio of the backward ions to forward ions decreases exponentially with laser intensity. The decreasing of backward ions is probably due to Coulomb scattering by the heavier I + ions when they turn around through the laser focus point. The linear dependence of kinetic energy of multicharged ions on laser intensity is interpreted by the ionization mechanism, in which the laser induced inverse bremsstrahlung heating of electron is the rate-limiting step

  1. Linac4 H{sup −} ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J., E-mail: Jacques.lettry@cern.ch; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C. [CERN-ABP, 1211 Geneva 23 (Switzerland); and others

    2016-02-15

    CERN’s 160 MeV H{sup −} linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H{sup −} source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H{sup −} source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.

  2. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  3. Towards highest peak intensities for ultra-short MeV-range ion bunches

    Science.gov (United States)

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-07-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

  4. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D. [CERN, 1211 Geneva 23 (Switzerland); Midttun, Ø. [University of Oslo, P.O. Box 1048, 0316 Oslo (Norway); CERN, 1211 Geneva 23 (Switzerland); Valerio-Lizarraga, C. A. [Departamento de Investigación en Fisica, Universidad de Sonora, Hermosillo (Mexico); CERN, 1211 Geneva 23 (Switzerland)

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  5. Ion induced scintillation in organic solids: development of an average track model,degradation of the scintillation intensity and dosimetric applications

    International Nuclear Information System (INIS)

    Broggio, D.

    2004-12-01

    This work deals with a specific aspect of the ion-matter interaction: the scintillation induced by ions in organic materials. In the first chapter we tackle the issue in a theoretical way by proposing a method to compute the radial doses within the framework of the mean track model. We have developed a model based on the Lewis transport equation and on the Spencer distribution of the loss energy in order to take into account the transport of secondary electrons in a more realistic way. In the second chapter we study the physical mechanisms that trigger ion-induced scintillation. Ion-induced scintillation is featured by the dependence in charge number of the intensity of scintillation for ions with same energy loss and by the saturation of the scintillation efficiency for ions with high stopping-power. We have applied our model of radial doses to ion-induced scintillation. In the third chapter we study the gradual degradation of the scintillation intensity and ion-induced chemical damages. In the last chapter we propose a prototype of dosimeters based on the combination of scintillators and optical fibers that allows the real-time measurement of the dose delivered by a carbon ion beam in therapeutical use conditions. This dosimeter gives the relationship between the dose and the scintillation intensity but its accuracy is not yet sufficient for uses in radiotherapy. (A.C.)

  6. Tune measurements with high intensity ion beams at GSI SIS-18

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul [GSI, Darmstadt (Germany); TEMF, TU Darmstadt (Germany); Forck, Peter; Kowina, Piotr; Kaufmann, Wolfgang [GSI, Darmstadt (Germany); Weiland, Thomas [TEMF, TU Darmstadt (Germany)

    2012-07-01

    A precise tune measurement during a full accelerating cycle is required to achieve stable high current operation. A new system has been commissioned at GSI for position, orbit and tune measurements. It consists of three distinct parts; an exciter which provides power to excite coherent betatron oscillations in the bunched beam; Fast ADCs to digitize the BPM signals at 125 MSa/s; the post processing electronics uses digitized BPM signals to acquire one position value per bunch. Subsequently the baseband tune is determined by Fourier transformation of the position data. Experiments were conducted to understand the effects of high beam intensity on tune at injection plateau (11.4 MeV/u) and during acceleration ramp (11.4-600 MeV/u). These experiments were performed with U{sup 73+} and Ar{sup 18+} ion beam at highest achievable intensities of 2.10{sup 9} and 2.5.10{sup 10} respectively. Tune shift with increased intensity was observed. The working principle of the tune measurement system and observed high intensity effects on tune will be reported in this contribution.

  7. Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis.

    Science.gov (United States)

    Zhou, Yufan; Yao, Juan; Ding, Yuanzhao; Yu, Jiachao; Hua, Xin; Evans, James E; Yu, Xiaofei; Lao, David B; Heldebrant, David J; Nune, Satish K; Cao, Bin; Bowden, Mark E; Yu, Xiao-Ying; Wang, Xue-Lin; Zhu, Zihua

    2016-12-01

    In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid-liquid and liquid-vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z>200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecular signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable for use of in situ liquid SIMS to study solid-liquid and liquid-vacuum interfaces. Graphical Abstract ᅟ.

  8. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    Chacon-Golcher, E.

    2002-01-01

    This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm 2 ) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield ( ) at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum values for a K + beam of ∼90 mA/cm 2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm 2 ) and low operating pressures ( e psilon) n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10

  9. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Chen, J. E. [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y. [SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  10. Optimized simultaneous transverse and longitudinal focusing of intense ion beam pulses for warm dense matter applications

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Davidson, Ronald C.; Kaganovich, Igor D.; Gilson, Erik P.; Roy, Prabir K.; Seidl, Peter A.; Yu, Simon S.; Welch, Dale R.; Rose, David V.; Barnard, John J.

    2007-01-01

    Intense, space-charge-dominated ion beam pulses for warm dense matter and heavy ion fusion applications must undergo simultaneous transverse and longitudinal bunch compression in order to meet the requisite beam intensities desired at the target. The longitudinal compression of an ion bunch is achieved by imposing an initial axial velocity tilt on the drifting beam and subsequently neutralizing its space-charge and current in a drift region filled with high-density plasma. The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory has measured a sixty-fold longitudinal current compression of an intense ion beam with pulse duration of a few nanoseconds, in agreement with simulations and theory. A strong solenoid is modeled near the end of the drift region in order to transversely focus the beam to a sub-millimeter spot size coincident with the longitudinal focal plane. The charge and current neutralization provided by the background plasma is critical in determining the total achievable transverse and longitudinal compression of the beam pulse. Numerical simulations show that the current density of an NDCX ion beam can be compressed over a few meters by factors greater than 10 5 with peak beam density in excess of 10 14 cm -3 . The peak beam density sets a lower bound on the local plasma density required near the focal plane for optimal beam compression, since the simulations show stagnation of the compression when n beam >n plasma . Beam-plasma interactions can also have a deleterious effect on the compression physics and lead to the formation of nonlinear wave excitations in the plasma. Simulations that optimize designs for the simultaneous transverse and longitudinal focusing of an NDCX ion beam for future warm dense matter experiments are discussed

  11. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    International Nuclear Information System (INIS)

    Chiping Chen

    2006-01-01

    Under the auspices of the research grant, the Intense Beam Theoretical Research Group at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; (c) Development of elliptic beam theory; and (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX)

  12. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  13. Repetitive urges to inflict burns: An unusual presentation of impulse control disorder.

    Science.gov (United States)

    Pal, Arghya; Parmar, Arpit; Pattanayak, Raman Deep

    2016-01-01

    Impulse control disorders (ICDs) are characterized by an inability to resist an intense impulse or drive to perform a particular act that is excessive and/or harmful to self/others. Till date, there is no published report of an ICD presenting with repetitive urges to inflict burns. We describe the case of an adult male in regular follow-up for 6 months who presented with intense, irresistible, and repetitive urges and acts of causing burns on his skin for past 1 year. The phenomenology shared the core qualities described for ICDs and patient showed adequate response to treatment. The case report describes an unusual type of ICD classifiable as not otherwise specified. More clinical and research attention is warranted toward ICDs in general, with implications for ICD-11.

  14. Repetitive urges to inflict burns: An unusual presentation of impulse control disorder

    Directory of Open Access Journals (Sweden)

    Arghya Pal

    2016-01-01

    Full Text Available Impulse control disorders (ICDs are characterized by an inability to resist an intense impulse or drive to perform a particular act that is excessive and/or harmful to self/others. Till date, there is no published report of an ICD presenting with repetitive urges to inflict burns. We describe the case of an adult male in regular follow-up for 6 months who presented with intense, irresistible, and repetitive urges and acts of causing burns on his skin for past 1 year. The phenomenology shared the core qualities described for ICDs and patient showed adequate response to treatment. The case report describes an unusual type of ICD classifiable as not otherwise specified. More clinical and research attention is warranted toward ICDs in general, with implications for ICD-11.

  15. Damping of coherent oscillations in intense ion beams

    International Nuclear Information System (INIS)

    Karpov, Ivan

    2017-01-01

    Transverse decoherence of a displaced ion bunch is an important phenomenon in synchrotrons and storage rings. An offset can be caused by an injection error after the bunch-to-bucket transfer between synchrotrons or by an externally generated kick. Decoherence results in a transverse emittance blowup, which can cause particle losses and a beam quality degradation. To prevent the beam blowup, a transverse feedback system (TFS) can be used. The damping time should be shorter than the characteristic decoherence time, which can be strongly affected by the interplay of different intensity effects (e.g., space charge and impedances). This thesis describes the development of the analytical models that explain decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. The pulsed response function including intensity effects was derived from the model for beam transfer functions. For a coasting beam, the two- dimensional model shows that space charge slows down and above intensity threshold suppresses decoherence. These predictions were confirmed by particle tracking simulations with self-consistent space charge fields. Additionally, halo buildup and losses during decoherence were observed in simulations. These effects were successfully interpreted using a non self-consistent particle-core model. The two-dimensional model was extended to the bunched beams. The simulation results reproduce the analytical predictions. The intensity threshold of decoherence suppression is higher in comparison to a coasting beam, image charges can restore decoherence. In the present work dedicated experiments were performed in the SIS18 synchrotron at GSI Darmstadt and the results were compared with simulations and analytical predictions. The contribution of nonlinearities and image charges is negligible while chromaticity and space charge dominate decoherence. To study the damping efficiency of TFS, a comprehensive TFS module was

  16. Damping of coherent oscillations in intense ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Ivan

    2017-02-06

    Transverse decoherence of a displaced ion bunch is an important phenomenon in synchrotrons and storage rings. An offset can be caused by an injection error after the bunch-to-bucket transfer between synchrotrons or by an externally generated kick. Decoherence results in a transverse emittance blowup, which can cause particle losses and a beam quality degradation. To prevent the beam blowup, a transverse feedback system (TFS) can be used. The damping time should be shorter than the characteristic decoherence time, which can be strongly affected by the interplay of different intensity effects (e.g., space charge and impedances). This thesis describes the development of the analytical models that explain decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. The pulsed response function including intensity effects was derived from the model for beam transfer functions. For a coasting beam, the two- dimensional model shows that space charge slows down and above intensity threshold suppresses decoherence. These predictions were confirmed by particle tracking simulations with self-consistent space charge fields. Additionally, halo buildup and losses during decoherence were observed in simulations. These effects were successfully interpreted using a non self-consistent particle-core model. The two-dimensional model was extended to the bunched beams. The simulation results reproduce the analytical predictions. The intensity threshold of decoherence suppression is higher in comparison to a coasting beam, image charges can restore decoherence. In the present work dedicated experiments were performed in the SIS18 synchrotron at GSI Darmstadt and the results were compared with simulations and analytical predictions. The contribution of nonlinearities and image charges is negligible while chromaticity and space charge dominate decoherence. To study the damping efficiency of TFS, a comprehensive TFS module was

  17. SALIVARY CORTISOL RESPONSES AND PERCEIVED EXERTION DURING HIGH INTENSITY AND LOW INTENSITY BOUTS OF RESISTANCE EXERCISE

    Directory of Open Access Journals (Sweden)

    Alison D. Egan

    2004-03-01

    Full Text Available The purpose of this study was to measure the salivary cortisol response to different intensities of resistance exercise. In addition, we wanted to determine the reliability of the session rating of perceived exertion (RPE scale to monitor resistance exercise intensity. Subjects (8 men, 9 women completed 2 trials of acute resistance training bouts in a counterbalanced design. The high intensity resistance exercise protocol consisted of six, ten-repetition sets using 75% of one repetition maximum (RM on a Smith machine squat and bench press exercise (12 sets total. The low intensity resistance exercise protocol consisted of three, ten-repetition sets at 30% of 1RM of the same exercises as the high intensity protocol. Both exercise bouts were performed with 2 minutes of rest between each exercise and sessions were repeated to test reliability of the measures. The order of the exercise bouts was randomized with least 72 hours between each session. Saliva samples were obtained immediately before, immediately after and 30 mins following each resistance exercise bout. RPE measures were obtained using Borg's CR-10 scale following each set. Also, the session RPE for the entire exercise session was obtained 30 minutes following completion of the session. There was a significant 97% increase in the level of salivary cortisol immediately following the high intensity exercise session (P<0.05. There was also a significant difference in salivary cortisol of 145% between the low intensity and high intensity exercise session immediately post-exercise (P<0.05. The low intensity exercise did not result in any significant changes in cortisol levels. There was also a significant difference between the session RPE values for the different intensity levels (high intensity 7.1 vs. low intensity 1.9 (P<0.05. The intraclass correlation coefficient for the session RPE measure was 0.95. It was concluded that the session RPE method is a valid and reliable method of

  18. Low preveance ion source bridges low and high intensities in ion implantation

    International Nuclear Information System (INIS)

    Orr, F.D.; Mayhall, D.

    1976-01-01

    The Low Perveance Ion Source developed by Accelerators, Inc. offers the Semiconductor Industry the advantage of processing medium to high intensity implants on a system which will also implant 200 to 300 wafers an hour at MOS doses. Stable source beam currents can be varied over three orders of magnitude by variation of a single source parameter. This source uses a new computer designed Low Perveance extraction optics which is completely new to the Ion Implantation Industry. Test data and calculations are shown which define the versatility of this system. Scanned currents from 1 microamp to 400 microamps allow for a variety of production processing. Beam characteristics feature low energy spread (less than 10 eV) and low divergence (less than 3 degrees). Beam control optics consist of a double focusing analyzing magnet and two triplet quadrupoles. The source may be fitted with an oven for feeding of solid materials and analyzed beam currents in the milliamp range for development purposes. The batch processing, hybrid scanning end station is most applicable for high current beams as well as high volume batch processings of MOS Implants. Results of development work toward increased currents using both solid and gas feed material with the Low Perveance source are presented. System improvements including Accel-Decel and a third extraction element are discussed

  19. Longer repetition duration increases muscle activation and blood lactate response in matched resistance training protocols

    Directory of Open Access Journals (Sweden)

    Hugo Cesar Martins-Costa

    2016-03-01

    Full Text Available Abstract This study analyzed the effect of different repetition durations on electromyographic and blood lactate responses of the bench press exercise. Fifteen recreationally trained male volunteers completed two training protocols, matched for intensity (% one-repetition maximum; 1RM, number of sets, number of repetitions, and rest intervals. One of the protocols was performed with a repetition duration of 4 s (2 s concentric: 2 s eccentric; 2:2 protocol, whereas the second protocol had a repetition duration of 6 s (2 s concentric: 4 s eccentric; 2:4 protocol. The results showed higher normalized integrated electromyography (pectoralis major and triceps brachii for the 2:4 protocol. Blood lactate concentration was also higher in the 2:4 protocol across all sets. These results show that adding 2 s to the eccentric action in matched training protocols increases muscle activation and blood lactate response, which reinforces the notion that increasing repetition duration is an alternative load progression in resistance training.

  20. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p = (4πe 2 n p /m) 1/2 is the electron plasma frequency and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  1. Nonlinear plasma waves excitation by intense ion beams in background plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p =(4πe 2 n p /m) 1/2 is the electron plasma frequency, and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  2. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand

  3. Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response.

    Science.gov (United States)

    Lindsay, Angus; Othman, Mohd Izani; Prebble, Hannah; Davies, Sian; Gieseg, Steven P

    2016-07-01

    What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P cryotherapy attenuates in vitro T-cell and monocyte activation. This may explain the disparity in in vivo neopterin and total neopterin between cold water immersion and passive recovery following repetitive exposure during a high-intensity physical impact sport that remains independent of physical performance. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  4. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    Evans, C.R.; Hollander, M.G.

    1991-01-01

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  5. The deposition of thin metal films at the high-intensity pulsed-ion-beam influence on the metals

    International Nuclear Information System (INIS)

    Remnev, G.E.; Zakoutaev, A.N.; Grushin, I.I.; Matvenko, V.M.; Potemkin, A.V.; Ryzhkov, V.A.; Chernikov, E.V.

    1996-01-01

    A high-intensity pulsed ion beam with parameters: ion energy 350-500 keV, ion current density at a target > 200 A/cm 2 , pulse duration 60 ns, was used for metal deposition. The film deposition rate was 0.6-4.0 mm/s. Transmission electron microscopy/transmission electron diffraction investigations of the copper target-film system were performed. The impurity content in the film was determined by x-ray fluorescence analysis and secondary ion mass spectrometry. The angular distributions of the ablated plasma were measured. (author). 2 figs., 7 refs

  6. The deposition of thin metal films at the high-intensity pulsed-ion-beam influence on the metals

    Energy Technology Data Exchange (ETDEWEB)

    Remnev, G E; Zakoutaev, A N; Grushin, I I; Matvenko, V M; Potemkin, A V; Ryzhkov, V A [Tomsk Polytechnic Univ. (Russian Federation). Nuclear Physics Inst.; Ivanov, Yu F [Construction Academy, Tomsk (Russian Federation); Chernikov, E V [Siberian Physical Technical Institute, Tomsk (Russian Federation)

    1997-12-31

    A high-intensity pulsed ion beam with parameters: ion energy 350-500 keV, ion current density at a target > 200 A/cm{sup 2}, pulse duration 60 ns, was used for metal deposition. The film deposition rate was 0.6-4.0 mm/s. Transmission electron microscopy/transmission electron diffraction investigations of the copper target-film system were performed. The impurity content in the film was determined by x-ray fluorescence analysis and secondary ion mass spectrometry. The angular distributions of the ablated plasma were measured. (author). 2 figs., 7 refs.

  7. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)

    2004-12-01

    Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh

  8. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  9. Effect of movement velocity on the relationship between training load and the number of repetitions of bench press.

    Science.gov (United States)

    Sakamoto, Akihiro; Sinclair, Peter J

    2006-08-01

    This study investigated the effect of movement velocity on the relationship between loading intensity and the number of repetitions of bench press. Thirteen healthy men (age = 21.7 +/- 1.0 years; weight = 76.8 +/- 2.5 kg; 1 repetition maximum [1RM] = 99.5 +/- 6.0 kg), who were involved in regular weight training, voluntarily participated in the experiment. Subjects performed bench presses on a Smith machine at 5 different intensities (40-80% 1RM), repeated for 4 velocity conditions (slow: 0.15 +/- 0.03 m.s(-1); medium: 0.32 +/- 0.07 m.s(-1); fast: 0.52 +/- 0.12 m.s(-1); ballistic: maximum velocity), which were randomly assigned over 5 experimental sessions after a 1RM test. Velocity significantly changed the relationship between intensity (%1RM) and the number of reps performed (p velocities producing a higher number of reps. A significant interaction between intensity and velocity meant that velocity had a much greater effect on repetitions at lower intensities. These results suggest that the benefits of using a stretch-shortening cycle during faster movements outweigh the associated disadvantages from the force-velocity relationship. The practical applications of this study are that, when trainees are assigned a resistance training with specific RM values, the lifted intensity (%1RM) or weights will not be consistent unless velocity is controlled during training.

  10. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  11. Investigations on transport and storage of high ion beam intensities

    International Nuclear Information System (INIS)

    Joshi, Ninad Shrikrishna

    2009-01-01

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He + and mixed p, H 2+ , H 3+ beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was designed to perform

  12. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  13. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  14. Commissioning of the ECR ion source of the high intensity proton injector of the Facility for Antiproton and Ion Research (FAIR)

    Science.gov (United States)

    Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.

    2018-05-01

    The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.

  15. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP( ) summary.html

  16. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  17. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  18. Investigations of Materials under High Repetition and Intense Fusion Pulses. Report of a Coordinated Research Project 2011-2016

    International Nuclear Information System (INIS)

    2017-12-01

    This publication presents experimental simulations of plasma-surface interaction phenomena at extreme conditions as expected in a fusion reactor, using dedicated test bed devices such as dense plasma focus, particle accelerators, plasma accelerators and plasma guns. It includes the investigation of the mechanism of material damage during transient heat loads on materials and addresses, in particular, the performance and adequacy of tungsten as plasma facing material for the next step fusion devices, such as ITER and fusion demonstration power plants. The publication is a compilation of the main results and findings of an IAEA coordinated research project on investigations on materials under high repetition and intense fusion pulses, conducted in the period 2011-2016 and provides a practical knowledge base for scientists and engineers carrying out activities in the plasma-material surface interaction area. Through its coordinated research activities, the IAEA has made it possible for States that are not yet members of the ITER project to contribute to ITER relevant scientific investigations, which have led to increased capabilities of diagnostics for plasma surface interaction.

  19. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  20. Anomalous intensities of Ne-like ion resonance line in plasma produced by picosecond laser pulse

    International Nuclear Information System (INIS)

    Bryunetkin, B.A.; Skobelev, I.Yu.; Faenov, A.Ya.; Kalashnikov, M.P.; Nikles, P.; Shnyupep, M.

    1995-01-01

    An anomalous structure of intensities of spectral lines of CuXX and GeXXX Ne-like ions emitted by plasma produced by laser pulses of picosecond duration and up to 2x10 18 W/cm 2 flux density is recorded for the first time. It is shown that spectrum maximum of these ions is emitted from a plasma region whose density is significantly above the critical value of the length of heating laser radiation wave. 9 refs.; 3 figs

  1. High-intensity sources for light ions

    International Nuclear Information System (INIS)

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H + and H - beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented

  2. Experimental study of the transport limits of intense heavy ion beams in the HCX

    International Nuclear Information System (INIS)

    Prost, L.R.; Bieniosek, F.M.; Celata, C.M.; Dugan, C.C.; Faltens, A.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik, A.W.; Haber, I.

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density up to ∼ 0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. The experiment also contributes to the practical baseline knowledge of intense beam manipulations necessary for the design, construction and operation of a heavy ion driver for inertial fusion. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We first present the results for a coasting 1 MeV K + ion beam transported through the first ten electrostatic transport quadrupoles, measured with optical beam-imaging and double-slit phase-space diagnostics. This includes studies at two different radial fill factors (60% and 80%), for which the beam transverse distribution was characterized in detail. Additionally, beam energy measurements will be shown. We then discuss the first results of beam transport through four pulsed room-temperature magnetic quadrupoles (located downstream of the electrostatic quadrupoles), where the beam dynamics become more sensitive to the presence of secondary electrons

  3. Physics of intense light ion beams and production of high energy density in matter. Annual report 1994

    International Nuclear Information System (INIS)

    Bluhm, H.J.

    1995-06-01

    This report presents the results obtained in 1994 within the FZK-program on 'Physics of intense ion beams and pulsed plasmas'. It describes the present status of the 6 MW, 2 TW pulsed generator KALIF-HELIA, the production and focussing of high power ion beams and numerical simulations and experiments related to the hydrodynamics of beam matter interaction. (orig.) [de

  4. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  5. The relationship between executive functioning, central coherence, and repetitive behaviors in the high-functioning autism spectrum.

    Science.gov (United States)

    South, Mikle; Ozonoff, Sally; McMahon, William M

    2007-09-01

    This study examined the relationship between everyday repetitive behavior (primary symptoms of autism) and performance on neuropsychological tests of executive function and central coherence (secondary symptoms). It was hypothesized that the frequency and intensity of repetitive behavior would be positively correlated with laboratory measures of cognitive rigidity and weak central coherence. Participants included 19 individuals (ages 10-19) with high-functioning autism spectrum disorders (ASD group) and 18 age- and IQ-matched typically developing controls (TD group). There was partial support in the ASD group for the link between repetitive behavior and executive performance (the Wisconsin Card Sorting Task). There was no support for a link between repetitive behavior and measures of central coherence (a Gestalt Closure test and the Embedded Figures Test). Further research on repetitive behaviors in autism may benefit from a focus on narrow behavioral and cognitive constructs rather than general categories.

  6. Studies on the production of high energy density in matter with intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-01-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopic, amount of matter is studied. Thereby high energy densities are produced in the target matter. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A Kr + ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focused by a fine-focusing lens on a closed xenon gas target. The light emitted from the target was space- and time-resolved taken up with a spectrometer as well a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam were consecuted. The free-electron density of the plasma was determined from the Stark-broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The electron temperature amounted in the center of the pipelet kT ≅ 0.75 eV. (orig./HSI) [de

  7. Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: impact of calcium ions.

    Science.gov (United States)

    Presečki, Ana Vrsalović; Blažević, Zvjezdana Findrik; Vasić-Rački, Durđa

    2013-11-01

    Starch hydrolysis was performed by the synergistic action of amylase and glucoamylase. For that purpose glucoamylase (Dextrozyme) and two amylases (Liquozyme and Termamyl) in different combinations were investigated. Experiments were carried out in the repetitive- and fed-batch modes at 65 °C and pH 5.5 with and without the addition of Ca(2+) ions. 100 % conversion of starch to glucose was achieved in batch experiments. Calcium ions significantly enhanced stability of the amylase Termamyl. The intensity of synergism between amylase Termamyl and glucoamylase Dextrozyme was higher than in the experiments carried out with amylase Liquozyme and Dextrozyme. Mathematical model of the complete reaction system was developed. Using the model, a possible explanation of the synergism between the amylase and glucoamylase was provided.

  8. A Nonword Repetition Task for Speakers with Misarticulations: The Syllable Repetition Task (SRT)

    Science.gov (United States)

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Campbell, Thomas F.; Dollaghan, Christine A.; Green, Jordan R.; Moore, Christopher A.

    2009-01-01

    Purpose: Conceptual and methodological confounds occur when non(sense) word repetition tasks are administered to speakers who do not have the target speech sounds in their phonetic inventories or who habitually misarticulate targeted speech sounds. In this article, the authors (a) describe a nonword repetition task, the Syllable Repetition Task…

  9. Very broad beam metal ion source for large area ion implantation application

    International Nuclear Information System (INIS)

    Brown, I.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Yao, X.

    1993-01-01

    The authors have made and operated a very broad beam version of vacuum arc ion source and used it to carry out high energy metal ion implantation of a particularly large substrate. A multiple-cathode vacuum arc plasma source was coupled to a 50 cm diameter beam extractor (multiple aperture, accel-decel configuration) operated at a net extraction voltage of up to 50 kV. The metal ion species chosen were Ni and Ta. The mean ion charge state for Ni and Ta vacuum arc plasmas is 1.8 and 2.9, respectively, and so the mean ion energies were up to about 90 and 145 keV, respectively. The ion source was operated in a repetitively pulsed mode with pulse length 250 μs and repetition rate several pulses per second. The extracted beam had a gaussian profile with FWHM about 35 cm, giving a nominal beam area of about 1,000 cm 2 . The current of Ni or Ta metal ions in the beam was up to several amperes. The targets for the ion implantation were a number of 24-inch long, highly polished Cu rails from an electromagnetic rail gun. The rails were located about 80 cm away from the ion source extractor grids, and were moved across a diameter of the vessel in such a way as to maximize the uniformity of the implant along the rail. The saturation retained dose for Ta was limited to about 4 x 10 16 cm -2 because of the rather severe sputtering, in accordance with the theoretical expectations for these implantation conditions. Here they describe the ion source, the implantation procedure, and the kinds of implants that can be produced in this way

  10. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Directory of Open Access Journals (Sweden)

    C. A. Valerio-Lizarraga

    2018-03-01

    Full Text Available The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  11. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G., E-mail: gerosro@gmail.com; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Becker, R. [Institut fur Angewandte Physik der Universitaet, D-60054 Frankfurt/M (Germany); Hamm, R. W. [R and M Technical Enterprises, Inc., 4725 Arlene Place, Pleasanton, California 94566 (United States); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  12. uv laser induced molecular multiphoton ionization and fragmentation. [Intensity dependence, ion properties and yield

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S; Reilly, J P; Hohla, K; Kompa, K L

    1979-02-01

    It has been demonstrated that the output from a discharge pumped KrF laser (249 nm) is capable of ionizing a variety of molecules. The nature and yield of ions generated in this process, which were identified by time-of-flight mass spectrometry, exhibit a striking intensity dependence. 12 references, 3 figures.

  13. Analysis of factors that influence the maximum number of repetitions in two upper-body resistance exercises: curl biceps and bench press.

    Science.gov (United States)

    Iglesias, Eliseo; Boullosa, Daniel A; Dopico, Xurxo; Carballeira, Eduardo

    2010-06-01

    The purpose of this study was to analyze the influence of exercise type, set configuration, and relative intensity load on relationship between 1 repetition maximum (1RM) and maximum number of repetitions (MNR). Thirteen male subjects, experienced in resistance training, were tested in bench press and biceps curl for 1RM, MNR at 90% of 1RM with cluster set configuration (rest of 30s between repetitions) and MNR at 70% of 1RM with traditional set configuration (no rest between repetitions). A lineal encoder was used for measuring displacement of load. Analysis of variance analysis revealed a significant effect of load (pbench press and biceps curl, respectively; pbench press and biceps curl, respectively; p>0.05). Correlation between 1RM and MNR was significant for medium-intensity in biceps curl (r=-0.574; pvelocity along set, so velocity seems to be similar at a same relative intensity for subjects with differences in maximum strength levels. From our results, we suggest the employment of MNR rather than % of 1RM for training monitoring. Furthermore, we suggest the introduction of cluster set configuration for upper-body assessment of MNR and for upper-body muscular endurance training at high-intensity loads, as it seems an efficient approach in looking for sessions with greater training volumes. This could be an interesting approach for such sports as wrestling or weightlifting.

  14. Density and potential measurements in an intense ion-beam-generated plasma

    International Nuclear Information System (INIS)

    Abt, N.E.

    1982-05-01

    Neutral beams are created by intense large area ion beams which are neutralized in a gas cell. The interaction of the beam with the gas cell creates a plasma. Such a plasma is studied here. The basic plasma parameters, electron temperature, density, and plasma potential, are measured as a function of beam current and neutral gas pressure. These measurements are compared to a model based on the solution of Poisson's equation. Because of the cylindrical geometry the equation cannot be solved analytically. Details of the numerical method are presented

  15. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  16. Discussion of superconducting and room-temperature high-intensity ion linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1996-01-01

    The point of view taken in this discussion is that the basic technology base exists in all essential respects for both superconducting or room-temperature rf linac accelerators and associated power and control systems, and thus a project can make a choice between these technologies on overall system considerations. These include performance, cost, availability, flexibility, and upgradability. Large high-intensity neutron source proposals involving light-ion rf linacs in three categories are reviewed in this context. The categories arc cw linacs to high (∼1 GeV) and low (∼40 MeV) output energy, and pulsed linacs to energy ∼1 GeV

  17. Modelling of radiation losses for ion acceleration at ultra-high laser intensities

    Directory of Open Access Journals (Sweden)

    Capdessus Remi

    2013-11-01

    Full Text Available Radiation losses of charged particles can become important in ultra high intensity laser plasma interaction. This process is described by the radiation back reaction term in the electron equation of motion. This term is implemented in the relativistic particle-in-cell code by using a renormalized Lorentz-Abraham-Dirac model. In the hole boring regime case of laser ion acceleration it is shown that radiation losses results in a decrease of the piston velocity.

  18. Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation.

    Science.gov (United States)

    Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard

    2016-01-21

    The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.

  19. Numerical simulations of self-pinched transport of intense ion beams in low-pressure gases

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Welch, D.R.; Oliver, B.V.; Olson, C.L.

    1999-01-01

    The self-pinched transport of intense ion beams in low-pressure background gases is studied using numerical simulations and theoretical analysis. The simulations are carried out in a parameter regime that is similar to proton beam experiments being fielded on the Gamble II pulsed power generator [J. D. Shipman, Jr., IEEE Trans. Nucl. Sci. NS-18, 243 (1971)] at the Naval Research Laboratory. Simulation parameter variations provide information on scaling with background gas species, gas pressure, beam current, beam energy, injection angles, and boundaries. The simulation results compare well with simple analytic scaling arguments for the gas pressure at which the effective net current should peak and with estimates for the required confinement current. The analysis indicates that the self-pinched transport of intense proton beams produced on Gamble II (1.5 MeV, 100 kA, 3 cm radius) is expected to occur at gas pressures between 30 and 80 mTorr of He or between 3 and 10 mTorr of Ar. The significance of these results to ion-driven inertial confinement fusion is discussed. copyright 1999 American Institute of Physics

  20. Efficacy Of The Repetitions In Reserve-Based Rating Of Perceived Exertion For The Bench Press In Experienced And Novice Benchers.

    Science.gov (United States)

    Ormsbee, Michael J; Carzoli, Joseph P; Klemp, Alex; Allman, Brittany R; Zourdos, Michael C; Kim, Jeong-Su; Panton, Lynn B

    2017-03-13

    Autoregulation (AR) is the practice of adjusting training variables in response to athlete feedback. One component of AR postulated to enhance resistance training adaptations involves implementing a resistance training-specific rating of perceived exertion (RPE) scale measuring repetitions in reserve (RIR). The purpose of this study was to examine the efficacy of this method using the bench press exercise. Twenty-seven college-aged men were assigned to one of two groups based upon training age: experience benchers (EB) (n=14, training age: 4.7±2.0 yrs) and novice benchers (NB) (n=13, training age: 1.1±0.6 yrs). Subjects performed one-repetition maximum (1RM) followed by single-repetition sets with loads corresponding to 60, 75, and 90% of 1RM and an 8-repetition set at 70% 1RM. Subjects reported a corresponding RPE, based on RIR, for every set. Average velocity was recorded for each single-repetition set along with the first and last repetitions of the 8-repetition set at 70% 1RM. Average velocity at 100% of 1RM in EB was slower (0.14±0.04 m[BULLET OPERATOR]s) compared to NB (0.20±0.05 m[BULLET OPERATOR]s) (pvelocity or RPE at any other intensity. Both EB (r=0.85, pvelocity and RPE at all intensities. Our findings suggest that the RIR-based RPE scale may be an efficacious approach for AR of bench press training load and volume in college-aged men.

  1. The intensity feedback system at Heidelberg Ion-Beam Therapy Centre

    Energy Technology Data Exchange (ETDEWEB)

    Schoemers, Christian, E-mail: christian.schoemers@med.uni-heidelberg.de; Feldmeier, Eike; Naumann, Jakob; Panse, Ralf; Peters, Andreas; Haberer, Thomas

    2015-09-21

    At Heidelberg Ion-Beam Therapy Centre (HIT), more than 2500 tumour patients have been treated with charged particle beams since 2009 using the raster scanning method. The tumour is irradiated slice-by-slice, each slice corresponding to a different beam energy. For the particle dose of each raster point the pre-irradiation by more distal slices has to be considered. This leads to highly inhomogeneous dose distributions within one iso-energy slice. The particles are extracted from the synchrotron via transverse RF knock-out. A pure feed forward control cannot take into account fluence inhomogeneities or deal with intensity fluctuations. So far, fluctuations have been counteracted by a reduced scanning velocity. We now added a feedback loop to the extraction system. The dose monitoring ionisation chambers in front of the patient have been coupled to the extraction device in the synchrotron. Characterization and implementation of the intensity feedback system into the HIT facility is described here. By its implementation the treatment time has been reduced by 10% in average.

  2. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  3. Study in the plasma with non-equilibrium ionization state by relative intensities in K-spectra of multicharged ions

    International Nuclear Information System (INIS)

    Bojko, V.A.; Skobelev, I.Yu.; Faenov, A.Ya.

    1984-01-01

    The pressure of the K-spectra formation of multicharge h-, He-, Li-like ions in a plasma with an arbitrary ionization state are considered. It is shown that comparison of experimental and theoretical data on the intensities of f a number of spectral lines belonging to such ions allows one to determine both the plasma electron temperature and ion distribution versus the ionization degre ees. The proposed method of plasma diagnostics is used for measuring parameters of the expanding laser-produced magnesium plasme

  4. The state of development of an intense resonance electron-ion accelerator based on Doppler effect

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, A M; Ivanov, B I; Butenko, V I; Ognivenko, V V; Onishchenko, I N; Prishchepov, V P [Kharkov Inst. of Physics and Technology (Ukraine)

    1997-12-31

    An intense ion accelerator has been proposed and now is being developed in which accelerating and focusing electric fields in a slow wave structure are excited by an intense electron beam using the anomalous and the normal Doppler effects. The results of theoretical studies and computer simulations show the advantage of this acceleration method that will make it possible to obtain acceleration rates of the order of 10 - 100 MeV/m, and ion beam energies and currents of the order of 10-100 MeV, 1-10 A. The project and technical documentation of an experimental accelerating installation were worked out. Currently, the 5 MeV accelerator-injector URAL-5 is in operation; preliminary experiments on a small installation have been carried out; experimental investigations of an accelerating RF resonator model (in 1/2 scaling) are being performed; the accelerating test installation is being manufactured. (author). 1 tab. 12 fig., 6 refs.

  5. The state of development of an intense resonance electron-ion accelerator based on Doppler effect

    International Nuclear Information System (INIS)

    Egorov, A.M.; Ivanov, B.I.; Butenko, V.I.; Ognivenko, V.V.; Onishchenko, I.N.; Prishchepov, V.P.

    1996-01-01

    An intense ion accelerator has been proposed and now is being developed in which accelerating and focusing electric fields in a slow wave structure are excited by an intense electron beam using the anomalous and the normal Doppler effects. The results of theoretical studies and computer simulations show the advantage of this acceleration method that will make it possible to obtain acceleration rates of the order of 10 - 100 MeV/m, and ion beam energies and currents of the order of 10-100 MeV, 1-10 A. The project and technical documentation of an experimental accelerating installation were worked out. Currently, the 5 MeV accelerator-injector URAL-5 is in operation; preliminary experiments on a small installation have been carried out; experimental investigations of an accelerating RF resonator model (in 1/2 scaling) are being performed; the accelerating test installation is being manufactured. (author). 1 tab. 12 fig., 6 refs

  6. Surface damage characteristics of CFC and tungsten with repetitive ELM-like pulsed plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Nishijima, D. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Nakatsuka, M.; Ando, K.; Higashi, T.; Ueno, Y.; Ishihara, M.; Shoda, K.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Kawai, T.; Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukumoto, N. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Doerner, R.P. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States)

    2011-08-01

    Surface damage of carbon fiber composite (CFC) and tungsten (W) due to repetitive ELM-like pulsed plasma irradiation has been investigated by using a magnetized coaxial plasma gun. CX2002U CFC and stress-relieved W samples were exposed to repetitive pulsed deuterium plasmas with duration of {approx}0.5 ms, incident ion energy of {approx}30 eV, and surface absorbed energy density of {approx}0.3-0.7 MJ/m{sup 2}. Bright spots on a CFC surface during pulsed plasma exposures were clearly observed with a high-speed camera, indicating a local surface heating. No melting of a W surface was observed under a single plasma pulse exposure at energy density of {approx}0.7 MJ/m{sup 2}, although cracks were formed. Cracking of the W surface grew with repetitive pulsed plasma exposures. Subsequently, the surface melted due to localized heat absorption.

  7. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  8. Non-destructive profile measurement of intensive heavy ion beams; Zerstoerungsfreie Profilmessung intensiver Schwerionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Frank

    2010-02-08

    Within the framework of the FAIR-project (Facility for Antiproton and Ion Research) at GSI (Helmholtz Center for Heavy Ion Research), high intensity beams from protons to uranium ions with kinetic energies up to 30 AGeV are foreseen. Present GSI-accelerators like the UNILAC and the Heavy Ion Synchrotron (SIS-18) with a magnetic rigidity of 18 Tm will be used as injectors for the future synchrotron (SIS-100). Their beam current will be increased by up to two orders of magnitude. An accurate beam position and beam profile measurement is mandatory for a safe operation of transport sections, in particular in front of production targets (Fragment Separator (FRS)-target, anti p-production-target and Warm Dense Matter (WDM)-targets). Conventional intercepting profile monitors will not withstand the thermal stress of intensive ion beams, particularly for low energy applications or focused beams. For transverse profile determination a non-intercepting Beam Induced Fluorescence (BIF)-monitor was developed, working with residual gas. The BIF-monitor exploits fluorescence light emitted by residual gas molecules after atomic collisions with beam ions. Fluorescence-images were recorded with an image-intensified camera system, and beam profiles were obtained by projecting these images. Within the scope of this dissertation the following topics have been investigated: The photon yield, profile shape and background contribution were determined for different ion species (H{sup +}, S{sup 6+}, Ar{sup 18+}, K{sup +}, Ni{sup 9+}, Xe{sup 48+}, Ta{sup 24+}, Au{sup 65+}, U{sup 73+}), beam energies (7.7 AkeV-750 AMeV), gas pressures (10{sup -6}-3 mbar) and gas species (N{sub 2}, He, Ne, Ar, Kr, Xe). Applying an imaging spectrograph and narrowband 10 nm interference filters, the spectral response was mapped and associated with the corresponding gas transitions. Spectrally resolved beam profiles were also obtained form the spectrographic images. Major results are the light yield showing a

  9. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    International Nuclear Information System (INIS)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V.; Lomonosov, I. V.; Shutov, A.; Borm, B.; Piriz, A. R.; Piriz, S. A.

    2017-01-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  10. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Lomonosov, I. V.; Shutov, A. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432 Chernogolovka (Russian Federation); Borm, B. [Goethe-Universität Frankfurt, D-60438 Frankfurt (Germany); Piriz, A. R.; Piriz, S. A. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, E-13071 Ciudad Real (Spain)

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  11. Haben repetitive DNA-Sequenzen biologische Funktionen?

    Science.gov (United States)

    John, Maliyakal E.; Knöchel, Walter

    1983-05-01

    By DNA reassociation kinetics it is known that the eucaryotic genome consists of non-repetitive DNA, middle-repetitive DNA and highly repetitive DNA. Whereas the majority of protein-coding genes is located on non-repetitive DNA, repetitive DNA forms a constitutive part of eucaryotic DNA and its amount in most cases equals or even substantially exceeds that of non-repetitive DNA. During the past years a large body of data on repetitive DNA has accumulated and these have prompted speculations ranging from specific roles in the regulation of gene expression to that of a selfish entity with inconsequential functions. The following article summarizes recent findings on structural, transcriptional and evolutionary aspects and, although by no means being proven, some possible biological functions are discussed.

  12. A four-component Dirac theory of ionization of a hydrogen molecular ion in a super-intense laser field

    International Nuclear Information System (INIS)

    Faisal, F H M

    2009-01-01

    In this communication, a four-component Dirac theory of ionization of a hydrogen molecular ion, H + 2 , in a super-intense laser field is presented. Analytic expressions for the spin-specific as well as the total ionization currents emitted from the ground state of the ion are derived. The results are given for arbitrary intensity, frequency, wavenumber and polarization of the field, and for the up or down spin of the bound and ionized states of the electron. They also apply for the case of inner-shell ionization of analogous heavier diatomic molecular ions. The presence of molecular two-slit interference effect, first found in the non-relativistic case, the spin-flip ionization current, and an asymmetry of the up- and down-spin currents similar to that predicted in the atomic case, is found to hold for the present relativistic molecular ionic case as well. The possibility of controlling the spin of the dominant ionization current in any direction by simply selecting the handedness of a circularly polarized incident laser field is pointed out. Finally, we note that the present results obtained within the strong field 'KFR' ansatz open up the way for an analogous fully relativistic four-component treatment for ionization of polyatomic molecules and clusters in super-intense laser fields. (fast track communication)

  13. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    CERN Document Server

    Tahir, N A; Shutov, A; Varentsov, D; Udrea, S; Hoffmann, Dieter H H; Juranek, H; Redmer, R; Portugues, R F; Lomonosov, I V; Fortov, V E

    2003-01-01

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are consider...

  14. Two-dimensional thermal simulations of aluminum and carbon ion strippers for experiments at SPIRAL2 using the highest beam intensities

    International Nuclear Information System (INIS)

    Tahir, N.A.; Kim, V.; Lamour, E.; Lomonosov, I.V.; Piriz, A.R.; Rozet, J.P.; Stöhlker, Th.; Sultanov, V.; Vernhet, D.

    2012-01-01

    In this paper we report on two-dimensional numerical simulations of heating of a rotating, wheel shaped target impacted by the full intensity of the ion beam that will be delivered by the SPIRAL2 facility at Caen, France. The purpose of this work is to study heating of solid targets that will be used to strip the fast ions of SPIRAL2 to the required high charge state for the FISIC (Fast Ion–Slow Ion Collision) experiments. Strippers of aluminum with different emissivities and of carbon are exposed to high beam current of different ion species as oxygen, neon and argon. These studies show that carbon, due to its much higher sublimation temperature and much higher emissivity, is more favorable compared to aluminum. For the highest beam intensities, an aluminum stripper does not survive. However, problem of the induced thermal stresses and long term material fatigue needs to be investigated before a final conclusion can be drawn.

  15. A stable production of intense electron beam plasma with ion back stream

    International Nuclear Information System (INIS)

    Uramoto, Johshin.

    1975-12-01

    An intense electron beam is extracted without space charge limit from a dc plasma source along a magnetic field. The beam space charge is neutralized stably through back streaming of self-ionized ions from the beam extracting anode region where a neutral gas is fed locally. In Appendix I, a space charge free electron gun is designed under this neutralization method. In Appendix II, a dynamic discharge through a series resistance is described, where an operative mechanism of the well-known TP-D plasma is clarified. (auth.)

  16. Heavy ion fusion

    International Nuclear Information System (INIS)

    Bock, R.

    1983-01-01

    Two accelerator scenarios for heavy ion fusion are considered as driver candidates for an ICF power plant: the RF linac with storage rings and the induction linac. The necessary beam intensity and beam quality requirements are already believed to be achievable in the long run; repetition rate and accelerator efficiency are not critical issues. Conceptual design studies have indicated that the technical problems of the ICF concept with a heavy ion driver can be solved and that the economical aspects are not prohibitive as compared to other ICF concepts. Nevertheless, many open problems still exist, and some new ones have exhibited themselves, and it has become evident that most of them cannot be investigated with existing facilities and at the present level of effort. The first section of this paper deals with current conceptual design studies and focuses on the interface between the accelerator and the reactor. The second section summarizes the present research programs and recommends that their scope should be expanded and intensified in the areas of accelerator physics and beam-target interaction and target physics. In the third section the author calls for a dedicated facility and reports on the plans and ideas for such a facility. Schematics of two proposed accelerator driver systems--the driver for HIBALL (5 MJ/pulse) and a single-pass four-beam induction linac (3 MJ/pulse)--are provided

  17. Fractal structure formation on the surfaces of solids subjected to high intensity electron and ion treatment

    International Nuclear Information System (INIS)

    Altajskij, M.V.; Ivanov, V.V.; Korenev, S.A.; Orelovich, O.L.; Puzynin, I.V.; Chernik, V.V.

    1997-01-01

    We discuss the results of scanning electron microscopy of surfaces of the solids subjected to high intensity electron and ion beam treatment. The appearance of fractal structures on the modified surfaces is shown. The fractal dimensions of these structures were estimated by box-counting algorithm

  18. 'J-KAREN' - high intensity, high contrast laser

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Okada, Hajime; Sasao, Hajime; Sagisaka, Akito; Ochi, Yoshihiro; Tanaka, Momoko; Kondo, Kiminori; Tateno, Ryo; Sugiyama, Akira; Daido, Hiroyuki; Koike, Masato; Kawanishi, Syunichi; Shimomura, Takuya; Tanoue, Manabu; Wakai, Daisuke; Kondo, Shuji; Kanazawa, Shuhei

    2010-01-01

    We report on the high intensity, high contrast double chirped-pulse amplification (CPA) Ti:sapphire laser system (named J-KAREN). By use of an optical parametric chirped-pulse amplification (OPCPA) preamplifier that is seeded by a cleaned high-energy pulse, a background amplified spontaneous emission (ASE) level of 10 -10 relative to the peak main femtosecond pulse on the picosecond timescales demonstrated with an output energy of 1.7 J and a pulse duration of 30 fs, corresponding to a peak power of 60TW at a 10 Hz repetition rate. This system which uses a cryogenically-cooled Ti:sapphire final amplifier generates focused peak intensity in excess of 10 20 W/cm 2 at a 10 Hz repetition rate. (author)

  19. Repetition and lag effects in movement recognition.

    Science.gov (United States)

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  20. Prediction of the Maximum Number of Repetitions and Repetitions in Reserve From Barbell Velocity.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Feriche, Belén; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Padial, Paulino; Haff, Guy Gregory

    2018-03-01

    To provide 2 general equations to estimate the maximum possible number of repetitions (XRM) from the mean velocity (MV) of the barbell and the MV associated with a given number of repetitions in reserve, as well as to determine the between-sessions reliability of the MV associated with each XRM. After determination of the bench-press 1-repetition maximum (1RM; 1.15 ± 0.21 kg/kg body mass), 21 men (age 23.0 ± 2.7 y, body mass 72.7 ± 8.3 kg, body height 1.77 ± 0.07 m) completed 4 sets of as many repetitions as possible against relative loads of 60%1RM, 70%1RM, 80%1RM, and 90%1RM over 2 separate sessions. The different loads were tested in a randomized order with 10 min of rest between them. All repetitions were performed at the maximum intended velocity. Both the general equation to predict the XRM from the fastest MV of the set (CV = 15.8-18.5%) and the general equation to predict MV associated with a given number of repetitions in reserve (CV = 14.6-28.8%) failed to provide data with acceptable between-subjects variability. However, a strong relationship (median r 2  = .984) and acceptable reliability (CV  .85) were observed between the fastest MV of the set and the XRM when considering individual data. These results indicate that generalized group equations are not acceptable methods for estimating the XRM-MV relationship or the number of repetitions in reserve. When attempting to estimate the XRM-MV relationship, one must use individualized relationships to objectively estimate the exact number of repetitions that can be performed in a training set.

  1. Intense light-ion beams provide a robust, common-driver path toward ignition, gain, and commercial fusion energy

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Cook, D.L.

    1993-01-01

    Intense light-ion beams are being developed for investigations of inertial confinement fusion (ICF). This effort has concentrated on developing the Particle Beam Fusion Accelerator II (PBFA II) at Sandia as a driver for ICF target experiments, on design concepts for a high-yield, high-gain Laboratory Microfusion Facility (LMF), and on a comprehensive system study of a light-ion beam-driven commercial fusion reactor (LIBRA). Reports are given on the status of design concepts and research in these areas. (author)

  2. If you negate, you may forget: negated repetitions impair memory compared with affirmative repetitions.

    Science.gov (United States)

    Mayo, Ruth; Schul, Yaacov; Rosenthal, Meytal

    2014-08-01

    One of the most robust laws of memory is that repeated activation improves memory. Our study shows that the nature of repetition matters. Specifically, although both negated repetition and affirmative repetition improve memory compared with no repetition, negated repetition hinders memory compared with affirmative repetition. After showing participants different entities, we asked them about features of these entities, leading to either "yes" or "no" responses. Our findings show that correctly negating an incorrect feature of an entity elicits an active forgetting effect compared with correctly affirming its true features. For example, after seeing someone drink a glass of white wine, answering "no" to "was it red wine?" may lead one to greater memory loss of the individual drinking wine at all compared with answering "yes" to "was it white wine?" We find this negation-induced forgetting effect in 4 experiments that differ in (a) the meaning given for the negation, (b) the type of stimuli (visual or verbal), and (c) the memory measure (recognition or free recall). We discuss possible underlying mechanisms and offer theoretical and applied implications of the negation-induced forgetting effect in relation to other known inhibition effects. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. A self-calibrating ionisation chamber for the precise intensity calibration of high-energy heavy-ion beam monitors

    International Nuclear Information System (INIS)

    Junghans, A.

    1996-01-01

    The intensity of a 136 Xe(600 A MeV) beam has been determined by simultaneously measuring the particle rate and the corresponding ionisation current with an ionisation chamber. The ionisation current of this self-calibrating device was compared at higher intensities with the current of a secondary-electron monitor and a calibration of the secondary-electron current was achieved with a precision of 2%. This method can be applied to all high-energy heavy-ion beams. (orig.)

  4. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-01-01

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B ∼ 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  5. Generation and focusing of intense ion beams with an inverse pinch ion diode

    International Nuclear Information System (INIS)

    Hashimoto, Yoshiyuki; Sato, Morihiko; Yatsuzuka, Mitsuyasu; Nobuhara, Sadao

    1992-01-01

    Generation and focusing of ion beams using an inverse pinch ion diode with a flat anode has been studied. The ion beams generated with the inverse pinch ion diode were found to be focused at 120 mm from the anode by the electrostatic field in the diode. The energy and maximum current density of the ion beams were 180 keV and 420 A/cm 2 , respectively. The focusing angle of the ion beams was 4.3deg. The beam brightness was estimated to be 1.3 GW/cm 2 ·rad 2 . The focusing distance of the ion beams was found to be controllable by changing the diameters of the anode and cathode. (author)

  6. Removing roughness on metal surface by irradiation of intense short-pulsed ion beams

    International Nuclear Information System (INIS)

    Hashimoto, Y.

    1995-01-01

    Surface modification of metals with an intense pulsed ion beam (IPIB) was studied experimentally. When the temperature rise of metal surfaces by IPIB irradiation exceeds their boiling point, it is found that machining roughness on surfaces is removed. The experiments were performed with the pulsed power generator HARIMA-II at Himeji Institute of Technology. The main components of the ion beam were carbon and fluorine ions. The IPIB was irradiated to metal plates (Al, Cu and Ti) which were placed at the focal point. Machining roughness on Ti surface was removed after IPIB irradiation, while roughness on Al and Cu plates was not removed. Using the present experimental parameters (beam power density: 32 W/cm 2 , pulse width: 25 ns), the temperature rise of the Ti surface was estimated to be 8,100 K which exceed its boiling point (3,000 K). However, the estimated temperatures of Al and Cu surfaces was 2,500 and 1,500 K, respectively, that are less than their boiling points. These studies above suggests that temperature rise over the boiling point of metals is necessary for removing machining roughness on metal surfaces

  7. Vibronic Rabi resonances in harmonic and hard-wall ion traps for arbitrary laser intensity and detuning

    International Nuclear Information System (INIS)

    Lizuain, I.; Muga, J. G.

    2007-01-01

    We investigate laser-driven vibronic transitions of a single two-level atomic ion in harmonic and hard-wall traps. In the Lamb-Dicke regime, for tuned or detuned lasers with respect to the internal frequency of the ion, and weak or strong laser intensities, the vibronic transitions occur at well-isolated Rabi resonances, where the detuning-adapted Rabi frequency coincides with the transition frequency between vibrational modes. These vibronic resonances are characterized as avoided crossings of the dressed levels (eigenvalues of the full Hamiltonian). Their peculiarities due to symmetry constraints and trapping potential are also examined

  8. A New 500-kV Ion Source Test Stand for HIF

    International Nuclear Information System (INIS)

    Sangster, T.C.; Ahle, L.E.; Halaxa, E.F.; Karpenko, V.P.; Oldaker, M. E.; Mitchell, J.W.; Beck, D.N.; Bieniosek, F.M.; Henestroza, E.; Kwan, J.W.

    2000-01-01

    One of the most challenging aspects of ion beam driven inertial fusion energy is the reliable and efficient generation of low emittance, high current ion beams. The primary ion source requirements include a rise time of order 1-msec, a pulse width of at least 20-msec, a flattop ripple of less than 0.1% and a repetition rate of at least 5-Hz. Naturally, at such a repetition rate, the duty cycle of the source must be greater than 108 pulses. Although these specifications do not appear to exceed the state-of-the-art for pulsed power, considerable effort remains to develop a suitable high current ion source. Therefore, we are constructing a 500-kV test stand specifically for studying various ion source concepts including surface, plasma and metal vapor arc. This paper will describe the test stand design specifications as well as the details of the various subsystems and components

  9. Repetitive Questioning Exasperates Caregivers

    Directory of Open Access Journals (Sweden)

    R. C. Hamdy MD

    2018-01-01

    Full Text Available Repetitive questioning is due to an impaired episodic memory and is a frequent, often presenting, problem in patients with Alzheimer’s disease (amnestic type. It is due to the patients’ difficulties learning new information, retaining it, and recalling it, and is often aggravated by a poor attention span and easy distractibility. A number of factors may trigger and maintain repetitive questioning. Caregivers should try to identify and address these triggers. In the case discussion presented, it is due to the patient’s concerns about her and her family’s safety triggered by watching a particularly violent movie aired on TV. What went wrong in the patient/caregiver interaction and how it could have been avoided or averted are explored. Also reviewed are the impact of repetitive questioning, the challenges it raises for caregivers, and some effective intervention strategies that may be useful to diffuse the angst that caregivers experience with repetitive questioning.

  10. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    Science.gov (United States)

    Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-01

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  11. Repetitive Solid Spherical Pellet Injection and Irradiation toward the Repetitive-mode Fast-Ignition Fusion miniReactor CANDY

    International Nuclear Information System (INIS)

    HANAYAMA, Ryohei; KOMEDA, Osamu; NISHIMURA, Yasuhiko; MORI, Yoshitaka; ISHII, Katsuhiro; NAKAYAMA, Suisei; OKIHARA, Shinichiro; FUJITA, Kazuhisa; SEKINE, Takashi; SATO, Nakahiro; KAWASHIMA, Toshiyuki; KAN, Hirofumi; KURITA, Takashi; NAKAMURA, Naoki; KONDO, Takuya; FUJINE, Manabu; AZUMA, Hirozumi; HIOKI, Tatsumi; KAKENO, Mitsutaka; MOTOHIRO, Tomoyoshi

    2016-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy [1-4]. Neutron generator using lasers also requires a repeating pellet target supplier. Here we present the first demonstration of target injection and neutron generation[5]. We injected more than 1300 spherical deuterated polystyrene(C 8 D 8 ) bead pellet targets during 23 minutes at 1 Hz(Fig. 1). After the pellet targets fell for a distance of 18 cm, we applied the synchronized laser-diode-pumped ultra-intense laser HAMA. The laser intensity at the focal point is 5 x 10 18 W/cm 2 , which is high enough to generate neutrons. As a result of the irradiation, we produced 2.45-MeV DD neutrons. Figure 2 shows the neutron time-of-flight signals detected by plastic scintillators coupled to photomultipliers. The neutron energy was calculated by the time-of-flight method. The maximum neutron yield was 9.5 x 10 4 /4π sr. The result is a step toward fusion power and also suggests possible industrial neutron sources. (paper)

  12. Computer-Related Repetitive Stress Injuries

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Computer-Related Repetitive Stress Injuries KidsHealth / For Parents / Computer-Related Repetitive Stress Injuries What's in this article? ...

  13. The role of short-term memory impairment in nonword repetition, real word repetition, and nonword decoding: A case study.

    Science.gov (United States)

    Peter, Beate

    2018-01-01

    In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.

  14. Femtosecond pulse with THz repetition frequency based on the coupling between quantum emitters and a plasmonic resonator

    Science.gov (United States)

    Li, Shilei; Ding, Yinxing; Jiao, Rongzhen; Duan, Gaoyan; Yu, Li

    2018-03-01

    Nanoscale pulsed light is highly desirable in nano-integrated optics. In this paper, we obtained femtosecond pulses with THz repetition frequency via the coupling between quantum emitters (QEs) and plasmonic resonators. Our structure consists of a V -groove (VG) plasmonic resonator and a nanowire embedded with two-level QEs. The influences of the incident light intensity and QE number density on the transmission response for this hybrid system are investigated through semiclassical theory and simulation. The results show that the transmission response can be modulated to the pulse form. And the repetition frequency and extinction ratio of the pulses can be controlled by the incident light intensity and QE number density. The reason is that the coupling causes the output power of nanowire to behave as an oscillating form, the oscillating output power in turn causes the field amplitude in the resonator to oscillate over time. A feedback system is formed between the plasmonic resonator and the QEs in the nanowire. This provides a method for generating narrow pulsed lasers with ultrahigh repetition frequencies in plasmonic systems using a continuous wave input, which has potential applications in generating optical clock signals at the nanoscale.

  15. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  16. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    Science.gov (United States)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  17. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-08-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR + -ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κ p ≅ 7700 cm 2 /g resulted. (orig./HSI) [de

  18. Ion implantation on nickel targets by means of repetitive plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Vitulli, S.; Rapezzi, L. [ENEA Brasimone, Camugnano, Bologna (Italy); Apicella, M.L.; Samuelli, M. [ENEA Frascati, Frascati, Roma (Italy)

    2004-07-01

    Some test has been done in order to assess the possible use of a plasma focus as an implanter. The device utilized is the repetitive Plasma Focus operating in the ENEA Brasimone Center. The implanted sample is a sheet of Nickel with a surface of 17 cm{sup 2} inserted in a rigid sample at a variable distance from the top of the anode. After irradiation the sample is analyzed with Auger spectroscopy that provides the surface concentration of the various elements on the sample at different implantation depths. The result of the analysis shows that the Plasma Focus is an effective implantation source, even for metallurgical applications. (orig.)

  19. Intense heavy-ion beam transport with electric and magnetic quadrupoles

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Hopkins, H.S.

    1995-08-01

    As part of the small induction recirculator development at LLNL, the authors are testing an injector and transport line that delivers 4 micros beams of potassium with repetition rates up to 10 Hz at a nominal current of 2 mA. The normalized K-V equivalent emittance of the beams is near 0.02 π mm-mrad and is mostly determined by the temperature of the source (0.1 eV). K + ions generated at 80 keV in a Pierce diode are matched to an alternating gradient transport line by seven electric quadrupoles. Two additional quads have been modified to serve as two-axis steerers. The matching section is followed by a transport section comprised of seven permanent magnet quadrupoles. Matching to this section is achieved by adjusting the voltages on the electric quadrupoles to voltages calculated by an envelope matching code. Measurements of beam envelope parameters are made at the matching section entrance and exit as well as at the end of the permanent magnet transport section. Beam current waveforms along the experiment are compared with results from a one-dimension longitudinal dynamics code. Initial experiments show particle loss occurring at the beam head as a result of overtaking. The apparatus is also being used for the development of non or minimally intercepting diagnostics for future recirculator experiments. These include capacitive monitors for determining beam line-charge density and position in the recirculator; flying wire scanners for beam position; and gated TV scanners for measuring beam profiles and emittance

  20. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  1. Energy dependence of Lα-to-Ll x-ray intensity ratios for Yb and Pb produced by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Gray, T.J.

    1980-01-01

    Measurements of the incident-ion energy dependence of Lα-to-Ll x-ray intensity ratios are reported for protons incident at 0.40 to 2.20 MeV/amu on thin targets of Pb and for 4 He and C ions incident upon Yb. The data are compared to calculations of the Lα-to-Ll ratio which include the effects of alignment of the 2p/sub 3/2/ state of the target

  2. Synergy Repetition Training versus Task Repetition Training in Acquiring New Skill.

    Science.gov (United States)

    Patel, Vrajeshri; Craig, Jamie; Schumacher, Michelle; Burns, Martin K; Florescu, Ionut; Vinjamuri, Ramana

    2017-01-01

    Traditionally, repetitive practice of a task is used to learn a new skill, exhibiting as immediately improved performance. Research suggests, however, that a more experience-based rather than exposure-based training protocol may allow for better transference of the skill to related tasks. In synergy-based motor control theory, fundamental motor skills, such as hand grasping, are represented with a synergy subspace that captures essential motor patterns. In this study, we propose that motor-skill learning through synergy-based mechanisms may provide advantages over traditional task repetition learning. A new task was designed to highlight the range of motion and dexterity of the human hand. Two separate training strategies were tested in healthy subjects: task repetition training and synergy training versus a control. All three groups showed improvements when retested on the same task. When tested on a similar, but different set of tasks, only the synergy group showed improvements in accuracy (9.27% increase) compared to the repetition (3.24% decline) and control (3.22% decline) groups. A kinematic analysis revealed that although joint angular peak velocities decreased, timing benefits stemmed from the initial feed-forward portion of the task (reaction time). Accuracy improvements may have derived from general improved coordination among the four involved fingers. These preliminary results warrant further investigation of synergy-based motor training in healthy individuals, as well as in individuals undergoing hand-based rehabilitative therapy.

  3. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    International Nuclear Information System (INIS)

    Allen, M

    2004-01-01

    The discovery that ultra-intense laser pulses (I > 10 18 W/cm 2 ) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10 18 W/cm 2 ), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U p = ([1 + Iλ 2 /1.3 x 10 18 ] 1/2 - 1) m o c 2 , where Iλ 2 is the irradiance in W (micro)m 2 /cm 2 and m o c 2 is the electron rest mass. At laser irradiance of Iλ 2 ∼ 10 20 W (micro)m 2 /cm 2 , the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer from which they originate. Radiative heating was employed as a method of removing contamination from palladium targets doped

  4. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kirichok, A. V., E-mail: sandyrcs@gmail.com; Kuklin, V. M.; Pryimak, A. V. [Institute for High Technologies, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022 (Ukraine); Zagorodny, A. G. [Bogolyubov Institute for Theoretical Physics, 14-b, Metrolohichna str., Kiev 03680 (Ukraine)

    2015-09-15

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  5. Research progress in intense ion beam production for inertial confinement fusion at Cornell University

    International Nuclear Information System (INIS)

    Bluhm, H.; Greenly, J.B.; Hammer, D.A.

    1983-01-01

    Recent results obtained in the generation of intense pulsed light ion beams and their application to inertial confinement fusion are described. Studies of time-integrated and time-dependent beam divergence using a magnetically insulated ion diode with a ''flashboard'' anode at 11 W diode power show a directionality which is apparently due to electron dynamics in the diode. Nevertheless, ion beams having divergence angle as small as 0.5 0 have been produced at >10 8 W.cm - 2 . In another experiment with a similar diode, the anode plasma formation time varied with the detailed anode configuration, the diode voltage and the insulating magnetic field, with the longer times obtained at lower voltage and higher insulating magnetic field strength. The anode plasma density was determined to be in the 10 15 cm - 3 density range and to move away from the anode at approx.2 cm.μs - 1 in another similar experiment. Preliminary experiments performed on a 10 12 W accelerator show reasonable power coupling to a magnetically insulated ion diode, with >10 9 W.cm - 2 beams at approx.1.5 MV being generated. Computer simulations suggest that if such a beam can be focused into a plasma channel, most of its energy can be delivered to a pellet one to two metres away. In experiments on the applied Bsub(theta) diode, microwave radiation, ion production efficiency, and ion beam fluctuations all reach a maximum when the insulating magnetic field is about 1.4 times the critical field for magnetic insulation. Finally, relatively pure beams of heavy ions have been produced by making the anode with hydrocarbon-free dielectric material which contains the desired species together with other ions having substantially higher ionization potential. The sum of these results suggests that flashboard anodes operated at the few-MV level can be used to produce beams with properties suitable for inertial confinement fusion experiments on sufficiently powerful pulsed power generators. (author)

  6. Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D.; Murokh, A.; Piot, P.; Ruan, J.

    2017-07-01

    A high-brilliance (~1022 photon s-1 mm-2 mrad-2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (Eγ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.

  7. Self-pinched transport of intense ion beams

    International Nuclear Information System (INIS)

    Ottinger, P.F.; Neri, J.M.; Stephanakis, S.J.

    1999-01-01

    Electron beams with substantial net currents have been routinely propagated in the self-pinched mode for the past two decades. However, as the physics of gas breakdown and beam neutralization is different for ion beams, previous predictions indicated insufficient net current for pinching so that ion beam self-pinched transport (SPT) was assumed impossible. Nevertheless, recent numerical simulations using the IPROP code have suggested that ion SPT is possible. These results have prompted initial experiments to investigate SPT of ion beams. A 100-kA, 1.2-MeV, 3-cm-radius proton beam, generated on the Gamble II pulsed-power accelerator at NRL, has been injected into helium in the 30- to 250-mTorr regime to study this phenomenon. Evidence of self-pinched ion beam transport was observed in the 35- to 80-mTorr SPT pressure window predicted by IPROP. Measured signals from a time- and space-resolved scattered proton diagnostic and a time-integrated Li(Cu) nuclear activation diagnostic, both of which measure protons striking a 10-cm diameter target 50 cm into the transport region, are significantly larger in this pressure window than expected for ballistic transport. These results are consistent with significant self-magnetic fields and self-pinching of the ion beam. On the other hand, time-integrated signals from these same two diagnostics are consistent with ballistic transport at pressures above and below the SPT window. Interferometric electron line-density measurements, acquired during beam injection into the helium gas, show insignificant ionization below 35 mTorr, a rapidly rising ionization fraction with pressure in the SPT window, and a plateau in ionization fraction at about 2% for pressures above 80 mTorr. These and other results are consistent with the physical picture for SPT. IPROP simulations, which closely model the Gamble II experimental conditions, produce results that are in qualitative agreement with the experimental results. The advantages of SPT for

  8. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    Science.gov (United States)

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

  9. The levels of the first excited configuration of one-electron ions in intensive alternating field

    International Nuclear Information System (INIS)

    Klimchitskaya, G.L.

    1984-01-01

    The relativistic generalization of the quasi-energy method is applied for the calculation of the influence of spatjally-homogeneous electric field with the periodic time dependence on the energy levels of the first excited configuration of one-electron multiply charged ions. The dependence is found of the corresponding quasi-energy levels on the amplitude and frequency of intensive external field which wholly mixes the levels of fine structure

  10. Rescattering effects on intensity interferometry and initial conditions in relativistic heavy ion collisions

    Science.gov (United States)

    Li, Yang

    The properties of the quark-gluon plasma are being thoroughly studied by utilizing relativistic heavy ion collisions. After its invention in astronomy in the 1950s, intensity interferometry was found to be a robust method to probe the spatial and temporal information of the nuclear collisions also. Although rescattering effects are negligible in elementary particle collisions, it may be very important for heavy ion collisions at RHIC and in the future LHC. Rescattering after production will modify the measured correlation function and make it harder to extract the dynamical information from data. To better understand the data which are dimmed by this final state process, we derive a general formula for intensity interferometry which can calculate rescattering effects easily. The formula can be used both non-relativistically and relativistically. Numerically, we found that rescattering effects on kaon interferometry for RHIC experiments can modify the measured ratio of the outward radius to the sideward radius, which is a sensitive probe to the equation of state, by as large as 15%. It is a nontrivial contribution which should be included to understand the data more accurately. The second part of this thesis is on the initial conditions in relativistic heavy ion collisions. Although relativistic hydrodynamics is successful in explaining many aspects of the data, it is only valid after some finite time after nuclear contact. The results depend on the choice of initial conditions which, so far, have been very uncertain. I describe a formula based on the McLerran-Venugopalan model to compute the initial energy density. The soft gluon fields produced immediately after the overlap of the nuclei can be expanded as a power series of the proper time t. Solving Yang-Mills equations with color current conservation can give us the analytical formulas for the fields. The local color charges on the transverse plane are stochastic variables and have to be taken care of by random

  11. Acceleration of multiply charged ions by a high-contrast femtosecond laser pulse of relativistic intensity from the front surface of a solid target

    Czech Academy of Sciences Publication Activity Database

    Shulyapov, S. A.; Mordvintsev, I. M.; Ivanov, K. A.; Volkov, P. V.; Zarubin, P. I.; Ambrožová, Iva; Turek, Karel; Savelyev, A. B.

    2016-01-01

    Roč. 46, č. 5 (2016), s. 432-436 ISSN 1063-7818 Institutional support: RVO:61389005 Keywords : relativistic intensity * contrast * laser plasma * ion acceleration * multiply charged ions * collision ionisation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.119, year: 2016

  12. Nano-SiC region formation in (100) Si-on-insulator substrate: Optimization of hot-C+-ion implantation process to improve photoluminescence intensity

    Science.gov (United States)

    Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu

    2018-04-01

    We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.

  13. Diagrams of ion stability in radio-frequency mass spectrometry

    International Nuclear Information System (INIS)

    Sudakov, M.Yu.

    1994-01-01

    For solving radio-frequency mass spectrometry problems and dynamic ion containment are studied and systematized different ways for constructing the ion stability diagrams. A new universal set of parameters is proposed for diagram construction-angular variables, which are the phase raid of ion oscillational motion during positive and negative values of the supplying voltage. An effective analytical method is proposed for optimization of the parameters of the pulsed supplying voltage, in particular its repetition rate

  14. Reaching for highest ion beam intensities through laser ion acceleration and beam compression

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dennis; Brabetz, Christian; Blazevic, Abel; Bagnoud, Vincent; Weih, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Jahn, Diana; Ding, Johannes; Roth, Markus [TU Darmstadt (Germany); Kroll, Florian; Schramm, Ulrich; Cowan, Tom [Helmholtzzentrum Dresden Rossendorf (Germany); Collaboration: LIGHT-Collaboration

    2016-07-01

    Laser ion acceleration provides access to ion sources with unique properties. To use these capabilities the LIGHT collaboration (Laser Ion Generation Handling and Transport) was founded. The aim of this collaboration is the beam transport and manipulation of laser accelerated ions with conventional accelerator structures. Therefor a dedicated beam line has been build up at GSI Helmholtzzentrum fuer Schwerionenforschung. With this beam line the manipulation of the transversal and also the longitudinal beam parameters has been achieved. It has been shown that laser generated ion beams can be transported over more than 6 meters and pulses shorter than 300 ps can be generated at this distance. This Talk will give an overview over the recent developments and plans of the LIGHT collaboration.

  15. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others

    1998-01-01

    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  16. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Ensey, James; Baker, Brent A

    2018-04-01

    Utilization of high-intensity resistance training to counter age-related sarcopenia is currently debated because of the potential for maladaptation when training design is inappropriate. Training design is problematic because the influence of various loading variables (e.g. contraction mode, repetition number, and training frequency) is still not well characterized at old age. To address this in a precisely controlled manner, we developed a rodent model of high-intensity training consisting of maximally-activated stretch-shortening contractions (SSCs), contractions typical during resistance training. With this model, we determined that at old age, high-repetition SSC training (80 SSCs: 8 sets of 10 repetitions) performed frequently (i.e. 3 days per week) for 4.5 weeks induced strength deficits with no muscle mass gain while decreasing frequency to 2 days per week promoted increases in muscle mass and muscle quality (i.e. performance normalized to muscle mass). This finding confirmed the popular notion that decreasing training frequency has a robust effect with age. Meanwhile, the influence of other loading variables remains contentious. The aim of the present study was to assess muscle adaptation following modulation of contraction mode and repetition number during high-intensity SSC training. Muscles of young (3 month old) and old (30 month old) male rats were exposed to 4.5 weeks of low-repetition static training of 4 (i.e. 4 sets of one repetition) isometric (ISO) contractions 3 days per week or a more moderate-repetition dynamic training of 40 SSCs (i.e. 4 sets of 10 repetitions) 3 days per week. For young rats, performance and muscle mass increased regardless of training protocol. For old rats, no muscle mass adaptation was observed for 4 ISO training while 40 SSC training induced muscle mass gain without improvement in muscle quality, an outcome distinct from modulating training frequency. Muscle mass gain for old rats was accompanied by

  17. Target life time of laser ion source for low charge state ion production

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue,T.; Tamura, J.; Okamura, M.

    2008-06-23

    Laser ion source (LIS) produces ions by irradiating pulsed high power laser shots onto the solid state target. For the low charge state ion production, laser spot diameter on the target can be over several millimeters using a high power laser such as Nd:YAG laser. In this case, a damage to the target surface is small while there is a visible crater in case of the best focused laser shot for high charge state ion production (laser spot diameter can be several tens of micrometers). So the need of target displacement after each laser shot to use fresh surface to stabilize plasma is not required for low charge state ion production. We tested target lifetime using Nd:YAG laser with 5 Hz repetition rate. Also target temperature and vacuum condition were recorded during experiment. The feasibility of a long time operation was verified.

  18. Spatial and temporal variation of repetitive plasma discharges in saline solutions

    International Nuclear Information System (INIS)

    Stalder, K R; Nersisyan, G; Graham, W G

    2006-01-01

    Repetitive plasma discharges developed in saline solutions have been investigated using fast, intensified charge coupled detector imaging techniques. The images show that synchronously pulsed multielectrode configurations tend to develop intense, transient plasma regions somewhat randomly in both space and time on short (10 μs) time scales, even though they appear to be stationary on longer (tens of milliseconds) time scales. Evidence for the production of both strongly ionized and weakly ionized plasmas is also presented

  19. Fluorescence fluctuation of Rhodamine 6G dye for high repetition rate laser excitation

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Patel, Hemant K.; Dixit, S.K.; Vora, H.S.

    2013-01-01

    In this paper, fluorescence from Rhodamine 6G dye for stationary and flowing liquid medium, excited by copper vapor laser, operating at 6 kHz pulse repetition frequency, was investigated. Large fluctuations in spectral width (about 5 nm) and spectral intensity in the fluorescence from stationary dye solution were observed, while fluctuations in the spectral width diminish in a flowing dye medium. However, this increases spectral intensity and slightly red shifts the fluorescence peak emission wavelength. Theoretical analysis was carried out to explain the observed results by incorporating the temperature induced refractive index, beam deflection and spectral variation in stationary dye solution. Numerical analysis of thermal load and contour of temperature in the optical pumped region inside the dye cell in stationary, 0.2 and 1.5 m/s flow velocity was also investigated to support our analysis. - Highlights: ► High repetition rate excitation generates inhomogeneity in the gain medium. ► Fluorescence of Rhodamine 6G in stationary and flowing medium was carried out. ► Fluorescence fluctuations lessen in flowing medium in contrast to stationary medium. ► Our theoretical and numerical analysis enlightens the experimented outcome trend.

  20. Calculated L-shell x-ray line intensities for proton and helium ion impact

    International Nuclear Information System (INIS)

    Cohen, D.D.; Harrigan, M.

    1986-01-01

    Theoretical L-shell X-ray line intensities have been calculated for proton and helium bombardment of atoms from nickel (Z 2 = 28) to curium (Z 2 = 96). The ionization cross sections for the three L subshells were obtained from the recent calculations by Cohen and Harrigan in the ECPSSR theory, which uses the plane-wave Born approximation (PWBA) with corrections for energy loss (E), Coulomb deflection (C), perturbed-stationary-state (PSS), and relativistic (R) effects. The fluorescence yields and Coster-Kronig transition probabilities were taken from M. O. Krause (Phys. Chem. Ref. Data 8, 307 (1979)) and the L-subshell emission rates from S. I. Salem, S. L. Panosian, and R. A. Krause (Atomic Data and Nuclear Data Tables 14, 91 (1974)). The line intensities Ll, Lα, Leta, Lβ 1 to Lβ 6 , Lβ/sub 9,10/, and Lγ 1 to Lgg 6 are tabulated for selected ion energies from 0.2 to 10 MeV

  1. The repetitive flaking of Inconel 625 by 100 keV helium bombardment

    International Nuclear Information System (INIS)

    Whitton, J.L.; Chen, H.M.; Littmark, U.

    1981-01-01

    Repetitive flaking of Inconel 625 occurs with ion bombardment doses of > than 10 18 100 keV helium ions cm -2 , with up to 39 exfoliations being observed after bombardment with 3 x 10 19 ions cm -2 . The thickness of the flakes, measured by scanning electron microscopy, is some 30% greater than when measured by Rutherford backscattering (RBS) of 1.8 MeV helium ions. These RBS measurements compare well with the thickness of the remaining layers in the resultant craters and to the most probable range of the 100 keV helium. The area of the flakes is dictated by the grain boundaries, and when one flake is ejected, the adjacent grains are prevented from doing so since there now exists an escape route for the injected helium. A strong dose rate dependence is observed; decreasing the beam current from 640 μA cm -2 to 64 μA cm -2 results in a factor 20 fewer flakes being exfoliated (for the same total dose of 3 x 10 19 ions cm -2 ). Successive flakes decrease in area, suggesting that eventually a cratered, but stable, surface will result with the only erosion being by the much less effective mechanism of sputtering. (orig.)

  2. Effect of High Intensity Interval Training with Blood Restriction on Anaerobic Performance

    Directory of Open Access Journals (Sweden)

    Amir Behi

    2017-08-01

    Full Text Available Limiting venous blood flow restriction is a new approach of  training aims to improving high level of performance among athletes, which has shown prominent results at muscle hypotrophy and strength. KAATSU[1] is a training system including pressure belt imposed on the proximal part of the upper and lower bodies. The present study aims to investigate the effect of HIIT Kaatsu trainings on anaerobic performance among young athletes. The present quasi experimental research was conducted through a pre-test and post-test and three groups including KAATSU intensive interval exercises (n=11, intense interval exercise (n=9 and a control group (n=10. The exercises included running distances of 20 and 40 meters. In the beginning of the protocol most of the exercises was in short distances and as the sessions proceeded, the number of the sets and repetitions increased and it reached to its highest intensity in the last session. During the exercise protocol, intensity of training was considered to be the highest running speed and based on their abilities each individual tried to run as fast as possible. The exercise load was defined based on repetitions and the sets. In the 20 meters distances, the participants took a ten second rest after each repetition and a one minute rest after each set and in 40 meters distances; Subjects took a 20 second rest after each repetition and 2 minute rest between sets. The control group did not performed any of the mentioned exercises. Moreover, before and after four weeks of training the individuals were given RAST and Anaerobic Biking Wingate Test. Statistical result has been shown, there is a significant change between the maximum anaerobic power in Wingate biking test after four weeks within KAATSU intensive interval (P≥ 0.05 and intensive interval (P≥ 0.05 groups, but no significant change was detected in the control group (P> 0.05.  The statistical analysis of this research has been shown that there is

  3. Validation of the Repetitive Behavior Scale-Revised in Spanish-Speakers Participants with Autism Spectrum Disorder

    Science.gov (United States)

    Martínez-González, A. E.; Piqueras, J. A.

    2018-01-01

    Restricted and repetitive behavior (RRB) is one of the two key diagnostic features of autism spectrum disorder (ASD). DSM-5 highlights the importance of severity-based diagnostic modifiers assigned on the basis of intensity of needed supports. Therefore, there is a need for available measures that assess the severity of RRB. The repetitive…

  4. Intense ion beam research for inertial confinement fusion. Final technical report, 1 October 1981-31 October 1985

    International Nuclear Information System (INIS)

    Hammer, D.A.; Kusse, B.R.; Sudan, R.N.

    1986-01-01

    Theoretical and experimental research has been performed on the application of intense light ion beams to inertial confinement fusion. The following achievements are documented. A 1 TW accelerator (a module of the PBFA 1 device at Sandia National Laboratories, Albuquerque), has been installed at Cornell and it has been used to develop high power magnetically insulated ion diodes. Ion beams at 0.3 TW level have been produced. The use of spectroscopic techniques to diagnose conditions in detail with in magnetically insulated diodes was proposed, and preliminary experiments have been successfully performed. These have revealed the anode plasma density, transverse velocities of ions within the diode (from Doppler broadening of ion emission lines) and the electric field profile in the accelerating gap (from the Stark shifted line profile of especially selected emission lines). Theoretical studies on the effects of lack of symmetry in the electron drift direction on the leakage electron current in a magnetically insulated diode show that even very small perturbations can cause a substantial enhancement of the leakage current. Experiments involving electron flow in a magnetically insulated diode have shown cathode sheath losses to occur in local burst as well as in a smooth manner

  5. Repetitive Questioning II

    Directory of Open Access Journals (Sweden)

    R. C. Hamdy MD

    2018-02-01

    Full Text Available Repetitive questioning is a major problem for caregivers, particularly taxing if they are unable to recognize and understand the reasons why their loved one keeps asking the same question over and over again. Caregivers may be tempted to believe that the patient does not even try to remember the answer given or is just getting obnoxious. This is incorrect. Repetitive questioning is due to the underlying disease: The patient’s short term memory is impaired and he is unable to register, encode, retain and retrieve the answer. If he is concerned about a particular topic, he will keep asking the same question over and over again. To the patient each time she asks the question, it is as if she asked it for the first time. Just answering repetitive questioning by providing repeatedly the same answer is not sufficient. Caregivers should try to identify the underlying cause for this repetitive questioning. In an earlier case study, the patient was concerned about her and her family’s safety and kept asking whether the doors are locked. In this present case study, the patient does not know how to handle the awkward situation he finds himself in. He just does not know what to do. He is not able to adjust to the new unexpected situation. So he repeatedly wants to reassure himself that he is not intruding by asking the same question over and over again. We discuss how the patient’s son-in-law could have avoided this situation and averted the catastrophic ending.

  6. Production of C, N, O, and Ne ions by pulsed ion source and acceleration of these ions in the cyclotron

    International Nuclear Information System (INIS)

    Nakajima, Hisao; Kohara, Shigeo; Kageyama, Tadashi; Kohno, Isao

    1977-01-01

    The heavy ion source, of electron bombarded hot cathode type, is usually operated by applying direct current for arc discharge. In order to accelerate Ne 6+ ion in the cyclotron, a pulsed operation of this source was attempted. Ne 6+ and O 6+ ions were accelerated successfully up to 160 MeV and more than 0.1 μA of these ion were extracted from the cyclotron. C 5+ , Ne 7+ and 22 Ne 6+ ions were also extracted with a modest intensity of beam. The intensity of C 4+ , N 4+ , N 5+ , and O 5+ ions was increased about ten times. (auth.)

  7. Momenta of particles emitted by target at intensive irradiation by low-energy ions

    CERN Document Server

    Beshenkov, V G; Marchenko, V A

    2002-01-01

    One measured the aggregate momenta of the target emitted particles at the intensive sputtering by E sub 0 approx = 0.5 keV energy heavy inert gases. For liquid and being under premelting temperature Ga target the measured values are close to the expected momenta of sputtered metallic atoms and reflection ions, for Cu and Zr targets they are essentially higher. One assumes that sputtering of atoms of gas-diffuser implanted into the target causes the surplus momentum. The estimated average energy of these atoms approx = 20 eV. Under Ga irradiation the implanted atoms diffuse mainly towards the surface and are desorbed

  8. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    Science.gov (United States)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  9. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    Energy Technology Data Exchange (ETDEWEB)

    Renk, T. J., E-mail: tjrenk@sandia.gov; Harper-Slaboszewicz, V.; Mikkelson, K. A.; Ginn, W. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Ottinger, P. F. [ENGILITY, Chantilly, Virginia 20151 (United States); Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.

  10. Design of a compact Faraday cup for low energy, low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cantero, E.D., E-mail: esteban.cantero@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Sosa, A. [CERN, 1211 Geneva 23 (Switzerland); The University of Liverpool, Liverpool (United Kingdom); Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D. [CERN, 1211 Geneva 23 (Switzerland); Welsch, C.P. [The University of Liverpool, Liverpool (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom)

    2016-01-21

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  11. Effects of exercise intensity and creatine loading on post-resistance exercise hypotension

    Directory of Open Access Journals (Sweden)

    Moreno Rodrigues Moreno

    2009-09-01

    Full Text Available Postexercise hypotension plays an important role in the non-pharmacological treat-ment of hypertension and is characterized by a decrease in blood pressure after a single exercise bout in relation to pre-exercise levels. This study investigated the effects of exercise intensity and creatine monohydrate supplementation on postexercise hypotension, as well as the possible role of blood lactate in this response. Ten normotensive subjects underwent resistance exercise sessions before (BC and after (AC creatine supplementation: 1 muscle endurance (ME consisting of 30 repetitions at 30% of one-repetition maximum; 2 hypertrophy (HP consisting of 8 repetitions at 75% of one-repetition maximum. Blood pressure was measured before and after the exercise bout. Blood lactate was measured after the exercise bout. The HP and ME sessions promoted a decrease in systolic blood pressure (∆ -19 ± 1.0 mmHg; ∆ -15 ± 0.9 mmHg, respectively, P 0.05. In conclusion, resistance exercise intensity did not influence postexercise hypotension. Creatine supplementation attenuated the decrease in blood pressure after resistance exercise. The results suggest the involvement of blood lactate in post-resistance exercise hypotension.

  12. Effects of exercise intensity and creatine loading on post-resistance exercise hypotension

    Directory of Open Access Journals (Sweden)

    Moreno Rodrigues Moreno

    2009-01-01

    Postexercise hypotension plays an important role in the non-pharmacological treat-ment of hypertension and is characterized by a decrease in blood pressure after a single exercise bout in relation to pre-exercise levels. This study investigated the effects of exercise intensity and creatine monohydrate supplementation on postexercise hypotension, as well as the possible role of blood lactate in this response. Ten normotensive subjects underwent resistance exercise sessions before (BC and after (AC creatine supplementation: 1 muscle endurance (ME consisting of 30 repetitions at 30% of one-repetition maximum; 2 hypertrophy (HP consisting of 8 repetitions at 75% of one-repetition maximum. Blood pressure was measured before and after the exercise bout. Blood lactate was measured after the exercise bout. The HP and ME sessions promoted a decrease in systolic blood pressure (∆ -19 ± 1.0 mmHg; ∆ -15 ± 0.9 mmHg, respectively, P 0.05. In conclusion, resistance exercise intensity did not influence postexercise hypotension. Creatine supplementation attenuated the decrease in blood pressure after resistance exercise. The results suggest the involvement of blood lactate in post-resistance exercise hypotension.

  13. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-01-01

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations.

  14. Dissociation and ionization of molecular ions by ultra-short intense laser pulses probed by coincidence 3D momentum imaging

    International Nuclear Information System (INIS)

    Ben-Itzhak, Itzik; Wang, Pengqian; Xia, Jiangfan; Max Sayler, A.; Smith, Mark A.; Maseberg, J.W.; Carnes, Kevin D.; Esry, Brett D.

    2005-01-01

    We have experimentally explored laser-induced dissociation and ionization of diatomic molecular ions using coincidence 3D momentum imaging. The vibrationally excited molecular ion beam (4-8 keV) is crossed by an ultrafast intense laser beam (28-200 fs, 10 13 -10 14 W/cm 2 ). The resulting fragments are recorded in coincidence by a time and position-sensitive detector. Complete angular distributions and kinetic energy release maps are reconstructed from the measured dissociation-momentum vectors. The angular distribution of the H + + H fragments was found to be strongly correlated to their kinetic energy release upon dissociation. Low KER was associated with very narrow angular distributions and high KER with distributions peaking away from the laser polarization. Ionization was found to be smaller than dissociation and increased with laser intensity. The H + + H + fragments have a very narrow angular distribution along the laser polarization

  15. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  16. Nanostructured surface processing by an intense pulsed ion beam irradiation

    International Nuclear Information System (INIS)

    Yatsuzuka, M.; Masuda, T.; Yamasaki, T.; Uchida, H.; Nobuhara, S.; Hashimoto, Y.; Yoshihara, Y.

    1997-01-01

    Metal surface modification by irradiating an intense pulsed ion beam (IPIB) with short pulse width has been studied experimentally. An IPIB irradiation to a target leads to rapid heating above its melting point. After the beam is turned off, the heated region is immediately cooled by thermal conduction at a cooling rate of typically 10 10 K/s. This rapid cooling and resolidification results in generation of nanostructured phase in the top of surface. The typical hydrogen IPIB parameters are 200 kV of energy, 500 A/cm 2 of current density and 70 ns of pulsewidth. The IPIB was irradiated on a pure titanium to generate nanocrystalline phase. The IPIB-irradiated surface was examined with X-ray diffraction, SEM, and HR-TEM. The randomly oriented lattice fringes as well as a halo diffraction pattern are observed in the HR-TEM micrograph of IPIB-irradiated titanium. The average grain size is found to be 32 nanometers

  17. Changed activation, oxygenation, and pain response of chronically painful muscles to repetitive work after training interventions: a randomized controlled trial

    DEFF Research Database (Denmark)

    Søgaard, Karen; Blangsted, Anne Katrine; Nielsen, Pernille Kofoed

    2012-01-01

    The aim of this randomized controlled trial was to assess changes in myalgic trapezius activation, muscle oxygenation, and pain intensity during repetitive and stressful work tasks in response to 10 weeks of training. In total, 39 women with a clinical diagnosis of trapezius myalgia were randomly...... levels of pain. SST lowered the relative EMG amplitude by 36%, and decreased pain during resting and working conditions by 52 and 38%, respectively, without affecting trapezius oxygenation. In conclusion, GFT performed as leg-bicycling decreased pain development during repetitive work tasks, possibly due...... assigned to: (1) general fitness training performed as leg-bicycling (GFT); (2) specific strength training of the neck/shoulder muscles (SST) or (3) reference intervention without physical exercise. Electromyographic activity (EMG), tissue oxygenation (near infrared spectroscopy), and pain intensity were...

  18. Repetitive learning control of continuous chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Shang Yun; Zhou Donghua

    2004-01-01

    Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller

  19. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  20. Document retrieval on repetitive string collections.

    Science.gov (United States)

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  1. Versatile high current metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1992-01-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multicathode, broad-beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred kiloelectronvolts because of the ion charge state multiplicity, and with a beam current of up to several amps peak pulsed and several tens of milliamps time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line of sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. (orig)

  2. REPETITIVE STRENGTH AMONG STUDENTS OF AGE 14

    Directory of Open Access Journals (Sweden)

    Besim Halilaj

    2014-06-01

    Full Text Available The study involved 82 male students of the primary school “Qamil Ilazi” in Kaçanik-Kosovo.Four movement tests, which test the repetitive strength, were conducted: 1. Pull-up, 2. Sit-Up, 3. Back extension, 4. Push-up.The main goal of this study was to verify the actual motor status, respectively the component of the repetitive strength among students of age 14 of masculine gender. In addition to verifying the actual motor status, another objective was to verify the relationship between the variables employed.Basic statistical parameters show a distribution which is not significantly different from the normal distribution, yielded highly correlative values among the repetitive strength tests. Space factorization resulted in extracting two latent squares defined as repetitive strength of arms factor, and repetitive strength of body factor.

  3. Highly charged ions generated with intense laser beams

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Jungwirth, Karel; Králiková, Božena; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Hnatowicz, Vladimír; Peřina, Vratislav; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Szydlowski, A.

    2003-01-01

    Roč. 205, - (2003), s. 355-359 ISSN 0168-583X. [International Symposium on Swift Heavy Ions in Matter /5./. Taormina-Giardini Naxos, 22.05.2002-25.05.2002] R&D Projects: GA MŠk LN00A100 Grant - others:HPRI(XE) CT-1999-00053; IAEA(XE) 11535/RO Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Keywords : laser-produced plasma * highly charged ions * ion implantation * windowless electron multiplier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.041, year: 2003

  4. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate.

    Science.gov (United States)

    Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric

    2012-11-15

    High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.

  5. H- ion sources for CERN's Linac4

    Science.gov (United States)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on

  6. A mask for high-intensity heavy-ion beams in the MAYA active target

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Tajes, C., E-mail: rodriguez@ganil.fr [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Pancin, J.; Damoy, S.; Roger, T.; Babo, M. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Caamaño, M. [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Farget, F.; Grinyer, G.F.; Jacquot, B.; Pérez-Loureiro, D. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Ramos, D. [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Suzuki, D. [Institut de Physique Nucléaire, Université Paris-Sud 11, CNRS/IN2P3, F-91406 Orsay (France)

    2014-12-21

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a {sup 136}Xe beam are presented.

  7. Implosion of multilayered cylindrical targets driven by intense heavy ion beams.

    Science.gov (United States)

    Piriz, A R; Portugues, R F; Tahir, N A; Hoffmann, D H H

    2002-11-01

    An analytical model for the implosion of a multilayered cylindrical target driven by an intense heavy ion beam has been developed. The target is composed of a cylinder of frozen hydrogen or deuterium, which is enclosed in a thick shell of solid lead. This target has been designed for future high-energy-density matter experiments to be carried out at the Gesellschaft für Schwerionenforschung, Darmstadt. The model describes the implosion dynamics including the motion of the incident shock and the first reflected shock and allows for calculation of the physical conditions of the hydrogen at stagnation. The model predicts that the conditions of the compressed hydrogen are not sensitive to significant variations in target and beam parameters. These predictions are confirmed by one-dimensional numerical simulations and thus allow for a robust target design.

  8. Heavy ion beams from the new Hungarian ECR ion source

    International Nuclear Information System (INIS)

    Biri, S.; Valek, A.; Ditroi, F.; Koivisto, H.; Arje, J.; Stiebing, K.; Schmidt, L.

    1998-01-01

    The first beams of highly charged ions in Hungary were obtained in fall of 1996. The new 14.5 GHz ECR ion source of ATOMKI produced beams of multiply charged ions with remarkable intensities at first experiments. Since then, numerous further developments were carried out. An external electrondonor electrode drastically increased the plasma density and, consequently, the intensity of highly charged ions. These upgrades concentrated mainly on beams from gaseous elements and were carried out by the ECRIS team of ATOMKI. Another series of experiments - ionising from solids - however, was done in the framework of an international collaboration. The first metal ion beam has been extracted from the ECRIS in November 1997 using the known method of Metal Ions from Volatile Compounds (MIVOC). The possibility to put the MIVOC chamber inside the ion source was also tested and the dosing regulation problem of metal vapours inside the ion source was solved. As a result, beams of more than 10 μA of highly charged Fe and Ni ions were produced. (author)

  9. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    International Nuclear Information System (INIS)

    Stockett, Mark H.; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-01-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  10. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stockett, Mark H., E-mail: stockett@phys.au.dk; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark)

    2016-05-15

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  11. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.

    Science.gov (United States)

    Gilio, Francesca; Iacovelli, Elisa; Frasca, Vittorio; Gabriele, Maria; Giacomelli, Elena; De Lena, Carlo; Cipriani, Anna Maria; Inghilleri, Maurizio

    2009-05-08

    Repetitive transcranial magnetic stimulation (rTMS) delivered in short trains at 5Hz frequency and suprathreshold intensity over the primary motor cortex (M1) in healthy subjects facilitates the motor-evoked potential (MEP) amplitude by increasing cortical excitability through mechanisms resembling short-term synaptic plasticity. In this study, to investigate whether rTES acts through similar mechanisms we compared the effects of rTMS and repetitive transcranial electrical stimulation (rTES) (10 stimuli-trains, 5Hz frequency, suprathreshold intensity) delivered over the M1 on the MEP amplitude. Four healthy subjects were studied in two separate sessions in a relaxed condition. rTMS and anodal rTES were delivered in trains to the left M1 over the motor area for evoking a MEP in the right first dorsal interosseous muscle. Changes in MEP size and latency during the course of the rTMS and rTES trains were compared. The possible effects of muscle activation on MEP amplitude were evaluated, and the possible effects of cutaneous trigeminal fibre activation on corticospinal excitability were excluded in a control experiment testing the MEP amplitude before and after supraorbital nerve repetitive electrical stimulation. Repeated measures analysis of variance (ANOVA) showed that rTES and rTMS trains elicited similar amplitude first MEPs and a similar magnitude MEP amplitude facilitation during the trains. rTES elicited a first MEP with a shorter latency than rTMS, without significant changes during the course of the train of stimuli. The MEP elicited by single-pulse TES delivered during muscle contraction had a smaller amplitude than the last MEP in the rTES trains. Repetitive supraorbital nerve stimulation left the conditioned MEP unchanged. Our results suggest that 5 Hz-rTES delivered in short trains increases cortical excitability and does so by acting on the excitatory interneurones probably through mechanisms similar to those underlying the rTMS-induced MEP facilitation.

  12. Probing background ionization: positive streamers with varying pulse repetition rate and with a radioactive admixture

    International Nuclear Information System (INIS)

    Nijdam, S; Van Veldhuizen, E M; Ebert, U; Wormeester, G

    2011-01-01

    Positive streamers need a source of free electrons ahead of them to propagate. A streamer can supply these electrons by itself through photo-ionization, or the electrons can be present due to external background ionization. Here we investigate the effects of background ionization on streamer propagation and morphology by changing the gas composition and the repetition rate of the voltage pulses, and by adding a small amount of radioactive 85 Kr. We find that the general morphology of a positive streamer discharge in high-purity nitrogen depends on background ionization: at lower background ionization levels the streamers branch more and have a more feather-like appearance. This is observed both when varying the repetition rate and when adding 85 Kr, though side branches are longer with the radioactive admixture. But velocities and minimal diameters of streamers are virtually independent of the background ionization level. In air, the inception cloud breaks up into streamers at a smaller radius when the repetition rate and therefore the background ionization level is higher. When measuring the effects of the pulse repetition rate and of the radioactive admixture on the discharge morphology, we found that our estimates of background ionization levels are consistent with these observations; this gives confidence in the estimates. Streamer channels generally do not follow the paths of previous discharge channels for repetition rates of up to 10 Hz. We estimate the effect of recombination and diffusion of ions and free electrons from the previous discharge and conclude that the old trail has largely disappeared at the moment of the next voltage pulse; therefore the next streamers indeed cannot follow the old trail.

  13. An intense lithium ion beam source using vacuum baking and discharge cleaning techniques

    International Nuclear Information System (INIS)

    Moschella, J.J.; Kusse, B.R.; Longfellow, J.P.; Olson, J.C.

    1991-01-01

    We have developed a high-purity, intense, lithium ion beam source which operates at 500 kV and 120 A/cm 2 with pulse widths of 125 ns full width half maximum. The beams were generated using a lithium chloride anode in planar magnetically insulated geometry. We have found that the combination of vacuum baking of the anode at 250 degree C followed by the application of 100 W of pure argon, steady-state, glow discharge cleaning reduced the impurity concentration in the beam to approximately 10% (components other than chlorine or lithium were considered impurities). Although the impurities were low, the concentration of chlorine in the 1+ and 2+ charge states was significant (∼25%). The remaining 65% of the beam consisted of Li + ions. Without the special cleaning process, over half the beam particles were impurities. It was determined that these impurities entered the beam at the anode surface but came originally from material in the vacuum chamber. After the cleaning process, recontamination was observed to occur in approximately 6 min. This long recontamination time, which was much greater than the expected monolayer formation time, was attributed to the elevated temperature of the anode. We also compared the electrical characteristics of the beams produced by LiCl anodes to those generated by a standard polyethylene proton source. In contrast to the polyethylene anode, the LiCl source exhibited a higher impedance, produced beams of lower ion current efficiency and had longer turn on times

  14. Experimental observations on long pulse intense ion diode operation

    International Nuclear Information System (INIS)

    Prono, D.S.; Clark, R.; Prestwich, K.

    1976-01-01

    An experiment in which a long pulse electron beam diode is converted to a reflex ion diode is reported. The results further substantiate the model of reflex ion diode behavior as well as extend the duration of ion mode operation to greater than 500 nsec

  15. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  16. Surface negative ion production in ion sources

    International Nuclear Information System (INIS)

    Belchenko, Y.

    1993-01-01

    Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail

  17. Design of the compact ECR ion source for heavy-ion therapy

    International Nuclear Information System (INIS)

    Muramatsu, M.; Kitagawa, A.; Sato, S.; Sato, Y.; Yamada, S.; Hattori, T.; Shibuya, S.

    1999-01-01

    Heavy ion cancer treatment is successfully being done at the Heavy Ion Medical Accelerator in Chiba (HIMAC). Design philosophy for the ion sources for medical facilities are as follows: sufficient beam intensity, a few hundred eμA; long lifetime with good stability; easy operation and easy maintenance; and compactness. In order to develop such source for future heavy-ion facilities, we have tested compact electron cyclotron resonance (ECR) ion sources using permanent magnets both for axial and radial confinement of hot electrons. Since the yield of C 2+ ion in the firstly-developed source (2.45 GHz ECR) was 15 eμA and far below the medical requirement (-150 eμA for the HIMAC), a new source has been proposed, having the frequency of 10 GHz. The extracted intensity of C 4+ (and C 2+ ) ions is expected to be higher than 200 eμA. (author)

  18. Evaluation of skeletal muscle during exercise on short repetition time MR imaging

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Niitsu, Mamoru; Anno, Izumi; Takahashi, Hideyuki; Kuno, Shinya; Matsumoto, Kunihiko; Itai, Yuji

    1992-01-01

    There have been many reports on the effects of exercise on skeletal muscle signal intensities based on magnetic resonance (MR) imaging. These images were obtained using T 2 -weighted MR images. The purpose of this study was to observe muscles during exercise while shortening the repetition time (TR) on spin echo images. In addition, inactive and active muscles were differentiated in the same manner. T 2 values of the tibialis anterior m. were calculated from TR=400 ms to TR=3000 ms. These values were mostly constant and didn't depend upon TR. Increases in signal intensities of the exercise muscles could be observed on the short TR (600 ms) MR images since the changes of the signal intensities mainly depend upon T 2 values. Thus, the T 2 value is useful as a quantitative index to assess the exercise muscle even on the short TR MR images. (author)

  19. Fusion neutron generation by high-repetitive target injection

    International Nuclear Information System (INIS)

    Kitagawa, Yoneyoshi

    2015-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. The Graduate School for the Creation of New Photonics Industries, Hamamatsu Photonics K. K. and Toyota Motor Corporation demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength and the intensity are 0.63 J per beam, 104 fs, 811 nm and 4.7 x 10 18 W/cm 2 , respectively. The irradiated pellets produce D (D, n) 3 He-reacted neutrons with a maximum yield of 9.5 x 10 4 /4π sr/shot. A straight channel with 10 μm-diameter is found through the beads. The pellet size is 1 mm. The results indicate potentially useful technologies for the next step in realizing inertial fusion energy. The results are reviewed as well as some oversea activities. (author)

  20. MHz repetition rate solid-state driver for high current induction accelerators

    International Nuclear Information System (INIS)

    Brooksby, C; Caporaso, G; Goerz, D; Hanks, R; Hickman, B; Kirbie, H; Lee, B; Saethre, R.

    1999-01-01

    A research team from the Lawrence Livermore National Laboratory and Bechtel Nevada Corporation is developing an all solid-state power source for high current induction accelerators. The original power system design, developed for heavy-ion fusion accelerators, is based on the simple idea of using an array of field effect transistors to switch energy from a pre-charged capacitor bank to an induction accelerator cell. Recently, that idea has been expanded to accommodate the greater power needs of a new class of high-current electron accelerators for advanced radiography. For this purpose, we developed a 3-stage induction adder that uses over 4,000 field effect transistors to switch peak voltages of 45 kV at currents up to 4.8 kA with pulse repetition rates of up to 2 MHz. This radically advanced power system can generate a burst of five or more pulses that vary from 200 ns to 2 ampersand micro;s at a duty cycle of up to 25%. Our new source is precise, robust, flexible, and exceeds all previous drivers for induction machines by a factor of 400 in repetition rate and a factor of 1000 in duty cycle

  1. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al{sup +} ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Philipp, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)

    2015-09-15

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  2. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector

    Science.gov (United States)

    Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-07-01

    A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

  3. Large aperture contact ionized Cs+1 ion source for an induction linac

    International Nuclear Information System (INIS)

    Abbott, S.; Chupp, W.; Faltens, A.; Herrmannsfeldt, W.; Hoyer, E.; Keefe, D.; Kim, C.H.; Rosenblum, S.; Shiloh, J.

    1979-03-01

    A 500 KeV one-ampere Cs +1 ion beam has been generated by contact ionization with a 30 cm dia. iridium hot plate. Reproducibility of space charge limited ion current wave forms at repetition rates up to 1 Hz has been verified. The beam is characterized to be very bright and suitable as an ion source for the induction linac based heavy ion fusion scheme. The hot anode plate was found to be reliable and self-cleaning during the operation

  4. Repetition and Emotive Communication in Music Versus Speech

    Directory of Open Access Journals (Sweden)

    Elizabeth Hellmuth eMargulis

    2013-04-01

    Full Text Available Music and speech are often placed alongside one another as comparative cases. Their relative overlaps and disassociations have been well explored (e.g. Patel, 2010. But one key attribute distinguishing these two domains has often been overlooked: the greater preponderance of repetition in music in comparison to speech. Recent fMRI studies have shown that familiarity – achieved through repetition – is a critical component of emotional engagement with music (Pereira et al., 2011. If repetition is fundamental to emotional responses to music, and repetition is a key distinguisher between the domains of music and speech, then close examination of the phenomenon of repetition might help clarify the ways that music elicits emotion differently than speech.

  5. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    Science.gov (United States)

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  6. Feature-based motion control for near-repetitive structures

    NARCIS (Netherlands)

    Best, de J.J.T.H.

    2011-01-01

    In many manufacturing processes, production steps are carried out on repetitive structures which consist of identical features placed in a repetitive pattern. In the production of these repetitive structures one or more consecutive steps are carried out on the features to create the final product.

  7. Microstructures and mechanical properties evolution of an Al–Fe–Cu alloy processed by repetitive continuous extrusion forming

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangxin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Hui, E-mail: zhanghui63hunu@163.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082 (China); Ji, Xiankun [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2014-08-26

    Repetitive continuous extrusion forming process (R-Conform process), as a continuous severe plastic deformation method, was performed on a horizontal continuous casting Al–0.74Fe–0.23Cu alloy. The microstructural evolution and mechanical properties were studied by optical microscope, X-ray diffraction, scanning electron microscope, transmission electron microscope, and tensile testing. The results show that tensile ductility of the Al–0.74Fe–0.23Cu alloy is greatly improved but tensile strength is gradually decreased after repetitive Conform processing. The necking is more intense and the size of dimples becomes bigger with increasing Conform passes. The first pass Conform process induces obviously grains refining, dissolution of AlFe, AlFeSi and AlSi primary phases, strain-induced precipitation and transformation of crystal orientation distributions, but further Conform deformation only changes the redistribution of precipitates. The changes of mechanical properties may be attributed to a complex progress of recovery, recrystallization and redistribution of precipitates during repetitive Conform process.

  8. Long-pulse operation of an intense negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Kaneko, Osamu; Oka, Yoshihide; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the National Institute for Fusion Science, as the heating system for the Large Helical Device (LHD), the negative ion NBI system of 20 MW incident power has been planned, and the development of a large current, large size negative ion source has been advanced. Based on the results obtained so far, the design of the LHD-NBI system was reconsidered, and the specification of the actual negative ion source was decided as 180 KeV-40A. This time, the grounding electrode with heightened heat removal capacity was made, and the long pulse operation was attempted, therefore, its results are reported. The structure of the external magnetic filter type large negative ion source used for the long pulse experiment is explained. In order to form the negative ion beam of long pulses, it is necessary to form stable are discharge plasma for long time, and variable resistors were attached to the output side of arc power sources of respective filament systems. By adjusting the resistors, uniform are discharge was able to be caused for longer than 10 s stably. The results of the long pulse experiment are reported. The dependence of the characteristics of negative ion beam on plasma electrode temperature was small, and the change of the characteristics of negative ion beam due to beam pulse width was not observed. (K.I.)

  9. The SuperHILAC heavy ion intensity upgrade

    International Nuclear Information System (INIS)

    Feinberg, B.; Brown, I.G.

    1987-03-01

    A high current MEtal Vapor Vacuum Arc (MEVVA) ion source is to be installed in the third injector (Abel) at the SuperHILAC, representing the first accelerator use of this novel ion source. The MEVVA source has produced over 1 A of uranium in all charge states, with more than 100 electrical mA (emA) of U 5+ . Transport of the space-charge dominated beam through the charge-state analysis dipole will be enhanced by a 100 kV extractor voltage and neutralization by secondary electrons. In addition to the MEVVA source, other improvements already in place include a lower pressure in the Low Energy Beam Transport line (15.8 keV/AMU) to reduce charge exchange for the heavy elements, and the addition of a second 23 MHz buncher upstream of the Wideroe linac and two 70 MHz bunchers between the 23 MHz Wideroe and the 70 MHz Alvarez linacs. The project is expected to result in a fivefold increase in beam delivered to Bevatron experiments, increasing the extracted uranium beam to 5 x 10 7 ions/pulse

  10. Surgery for subacromial impingement syndrome in relation to intensities of occupational mechanical exposures across 10-year exposure time windows.

    Science.gov (United States)

    Dalbøge, Annett; Frost, Poul; Andersen, Johan Hviid; Svendsen, Susanne Wulff

    2018-03-01

    We aimed to identify intensities of occupational mechanical exposures (force, arm elevation and repetition) that do not entail an increased risk of surgery for subacromial impingement syndrome (SIS) even after prolonged durations of exposure. Additionally, we wanted to evaluate if exposure to hand-arm vibration (HAV) is an independent risk factor. We used data from a register-based cohort study of the entire Danish working population (n=2 374 403). During follow-up (2003-2008), 14 118 first-time events of surgery for SIS occurred. For each person, we linked register-based occupational codes (1993-2007) to a general population job exposure matrix to obtain year-by-year exposure intensities on measurement scales for force, upper arm elevation >90° and repetition and expert rated intensities of exposure to HAV. For 10-year exposure time windows, we calculated the duration of exposure at specific intensities above minimal (low, medium and high). We used a logistic regression technique equivalent to discrete survival analysis adjusting for cumulative effects of other mechanical exposures. We found indications of safe exposure intensities for repetition (median angular velocity 90° >2 min/day implied an increased risk reaching ORs of 1.7 and 1.5 after 10 years at low intensities. No associations were found for HAV. We found indications of safe exposure intensities for repetition. Any intensities of force and upper arm elevation >90° above minimal implied an increased risk across 10-year exposure time windows. No independent associations were found for HAV. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Grade Repetition and Primary School Dropout in Uganda

    Science.gov (United States)

    Kabay, Sarah

    2016-01-01

    Research on education in low-income countries rarely focuses on grade repetition. When addressed, repetition is typically presented along with early school dropout as the "wasting" of educational resources. Simplifying grade repetition in this way often fails to recognize significant methodological concerns and also overlooks the unique…

  12. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan, E-mail: liyan@mail.tsinghua.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China)

    2016-09-15

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  13. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    International Nuclear Information System (INIS)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-01-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  14. Diffusively cooled thin-sheath high-repetition-rate TEA and TEMA lasers

    Science.gov (United States)

    Yatsiv, Shaul; Gabay, Amnon; Sintov, Yoav

    1993-05-01

    Transverse electric atmospheric (TEA), or multi atmospheric (TEMA) lasers deliver intense short laser pulses of considerable energies. Recurrent high repetition rate pulse trains afford substantial average power levels. In a high rep-rate operation the gas flows across the cavity and is externally cooled to maintain a reasonably low temperature. The gas flow gear and heat exchanger are bulky and costly. In this work we present a repetitively pulsed TEA or TEMA laser that combines energy and peak power features in an individual pulse with the substantial average power levels of a pulse train in a thin layer of gas. Excess heat is disposed of, by conduction through the gas, to cooled enclosing walls. The gas does not flow. The method applies to vibrational transition molecular lasers in the infrared, where elevated temperatures are deleterious to the laser operation. The gist of the method draws on the law that heat conductivity in gases does not depend on their pressure. The fact lends unique operational flexibility and compactness, desirable for industrial and research purposes.

  15. Analogous selection processes in declarative and procedural working memory: N-2 list-repetition and task-repetition costs.

    Science.gov (United States)

    Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus

    2017-01-01

    Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.

  16. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  17. Modelling of diffusion in presurface silicon layer under the action of pulsed high-intensity ion beam

    International Nuclear Information System (INIS)

    Aktaev, N.E.; Remnev, G.E.

    2015-01-01

    The influence of the pulsed high-intensity ion beam on the silicon is studied by use the developed theoretical model. The input parameters of the model were the settings of the experimental setup of the TEMP-4. It is shown, that at the short-pulsed implantation regime of the TEMP-4 the silicon surface does not melt. However, the regime leads to the high temperature gradient which promotes the diffusion process from the surface into the depth the silicon simple. The diffused particles are the carbon atoms adsorbed on the silicon surface by the various cases. Thus, it is shown that the carbon atom diffused from the surface make the main contribution to the forming of the concentration profile. The concentration of the implanted carbon ions less more than tree orders compared with the concentration of the diffused carbon atoms. (authors)

  18. Ion acceleration in modulated electron beams

    International Nuclear Information System (INIS)

    Bonch-Osmolovskij, A.G.; Dolya, S.N.

    1977-01-01

    A method of ion acceleration in modulated electron beams is considered. Electron density and energy of their rotational motion are relatively low. However the effective ion-accelerating field is not less than 10 MeV/m. The electron and ion numbers in an individual bunch are also relatively small, although the number of produced bunches per time unit is great. Some aspects of realization of the method are considered. Possible parameters of the accelerator are given. At 50 keV electron energy and 1 kA beam current a modulation is realized at a wave length of 30 cm. The ion-accelerating field is 12 MeV/m. The bunch number is 2x10 3 in one pulse at a gun pulse duration of 2 μs. With a pulse repetition frequency of 10 2 Hz the number of accelerated ions can reach 10 13 -10 14 per second

  19. Subjective duration distortions mirror neural repetition suppression.

    Science.gov (United States)

    Pariyadath, Vani; Eagleman, David M

    2012-01-01

    Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression. Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli) followed by a line presented at a different orientation (oddball stimulus). We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials. Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  20. Subjective duration distortions mirror neural repetition suppression.

    Directory of Open Access Journals (Sweden)

    Vani Pariyadath

    Full Text Available Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression.Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli followed by a line presented at a different orientation (oddball stimulus. We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials.Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  1. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training.

    Directory of Open Access Journals (Sweden)

    J M Sarabia

    Full Text Available It has been suggested that strength training effects (i.e. neural or structural vary, depending on the total repetitions performed and velocity loss in each training set.The aim of this study is to compare the effects of two training programmes (i.e. one with loads that maximise power output and individualised repetitions, and the other following traditional power training.Twenty-five males were divided into three groups (optimum power [OP = 10], traditional training [TT = 9] and control group [CG = 6]. The training load used for OP was individualised using loads that maximised power output (41.7% ± 5.8 of one repetition maximum [1RM] and repetitions at maximum power (4 to 9 repetitions, or 'reps'. Volume (sets x repetitions was the same for both experimental groups, while intensity for TT was that needed to perform only 50% of the maximum number of possible repetitions (i.e. 61.1%-66.6% of 1RM. The training programme ran over 11 weeks (2 sessions per week; 4-5 sets per session; 3-minute rests between sets, with pre-, intermediate and post-tests which included: anthropometry, 1RM, peak power output (PPO with 30%, 40% and 50% of 1RM in the bench press throw, and salivary testosterone (ST and cortisol (SC concentrations. Rate of perceived exertion (RPE and power output were recorded in all sessions.Following the intermediate test, PPO was increased in the OP group for each load (10.9%-13.2%. Following the post-test, both experimental groups had increased 1RM (11.8%-13.8% and PPO for each load (14.1%-19.6%. Significant decreases in PPO were found for the TT group during all sets (4.9%-15.4%, along with significantly higher RPE (37%.OP appears to be a more efficient method of training, with less neuromuscular fatigue and lower RPE.

  2. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper-Slaboszewicz, Victor Jozef [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ginn, William Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mikkelson, Kenneth A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schall, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Gary Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-12-01

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  3. The Developmental Trajectory of Nonword Repetition

    Science.gov (United States)

    Chiat, Shula

    2006-01-01

    In line with the original presentation of nonword repetition as a measure of phonological short-term memory (Gathercole & Baddeley, 1989), the theoretical account Gathercole (2006) puts forward in her Keynote Article focuses on phonological storage as the key capacity common to nonword repetition and vocabulary acquisition. However, evidence that…

  4. Negative secondary ion emission from oxidized surfaces

    International Nuclear Information System (INIS)

    Gnaser, H.; Kernforschungsanlage Juelich G.m.b.H.

    1984-01-01

    The emission of negative secondary ions from 23 elements was studied for 10 keV O 2 + and 10 keV In + impact at an angle of incidence of 45 0 . Partial oxidation of the sample surfaces was achieved by oxygen bombardment and/or by working at a high oxygen partial pressure. It was found that the emission of oxide ions shows an element-characteristic pattern. For the majority of the elements investigated these features are largely invariant against changes of the surface concentration of oxygen. For the others admission of oxygen strongly changes the relative intensities of oxide ions: a strong increase of MO 3 - signals (M stands for the respective element) is accompanied by a decrease of MO - and M - intensities. Different primary species frequently induce changes of both the relative and the absolute negative ion intensities. Carbon - in contrast to all other elements - does not show any detectable oxide ion emission but rather intense cluster ions Csub(n) - (detected up to n=12) whose intensities oscillate in dependence on n. (orig./RK)

  5. Global Repetition Influences Contextual Cueing

    Science.gov (United States)

    Zang, Xuelian; Zinchenko, Artyom; Jia, Lina; Li, Hong

    2018-01-01

    Our visual system has a striking ability to improve visual search based on the learning of repeated ambient regularities, an effect named contextual cueing. Whereas most of the previous studies investigated contextual cueing effect with the same number of repeated and non-repeated search displays per block, the current study focused on whether a global repetition frequency formed by different presentation ratios between the repeated and non-repeated configurations influence contextual cueing effect. Specifically, the number of repeated and non-repeated displays presented in each block was manipulated: 12:12, 20:4, 4:20, and 4:4 in Experiments 1–4, respectively. The results revealed a significant contextual cueing effect when the global repetition frequency is high (≥1:1 ratio) in Experiments 1, 2, and 4, given that processing of repeated displays was expedited relative to non-repeated displays. Nevertheless, the contextual cueing effect reduced to a non-significant level when the repetition frequency reduced to 4:20 in Experiment 3. These results suggested that the presentation frequency of repeated relative to the non-repeated displays could influence the strength of contextual cueing. In other words, global repetition statistics could be a crucial factor to mediate contextual cueing effect. PMID:29636716

  6. Imbalance between abstract and concrete repetitive thinking modes in schizophrenia.

    Science.gov (United States)

    Maurage, Pierre; Philippot, Pierre; Grynberg, Delphine; Leleux, Dominique; Delatte, Benoît; Mangelinckx, Camille; Belge, Jan-Baptist; Constant, Eric

    2017-10-01

    Repetitive thoughts can be divided in two modes: abstract/analytic (decontextualized and dysfunctional) and concrete/experiential (problem-focused and adaptive). They constitute a transdiagnostic process involved in many psychopathological states but have received little attention in schizophrenia, as earlier studies only indexed increased ruminations (related to dysfunctional repetitive thoughts) without jointly exploring both modes. This study explored the two repetitive thinking modes, beyond ruminations, to determine their imbalance in schizophrenia. Thirty stabilized patients with schizophrenia and 30 matched controls completed the Repetitive Response Scale and the Mini Cambridge-Exeter Repetitive Thought Scale, both measuring repetitive thinking modes. Complementary measures related to schizophrenic symptomatology, depression and anxiety were also conducted. Compared to controls, patients with schizophrenia presented an imbalance between repetitive thinking modes, with increased abstract/analytic and reduced concrete/experiential thoughts, even after controlling for comorbidities. Schizophrenia is associated with stronger dysfunctional repetitive thoughts (i.e. abstract thinking) and impaired ability to efficiently use repetitive thinking for current problem-solving (i.e. concrete thinking). This imbalance confirms the double-faced nature of repetitive thinking modes, whose influence on schizophrenia's symptomatology should be further investigated. The present results also claim for evaluating these processes in clinical settings and for rehabilitating the balance between opposite repetitive thinking modes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Heavy ion induction linac drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Lee, E.P.; Hovingh, J.

    1988-10-01

    Intense beams of high energy heavy ions (e.g., 10 GeV Hg) are an attractive option for an ICF driver because of their favorable energy deposition characteristics. The accelerator systems to produce the beams at the required power level are a development from existing technologies of the induction linac, rf linac/storage ring, and synchrotron. The high repetition rate of the accelerator systems, and the high efficiency which can be realized at high current make this approach especially suitable for commercial ICF. The present report gives a summary of the main features of the induction linac driver system, which is the approach now pursued in the USA. The main subsystems, consisting of injector, multiple beam accelerator at low and high energy, transport and pulse compression lines, and final focus are described. Scale relations are given for the current limits and other features of these subsystems. 17 refs., 1 fig., 1 tab

  8. Development of an intense negative hydrogen ion source with a wide-range of external magnetic filter field

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1994-09-01

    An intense negative hydrogen ion source has been developed, which has a strong external magnetic filter field in the wide area of 35 cm x 62 cm produced by a pair of permanent magnet rows located with 35.4 cm separation. The filter strength is 70 G in the center and the line-integrated filter strength is 850 G cm, which keeps the low electron temperature in the extraction region. Strong cusp magnetic field, 1.8 kG on the chamber surface, is generated for improvement of the plasma confinement. These resulted in the high arc efficiency at the low operational gas pressure. A 16.2 A of the H - ion current with the energy of 47 keV was obtained at the arc efficiency of 0.1 A/kW at the gas pressure of 3.8 mTorr in the cesium-mode operation. The magnetic field in the extraction gap is also strong, 450 G, for the electron suppression. The ratio of the extraction to the negative ion currents was less than 2.2 at the gas pressure of 3 mTorr. The two-stage acceleration was tried, and a 13.6 A of the H - ion beam was accelerated to 125 keV. (author)

  9. Laser-driven ion acceleration: methods, challenges and prospects

    Science.gov (United States)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  10. Repetitive thinking, executive functioning, and depressive mood in the elderly.

    Science.gov (United States)

    Philippot, Pierre; Agrigoroaei, Stefan

    2017-11-01

    Previous findings and the depressive-executive dysfunction hypothesis suggest that the established association between executive functioning and depression is accounted for by repetitive thinking. Investigating the association between executive functioning, repetitive thinking, and depressive mood, the present study empirically tested this mediational model in a sample of older adults, while focusing on both concrete and abstract repetitive thinking. This latter distinction is important given the potential protective role of concrete repetitive thinking, in contrast to the depletive effect of abstract repetitive thinking. A sample of 43 elderly volunteers, between 75 and 95 years of age, completed tests of executive functioning (the Stroop test, the Trail Making test, and the Fluency test), and questionnaires of repetitive thinking and depression. Positive correlations were observed between abstract repetitive thinking and depressive mood, and between concrete repetitive thinking and executive functioning; a negative correlation was observed between depressive mood and executive functioning. Further, mediational analysis evidenced that the relation between executive functioning and depressive mood was mediated by abstract repetitive thinking. The present data provide, for the first time, empirical support to the depressive-executive dysfunction hypothesis: the lack of executive resources would favor a mode of abstract repetitive thinking, which in turn would deplete mood. It suggests that clinical intervention targeting depression in the elderly should take into consideration repetitive thinking modes and the executive resources needed to disengage from rumination.

  11. Poster - Thurs Eve-09: Evaluation of a commercial 2D ion-chamber array for intensity modulated radiation therapy dose measurements.

    Science.gov (United States)

    Mei, X; Bracken, G; Kerr, A

    2008-07-01

    Experimental verification of calculated dose from a treatment planning system is often essential for quality assurance (QA) of intensity modulated radiation therapy (IMRT). Film dosimetry and single ion chamber measurements are commonly used for IMRT QA. Film dosimetry has very good spatial resolution, but is labor intensive and absolute dose is not reliable. Ion chamber measurements are still required for absolute dose after measurements using films. Dosimeters based on 2D detector arrays that can measure 2D dose in real-time are gaining wider use. These devices provide a much easier and reliable tool for IMRT QA. We report the evaluation of a commercial 2D ion chamber array, including its basic performance characteristics, such as linearity, reproducibility and uniformity of relative ion chamber sensitivities, and comparisons between measured 2D dose and calculated dose with a commercial treatment planning system. Our analysis shows this matrix has excellent linearity and reproducibility, but relative sensitivities are tilted such that the +Y region is over sensitive, while the -Y region is under sensitive. Despite this behavior, our results show good agreement between measured 2D dose profiles and Eclipse planned data for IMRT test plans and a few verification plans for clinical breast field-in-field plans. The gamma values (3% or 3 mm distance-to-agreement) are all less than 1 except for one or two pixels at the field edge This device provides a fast and reliable stand-alone dosimeter for IMRT QA. © 2008 American Association of Physicists in Medicine.

  12. Synchrotrons for heavy ions: Bevalac experience

    International Nuclear Information System (INIS)

    Grunder, H.A.; Gough, R.A.; Alonso, J.R.

    1980-10-01

    The Bevalac should be viewed not as a model of accelerator hardware - a modern heavy ion complex will look quite different, but as a model for an operating versatile multifaceted, multiuser heavy ion facility. Of value to the planning of a new accelerator such as MARIA is the knowledge of operating modes peculiar to heavy ions and specific hardware requirements to carry out its mission with the mandated flexibility and reliability. This paper starts with a discussion of parameters and machine characteristics most suitable for medical and nuclear science applications. It then covers experience in interleaving these two research programs, and finally, concentrates on accelerator configuratin questions; injectors, repetition rate, vacuum systems and cost criteria which will be relevant to the design of MARIA

  13. ARCA II - a new apparatus for fast, repetitive HPLC separations

    International Nuclear Information System (INIS)

    Schaedel, M.; Bruechle, W.; Jaeger, E.; Schimpf, E.; Kratz, J.V.; Scherer, U.W.; Zimmermann, H.P.

    1989-04-01

    The microcomputer controlled Automated Rapid Chemistry Apparatus, ARCA, is described in its newly designed version for the study of chemical properties of element 105 in aqueous solutions. This improved version, ARCA II, is adapted to the needs of fast and repetitive separations to be carried out in a chemically inert automated micro high performance liquid chromatography system. As an example, the separation of several group IIIB, IVB, and VB elements in the system triisooctylamine/hydrochloric acid within 30 s is demonstrated. Furthermore, a new method for the fast preparation of samples for α-particle spectroscopy by evaporation of the aqueous effluent with an intense light source is presented. (orig.)

  14. Pulse repetition frequency effects in a high average power x-ray preionized excimer laser

    International Nuclear Information System (INIS)

    Fontaine, B.; Forestier, B.; Delaporte, P.; Canarelli, P.

    1989-01-01

    Experimental study of waves damping in a high repetition rate excimer laser is undertaken. Excitation of laser active medium in a subsonic loop is achieved by means of a classical discharge, through transfer capacitors. The discharge stability is controlled by a wire ion plasma (w.i.p.) X-rays gun. The strong acoustic waves induced by the active medium excitation may lead to a decrease, at high PRF, of the energy per pulse. First results of the influence of a damping of induced density perturbations between two successive pulses are presented

  15. Ion sources development at GANIL for radioactive beams and high charge state ions

    International Nuclear Information System (INIS)

    Leroy, R.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Leherissier, P.; Lemagnen, F.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Saint-Laurent, M.G.; Villari, A.C.C.; Maunoury, L.

    2001-01-01

    The GANIL laboratory has in charge the production of ion beams for nuclear and non nuclear physics. This article reviews the last developments that are underway in the fields of radioactive ion beam production, increase of the metallic ion intensities and production of highly charges ion beams. (authors)

  16. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  17. Lithium ion beam driven hohlraums for PBFA II

    International Nuclear Information System (INIS)

    Dukart, R.J.

    1994-01-01

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities

  18. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  19. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome.

    Science.gov (United States)

    Kolano, B; Gardunia, B W; Michalska, M; Bonifacio, A; Fairbanks, D; Maughan, P J; Coleman, C E; Stevens, M R; Jellen, E N; Maluszynska, J

    2011-09-01

    The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18-24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18-24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12-13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12-13P was very similar to GISH results, suggesting that the 12-13P sequence constitutes a major part of the repetitive DNA of C. quinoa.

  20. Gas and metal ion sources

    International Nuclear Information System (INIS)

    Oaks, E.; Yushkov, G.

    1996-01-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of ∼ 10 17 cm -2 in some tens of minutes. So the average ion current density at the surface under treatment should be over 10 -5 A/cm 2 . The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from ∼1 kV (for the ion source used for surface sputtering) to ∼100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation)

  1. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  2. Effect on structure and mechanical property of tungsten irradiated by high intensity pulsed ion beam

    Science.gov (United States)

    Mei, Xianxiu; Zhang, Xiaonan; Liu, Xiaofei; Wang, Younian

    2017-09-01

    The anti-thermal radiation performance of tungsten was investigated by high intensity pulsed ion beam technology. The ion beam was mainly composed of Cn+ (70%) and H+ (30%) at an acceleration voltage of 250 kV under different energy densities for different number of pulses. GIXRD analysis showed that no obvious phase structural changes occurred on the tungsten, and microstress generated. SEM analysis exhibited that there was no apparent irradiation damage on the surface of tungsten at the low irradiation frequency (3 times and 10 times) and at the low energy density (0.25 J/cm2 and 0.7 J/cm2). Cracks appeared on the surface of tungsten after 100-time and 300-time irradiation. Shedding phenomenon even appeared on the surface of tungsten at the energy densities of 1.4 J/cm2 and 2.0 J/cm2. The surface nano-hardness of tungsten decreased with the increase of the pulse times and the energy density. The tungsten has good anti-thermal radiation properties under certain heat load environment.

  3. Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease

    Science.gov (United States)

    Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai

    2012-01-01

    Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…

  4. Experimental studies of 2.45 GHz ECR ion sources for the production of high intensity currents

    International Nuclear Information System (INIS)

    Coly, A.

    2010-12-01

    This thesis is the result of a collaboration between the Pantechnik company and the LPSC (Laboratory of subatomic physics and cosmology of Grenoble). It consisted in the development of a new test bench dedicated to the characterization of a 2.45 GHz ECR ion sources with the aim of the production of high currents beams for industrial purposes. Two ECR ions sources with different magnetic structures have been tested around the same RF injection system. A new 2.45 GHz ECRIS, named SPEED, featuring a dipolar magnetic field at the extraction has been designed and tested. A study of the beam extraction in the dipolar magnetic field is proposed. First tests have shown a total ionic current density of about 10 mA/cm 2 with a 900 W RF power. Tests with hydrogen plasma have shown a maximum of current on the H 2 + species. Recommendations are given to modify the magnetic structure to improve the H + production yield. The MONO1000 ion source has been tested at high RF power with a wave guide type injection system. Intense total ionic current densities have been measured up to about 95 mA/cm 2 with a diode extraction system. First results using an improved 5 electrode extraction system are presented. (author)

  5. Negative effects of item repetition on source memory.

    Science.gov (United States)

    Kim, Kyungmi; Yi, Do-Joon; Raye, Carol L; Johnson, Marcia K

    2012-08-01

    In the present study, we explored how item repetition affects source memory for new item-feature associations (picture-location or picture-color). We presented line drawings varying numbers of times in Phase 1. In Phase 2, each drawing was presented once with a critical new feature. In Phase 3, we tested memory for the new source feature of each item from Phase 2. Experiments 1 and 2 demonstrated and replicated the negative effects of item repetition on incidental source memory. Prior item repetition also had a negative effect on source memory when different source dimensions were used in Phases 1 and 2 (Experiment 3) and when participants were explicitly instructed to learn source information in Phase 2 (Experiments 4 and 5). Importantly, when the order between Phases 1 and 2 was reversed, such that item repetition occurred after the encoding of critical item-source combinations, item repetition no longer affected source memory (Experiment 6). Overall, our findings did not support predictions based on item predifferentiation, within-dimension source interference, or general interference from multiple traces of an item. Rather, the findings were consistent with the idea that prior item repetition reduces attention to subsequent presentations of the item, decreasing the likelihood that critical item-source associations will be encoded.

  6. An electron cyclotron resonance ion source based low energy ion beam platform

    International Nuclear Information System (INIS)

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-01-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed

  7. An electron cyclotron resonance ion source based low energy ion beam platform.

    Science.gov (United States)

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  8. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training

    Science.gov (United States)

    Moya-Ramón, M.; Hernández-Davó, J. L.; Fernandez-Fernandez, J.; Sabido, R.

    2017-01-01

    Background It has been suggested that strength training effects (i.e. neural or structural) vary, depending on the total repetitions performed and velocity loss in each training set. Purpose The aim of this study is to compare the effects of two training programmes (i.e. one with loads that maximise power output and individualised repetitions, and the other following traditional power training). Methods Twenty-five males were divided into three groups (optimum power [OP = 10], traditional training [TT = 9] and control group [CG = 6]). The training load used for OP was individualised using loads that maximised power output (41.7% ± 5.8 of one repetition maximum [1RM]) and repetitions at maximum power (4 to 9 repetitions, or ‘reps’). Volume (sets x repetitions) was the same for both experimental groups, while intensity for TT was that needed to perform only 50% of the maximum number of possible repetitions (i.e. 61.1%–66.6% of 1RM). The training programme ran over 11 weeks (2 sessions per week; 4–5 sets per session; 3-minute rests between sets), with pre-, intermediate and post-tests which included: anthropometry, 1RM, peak power output (PPO) with 30%, 40% and 50% of 1RM in the bench press throw, and salivary testosterone (ST) and cortisol (SC) concentrations. Rate of perceived exertion (RPE) and power output were recorded in all sessions. Results Following the intermediate test, PPO was increased in the OP group for each load (10.9%–13.2%). Following the post-test, both experimental groups had increased 1RM (11.8%–13.8%) and PPO for each load (14.1%–19.6%). Significant decreases in PPO were found for the TT group during all sets (4.9%–15.4%), along with significantly higher RPE (37%). Conclusion OP appears to be a more efficient method of training, with less neuromuscular fatigue and lower RPE. PMID:29053725

  9. Some developments in polarized ion sources

    International Nuclear Information System (INIS)

    Witteveen, G.J.

    1979-01-01

    Investigations concerning an atomic beam source are presented and a new polarized ion source of a more universal type is introduced. Polarized and unpolarized beams of positively or negatively charged ions can be produced with this new version and the theoretical limits are a polarized negative hydrogen ion beam with an intensity of about 1 mH and a polarized proton beam with an intensity of 10 mH. (C.F.)

  10. Characteristics of 6.5 GHz ECR ion source for polarized H- ion source

    International Nuclear Information System (INIS)

    Ikegami, Kiyoshi; Mori, Yoshiharu; Takagi, Akira; Fukumoto, Sadayoshi.

    1983-04-01

    A 6.5 GHz ECR (electron cyclotron resonance) ion source has been developed for optically pumped polarized H - ion source at KEK. The properties of this ECR ion source such as beam intensities, proton ratios, plasma electron temperatures and beam emittances were measured. (author)

  11. The emittance and brightness characteristics of negative ion sources suitable for MeV ion implantation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1987-01-01

    This paper provides the description and beam properties of ion sources suitable for use with ion implantation devices. Particular emphasis is placed on the emittance and brightness properties of state-of-the-art, high intensity, negative ion sources based on the cesium ion sputter principle

  12. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    International Nuclear Information System (INIS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-01-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  13. Advanced numerical studies of the neutralized drift compression of intense ion beam pulses

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2007-10-01

    Full Text Available Longitudinal bunch compression of intense ion beams for warm dense matter and heavy ion fusion applications occurs by imposing an axial velocity tilt onto an ion beam across the acceleration gap of a linear induction accelerator, and subsequently allowing the beam to drift through plasma in order to neutralize its space-charge and current as the pulse compresses. The detailed physics and implications of acceleration gap effects and focusing aberration on optimum longitudinal compression are quantitatively reviewed using particle-in-cell simulations, showing their dependence on many system parameters. Finite-size gap effects are shown to result in compression reduction, due to an increase in the effective longitudinal temperature imparted to the beam, and a decrease in intended fractional tilt. Sensitivity of the focal plane quality to initial longitudinal beam temperature is explored, where slower particles are shown to experience increased levels of focusing aberration compared to faster particles. A plateau effect in axial compression is shown to occur for larger initial pulse lengths, where the increases in focusing aberration over the longer drift lengths involved dominate the increases in relative compression, indicating a trade-off between current compression and pulse duration. The dependence on intended fractional tilt is also discussed and agrees well with theory. A balance between longer initial pulse lengths and larger tilts is suggested, since both increase the current compression, but have opposite effects on the final pulse length, drift length, and amount of longitudinal focusing aberration. Quantitative examples are outlined that explore the sensitive dependence of compression on the initial kinetic energy and thermal distribution of the beam particles. Simultaneous transverse and longitudinal current density compression can be achieved in the laboratory using a strong final-focus solenoid, and simulations addressing the effects

  14. Design considerations for long-pulse, high-repetition-rate modulators for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Reginato, L.L.; Yu, S.S.

    1991-06-01

    Heavy-ion accelerators are considered to be one of the promising driver alternatives for inertial fusion. In an inertial fusion driver, multiple beams of heavy-ions are accelerated to kinetic energies consistent with the fusion target requirements. During acceleration, the beams of heavy ions are compressed in time from an initial pulse duration that range from 10's to 100's of microseconds to a final pulse duration of approximately 10 nanoseconds. The compressed beam of heavy ions is then focused on the target in a reactor chamber where the energy released from the fusion reaction is converted to thermal energy and eventually to electricity. A recirculator is an induction accelerator which accelerates the particles and bends them in a closed path with pulsed dipole magnets. A single beam traverses the same accelerating cavities many times (50--100) to acquire its final energy. The primary motivation to evaluate recirculators is the potential for low cost that results from re-using many of the most expensive accelerator components, such as the induction cells, pulsers, and focusing magnets, during an acceleration sequence. One of the areas of technology that is critical to the feasibility of a recirculator is the modulator system required to accelerate the ion beams. This system greatly impacts the overall design of the recirculating accelerator. System studies have been conducted to evaluate the cost and efficiency of several recirculator configurations as function of various parameters. These system studies have helped identify desirable induction cell driver characteristics. These characteristics and the trade-offs that were evaluated will be presented and discussed

  15. Development of FET-switched induction accelerator cells for heavy-ion fusion recirculators

    International Nuclear Information System (INIS)

    Newton, M.A.; Cravey, W.R.; Hawkins, S.A.; Kirbie, H.C.; Ollis, C.W.

    1993-01-01

    The ''recirculator,'' a recirculating heavy-ion induction accelerator, has been identified as a promising approach for an inertial fusion driver. One of the technical challenges to building a recirculator is the requirement for a modulator that can drive the induction accelerator cells at repetition rates ≥ 100 kHz with variable pulse width and pulse repetition rate capability. A high repetition rate modulator and cell is presently being developed for use on a proposed heavy-ion recirculator. The goal is to develop an array of field-effect transistors to switch 5 kV, 1 μs pulses onto a Metglas induction core at pulse rates exceeding 100 kHz. Each transistor in the array is driven by a fiber-optic isolated gate signal that is powered by a dc/dc converter. The circuit architecture provides for core reset between pulses and produces bursts of pulses that are variable in pulse width and prf. The transistor switching array, energy storage capacitors, reset circuit and cell core are all combined into a single compact, low-impedance package. Progress of this development work will be presented with supporting data

  16. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Seker, Ayseguel [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: aysegulseker@iyte.edu.tr; Shahwan, Talal [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: talalshahwan@iyte.edu.tr; Eroglu, Ahmet E. [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: ahmeteroglu@iyte.edu.tr; Yilmaz, Sinan [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: sinanyilmaz@iyte.edu.tr; Demirel, Zeliha [Department of Biology, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: zelihademirel@gmail.com; Dalay, Meltem Conk [Department of Bioengineering, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: meltemconkdalay@gmail.com

    2008-06-15

    The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as {delta}G{sup o}, {delta}H{sup o}and {delta}S{sup o} calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb{sup 2+} ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.

  17. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N A [Institut fuer Theoretische Physik, Universitaet Frankfurt, Postfach 11 19 32, 60054 Frankfurt (Germany); Piriz, A R [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Shutov, A [Institute for Problems in Chemical Physics Research, Chernogolovka, Russia (Russian Federation); Varentsov, D [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgarten Str. 9, 64289 Darmstadt (Germany); Udrea, S [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgarten Str. 9, 64289 Darmstadt (Germany); Hoffmann, D H H [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgarten Str. 9, 64289 Darmstadt (Germany); Juranek, H [Fachbereich Physik, Universitaet Rostock, 18051 Rostock (Germany); Redmer, R [Fachbereich Physik, Universitaet Rostock, 18051 Rostock (Germany); Portugues, R F [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Lomonosov, I [Institute for Problems in Chemical Physics Research, Chernogolovka, Russia (Russian Federation); Fortov, V E [Institute for Problems in Chemical Physics Research, Chernogolovka, Russia (Russian Federation)

    2003-06-06

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are considered to be the same as expected at the future SIS100 facility. The simulations show that due to multiple shock reflection between the cylinder axis and the lead-hydrogen boundary, one can achieve up to 20 times solid density in hydrogen while keeping the temperature as low as a few thousand K. The corresponding pressure is of the order of 10 Mbar. These values of the physical parameters lie within the range of theoretically predicted values for hydrogen metallization. We have also carried out a parameter study of this problem by varying the target and beam parameters over a wide range. It has been found that the results are very insensitive to such changes in the input parameters.

  18. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    International Nuclear Information System (INIS)

    Tahir, N A; Piriz, A R; Shutov, A; Varentsov, D; Udrea, S; Hoffmann, D H H; Juranek, H; Redmer, R; Portugues, R F; Lomonosov, I; Fortov, V E

    2003-01-01

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are considered to be the same as expected at the future SIS100 facility. The simulations show that due to multiple shock reflection between the cylinder axis and the lead-hydrogen boundary, one can achieve up to 20 times solid density in hydrogen while keeping the temperature as low as a few thousand K. The corresponding pressure is of the order of 10 Mbar. These values of the physical parameters lie within the range of theoretically predicted values for hydrogen metallization. We have also carried out a parameter study of this problem by varying the target and beam parameters over a wide range. It has been found that the results are very insensitive to such changes in the input parameters

  19. Pre-Lexical Disorders in Repetition Conduction Aphasia

    Science.gov (United States)

    Sidiropoulos, Kyriakos; de Bleser, Ria; Ackermann, Hermann; Preilowski, Bruno

    2008-01-01

    At the level of clinical speech/language evaluation, the repetition type of conduction aphasia is characterized by repetition difficulties concomitant with reduced short-term memory capacities, in the presence of fluent spontaneous speech as well as unimpaired naming and reading abilities. It is still unsettled which dysfunctions of the…

  20. Evidence for the involvement of a nonlexical route in the repetition of familiar words: A comparison of single and dual route models of auditory repetition.

    Science.gov (United States)

    Hanley, J Richard; Dell, Gary S; Kay, Janice; Baron, Rachel

    2004-03-01

    In this paper, we attempt to simulate the picture naming and auditory repetition performance of two patients reported by Hanley, Kay, and Edwards (2002), who were matched for picture naming score but who differed significantly in their ability to repeat familiar words. In Experiment 1, we demonstrate that the model of naming and repetition put forward by Foygel and Dell (2000) is better able to accommodate this pattern of performance than the model put forward by Dell, Schwartz, Martin, Saffran, and Gagnon (1997). Nevertheless, Foygel and Dell's model underpredicted the repetition performance of both patients. In Experiment 2, we attempt to simulate their performance using a new dual route model of repetition in which Foygel and Dell's model is augmented by an additional nonlexical repetition pathway. The new model provided a more accurate fit to the real-word repetition performance of both patients. It is argued that the results provide support for dual route models of auditory repetition.

  1. High charge state metal ion production in vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1994-01-01

    The vacuum arc is a rich source of highly ionized metal plasma that can be used to make a high current metal ion source. Vacuum arc ion sources have been developed for a range of applications including ion implantation for materials surface modification, particle accelerator injection for fundamental nuclear physics research, and other fundamental and applied purposes. Typically the source is repetitively pulsed with pulse length of order a millisecond and duty cycle or order 1% and operation of a dc embodiment has been demonstrated also. Beams have been produced from over 50 of the solid metals of the periodic table, with mean ion energy up to several hundred keV and with peak (pulsed) beam current up to several amperes. The ion charge state distribution has been extensively studied. Ion spectra have been measured for a wide range of metallic cathode materials, including Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U, as well as compound and alloy cathode materials such as TiC, SiC, UC, PbS, brass, and stainless steel. The ions generated are in general multiply-stripped with a mean charge state of from 1 to 3, depending on the particular metal species, and the charge state distribution can have components from Q = 1+ to 6+. Here the authors review the characteristics of vacuum arc ion sources from the perspective of their high charge state metal ion production

  2. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    International Nuclear Information System (INIS)

    Nakagawa, T.

    2014-01-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams

  3. Emittance scanner for intense low-energy ion beams

    International Nuclear Information System (INIS)

    Allison, P.W.; Sherman, J.D.; Holtkamp, D.B.

    1983-01-01

    An emittance scanner has been developed for use with low-energy H - ion beams to satisfy the following requirements: (1) angular resolution of +-1/2 mrad, (2) small errors from beam space charge, and (3) compact and simple design. The scanner consists of a 10-cm-long analyzer containing two slits and a pair of electric deflection plates driven by a +-500-V linear ramp generator. As the analyzer is mechanically driven across the beam, the front slit passes a thin ribbon of beam through the plates. The ion transit time is short compared with the ramp speed; therefore, the initial angle of the ions that pass through the rear slit is proportional to the instantaneous ramp voltage. The current through the rear slit then is proportional to the phase-space density d 2 i/dxdx'. The data are computer-analyzed to give, for example, rms emittance and phase-space density contours. Comparison of measured data with those calculated from a prepared (collimated) phase space is in good agreement

  4. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Sun, L.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.; Guo, J. W.; Yang, Y.; Fang, X.

    2016-01-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω 2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE 01 and HE 11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar 12+ , 0.92 emA Xe 27+ , and so on, will be presented

  5. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  6. Low back pain patterns over one year among 842 workers in the DPhacto study and predictors for chronicity based on repetitive measurements

    DEFF Research Database (Denmark)

    Lagersted-Olsen, Julie; Bay, Hans; Jørgensen, Marie Birk

    2016-01-01

    BACKGROUND: Low back pain (LBP) occurrence and intensity are considered to fluctuate over time, requiring frequent repetitive assessments to capture its true time pattern. Text messages makes frequent reporting of LBP feasible, which enables investigation of 1) the time pattern of LBP, and 2...

  7. Effect of electrode for producing the highly charged heavy ions from RIKEN 18 GHz electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Kurita, Tetsuro; Nakagawa, Takahide; Kidera, Masanori

    1999-01-01

    We successfully produced the intense beam of highly charged Kr ions using an electrode. Under the pulsed mode operation, we found that the depth of the plasma potential dip strongly depends on the duration of the microwave and takes about 40 ms to reach the equilibrium state. Taking these results into account, we compared the beam intensities of highly charged Kr ions with and without the use of an electrode under the pulsed mode operation. We observed that the density of highly charged Kr ions and ion confinement time increase with increasing mirror magnetic field strength. The plasma potential dip becomes shallower with insertion of the electrode. Consequently, when we increase the mirror magnetic field strength and insert the electrode into the plasma, the beam intensities of highly charged ions increase. (author)

  8. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  9. Interaction of an ultra-intense laser pulse with a dense plasma: heating and transport of electrons and ions

    International Nuclear Information System (INIS)

    Toupin, Catherine

    1999-01-01

    This work was aimed at characterizing the acceleration and transport of the plasma electrons and ions during the interaction of an ultra-intense laser pulse with a dense plasma. Our main tool was numerical simulation with kinetic particle-in-cell codes. During the interaction, the target surface electrons are accelerated up to high energies inward the target. The electron acceleration mechanisms are proved to strongly depend on the density profile deformation due to the ion motion. This motion has been studied as well and different acceleration mechanisms have been identified: pushing in of the target surface by the laser ponderomotive pressure, acceleration by an electrostatic shock or by breaking of an ion acoustic wave, acceleration by the space charge force induced by radial expulsion of the electrons out of a channel drilled in a slightly overcritical plasma. The electrons and ions accelerated at the target surface penetrate inward the target and interact with it. The competition between the focussing due to the self-generated magnetic field, driven by the very important electron current, and the scattering induced by collisions has been analyzed. In a homogeneous, hot plasma, the existence of an optimum current for which the propagation length without scattering is maximum, has been demonstrated. The electron drag-back effect of the axial electric field is also proved to be more significant than the friction due to collisions. By penetrating into the target, the accelerated ions can produce neutrons if the target is deuterated. A strong correlation between the ion acceleration mechanisms and the angle and energy distributions of the produced neutrons has been underlined. (author) [fr

  10. Understanding work related musculoskeletal pain: does repetitive work cause stress symptoms?

    DEFF Research Database (Denmark)

    Bonde, J. P.; Mikkelsen, S.; Andersen, JH

    2005-01-01

    for development of regional pain in repetitive work, stress symptoms would likely be on the causal path. AIMS: To examine whether objective measures of repetitive monotonous work are related to occurrence and development of stress symptoms. METHODS: In 1994-95, 2033 unskilled workers with continuous repetitive...... Profile Inventory. RESULTS: Repetitive work, task cycle time, and quantified measures of repetitive upper extremity movements including force requirements were not related to occurrence of stress symptoms at baseline or development of stress symptoms during three years of follow up. CONCLUSIONS......: The findings do not indicate that repetitive work is associated with stress symptoms, but small effects cannot be ruled out. Thus the results question the importance of mental stress mechanisms in the causation of regional pain related to repetitive work. However, the findings should be interpreted...

  11. Multispecies Weibel Instability for Intense Ion Beam Propagation Through Background Plasma

    CERN Document Server

    Davidson, Ronald C; Kaganovich, Igor D; Qin, Hong; Startsev, Edward

    2005-01-01

    In application of heavy ion beams to high energy density physics and fusion, background plasma is utilized to neutralize the beam space charge during drift compression and/or final focus of the ion beam. It is important to minimize the deleterious effects of collective instabilities on beam quality associated with beam-plasma interactions. Plasma electrons tend to neutralize both the space charge and current of the beam ions. It is shown that the presence of the return current greatly modifies the electromagnetic Weibel instability (also called the filamentation instability), i.e., the growth rate of the filamentation instability greatly increases if the background ions are much lighter than the beam ions and the plasma density is comparable to the ion beam density. This may preclude using underdense plasma of light gases in heavy ion beam applications. It is also shown that the return current may be subject to the fast electrostatic two-stream instability.

  12. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  13. Inverted U-shaped model: How frequent repetition affects perceived risk

    OpenAIRE

    Xi Lu; Xiaofei Xie; Lu Liu

    2015-01-01

    We asked how repeated media reports on technological hazards influence an individual's risk perception. We looked for two contradictory effects, an increasing effect of repetition on perceived risk with the first few repetitions and a decreasing effect with later repetitions, leading to the inverted U-shaped pattern. In an experiment, we demonstrated the inverted U-shaped relationship between the repetition and perceived risk in the context of food risk. The finding broaden...

  14. Electron cloud effects in intense, ion beam linacs theory and experimental planning for heavy-ion fusion

    International Nuclear Information System (INIS)

    Molvik, A.W.; Cohen, R.H.; Lund, S.M.; Bieniosek, F.M.; Lee, E.P.; Prost, L.R.; Seidl, P.A.; Vay, Jean-Luc

    2002-01-01

    Heavy-ion accelerators for HIF will operate at high aperture-fill factors with high beam current and long pulses. This will lead to beam ions impacting walls: liberating gas molecules and secondary electrons. Without special preparation a large fractional electron population ((ge)1%) is predicted in the High-Current Experiment (HCX), but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the ∼4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron flow is limited to drift velocities (E x B and (del)B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles, as well as the their effect on the ion beam

  15. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    International Nuclear Information System (INIS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.; Pikin, A. I.

    2015-01-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz

  16. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Koturbash, Igor, E-mail: ikoturbash@uams.edu [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Miousse, Isabelle R. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Sridharan, Vijayalakshmi [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne; Skinner, Charles M. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melnyk, Stepan B.; Pavliv, Oleksandra [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA 92354 (United States); Boerma, Marjan [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2016-05-15

    Highlights: • Radiation-induced dynamic changes in cardiac DNA methylation were detected. • Early LINE-1 hypomethylation was followed by hypermethylation at a later time-point. • Radiation affected one-carbon metabolism in the heart tissue. • Irradiation resulted in accumulation of satellite DNA mRNA transcripts. - Abstract: DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation—proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ({sup 56}Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or {sup 56}Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with {sup 56}Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and

  17. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  18. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas

    2017-09-18

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  19. Heavy Ion Injection Into Synchrotrons, Based On Electron String Ion Sources

    CERN Document Server

    Donets, E E; Syresin, E M

    2004-01-01

    A possibility of heavy ions injection into synchrotrons is discussed on the base of two novel ion sources, which are under development JINR during last decade: 1) the electron string ion source (ESIS), which is a modified version of a conventional electron beam ion source (EBIS), working in a reflex mode of operation, and 2) the tubular electron string ion source (TESIS). The Electron String Ion Source "Krion-2" (VBLHE, JINR, Dubna) with an applied confining magnetic field of 3 T was used for injection into the superconducting JINR synchrotron - Nuclotron and during this runs the source provided a high pulse intensity of the highly charged ion beams: Ar16+

  20. Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam

    Science.gov (United States)

    Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun

    2017-10-01

    In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.

  1. Translation of Syntactic Repetitions as Formal-Aesthetic Marker in Das Brot

    Directory of Open Access Journals (Sweden)

    Rosyidah

    2017-03-01

    Full Text Available Translating repetition as a formal-aesthetic marker in a literary text is a hard task and challenge for translators. The topic of this study is translation of syntactic repetition as formal-aesthetic marker in literary text. The problems examined include: (1 the syntactic repetitions in the source text and (2 the strategies to translate these repetitions carried out by the students. This is a case study with a qualitative approach which is aimed to describe the syntactic repetitions as formal aesthetic markers in the German short story Das Brot written by Wolfgang Borchert and to explain the strategies used by Indonesian students to translate the syntactic repetitions. The research data are repetitive sentences gained from the German short story and from the translated versions done by 60 students. The analysis was carried out interactively and sociosemiotically. The results show that there were repetitions at the sentence level including sentence parts, sentences and content repetition in the source text. The strategies used by the students to translate the repetitions of sentence part and sentence were exact preservation and modified preservation with reduction, implicitation and addition of extra words, avoidance with deletion, explicitation, implicitation, nominalization, and synonymy. In the meantime, content repetitions were translated using the strategy of exact preservation and preservation with modification by adding extra words and using role-based terms of address. Thus, the results lead to two new variations of modified preservation, namely preservation by adding extra words and by changing addressing terms and one new variation of avoidance that is explicitation.

  2. Multiply charged ions from solid substances with the mVINIS Ion Source

    International Nuclear Information System (INIS)

    Dragani, I; Nedeljkovi, T; Jovovi, J; Siljegovic, M; Dobrosavljevic, A

    2007-01-01

    We have used the well known metal-ions-from-volatile-compounds (MIVOC) method at the mVINIS Ion Source to produce the multiply charged ion beams form solid substances. Based on this method the very intense and stable multiply charged ion beams of several solid substances having the high melting points were extracted. The ion yields and the spectra of multiply charged ion beams obtained from solid materials like Fe and Hf will be presented. We have utilized the multiply charged ion beams from solid substances to irradiate the polymers, fullerenes and glassy carbon at the low energy channel for modification of materials

  3. Graphene defects induced by ion beam

    Science.gov (United States)

    Gawlik, Grzegorz; Ciepielewski, Paweł; Baranowski, Jacek; Jagielski, Jacek

    2017-10-01

    The CVD graphene deposited on the glass substrate was bombarded by molecular carbon ions C3+ C6+ hydrocarbon ions C3H4+ and atomic ions He+, C+, N+, Ar+, Kr+ Yb+. Size and density of ion induced defects were estimated from evolution of relative intensities of Raman lines D (∼1350 1/cm), G (∼1600 1/cm), and D‧ (∼1620 1/cm) with ion fluence. The efficiency of defect generation by atomic ions depend on ion mass and energy similarly as vacancy generation directly by ion predicted by SRIM simulations. However, efficiency of defect generation in graphene by molecular carbon ions is essentially higher than summarized efficiency of similar group of separate atomic carbon ions of the same energy that each carbon ion in a cluster. The evolution of the D/D‧ ratio of Raman lines intensities with ion fluence was observed. This effect may indicate evolution of defect nature from sp3-like at low fluence to a vacancy-like at high fluence. Observed ion graphene interactions suggest that the molecular ion interacts with graphene as single integrated object and should not be considered as a group of atomic ions with partial energy.

  4. Grade Repetition in Queensland State Prep Classes

    Science.gov (United States)

    Anderson, Robyn

    2012-01-01

    The current study considers grade repetition rates in the early years of schooling in Queensland state schools with specific focus on the pre-schooling year, Prep. In particular, it provides empirical evidence of grade repetition in Queensland state schools along with groups of students who are more often repeated. At the same time, much of the…

  5. Ion beam studies

    International Nuclear Information System (INIS)

    Freeman, J.H.; Chivers, D.J.; Gard, G.A.; Temple, W.

    1977-04-01

    A description of techniques for the production of intense beams of heavy ions is given. A table of recommended operational procedures for most elements is included. The ionisation of boron is considered in some detail because of its particular importance as a dopant for ion implantation. (author)

  6. RPERT: Repetitive-Projects Evaluation and Review Technique

    Directory of Open Access Journals (Sweden)

    Remon Fayek Aziz

    2014-03-01

    Full Text Available Estimating expected completion probability of any repetitive construction project with a specified/certain duration including repetitive identical activities by using program evaluation and review technique is the most essential part in construction areas since the activities were had optimistic, most likely and pessimistic durations. This paper focuses on the calculation of expected completion probability of any repetitive construction project within a specified/certain duration (contract duration by using Line Of Balance technique (LOB in case of single or multiple number of crews integrated with Program Evaluation and Review Technique (PERT. Repetitive-Projects Evaluation and Review Technique (RPERT, which is a simplified software, will generate the expected project completion probability of a specified/certain duration (contract duration. RPERT software is designed by java programming code system to provide a number of new and unique capabilities, including: (1 Viewing the expected project completion probability according to a set of specified durations per each identical activity (optimistic time, most likely time, and pessimistic time in the analyzed project; (2 Providing seamless integration with available project time calculations. In order to provide the aforementioned capabilities of RPERT, the system is implemented and developed in four main modules: (1 A user interface module; (2 A database module; (3 A running module; and (4 A processing module. At the end, an illustrative example will be presented to demonstrate and verify the applications of proposed software (RPERT, by using probabilistic calculations for repetitive construction projects.

  7. Plasma and ion beam processing at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Davis, H.A.; Henins, I.

    1994-01-01

    Efforts are underway at Los Alamos National Laboratory to utilize plasma and intense ion beam science and technology of the processing of advanced materials. A major theme involves surface modification of materials, e.g., etching, deposition, alloying, and implantation. In this paper, we concentrate on two programs, plasma source ion implantation and high-intensity pulsed ion beam deposition

  8. Fragmentation of dimethyl ether in femtosecond intense field

    Science.gov (United States)

    Zhu, Jingyi; Guo, Wei; Wang, Yanqiu; Wang, Li

    2006-08-01

    The fragmentation of dimethyl ether (DME) in intense femtosecond laser field has been studied at 810, 405 and 270 nm with intensities up to 2.48 × 10 15, 3.86 × 10 15 and 1.62 × 10 14 W/cm 2, respectively. At 405 nm, DME is possibly firstly ionized by multiphoton absorption, and then parent ion DME + dissociates into fragments via filed-induced dissociation. For 810 and 270 nm laser fields, DME firstly dissociates into CH 3O and CH 3 fragments and then these neutral fragments are ionized by field tunneling. Another possible way for DME to dissociate at 810 and 270 nm is that DME is ionized by intense field ejection of inner valance electron and then the excited DME + dissociates into fragment ions. Ultrafast rearrangement of DME or DME + in intense field may be responsible to the unpredictable fragment ions, CHO+/C2H5+andH2+.

  9. Pulsed Power Applications in High Intensity Proton Rings

    CERN Document Server

    Zhang, Wu; Ducimetière, Laurent; Fowler, Tony; Kawakubo, Tadamichi; Mertens, Volker; Sandberg, Jon; Shirakabe, Yoshihisa

    2005-01-01

    The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  10. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.

    Science.gov (United States)

    Sugar, Thomas G; He, Jiping; Koeneman, Edward J; Koeneman, James B; Herman, Richard; Huang, H; Schultz, Robert S; Herring, D E; Wanberg, J; Balasubramanian, Sivakumar; Swenson, Pete; Ward, Jeffrey A

    2007-09-01

    The structural design, control system, and integrated biofeedback for a wearable exoskeletal robot for upper extremity stroke rehabilitation are presented. Assisted with clinical evaluation, designers, engineers, and scientists have built a device for robotic assisted upper extremity repetitive therapy (RUPERT). Intense, repetitive physical rehabilitation has been shown to be beneficial overcoming upper extremity deficits, but the therapy is labor intensive and expensive and difficult to evaluate quantitatively and objectively. The RUPERT is developed to provide a low cost, safe and easy-to-use, robotic-device to assist the patient and therapist to achieve more systematic therapy at home or in the clinic. The RUPERT has four actuated degrees-of-freedom driven by compliant and safe pneumatic muscles (PMs) on the shoulder, elbow, and wrist. They are programmed to actuate the device to extend the arm and move the arm in 3-D space. It is very important to note that gravity is not compensated and the daily tasks are practiced in a natural setting. Because the device is wearable and lightweight to increase portability, it can be worn standing or sitting providing therapy tasks that better mimic activities of daily living. The sensors feed back position and force information for quantitative evaluation of task performance. The device can also provide real-time, objective assessment of functional improvement. We have tested the device on stroke survivors performing two critical activities of daily living (ADL): reaching out and self feeding. The future improvement of the device involves increased degrees-of-freedom and interactive control to adapt to a user's physical conditions.

  11. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  12. An enhanced production of highly charged ions in the ECR ion sources

    International Nuclear Information System (INIS)

    Schaechter, L.; Dobrescu, S.; Badescu- Singureanu, Al.I.; Stiebing, K.E.; Runkel, S.; Hohn, O.; Schmidt, L.; Schempp, A.; Schmidt - Boecking, H.

    2000-01-01

    The electron cyclotron resonance (ECR) ion source (ECRIS) are the ideal sources of highly charged heavy ions. Highly charged heavy ions are widely used in atomic physics research where they constitute a very efficient tool due to their very high electric potential of collision. The highly charged ions are also used in fusion plasma physics studies, in solid state surface physics investigations and are very efficient when injected in particle accelerators. More than 50 ECR ion sources are presently working in the whole world. Stable and intense highly charged heavy ions beams are extracted from ECR ion sources, in a wide range of ion species. RECRIS, the Romanian 14 GHz ECR Ion Source, developed in IFIN-HH, designed as a facility for atomic physics and materials studies, has been recently completed. The research field concerning the development of advanced ECRIS and the study of the physical processes of the ECR plasma are presently very dynamical , a fact well proved by the great number of scientific published works and the numerous dedicated international conferences and workshops. It is well established that the performance of ECRIS can substantially be enhanced if special techniques like a 'biased disk' or a special wall coating of the plasma chamber are employed. In the frame of a cooperation project between IFIN-HH ,Bucharest, Romania and the Institut fuer Kernphysik of the J. W. Goethe University, Frankfurt/Main, Germany we developed, on the basis of previous research carried out in IFIN-HH, a new method to strongly increase the intensity of the ion beams extracted from the 14.4 GHz ECRIS in Frankfurt. In our method a special metal-dielectric structure (MD cylinder) was introduced in the ECRIS plasma chamber. In the experiment analyzed beams of Ar 16+ ions were increased in intensity by a factor of 50 as compared to the standard set up with stainless steel chamber. These results have been communicated at the International Conference on Ion Sources held at

  13. Understanding work related musculoskeletal pain: does repetitive work cause stress symptoms?

    Science.gov (United States)

    Bonde, J P; Mikkelsen, S; Andersen, J H; Fallentin, N; Baelum, J; Svendsen, S W; Thomsen, J F; Frost, P; Kaergaard, A

    2005-01-01

    Pain in the neck and upper extremity is reported with high frequency in repetitive work. Mechanical overload of soft tissues seems a plausible mechanism, but psychological factors have received considerable attention during the past decade. If psychological factors are important for development of regional pain in repetitive work, stress symptoms would likely be on the causal path. To examine whether objective measures of repetitive monotonous work are related to occurrence and development of stress symptoms. In 1994-95, 2033 unskilled workers with continuous repetitive work and 813 workers with varied work were enrolled. Measures of repetitiveness and force requirements were quantified using video observations to obtain individual exposure estimates. Stress symptoms were recorded at baseline and after approximately one, two, and three years by the Setterlind Stress Profile Inventory. Repetitive work, task cycle time, and quantified measures of repetitive upper extremity movements including force requirements were not related to occurrence of stress symptoms at baseline or development of stress symptoms during three years of follow up. The findings do not indicate that repetitive work is associated with stress symptoms, but small effects cannot be ruled out. Thus the results question the importance of mental stress mechanisms in the causation of regional pain related to repetitive work. However, the findings should be interpreted with caution because the stress inventory has not been validated against a gold standard.

  14. Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps

    Science.gov (United States)

    Ratcliffe, Alexander K.; Taylor, Richard L.; Hope, Joseph J.; Carvalho, André R. R.

    2018-06-01

    Most attempts to produce a scalable quantum information processing platform based on ion traps have focused on the shuttling of ions in segmented traps. We show that an architecture based on an array of microtraps with fast gates will outperform architectures based on ion shuttling. This system requires higher power lasers but does not require the manipulation of potentials or shuttling of ions. This improves optical access, reduces the complexity of the trap, and reduces the number of conductive surfaces close to the ions. The use of fast gates also removes limitations on the gate time. Error rates of 10-5 are shown to be possible with 250 mW laser power and a trap separation of 100 μ m . The performance of the gates is shown to be robust to the limitations in the laser repetition rate and the presence of many ions in the trap array.

  15. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  16. Repetitive exposure: Brain and reflex measures of emotion and attention

    Science.gov (United States)

    Ferrari, Vera; Bradley, Margaret M.; Codispoti, Maurizio; Lang, Peter J.

    2010-01-01

    Effects of massed repetition on the modulation of the late positive potential elicited during affective picture viewing were investigated in two experiments. Despite a difference in the number of repetitions across studies (from 5 to 30), results were quite similar: the late positive potential continued to be enhanced when viewing emotional, compared to neutral, pictures. On the other hand, massed repetition did prompt a reduction in the late positive potential that was most pronounced for emotional pictures. Startle probe P3 amplitude generally increased with repetition, suggesting diminished attention allocation to repeated pictures. The blink reflex, however, continued to be modulated by hedonic valence, despite massive massed repetition. Taken together, the data suggest that the amplitude of the late positive potential during picture viewing reflects both motivational significance and attention allocation. PMID:20701711

  17. Surgery for subacromial impingement syndrome in relation to intensities of occupational mechanical exposures across 10-year exposure time windows

    DEFF Research Database (Denmark)

    Dalbøge, Annett; Frost, Poul; Andersen, Johan Hviid

    2018-01-01

    OBJECTIVES: We aimed to identify intensities of occupational mechanical exposures (force, arm elevation and repetition) that do not entail an increased risk of surgery for subacromial impingement syndrome (SIS) even after prolonged durations of exposure. Additionally, we wanted to evaluate...... if exposure to hand-arm vibration (HAV) is an independent risk factor. METHODS: We used data from a register-based cohort study of the entire Danish working population (n=2 374 403). During follow-up (2003-2008), 14 118 first-time events of surgery for SIS occurred. For each person, we linked register...... of exposure at specific intensities above minimal (low, medium and high). We used a logistic regression technique equivalent to discrete survival analysis adjusting for cumulative effects of other mechanical exposures. RESULTS: We found indications of safe exposure intensities for repetition (median angular...

  18. Performance test of electron cyclotron resonance ion sources for the Hyogo Ion Beam Medical Center

    Science.gov (United States)

    Sawada, K.; Sawada, J.; Sakata, T.; Uno, K.; Okanishi, K.; Harada, H.; Itano, A.; Higashi, A.; Akagi, T.; Yamada, S.; Noda, K.; Torikoshi, M.; Kitagawa, A.

    2000-02-01

    Two electron cyclotron resonance (ECR) ion sources were manufactured for the accelerator facility at the Hyogo Ion Beam Medical Center. H2+, He2+, and C4+ were chosen as the accelerating ions because they have the highest charge to mass ratio among ion states which satisfy the required intensity and quality. The sources have the same structure as the 10 GHz ECR source at the Heavy Ion Medical Accelerator in Chiba except for a few improvements in the magnetic structure. Their performance was investigated at the Sumitomo Heavy Industries factory before shipment. The maximum intensity was 1500 μA for H2+, 1320 μA for He2+, and 580 μA for C4+ at the end of the ion source beam transport line. These are several times higher than required. Sufficient performance was also observed in the flatness and long-term stability of the pulsed beams. These test results satisfy the requirements for medical use.

  19. Is perfectionism associated with academic burnout through repetitive negative thinking?

    Science.gov (United States)

    Garratt-Reed, David; Howell, Joel; Hayes, Lana; Boyes, Mark

    2018-01-01

    Academic burnout is prevalent among university students, although understanding of what predicts burnout is limited. This study aimed to test the direct and indirect relationship between two dimensions of perfectionism (Perfectionistic Concerns and Perfectionistic Strivings) and the three elements of Academic Burnout (Exhaustion, Inadequacy, and Cynicism) through Repetitive Negative Thinking. In a cross-sectional survey, undergraduate students ( n  = 126, M age = 23.64, 79% female) completed well-validated measures of Perfectionism, Repetitive Negative Thinking, and Academic Burnout. Perfectionistic Concerns was directly associated with all elements of burnout, as well as indirectly associated with Exhaustion and Cynicism via Repetitive Negative Thinking. Perfectionistic Strivings was directly associated with less Inadequacy and Cynicism; however, there were no indirect associations between Perfectionistic Strivings and Academic Burnout operating through Repetitive Negative Thinking. Repetitive Negative Thinking was also directly related to more burnout Exhaustion and Inadequacy, but not Cynicism. It is concluded that future research should investigate whether interventions targeting Perfectionistic Concerns and Repetitive Negative Thinking can reduce Academic Burnout in university students.

  20. Generation and focusing of pulsed intense ion beams. Progress report, April 1, 1979-September 30, 1979

    International Nuclear Information System (INIS)

    Sudan, R.N.; Hammer, D.A.

    1981-04-01

    Theoretical calculations suggest that an intense pulsed approx. 1 MeV proton beam can be used to simulate the characteristics of approx. 1 GeV heavy ion beam propagation in an inertial confinement fusion reactor chamber. Given the present availability of the former beams and the high projected cost for obtaining the latter ones, such experimental simulations appear appropriate. Work was undertaken under the cited contract to apply the technology of intense proton beams to this end. The first task was the development of a high brightness pulsed proton source which could produce a weakly convergent approx. 10 kA proton beam in a field free drift region. This was accomplished at approx. 250 keV, and preliminary beam propagation experiments were performed. It was concluded that a proper simulation experiment would require a higher voltage beam. An upgraded version of the existing generator, which would have produced a 30 kA beam at about 500 keV, and further propagation experiments were proposed as part of our unsuccessful renewal proposal dated October 15, 1979

  1. Development of intense high-energy noble gas ion beams from in-terminal ion injector of tandem accelerator using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Nakanoya, T.; Hanashima, S.; Takeuchi, S. [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2011-10-21

    An ECRIS-based heavy ion injector was constructed in the high-voltage terminal of JAEA-Tokai Tandem Accelerator to develop new beam species of highly charged noble gas ions. This work was associated with a lot of development to operate the ion source on the 20UR Pelletron high voltage terminal in high pressure SF{sub 6} gas environment. Highly charged ions of N, O, Ne, Ar, Kr and Xe have been accelerated satisfactorily. Operating data integrated during many years long beam delivery service are summarized.

  2. Repetition code of 15 qubits

    Science.gov (United States)

    Wootton, James R.; Loss, Daniel

    2018-05-01

    The repetition code is an important primitive for the techniques of quantum error correction. Here we implement repetition codes of at most 15 qubits on the 16 qubit ibmqx3 device. Each experiment is run for a single round of syndrome measurements, achieved using the standard quantum technique of using ancilla qubits and controlled operations. The size of the final syndrome is small enough to allow for lookup table decoding using experimentally obtained data. The results show strong evidence that the logical error rate decays exponentially with code distance, as is expected and required for the development of fault-tolerant quantum computers. The results also give insight into the nature of noise in the device.

  3. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  4. Nanosecond radar system based on repetitive pulsed relativistic BWO

    International Nuclear Information System (INIS)

    Bunkin, B.V.; Gaponov-Grekhov, A.V.; Eltchaninov, A.S.; Zagulov, F.Ya.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivantchik, E.A.; Petelin, M.I.; Prokhorov, A.M.

    1993-01-01

    The paper presents the results of studies of a nanosecond radar system based on repetitive pulsed relativistic BWO. A pulsed power repetitive accelerator producing electron beams of electron energy 500-700 keV and current 5 kA in pulses of duraction 10 ns with a repetition rate of 100 pps is described. The results of experiments with a high-voltage gas-filled spark gap and a cold-cathode vacuum diode under the conditions of high repetition rates are given. Also presented are the results of studies of a relativistic BWO operating with a wavelength of 3 cm. It is shown that for a high-current beam electron energy of 500-700 keV, the BWO efficiency can reach 35%, the microwave power being 10 9 W. A superconducting solenoid creating a magnetic field of 30 kOe was used for the formation and transportation of the high-current electron beam. In conclusion, the outcome of tests of a nanosecond radar station based on a pulsed power repetitive accelerator and a relativistic BWO is reported

  5. Evaluation of secondary ion yield enhancement from polymer material by using TOF-SIMS equipped with a gold cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aimoto, K. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)]. E-mail: dm053502@cc.seikei.ac.jp; Aoyagi, S. [Department of Regional Development, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504 (Japan); Kato, N. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Yamamoto, A. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2006-07-30

    We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au{sup +} and Au{sub 3} {sup +} bombardment in comparison with Ga{sup +} excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au{sup +} and Ga{sup +} as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au{sub 3} {sup +} bombardment caused intensity enhancement about 100-2600 compared with Ga{sup +} bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au{sub 3} {sup +}, compared with Au{sup +}, therefore, was estimated to be about 10-45.

  6. Fast magnetic field penetration into an intense neutralized ion beam

    International Nuclear Information System (INIS)

    Armale, R.

    1992-06-01

    Experiments involving propagation of neutralized ion beams across a magnetic field indicate a magnetic field penetration time determined by the Hall resistivity rather than the Spitzer or Pedersen resistivity. In magnetohydrodynamics the Hall current is negligible because electrons and ions drift together in response to an electric field perpendicular to the magnetic field. For a propagating neutralized ion beam, the ion orbits are completely different from the electron orbits and the Hall current must be considered. There would be no effect unless there is a component of magnetic field normal to the surface which would usually be absent for a good conductor. It is necessary to consider electron inertia and the consequent penetration of the normal component to a depth c/ω p . In addition it is essential to consider a component of magnetic field parallel to the velocity of the beam which may be initially absent, but is generated by the Hall effect. The penetration time is determined by whistler waves rather than diffusion

  7. Transgenerational effects of environmental enrichment on repetitive motor behavior development.

    Science.gov (United States)

    Bechard, Allison R; Lewis, Mark H

    2016-07-01

    The favorable consequences of environmental enrichment (EE) on brain and behavior development are well documented. Much less is known, however, about transgenerational benefits of EE on non-enriched offspring. We explored whether transgenerational effects of EE might extend to the development of repetitive motor behaviors in deer mice. Repetitive motor behaviors are invariant patterns of movement that, across species, can be reduced by EE. We found that EE not only attenuated the development of repetitive behavior in dams, but also in their non-enriched offspring. Moreover, maternal behavior did not seem to mediate the transgenerational effect we found, although repetitive behavior was affected by reproductive experience. These data support a beneficial transgenerational effect of EE on repetitive behavior development and suggest a novel benefit of reproductive experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  9. Electrical strength of vacuum gap at repetitive breakdown

    International Nuclear Information System (INIS)

    Dubinin, N.P.; Chistyakov, N.P.

    1983-01-01

    The investigation of repetitive pulse breakdown of vacuum space, which electrodes have been subjected to various treatment in vacuum and inert gas, is carried out. In case of electrode warm-up in vacuum up to 400 deg C as well as electronic heating up to 900 deg C the voltage in case of repetitive breakdown hasncreased approximately twice and in case of a through treatment, which is accomplished by a high-current glow discharge in inert gas, the maximum high voltage in case of the first breakdown at repetitive breakdown has decreased by 30...40%, remaining 2-3 times higher than in the first case

  10. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    Science.gov (United States)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  11. Inertial fusion with heavy ion beams

    International Nuclear Information System (INIS)

    Bock, R.; Hofmann, I.; Arnold, R.

    1984-01-01

    The underlying principle of inertial confinement is the irradiation of a small pellet filled with DT-fuel by laser or particle beams in order to compress the fuel and ignite it. As 'drivers' for this process large laser installations and light-ion devices have been built since then and the results obtained during the past few years have increased our confidence, that the ignition conditions might be reached. Further conditions, however, have to be fulfilled for operating a power plant. In particular, the driver needs to have enough efficiency to be economical, and for a continuous energy production a high repetition rate and availability is required. It is less than ten years since it was realized that heavy ion beams might be a promising candidate for achieving inertial confinement fusion (ICF). Due to the evolution of high-energy and heavy-ion physics during the past 25 years, accelerators have attained a high technical and technological standard and an excellent operational reliability. Nevertheless, the heavy ion driver for a fusion power plant requires beam specifications exceeding those of existing accelerators considerably. (Auth.)

  12. Word and nonword repetition in patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Alireza Farnam

    2015-08-01

    Full Text Available Introduction: The assessment of the verbal repetition is important in the study of acquired language disorders and neuropsychology. It is helpful in differential diagnosis of aphasia subtypes, auditory breakdowns, and working memory (WM performance. Though different linguistic disorders have been identified in patients with schizophrenia, very little is known about their verbal repetition ability. Methods: The present study was conducted in the inpatient ward of Razi Psychiatric Hospital, Tabriz University of Medical Sciences, Iran, during the year 2013. Participants were: 30 patients diagnosed with schizophrenia during the maintenance phase of treatment and 30 healthy people as control group. They were asked to repeat 15 words and 15 nonwords immediately. The stimuli were 1, 2, and 3 syllabic in Turkish language. Any incorrect repetition scored 1 and correct repetitions scored 0. Lexicalization errors were compared between groups too. Results: Both groups repeated words better than nonwords. Patients showed lower ability to repeat nonwords than controls, especially in 3 syllabics. There was no significant difference in the repetition of words between groups though it was better in controls. Patients with schizophrenia made more errors in both words and nonwords and lexicalization errors were twice more. Conclusion: Lower ability to repeat nonwords (than words in patients with schizophrenia may show the involvement of phonological loop of WM. More lexicalization errors may take place because of dis-inhibition.

  13. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  14. Effects of multibuffer supplementation on acid-base balance and 2,3-diphosphoglycerate following repetitive anaerobic exercise.

    Science.gov (United States)

    Kraemer, W J; Gordon, S E; Lynch, J M; Pop, M E; Clark, K L

    1995-12-01

    The purpose of this investigation was to determine the effects of a 3.5-day dietary multibuffer supplement (containing predominantly inorganic phosphate, or Pi, along with bicarbonate and carnosine, i.e., PhosFuel) on repetitive (four trials separated by 2 min rest) Wingate test (WT) performances and whole blood 2,3-diphosphoglycerate (2,3-DPG) concentrations in 10 recreationally trained road cyclists (T) and 10 normally active but untrained (UT) men. A 2-week washout period was utilized between experimental sessions. Venous blood samples were obtained via cannula once before exercise (baseline), immediately post each WT, and 3 min after the final WT (recovery). The data indicate that this supplement does not affect acid-base status with following intense anaerobic exercise and does not improve repetitive WT performance. However, the supplement does enhance post-exercise levels of 2,3-DPG and the 2,3-DPG/Hb ratio in recreationally trained cyclists while improving acute recovery of peak power in these men.

  15. Applications of induction linac technology to heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1977-07-01

    Evaluation of the application of heavy ion accelerators to ignite d-t pellets in a thermonuclear reactor is discussed. Accelerator design requirements considered include transport-limited current, beam injection conditions, and pulse bunching and focusing characteristics. The desirability of resonant and non-resonant accelerating structures is comparatively examined. The required power system switch tubes are discussed. It is concluded that heavy ion accelerators could offer a promising solution to the pellet-igniter problem. The advantages pointed out for this approach include electric efficiency greater than 10 percent, the possibility of high repetition rates (1 to 10 Hz), and a mature technological base

  16. In-situ deposition of sacrificial layers during ion implantation

    International Nuclear Information System (INIS)

    Anders, A.; Anders, S.; Brown, I.G.; Yu, K.M.

    1995-02-01

    The retained dose of implanted ions is limited by sputtering. It is known that a sacrificial layer deposited prior to ion implantation can lead to an enhanced retained dose. However, a higher ion energy is required to obtain a similar implantation depth due to the stopping of ions in the sacrificial layer. It is desirable to have a sacrificial layer of only a few monolayers thickness which can be renewed after it has been sputtered away. We explain the concept and describe two examples: (i) metal ion implantation using simultaneously a vacuum arc ion source and filtered vacuum arc plasma sources, and (ii) Metal Plasma Immersion Ion Implantation and Deposition (MePIIID). In MePIIID, the target is immersed in a metal or carbon plasma and a negative, repetitively pulsed bias voltage is applied. Ions are implanted when the bias is applied while the sacrificial layer suffers sputtering. Low-energy thin film deposition - repair of the sacrificial layer -- occurs between bias pulses. No foreign atoms are incorporated into the target since the sacrificial film is made of the same ion species as used in the implantation phase

  17. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  18. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  19. Improving the performance of si-based li-ion battery anodes by utilizing phosphorene encapsulation

    NARCIS (Netherlands)

    Peng, B.; Xu, Y.; Mulder, F.M.

    2017-01-01

    Si-based anode materials in Li-ion batteries (LIBs) suffer from severe volume expansion/contraction during repetitive discharge/charge, which results in the pulverization of active materials, continuous growth of solid electrolyte interface (SE!) layers, loss of electrical conduction, and,

  20. Recency, repetition, and the multidimensional basis of recognition memory.

    Science.gov (United States)

    Buchsbaum, Bradley R; Lemire-Rodger, Sabrina; Bondad, Ashley; Chepesiuk, Alexander

    2015-02-25

    Recency and repetition are two factors that have large effects on human memory performance. One way of viewing the beneficial impact of these variables on recognition memory is to assume that both factors modulate a unidimensional memory trace strength. Although previous functional neuroimaging studies have indicated that recency and repetition may modulate similar brain structures, particularly in the region of the inferior parietal cortex, there is extensive behavioral evidence that human subjects can make independent and accurate recognition memory judgments about both an item's recency and its frequency. In the present study, we used fMRI to examine patterns of brain activity during recognition memory for auditory-verbal stimuli that were parametrically and orthogonally manipulated in terms of recency and number of repetitions. We found in a continuous recognition paradigm that the lateral inferior parietal cortex, a region that has previously been associated with recollective forms of memory, is highly sensitive to recency but not repetition. In a multivariate analysis of whole-brain activation patterns, we found orthogonal components that dissociated recency and repetition variables, indicating largely independent neural bases underlying these two factors. The results demonstrate that although both recency and repetition dramatically improve recognition memory performance, the neural bases for this improvement are dissociable, and thus are difficult to explain in terms of access to a unitary memory trace. Copyright © 2015 the authors 0270-6474/15/353544-11$15.00/0.

  1. Repetition of Attempted Suicide Among Immigrants in Europe

    Science.gov (United States)

    Lipsicas, Cendrine Bursztein; Mäkinen, Ilkka Henrik; Wasserman, Danuta; Apter, Alan; Kerkhof, Ad; Michel, Konrad; Renberg, Ellinor Salander; van Heeringen, Kees; Värnik, Airi; Schmidtke, Armin

    2014-01-01

    Objectives To compare frequencies of suicide attempt repetition in immigrants and local European populations, and the timing of repetition in these groups. Method: Data from 7 European countries, comprising 10 574 local and 3032 immigrant subjects, were taken from the World Health Organization European Multicentre Study on Suicidal Behaviour and the ensuing Monitoring Suicidal Behaviour in Europe (commonly referred to as MONSUE) project. The relation between immigrant status and repetition of suicide attempt within 12-months following first registered attempt was analyzed with binary logistic regression, controlling for sex, age, and method of attempt. Timing of repetition was controlled for sex, age, and the recommended type of aftercare. Results: Lower odds of repeating a suicide attempt were found in Eastern European (OR 0.50; 95% CI 0.41 to 0.61, P Europe stands in contrast to their markedly higher tendency to attempt suicide in general, possibly pointing to situational stress factors related to their suicidal crisis that are less persistent over time. Our findings also raise the possibility that suicide attempters and repeaters constitute only partially overlapping populations. PMID:25565687

  2. The development of interactive multimedia based on auditory, intellectually, repetition in repetition algorithm learning to increase learning outcome

    Science.gov (United States)

    Munir; Sutarno, H.; Aisyah, N. S.

    2018-05-01

    This research aims to find out how the development of interactive multimedia based on auditory, intellectually, and repetition can improve student learning outcomes. This interactive multimedia is developed through 5 stages. Analysis stages include the study of literature, questionnaire, interviews and observations. The design phase is done by the database design, flowchart, storyboards and repetition algorithm material while the development phase is done by the creation of web-based framework. Presentation material is adapted to the model of learning such as auditory, intellectually, repetition. Auditory points are obtained by recording the narrative material that presented by a variety of intellectual points. Multimedia as a product is validated by material and media experts. Implementation phase conducted on grade XI-TKJ2 SMKN 1 Garut. Based on index’s gain, an increasing of student learning outcomes in this study is 0.46 which is fair due to interest of student in using interactive multimedia. While the multimedia assessment earned 84.36% which is categorized as very well.

  3. HIAF: New opportunities for atomic physics with highly charged heavy ions

    Science.gov (United States)

    Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.

    2017-10-01

    A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.

  4. Measurements of ion cyclotron range of frequencies mode converted wave intensity with phase contrast imaging in Alcator C-Mod and comparison with full-wave simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2012-01-01

    Radio frequency waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat tokamak plasmas. In ICRF heating schemes involving multiple ion species, the launched fast waves convert to ion cyclotron waves or ion Bernstein waves at the two-ion hybrid resonances. Mode converted waves are of interest as actuators to optimise plasma performance through current drive and flow drive. In order to describe these processes accurately in a realistic tokamak geometry, numerical simulations are essential, and it is important that these codes be validated against experiment. In this study, the mode converted waves were measured using a phase contrast imaging technique in D-H and D- 3 He plasmas. The measured mode converted wave intensity in the D- 3 He mode conversion regime was found to be a factor of ∼50 weaker than the full-wave predictions. The discrepancy was reduced in the hydrogen minority heating regime, where mode conversion is weaker.

  5. High-intensity positive beams extracted from a compact double-chamber ion source

    International Nuclear Information System (INIS)

    Huck, H.; Somacal, H.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; Di Paolo, H.; Reinoso, M.

    2005-01-01

    This work presents the design and development of a simple ion source, the associated ion extraction optics, and the beam transport of a low-energy and high-current proton accelerator. In its actual version, the ion source can deliver positive proton currents up to 100 mA. This rather high beam current is achieved by adding a small ionization chamber between the discharge chamber containing the filament and the extraction electrode of the ion source. Different parameters of the ion source and the injection beam line are evaluated by means of computer simulations to optimize the beam production and transmission

  6. Cocaine addiction: from habits to stereotypical-repetitive behaviors and punding.

    Science.gov (United States)

    Fasano, Alfonso; Barra, Andrea; Nicosia, Paola; Rinaldi, Federica; Bria, Pietro; Bentivoglio, Anna Rita; Tonioni, Federico

    2008-07-01

    "Punding" is a stereotypical motor behavior characterized by an intense fascination with repetitive handling and examining of objects. Since its first description in amphetamine and cocaine addicts, data on punding has only derived from studies performed in patients with Parkinson's disease (PD). Punding is classifiable as the most severe form of Repetitive Reward-Seeking Behaviours (RRSB) syndromes. The aim of this study was to investigate the occurrence and phenomelogy of RRSB acutely induced by cocaine in order to determine the prevalence, severity and distinctive features discriminating "punders" from "non-punders". A consecutive sample of 50 cocaine addicts received a clinical psychiatric interview. RRSB diagnosis and severity were assessed using a modified version of a previous published questionnaire designed to identify punding in patients with PD. In the present series, 38% of the cocaine addicts met the proposed diagnostic criteria for a RRSB and 8% were considered punders. Subjects with vs. without RRSB did not differ in terms of sex ratio, age, education, occupation, predisposing habits, duration of cocaine use, hours of sleep, comorbid psychiatric disorders, and concomitant use of other drugs. These results and the observation that in the majority of cases RRSB started soon after first drug intake, strongly suggest that an underlying unknown predisposition led to the development of these behaviors. In conclusion, RRSB and punding is much more common than has been described previously and the resultant social disability is often overlooked.

  7. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy.

    Science.gov (United States)

    Stern, Robert A; Riley, David O; Daneshvar, Daniel H; Nowinski, Christopher J; Cantu, Robert C; McKee, Ann C

    2011-10-01

    Chronic traumatic encephalopathy (CTE) has been linked to participation in contact sports such as boxing and American football. CTE results in a progressive decline of memory and cognition, as well as depression, suicidal behavior, poor impulse control, aggressiveness, parkinsonism, and, eventually, dementia. In some individuals, it is associated with motor neuron disease, referred to as chronic traumatic encephalomyelopathy, which appears clinically similar to amyotrophic lateral sclerosis. Results of neuropathologic research has shown that CTE may be more common in former contact sports athletes than previously believed. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, is responsible for neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and TDP-43 proteins. Given the millions of youth, high school, collegiate, and professional athletes participating in contact sports that involve repetitive brain trauma, as well as military personnel exposed to repeated brain trauma from blast and other injuries in the military, CTE represents an important public health issue. Focused and intensive study of the risk factors and in vivo diagnosis of CTE will potentially allow for methods to prevent and treat these diseases. Research also will provide policy makers with the scientific knowledge to make appropriate guidelines regarding the prevention and treatment of brain trauma in all levels of athletic involvement as well as the military theater. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study.

    Science.gov (United States)

    Recasens, Marc; Leung, Sumie; Grimm, Sabine; Nowak, Rafal; Escera, Carles

    2015-03-01

    The formation of echoic memory traces has traditionally been inferred from the enhanced responses to its deviations. The mismatch negativity (MMN), an auditory event-related potential (ERP) elicited between 100 and 250ms after sound deviation is an indirect index of regularity encoding that reflects a memory-based comparison process. Recently, repetition positivity (RP) has been described as a candidate ERP correlate of direct memory trace formation. RP consists of repetition suppression and enhancement effects occurring in different auditory components between 50 and 250ms after sound onset. However, the neuronal generators engaged in the encoding of repeated stimulus features have received little interest. This study intends to investigate the neuronal sources underlying the formation and strengthening of new memory traces by employing a roving-standard paradigm, where trains of different frequencies and different lengths are presented randomly. Source generators of repetition enhanced (RE) and suppressed (RS) activity were modeled using magnetoencephalography (MEG) in healthy subjects. Our results show that, in line with RP findings, N1m (~95-150ms) activity is suppressed with stimulus repetition. In addition, we observed the emergence of a sustained field (~230-270ms) that showed RE. Source analysis revealed neuronal generators of RS and RE located in both auditory and non-auditory areas, like the medial parietal cortex and frontal areas. The different timing and location of neural generators involved in RS and RE points to the existence of functionally separated mechanisms devoted to acoustic memory-trace formation in different auditory processing stages of the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Frequency Adaptive Repetitive Control of Grid-Tied Three-Phase PV Inverters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    Repetitive control offers an accurate current control scheme for grid-tied converters to feed high quality sinusoidal current into the grid. However, with grid frequency being treated as a constant value, conventional repetitive controller fail to produce high quality feeding current in the prese......Repetitive control offers an accurate current control scheme for grid-tied converters to feed high quality sinusoidal current into the grid. However, with grid frequency being treated as a constant value, conventional repetitive controller fail to produce high quality feeding current...

  10. Development of 16.5 GHz ECR ion source in KEK

    International Nuclear Information System (INIS)

    Mori, Yoshiharu; Kinsho, Michikazu; Ikegami, Kiyoshi; Takagi, Akira

    1992-01-01

    An electron cyclotron resonance (ECR) ion source is useful for generating not only highly charged heavy ions but intense protons. We have developed the 16.5 GHz ECR ion source for the optically pumped polarized ion source (OPPIS). Recently, we have modified it to extract highly charged heavy ions and succeeded in producting highly charged argon ions of which charge-states were from 2 to 8. When we introduced electrons into the plasma with a LaB 6 filament, the argon ion beam whose charge-state up to 11 could be extracted. The intensity was also enhanced in factor 2 to 6 for each charge-state ions. (author)

  11. A chemically selective laser ion source for the on-line isotope separation

    International Nuclear Information System (INIS)

    Scheerer, F.

    1993-03-01

    In this thesis a laser ion source is presented. In a hot chamber the atoms of the elements to be studied are resonantly by light of pulsed dye lasers, which are pumped by pulsed copper-vapor lasers with extremely high pulse repetition rate (ν rep ∼ 10 kHz), stepwise excited and ionized. By the storage of the atoms in a hot chamber and the high pulse repetition rate of the copper-vapor lasers beyond the required high efficiency (ε ∼ 10%) can be reached. First preparing measurements were performed at the off-line separator at CERN with the rare earth elements ytterbium and thulium. Starting from the results of these measurements further tests of the laser ion source were performed at the on-line separator with in a thick tantalum target produced neutron-deficient ytterbium isotopes. Under application of a time-of-flight mass spectrometer in Mainz an efficient excitation scheme on the resonance ionization of tin was found. This excitation scheme is condition for an experiment at the GSI for the production of the extremely neutron-deficient, short-lived nucleus 102 Sn. In the summer 1993 is as first application of the newly developed laser ion source at the PSB-ISOLDE at CERN an astrophysically relevant experiment for the nuclear spectroscopy of the neutron-rich silver isotopes 124-129 Ag is planned. This experiment can because of the lacking selectivity of conventional ion sources only be performed by means of the here presented laser ion source. The laser ion source shall at the PSB-ISOLDE 1993 also be applied for the selective ionization of manganese. (orig./HSI) [de

  12. Radioactive ion beam production challenges at the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Meigs, M.J.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Mills, G.D.; Mosko, S.W.; Olsen, D.K.; Tatum, B.A.

    1992-01-01

    The radioactive ion beam (RIB) project at the Holifield Heavy Ion Research Facility (HHIRF) will provide for reconfiguration of the HHIRF accelerator system to enable provision of low-intensity RIBs for nuclear and astrophysics research. As we have progressed with the design of the reconfiguration, we have encountered several challenges that were not immediately obvious when first contemplating the project. The challenges do not seem insurmountable but should keep life interesting for those of us doing the work. A brief review of the project will allow a better understanding of the challenges in RIB production. Radioactive ion beams will be produced with the Isotope Separator On-Line (ISOL) postacceleration technique. In particular, radioactive atoms will be produced by reactions in the thick stopping target of an ISOL-type target-ion source assembly using intense beams from the Oak Ridge Isochronous Cyclotron equipped with a light-ion internal source. This ISOL target-ion source assembly will be mounted on a high-voltage platform with a mass separator. The target ion source will operate at potentials up to 50 kV with respect to the high voltage platform. The radioactive atoms produced by nuclear reactions in the target diffuse to the surface of the heated target material, desorb from this surface, and effuse through a heated transfer tube into an ion source where ionization and extraction take place. Two types of ion sources will be initially considered. A Forced Electron Beam Induced Arc Discharge source, similar to those used by the ISOLDE facility at CERN and by the UNISOR facility at ORNL, will be built to produce positive ions. These positive ions will be focused through an alkali vapor charge-exchange canal to produce negative ions for tandem injection. In addition, a direct negative surface ionization addition or modification to the above source will be built and investigated

  13. Laser - driven high - energy ions and their application to inertial confinement fusion

    International Nuclear Information System (INIS)

    Borghesi, M.

    2007-01-01

    The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short and intense laser pulses with solid targets has been one of the most important results of recent laser-plasma research [1]. The acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large (∼TV/m) space charge fields at the target interfaces. The properties of laser-driven ion beams (high brightness and laminarity, high-energy cut-off, ultrashort burst duration) distinguish them from lower energy ions accelerated in earlier experiments at moderate laser intensities, and compare favourably with those of 'conventional' accelerator beams. In view of these properties, laser-driven ion beams can be employed in a number of innovative applications in the scientific, technological and medical areas. We will discuss in particular aspects of interest to their application in an Inertial Confinement Fusion context. Laser-driven protons are indeed being considered as a possible trigger for Fast Ignition of a precompressed fuel.[2] Recent results relating to the optimization of beam energy and focusing will be presented. These include the use of laser-driven impulsive fields for proton beam collimation and focusing [3], and the investigation of acceleration in presence of finite-scale plasma gradient. Proposed target developments enabling proton production at high repetition rate will also be discussed. Another important area of application of proton beams is diagnostic use in a particle probing arrangement for detection of density non-homogeneities [4] and electric/magnetic fields [5]. We will discuss the use of laser-driven proton beams for the diagnosis of magnetic and electric fields in planar and hohlraum targets and for the detection of fields associated to relativistic electron propagation through dense matter, an issue of high relevance for electron driven Fast Ignition. [1] M

  14. A case of cerebral reversible vasoconstriction syndrome triggered by repetition transcranial magnetic stimulation.

    Science.gov (United States)

    Sato, Mamiko; Yamate, Koji; Hayashi, Hiromi; Miura, Toyoaki; Kobayashi, Yasutaka

    2017-08-31

    A 75-year-old man was admitted for combined low-frequency repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy. Five days after the initiation of rTMS, he developed hypotension and temporary exacerbation of the right hemiplegia with thunderclap headache. MRA showed segmental stenosis of the left middle cerebral artery, which findings were improved at 9 days after the onset of the headache. He was diagnosed as having the reversible cerebral vasoconstriction syndrome (RCVS). The rTMS was recognized as safe rehabilitation treatment. However, it is necessary to recognize that RCVS can become one of the precipitants. This is the first report of RCVS triggered by rTMS.

  15. Electron cooling of PB$^{54+}$ ions in the low energy ion ring (LEIR)

    CERN Document Server

    Bosser, Jacques; Chanel, M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Tranquille, G

    1998-01-01

    For the preparation of dense bunches of lead ions for the LHC, electron cooling will be essential for accumula tion in a storage ring at 4.2 MeV/u. Tests have been carried out on the LEAR ring (renamed LEIR for Low Energy Ion Ring) in order to determine the optimum parameters for a future state-of-the-art electron cooling device which would be able to cool linac pulses of lead ions in less than 100 ms. The experiments focused on the generation of a stable high intensity electron beam that is needed to free space in both longitudinal and transverse phase space for incoming pulses. Investigations on the ion beam lifetime in the presence of the electron beam and on the dependency of the cooling times on the optical settings of the storage ring will also be discussed. This paper concentrates on the cooling aspects with the multiturn injection, vacuum, and high intensity aspects discussed in a companion paper at this conference.

  16. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  17. Relationship Between Postural Control and Restricted, Repetitive Behaviors in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Krestin eRadonovich

    2013-05-01

    Full Text Available Restricted, repetitive behaviors (RRBs are one of the core diagnostic criteria of autism spectrum disorders (ASD, and include simple repetitive motor behaviors and more complex cognitive behaviors, such as compulsions and restricted interests. In addition to the core symptoms, impaired movement is often observed in ASD. Research suggests that the postural system in individuals with ASD is immature and may never reach adult levels. RRBs have been related to postural sway in individuals with mental retardation.Our goals were to determine whether subjects with ASD had greater postural sway and whether RBS-R scores were related to the magnitude of postural sway. We compared the center of pressure (COP sway area during quiet stance with scores on the Repetitive Behavior Scale-Revised (RBS-R in children with ASD and typically developing controls (TD ages 3-16. All subjects had Nonverbal IQ>70. Subjects performed four quiet stance trials at a self–selected stance width for 15 seconds. Subjects with ASD had greater postural sway area compared to controls. Not surprisingly, subjects with ASD exhibited greater frequencies and intensities of RRBs overall and on all 6 subscales. Further, there was a positive correlation between postural sway area and presence of RRBs. Interestingly, results of the postural sway area for the ASD group suggests that roughly half of the ASD subjects scored comparable to TD controls, whereas the other half scored >2 SD worse. Motor impaired children did not have significantly worse IQ scores, but were younger and had more RRBs.Results support previous findings of relationships between RRBs and postural control. It appears that motor control impairments may characterize a subset of individuals with ASD. Better delineation of motor control abilities in individuals with ASD will be important to help explain variations of abilities in ASD, inform treatment, and guide examination of underlying neural involvement in this diverse

  18. Unlimited ion acceleration by radiation pressure.

    Science.gov (United States)

    Bulanov, S V; Echkina, E Yu; Esirkepov, T Zh; Inovenkov, I N; Kando, M; Pegoraro, F; Korn, G

    2010-04-02

    The energy of ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region resulting in an increase in the ion energy and in the ion longitudinal velocity. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in unlimited ion energy gain.

  19. Mini biased collimated faraday cups for measurement of intense pulsed ion beams

    International Nuclear Information System (INIS)

    He Xiaoping; Shi Lei; Zhang Jiasheng; Qiu Aici

    2000-01-01

    An analysis of principle of a biased Faraday cup for measuring ion beams density and the main reasons related to the measuring accuracy were presented. An array of mini biased collimated Faraday cups was manufactured for the measurement of ion beam density of a compact 200 keV high power ion beam source. In the experiments the maximum density of ion beam was in the center of the beam, and it was about 170 A/cm 2

  20. Autism and exergaming: effects on repetitive behaviors and cognition

    Directory of Open Access Journals (Sweden)

    Anderson-Hanley C

    2011-09-01

    Full Text Available Cay Anderson-Hanley, Kimberly Tureck, Robyn L Schneiderman Department of Psychology, Union College, Schenectady, NY, USA Abstract: Autism is a neurodevelopmental disorder that leads to impairment in social skills and delay in language development, and results in repetitive behaviors and restricted interests that impede academic and social involvement. Physical exercise has been shown to decrease repetitive behaviors in autistic children and improve cognitive function across the life-span. Exergaming combines physical and mental exercise simultaneously by linking physical activity movements to video game control and may yield better compliance with exercise. In this investigation, two pilot studies explored the potential behavioral and cognitive benefits of exergaming. In Pilot I, twelve children with autism spectrum disorders completed a control task and an acute bout of Dance Dance Revolution (DDR; in Pilot II, ten additional youths completed an acute bout of cyber cycling. Repetitive behaviors and executive function were measured before and after each activity. Repetitive behaviors significantly decreased, while performance on Digits Backwards improved following the exergaming conditions compared with the control condition. Additional research is needed to replicate these findings, and to explore the application of exergaming for the management of behavioral disturbance and to increase cognitive control in children on the autism spectrum. Keywords: autism, repetitive behaviors, exergaming, exercise, executive function

  1. A longitudinal investigation of perfectionism and repetitive negative thinking in perinatal depression.

    Science.gov (United States)

    Egan, Sarah J; Kane, Robert T; Winton, Karen; Eliot, Catherine; McEvoy, Peter M

    2017-10-01

    Repetitive negative thinking and perfectionism have both been proposed as processes that are related to depressive symptoms. The purpose of this study was to investigate concurrent and prospective relationships between antenatal and postnatal depression, perfectionism, and repetitive negative thinking. A longitudinal design was used and 71 women were followed from their third trimester of pregnancy to six weeks post birth. A structural equation model was tested with antenatal perfectionism predicting antenatal repetitive negative thinking, perfectionism predicting postnatal depression, and antenatal repetitive negative thinking predicting antenatal and postnatal depression. The final model provided an adequate fit to the data but the pathway from antenatal repetitive negative thinking to postnatal depression was not significant. The findings provide support for the role of perfectionism and repetitive negative thinking in the onset and maintenance of perinatal symptoms of depression. It is suggested that future research investigates the efficacy of targeting repetitive negative thinking and perfectionism in pregnancy to examine if this can reduce perinatal depression. Copyright © 2017. Published by Elsevier Ltd.

  2. Effects of Number of Repetitions and Number of Hours of Shaping Practice during Constraint-Induced Movement Therapy: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Auwal Abdullahi

    2018-01-01

    Full Text Available Background. Constraint-induced movement therapy (CIMT is effective in improving motor outcomes after stroke. However, its existing protocols are resource-intensive and difficult to implement. The aim of this study is to design an easier CIMT protocol using number of repetitions of shaping practice. Method. The study design was randomized controlled trial. Participants within 4 weeks after stroke were recruited at Murtala Muhammad Specialist Hospital. They were randomly assigned to groups A, B, C, and D. Group A received 3 hours of traditional therapy. Groups B, C, and D received modified CIMT consisting of 3 hours of shaping practice per session, 300 repetitions of shaping practice in 3 sessions, and 600 repetitions of shaping practice in 3 sessions per day, respectively, and constraint for 90% of the waking hours. All treatment protocols were administered 5 times per week for 4 weeks. The primary outcome was measured using upper limb Fugl-Meyer assessment, while the secondary outcome was measured using motor activity log, Wolf Motor Function Test, and upper limb self-efficacy test at baseline, 2 weeks, and 4 weeks after intervention. Result. There were 48 participants 4 weeks after intervention. The result showed that there was no significant difference between groups at baseline (p>0.05. Within-group improvements attained minimal clinically important difference (MCID in modified CIMT and 300 repetitions and 600 repetitions groups. Conclusion. Number of repetitions of shaping practice significantly improved motor function, real-world arm use, and upper limb self-efficacy after stroke. Therefore, it seems to be a simple alternative for the use of number of hours. Trial Registration. This trial is registered with Pan African Clinical Trial Registry (registration number: PACTR201610001828172 (date of registration: 21/10/2016.

  3. Concreteness of Positive, Negative, and Neutral Repetitive Thinking About the Future

    Science.gov (United States)

    Behar, Evelyn; McGowan, Sarah Kate; McLaughlin, Katie A.; Borkovec, T.D.; Goldwin, Michelle; Bjorkquist, Olivia

    2014-01-01

    Consistent with assertions that the adaptiveness of repetitive thinking is influenced by both its valence and style, Stöber (e.g., Stöber & Borkovec, 2002) has argued that worry is characterized by a reduced concreteness of thought content and that the resulting abstractness contributes to its inhibition of some aspects of anxious responding. However, extant research does not provide a direct test of Stöber’s reduced concreteness theory of worry. We sought to test Stöber’s theory and to examine the adaptiveness of repetitive worrisome thinking by randomly assigning 108 participants to engage in five consecutive periods of repetitive thinking about positively, negatively, or neutrally valenced potential future events. Results based on coding of thought data indicated that (a) repetitive thinking became increasingly less concrete as periods progressed; (b) contrary to Stöber’s theory, both negative and positive repetitive future thinking were more concrete than neutral repetitive future thinking (and did not differ from each other); and (c) abstractness of thought during negative repetitive future thinking was associated with reduced reports of imagery-based activity. Results based on self-reported affect indicated that negatively valenced repetitive future thinking was uniquely associated with initial decreases in anxious affect, followed by increased anxious affect that coincided with increased imagery-based activity. This suggests that worry is associated with a sequential mitigation of anxious meaning followed by a strengthening of anxious meaning over time. Theoretical and clinical implications of these findings are discussed. PMID:22440067

  4. Surface morphology, microstructure and properties of as-cast AZ31 magnesium alloy irradiated by high intensity pulsed ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xuesong [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080 (China); The Fourth Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, Gang [Sino-Russia Joint Lab for High Energy Beam, Shenyang Ligong University, Shenyang 110159 (China); Wang, Guotian [School of Automobile and Traffic Engineering, Heilongjiang Institute of Technology, Harbin 150050 (China); Zhu, Guoliang, E-mail: glzhu1983@hotmail.com [Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China); Zhou, Wei, E-mail: wzhou@sjtu.edu.cn [Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China); Wang, Jun; Sun, Baode [Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China)

    2014-08-30

    Highlights: • High intensity pulsed ion beam (HIPIB) irradiation were performed to improve the properties of as-cast AZ31 magnesium alloy. • After 10 shots HIPIB irradiation, the average microhardness was increased by 27.1% and wear rate was reduced by 38.5%. • After 10 shots HIPIB irradiation, the corrosion rate was reduced by 24.8%, and the corrosion rate was decreased from 23.15 g m{sup −2} h{sup −1} to 17.4 g m{sup −2} h{sup −1}. - Abstract: High intensity pulsed ion beam (HIPIB) irradiation was performed as surface modification to improve the properties of as-cast AZ31 magnesium (Mg) alloys. The surface morphology and microstructure of the irradiated Mg alloys were characterized and their microhardness, wear resistance and corrosion resistance before and after HIPIB irradiation were measured. The results show that the formation of crater on the surface was attributed to the particles impacted from the irradiated cathode material. HIPIB irradiation resulted in more vacancy defects on the surface of the material. Moreover, new dislocations were generated by the reaction between vacancies, and the dislocation configuration was also changed. These variations caused by the HIPIB are beneficial for improving the material properties. After 10 shots of irradiation, the average microhardness increased by 27.1% but the wear rate decreased by 38.5%. The corrosion rate was reduced by 24.8% according to the salt spray corrosion experiment.

  5. Effects of repetition and temperature on Contingent Electrical Stimulation

    DEFF Research Database (Denmark)

    Castrillon, Eduardo E.; Zhou, Xinwen; Svensson, Peter

    ) activity associated with bruxism. Repetition of the electrical stimulus and skin surface temperature (ST) may affect the perception of CES and possibly also the inhibitory EMG effects.Objectives: To determine the effects of stimulus repetition and skin ST on the perception of CES.  Methods: Healthy...

  6. Towards highest peak intensities for ultra-short MeV-range ion bunches

    OpenAIRE

    Simon Busold; Dennis Schumacher; Christian Brabetz; Diana Jahn; Florian Kroll; Oliver Deppert; Ulrich Schramm; Thomas E. Cowan; Abel Blažević; Vincent Bagnoud; Markus Roth

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on ?m scale, with energies ranging up to 28.4?MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven so...

  7. Post-exercise cortical depression following repetitive passive finger movement.

    Science.gov (United States)

    Otsuka, Ryohei; Sasaki, Ryoki; Tsuiki, Shota; Kojima, Sho; Onishi, Hideaki

    2017-08-24

    This study aimed to clarify the influence of range of repetitive passive finger movement on corticospinal excitability. Thirteen healthy subjects participated in this study. Passive index finger adduction-abduction movements were performed from 15° abduction to 15° adduction, 15° abduction to 0°, 0° to 15° adduction, and 15° adduction to 30° adduction, each at 15°/s for 10min on separate days. Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and M- and F-waves were measured before and after each repetitive passive index finger movement protocol to evaluate changes in corticospinal excitability. MEP amplitude significantly decreased after all passive movements, while F-wave amplitude, F-wave persistence, and M-wave amplitude remained stable. These results suggest that cortical excitability decreases after repetitive passive movement. However, the range of repetitive passive movement does not markedly influence the magnitude of cortical depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pulse repetition rate multiplication by Talbot effect in a coaxial fiber

    Science.gov (United States)

    Dhingra, Nikhil; Saxena, Geetika Jain; Anand, Jyoti; Sharma, Enakshi K.

    2018-03-01

    We use a coaxial fiber, which is a cylindrical coupled waveguide structure consisting of two concentric cores, the inner rod and an outer ring core as a first order dispersive media to achieve temporal Talbot effect for pulse repetition rate multiplication (PRRM) in high bit rate optical fiber communication. It is observed that for an input Gaussian pulse train with pulse width, 2τ0=1ps at a repetition rate of 40 Gbps (repetition period, T=25ps), an output repetition rate of 640 Gbps can be achieved without significant distortion at a length of 40.92 m.

  9. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  10. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hu Qin [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom); O' Neill, William, E-mail: wo207@eng.cam.ac.uk [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom)

    2010-08-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R{sub a}) of FIB milled areas after cleaning is less than 2 nm.

  11. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    International Nuclear Information System (INIS)

    Hu Qin; O'Neill, William

    2010-01-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R a ) of FIB milled areas after cleaning is less than 2 nm.

  12. Elemental redistribution behavior in tellurite glass induced by high repetition rate femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Teng, Yu; Zhou, Jiajia; Khisro, Said Nasir; Zhou, Shifeng; Qiu, Jianrong

    2014-01-01

    Highlights: • Abnormal elements redistribution behavior was observed in tellurite glass. • The refractive index and Raman intensity distribution changed significantly. • The relative glass composition remained unchanged while the glass density changed. • First time report on the abnormal element redistribution behavior in glass. • The glass network structure determines the elemental redistribution behavior. - Abstract: The success in the fabrication of micro-structures in glassy materials using femtosecond laser irradiation has proved its potential applications in the construction of three-dimensional micro-optical components or devices. In this paper, we report the elemental redistribution behavior in tellurite glass after the irradiation of high repetition rate femtosecond laser pulses. The relative glass composition remained unchanged while the glass density changed significantly, which is quite different from previously reported results about the high repetition rate femtosecond laser induced elemental redistribution in silicate glasses. The involved mechanism is discussed with the conclusion that the glass network structure plays the key role to determine the elemental redistribution. This observation not only helps to understand the interaction process of femtosecond laser with glassy materials, but also has potential applications in the fabrication of micro-optical devices

  13. Trapping of slow recoil ions: past results and speculations on the future

    International Nuclear Information System (INIS)

    Prior, M.H.

    1983-01-01

    A simple electrostatic ion trap has been utilized to capture low energy recoil ions made by fast heavy ion impact upon a neon gas target. The heavy ion beams have been provided by the LBL SuperHILAC and the work has so far concentrated upon studies of the decay of the trapped ion population in time following creation by the pulsed HILAC beam (3.3 msec pulse length, 36Hz repetition rate). The various charge states decay predominantly via electron capture collisions with the ambient gas in the ion trap. By varying the gas composition and density, one can determine the electron capture rate constants from which an effective (velocity averaged) capture cross-section can be obtained. The uniqueness of this work lies in the high charge states, up to Ne 10 + (fully stripped), and the low mean collision energies available (in the range 1.0 to 70.0 eV)

  14. Effect of ion irradiation on the structure and the surface topography of carbon fiber

    International Nuclear Information System (INIS)

    Ligacheva, E.A.; Galyaeva, L.V.; Gavrilov, N.V.; Belykh, T.A.; Ligachev, A.E.; Sokhoreva, V.V.

    2006-01-01

    The effect of C + ion irradiation (40 keV, 10 15 - 10 19 cm -2 ) on the structure and surface topography of high-module carbon fibers is investigated. Interplanar distance and internal stress values are found to be minimal at a radiation dose of 10 17 cm -2 , the height of a layer pack being practically unchanged. The relief of ion irradiated carbon fiber surface constitutes regularly repetitive valleys and ridges spaced parallel with the fiber axis [ru

  15. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.

  16. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  17. Word Recognition during Reading: The Interaction between Lexical Repetition and Frequency

    Science.gov (United States)

    Lowder, Matthew W.; Choi, Wonil; Gordon, Peter C.

    2013-01-01

    Memory studies utilizing long-term repetition priming have generally demonstrated that priming is greater for low-frequency words than for high-frequency words and that this effect persists if words intervene between the prime and the target. In contrast, word-recognition studies utilizing masked short-term repetition priming typically show that the magnitude of repetition priming does not differ as a function of word frequency and does not persist across intervening words. We conducted an eye-tracking while reading experiment to determine which of these patterns more closely resembles the relationship between frequency and repetition during the natural reading of a text. Frequency was manipulated using proper names that were high-frequency (e.g., Stephen) or low-frequency (e.g., Dominic). The critical name was later repeated in the sentence, or a new name was introduced. First-pass reading times and skipping rates on the critical name revealed robust repetition-by-frequency interactions such that the magnitude of the repetition-priming effect was greater for low-frequency names than for high-frequency names. In contrast, measures of later processing showed effects of repetition that did not depend on lexical frequency. These results are interpreted within a framework that conceptualizes eye-movement control as being influenced in different ways by lexical- and discourse-level factors. PMID:23283808

  18. Evidence-Based Behavioral Interventions for Repetitive Behaviors in Autism

    Science.gov (United States)

    Boyd, Brian A.; McDonough, Stephen G.; Bodfish, James W.

    2012-01-01

    Restricted and repetitive behaviors (RRBs) are a core symptom of autism spectrum disorders (ASD). There has been an increased research emphasis on repetitive behaviors; however, this research primarily has focused on phenomenology and mechanisms. Thus, the knowledge base on interventions is lagging behind other areas of research. The literature…

  19. Repetitive sequences: the hidden diversity of heterochromatin in prochilodontid fish

    Directory of Open Access Journals (Sweden)

    Maria L. Terencio

    2015-08-01

    Full Text Available The structure and organization of repetitive elements in fish genomes are still relatively poorly understood, although most of these elements are believed to be located in heterochromatic regions. Repetitive elements are considered essential in evolutionary processes as hotspots for mutations and chromosomal rearrangements, among other functions – thus providing new genomic alternatives and regulatory sites for gene expression. The present study sought to characterize repetitive DNA sequences in the genomes of Semaprochilodus insignis (Jardine & Schomburgk, 1841 and Semaprochilodus taeniurus (Valenciennes, 1817 and identify regions of conserved syntenic blocks in this genome fraction of three species of Prochilodontidae (S. insignis, S. taeniurus, and Prochilodus lineatus (Valenciennes, 1836 by cross-FISH using Cot-1 DNA (renaturation kinetics probes. We found that the repetitive fractions of the genomes of S. insignis and S. taeniurus have significant amounts of conserved syntenic blocks in hybridization sites, but with low degrees of similarity between them and the genome of P. lineatus, especially in relation to B chromosomes. The cloning and sequencing of the repetitive genomic elements of S. insignis and S. taeniurus using Cot-1 DNA identified 48 fragments that displayed high similarity with repetitive sequences deposited in public DNA databases and classified as microsatellites, transposons, and retrotransposons. The repetitive fractions of the S. insignis and S. taeniurus genomes exhibited high degrees of conserved syntenic blocks in terms of both the structures and locations of hybridization sites, but a low degree of similarity with the syntenic blocks of the P. lineatus genome. Future comparative analyses of other prochilodontidae species will be needed to advance our understanding of the organization and evolution of the genomes in this group of fish.

  20. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ and U 34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams