WorldWideScience

Sample records for repetitive dna sequences

  1. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  2. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    OpenAIRE

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-01-01

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic...

  3. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    Science.gov (United States)

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-03-26

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic DNA methylation between sperm and oocyte DNA. The methylation levels of the minor satellite sequences did not change during spermiogenesis, and were not associated with the onset of meiosis or a specific stage in sperm development.

  4. Functional role of a highly repetitive DNA sequence in anchorage of the mouse genome.

    Science.gov (United States)

    Neuer-Nitsche, B; Lu, X N; Werner, D

    1988-09-12

    The major portion of the eukaryotic genome consists of various categories of repetitive DNA sequences which have been studied with respect to their base compositions, organizations, copy numbers, transcription and species specificities; their biological roles, however, are still unclear. A novel quality of a highly repetitive mouse DNA sequence is described which points to a functional role: All copies (approximately 50,000 per haploid genome) of this DNA sequence reside on genomic Alu I DNA fragments each associated with nuclear polypeptides that are not released from DNA by proteinase K, SDS and phenol extraction. By this quality the repetitive DNA sequence is classified as a member of the sub-set of DNA sequences involved in tight DNA-polypeptide complexes which have been previously shown to be components of the subnuclear structure termed 'nuclear matrix'. From these results it has to be concluded that the repetitive DNA sequence characterized in this report represents or comprises a signal for a large number of site specific attachment points of the mouse genome in the nuclear matrix.

  5. [Identification of a repetitive sequence element for DNA fingerprinting in Phytophthora sojae].

    Science.gov (United States)

    Yin, Lihua; Wang, Qinhu; Ning, Feng; Zhu, Xiaoying; Zuo, Yuhu; Shan, Weixing

    2010-04-01

    Establishment of DNA fingerprinting in Phytophthora sojae and an analysis of genetic relationship of Heilongjiang and Xinjiang populations. Bioinformatics tools were used to search repetitive sequences in P. sojae and Southern blot analysis was employed for DNA fingerprinting analysis of P. sojae populations from Heilongjiang and Xinjiang using the identified repetitive sequence. A moderately repetitive sequence was identified and designated as PS1227. Southern blot analysis indicated 34 distinct bands ranging in size from 1.5 kb-23 kb, of which 21 were polymorphic among 49 isolates examined. Analysis of single-zoospore progenies showed that the PS1227 fingerprint pattern was mitotically stable. DNA fingerprinting showed that the P. sojae isolates HP4002, SY6 and GJ0105 of Heilongjiang are genetically identical to DW303, 71228 and 71222 of Xinjiang, respectively. A moderately repetitive sequence designated PS1227 which will be useful for epidemiology and population biology studies of P. sojae was obtained, and a PS1227-based DNA fingerprinting analysis provided molecular evidence that P. sojae in Xinjiang was likely introduced from Heilongjiang.

  6. Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences

    DEFF Research Database (Denmark)

    Svitashev, S.; Bryngelsson, T.; Vershinin, A.

    1994-01-01

    A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. In situ hybridization experiments showed dispersed organization of the sequences...

  7. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  8. PCR amplification of repetitive sequences as a possible approach in relative species quantification

    DEFF Research Database (Denmark)

    Ballin, Nicolai Zederkopff; Vogensen, Finn Kvist; Karlsson, Anders H

    2012-01-01

    Abstract Both relative and absolute quantifications are possible in species quantification when single copy genomic DNA is used. However, amplification of single copy genomic DNA does not allow a limit of detection as low as one obtained from amplification of repetitive sequences. Amplification...... of repetitive sequences is therefore frequently used in absolute quantification but problems occur in relative quantification as the number of repetitive sequences is unknown. A promising approach was developed where data from amplification of repetitive sequences were used in relative quantification of species...... to relatively quantify the amount of chicken DNA in a binary mixture of chicken DNA and pig DNA. However, the designed PCR primers lack the specificity required for regulatory species control....

  9. Transcription of repetitive DNA in Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K; Chaudhuri, R K

    1975-01-01

    Repeated DNA sequences of Neurospora crassa were isolated and characterized. Approximately 10 to 12 percent of N. crassa DNA sequence were repeated, of which 7.3 percent were found to be transcribed in mid-log phase of mycelial growth as measured by DNA:RNA hybridization. It is suggested that part of repetitive DNA transcripts in N. crassa were mitochondrial and part were nuclear DNA. Most of the nuclear repeated DNAs, however, code for rRNA and tRNA in N. crassa. (auth)

  10. Next-Generation Sequencing Reveals the Impact of Repetitive DNA Across Phylogenetically Closely Related Genomes of Orobanchaceae

    Science.gov (United States)

    Piednoël, Mathieu; Aberer, Andre J.; Schneeweiss, Gerald M.; Macas, Jiri; Novak, Petr; Gundlach, Heidrun; Temsch, Eva M.; Renner, Susanne S.

    2013-01-01

    We used next-generation sequencing to characterize the genomes of nine species of Orobanchaceae of known phylogenetic relationships, different life forms, and including a polyploid species. The study species are the autotrophic, nonparasitic Lindenbergia philippensis, the hemiparasitic Schwalbea americana, and seven nonphotosynthetic parasitic species of Orobanche (Orobanche crenata, Orobanche cumana, Orobanche gracilis (tetraploid), and Orobanche pancicii) and Phelipanche (Phelipanche lavandulacea, Phelipanche purpurea, and Phelipanche ramosa). Ty3/Gypsy elements comprise 1.93%–28.34% of the nine genomes and Ty1/Copia elements comprise 8.09%–22.83%. When compared with L. philippensis and S. americana, the nonphotosynthetic species contain higher proportions of repetitive DNA sequences, perhaps reflecting relaxed selection on genome size in parasitic organisms. Among the parasitic species, those in the genus Orobanche have smaller genomes but higher proportions of repetitive DNA than those in Phelipanche, mostly due to a diversification of repeats and an accumulation of Ty3/Gypsy elements. Genome downsizing in the tetraploid O. gracilis probably led to sequence loss across most repeat types. PMID:22723303

  11. Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA

    International Nuclear Information System (INIS)

    Waye, J.S.; Willard, H.F.

    1989-01-01

    The authors describe a class of human repetitive DNA, called β satellite, that, at a most fundamental level, exists as tandem arrays of diverged ∼68-base-pair monomer repeat units. The monomer units are organized as distinct subsets, each characterized by a multimeric higher-order repeat unit that is tandemly reiterated and represents a recent unit of amplification. They have cloned, characterized, and determined the sequence of two β satellite higher-order repeat units: one located on chromosome 9, the other on the acrocentric chromosomes (13, 14, 15, 21, and 22) and perhaps other sites in the genome. Analysis by pulsed-field gel electrophoresis reveals that these tandem arrays are localized in large domains that are marked by restriction fragment length polymorphisms. In total, β-satellite sequences comprise several million base pairs of DNA in the human genome. Analysis of this DNA family should permit insights into the nature of chromosome-specific and nonspecific modes of satellite DNA evolution and provide useful tools for probing the molecular organization and concerted evolution of the acrocentric chromosomes

  12. Repetitive sequences: the hidden diversity of heterochromatin in prochilodontid fish

    Directory of Open Access Journals (Sweden)

    Maria L. Terencio

    2015-08-01

    Full Text Available The structure and organization of repetitive elements in fish genomes are still relatively poorly understood, although most of these elements are believed to be located in heterochromatic regions. Repetitive elements are considered essential in evolutionary processes as hotspots for mutations and chromosomal rearrangements, among other functions – thus providing new genomic alternatives and regulatory sites for gene expression. The present study sought to characterize repetitive DNA sequences in the genomes of Semaprochilodus insignis (Jardine & Schomburgk, 1841 and Semaprochilodus taeniurus (Valenciennes, 1817 and identify regions of conserved syntenic blocks in this genome fraction of three species of Prochilodontidae (S. insignis, S. taeniurus, and Prochilodus lineatus (Valenciennes, 1836 by cross-FISH using Cot-1 DNA (renaturation kinetics probes. We found that the repetitive fractions of the genomes of S. insignis and S. taeniurus have significant amounts of conserved syntenic blocks in hybridization sites, but with low degrees of similarity between them and the genome of P. lineatus, especially in relation to B chromosomes. The cloning and sequencing of the repetitive genomic elements of S. insignis and S. taeniurus using Cot-1 DNA identified 48 fragments that displayed high similarity with repetitive sequences deposited in public DNA databases and classified as microsatellites, transposons, and retrotransposons. The repetitive fractions of the S. insignis and S. taeniurus genomes exhibited high degrees of conserved syntenic blocks in terms of both the structures and locations of hybridization sites, but a low degree of similarity with the syntenic blocks of the P. lineatus genome. Future comparative analyses of other prochilodontidae species will be needed to advance our understanding of the organization and evolution of the genomes in this group of fish.

  13. Identification of two new repetitive elements and chromosomal mapping of repetitive DNA sequences in the fish Gymnothorax unicolor (Anguilliformes: Muraenidae

    Directory of Open Access Journals (Sweden)

    E. Coluccia

    2011-05-01

    Full Text Available Muraenidae is a species-rich family, with relationships among genera and species and taxonomy that have not been completely clarified. Few cytogenetic studies have been conducted on this family, and all of them showed the same diploid chromosome number (2n=42 but with conspicuous karyotypic variation among species. The Mediterranean moray eel Gymnothorax unicolor was previously cytogenetically studied using classical techniques that allowed the characterization of its karyotype structure and the constitutive heterochromatin and argyrophilic nucleolar organizer regions (Ag-NORs distribution pattern. In the present study, we describe two new repetitive elements (called GuMboI and GuDdeI obtained from restricted genomic DNA of G. unicolor that were characterized by Southern blot and physically localized by in situ hybridization on metaphase chromosomes. As they are highly repetitive DNA sequences, they map in heterochromatic regions. However, while GuDdeI was localized in the centromeric regions, the GuMboI fraction was distributed on some centromeres and was co-localized with the nucleolus organizer region (NOR. Comparative analysis with other Mediterranean species such as Muraena helena pointed out that these DNA fractions are species-specific and could potentially be used for species discrimination. As a new contribution to the karyotype of this species, we found that the major ribosomal genes are localized on acrocentric chromosome 9 and that the telomeres of each chromosome are composed of a tandem repeat derived from a poly-TTAGGG DNA sequence, as it occurs in most vertebrate species. The results obtained add new information useful in comparative genomics at the chromosomal level and contribute to the cytogenetic knowledge regarding this fish family, which has not been extensively studied.

  14. Haben repetitive DNA-Sequenzen biologische Funktionen?

    Science.gov (United States)

    John, Maliyakal E.; Knöchel, Walter

    1983-05-01

    By DNA reassociation kinetics it is known that the eucaryotic genome consists of non-repetitive DNA, middle-repetitive DNA and highly repetitive DNA. Whereas the majority of protein-coding genes is located on non-repetitive DNA, repetitive DNA forms a constitutive part of eucaryotic DNA and its amount in most cases equals or even substantially exceeds that of non-repetitive DNA. During the past years a large body of data on repetitive DNA has accumulated and these have prompted speculations ranging from specific roles in the regulation of gene expression to that of a selfish entity with inconsequential functions. The following article summarizes recent findings on structural, transcriptional and evolutionary aspects and, although by no means being proven, some possible biological functions are discussed.

  15. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10 to 20 percent repeated DNA sequences. There are approximately 100 to 110 copies of repeated DNA sequences of approximately 4 x 10/sup 7/ daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5/sup 0/C difference of T/sub e/50 (temperature at which 50 percent duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA. (auth)

  16. Interspersion of highly repetitive DNA with single copy DNA in the genome of the red crab, Geryon quinquedens

    Energy Technology Data Exchange (ETDEWEB)

    Christie, N.T. (Univ. of Tennessee, Oak Ridge); Skinner, D.M.

    1979-02-01

    Kinetic analysis of the reassociation of 420 nucleotide (NT) long fragments has shown that essentially all of the repetitive sequences of the DNA of the red crab Geryon quinquedens are highly repetitive. There are negligible amounts of low and intermediate repetitive DNAs. Though atypical of most eukaryotes, this pattern has been observed in al other brachyurans (true crabs) studied. The major repetitive component is subdivided into short runs of 300 NT and longer runs of greater than 1200 NT while the minor component has an average sequence length of 400 NT. Both components reassociate at rates commonly observed for satellite DNAs. Unique among eukaryotes the organization of the genome includes single copy DNA contiguous to short runs (300 NT) of both repetitive components. Although patent satellites are not present, subsets of the repetitive DNA have been isolated by either restriction endonuclease digestion or by centrifugation in Ag/sup +/ or Hg/sup 2 +//Cs/sub 2/SO/sub 4/ density gradients.

  17. ReRep: Computational detection of repetitive sequences in genome survey sequences (GSS

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcelo

    2008-09-01

    Full Text Available Abstract Background Genome survey sequences (GSS offer a preliminary global view of a genome since, unlike ESTs, they cover coding as well as non-coding DNA and include repetitive regions of the genome. A more precise estimation of the nature, quantity and variability of repetitive sequences very early in a genome sequencing project is of considerable importance, as such data strongly influence the estimation of genome coverage, library quality and progress in scaffold construction. Also, the elimination of repetitive sequences from the initial assembly process is important to avoid errors and unnecessary complexity. Repetitive sequences are also of interest in a variety of other studies, for instance as molecular markers. Results We designed and implemented a straightforward pipeline called ReRep, which combines bioinformatics tools for identifying repetitive structures in a GSS dataset. In a case study, we first applied the pipeline to a set of 970 GSSs, sequenced in our laboratory from the human pathogen Leishmania braziliensis, the causative agent of leishmaniosis, an important public health problem in Brazil. We also verified the applicability of ReRep to new sequencing technologies using a set of 454-reads of an Escheria coli. The behaviour of several parameters in the algorithm is evaluated and suggestions are made for tuning of the analysis. Conclusion The ReRep approach for identification of repetitive elements in GSS datasets proved to be straightforward and efficient. Several potential repetitive sequences were found in a L. braziliensis GSS dataset generated in our laboratory, and further validated by the analysis of a more complete genomic dataset from the EMBL and Sanger Centre databases. ReRep also identified most of the E. coli K12 repeats prior to assembly in an example dataset obtained by automated sequencing using 454 technology. The parameters controlling the algorithm behaved consistently and may be tuned to the properties

  18. New tool to assemble repetitive regions using next-generation sequencing data

    Science.gov (United States)

    Kuśmirek, Wiktor; Nowak, Robert M.; Neumann, Łukasz

    2017-08-01

    The next generation sequencing techniques produce a large amount of sequencing data. Some part of the genome are composed of repetitive DNA sequences, which are very problematic for the existing genome assemblers. We propose a modification of the algorithm for a DNA assembly, which uses the relative frequency of reads to properly reconstruct repetitive sequences. The new approach was implemented and tested, as a demonstration of the capability of our software we present some results for model organisms. The new implementation, using a three-layer software architecture was selected, where the presentation layer, data processing layer, and data storage layer were kept separate. Source code as well as demo application with web interface and the additional data are available at project web-page: http://dnaasm.sourceforge.net.

  19. The impact of targeting repetitive BamHI-W sequences on the sensitivity and precision of EBV DNA quantification.

    Directory of Open Access Journals (Sweden)

    Armen Sanosyan

    Full Text Available Viral load monitoring and early Epstein-Barr virus (EBV DNA detection are essential in routine laboratory testing, especially in preemptive management of Post-transplant Lymphoproliferative Disorder. Targeting the repetitive BamHI-W sequence was shown to increase the sensitivity of EBV DNA quantification, but the variability of BamHI-W reiterations was suggested to be a source of quantification bias. We aimed to assess the extent of variability associated with BamHI-W PCR and its impact on the sensitivity of EBV DNA quantification using the 1st WHO international standard, EBV strains and clinical samples.Repetitive BamHI-W- and LMP2 single- sequences were amplified by in-house qPCRs and BXLF-1 sequence by a commercial assay (EBV R-gene™, BioMerieux. Linearity and limits of detection of in-house methods were assessed. The impact of repeated versus single target sequences on EBV DNA quantification precision was tested on B95.8 and Raji cell lines, possessing 11 and 7 copies of the BamHI-W sequence, respectively, and on clinical samples.BamHI-W qPCR demonstrated a lower limit of detection compared to LMP2 qPCR (2.33 log10 versus 3.08 log10 IU/mL; P = 0.0002. BamHI-W qPCR underestimated the EBV DNA load on Raji strain which contained fewer BamHI-W copies than the WHO standard derived from the B95.8 EBV strain (mean bias: - 0.21 log10; 95% CI, -0.54 to 0.12. Comparison of BamHI-W qPCR versus LMP2 and BXLF-1 qPCR showed an acceptable variability between EBV DNA levels in clinical samples with the mean bias being within 0.5 log10 IU/mL EBV DNA, whereas a better quantitative concordance was observed between LMP2 and BXLF-1 assays.Targeting BamHI-W resulted to a higher sensitivity compared to LMP2 but the variable reiterations of BamHI-W segment are associated with higher quantification variability. BamHI-W can be considered for clinical and therapeutic monitoring to detect an early EBV DNA and a dynamic change in viral load.

  20. The impact of targeting repetitive BamHI-W sequences on the sensitivity and precision of EBV DNA quantification.

    Science.gov (United States)

    Sanosyan, Armen; Fayd'herbe de Maudave, Alexis; Bollore, Karine; Zimmermann, Valérie; Foulongne, Vincent; Van de Perre, Philippe; Tuaillon, Edouard

    2017-01-01

    Viral load monitoring and early Epstein-Barr virus (EBV) DNA detection are essential in routine laboratory testing, especially in preemptive management of Post-transplant Lymphoproliferative Disorder. Targeting the repetitive BamHI-W sequence was shown to increase the sensitivity of EBV DNA quantification, but the variability of BamHI-W reiterations was suggested to be a source of quantification bias. We aimed to assess the extent of variability associated with BamHI-W PCR and its impact on the sensitivity of EBV DNA quantification using the 1st WHO international standard, EBV strains and clinical samples. Repetitive BamHI-W- and LMP2 single- sequences were amplified by in-house qPCRs and BXLF-1 sequence by a commercial assay (EBV R-gene™, BioMerieux). Linearity and limits of detection of in-house methods were assessed. The impact of repeated versus single target sequences on EBV DNA quantification precision was tested on B95.8 and Raji cell lines, possessing 11 and 7 copies of the BamHI-W sequence, respectively, and on clinical samples. BamHI-W qPCR demonstrated a lower limit of detection compared to LMP2 qPCR (2.33 log10 versus 3.08 log10 IU/mL; P = 0.0002). BamHI-W qPCR underestimated the EBV DNA load on Raji strain which contained fewer BamHI-W copies than the WHO standard derived from the B95.8 EBV strain (mean bias: - 0.21 log10; 95% CI, -0.54 to 0.12). Comparison of BamHI-W qPCR versus LMP2 and BXLF-1 qPCR showed an acceptable variability between EBV DNA levels in clinical samples with the mean bias being within 0.5 log10 IU/mL EBV DNA, whereas a better quantitative concordance was observed between LMP2 and BXLF-1 assays. Targeting BamHI-W resulted to a higher sensitivity compared to LMP2 but the variable reiterations of BamHI-W segment are associated with higher quantification variability. BamHI-W can be considered for clinical and therapeutic monitoring to detect an early EBV DNA and a dynamic change in viral load.

  1. Entropic fluctuations in DNA sequences

    Science.gov (United States)

    Thanos, Dimitrios; Li, Wentian; Provata, Astero

    2018-03-01

    The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.

  2. Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia

    Czech Academy of Sciences Publication Activity Database

    Macas, Jiří; Kejnovský, Eduard; Neumann, Pavel; Novák, Petr; Koblížková, Andrea; Vyskot, Boris

    2011-01-01

    Roč. 6, č. 11 (2011), e27335 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) OC10037; GA MŠk(CZ) LC06004; GA MŠk(CZ) LH11058; GA ČR(CZ) GAP501/10/0102; GA ČR(CZ) GAP305/10/0930 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50040702 Keywords : Plant genome * Sequencing-Based Analyses * Repetitive DNA * Silene latifolia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  3. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome.

    Science.gov (United States)

    Kolano, B; Gardunia, B W; Michalska, M; Bonifacio, A; Fairbanks, D; Maughan, P J; Coleman, C E; Stevens, M R; Jellen, E N; Maluszynska, J

    2011-09-01

    The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18-24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18-24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12-13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12-13P was very similar to GISH results, suggesting that the 12-13P sequence constitutes a major part of the repetitive DNA of C. quinoa.

  4. Location analysis for the estrogen receptor-α reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements

    Science.gov (United States)

    Mason, Christopher E.; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M.; Kallen, Roland G.; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B.

    2010-01-01

    Location analysis for estrogen receptor-α (ERα)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERα-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: ERE sequence. We demonstrate that ∼50% of all ERα-bound loci do not have a discernable ERE and show that most ERα-bound EREs are not perfect consensus EREs. Approximately one-third of all ERα-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERα-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERα binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers. PMID:20047966

  5. Location analysis for the estrogen receptor-alpha reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements.

    Science.gov (United States)

    Mason, Christopher E; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M; Kallen, Roland G; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B

    2010-04-01

    Location analysis for estrogen receptor-alpha (ERalpha)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERalpha-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: ERE sequence. We demonstrate that approximately 50% of all ERalpha-bound loci do not have a discernable ERE and show that most ERalpha-bound EREs are not perfect consensus EREs. Approximately one-third of all ERalpha-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERalpha-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERalpha binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.

  6. Karyotypic evolution and organization of the highly repetitive DNA sequences in the Japanese shrew-moles, Dymecodon pilirostris and Urotrichus talpoides.

    Science.gov (United States)

    Nakata, A; Yoshimura, A; Kuro-o, M; Obara, Y

    2005-01-01

    The karyological relationship and organization of highly repetitive DNA sequences in Japanese shrew-moles were studied by zoo-blot hybridization and fluorescence in situ hybridization (FISH). When the genomic DNA of the eastern race of Urotrichus talpoides was digested with PstI, three fragments of highly repetitive DNA sequences, approximately 0.7, 0.9, and 1.4 kb in length, were observed as distinct bands. The results of FISH in the eastern race of U. talpoides using these three fragments separately as probes showed that the 0.7-kb PstI fragment was distributed in the centromeric regions of most chromosomes, and that the 0.9- and 1.4-kb fragments were predominantly located in the C-heterochromatin region of chromosome 13p. Although the western race of U. talpoides also had three PstI fragments, 0.9- and 1.4-kb PstI fragments were more ambiguous than those of the eastern race. The PstI- digested genomic DNA in Dymecodonpilirostris produced only a faint 0.9-kb band, and its signal patterns obtained by zoo-blot hybridization were clearly different from those of U. talpoides. The 0.7-kb fragment of U. talpoides hybridized strongly with the 0.9-kb fragment of D. pilirostris. In a FISH analysis, the 0.9-kb fragment of D. pilirostris hybridized with highly repetitive DNA in the centromeric regions of most chromosomes from both D. pilirostris and U. talpoides. Zoo-blot hybridization and FISH analyses suggest that the 0.9- and 1.4-kb PstI fragments were generated specifically in the genome of U. talpoides after the common ancestor differentiated into two extant shrew-mole species. A difference in the length of the centromeric elements between U. talpoides and D. pilirostris might be observed due to certain modifications of the repeating unit.

  7. Analysis of repetitive DNA in chromosomes by flow cytometry

    NARCIS (Netherlands)

    Brind'Amour, Julie; Lansdorp, Peter M.

    We developed a flow cytometry method, chromosome flow fluorescence in situ hybridization (FISH), called CFF, to analyze repetitive DNA in chromosomes using FISH with directly labeled peptide nucleic acid (PNA) probes. We used CFF to measure the abundance of interstitial telomeric sequences in

  8. Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus

    NARCIS (Netherlands)

    Foulongne-Oriol, M.; Murat, C.; Castanera, R.; Ramírez, L.; Sonnenberg, A.S.M.

    2013-01-01

    Repetitive DNA elements are ubiquitous constituents of eukaryotic genomes. The biological roles of these repetitive elements, supposed to impact genome organization and evolution, are not completely elucidated yet. The availability of whole genome sequence offers the opportunity to draw a picture of

  9. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh

    Science.gov (United States)

    Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas

    2009-01-01

    Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal

  10. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Neumann, Pavel; Macas, Jiří

    2010-01-01

    Roč. 11, č. 1 (2010), s. 378-389 ISSN 1471-2105 R&D Projects: GA MŠk(CZ) OC10037; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50510513 Keywords : repetitive DNA * plant genome * next generation sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.028, year: 2010

  11. Analysis of T-DNA/Host-Plant DNA Junction Sequences in Single-Copy Transgenic Barley Lines

    Directory of Open Access Journals (Sweden)

    Joanne G. Bartlett

    2014-01-01

    Full Text Available Sequencing across the junction between an integrated transfer DNA (T-DNA and a host plant genome provides two important pieces of information. The junctions themselves provide information regarding the proportion of T-DNA which has integrated into the host plant genome, whilst the transgene flanking sequences can be used to study the local genetic environment of the integrated transgene. In addition, this information is important in the safety assessment of GM crops and essential for GM traceability. In this study, a detailed analysis was carried out on the right-border T-DNA junction sequences of single-copy independent transgenic barley lines. T-DNA truncations at the right-border were found to be relatively common and affected 33.3% of the lines. In addition, 14.3% of lines had rearranged construct sequence after the right border break-point. An in depth analysis of the host-plant flanking sequences revealed that a significant proportion of the T-DNAs integrated into or close to known repetitive elements. However, this integration into repetitive DNA did not have a negative effect on transgene expression.

  12. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts.

    Science.gov (United States)

    Trofimova, Irina; Krasikova, Alla

    2016-12-01

    Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.

  13. Characterization of Erwinia amylovora strains from different host plants using repetitive-sequences PCR analysis, and restriction fragment length polymorphism and short-sequence DNA repeats of plasmid pEA29.

    Science.gov (United States)

    Barionovi, D; Giorgi, S; Stoeger, A R; Ruppitsch, W; Scortichini, M

    2006-05-01

    The three main aims of the study were the assessment of the genetic relationship between a deviating Erwinia amylovora strain isolated from Amelanchier sp. (Maloideae) grown in Canada and other strains from Maloideae and Rosoideae, the investigation of the variability of the PstI fragment of the pEA29 plasmid using restriction fragment length polymorphism (RFLP) analysis and the determination of the number of short-sequence DNA repeats (SSR) by DNA sequence analysis in representative strains. Ninety-three strains obtained from 12 plant genera and different geographical locations were examined by repetitive-sequences PCR using Enterobacterial Repetitive Intergenic Consensus, BOX and Repetitive Extragenic Palindromic primer sets. Upon the unweighted pair group method with arithmetic mean analysis, a deviating strain from Amelanchier sp. was analysed using amplified ribosomal DNA restriction analysis (ARDRA) analysis and the sequencing of the 16S rDNA gene. This strain showed 99% similarity to other E. amylovora strains in the 16S gene and the same banding pattern with ARDRA. The RFLP analysis of pEA29 plasmid using MspI and Sau3A restriction enzymes showed a higher variability than that previously observed and no clear-cut grouping of the strains was possible. The number of SSR units reiterated two to 12 times. The strains obtained from pear orchards showing for the first time symptoms of fire blight had a low number of SSR units. The strains from Maloideae exhibit a wider genetic variability than previously thought. The RFLP analysis of a fragment of the pEA29 plasmid would not seem a reliable method for typing E. amylovora strains. A low number of SSR units was observed with first epidemics of fire blight. The current detection techniques are mainly based on the genetic similarities observed within the strains from the cultivated tree-fruit crops. For a more reliable detection of the fire blight pathogen also in wild and ornamentals Rosaceous plants the genetic

  14. Dispersed repetitive sequences in eukaryotic genomes and their possible biological significance

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Kramerov, D.A.; Ryskov, A.P.; Skryabin, K.G.; Lukanidin, E.M.

    1983-01-01

    In this paper is described the properties of a novel mouse mdg-like element, the A2 sequence, which is the most abundant repetitive sequence. We also characterized an ubiquitous B2 sequence that represents, after B1, the dominant family among the short interspersed repeats of the mouse genome. The existence of some putative transposition intermediates was shown for repeats of both A and B types of the mouse genome. These are closed circular DNA of the A type and small polyadenylated B + RNAs. The fundamental question that arises is whether these sequences are simply selfish DNA capable of transpositions or do they fulfill some useful biological functions within the genome. 66 references, 11 figures, 1 table

  15. Involvement of Disperse Repetitive Sequences in Wheat/Rye Genome Adjustment

    Directory of Open Access Journals (Sweden)

    Manuela Silva

    2012-07-01

    Full Text Available The union of different genomes in the same nucleus frequently results in hybrid genotypes with improved genome plasticity related to both genome remodeling events and changes in gene expression. Most modern cereal crops are polyploid species. Triticale, synthesized by the cross between wheat and rye, constitutes an excellent model to study polyploidization functional implications. We intend to attain a deeper knowledge of dispersed repetitive sequence involvement in parental genome reshuffle in triticale and in wheat-rye addition lines that have the entire wheat genome plus each rye chromosome pair. Through Random Amplified Polymorphic DNA (RAPD analysis with OPH20 10-mer primer we unraveled clear alterations corresponding to the loss of specific bands from both parental genomes. Moreover, the sequential nature of those events was revealed by the increased absence of rye-origin bands in wheat-rye addition lines in comparison with triticale. Remodeled band sequencing revealed that both repetitive and coding genome domains are affected in wheat-rye hybrid genotypes. Additionally, the amplification and sequencing of pSc20H internal segments showed that the disappearance of parental bands may result from restricted sequence alterations and unraveled the involvement of wheat/rye related repetitive sequences in genome adjustment needed for hybrid plant stabilization.

  16. Repetitive DNA in the pea (Pisum sativum L. genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Navrátilová Alice

    2007-11-01

    Full Text Available Abstract Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum. Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data

  17. Pericentric satellite DNA sequences in Pipistrellus pipistrellus (Vespertilionidae; Chiroptera).

    Science.gov (United States)

    Barragán, M J L; Martínez, S; Marchal, J A; Fernández, R; Bullejos, M; Díaz de la Guardia, R; Sánchez, A

    2003-09-01

    This paper reports the molecular and cytogenetic characterization of a HindIII family of satellite DNA in the bat species Pipistrellus pipistrellus. This satellite is organized in tandem repeats of 418 bp monomer units, and represents approximately 3% of the whole genome. The consensus sequence from five cloned monomer units has an A-T content of 62.20%. We have found differences in the ladder pattern of bands between two populations of the same species. These differences are probably because of the absence of the target sites for the HindIII enzyme in most monomer units of one population, but not in the other. Fluorescent in situ hybridization (FISH) localized the satellite DNA in the pericentromeric regions of all autosomes and the X chromosome, but it was absent from the Y chromosome. Digestion of genomic DNAs with HpaII and its isoschizomer MspI demonstrated that these repetitive DNA sequences are not methylated. Other bat species were tested for the presence of this repetitive DNA. It was absent in five Vespertilionidae and one Rhinolophidae species, indicating that it could be a species/genus specific, repetitive DNA family.

  18. Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae).

    Science.gov (United States)

    Mlinarec, Jelena; Chester, Mike; Siljak-Yakovlev, Sonja; Papes, Drazena; Leitch, Andrew R; Besendorfer, Visnja

    2009-01-01

    The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554-561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8-10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy approximately 10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.

  19. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae: emphasis in the organization of repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Gomes de Oliveira Sarah

    2012-11-01

    Full Text Available Abstract Background To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ hybridization (FISH mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like non-LTR transposable element (TE. Results The conventional analysis detected 3 individuals (among 50 analyzed carrying one small metacentric and mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was observed for the LOA-like element in the sex chromosomes. Conclusions The results indicate that the origin of the B chromosome is associated with the autosomal elements, as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin and evolution of the B chromosome in C. cyanescens.

  20. DNA Fingerprinting of Lactobacillus crispatus Strain CTV-05 by Repetitive Element Sequence-Based PCR Analysis in a Pilot Study of Vaginal Colonization

    OpenAIRE

    Antonio, May A. D.; Hillier, Sharon L.

    2003-01-01

    Lactobacillus crispatus is one of the predominant hydrogen peroxide (H2O2)-producing species found in the vagina and is under development as a probiotic for the treatment of bacterial vaginosis. In this study, we assessed whether DNA fingerprinting by repetitive element sequence-based PCR (rep-PCR) can be used to distinguish the capsule strain of L. crispatus (CTV-05) from other endogenous strains as well as other species of vaginal lactobacilli. Vaginal and rectal lactobacilli were identifie...

  1. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  2. S1 satellite DNA repetitive units display identical structure and overall variability in all Anatolian brown frog taxa.

    Science.gov (United States)

    Picariello, Orfeo; Feliciello, Isidoro; Chinali, Gianni

    2016-02-01

    S1 satellite DNA from Palearctic brown frogs has a species-specific structure in all European species. We characterized S1 satellite DNA from the Anatolian brown frogs Rana macrocnemis, R. camerani, and R. holtzi in order to define their taxonomic rank and the structure of this satellite in this frog lineage. Southern blots of genomic DNA digested with KpnI, EcoRV, NdeI, NheI, or StuI produced the same pattern of satellite DNA bands. Moreover, quantitative dot blots showed that this satellite DNA accounts for 0.1 % of the genome in all taxa. Analysis of the overall genomic variability of the S1a repeat sequence in specimens from various populations demonstrated that this repetitive unit also has the same size (476 bp), the same most common sequence (MCS) and the same overall variability in all three taxa, and also in R. macrocnemis tavasensis. The S1a repetitive unit presents three deletions of 9, 8 and 1 bp compared to the 494-bp S1a repeat from European frogs. The S1a MCS has three variable positions (sequence WWTK in positions 183-186), due to the presence of two repeat subpopulations with motifs AATG and WWTT in all taxa. Unlike previously analyzed mitochondrial and nuclear sequences that show considerable variations among these taxa, no difference could be detected in the structure and variability of the S1 satellite repetitive units. This suggests that these taxa should belong to a single species. Our results indicate that this satellite DNA variety probably formed when the Anatolian lineage radiated from common ancestor about 4 mya, and since then has maintained its structure in all four taxa examined.

  3. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping.

    Science.gov (United States)

    Zhang, Yunxia; Cheng, Chunyan; Li, Ji; Yang, Shuqiong; Wang, Yunzhu; Li, Ziang; Chen, Jinfeng; Lou, Qunfeng

    2015-09-25

    Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats. Chromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in

  4. Comparative Analysis of Repetitive DNA between the Main Vectors of Chagas Disease: Triatoma infestans and Rhodnius prolixus.

    Science.gov (United States)

    Pita, Sebastián; Mora, Pablo; Vela, Jesús; Palomeque, Teresa; Sánchez, Antonio; Panzera, Francisco; Lorite, Pedro

    2018-04-24

    Chagas disease or American trypanosomiasis affects six to seven million people worldwide, mostly in Latin America. This disease is transmitted by hematophagous insects known as "kissing bugs" (Hemiptera, Triatominae), with Triatoma infestans and Rhodnius prolixus being the two most important vector species. Despite the fact that both species present the same diploid chromosome number (2 n = 22), they have remarkable differences in their total DNA content, chromosome structure and genome organization. Variations in the DNA genome size are expected to be due to differences in the amount of repetitive DNA sequences. The T. infestans genome-wide analysis revealed the existence of 42 satellite DNA families. BLAST searches of these sequences against the R. prolixus genome assembly revealed that only four of these satellite DNA families are shared between both species, suggesting a great differentiation between the Triatoma and Rhodnius genomes. Fluorescence in situ hybridization (FISH) location of these repetitive DNAs in both species showed that they are dispersed on the euchromatic regions of all autosomes and the X chromosome. Regarding the Y chromosome, these common satellite DNAs are absent in T. infestans but they are present in the R. prolixus Y chromosome. These results support a different origin and/or evolution in the Y chromosome of both species.

  5. Next-generation sequencing detects repetitive elements expansion in giant genomes of annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae).

    Science.gov (United States)

    García, G; Ríos, N; Gutiérrez, V

    2015-06-01

    Among Neotropical fish fauna, the South American killifish genus Austrolebias (Cyprinodontiformes: Rivulidae) constitutes an excellent model to study the genomic evolutionary processes underlying speciation events. Recently, unusually large genome size has been described in 16 species of this genus, with an average DNA content of about 5.95 ± 0.45 pg per diploid cell (mean C-value of about 2.98 pg). In the present paper we explore the possible origin of this unparallel genomic increase by means of comparative analysis of the repetitive components using NGS (454-Roche) technology in the lowest and highest Rivulidae genomes. Here, we provide the first annotated Rivulidae-repeated sequences composition and their relative repetitive fraction in both genomes. Remarkably, the genomic proportion of the moderately repetitive DNA in Austrolebias charrua genome represents approximately twice (45%) of the repetitive components of the highly related rivulinae taxon Cynopoecilus melanotaenia (25%). Present work provides evidence about the impact of the repeat families that could be distinctly proliferated among sublineages within Rivulidae fish group, explaining the great genome size differences encompassing the differentiation and speciation events in this family.

  6. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L. and spelt (Triticum spelta L..

    Directory of Open Access Journals (Sweden)

    Klaudia Goriewa-Duba

    Full Text Available Fluorescent in situ hybridization (FISH relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines, to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  7. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.).

    Science.gov (United States)

    Goriewa-Duba, Klaudia; Duba, Adrian; Kwiatek, Michał; Wiśniewska, Halina; Wachowska, Urszula; Wiwart, Marian

    2018-01-01

    Fluorescent in situ hybridization (FISH) relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines), to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  8. Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in Solanum Species: Rapid Evolution of DNA Sequences Associated with Centromeres

    Czech Academy of Sciences Publication Activity Database

    Zhang, H.Q.; Koblížková, Andrea; Wang, K.; Gong, Z.Y.; Oliveira, L.; Torres, G.A.; Wu, Y.; Zhang, W.; Novák, Petr; Buell, C.R.; Macas, Jiří; Jiang, J.

    2014-01-01

    Roč. 26, č. 4 (2014), s. 1436-1447 ISSN 1040-4651 Institutional support: RVO:60077344 Keywords : Alpha-satellite DNA * repetitive sequences * rice centromeres Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.338, year: 2014

  9. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  10. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals

    Directory of Open Access Journals (Sweden)

    Reneker Jeff

    2005-05-01

    Full Text Available Abstract Background Searching for small tandem/disperse repetitive DNA sequences streamlines many biomedical research processes. For instance, whole genomic array analysis in yeast has revealed 22 PHO-regulated genes. The promoter regions of all but one of them contain at least one of the two core Pho4p binding sites, CACGTG and CACGTT. In humans, microsatellites play a role in a number of rare neurodegenerative diseases such as spinocerebellar ataxia type 1 (SCA1. SCA1 is a hereditary neurodegenerative disease caused by an expanded CAG repeat in the coding sequence of the gene. In bacterial pathogens, microsatellites are proposed to regulate expression of some virulence factors. For example, bacteria commonly generate intra-strain diversity through phase variation which is strongly associated with virulence determinants. A recent analysis of the complete sequences of the Helicobacter pylori strains 26695 and J99 has identified 46 putative phase-variable genes among the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Life scientists are increasingly interested in studying the function of small sequences of DNA. However, current search algorithms often generate thousands of matches – most of which are irrelevant to the researcher. Results We present our hash function as well as our search algorithm to locate small sequences of DNA within multiple genomes. Our system applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. We discuss our incorporation of the Gene Ontology (GO database into these algorithms. We conduct an exhaustive time analysis of our system for various repetitive sequence lengths. For instance, a search for eight bases of sequence within 3.224 GBases on 49 different chromosomes takes 1.147 seconds on average. To illustrate the relevance of the search results, we conduct a search with and without added annotation terms for the

  11. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Margaret L.; Tan, Frederick J.; Lai, David C.; Celniker, Sue E.; Hoskins, Roger A.; Dunham, Maitreya J.; Zheng, Yixian; Koshland, Douglas

    2010-08-27

    Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.

  12. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination.

    Directory of Open Access Journals (Sweden)

    Margaret L Hoang

    2010-12-01

    Full Text Available Genome rearrangements often result from non-allelic homologous recombination (NAHR between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.

  13. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing.

    Science.gov (United States)

    Hribová, Eva; Neumann, Pavel; Matsumoto, Takashi; Roux, Nicolas; Macas, Jirí; Dolezel, Jaroslav

    2010-09-16

    Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic

  14. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Directory of Open Access Journals (Sweden)

    Amanda Malvessi Cattani

    Full Text Available Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  15. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Science.gov (United States)

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  16. DNA Methylation Status of the Interspersed Repetitive Sequences for LINE-1, Alu, HERV-E, and HERV-K in Trabeculectomy Specimens from Glaucoma Eyes

    Directory of Open Access Journals (Sweden)

    Sunee Chansangpetch

    2018-01-01

    Full Text Available Background/Aims. Epigenetic mechanisms via DNA methylation may be related to glaucoma pathogenesis. This study aimed to determine the global DNA methylation level of the trabeculectomy specimens among patients with different types of glaucoma and normal subjects. Methods. Trabeculectomy sections from 16 primary open-angle glaucoma (POAG, 12 primary angle-closure glaucoma (PACG, 16 secondary glaucoma patients, and 10 normal controls were assessed for DNA methylation using combined-bisulfite restriction analysis. The percentage of global methylation level of the interspersed repetitive sequences for LINE-1, Alu, HERV-E, and HERV-K were compared between the 4 groups. Results. There were no significant differences in the methylation for LINE-1 and HERV-E between patients and normal controls. For the Alu marker, the methylation was significantly lower in all types of glaucoma patients compared to controls (POAG 52.19% versus control 52.83%, p=0.021; PACG 51.50% versus control, p=0.005; secondary glaucoma 51.95% versus control, p=0.014, whereas the methylation level of HERV-K was statistically higher in POAG patients compared to controls (POAG 49.22% versus control 48.09%, p=0.017. Conclusions. The trabeculectomy sections had relative DNA hypomethylation of Alu in all glaucoma subtypes and relative DNA hypermethylation of HERV-K in POAG patients. These methylation changes may lead to the fibrotic phenotype in the trabecular meshwork.

  17. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Neumann, Pavel; Pech, Jiří; Steinhaisl, J.; Macas, Jiří

    2013-01-01

    Roč. 29, č. 6 (2013), s. 792-793 ISSN 1367-4803 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) OC10037 Institutional support: RVO:60077344 Keywords : repetitiveDNA * computational analysis * next generation sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.621, year: 2013

  18. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus

    2007-11-01

    Full Text Available Abstract Background In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. Methods Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. Results An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1 on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. Conclusion Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as

  19. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Directory of Open Access Journals (Sweden)

    Can Alkan

    2007-09-01

    Full Text Available The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  20. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Science.gov (United States)

    Alkan, Can; Ventura, Mario; Archidiacono, Nicoletta; Rocchi, Mariano; Sahinalp, S Cenk; Eichler, Evan E

    2007-09-01

    The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  1. Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition

    Directory of Open Access Journals (Sweden)

    O'Brien Kimberly

    2008-06-01

    Full Text Available Abstract Background The Solanaceae family contains a number of important crop species including potato (Solanum tuberosum which is grown for its underground storage organ known as a tuber. Albeit the 4th most important food crop in the world, other than a collection of ~220,000 Expressed Sequence Tags, limited genomic sequence information is currently available for potato and advances in potato yield and nutrition content would be greatly assisted through access to a complete genome sequence. While morphologically diverse, Solanaceae species such as potato, tomato, pepper, and eggplant share not only genes but also gene order thereby permitting highly informative comparative genomic analyses. Results In this study, we report on analysis 89.9 Mb of potato genomic sequence representing 10.2% of the genome generated through end sequencing of a potato bacterial artificial chromosome (BAC clone library (87 Mb and sequencing of 22 potato BAC clones (2.9 Mb. The GC content of potato is very similar to Solanum lycopersicon (tomato and other dicotyledonous species yet distinct from the monocotyledonous grass species, Oryza sativa. Parallel analyses of repetitive sequences in potato and tomato revealed substantial differences in their abundance, 34.2% in potato versus 46.3% in tomato, which is consistent with the increased genome size per haploid genome of these two Solanum species. Specific classes and types of repetitive sequences were also differentially represented between these two species including a telomeric-related repetitive sequence, ribosomal DNA, and a number of unclassified repetitive sequences. Comparative analyses between tomato and potato at the gene level revealed a high level of conservation of gene content, genic feature, and gene order although discordances in synteny were observed. Conclusion Genomic level analyses of potato and tomato confirm that gene sequence and gene order are conserved between these solanaceous species and that

  2. Genomic Organization and Physical Mapping of Tandemly Arranged Repetitive DNAs in Sterlet (Acipenser ruthenus).

    Science.gov (United States)

    Biltueva, Larisa S; Prokopov, Dimitry Y; Makunin, Alexey I; Komissarov, Alexey S; Kudryavtseva, Anna V; Lemskaya, Natalya A; Vorobieva, Nadezhda V; Serdyukova, Natalia A; Romanenko, Svetlana A; Gladkikh, Olga L; Graphodatsky, Alexander S; Trifonov, Vladimir A

    2017-01-01

    Acipenseriformes represent a phylogenetically basal clade of ray-finned fish characterized by unusual genomic traits, including paleopolyploid states of extant genomes with high chromosome numbers and slow rates of molecular evolution. Despite a high interest in this fish group, only a limited number of studies have been accomplished on the isolation and characterization of repetitive DNA, karyotype standardization is not yet complete, and sex chromosomes are still to be identified. Here, we applied next-generation sequencing and cluster analysis to characterize major fractions of sterlet (Acipenser ruthenus) repetitive DNA. Using FISH, we mapped 16 tandemly arranged sequences on sterlet chromosomes and found them to be unevenly distributed in the genome with a tendency to cluster in particular regions. Some of the satellite DNAs might be used as specific markers to identify individual chromosomes and their paralogs, resulting in the unequivocal identification of at least 18 chromosome pairs. Our results provide an insight into the characteristic genomic distribution of the most common sterlet repetitive sequences. Biased accumulation of repetitive DNAs in particular chromosomes makes them especially interesting for further search for cryptic sex chromosomes. Future studies of these sequences in other acipenserid species will provide new perspectives regarding the evolution of repetitive DNA within the genomes of this fish order. © 2017 S. Karger AG, Basel.

  3. A dispersion-balanced Discrete Fourier Transform of repetitive pulse sequences using temporal Talbot effect

    Science.gov (United States)

    Fernández-Pousa, Carlos R.

    2017-11-01

    We propose a processor based on the concatenation of two fractional temporal Talbot dispersive lines with balanced dispersion to perform the DFT of a repetitive electrical sequence, for its use as a controlled source of optical pulse sequences. The electrical sequence is used to impart the amplitude and phase of a coherent train of optical pulses by use of a modulator placed between the two Talbot lines. The proposal has been built on a representation of the action of fractional Talbot effect on repetitive pulse sequences and a comparison with related results and proposals. It is shown that the proposed system is reconfigurable within a few repetition periods, has the same processing rate as the input optical pulse train, and requires the same technical complexity in terms of dispersion and pulse width as the standard, passive pulse-repetition rate multipliers based on fractional Talbot effect.

  4. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae.

    Science.gov (United States)

    Macas, Jiří; Novák, Petr; Pellicer, Jaume; Čížková, Jana; Koblížková, Andrea; Neumann, Pavel; Fuková, Iva; Doležel, Jaroslav; Kelly, Laura J; Leitch, Ilia J

    2015-01-01

    The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.

  5. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae.

    Directory of Open Access Journals (Sweden)

    Jiří Macas

    Full Text Available The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57% of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%. Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.

  6. Purification of High Molecular Weight Genomic DNA from Powdery Mildew for Long-Read Sequencing.

    Science.gov (United States)

    Feehan, Joanna M; Scheibel, Katherine E; Bourras, Salim; Underwood, William; Keller, Beat; Somerville, Shauna C

    2017-03-31

    The powdery mildew fungi are a group of economically important fungal plant pathogens. Relatively little is known about the molecular biology and genetics of these pathogens, in part due to a lack of well-developed genetic and genomic resources. These organisms have large, repetitive genomes, which have made genome sequencing and assembly prohibitively difficult. Here, we describe methods for the collection, extraction, purification and quality control assessment of high molecular weight genomic DNA from one powdery mildew species, Golovinomyces cichoracearum. The protocol described includes mechanical disruption of spores followed by an optimized phenol/chloroform genomic DNA extraction. A typical yield was 7 µg DNA per 150 mg conidia. The genomic DNA that is isolated using this procedure is suitable for long-read sequencing (i.e., > 48.5 kbp). Quality control measures to ensure the size, yield, and purity of the genomic DNA are also described in this method. Sequencing of the genomic DNA of the quality described here will allow for the assembly and comparison of multiple powdery mildew genomes, which in turn will lead to a better understanding and improved control of this agricultural pathogen.

  7. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    Science.gov (United States)

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  9. Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing.

    Science.gov (United States)

    Schwessinger, Benjamin; Rathjen, John P

    2017-01-01

    Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.

  10. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Koturbash, Igor, E-mail: ikoturbash@uams.edu [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Miousse, Isabelle R. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Sridharan, Vijayalakshmi [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne; Skinner, Charles M. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melnyk, Stepan B.; Pavliv, Oleksandra [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA 92354 (United States); Boerma, Marjan [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2016-05-15

    Highlights: • Radiation-induced dynamic changes in cardiac DNA methylation were detected. • Early LINE-1 hypomethylation was followed by hypermethylation at a later time-point. • Radiation affected one-carbon metabolism in the heart tissue. • Irradiation resulted in accumulation of satellite DNA mRNA transcripts. - Abstract: DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation—proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ({sup 56}Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or {sup 56}Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with {sup 56}Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and

  11. Diversity in non-repetitive human sequences not found in the reference genome.

    Science.gov (United States)

    Kehr, Birte; Helgadottir, Anna; Melsted, Pall; Jonsson, Hakon; Helgason, Hannes; Jonasdottir, Adalbjörg; Jonasdottir, Aslaug; Sigurdsson, Asgeir; Gylfason, Arnaldur; Halldorsson, Gisli H; Kristmundsdottir, Snaedis; Thorgeirsson, Gudmundur; Olafsson, Isleifur; Holm, Hilma; Thorsteinsdottir, Unnur; Sulem, Patrick; Helgason, Agnar; Gudbjartsson, Daniel F; Halldorsson, Bjarni V; Stefansson, Kari

    2017-04-01

    Genomes usually contain some non-repetitive sequences that are missing from the reference genome and occur only in a population subset. Such non-repetitive, non-reference (NRNR) sequences have remained largely unexplored in terms of their characterization and downstream analyses. Here we describe 3,791 breakpoint-resolved NRNR sequence variants called using PopIns from whole-genome sequence data of 15,219 Icelanders. We found that over 95% of the 244 NRNR sequences that are 200 bp or longer are present in chimpanzees, indicating that they are ancestral. Furthermore, 149 variant loci are in linkage disequilibrium (r 2 > 0.8) with a genome-wide association study (GWAS) catalog marker, suggesting disease relevance. Additionally, we report an association (P = 3.8 × 10 -8 , odds ratio (OR) = 0.92) with myocardial infarction (23,360 cases, 300,771 controls) for a 766-bp NRNR sequence variant. Our results underline the importance of including variation of all complexity levels when searching for variants that associate with disease.

  12. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    Science.gov (United States)

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  13. Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes.

    Science.gov (United States)

    Feschotte, Cédric; Keswani, Umeshkumar; Ranganathan, Nirmal; Guibotsy, Marcel L; Levine, David

    2009-07-23

    Eukaryotic genomes contain large amount of repetitive DNA, most of which is derived from transposable elements (TEs). Progress has been made to develop computational tools for ab initio identification of repeat families, but there is an urgent need to develop tools to automate the annotation of TEs in genome sequences. Here we introduce REPCLASS, a tool that automates the classification of TE sequences. Using control repeat libraries, we show that the program can classify accurately virtually any known TE types. Combining REPCLASS to ab initio repeat finding in the genomes of Caenorhabditis elegans and Drosophila melanogaster allowed us to recover the contrasting TE landscape characteristic of these species. Unexpectedly, REPCLASS also uncovered several novel TE families in both genomes, augmenting the TE repertoire of these model species. When applied to the genomes of distant Caenorhabditis and Drosophila species, the approach revealed a remarkable conservation of TE composition profile within each genus, despite substantial interspecific covariations in genome size and in the number of TEs and TE families. Lastly, we applied REPCLASS to analyze 10 fungal genomes from a wide taxonomic range, most of which have not been analyzed for TE content previously. The results showed that TE diversity varies widely across the fungi "kingdom" and appears to positively correlate with genome size, in particular for DNA transposons. Together, these data validate REPCLASS as a powerful tool to explore the repetitive DNA landscapes of eukaryotes and to shed light onto the evolutionary forces shaping TE diversity and genome architecture.

  14. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    Science.gov (United States)

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  15. Genomic organization and dynamics of repetitive DNA sequences in representatives of three Fagaceae genera.

    Science.gov (United States)

    Alves, Sofia; Ribeiro, Teresa; Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2012-05-01

    Oaks, chestnuts, and beeches are economically important species of the Fagaceae. To understand the relationship between these members of this family, a deep knowledge of their genome composition and organization is needed. In this work, we have isolated and characterized several AFLP fragments obtained from Quercus rotundifolia Lam. through homology searches in available databases. Genomic polymorphisms involving some of these sequences were evaluated in two species of Quercus, one of Castanea, and one of Fagus with specific primers. Comparative FISH analysis with generated sequences was performed in interphase nuclei of the four species, and the co-immunolocalization of 5-methylcytosine was also studied. Some of the sequences isolated proved to be genus-specific, while others were present in all the genera. Retroelements, either gypsy-like of the Tat/Athila clade or copia-like, are well represented, and most are dispersed in euchromatic regions of these species with no DNA methylation associated, pointing to an interspersed arrangement of these retroelements with potential gene-rich regions. A particular gypsy-sequence is dispersed in oaks and chestnut nuclei, but its confinement to chromocenters in beech evidences genome restructuring events during evolution of Fagaceae. Several sequences generated in this study proved to be good tools to comparatively study Fagaceae genome organization.

  16. Alignment of Escherichia coli K12 DNA sequences to a genomic restriction map.

    Science.gov (United States)

    Rudd, K E; Miller, W; Ostell, J; Benson, D A

    1990-01-25

    We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects.

  17. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    Directory of Open Access Journals (Sweden)

    Yandell Mark

    2010-07-01

    Full Text Available Abstract Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24. The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity elsewhere in the genome, but only 23% have identical copies (99% identity. The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is

  18. Deep Investigation of Arabidopsis thaliana Junk DNA Reveals a Continuum between Repetitive Elements and Genomic Dark Matter

    Science.gov (United States)

    Maumus, Florian; Quesneville, Hadi

    2014-01-01

    Eukaryotic genomes contain highly variable amounts of DNA with no apparent function. This so-called junk DNA is composed of two components: repeated and repeat-derived sequences (together referred to as the repeatome), and non-annotated sequences also known as genomic dark matter. Because of their high duplication rates as compared to other genomic features, transposable elements are predominant contributors to the repeatome and the products of their decay is thought to be a major source of genomic dark matter. Determining the origin and composition of junk DNA is thus important to help understanding genome evolution as well as host biology. In this study, we have used a combination of tools enabling to show that the repeatome from the small and reducing A. thaliana genome is significantly larger than previously thought. Furthermore, we present the concepts and results from a series of innovative approaches suggesting that a significant amount of the A. thaliana dark matter is of repetitive origin. As a tentative standard for the community, we propose a deep compendium annotation of the A. thaliana repeatome that may help addressing farther genome evolution as well as transcriptional and epigenetic regulation in this model plant. PMID:24709859

  19. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae).

    Science.gov (United States)

    Matsubara, Kazumi; Uno, Yoshinobu; Srikulnath, Kornsorn; Seki, Risako; Nishida, Chizuko; Matsuda, Yoichi

    2015-12-01

    Highly repetitive DNA sequences of the centromeric heterochromatin provide valuable molecular cytogenetic markers for the investigation of genomic compartmentalization in the macrochromosomes and microchromosomes of sauropsids. Here, the relationship between centromeric heterochromatin and karyotype evolution was examined using cloned repetitive DNA sequences from two snake species, the habu snake (Protobothrops flavoviridis, Crotalinae, Viperidae) and Burmese python (Python bivittatus, Pythonidae). Three satellite DNA (stDNA) families were isolated from the heterochromatin of these snakes: 168-bp PFL-MspI from P. flavoviridis and 196-bp PBI-DdeI and 174-bp PBI-MspI from P. bivittatus. The PFL-MspI and PBI-DdeI sequences were localized to the centromeric regions of most chromosomes in the respective species, suggesting that the two sequences were the major components of the centromeric heterochromatin in these organisms. The PBI-MspI sequence was localized to the pericentromeric region of four chromosome pairs. The PFL-MspI and the PBI-DdeI sequences were conserved only in the genome of closely related species, Gloydius blomhoffii (Crotalinae) and Python molurus, respectively, although their locations on the chromosomes were slightly different. In contrast, the PBI-MspI sequence was also in the genomes of P. molurus and Boa constrictor (Boidae), and additionally localized to the centromeric regions of eight chromosome pairs in B. constrictor, suggesting that this sequence originated in the genome of a common ancestor of Pythonidae and Boidae, approximately 86 million years ago. The three stDNA sequences showed no genomic compartmentalization between the macrochromosomes and microchromosomes, suggesting that homogenization of the centromeric and/or pericentromeric stDNA sequences occurred in the macrochromosomes and microchromosomes of these snakes.

  20. Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery

    Directory of Open Access Journals (Sweden)

    Kirkness Ewen

    2006-10-01

    Full Text Available Abstract Background Population genetic studies of dogs have so far mainly been based on analysis of mitochondrial DNA, describing only the history of female dogs. To get a picture of the male history, as well as a second independent marker, there is a need for studies of biallelic Y-chromosome polymorphisms. However, there are no biallelic polymorphisms reported, and only 3200 bp of non-repetitive dog Y-chromosome sequence deposited in GenBank, necessitating the identification of dog Y chromosome sequence and the search for polymorphisms therein. The genome has been only partially sequenced for one male dog, disallowing mapping of the sequence into specific chromosomes. However, by comparing the male genome sequence to the complete female dog genome sequence, candidate Y-chromosome sequence may be identified by exclusion. Results The male dog genome sequence was analysed by Blast search against the human genome to identify sequences with a best match to the human Y chromosome and to the female dog genome to identify those absent in the female genome. Candidate sequences were then tested for male specificity by PCR of five male and five female dogs. 32 sequences from the male genome, with a total length of 24 kbp, were identified as male specific, based on a match to the human Y chromosome, absence in the female dog genome and male specific PCR results. 14437 bp were then sequenced for 10 male dogs originating from Europe, Southwest Asia, Siberia, East Asia, Africa and America. Nine haplotypes were found, which were defined by 14 substitutions. The genetic distance between the haplotypes indicates that they originate from at least five wolf haplotypes. There was no obvious trend in the geographic distribution of the haplotypes. Conclusion We have identified 24159 bp of dog Y-chromosome sequence to be used for population genetic studies. We sequenced 14437 bp in a worldwide collection of dogs, identifying 14 SNPs for future SNP analyses, and

  1. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor

    Directory of Open Access Journals (Sweden)

    Hankus Lukasz

    2006-10-01

    Full Text Available Abstract Background Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases. Results We describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s, repeat sequences found in the query, and alignments. Conclusion Censor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at http://www.girinst.org/repbase/submission.html (RepbaseSubmitter and http://www.girinst.org/censor/index.php (Censor.

  2. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  3. "First generation" automated DNA sequencing technology.

    Science.gov (United States)

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  4. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development.

    Science.gov (United States)

    Sun, Cheng; Wyngaard, Grace; Walton, D Brian; Wichman, Holly A; Mueller, Rachel Lockridge

    2014-03-11

    Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.

  5. cDNA sequence quality data - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Budding yeast cDNA sequencing project cDNA sequence quality data Data detail Data name cDNA sequence quality... data DOI 10.18908/lsdba.nbdc00838-003 Description of data contents Phred's quality score. P...tion Download License Update History of This Database Site Policy | Contact Us cDNA sequence quality

  6. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  7. Local repeat sequence organization of an intergenic spacer

    Indian Academy of Sciences (India)

    The amplification yielded the same uniquely ``sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a ``unique” new sequence, had lost the repetitive organization of the template genome where it ...

  8. The Effects of Delayed Reinforcement on Variability and Repetition of Response Sequences

    Science.gov (United States)

    Odum, Amy L.; Ward, Ryan D.; Burke, K. Anne; Barnes, Christopher A.

    2006-01-01

    Four experiments examined the effects of delays to reinforcement on key peck sequences of pigeons maintained under multiple schedules of contingencies that produced variable or repetitive behavior. In Experiments 1, 2, and 4, in the repeat component only the sequence right-right-left-left earned food, and in the vary component four-response…

  9. Non-random alkylation of DNA sequences induced in vivo by chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Geri, C.; Bonatti, S.; Parenti, R. (Universita di Pisa (Italy))

    1989-08-01

    Previous studies of the interaction of alkylating agents on the eukaryotic genome support the idea that induction of DNA adducts is at specific genomic sites. Here we show molecular and cytological evidence that alkylation is rather specific. Mammalian cell cultures were exposed to different doses of mutagens and the DNA was analyzed by density gradient ultracentrifugation, hydroxylapatite fractionation, and by restriction enzyme analysis. Studies with the labelled mutagens N-ethyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine show that there is a non-random distribution of the adducts. The adducts are found more frequently in A-T, G-C rich satellite DNA and highly repetitive sequences. Analysis with restriction enzymes shows that both methyl and ethyl groups influence the restriction patterns of the enzymes HpaII and MspI that recognize specific endogenous DNA methylation. These data suggest, as a subsequent mechanism, a modification in the pattern of the normal endogenous methylation of 5-methylcytosine.

  10. Human tissue factor: cDNA sequence and chromosome localization of the gene

    International Nuclear Information System (INIS)

    Scarpati, E.M.; Wen, D.; Broze, G.J. Jr.; Miletich, J.P.; Flandermeyer, R.R.; Siegel, N.R.; Sadler, J.E.

    1987-01-01

    A human placenta cDNA library in λgt11 was screened for the expression of tissue factor antigens with rabbit polyclonal anti-human tissue factor immunoglobulin G. Among 4 million recombinant clones screened, one positive, λHTF8, expressed a protein that shared epitopes with authentic human brain tissue factor. The 1.1-kilobase cDNA insert of λHTF8 encoded a peptide that contained the amino-terminal protein sequence of human brain tissue factor. Northern blotting identified a major mRNA species of 2.2 kilobases and a minor species of ∼ 3.2 kilobases in poly(A) + RNA of placenta. Only 2.2-kilobase mRNA was detected in human brain and in the human monocytic U937 cell line. In U937 cells, the quantity of tissue factor mRNA was increased several fold by exposure of the cells to phorbol 12-myristate 13-acetate. Additional cDNA clones were selected by hybridization with the cDNA insert of λHTF8. These overlapping isolates span 2177 base pairs of the tissue factor cDNA sequence that includes a 5'-noncoding region of 75 base pairs, an open reading frame of 885 base pairs, a stop codon, a 3'-noncoding region of 1141 base pairs, and a poly(a) tail. The open reading frame encodes a 33-kilodalton protein of 295 amino acids. The predicted sequence includes a signal peptide of 32 or 34 amino acids, a probable extracellular factor VII binding domain of 217 or 219 amino acids, a transmembrane segment of 23 acids, and a cytoplasmic tail of 21 amino acids. There are three potential glycosylation sites with the sequence Asn-X-Thr/Ser. The 3'-noncoding region contains an inverted Alu family repetitive sequence. The tissue factor gene was localized to chromosome 1 by hybridization of the cDNA insert of λHTF8 to flow-sorted human chromosomes

  11. Long span DNA paired-end-tag (DNA-PET sequencing strategy for the interrogation of genomic structural mutations and fusion-point-guided reconstruction of amplicons.

    Directory of Open Access Journals (Sweden)

    Fei Yao

    Full Text Available Structural variations (SVs contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10-20 kb and compared their characteristics with short insert (1 kb libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.

  12. Rapid Multiplex Small DNA Sequencing on the MinION Nanopore Sequencing Platform

    Directory of Open Access Journals (Sweden)

    Shan Wei

    2018-05-01

    Full Text Available Real-time sequencing of short DNA reads has a wide variety of clinical and research applications including screening for mutations, target sequences and aneuploidy. We recently demonstrated that MinION, a nanopore-based DNA sequencing device the size of a USB drive, could be used for short-read DNA sequencing. In this study, an ultra-rapid multiplex library preparation and sequencing method for the MinION is presented and applied to accurately test normal diploid and aneuploidy samples’ genomic DNA in under three hours, including library preparation and sequencing. This novel method shows great promise as a clinical diagnostic test for applications requiring rapid short-read DNA sequencing.

  13. Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains

    Directory of Open Access Journals (Sweden)

    Bharti Arvind K

    2008-12-01

    Full Text Available Abstract Background Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR and methylation spanning linker libraries (MSLL. These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends. Results A large-scale study in maize generated 40,299 HMPR sequences and 80,723 MSLL sequences, including MSLL clones exceeding 100 kb. The paired end reads of MSLL and HMPR clones were shown to be effective in linking existing gene-rich sequences into scaffolds. In addition, it was shown that the MSLL clones can be used for anchoring these scaffolds to a BAC-based physical map. The MSLL end reads effectively identified epigenetic boundaries, as indicated by their preferential alignment to regions upstream and downstream from annotated genes. The ability to precisely map long stretches of fully methylated DNA sequence is a unique outcome of MSLL analysis, and was also shown to provide evidence for errors in gene identification. MSLL clones were observed to be significantly more repeat-rich in their interiors than in their end reads, confirming the correlation between methylation and retroelement content. Both MSLL and HMPR reads were found to be substantially gene-enriched, with the SalI MSLL libraries being the most highly enriched (31% align to an EST contig, while the HMPR clones exhibited exceptional depletion of repetitive DNA (to ~11%. These two techniques were compared with other gene-enrichment methods, and shown to be complementary. Conclusion MSLL technology provides an unparalleled approach for mapping the epigenetic status of repetitive blocks and for identifying sequences mis-identified as genes. Although the types and natures of

  14. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  15. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome.

    Science.gov (United States)

    Barghini, Elena; Natali, Lucia; Cossu, Rosa Maria; Giordani, Tommaso; Pindo, Massimo; Cattonaro, Federica; Scalabrin, Simone; Velasco, Riccardo; Morgante, Michele; Cavallini, Andrea

    2014-04-01

    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.

  16. Satellite DNA: An Evolving Topic.

    Science.gov (United States)

    Garrido-Ramos, Manuel A

    2017-09-18

    Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.

  17. Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes

    Science.gov (United States)

    Ni, Yanxiang; Cao, Bo; Ma, Tszshan; Niu, Gang; Huo, Yingdong; Huang, Jiandong; Chen, Danni; Liu, Yi; Yu, Bin; Zhang, Michael Q; Niu, Hanben

    2017-01-01

    High-resolution visualization of short non-repetitive DNA in situ in the nuclear genome is essential for studying looping interactions and chromatin organization in single cells. Recent advances in fluorescence in situ hybridization (FISH) using Oligopaint probes have enabled super-resolution imaging of genomic domains with a resolution limit of 4.9 kb. To target shorter elements, we developed a simple FISH method that uses molecular beacon (MB) probes to facilitate the probe-target binding, while minimizing non-specific fluorescence. We used three-dimensional stochastic optical reconstruction microscopy (3D-STORM) with optimized imaging conditions to efficiently distinguish sparsely distributed Alexa-647 from background cellular autofluorescence. Utilizing 3D-STORM and only 29–34 individual MB probes, we observed 3D fine-scale nanostructures of 2.5 kb integrated or endogenous unique DNA in situ in human or mouse genome, respectively. We demonstrated our MB-based FISH method was capable of visualizing the so far shortest non-repetitive genomic sequence in 3D at super-resolution. DOI: http://dx.doi.org/10.7554/eLife.21660.001 PMID:28485713

  18. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    Science.gov (United States)

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  19. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences-Influence of DNA Sequence and Topology.

    Science.gov (United States)

    Rackwitz, Jenny; Bald, Ilko

    2018-03-26

    During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG) 2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A) 2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT) 2 to 5'-(GGG ATT) 4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K + ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Is radon emission in caves causing deletions in satellite DNA sequences of cave-dwelling crickets?

    Directory of Open Access Journals (Sweden)

    Giuliana Allegrucci

    Full Text Available The most stable isotope of radon, 222Rn, represents the major source of natural radioactivity in confined environments such as mines, caves and houses. In this study, we explored the possible radon-related effects on the genome of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae sampled in caves with different concentrations of radon. We analyzed specimens from ten populations belonging to two genetically closely related species, D. geniculata and D. laetitiae, and explored the possible association between the radioactivity dose and the level of genetic polymorphism in a specific family of satellite DNA (pDo500 satDNA. Radon concentration in the analyzed caves ranged from 221 to 26,000 Bq/m3. Specimens coming from caves with the highest radon concentration showed also the highest variability estimates in both species, and the increased sequence heterogeneity at pDo500 satDNA level can be explained as an effect of the mutation pressure induced by radon in cave. We discovered a specific category of nuclear DNA, the highly repetitive satellite DNA, where the effects of the exposure at high levels of radon-related ionizing radiation are detectable, suggesting that the satDNA sequences might be a valuable tool to disclose harmful effects also in other organisms exposed to high levels of radon concentration.

  1. Genomic organization and developmental fate of adjacent repeated sequences in a foldback DNA clone of Tetrahymena thermophila

    International Nuclear Information System (INIS)

    Tschunko, A.H.; Loechel, R.H.; McLaren, N.C.; Allen, S.L.

    1987-01-01

    DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. Inverted repeated sequences were present in one clone. This clone, pTtFBl, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. DNA was labeled with [ 33 P]-labeled dATP. The authors found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat are totally eliminated during macronuclear development-and contain open reading frames. The significance of retained inverted repeats to the process of elimination is discussed

  2. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  3. A repetitive probe for FISH analysis of bovine interphase nuclei

    Directory of Open Access Journals (Sweden)

    Cribiu Edmond

    2000-03-01

    Full Text Available Abstract The purpose of this study was to generate repetitive DNA sequence probes for the analysis of interphase nuclei by fluorescent in situ hybridisation (FISH. Such probes are useful for the diagnosis of chromosomal abnormalities in bovine preimplanted embryos. Of the seven probes (E1A, E4A, Ba, H1A, W18, W22, W5 that were generated and partially sequenced, five corresponded to previously described Bos taurus repetitive DNA (E1A, E4A, Ba, W18, W5, one probe (W22 shared no homology with other DNA sequences and one (H1A displayed a significant homology with Rattus norvegicus mRNA for secretin receptor transmembrane domain 3. Fluorescent in situ hybridisation was performed on metaphase bovine fibroblast cells and showed that five of the seven probes hybridised most centromeres (E1A, E4A, Ba, W18, W22, one labelled the arms of all chromosomes (W5 and the H1A probe was specific to three chromosomes (ch14, ch20, and ch25. Moreover, FISH with H1A resulted in interpretable signals on interphase nuclei in 88% of the cases, while the other probes yielded only dispersed overlapping signals.

  4. Repetitive DNA: A Versatile Tool for Karyotyping in Festuca pratensis Huds

    Czech Academy of Sciences Publication Activity Database

    Křivánková, Anna; Kopecký, David; Stočes, Štěpán; Doležel, Jaroslav; Hřibová, Eva

    2017-01-01

    Roč. 151, č. 2 (2017), s. 96-105 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Fluorescence in situ hybridization * Karyotyping * Meadow fescue * Repetitive DNA * Tandem organized repeats Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.354, year: 2016

  5. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies.

    Science.gov (United States)

    Utturkar, Sagar M; Klingeman, Dawn M; Hurt, Richard A; Brown, Steven D

    2017-01-01

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.

  6. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Indik, Z.; Yeh, H.; Ornstein-goldstein, N.; Sheppard, P.; Anderson, N.; Rosenbloom, J.C.; Peltonen, L.; Rosenbloom, J.

    1987-01-01

    Poly(A) + RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  7. A novel constraint for thermodynamically designing DNA sequences.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap.

  8. Impact of repetitive DNA on sex chromosome evolution in plants

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Kubát, Z.; Čegan, R.; Jesionek, W.; Vyskot, B.; Kejnovský, E.

    2015-01-01

    Roč. 23, č. 3 (2015), s. 561-570 ISSN 0967-3849 R&D Projects: GA ČR GBP501/12/G090; GA ČR GAP501/12/2220 Institutional support: RVO:61389030 Keywords : repetitive sequences * transposable elements * tandem repeats (satellites) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.590, year: 2015

  9. Fractals in DNA sequence analysis

    Institute of Scientific and Technical Information of China (English)

    Yu Zu-Guo(喻祖国); Vo Anh; Gong Zhi-Min(龚志民); Long Shun-Chao(龙顺潮)

    2002-01-01

    Fractal methods have been successfully used to study many problems in physics, mathematics, engineering, finance,and even in biology. There has been an increasing interest in unravelling the mysteries of DNA; for example, how can we distinguish coding and noncoding sequences, and the problems of classification and evolution relationship of organisms are key problems in bioinformatics. Although much research has been carried out by taking into consideration the long-range correlations in DNA sequences, and the global fractal dimension has been used in these works by other people, the models and methods are somewhat rough and the results are not satisfactory. In recent years, our group has introduced a time series model (statistical point of view) and a visual representation (geometrical point of view)to DNA sequence analysis. We have also used fractal dimension, correlation dimension, the Hurst exponent and the dimension spectrum (multifractal analysis) to discuss problems in this field. In this paper, we introduce these fractal models and methods and the results of DNA sequence analysis.

  10. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    Science.gov (United States)

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  11. Fast and secure retrieval of DNA sequences

    NARCIS (Netherlands)

    2014-01-01

    Sequence models are retrieved from a sequences index. The sequence models model DNA or RNA sequences stored in a database, and each comprises a finite memory tree source model and parameters for the finite memory tree source model. One or more DNA or RNA sequences stored in the database are

  12. DNA sequencing conference, 2

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, R.M. [Georgetown Univ., Kennedy Inst. of Ethics, Washington, DC (United States); Venter, J.C. [National Inst. of Neurological Disorders and Strokes, Bethesda, MD (United States); Gilbert, W. [Harvard Univ., Cambridge, MA (United States); Mulligan, J. [Stanford Univ., CA (United States); Mansfield, B.K. [Oak Ridge National Lab., TN (United States)

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  13. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  14. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  15. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution.

    Science.gov (United States)

    Ishii, Satoshi; Sadowsky, Michael J

    2009-04-01

    A large number of repetitive DNA sequences are found in multiple sites in the genomes of numerous bacteria, archaea and eukarya. While the functions of many of these repetitive sequence elements are unknown, they have proven to be useful as the basis of several powerful tools for use in molecular diagnostics, medical microbiology, epidemiological analyses and environmental microbiology. The repetitive sequence-based PCR or rep-PCR DNA fingerprint technique uses primers targeting several of these repetitive elements and PCR to generate unique DNA profiles or 'fingerprints' of individual microbial strains. Although this technique has been extensively used to examine diversity among variety of prokaryotic microorganisms, rep-PCR DNA fingerprinting can also be applied to microbial ecology and microbial evolution studies since it has the power to distinguish microbes at the strain or isolate level. Recent advancement in rep-PCR methodology has resulted in increased accuracy, reproducibility and throughput. In this minireview, we summarize recent improvements in rep-PCR DNA fingerprinting methodology, and discuss its applications to address fundamentally important questions in microbial ecology and evolution.

  16. EGNAS: an exhaustive DNA sequence design algorithm

    Directory of Open Access Journals (Sweden)

    Kick Alfred

    2012-06-01

    Full Text Available Abstract Background The molecular recognition based on the complementary base pairing of deoxyribonucleic acid (DNA is the fundamental principle in the fields of genetics, DNA nanotechnology and DNA computing. We present an exhaustive DNA sequence design algorithm that allows to generate sets containing a maximum number of sequences with defined properties. EGNAS (Exhaustive Generation of Nucleic Acid Sequences offers the possibility of controlling both interstrand and intrastrand properties. The guanine-cytosine content can be adjusted. Sequences can be forced to start and end with guanine or cytosine. This option reduces the risk of “fraying” of DNA strands. It is possible to limit cross hybridizations of a defined length, and to adjust the uniqueness of sequences. Self-complementarity and hairpin structures of certain length can be avoided. Sequences and subsequences can optionally be forbidden. Furthermore, sequences can be designed to have minimum interactions with predefined strands and neighboring sequences. Results The algorithm is realized in a C++ program. TAG sequences can be generated and combined with primers for single-base extension reactions, which were described for multiplexed genotyping of single nucleotide polymorphisms. Thereby, possible foldback through intrastrand interaction of TAG-primer pairs can be limited. The design of sequences for specific attachment of molecular constructs to DNA origami is presented. Conclusions We developed a new software tool called EGNAS for the design of unique nucleic acid sequences. The presented exhaustive algorithm allows to generate greater sets of sequences than with previous software and equal constraints. EGNAS is freely available for noncommercial use at http://www.chm.tu-dresden.de/pc6/EGNAS.

  17. Sequence periodicity in nucleosomal DNA and intrinsic curvature.

    Science.gov (United States)

    Nair, T Murlidharan

    2010-05-17

    Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

  18. APE1 incision activity at abasic sites in tandem repeat sequences.

    Science.gov (United States)

    Li, Mengxia; Völker, Jens; Breslauer, Kenneth J; Wilson, David M

    2014-05-29

    Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains. Published by Elsevier Ltd.

  19. DNA sequence modeling based on context trees

    NARCIS (Netherlands)

    Kusters, C.J.; Ignatenko, T.; Roland, J.; Horlin, F.

    2015-01-01

    Genomic sequences contain instructions for protein and cell production. Therefore understanding and identification of biologically and functionally meaningful patterns in DNA sequences is of paramount importance. Modeling of DNA sequences in its turn can help to better understand and identify such

  20. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  1. Sequence of human protamine 2 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Domenjoud, L; Fronia, C; Uhde, F; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors report the cloning and sequencing of a cDNA clone for human protamine 2 (hp2), isolated from a human testis cDNA library cloned in the vector {lambda}-gt11. A 66mer oligonucleotide, that corresponds to an amino acid sequence which is highly conserved between hp2 and mouse protamine 2 (mp2) served as hybridization probe. The homology between the amino acid sequence deduced from our cDNA and the published amino acid sequence for hp2 is 100%.

  2. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  3. High-Throughput Block Optical DNA Sequence Identification.

    Science.gov (United States)

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

    Science.gov (United States)

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-09-05

    Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119,737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11,666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time

  5. Indices of methylation in sperm DNA from fertile men differ between distinct geographical regions

    DEFF Research Database (Denmark)

    Consales, C; Leter, G; Bonde, Jens Peter

    2014-01-01

    STUDY QUESTION: Which are the main determinants, if any, of sperm DNA methylation levels? SUMMARY ANSWER: Geographical region resulted associated with the sperm methylation status assessed on genome-wide repetitive sequences. WHAT IS KNOWN ALREADY: DNA methylation level, assessed on repetitive se...

  6. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  7. Whole-genome in-silico subtractive hybridization (WISH - using massive sequencing for the identification of unique and repetitive sex-specific sequences: the example of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Parrinello Hugues

    2010-06-01

    Full Text Available Abstract Background Emerging methods of massive sequencing that allow for rapid re-sequencing of entire genomes at comparably low cost are changing the way biological questions are addressed in many domains. Here we propose a novel method to compare two genomes (genome-to-genome comparison. We used this method to identify sex-specific sequences of the human blood fluke Schistosoma mansoni. Results Genomic DNA was extracted from male and female (heterogametic S. mansoni adults and sequenced with a Genome Analyzer (Illumina. Sequences are available at the NCBI sequence read archive http://www.ncbi.nlm.nih.gov/Traces/sra/ under study accession number SRA012151.6. Sequencing reads were aligned to the genome, and a pseudogenome composed of known repeats. Straightforward comparative bioinformatics analysis was performed to compare male and female schistosome genomes and identify female-specific sequences. We found that the S. mansoni female W chromosome contains only few specific unique sequences (950 Kb i.e. about 0.2% of the genome. The majority of W-specific sequences are repeats (10.5 Mb i.e. about 2.5% of the genome. Arbitrarily selected W-specific sequences were confirmed by PCR. Primers designed for unique and repetitive sequences allowed to reliably identify the sex of both larval and adult stages of the parasite. Conclusion Our genome-to-genome comparison method that we call "whole-genome in-silico subtractive hybridization" (WISH allows for rapid identification of sequences that are specific for a certain genotype (e.g. the heterogametic sex. It can in principle be used for the detection of any sequence differences between isolates (e.g. strains, pathovars or even closely related species.

  8. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases.

    Directory of Open Access Journals (Sweden)

    Julia Arand

    2012-06-01

    Full Text Available The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites. The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM to calculate the relative contribution of DNA methyltransferases (Dnmts for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.

  9. DNA Sequencing by Capillary Electrophoresis

    Science.gov (United States)

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  10. Amplification of a transcriptionally active DNA sequence in the human brain

    International Nuclear Information System (INIS)

    Yakovlev, A.G.; Sazonov, A.E.; Spunde, A.Ya.; Gindilis, V.M.

    1986-01-01

    The authors present their findings of tissue-specific amplification of a DNA fragment actively transcribed in the human brain. This genome fragment was found in the library complement of cDNA of the human brain and evidently belongs to a new class of moderate repetitions of DNA with an unstable copying capacity in the human genome. The authors isolated total cell RNA from various human tissues (brain, placenta), and rat tissues (brain, liver), by the method of hot phenol extraction with guanidine thiocynate. The poly(A + ) RNA fraction was isolated by chromatography. Synthesis of cDNA was done on a matrix of poly(A + ) RNA of human brain. The cDNA obtained was cloned in plasmid pBR322 for the PstI site using (dC/dG) sequences synthesized on the 3' ends of the vector molecule and cDNA respectively. In cloning 75 ng cDNA, the authors obtained approximately 10 5 recombinant. This library was analyzed by the hybridization method on columns with two radioactive ( 32 P) probes: the total cDNA preparation and the total nuclear DNA from the human brain. The number of copies of the cloned DNA fragment in the genome was determined by dot hybridization. Restricting fragments of human and rat DNA genomes homologous to the cloned cDNA were identified on radio-autographs. In each case, 10 micrograms of EcoRI DNA hydrolyzate was fractionated in 1% agarose gel. The probe was also readied with RNA samples fractionated in agarose gel with formaldehyde and transferred to a nitrocellulose filter under weak vacuum. The filter was hybridized with 0.1 micrograms DNA pAG 02, labeled with ( 32 P) to a specific activity of 0.5-1 x 10 9 counts/min x microgram. The autograph was exposed with amplifying screens at -70 0 C for 2 days

  11. Modulation of repetitive genes in the parent forms of heterozygous corn hybrids

    International Nuclear Information System (INIS)

    Gilyazetdinov, S.Ya.; Zimnitskii, A.N.; Yakhin, I.A.; Bikbaeva, E.S.

    1987-01-01

    The number of copies of the genes of high-molecular-weight rRNA, 5 S r RNA, and certain other families of repetitive sequences of DNA in the genome of different forms of corn is not coordinated but is stably inherited in the same strains. The authors present the results of their investigations into the repetition of the genes of tRNA, 5 S rRNA, histones, and the controlling element Ds of corn for the highly heterozygous hybrid Slava (VIR 44 x VIR 38), the medium-heterozygous hybrid Svetoch (VIR 40 x VIR 43), the low heterozygous hybrid Iskra (VIR 26 x VIR 27), and their parent strains. The relative content of these sequences was studied by the molecular hybridization of DNA immobilized on nitrocellulose filters with [ 125 I]tRNA labeled in vitro, 5 S rRNA, histone DNA of Drosophila, and the Ds-element of corn. The DNA preparations were isolated from the zones of the meristem (1.5-2mm), elongation (4-5mm), differentiation of the roots (3 cm), of 3-4 day seedlings, and from isolated embryos of 4 h and 24 h seedlings. The DNA of the embryos immobilized on the filters was preliminarily incubated with unlabeled high-molecular-weight rRNA in the experiments with tRNA and 5 S rRNA, while when histone DNA and the Ds element of corn were used in the hybridization reaction, it was preliminary incubated with plasmid DNA

  12. On site DNA barcoding by nanopore sequencing.

    Directory of Open Access Journals (Sweden)

    Michele Menegon

    Full Text Available Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet's biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities.

  13. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Directory of Open Access Journals (Sweden)

    Jason D Thompson

    Full Text Available Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  14. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Science.gov (United States)

    Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  15. Highly multiplexed targeted DNA sequencing from single nuclei.

    Science.gov (United States)

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  16. Regulation of rDNA stability by sumoylation

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2009-01-01

    Repair of DNA lesions by homologous recombination relies on the copying of genetic information from an intact homologous sequence. However, many eukaryotic genomes contain repetitive sequences such as the ribosomal gene locus (rDNA), which poses a risk for illegitimate recombination. Therefore, t......6 complex and sumoylation of Rad52, which directs DNA double-strand breaks in the rDNA to relocalize from within the nucleolus to the nucleoplasm before association with the recombination machinery. The relocalization before repair is important for maintaining rDNA stability. The focus...

  17. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    Directory of Open Access Journals (Sweden)

    Baldwin Stephen A

    2011-03-01

    Full Text Available Abstract Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  18. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities.

    Science.gov (United States)

    Troshin, Peter V; Postis, Vincent Lg; Ashworth, Denise; Baldwin, Stephen A; McPherson, Michael J; Barton, Geoffrey J

    2011-03-07

    Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  19. EVOLUTIONARY RELATIONSHIPS BETWEEN 4 SPECIES OF CLADOPHORA (CLADOPHORALES, CHLOROPHYTA) BASED ON DNA-DNA HYBRIDIZATION

    NARCIS (Netherlands)

    BOT, PVM; BRUSSAARD, CPD; STAM, WT; VANDENHOEK, C

    1991-01-01

    Analysis of the reassociation kinetics of the DNA from Cladophora pellucida (Huds.) Kutz. indicates that the genome of this benthic alga is comprised of approximately 75% repetitive sequences. Single-copy sequences reassociated with a rate constant of 1.8 x 10(-3) M-1.s-1, which corresponds to a

  20. DNA Replication Profiling Using Deep Sequencing.

    Science.gov (United States)

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  1. Effects of sequence on DNA wrapping around histones

    Science.gov (United States)

    Ortiz, Vanessa

    2011-03-01

    A central question in biophysics is whether the sequence of a DNA strand affects its mechanical properties. In epigenetics, these are thought to influence nucleosome positioning and gene expression. Theoretical and experimental attempts to answer this question have been hindered by an inability to directly resolve DNA structure and dynamics at the base-pair level. In our previous studies we used a detailed model of DNA to measure the effects of sequence on the stability of naked DNA under bending. Sequence was shown to influence DNA's ability to form kinks, which arise when certain motifs slide past others to form non-native contacts. Here, we have now included histone-DNA interactions to see if the results obtained for naked DNA are transferable to the problem of nucleosome positioning. Different DNA sequences interacting with the histone protein complex are studied, and their equilibrium and mechanical properties are compared among themselves and with the naked case. NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM T15LM007359).

  2. Molecular design of sequence specific DNA alkylating agents.

    Science.gov (United States)

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  3. Sequence analysis of Leukemia DNA

    Science.gov (United States)

    Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa

    2018-03-01

    Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.

  4. Reconstruction of putative DNA virus from endogenous rice tungro bacilliform virus-like sequences in the rice genome: implications for integration and evolution

    Directory of Open Access Journals (Sweden)

    Kishima Yuji

    2004-10-01

    Full Text Available Abstract Background Plant genomes contain various kinds of repetitive sequences such as transposable elements, microsatellites, tandem repeats and virus-like sequences. Most of them, with the exception of virus-like sequences, do not allow us to trace their origins nor to follow the process of their integration into the host genome. Recent discoveries of virus-like sequences in plant genomes led us to set the objective of elucidating the origin of the repetitive sequences. Endogenous rice tungro bacilliform virus (RTBV-like sequences (ERTBVs have been found throughout the rice genome. Here, we reconstructed putative virus structures from RTBV-like sequences in the rice genome and characterized to understand evolutionary implication, integration manner and involvements of endogenous virus segments in the corresponding disease response. Results We have collected ERTBVs from the rice genomes. They contain rearranged structures and no intact ORFs. The identified ERTBV segments were shown to be phylogenetically divided into three clusters. For each phylogenetic cluster, we were able to make a consensus alignment for a circular virus-like structure carrying two complete ORFs. Comparisons of DNA and amino acid sequences suggested the closely relationship between ERTBV and RTBV. The Oryza AA-genome species vary in the ERTBV copy number. The species carrying low-copy-number of ERTBV segments have been reported to be extremely susceptible to RTBV. The DNA methylation state of the ERTBV sequences was correlated with their copy number in the genome. Conclusions These ERTBV segments are unlikely to have functional potential as a virus. However, these sequences facilitate to establish putative virus that provided information underlying virus integration and evolutionary relationship with existing virus. Comparison of ERTBV among the Oryza AA-genome species allowed us to speculate a possible role of endogenous virus segments against its related disease.

  5. Multiple tag labeling method for DNA sequencing

    Science.gov (United States)

    Mathies, R.A.; Huang, X.C.; Quesada, M.A.

    1995-07-25

    A DNA sequencing method is described which uses single lane or channel electrophoresis. Sequencing fragments are separated in the lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radioisotope labels. 5 figs.

  6. Human Chromosome 7: DNA Sequence and Biology

    OpenAIRE

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.

    2003-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate gene...

  7. PREDICTION OF CHROMATIN STATES USING DNA SEQUENCE PROPERTIES

    KAUST Repository

    Bahabri, Rihab R.

    2013-06-01

    Activities of DNA are to a great extent controlled epigenetically through the internal struc- ture of chromatin. This structure is dynamic and is influenced by different modifications of histone proteins. Various combinations of epigenetic modification of histones pinpoint to different functional regions of the DNA determining the so-called chromatin states. How- ever, the characterization of chromatin states by the DNA sequence properties remains largely unknown. In this study we aim to explore whether DNA sequence patterns in the human genome can characterize different chromatin states. Using DNA sequence motifs we built binary classifiers for each chromatic state to eval- uate whether a given genomic sequence is a good candidate for belonging to a particular chromatin state. Of four classification algorithms (C4.5, Naive Bayes, Random Forest, and SVM) used for this purpose, the decision tree based classifiers (C4.5 and Random Forest) yielded best results among those we evaluated. Our results suggest that in general these models lack sufficient predictive power, although for four chromatin states (insulators, het- erochromatin, and two types of copy number variation) we found that presence of certain motifs in DNA sequences does imply an increased probability that such a sequence is one of these chromatin states.

  8. Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    Directory of Open Access Journals (Sweden)

    Huneau Cecile

    2009-09-01

    Full Text Available Abstract Background Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. Results The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs, 8.2% Spelt52 (namely, the subfamily Spelt52.2 and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0. Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Conclusion Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat

  9. Development of a recombinant DNA assay system for the detection of genetic change in astronauts' cells

    International Nuclear Information System (INIS)

    Atchley, S.V.; Chen, D.J.C.; Strniste, G.F.; Walters, R.A.; Moyzis, R.K.

    1984-01-01

    We are developing a new recombinant DNA system for the detection and measurement of genetic change in humans caused by exposure to low level ionizing radiation. A unique feature of the method is the use of cloned repetitive DNA probes to assay human DNA for structural changes during or after irradiation. Repetitive sequences exist in different families. Collectively they constitute over 25% of the DNA in a human cell. Repeat families have between 10 and 500,000 members. We have constructed repetitive DNA sequence libraries using recombinant DNA techniques. From these libraries we have isolated and characterized individual repeats comprising 75 to 90% of the mass of human repetitive DNA. Repeats used in our assay system exist in tandem arrays in the genome. Perturbation of these sequences in a cell, followed by detection with a repeat probe, produces a new, multimeric ''ladder'' pattern on an autoradiogram. The repeat probe used in our initial study is complementary to 1% of human DNA. Therefore, the sensitivity of this method is several orders of magnitude better than existing assays. Preliminary evidence from human skin cells exposed to acute, low-dose x-ray treatments indicates that DNA is affected at a dose as low as 5R. The radiation doses used in this system are well within the range of doses received by astronauts during spaceflight missions. Due to its small material requirements, this technique could easily be adapted for use in space. 16 refs., 1 fig

  10. Variation in extragenic repetitive DNA sequences in Pseudomonas syringae and potential use of modified REP primers in the identification of closely related isolates

    Directory of Open Access Journals (Sweden)

    Elif Çepni

    2012-01-01

    Full Text Available In this study, Pseudomonas syringe pathovars isolated from olive, tomato and bean were identified by species-specific PCR and their genetic diversity was assessed by repetitive extragenic palindromic (REP-PCR. Reverse universal primers for REP-PCR were designed by using the bases of A, T, G or C at the positions of 1, 4 and 11 to identify additional polymorphism in the banding patterns. Binding of the primers to different annealing sites in the genome revealed additional fingerprint patterns in eight isolates of P. savastanoi pv. savastanoi and two isolates of P. syringae pv. tomato. The use of four different bases in the primer sequences did not affect the PCR reproducibility and was very efficient in revealing intra-pathovar diversity, particularly in P. savastanoi pv. savastanoi. At the pathovar level, the primer BOX1AR yielded shared fragments, in addition to five bands that discriminated among the pathovars P. syringae pv. phaseolicola, P. savastanoi pv. savastanoi and P. syringae pv. tomato. REP-PCR with a modified primer containing C produced identical bands among the isolates in a pathovar but separated three pathovars more distinctly than four other primers. Although REP-and BOX-PCRs have been successfully used in the molecular identification of Pseudomonas isolates from Turkish flora, a PCR based on inter-enterobacterial repetitive intergenic concensus (ERIC sequences failed to produce clear banding patterns in this study.

  11. Googling DNA sequences on the World Wide Web.

    Science.gov (United States)

    Hajibabaei, Mehrdad; Singer, Gregory A C

    2009-11-10

    New web-based technologies provide an excellent opportunity for sharing and accessing information and using web as a platform for interaction and collaboration. Although several specialized tools are available for analyzing DNA sequence information, conventional web-based tools have not been utilized for bioinformatics applications. We have developed a novel algorithm and implemented it for searching species-specific genomic sequences, DNA barcodes, by using popular web-based methods such as Google. We developed an alignment independent character based algorithm based on dividing a sequence library (DNA barcodes) and query sequence to words. The actual search is conducted by conventional search tools such as freely available Google Desktop Search. We implemented our algorithm in two exemplar packages. We developed pre and post-processing software to provide customized input and output services, respectively. Our analysis of all publicly available DNA barcode sequences shows a high accuracy as well as rapid results. Our method makes use of conventional web-based technologies for specialized genetic data. It provides a robust and efficient solution for sequence search on the web. The integration of our search method for large-scale sequence libraries such as DNA barcodes provides an excellent web-based tool for accessing this information and linking it to other available categories of information on the web.

  12. Graphene nanodevices for DNA sequencing

    NARCIS (Netherlands)

    Heerema, S.J.; Dekker, C.

    2016-01-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with

  13. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  14. Gomphid DNA sequence data

    Data.gov (United States)

    U.S. Environmental Protection Agency — DNA sequence data for several genetic loci. This dataset is not publicly accessible because: It's already publicly available on GenBank. It can be accessed through...

  15. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA

    Directory of Open Access Journals (Sweden)

    Lee Robert W

    2009-03-01

    Full Text Available Abstract Background The magnitude of noncoding DNA in organelle genomes can vary significantly; it is argued that much of this variation is attributable to the dissemination of selfish DNA. The results of a previous study indicate that the mitochondrial DNA (mtDNA of the green alga Volvox carteri abounds with palindromic repeats, which appear to be selfish elements. We became interested in the evolution and distribution of these repeats when, during a cursory exploration of the V. carteri nuclear DNA (nucDNA and plastid DNA (ptDNA sequences, we found palindromic repeats with similar structural features to those of the mtDNA. Upon this discovery, we decided to investigate the diversity and evolutionary implications of these palindromic elements by sequencing and characterizing large portions of mtDNA and ptDNA and then comparing these data to the V. carteri draft nuclear genome sequence. Results We sequenced 30 and 420 kilobases (kb of the mitochondrial and plastid genomes of V. carteri, respectively – resulting in partial assemblies of these genomes. The mitochondrial genome is the most bloated green-algal mtDNA observed to date: ~61% of the sequence is noncoding, most of which is comprised of short palindromic repeats spread throughout the intergenic and intronic regions. The plastid genome is the largest (>420 kb and most expanded (>80% noncoding ptDNA sequence yet discovered, with a myriad of palindromic repeats in the noncoding regions, which have a similar size and secondary structure to those of the mtDNA. We found that 15 kb (~0.01% of the nuclear genome are homologous to the palindromic elements of the mtDNA, and 50 kb (~0.05% are homologous to those of the ptDNA. Conclusion Selfish elements in the form of short palindromic repeats have propagated in the V. carteri mtDNA and ptDNA, resulting in the distension of these genomes. Copies of these same repeats are also found in a small fraction of the nucDNA, but appear to be inert in this

  16. Characteristics of alternating current hopping conductivity in DNA sequences

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Wang Huan-You; Guo Rui

    2009-01-01

    This paper presents a model to describe alternating current (AC) conductivity of DNA sequences,in which DNA is considered as a one-dimensional (1D) disordered system,and electrons transport via hopping between localized states.It finds that AC conductivity in DNA sequences increases as the frequency of the external electric field rises,and it takes the form of σac(ω)~ω2 ln2(1/ω).Also AC conductivity of DNA sequences increases with the increase of temperature,this phenomenon presents characteristics of weak temperature-dependence.Meanwhile,the AC conductivity in an off diagonally correlated case is much larger than that in the uncorrelated case of the Anderson limit in low temperatures,which indicates that the off-diagonal correlations in DNA sequences have a great effect on the AC conductivity,while at high temperature the off-diagonal correlations no longer play a vital role in electric transport. In addition,the proportion of nucleotide pairs p also plays an important role in AC electron transport of DNA sequences.For p<0.5,the conductivity of DNA sequence decreases with the increase of p,while for p > 0.5,the conductivity increases with the increase of p.

  17. Hybridization change of DNA and nuclear RNA synthesized immediately after ionizing irradiation in spleen cells isolated from 615 mice

    International Nuclear Information System (INIS)

    Meng Ziqiang

    1986-01-01

    DNA hybridization with nuclear RNA(nRNA) synthesized immediately after 60 Co Gamma-irradiation in the spleen cells freshly isolated from inbred line 615 mice was investigated, using the technique of Gillespie and Spiegelman. In RNA/DNA hybridization percentage experiment, it was showed that the hybridization of normal DNA with labelled nRNA synthesized in irradiated cells reached the saturation point at a much faster rate than with labelled normal nRNA. The hybridization percentage of nRNA synthesized in irradiated cells was higher than that of normal nRNA during the different reaction time before the saturation point of DNA with nRNA synthesized in irradiated cells, but it was lower than that of normal nRNA after the zone of high repetitive DNA sequences was stimulated, however, the transcription of some base sequences in the zone of low repetitive DNA sequences was seriously inhibited. Measurements of the exhaustion rates of pulse-labelled nRNA were carried out as described by Greene and Flickinger Biochim. In these studies, pulse-labelled nRNA synthesized in unirradiated and irradiated cells were compared by exhausion with DNA at hybridization time of 4 or 24 hours, When the hybridization time was 4 hours, the nRNA synthesized in irradiated cells displayed a faster exhaustion rate than the control nRNA. But if the hybridization time was 24 hours, the exhaustion rate of nRNA synthesized in irradiated cells reduced. These results demostrated that Gamma-irradiation changed the proportion of transcription of some nRNA species and implayed that the sensitivities of the transcription activeties of the different repetitive DNA sequences to Gamma-irradiation were different, and so were the transcription activeties of the different base sequences in the same repetitive DNA sequences

  18. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    Science.gov (United States)

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  19. An extended sequence specificity for UV-induced DNA damage.

    Science.gov (United States)

    Chung, Long H; Murray, Vincent

    2018-01-01

    The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    DEFF Research Database (Denmark)

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie

    2014-01-01

    The electronic structure of DNA is determined by its nucleotide sequence, which is for instance exploited in molecular electronics. Here we demonstrate that also the DNA strand breakage induced by low-energy electrons (18 eV) depends on the nucleotide sequence. To determine the absolute cross sec...

  1. Evaluation of DNA bending models in their capacity to predict electrophoretic migration anomalies of satellite DNA sequences

    Czech Academy of Sciences Publication Activity Database

    Matyášek, Roman; Fulneček, Jaroslav; Kovařík, Aleš

    2013-01-01

    Roč. 34, č. 17 (2013), s. 2511-2521 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA206/09/1751; GA ČR(CZ) GAP501/10/0208; GA ČR(CZ) GA13-10057S Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : HIGHLY REPETITIVE DNA * DOUBLE-HELICAL DNA * CURVED DNA Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 3.161, year: 2013

  2. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes

    International Nuclear Information System (INIS)

    Joergensen, A.L.; Bostock, C.J.; Bak, A.L.

    1987-01-01

    The organization of alphoid repeated sequences on human nucleolus-organizing (NOR) chromosomes 13, 21, and 22 has been investigated. Analysis of hybridization of alphoid DNA probes to Southern transfers of restriction enzyme-digested DNA fragments from hybrid cells containing single human chromosomes shows that chromosomes 13 and 21 share one subfamily of alphoid repeats, whereas a different subfamily may be held in common by chromosomes 13 and 22. The sequences of cloned 680-base-pair EcoRI fragments of the alphoid DNA from chromosomes 13 and 21 show that the basic unit of this subfamily is indistinguishable on each chromosome. The sequence of cloned 1020-base-pair Xba I fragments from chromosome 22 is related to, but distinguishable from, that of the 680-base-pair EcoRI alphoid subfamily of chromosomes 13 and 21. These results suggest that, at some point after they originated and were homogenized, different subfamilies of alphoid sequences must have exchanged between chromosomes 13 and 21 and separately between chromosomes 13 and 22

  3. Characteristics of alternating current hopping conductivity in DNA sequences

    International Nuclear Information System (INIS)

    Song-Shan, Ma; Hui, Xu; Huan-You, Wang; Rui, Guo

    2009-01-01

    This paper presents a model to describe alternating current (AC) conductivity of DNA sequences, in which DNA is considered as a one-dimensional (1D) disordered system, and electrons transport via hopping between localized states. It finds that AC conductivity in DNA sequences increases as the frequency of the external electric field rises, and it takes the form of ø ac (ω) ∼ ω 2 ln 2 (1/ω). Also AC conductivity of DNA sequences increases with the increase of temperature, this phenomenon presents characteristics of weak temperature-dependence. Meanwhile, the AC conductivity in an off-diagonally correlated case is much larger than that in the uncorrelated case of the Anderson limit in low temperatures, which indicates that the off-diagonal correlations in DNA sequences have a great effect on the AC conductivity, while at high temperature the off-diagonal correlations no longer play a vital role in electric transport. In addition, the proportion of nucleotide pairs p also plays an important role in AC electron transport of DNA sequences. For p < 0.5, the conductivity of DNA sequence decreases with the increase of p, while for p ≥ 0.5, the conductivity increases with the increase of p. (cross-disciplinary physics and related areas of science and technology)

  4. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    Science.gov (United States)

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  5. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on Campylobacter spp

    NARCIS (Netherlands)

    Giesendorf, B A; Goossens, H; Niesters, H G; Van Belkum, A; Koeken, A; Endtz, H P; Stegeman, H; Quint, W G

    The applicability of polymerase chain reaction (PCR)-mediated DNA typing, with primers complementary to dispersed repetitive DNA sequences and arbitrarily chosen DNA motifs, to study the epidemiology of campylobacter infection was evaluated. With a single PCR reaction and simple gel electrophoresis,

  6. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing.

    Directory of Open Access Journals (Sweden)

    Alexander William Eastman

    2015-01-01

    Full Text Available Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing

  7. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  8. Rhipicephalus microplus strain Deutsch, 10 BAC clone sequences

    Science.gov (United States)

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. We used labeled DNA probes from the coding reg...

  9. Transcription of tandemly repetitive DNA: functional roles.

    Science.gov (United States)

    Biscotti, Maria Assunta; Canapa, Adriana; Forconi, Mariko; Olmo, Ettore; Barucca, Marco

    2015-09-01

    A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.

  10. Sequence-specific DNA alkylation by tandem Py-Im polyamide conjugates.

    Science.gov (United States)

    Taylor, Rhys Dylan; Kawamoto, Yusuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2014-09-01

    Tandem N-methylpyrrole-N-methylimidazole (Py-Im) polyamides with good sequence-specific DNA-alkylating activities have been designed and synthesized. Three alkylating tandem Py-Im polyamides with different linkers, which each contained the same moiety for the recognition of a 10 bp DNA sequence, were evaluated for their reactivity and selectivity by DNA alkylation, using high-resolution denaturing gel electrophoresis. All three conjugates displayed high reactivities for the target sequence. In particular, polyamide 1, which contained a β-alanine linker, displayed the most-selective sequence-specific alkylation towards the target 10 bp DNA sequence. The tandem Py-Im polyamide conjugates displayed greater sequence-specific DNA alkylation than conventional hairpin Py-Im polyamide conjugates (4 and 5). For further research, the design of tandem Py-Im polyamide conjugates could play an important role in targeting specific gene sequences. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biomolecule Sequencer: Next-Generation DNA Sequencing Technology for In-Flight Environmental Monitoring, Research, and Beyond

    Science.gov (United States)

    Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.

    2016-01-01

    On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human

  12. Identification of Meconopsis species by a DNA barcode sequence ...

    African Journals Online (AJOL)

    Deoxyribonucleic acid (DNA) barcoding is a novel technology that uses a standard DNA sequence to facilitate species identification. Species identification is necessary for the authentication of traditional plant based medicines. Although a consensus has not been agreed regarding which DNA sequences can be used as ...

  13. Levenshtein error-correcting barcodes for multiplexed DNA sequencing

    NARCIS (Netherlands)

    Buschmann, Tilo; Bystrykh, Leonid V.

    2013-01-01

    Background: High-throughput sequencing technologies are improving in quality, capacity and costs, providing versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can be mixed and loaded together on the same sequencing track. This so-called

  14. SWORDS: A statistical tool for analysing large DNA sequences

    Indian Academy of Sciences (India)

    Unknown

    These techniques are based on frequency distributions of DNA words in a large sequence, and have been packaged into a software called SWORDS. Using sequences available in ... tions with the cellular processes like recombination, replication .... in DNA sequences using certain specific probability laws. (Pevzner et al ...

  15. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  16. Identification and chromosome mapping of repetitive elements in the Astyanax scabripinnis (Teleostei: Characidae) species complex.

    Science.gov (United States)

    Barbosa, Patrícia; de Oliveira, Luiz Antonio; Pucci, Marcela Baer; Santos, Mateus Henrique; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo; Nogaroto, Viviane; de Almeida, Mara Cristina; Artoni, Roberto Ferreira

    2015-02-01

    Most part of the eukaryotic genome is composed of repeated sequences or multiple copies of DNA, which were considered as "junk DNA", and may be associated to the heterochromatin. In this study, three populations of Astyanax aff. scabripinnis from Brazilian rivers of Guaratinguetá and Pindamonhangaba (São Paulo) and a population from Maringá (Paraná) were analyzed concerning the localization of the nucleolar organizer regions (Ag-NORs), the As51 satellite DNA, the 18S ribosomal DNA (rDNA), and the 5S rDNA. Repeated sequences were also isolated and identified by the Cot - 1 method, which indicated similarity (90%) with the LINE UnaL2 retrotransposon. The fluorescence in situ hybridization (FISH) showed the retrotransposon dispersed and more concentrated markers in centromeric and telomeric chromosomal regions. These sequences were co-localized and interspaced with 18S and 5S rDNA and As51, confirmed by fiber-FISH essay. The B chromosome found in these populations pointed to a conspicuous hybridization with LINE probe, which is also co-located in As51 sequences. The NORs were active at unique sites of a homologous pair in the three populations. There were no evidences that transposable elements and repetitive DNA had influence in the transcriptional regulation of ribosomal genes in our analyses.

  17. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    Science.gov (United States)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  18. Interactions of rat repetitive sequence MspI8 with nuclear matrix proteins during spermatogenesis

    International Nuclear Information System (INIS)

    Rogolinski, J.; Widlak, P.; Rzeszowska-Wolny, J.

    1996-01-01

    Using the Southwestern blot analysis we have studied the interactions between rat repetitive sequence MspI8 and the nuclear matrix proteins of rats testis cells. Starting from 2 weeks the young to adult animal showed differences in type of testis nuclear matrix proteins recognizing the MspI8 sequence. The same sets of nuclear matrix proteins were detected in some enriched in spermatocytes and spermatids and obtained after fractionation of cells of adult animal by the velocity sedimentation technique. (author). 21 refs, 5 figs

  19. Genome organization and DNA methylation patterns of B chromosomes in the red fox and Chinese raccoon dogs.

    Science.gov (United States)

    Bugno-Poniewierska, Monika; Solek, Przemysław; Wronski, Mariusz; Potocki, Leszek; Jezewska-Witkowska, Grażyna; Wnuk, Maciej

    2014-12-01

    The molecular structure of B chromosomes (Bs) is relatively well studied. Previous research demonstrates that Bs of various species usually contain two types of repetitive DNA sequences, satellite DNA and ribosomal DNA, but Bs also contain genes encoding histone proteins and many others. However, many questions remain regarding the origin and function of these chromosomes. Here, we focused on the comparative cytogenetic characteristics of the red fox and Chinese raccoon dog B chromosomes with particular attention to the distribution of repetitive DNA sequences and their methylation status. We confirmed that the small Bs of the red fox show a typical fluorescent telomeric distal signal, whereas medium-sized Bs of the Chinese raccoon dog were characterized by clusters of telomeric sequences along their length. We also found different DNA methylation patterns for the B chromosomes of both species. Therefore, we concluded that DNA methylation may maintain the transcriptional inactivation of DNA sequences localized to B chromosomes and may prevent genetic unbalancing and several negative phenotypic effects. © 2014 The Authors.

  20. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats

    Directory of Open Access Journals (Sweden)

    Graner Andreas

    2008-10-01

    Full Text Available Abstract Background Barley has one of the largest and most complex genomes of all economically important food crops. The rise of new short read sequencing technologies such as Illumina/Solexa permits such large genomes to be effectively sampled at relatively low cost. Based on the corresponding sequence reads a Mathematically Defined Repeat (MDR index can be generated to map repetitive regions in genomic sequences. Results We have generated 574 Mbp of Illumina/Solexa sequences from barley total genomic DNA, representing about 10% of a genome equivalent. From these sequences we generated an MDR index which was then used to identify and mark repetitive regions in the barley genome. Comparison of the MDR plots with expert repeat annotation drawing on the information already available for known repetitive elements revealed a significant correspondence between the two methods. MDR-based annotation allowed for the identification of dozens of novel repeat sequences, though, which were not recognised by hand-annotation. The MDR data was also used to identify gene-containing regions by masking of repetitive sequences in eight de-novo sequenced bacterial artificial chromosome (BAC clones. For half of the identified candidate gene islands indeed gene sequences could be identified. MDR data were only of limited use, when mapped on genomic sequences from the closely related species Triticum monococcum as only a fraction of the repetitive sequences was recognised. Conclusion An MDR index for barley, which was obtained by whole-genome Illumina/Solexa sequencing, proved as efficient in repeat identification as manual expert annotation. Circumventing the labour-intensive step of producing a specific repeat library for expert annotation, an MDR index provides an elegant and efficient resource for the identification of repetitive and low-copy (i.e. potentially gene-containing sequences regions in uncharacterised genomic sequences. The restriction that a particular

  1. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

    Science.gov (United States)

    Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev

    2012-01-01

    B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350

  2. The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome

    International Nuclear Information System (INIS)

    Economou, E.P.; Bergen, A.W.; Warren, A.C.; Antonarakis, S.E.

    1990-01-01

    To identify DNA polymorphisms that are abundant in the human genome and are detectable by polymerase chain reaction amplification of genomic DNA, the authors hypothesize that the polydeoxyadenylate tract of the Alu family of repetitive elements is polymorphic among human chromosomes. Analysis of the 3' ends of three specific Alu sequences showed two occurrences, one in the adenosine deaminase gene and other in the β-globin pseudogene, were polymorphic. This novel class of polymorphism, termed AluVpA [Alu variable poly(A)] may represent one of the most useful and informative group of DNA markers in the human genome

  3. Automated methods for single-stranded DNA isolation and dideoxynucleotide DNA sequencing reactions on a robotic workstation

    International Nuclear Information System (INIS)

    Mardis, E.R.; Roe, B.A.

    1989-01-01

    Automated procedures have been developed for both the simultaneous isolation of 96 single-stranded M13 chimeric template DNAs in less than two hours, and for simultaneously pipetting 24 dideoxynucleotide sequencing reactions on a commercially available laboratory workstation. The DNA sequencing results obtained by either radiolabeled or fluorescent methods are consistent with the premise that automation of these portions of DNA sequencing projects will improve the reproducibility of the DNA isolation and the procedures for these normally labor-intensive steps provides an approach for rapid acquisition of large amounts of high quality, reproducible DNA sequence data

  4. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  5. Sequencing Intractable DNA to Close Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Jr., Richard Ashley [ORNL; Brown, Steven D [ORNL; Podar, Mircea [ORNL; Palumbo, Anthony Vito [ORNL; Elias, Dwayne A [ORNL

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled intractable resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such difficult regions in the non-contiguous finished Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. These developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  6. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation

  7. Recurrence plot analysis of DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zuobing [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: wuzb@lnm.imech.ac.cn

    2004-11-15

    Recurrence plot technique of DNA sequences is established on metric representation and employed to analyze correlation structure of nucleotide strings. It is found that, in the transference of nucleotide strings, a human DNA fragment has a major correlation distance, but a yeast chromosome's correlation distance has a constant increasing.

  8. cDNA cloning and sequencing of human fibrillarin, a conserved nucleolar protein recognized by autoimmune antisera

    International Nuclear Information System (INIS)

    Aris, J.P.; Blobel, G.

    1991-01-01

    The authors have isolated a 1.1-kilobase cDNA clone that encodes human fibrillarin by screening a hepatoma library in parallel with DNA probes derived from the fibrillarin genes of Saccharomyces cerevisiae (NOP1) and Xenopus laevis. RNA blot analysis indicates that the corresponding mRNA is ∼1,300 nucleotides in length. Human fibrillarin expressed in vitro migrates on SDS gels as a 36-kDa protein that is specifically immunoprecipitated by antisera from humans with scleroderma autoimmune disease. Human fibrillarin contains an amino-terminal repetitive domain ∼75-80 amino acids in length that is rich in glycine and arginine residues and is similar to amino-terminal domains in the yeast and Xenopus fibrillarins. The occurrence of a putative RNA-binding domain and an RNP consensus sequence within the protein is consistent with the association of fibrillarin with small nucleolar RNAs. Protein sequence alignments show that 67% of amino acids from human fibrillarin are identical to those in yeast fibrillarin and that 81% are identical to those in Xenopus fibrillarin. This identity suggests the evolutionary conservation of an important function early in the pathway for ribosome biosynthesis

  9. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    Science.gov (United States)

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  10. Chromatid interchanges at intrachromosomal telomeric DNA sequences

    International Nuclear Information System (INIS)

    Fernandez, J.L.; Vazquez-Gundin, F.; Bilbao, A.; Gosalvez, J.; Goyanes, V.

    1997-01-01

    Chinese hamster Don cells were exposed to X-rays, mitomycin C and teniposide (VM-26) to induce chromatid exchanges (quadriradials and triradials). After fluorescence in situ hybridization (FISH) of telomere sequences it was found that interstitial telomere-like DNA sequence arrays presented around five times more breakage-rearrangements than the genome overall. This high recombinogenic capacity was independent of the clastogen, suggesting that this susceptibility is not related to the initial mechanisms of DNA damage. (author)

  11. Development of a defined-sequence DNA system for use in DNA misrepair studies

    International Nuclear Information System (INIS)

    Sutton, S.; Tobias, C.A.

    1984-01-01

    The authors have developed a system that allows them to study cellular DNA repair processes at the molecular level. In particular, the authors are using this system to examine the consequences of a misrepair of radiation-induced DNA damage, as a function of dose. The cells being used are specially engineered haploid yeast cells. Maintained in the cells, at one copy per cell, is a cen plasmid, a plasmid that behaves like a functional chromosome. This plasmid carries a small defined sequence of DNA from the E. coli lac z gene. It is this lac z region (called the alpha region) that serves as the target for radiation damage. Two copies of the complimentary portion of the lac z gene are integrated into the yeast genome. Irradiated cells are screened for possible mutation in the alpha region by testing the cells' ability to hydrolyze xgal, a lactose substrate. The DNA of interest is then extracted from the cells, sequenced, and the sequence is compared to that of the control. Unlike the usual defined-sequence DNA systems, theirs is an in vivo system. A disadvantage is the relatively high background mutation rate. Results achieved with this system, as well as future applications, are discussed

  12. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae.

    Science.gov (United States)

    Lim, K Yoong; Kovarik, Ales; Matyasek, Roman; Chase, Mark W; Knapp, Sandra; McCarthy, Elizabeth; Clarkson, James J; Leitch, Andrew R

    2006-12-01

    Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.

  13. Adenoviral DNA replication: DNA sequences and enzymes required for initiation in vitro

    International Nuclear Information System (INIS)

    Stillman, B.W.; Tamanoi, F.

    1983-01-01

    In this paper evidence is provided that the 140,000-dalton DNA polymerase is encoded by the adenoviral genome and is required for the initiation of DNA replication in vitro. The DNA sequences in the template DNA that are required for the initiation of replication have also been identified, using both plasmid DNAs and synthetic oligodeoxyribonucleotides. 48 references, 7 figures, 1 table

  14. RANDNA: a random DNA sequence generator.

    Science.gov (United States)

    Piva, Francesco; Principato, Giovanni

    2006-01-01

    Monte Carlo simulations are useful to verify the significance of data. Genomic regularities, such as the nucleotide correlations or the not uniform distribution of the motifs throughout genomic or mature mRNA sequences, exist and their significance can be checked by means of the Monte Carlo test. The test needs good quality random sequences in order to work, moreover they should have the same nucleotide distribution as the sequences in which the regularities have been found. Random DNA sequences are also useful to estimate the background score of an alignment, that is a threshold below which the resulting score is merely due to chance. We have developed RANDNA, a free software which allows to produce random DNA or RNA sequences setting both their length and the percentage of nucleotide composition. Sequences having the same nucleotide distribution of exonic, intronic or intergenic sequences can be generated. Its graphic interface makes it possible to easily set the parameters that characterize the sequences being produced and saved in a text format file. The pseudo-random number generator function of Borland Delphi 6 is used, since it guarantees a good randomness, a long cycle length and a high speed. We have checked the quality of sequences generated by the software, by means of well-known tests, both by themselves and versus genuine random sequences. We show the good quality of the generated sequences. The software, complete with examples and documentation, is freely available to users from: http://www.introni.it/en/software.

  15. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia

    International Nuclear Information System (INIS)

    Matsunaga, S.; Kawano, S.; Michimoto, T.; Higashiyama, T.; Nakao, S.; Sakai, A.; Kuroiwa, T.

    1999-01-01

    Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but-hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes

  16. Google matrix analysis of DNA sequences.

    Science.gov (United States)

    Kandiah, Vivek; Shepelyansky, Dima L

    2013-01-01

    For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW). At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  17. Google matrix analysis of DNA sequences.

    Directory of Open Access Journals (Sweden)

    Vivek Kandiah

    Full Text Available For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW. At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  18. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads.

    Science.gov (United States)

    Novák, Petr; Ávila Robledillo, Laura; Koblížková, Andrea; Vrbová, Iva; Neumann, Pavel; Macas, Jirí

    2017-07-07

    Satellite DNA is one of the major classes of repetitive DNA, characterized by tandemly arranged repeat copies that form contiguous arrays up to megabases in length. This type of genomic organization makes satellite DNA difficult to assemble, which hampers characterization of satellite sequences by computational analysis of genomic contigs. Here, we present tandem repeat analyzer (TAREAN), a novel computational pipeline that circumvents this problem by detecting satellite repeats directly from unassembled short reads. The pipeline first employs graph-based sequence clustering to identify groups of reads that represent repetitive elements. Putative satellite repeats are subsequently detected by the presence of circular structures in their cluster graphs. Consensus sequences of repeat monomers are then reconstructed from the most frequent k-mers obtained by decomposing read sequences from corresponding clusters. The pipeline performance was successfully validated by analyzing low-pass genome sequencing data from five plant species where satellite DNA was previously experimentally characterized. Moreover, novel satellite repeats were predicted for the genome of Vicia faba and three of these repeats were verified by detecting their sequences on metaphase chromosomes using fluorescence in situ hybridization. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Chaos game representation (CGR)-walk model for DNA sequences

    International Nuclear Information System (INIS)

    Jie, Gao; Zhen-Yuan, Xu

    2009-01-01

    Chaos game representation (CGR) is an iterative mapping technique that processes sequences of units, such as nucleotides in a DNA sequence or amino acids in a protein, in order to determine the coordinates of their positions in a continuous space. This distribution of positions has two features: one is unique, and the other is source sequence that can be recovered from the coordinates so that the distance between positions may serve as a measure of similarity between the corresponding sequences. A CGR-walk model is proposed based on CGR coordinates for the DNA sequences. The CGR coordinates are converted into a time series, and a long-memory ARFIMA (p, d, q) model, where ARFIMA stands for autoregressive fractionally integrated moving average, is introduced into the DNA sequence analysis. This model is applied to simulating real CGR-walk sequence data of ten genomic sequences. Remarkably long-range correlations are uncovered in the data, and the results from these models are reasonably fitted with those from the ARFIMA (p, d, q) model. (cross-disciplinary physics and related areas of science and technology)

  20. Sequence-Dependent Diastereospecific and Diastereodivergent Crosslinking of DNA by Decarbamoylmitomycin C.

    Science.gov (United States)

    Aguilar, William; Paz, Manuel M; Vargas, Anayatzinc; Clement, Cristina C; Cheng, Shu-Yuan; Champeil, Elise

    2018-04-20

    Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Assessing the fidelity of ancient DNA sequences amplified from nuclear genes

    DEFF Research Database (Denmark)

    Binladen, Jonas; Wiuf, Carsten Henrik; Gilbert, M. Thomas P.

    2006-01-01

    To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved...... in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from...... adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nu...

  2. Thermodynamics of sequence-specific binding of PNA to DNA

    DEFF Research Database (Denmark)

    Ratilainen, T; Holmén, A; Tuite, E

    2000-01-01

    For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and seq......For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes...

  3. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress.

    Science.gov (United States)

    Chastain, Megan; Zhou, Qing; Shiva, Olga; Fadri-Moskwik, Maria; Whitmore, Leanne; Jia, Pingping; Dai, Xueyu; Huang, Chenhui; Ye, Ping; Chai, Weihang

    2016-08-02

    The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Next-generation sequencing offers new insights into DNA degradation

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Orlando, Ludovic Antoine Alexandre; Willerslev, Eske

    2012-01-01

    The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation...... rates that previously were obtained only from extrapolations of results from in vitro kinetic experiments performed over short timescales. For example, recent next-generation sequencing of ancient DNA reveals purine bases as one of the main targets of postmortem hydrolytic damage, through base...... elimination and strand breakage. It also shows substantially increased rates of DNA base-loss at guanosine. In this review, we argue that the latter results from an electron resonance structure unique to guanosine rather than adenosine having an extra resonance structure over guanosine as previously suggested....

  5. Enhanced throughput for infrared automated DNA sequencing

    Science.gov (United States)

    Middendorf, Lyle R.; Gartside, Bill O.; Humphrey, Pat G.; Roemer, Stephen C.; Sorensen, David R.; Steffens, David L.; Sutter, Scott L.

    1995-04-01

    Several enhancements have been developed and applied to infrared automated DNA sequencing resulting in significantly higher throughput. A 41 cm sequencing gel (31 cm well- to-read distance) combines high resolution of DNA sequencing fragments with optimized run times yielding two runs per day of 500 bases per sample. A 66 cm sequencing gel (56 cm well-to-read distance) produces sequence read lengths of up to 1000 bases for ds and ss templates using either T7 polymerase or cycle-sequencing protocols. Using a multichannel syringe to load 64 lanes allows 16 samples (compatible with 96-well format) to be visualized for each run. The 41 cm gel configuration allows 16,000 bases per day (16 samples X 500 bases/sample X 2 ten hour runs/day) to be sequenced with the advantages of infrared technology. Enhancements to internal labeling techniques using an infrared-labeled dATP molecule (Boehringer Mannheim GmbH, Penzberg, Germany; Sequenase (U.S. Biochemical) have also been made. The inclusion of glycerol in the sequencing reactions yields greatly improved results for some primer and template combinations. The inclusion of (alpha) -Thio-dNTP's in the labeling reaction increases signal intensity two- to three-fold.

  6. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    Science.gov (United States)

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR.

  7. DNA fingerprints come to court

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    DNA fingerprinting, a new technique, which produces a visual representation of a person's genome, enables the identification of perpetrators from as little as a single hair root, providing they have left some biologic evidence-hair, skin cells, blood, or semen-at the scene of the crime. DNA fingerprinting was developed by British geneticist Alec Jeffreys, PhD, in 1985. Jeffreys, professor genetics at the University of Leicester, built upon a discovery, five years earlier, of certain hypervariable regions called minisatellites in unexpressed areas of DNA. The hypervariability was evidenced in the number of repetitions of certain sequences of base pairs. It was this aspect that revealed to Jeffreys something that had eluded other investigators. He realized that these minisatellite regions had a potential for identification far greater than that of conventional genetic markers, which are defined by restriction fragment length polymorphisms (RFLPs). RFLPs are characterized by the substitution of one base pair for another, resulting in the presence or absence of a restriction enzyme site. Thus, each offers a limited number of alleles. In contrast, minisatellite regions have an accordion-like range of length, as the number of repetitions of a given sequence varies widely from person to person

  8. DNA-PK dependent targeting of DNA-ends to a protein complex assembled on matrix attachment region DNA sequences

    International Nuclear Information System (INIS)

    Mauldin, S.K.; Getts, R.C.; Perez, M.L.; DiRienzo, S.; Stamato, T.D.

    2003-01-01

    Full text: We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end-binding was observed. Calculation of relative binding activities indicates that DNA-end binding activities to MAR sequences was 7 to 21 fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV, scaffold attachment factor A, topoisomerase II, and poly(ADP-ribose) polymerase preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends. After electroporation of a 32P-labeled DNA probe into human cells and cell fractionation, 87% of the total intercellular radioactivity remained in nuclei after a 0.5M NaCl extraction suggesting the probe was strongly bound in the nucleus. The above observations raise the possibility that DNA-PK targets DNA-ends to a repair and/or DNA damage signaling complex which is assembled on MAR sites in the nucleus

  9. Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species.

    Science.gov (United States)

    Huh, Iksoo; Wu, Xin; Park, Taesung; Yi, Soojin V

    2017-07-21

    DNA methylation is one of the most extensively studied epigenetic modifications of genomic DNA. In recent years, sequencing of bisulfite-converted DNA, particularly via next-generation sequencing technologies, has become a widely popular method to study DNA methylation. This method can be readily applied to a variety of species, dramatically expanding the scope of DNA methylation studies beyond the traditionally studied human and mouse systems. In parallel to the increasing wealth of genomic methylation profiles, many statistical tools have been developed to detect differentially methylated loci (DMLs) or differentially methylated regions (DMRs) between biological conditions. We discuss and summarize several key properties of currently available tools to detect DMLs and DMRs from sequencing of bisulfite-converted DNA. However, the majority of the statistical tools developed for DML/DMR analyses have been validated using only mammalian data sets, and less priority has been placed on the analyses of invertebrate or plant DNA methylation data. We demonstrate that genomic methylation profiles of non-mammalian species are often highly distinct from those of mammalian species using examples of honey bees and humans. We then discuss how such differences in data properties may affect statistical analyses. Based on these differences, we provide three specific recommendations to improve the power and accuracy of DML and DMR analyses of invertebrate data when using currently available statistical tools. These considerations should facilitate systematic and robust analyses of DNA methylation from diverse species, thus advancing our understanding of DNA methylation. © The Author 2017. Published by Oxford University Press.

  10. Next Generation DNA Sequencing and the Future of Genomic Medicine

    OpenAIRE

    Anderson, Matthew W.; Schrijver, Iris

    2010-01-01

    In the years since the first complete human genome sequence was reported, there has been a rapid development of technologies to facilitate high-throughput sequence analysis of DNA (termed “next-generation” sequencing). These novel approaches to DNA sequencing offer the promise of complete genomic analysis at a cost feasible for routine clinical diagnostics. However, the ability to more thoroughly interrogate genomic sequence raises a number of important issues with regard to result interpreta...

  11. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects.

    Science.gov (United States)

    Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen

    2015-04-15

    In order to develop powerful computational predictors for identifying the biological features or attributes of DNAs, one of the most challenging problems is to find a suitable approach to effectively represent the DNA sequences. To facilitate the studies of DNAs and nucleotides, we developed a Python package called representations of DNAs (repDNA) for generating the widely used features reflecting the physicochemical properties and sequence-order effects of DNAs and nucleotides. There are three feature groups composed of 15 features. The first group calculates three nucleic acid composition features describing the local sequence information by means of kmers; the second group calculates six autocorrelation features describing the level of correlation between two oligonucleotides along a DNA sequence in terms of their specific physicochemical properties; the third group calculates six pseudo nucleotide composition features, which can be used to represent a DNA sequence with a discrete model or vector yet still keep considerable sequence-order information via the physicochemical properties of its constituent oligonucleotides. In addition, these features can be easily calculated based on both the built-in and user-defined properties via using repDNA. The repDNA Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repDNA/. bliu@insun.hit.edu.cn or kcchou@gordonlifescience.org Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Next Generation Sequencing of Ancient DNA: Requirements, Strategies and Perspectives

    Directory of Open Access Journals (Sweden)

    Michael Knapp

    2010-07-01

    Full Text Available The invention of next-generation-sequencing has revolutionized almost all fields of genetics, but few have profited from it as much as the field of ancient DNA research. From its beginnings as an interesting but rather marginal discipline, ancient DNA research is now on its way into the centre of evolutionary biology. In less than a year from its invention next-generation-sequencing had increased the amount of DNA sequence data available from extinct organisms by several orders of magnitude. Ancient DNA  research is now not only adding a temporal aspect to evolutionary studies and allowing for the observation of evolution in real time, it also provides important data to help understand the origins of our own species. Here we review progress that has been made in next-generation-sequencing of ancient DNA over the past five years and evaluate sequencing strategies and future directions.

  13. Application of Quaternion in improving the quality of global sequence alignment scores for an ambiguous sequence target in Streptococcus pneumoniae DNA

    Science.gov (United States)

    Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.

    2017-07-01

    DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.

  14. DNA watermarks in non-coding regulatory sequences

    Directory of Open Access Journals (Sweden)

    Pyka Martin

    2009-07-01

    Full Text Available Abstract Background DNA watermarks can be applied to identify the unauthorized use of genetically modified organisms. It has been shown that coding regions can be used to encrypt information into living organisms by using the DNA-Crypt algorithm. Yet, if the sequence of interest presents a non-coding DNA sequence, either the function of a resulting functional RNA molecule or a regulatory sequence, such as a promoter, could be affected. For our studies we used the small cytoplasmic RNA 1 in yeast and the lac promoter region of Escherichia coli. Findings The lac promoter was deactivated by the integrated watermark. In addition, the RNA molecules displayed altered configurations after introducing a watermark, but surprisingly were functionally intact, which has been verified by analyzing the growth characteristics of both wild type and watermarked scR1 transformed yeast cells. In a third approach we introduced a second overlapping watermark into the lac promoter, which did not affect the promoter activity. Conclusion Even though the watermarked RNA and one of the watermarked promoters did not show any significant differences compared to the wild type RNA and wild type promoter region, respectively, it cannot be generalized that other RNA molecules or regulatory sequences behave accordingly. Therefore, we do not recommend integrating watermark sequences into regulatory regions.

  15. Mitochondrial DNA sequence evolution in shorebird populations

    NARCIS (Netherlands)

    Wenink, P.W.

    1994-01-01

    This thesis describes the global molecular population structure of two shorebird species, in particular of the dunlin, Calidris alpina, by means of comparative sequence analysis of the most variable part of the mitochondrial DNA (mtDNA) genome. There are several reasons

  16. Anaplasma phagocytophilum in Danish sheep: confirmation by DNA sequencing

    Directory of Open Access Journals (Sweden)

    Thamsborg Stig M

    2009-12-01

    Full Text Available Abstract Background The presence of Anaplasma phagocytophilum, an Ixodes ricinus transmitted bacterium, was investigated in two flocks of Danish grazing lambs. Direct PCR detection was performed on DNA extracted from blood and serum with subsequent confirmation by DNA sequencing. Methods 31 samples obtained from clinically normal lambs in 2000 from Fussingø, Jutland and 12 samples from ten lambs and two ewes from a clinical outbreak at Feddet, Zealand in 2006 were included in the study. Some of the animals from Feddet had shown clinical signs of polyarthritis and general unthriftiness prior to sampling. DNA extraction was optimized from blood and serum and detection achieved by a 16S rRNA targeted PCR with verification of the product by DNA sequencing. Results Five DNA extracts were found positive by PCR, including two samples from 2000 and three from 2006. For both series of samples the product was verified as A. phagocytophilum by DNA sequencing. Conclusions A. phagocytophilum was detected by molecular methods for the first time in Danish grazing lambs during the two seasons investigated (2000 and 2006.

  17. Isolation of a sex-linked DNA sequence in cranes.

    Science.gov (United States)

    Duan, W; Fuerst, P A

    2001-01-01

    A female-specific DNA fragment (CSL-W; crane sex-linked DNA on W chromosome) was cloned from female whooping cranes (Grus americana). From the nucleotide sequence of CSL-W, a set of polymerase chain reaction (PCR) primers was identified which amplify a 227-230 bp female-specific fragment from all existing crane species and some other noncrane species. A duplicated versions of the DNA segment, which is found to have a larger size (231-235 bp) than CSL-W in both sexes, was also identified, and was designated CSL-NW (crane sex-linked DNA on non-W chromosome). The nucleotide similarity between the sequences of CSL-W and CSL-NW from whooping cranes was 86.3%. The CSL primers do not amplify any sequence from mammalian DNA, limiting the potential for contamination from human sources. Using the CSL primers in combination with a quick DNA extraction method allows the noninvasive identification of crane gender in less than 10 h. A test of the methodology was carried out on fully developed body feathers from 18 captive cranes and resulted in 100% successful identification.

  18. Spreadsheet-based program for alignment of overlapping DNA sequences.

    Science.gov (United States)

    Anbazhagan, R; Gabrielson, E

    1999-06-01

    Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.

  19. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    Science.gov (United States)

    Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchitelli, Annamaria; Mallegni, Francesco; Casoli, Antonella; Bertorelle, Giorgio; Barbujani, Guido

    2008-01-01

    Background DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans. PMID:18628960

  20. A 28,000 years old Cro-Magnon mtDNA sequence differs from all potentially contaminating modern sequences.

    Directory of Open Access Journals (Sweden)

    David Caramelli

    Full Text Available BACKGROUND: DNA sequences from ancient specimens may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal and early modern (Cro-Magnoid Europeans. METHODOLOGY/PRINCIPAL FINDINGS: We typed the mitochondrial DNA (mtDNA hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23 and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. CONCLUSIONS/SIGNIFICANCE: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans.

  1. Toward a Better Compression for DNA Sequences Using Huffman Encoding.

    Science.gov (United States)

    Al-Okaily, Anas; Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    2017-04-01

    Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016 ).

  2. A new protocol for extraction of C 0 t-1 DNA from rice | Yan | African ...

    African Journals Online (AJOL)

    C0t-1 DNA, enriched for repetitive DNA sequences, has been proved to be valuable in the studies of plant species differentiation and genome evolution. A new protocol to steadily obtain the aimed range of DNA fragments has been developed by shearing the genomic DNA with the digest system containing DNase ...

  3. Mouse tetranectin: cDNA sequence, tissue-specific expression, and chromosomal mapping

    DEFF Research Database (Denmark)

    Ibaraki, K; Kozak, C A; Wewer, U M

    1995-01-01

    regulation, mouse tetranectin cDNA was cloned from a 16-day-old mouse embryo library. Sequence analysis revealed a 992-bp cDNA with an open reading frame of 606 bp, which is identical in length to the human tetranectin cDNA. The deduced amino acid sequence showed high homology to the human cDNA with 76......(s) of tetranectin. The sequence analysis revealed a difference in both sequence and size of the noncoding regions between mouse and human cDNAs. Northern analysis of the various tissues from mouse, rat, and cow showed the major transcript(s) to be approximately 1 kb, which is similar in size to that observed...

  4. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  5. Statistical assignment of DNA sequences using Bayesian phylogenetics

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Huelsenbeck, John P.

    2008-01-01

    We provide a new automated statistical method for DNA barcoding based on a Bayesian phylogenetic analysis. The method is based on automated database sequence retrieval, alignment, and phylogenetic analysis using a custom-built program for Bayesian phylogenetic analysis. We show on real data...... that the method outperforms Blast searches as a measure of confidence and can help eliminate 80% of all false assignment based on best Blast hit. However, the most important advance of the method is that it provides statistically meaningful measures of confidence. We apply the method to a re......-analysis of previously published ancient DNA data and show that, with high statistical confidence, most of the published sequences are in fact of Neanderthal origin. However, there are several cases of chimeric sequences that are comprised of a combination of both Neanderthal and modern human DNA....

  6. Sequence of a cDNA encoding turtle high mobility group 1 protein.

    Science.gov (United States)

    Zheng, Jifang; Hu, Bi; Wu, Duansheng

    2005-07-01

    In order to understand sequence information about turtle HMG1 gene, a cDNA encoding HMG1 protein of the Chinese soft-shell turtle (Pelodiscus sinensis) was amplified by RT-PCR from kidney total RNA, and was cloned, sequenced and analyzed. The results revealed that the open reading frame (ORF) of turtle HMG1 cDNA is 606 bp long. The ORF codifies 202 amino acid residues, from which two DNA-binding domains and one polyacidic region are derived. The DNA-binding domains share higher amino acid identity with homologues sequences of chicken (96.5%) and mammalian (74%) than homologues sequence of rainbow trout (67%). The polyacidic region shows 84.6% amino acid homology with the equivalent region of chicken HMG1 cDNA. Turtle HMG1 protein contains 3 Cys residues located at completely conserved positions. Conservation in sequence and structure suggests that the functions of turtle HMG1 cDNA may be highly conserved during evolution. To our knowledge, this is the first report of HMG1 cDNA sequence in any reptilian.

  7. Dialects of the DNA Uptake Sequence in Neisseriaceae

    Science.gov (United States)

    Frye, Stephan A.; Nilsen, Mariann; Tønjum, Tone; Ambur, Ole Herman

    2013-01-01

    In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS–dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5′-CTG-3′ is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS–dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation

  8. Dialects of the DNA uptake sequence in Neisseriaceae.

    Directory of Open Access Journals (Sweden)

    Stephan A Frye

    2013-04-01

    Full Text Available In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS, which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic

  9. Cloning, sequencing, and expression of cDNA for human β-glucuronidase

    International Nuclear Information System (INIS)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-01-01

    The authors report here the cDNA sequence for human placental β-glucuronidase (β-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH 2 -terminal amino acid sequence determined for human spleen β-glucuronidase agreed with that inferred from the DNA sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human β-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human β-glucuronidase, demonstrate the existence of two populations of mRNA for β-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length

  10. Chromosomal organization of repetitive DNAs in Hordeum bogdanii and H. brevisubulatum (Poaceae

    Directory of Open Access Journals (Sweden)

    Quanwen Dou

    2016-10-01

    Full Text Available Molecular karyotypes of H. bogdanii Wilensky, 1918 (2n = 14, and H. brevisubulatum Link, 1844 ssp. brevisubulatum (2n = 28, were characterized by physical mapping of several repetitive sequences. A total of 18 repeats, including all possible di- or trinucleotide SSR (simple sequence repeat motifs and satellite DNAs, such as pAs1, 5S rDNA, 45S rDNA, and pSc119.2, were used as probes for fluorescence in situ hybridization on root-tip metaphase chromosomes. Except for the SSR motifs AG, AT and GC, all the repeats we examined produced detectable hybridization signals on chromosomes of both species. A detailed molecular karyotype of the I genome of H. bogdanii is described for the first time, and each repetitive sequence is physically mapped. A high degree of chromosome variation, including aneuploidy and structural changes, was observed in H. brevisubulatum. Although the distribution of repeats in the chromosomes of H. brevisubulatum is different from that of H. bogdanii, similar patterns between the two species imply that the autopolyploid origin of H. brevisubulatum is from a Hordeum species with an I genome. A comparison of the I genome and the other Hordeum genomes, H, Xa and Xu, shows that colocalization of motifs AAC, ACT and CAT and colocalization of motifs AAG and AGG are characteristic of the I genome. In addition, we discuss the evolutionary significance of repeats in the genome during genome differentiation.

  11. Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes.

    Directory of Open Access Journals (Sweden)

    Duílio M Z de A Silva

    Full Text Available Supernumerary (B chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.

  12. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    Science.gov (United States)

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  13. Order and correlations in genomic DNA sequences. The spectral approach

    International Nuclear Information System (INIS)

    Lobzin, Vasilii V; Chechetkin, Vladimir R

    2000-01-01

    The structural analysis of genomic DNA sequences is discussed in the framework of the spectral approach, which is sufficiently universal due to the reciprocal correspondence and mutual complementarity of Fourier transform length scales. The spectral characteristics of random sequences of the same nucleotide composition possess the property of self-averaging for relatively short sequences of length M≥100-300. Comparison with the characteristics of random sequences determines the statistical significance of the structural features observed. Apart from traditional applications to the search for hidden periodicities, spectral methods are also efficient in studying mutual correlations in DNA sequences. By combining spectra for structure factors and correlation functions, not only integral correlations can be estimated but also their origin identified. Using the structural spectral entropy approach, the regularity of a sequence can be quantitatively assessed. A brief introduction to the problem is also presented and other major methods of DNA sequence analysis described. (reviews of topical problems)

  14. Network clustering coefficient approach to DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Guenther J.L. [Universidade Federal do Rio Grande do Sul-Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos 2350/sala 2040/90035-003 Porto Alegre (Brazil); Departamento de Fisica e Quimica da Universidade de Caxias do Sul, Rua Francisco Getulio Vargas 1130, 95001-970 Caxias do Sul (Brazil); Lemke, Ney [Programa Interdisciplinar em Computacao Aplicada, Unisinos, Av. Unisinos, 950, 93022-000 Sao Leopoldo, RS (Brazil); Corso, Gilberto [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, Campus Universitario, 59072 970 Natal, RN (Brazil)]. E-mail: corso@dfte.ufrn.br

    2006-05-15

    In this work we propose an alternative DNA sequence analysis tool based on graph theoretical concepts. The methodology investigates the path topology of an organism genome through a triplet network. In this network, triplets in DNA sequence are vertices and two vertices are connected if they occur juxtaposed on the genome. We characterize this network topology by measuring the clustering coefficient. We test our methodology against two main bias: the guanine-cytosine (GC) content and 3-bp (base pairs) periodicity of DNA sequence. We perform the test constructing random networks with variable GC content and imposed 3-bp periodicity. A test group of some organisms is constructed and we investigate the methodology in the light of the constructed random networks. We conclude that the clustering coefficient is a valuable tool since it gives information that is not trivially contained in 3-bp periodicity neither in the variable GC content.

  15. Mapping Base Modifications in DNA by Transverse-Current Sequencing

    Science.gov (United States)

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2018-02-01

    Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.

  16. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  17. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat

    Czech Academy of Sciences Publication Activity Database

    Koo, D.H.; Tiwari, V.K.; Hřibová, Eva; Doležel, Jaroslav; Friebe, B.; Gill, B.S.

    2016-01-01

    Roč. 148, č. 4 (2016), s. 314-321 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-situ hybridization * chromosome addition lines * resistance genes lr57 * repetitive dna * triticum-ovatum * powdery mildew * plant genome * bread wheat * leaf rust * identification * Aegilops geniculata * Chromosome identification * Fluorescence in situ hybridization * Satellite DNA * Wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  18. Effects of Replication and Transcription on DNA Structure-Related Genetic Instability.

    Science.gov (United States)

    Wang, Guliang; Vasquez, Karen M

    2017-01-05

    Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.

  19. DNA sequences from the quagga, an extinct member of the horse family.

    Science.gov (United States)

    Higuchi, R; Bowman, B; Freiberger, M; Ryder, O A; Wilson, A C

    To determine whether DNA survives and can be recovered from the remains of extinct creatures, we have examined dried muscle from a museum specimen of the quagga, a zebra-like species (Equus quagga) that became extinct in 1883 (ref. 1). We report that DNA was extracted from this tissue in amounts approaching 1% of that expected from fresh muscle, and that the DNA was of relatively low molecular weight. Among the many clones obtained from the quagga DNA, two containing pieces of mitochondrial DNA (mtDNA) were sequenced. These sequences, comprising 229 nucleotide pairs, differ by 12 base substitutions from the corresponding sequences of mtDNA from a mountain zebra, an extant member of the genus Equus. The number, nature and locations of the substitutions imply that there has been little or no postmortem modification of the quagga DNA sequences, and that the two species had a common ancestor 3-4 Myr ago, consistent with fossil evidence concerning the age of the genus Equus.

  20. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.

    Science.gov (United States)

    Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A

    2018-05-14

    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.

  1. DNA cross-linking by dehydromonocrotaline lacks apparent base sequence preference.

    Science.gov (United States)

    Rieben, W Kurt; Coulombe, Roger A

    2004-12-01

    Pyrrolizidine alkaloids (PAs) are ubiquitous plant toxins, many of which, upon oxidation by hepatic mixed-function oxidases, become reactive bifunctional pyrrolic electrophiles that form DNA-DNA and DNA-protein cross-links. The anti-mitotic, toxic, and carcinogenic action of PAs is thought to be caused, at least in part, by these cross-links. We wished to determine whether the activated PA pyrrole dehydromonocrotaline (DHMO) exhibits base sequence preferences when cross-linked to a set of model duplex poly A-T 14-mer oligonucleotides with varying internal and/or end 5'-d(CG), 5'-d(GC), 5'-d(TA), 5'-d(CGCG), or 5'-d(GCGC) sequences. DHMO-DNA cross-links were assessed by electrophoretic mobility shift assay (EMSA) of 32P endlabeled oligonucleotides and by HPLC analysis of cross-linked DNAs enzymatically digested to their constituent deoxynucleosides. The degree of DNA cross-links depended upon the concentration of the pyrrole, but not on the base sequence of the oligonucleotide target. Likewise, HPLC chromatograms of cross-linked and digested DNAs showed no discernible sequence preference for any nucleotide. Added glutathione, tyrosine, cysteine, and aspartic acid, but not phenylalanine, threonine, serine, lysine, or methionine competed with DNA as alternate nucleophiles for cross-linking by DHMO. From these data it appears that DHMO exhibits no strong base preference when forming cross-links with DNA, and that some cellular nucleophiles can inhibit DNA cross-link formation.

  2. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    Science.gov (United States)

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  3. Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients.

    Science.gov (United States)

    Prudencio, Mercedes; Gonzales, Patrick K; Cook, Casey N; Gendron, Tania F; Daughrity, Lillian M; Song, Yuping; Ebbert, Mark T W; van Blitterswijk, Marka; Zhang, Yong-Jie; Jansen-West, Karen; Baker, Matthew C; DeTure, Michael; Rademakers, Rosa; Boylan, Kevin B; Dickson, Dennis W; Petrucelli, Leonard; Link, Christopher D

    2017-09-01

    Significant transcriptome alterations are detected in the brain of patients with amyotrophic lateral sclerosis (ALS), including carriers of the C9orf72 repeat expansion and C9orf72-negative sporadic cases. Recently, the expression of repetitive element transcripts has been associated with toxicity and, while increased repetitive element expression has been observed in several neurodegenerative diseases, little is known about their contribution to ALS. To assess whether aberrant expression of repetitive element sequences are observed in ALS, we analysed RNA sequencing data from C9orf72-positive and sporadic ALS cases, as well as healthy controls. Transcripts from multiple classes and subclasses of repetitive elements (LINEs, endogenous retroviruses, DNA transposons, simple repeats, etc.) were significantly increased in the frontal cortex of C9orf72 ALS patients. A large collection of patient samples, representing both C9orf72 positive and negative ALS, ALS/FTLD, and FTLD cases, was used to validate the levels of several repetitive element transcripts. These analyses confirmed that repetitive element expression was significantly increased in C9orf72-positive compared to C9orf72-negative or control cases. While previous studies suggest an important link between TDP-43 and repetitive element biology, our data indicate that TDP-43 pathology alone is insufficient to account for the observed changes in repetitive elements in ALS/FTLD. Instead, we found that repetitive element expression positively correlated with RNA polymerase II activity in postmortem brain, and pharmacologic modulation of RNA polymerase II activity altered repetitive element expression in vitro. We conclude that increased RNA polymerase II activity in ALS/FTLD may lead to increased repetitive element transcript expression, a novel pathological feature of ALS/FTLD. © The Author 2017. Published by Oxford University Press.

  4. Sequence context effects on 8-methoxypsoralen photobinding to defined DNA fragments

    International Nuclear Information System (INIS)

    Sage, E.; Moustacchi, E.

    1987-01-01

    The photoreaction of 8-methoxypsoralen (8-MOP) with DNA fragments of defined sequence was studied. The authors took advantage of the blockage by bulky adducts of the 3'-5'-exonuclease activity associated with the T4 DNA polymerase. The action of the exonuclease is stopped by biadducts as well as by monoadducts. The termination products were analyzed on sequencing gels. A strong sequence specificity was observed in the DNA photobinding of 8-MOP. The exonuclease terminates its digestion near thymine residues, mainly at potentially cross-linkable sites. There is an increasing reactivity of thymine residues in the order T < TT << TTT in a GC environment. For thymine residues in cross-linkable sites, the reactivity follows the order AT << TA ∼ TAT << ATA < ATAT < ATATAA. Repeated A-T sequences are hot spots for the photochemical reaction of 8-MOP with DNA. Both monoadducts and interstrand cross-links are formed preferentially in 5'-TpA sites. The results highlight the role of the sequence and consequently of the conformation around a potential site in the photobinding of 8-MOP to DNA

  5. Management of High-Throughput DNA Sequencing Projects: Alpheus.

    Science.gov (United States)

    Miller, Neil A; Kingsmore, Stephen F; Farmer, Andrew; Langley, Raymond J; Mudge, Joann; Crow, John A; Gonzalez, Alvaro J; Schilkey, Faye D; Kim, Ryan J; van Velkinburgh, Jennifer; May, Gregory D; Black, C Forrest; Myers, M Kathy; Utsey, John P; Frost, Nicholas S; Sugarbaker, David J; Bueno, Raphael; Gullans, Stephen R; Baxter, Susan M; Day, Steve W; Retzel, Ernest F

    2008-12-26

    High-throughput DNA sequencing has enabled systems biology to begin to address areas in health, agricultural and basic biological research. Concomitant with the opportunities is an absolute necessity to manage significant volumes of high-dimensional and inter-related data and analysis. Alpheus is an analysis pipeline, database and visualization software for use with massively parallel DNA sequencing technologies that feature multi-gigabase throughput characterized by relatively short reads, such as Illumina-Solexa (sequencing-by-synthesis), Roche-454 (pyrosequencing) and Applied Biosystem's SOLiD (sequencing-by-ligation). Alpheus enables alignment to reference sequence(s), detection of variants and enumeration of sequence abundance, including expression levels in transcriptome sequence. Alpheus is able to detect several types of variants, including non-synonymous and synonymous single nucleotide polymorphisms (SNPs), insertions/deletions (indels), premature stop codons, and splice isoforms. Variant detection is aided by the ability to filter variant calls based on consistency, expected allele frequency, sequence quality, coverage, and variant type in order to minimize false positives while maximizing the identification of true positives. Alpheus also enables comparisons of genes with variants between cases and controls or bulk segregant pools. Sequence-based differential expression comparisons can be developed, with data export to SAS JMP Genomics for statistical analysis.

  6. DNA sequence responsible for the amplification of adjacent genes.

    Science.gov (United States)

    Pasion, S G; Hartigan, J A; Kumar, V; Biswas, D K

    1987-10-01

    A 10.3-kb DNA fragment in the 5'-flanking region of the rat prolactin (rPRL) gene was isolated from F1BGH(1)2C1, a strain of rat pituitary tumor cells (GH cells) that produces prolactin in response to 5-bromodeoxyuridine (BrdU). Following transfection and integration into genomic DNA of recipient mouse L cells, this DNA induced amplification of the adjacent thymidine kinase gene from Herpes simplex virus type 1 (HSV1TK). We confirmed the ability of this "Amplicon" sequence to induce amplification of other linked or unlinked genes in DNA-mediated gene transfer studies. When transferred into the mouse L cells with the 10.3-5'rPRL gene sequence of BrdU-responsive cells, both the human growth hormone and the HSV1TK genes are amplified in response to 5-bromodeoxyuridine. This observation is substantiated by BrdU-induced amplification of the cotransferred bacterial Neo gene. Cotransfection studies reveal that the BrdU-induced amplification capability is associated with a 4-kb DNA sequence in the 5'-flanking region of the rPRL gene of BrdU-responsive cells. These results demonstrate that genes of heterologous origin, linked or unlinked, and selected or unselected, can be coamplified when located within the amplification boundary of the Amplicon sequence.

  7. PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Meetha P Gould

    Full Text Available Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear DNA. Reduction in nuclear DNA (nDNA content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts. We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases.

  8. An automated annotation tool for genomic DNA sequences using

    Indian Academy of Sciences (India)

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated ...

  9. Novel DNA sequence detection method based on fluorescence energy transfer

    International Nuclear Information System (INIS)

    Kobayashi, S.; Tamiya, E.; Karube, I.

    1987-01-01

    Recently the detection of specific DNA sequence, DNA analysis, has been becoming more important for diagnosis of viral genomes causing infections disease and human sequences related to inherited disorders. These methods typically involve electrophoresis, the immobilization of DNA on a solid support, hybridization to a complementary probe, the detection using labeled with /sup 32/P or nonisotopically with a biotin-avidin-enzyme system, and so on. These techniques are highly effective, but they are very time-consuming and expensive. A principle of fluorescene energy transfer is that the light energy from an excited donor (fluorophore) is transferred to an acceptor (fluorophore), if the acceptor exists in the vicinity of the donor and the excitation spectrum of donor overlaps the emission spectrum of acceptor. In this study, the fluorescence energy transfer was applied to the detection of specific DNA sequence using the hybridization method. The analyte, single-stranded DNA labeled with the donor fluorophore is hybridized to a probe DNA labeled with the acceptor. Because of the complementary DNA duplex formation, two fluorophores became to be closed to each other, and the fluorescence energy transfer was occurred

  10. mtDNA sequence diversity of Hazara ethnic group from Pakistan.

    Science.gov (United States)

    Rakha, Allah; Fatima; Peng, Min-Sheng; Adan, Atif; Bi, Rui; Yasmin, Memona; Yao, Yong-Gang

    2017-09-01

    The present study was undertaken to investigate mitochondrial DNA (mtDNA) control region sequences of Hazaras from Pakistan, so as to generate mtDNA reference database for forensic casework in Pakistan and to analyze phylogenetic relationship of this particular ethnic group with geographically proximal populations. Complete mtDNA control region (nt 16024-576) sequences were generated through Sanger Sequencing for 319 Hazara individuals from Quetta, Baluchistan. The population sample set showed a total of 189 distinct haplotypes, belonging mainly to West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) haplogroups. Compared with other populations from Pakistan, the Hazara population had a relatively high haplotype diversity (0.9945) and a lower random match probability (0.0085). The dataset has been incorporated into EMPOP database under accession number EMP00680. The data herein comprises the largest, and likely most thoroughly examined, control region mtDNA dataset from Hazaras of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Establishment of screening technique for mutant cell and analysis of base sequence in the mutation

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Nomi, Takehiko; Yamada, Masami; Masumura, Kenichi

    2000-01-01

    This research project aimed to establish an easy and quick detection method for radiation-induced mutation using molecular-biological techniques and an effective analyzing method for the molecular changes in base sequence. In this year, Spi mutants derived from γ-radiation exposed mouse were analyzed by PCR method and DNA sequence method. Male transgenic mice were exposed to γ-ray at 5,10, 50 Gy and the transgene was taken out from the genome DNA from the spleen in vivo packaging method. Spi mutant plaques were obtained by infecting the recovered phage to E. coli. Sequence analysis for the mutants was made using ALFred DNA sequencer and SequiTherm TM Long-Red Cycle sequencing kit. Sequence analysis was carried out for 41 of 50 independent Spi mutants obtained. The deletions were classified into 4 groups; Group 1 included 15 mutants that were characterized with a large deletion (43 bp-10 kb) with a short homologous sequence. Group 2 included 11 mutants of a large deletion having no homologous sequence at the connecting region. Group 3 included 11 mutants having a short deletion of less than 20 bp, which occurred in the non-repetitive sequence of gam gene and possibly caused by oxidative breakage of DNA or recombination of DNA fragment produced by the breakage. Group 4 included 4 mutants having deletions as short as 20 bp or less in the repetitive sequence of gam gene, resulting in an alteration of the reading frame. Thus, the synthesis of Gam protein was terminated by the appearance of TGA between code 13 and 14 of redB gene, leading to inactivation of gam gene and redBA gene. These results indicated that most of Spi mutants had a deletion in red/gam region and the deletions in more than half mutants occurred in homologous sequences as short as 8 bp. (M.N.)

  12. Genomic Characterization for Parasitic Weeds of the Genus Striga by Sample Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Matt C. Estep

    2012-03-01

    Full Text Available Generation of ∼2200 Sanger sequence reads or ∼10,000 454 reads for seven Lour. DNA samples (five species allowed identification of the highly repetitive DNA content in these genomes. The 14 most abundant repeats in these species were identified and partially assembled. Annotation indicated that they represent nine long terminal repeat (LTR retrotransposon families, three tandem satellite repeats, one long interspersed element (LINE retroelement, and one DNA transposon. All of these repeats are most closely related to repetitive elements in other closely related plants and are not products of horizontal transfer from their host species. These repeats were differentially abundant in each species, with the LTR retrotransposons and satellite repeats most responsible for variation in genome size. Each species had some repetitive elements that were more abundant and some less abundant than the other species examined, indicating that no single element or any unilateral growth or decrease trend in genome behavior was responsible for variation in genome size and composition. Genome sizes were determined by flow sorting, and the values of 615 Mb [ (L. Kuntze], 1330 Mb [ (Willd. Vatke], 1425 Mb [ (Delile Benth.] and 2460 Mb ( Benth. suggest a ploidy series, a prediction supported by repetitive DNA sequence analysis. Phylogenetic analysis using six chloroplast loci indicated the ancestral relationships of the five most agriculturally important species, with the unexpected result that the one parasite of dicotyledonous plants ( was found to be more closely related to some of the grass parasites than many of the grass parasites are to each other.

  13. Detection and Identification of Bursaphelenchus Species with DNA Fingerprinting and Polymerase Chain Reaction

    OpenAIRE

    Harmey, Judith H.; Harmey, Matthew A.

    1993-01-01

    We have evaluated the potential of DNA-based methods to identify and differentiate Bursaphelenchus spp. and isolates. The isolation of a DNA probe, designated X14, and development of a DNA fingerprinting method for the identification and differentiation of Bursaphelenchus species and strains is described. Polymerase chain reaction (PCR) amplification of DNA isolated from Bursaphelenchus species using two primers derived from the sequence of the cloned repetitive DNA fragment X14 resulted in m...

  14. VoSeq: a voucher and DNA sequence web application.

    Directory of Open Access Journals (Sweden)

    Carlos Peña

    Full Text Available There is an ever growing number of molecular phylogenetic studies published, due to, in part, the advent of new techniques that allow cheap and quick DNA sequencing. Hence, the demand for relational databases with which to manage and annotate the amassing DNA sequences, genes, voucher specimens and associated biological data is increasing. In addition, a user-friendly interface is necessary for easy integration and management of the data stored in the database back-end. Available databases allow management of a wide variety of biological data. However, most database systems are not specifically constructed with the aim of being an organizational tool for researchers working in phylogenetic inference. We here report a new software facilitating easy management of voucher and sequence data, consisting of a relational database as back-end for a graphic user interface accessed via a web browser. The application, VoSeq, includes tools for creating molecular datasets of DNA or amino acid sequences ready to be used in commonly used phylogenetic software such as RAxML, TNT, MrBayes and PAUP, as well as for creating tables ready for publishing. It also has inbuilt BLAST capabilities against all DNA sequences stored in VoSeq as well as sequences in NCBI GenBank. By using mash-ups and calls to web services, VoSeq allows easy integration with public services such as Yahoo! Maps, Flickr, Encyclopedia of Life (EOL and GBIF (by generating data-dumps that can be processed with GBIF's Integrated Publishing Toolkit.

  15. The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements.

    Science.gov (United States)

    Daulny, Anne; Mejía-Ramírez, Eva; Reina, Oscar; Rosado-Lugo, Jesus; Aguilar-Arnal, Lorena; Auer, Herbert; Zaratiegui, Mikel; Azorin, Fernando

    2016-10-01

    It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis

    Directory of Open Access Journals (Sweden)

    Hsiao Yu-Yun

    2011-01-01

    Full Text Available Abstract Background Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC end sequences (BESs can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding. Results We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively, at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6% were predicted to represent protein-encoding regions, whereas 1,272 (23.0% contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively, whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6% of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species. Conclusion Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive

  17. Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence.

    Science.gov (United States)

    André, P; Kim, A; Khrapko, K; Thilly, W G

    1997-08-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10(-6) must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or "PCR noise". Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 x 10(-7), and five of its more frequent mutations (hot spots) consisted of three transversions (GC-->TA, AT-->TA, and AT-->CG), one transition (AT-->GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be reduced.

  18. Spectral entropy criteria for structural segmentation in genomic DNA sequences

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lobzin, V.V.

    2004-01-01

    The spectral entropy is calculated with Fourier structure factors and characterizes the level of structural ordering in a sequence of symbols. It may efficiently be applied to the assessment and reconstruction of the modular structure in genomic DNA sequences. We present the relevant spectral entropy criteria for the local and non-local structural segmentation in DNA sequences. The results are illustrated with the model examples and analysis of intervening exon-intron segments in the protein-coding regions

  19. Capillary gel electrophoresis for rapid, high resolution DNA sequencing.

    OpenAIRE

    Swerdlow, H; Gesteland, R

    1990-01-01

    Capillary gel electrophoresis has been demonstrated for the separation and detection of DNA sequencing samples. Enzymatic dideoxy nucleotide chain termination was employed, using fluorescently tagged oligonucleotide primers and laser based on-column detection (limit of detection is 6,000 molecules per peak). Capillary gel separations were shown to be three times faster, with better resolution (2.4 x), and higher separation efficiency (5.4 x) than a conventional automated slab gel DNA sequenci...

  20. Noninvasive prenatal paternity testing (NIPAT) through maternal plasma DNA sequencing

    DEFF Research Database (Denmark)

    Jiang, Haojun; Xie, Yifan; Li, Xuchao

    2016-01-01

    developed a noninvasive prenatal paternity testing (NIPAT) based on SNP typing with maternal plasma DNA sequencing. We evaluated the influence factors (minor allele frequency (MAF), the number of total SNP, fetal fraction and effective sequencing depth) and designed three different selective SNP panels......Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) have been already used to perform noninvasive prenatal paternity testing from maternal plasma DNA. The frequently used technologies were PCR followed by capillary electrophoresis and SNP typing array, respectively. Here, we...... paternity test using STR multiplex system. Our study here proved that the maternal plasma DNA sequencing-based technology is feasible and accurate in determining paternity, which may provide an alternative in forensic application in the future....

  1. Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum

    Czech Academy of Sciences Publication Activity Database

    Renny-Byfield, S.; Kovařík, Aleš; Chester, M.; Nichols, R.A.; Macas, Jiří; Novák, Petr; Leitch, A.R.

    2012-01-01

    Roč. 7, č. 5 (2012), e36963 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP501/10/0208; GA MŠk OC10037 Institutional research plan: CEZ:AV0Z50040702; CEZ:AV0Z50510513 Keywords : chromosome evolution * repetitive DNA * allopolyploid Subject RIV: BO - Biophysics; EB - Genetics ; Molecular Biology (BC-A) Impact factor: 3.730, year: 2012

  2. Refining borders of genome-rearrangements including repetitions

    Directory of Open Access Journals (Sweden)

    JA Arjona-Medina

    2016-10-01

    Full Text Available Abstract Background DNA rearrangement events have been widely studied in comparative genomic for many years. The importance of these events resides not only in the study about relatedness among different species, but also to determine the mechanisms behind evolution. Although there are many methods to identify genome-rearrangements (GR, the refinement of their borders has become a huge challenge. Until now no accepted method exists to achieve accurate fine-tuning: i.e. the notion of breakpoint (BP is still an open issue, and despite repeated regions are vital to understand evolution they are not taken into account in most of the GR detection and refinement methods. Methods and results We propose a method to refine the borders of GR including repeated regions. Instead of removing these repetitions to facilitate computation, we take advantage of them using a consensus alignment sequence of the repeated region in between two blocks. Using the concept of identity vectors for Synteny Blocks (SB and repetitions, a Finite State Machine is designed to detect transition points in the difference between such vectors. The method does not force the BP to be a region or a point but depends on the alignment transitions within the SBs and repetitions. Conclusion The accurate definition of the borders of SB and repeated genomic regions and consequently the detection of BP might help to understand the evolutionary model of species. In this manuscript we present a new proposal for such a refinement. Features of the SBs borders and BPs are different and fit with what is expected. SBs with more diversity in annotations and BPs short and richer in DNA replication and stress response, which are strongly linked with rearrangements.

  3. Kangaroo – A pattern-matching program for biological sequences

    Directory of Open Access Journals (Sweden)

    Betel Doron

    2002-07-01

    Full Text Available Abstract Background Biologists are often interested in performing a simple database search to identify proteins or genes that contain a well-defined sequence pattern. Many databases do not provide straightforward or readily available query tools to perform simple searches, such as identifying transcription binding sites, protein motifs, or repetitive DNA sequences. However, in many cases simple pattern-matching searches can reveal a wealth of information. We present in this paper a regular expression pattern-matching tool that was used to identify short repetitive DNA sequences in human coding regions for the purpose of identifying potential mutation sites in mismatch repair deficient cells. Results Kangaroo is a web-based regular expression pattern-matching program that can search for patterns in DNA, protein, or coding region sequences in ten different organisms. The program is implemented to facilitate a wide range of queries with no restriction on the length or complexity of the query expression. The program is accessible on the web at http://bioinfo.mshri.on.ca/kangaroo/ and the source code is freely distributed at http://sourceforge.net/projects/slritools/. Conclusion A low-level simple pattern-matching application can prove to be a useful tool in many research settings. For example, Kangaroo was used to identify potential genetic targets in a human colorectal cancer variant that is characterized by a high frequency of mutations in coding regions containing mononucleotide repeats.

  4. Method for priming and DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Mugasimangalam, R.C.; Ulanovsky, L.E.

    1997-12-01

    A method is presented for improving the priming specificity of an oligonucleotide primer that is non-unique in a nucleic acid template which includes selecting a continuous stretch of several nucleotides in the template DNA where one of the four bases does not occur in the stretch. This also includes bringing the template DNA in contract with a non-unique primer partially or fully complimentary to the sequence immediately upstream of the selected sequence stretch. This results in polymerase-mediated differential extension of the primer in the presence of a subset of deoxyribonucleotide triphosphates that does not contain the base complementary to the base absent in the selected sequence stretch. These reactions occur at a temperature sufficiently low for allowing the extension of the non-unique primer. The method causes polymerase-mediated extension reactions in the presence of all four natural deoxyribonucleotide triphosphates or modifications. At this high temperature discrimination occurs against priming sites of the non-unique primer where the differential extension has not made the primer sufficiently stable to prime. However, the primer extended at the selected stretch is sufficiently stable to prime.

  5. OPTSDNA: Performance evaluation of an efficient distributed bioinformatics system for DNA sequence analysis.

    Science.gov (United States)

    Khan, Mohammad Ibrahim; Sheel, Chotan

    2013-01-01

    Storage of sequence data is a big concern as the amount of data generated is exponential in nature at several locations. Therefore, there is a need to develop techniques to store data using compression algorithm. Here we describe optimal storage algorithm (OPTSDNA) for storing large amount of DNA sequences of varying length. This paper provides performance analysis of optimal storage algorithm (OPTSDNA) of a distributed bioinformatics computing system for analysis of DNA sequences. OPTSDNA algorithm is used for storing various sizes of DNA sequences into database. DNA sequences of different lengths were stored by using this algorithm. These input DNA sequences are varied in size from very small to very large. Storage size is calculated by this algorithm. Response time is also calculated in this work. The efficiency and performance of the algorithm is high (in size calculation with percentage) when compared with other known with sequential approach.

  6. The cDNA sequence of a neutral horseradish peroxidase.

    Science.gov (United States)

    Bartonek-Roxå, E; Eriksson, H; Mattiasson, B

    1991-02-16

    A cDNA clone encoding a horseradish (Armoracia rusticana) peroxidase has been isolated and characterized. The cDNA contains 1378 nucleotides excluding the poly(A) tail and the deduced protein contains 327 amino acids which includes a 28 amino acid leader sequence. The predicted amino acid sequence is nine amino acids shorter than the major isoenzyme belonging to the horseradish peroxidase C group (HRP-C) and the sequence shows 53.7% identity with this isoenzyme. The described clone encodes nine cysteines of which eight correspond well with the cysteines found in HRP-C. Five potential N-glycosylation sites with the general sequence Asn-X-Thr/Ser are present in the deduced sequence. Compared to the earlier described HRP-C this is three glycosylation sites less. The shorter sequence and fewer N-glycosylation sites give the native isoenzyme a molecular weight of several thousands less than the horseradish peroxidase C isoenzymes. Comparison with the net charge value of HRP-C indicates that the described cDNA clone encodes a peroxidase which has either the same or a slightly less basic pI value, depending on whether the encoded protein is N-terminally blocked or not. This excludes the possibility that HRP-n could belong to either the HRP-A, -D or -E groups. The low sequence identity (53.7%) with HRP-C indicates that the described clone does not belong to the HRP-C isoenzyme group and comparison of the total amino acid composition with the HRP-B group does not place the described clone within this isoenzyme group. Our conclusion is that the described cDNA clone encodes a neutral horseradish peroxidase which belongs to a new, not earlier described, horseradish peroxidase group.

  7. Real sequence effects on the search dynamics of transcription factors on DNA

    DEFF Research Database (Denmark)

    Bauer, Maximilian; Rasmussen, Emil S.; Lomholt, Michael A.

    2015-01-01

    Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical...... analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF...... on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning...

  8. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Science.gov (United States)

    Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca

    2015-01-01

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  9. Amino acid and nucleotide recurrence in aligned sequences: synonymous substitution patterns in association with global and local base compositions.

    Science.gov (United States)

    Nishizawa, M; Nishizawa, K

    2000-10-01

    The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the 'between gene' GC content heterogeneity, which is linked to 'isochores', is a principal factor associated with the bias in substitution patterns in human, 'within gene' heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed.

  10. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    Science.gov (United States)

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of

  11. cDNA sequences of two inducible T-cell genes

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, B.S. (Indiana Univ. School of Medicine, Indianapolis (USA) Guthrie Research Institute, Sayre, PA (USA)); Weissman, S.M. (Yale Univ., New Haven, CT (USA))

    1989-03-01

    The authors have previously described a set of human T-lymphocyte-specific cDNA clones isolated by a modified differential screening procedure. Apparent full-length cDNAs containing the sequences of 14 of the 16 initial isolates were sequenced and were found to represent five different species of mRNA; three of the five species were identical to previously reported cDNA sequences of preproenkephalin, T-cell-replacing factor, and a serine esterase, respectively. The other two species, 4-1BB and L2G25B, were inducible sequences found in mRNA from both a cytolytic T-lymphocyte and a helper T-lymphocyte clone and were not previously described in T-cell mRNA; these mRNA sequences encode peptides of 256 and 92 amino acids, respectively. Both peptides contain putative leader sequences. The protein encoded by 4-1BB also has a potential membrane anchor segment and other features also seen in known receptor proteins.

  12. Sequence of a cloned cDNA encoding human ribosomal protein S11

    Energy Technology Data Exchange (ETDEWEB)

    Lott, J B; Mackie, G A

    1988-02-11

    The authors have isolated a cloned cDNA that encodes human ribosomal protein (rp) S11 by screening a human fibroblast cDNA library with a labelled 204 bp DNA fragment encompassing residues 212-416 of pRS11, a rat rp Sll cDNA clone. The human rp S11 cloned cDNA consists of 15 residues of the 5' leader, the entire coding sequence and all 51 residues of the 3' untranslated region. The predicted amino acid sequence of 158 residues is identical to rat rpS11. The nucleotide sequence in the coding region differs, however, from that in rat in the first position in two codons and in the third position in 44 codons.

  13. Nucleotide sequence analysis of regions of adenovirus 5 DNA containing the origins of DNA replication

    International Nuclear Information System (INIS)

    Steenbergh, P.H.

    1979-01-01

    The purpose of the investigations described is the determination of nucleotide sequences at the molecular ends of the linear adenovirus type 5 DNA. Knowledge of the primary structure at the termini of this DNA molecule is of particular interest in the study of the mechanism of replication of adenovirus DNA. The initiation- and termination sites of adenovirus DNA replication are located at the ends of the DNA molecule. (Auth.)

  14. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression.

    Science.gov (United States)

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-06-01

    Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.

  15. Targeting and tracing of specific DNA sequences with dTALEs in living cells

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-01-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation. PMID:24371265

  16. Targeting and tracing of specific DNA sequences with dTALEs in living cells.

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-04-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation.

  17. Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA.

    Science.gov (United States)

    Serfaty, Dayane Martins Barbosa; Carvalho, Natália Dayane Moura; Gross, Maria Claudia; Gordo, Marcelo; Schneider, Carlos Henrique

    2017-10-01

    Saguinus is the largest and most complex genus of the subfamily Callitrichinae, with 23 species distributed from the south of Central America to the north of South America with Saguinus midas having the largest geographical distribution while Saguinus bicolor has a very restricted one, affected by the population expansion in the state of Amazonas. Considering the phylogenetic proximity of the two species along with evidence on the existence of hybrids between them, as well as cytogenetic studies on Saguinus describing a conserved karyotypic macrostructure, we carried out a physical mapping of DNA repeated sequences in the mitotic chromosome of both species, since these sequences are less susceptible to evolutionary pressure and possibly perform an important function in speciation. Both species presented 2n = 46 chromosomes; in S. midas, chromosome Y is the smallest. Multiple ribosomal sites occur in both species, but chromosome pairs three and four may be regarded as markers that differ the species when subjected to G banding and distribution of retroelement LINE 1, suggesting that it may be cytogenetic marker in which it can contribute to identification of first generation hybrids in contact zone. Saguinus bicolor also presented differences in the LINE 1 distribution pattern for sexual chromosome X in individuals from different urban fragments, probably due to geographical isolation. In this context, cytogenetic analyses reveal a differential genomic organization pattern between species S. midas and S. bicolor, in addition to indicating that individuals from different urban fragments have been accumulating differences because of the isolation between them.

  18. Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey

    Directory of Open Access Journals (Sweden)

    Varala Kranthi

    2007-05-01

    Full Text Available Abstract Background Extensive computational and database tools are available to mine genomic and genetic databases for model organisms, but little genomic data is available for many species of ecological or agricultural significance, especially those with large genomes. Genome surveys using conventional sequencing techniques are powerful, particularly for detecting sequences present in many copies per genome. However these methods are time-consuming and have potential drawbacks. High throughput 454 sequencing provides an alternative method by which much information can be gained quickly and cheaply from high-coverage surveys of genomic DNA. Results We sequenced 78 million base-pairs of randomly sheared soybean DNA which passed our quality criteria. Computational analysis of the survey sequences provided global information on the abundant repetitive sequences in soybean. The sequence was used to determine the copy number across regions of large genomic clones or contigs and discover higher-order structures within satellite repeats. We have created an annotated, online database of sequences present in multiple copies in the soybean genome. The low bias of pyrosequencing against repeat sequences is demonstrated by the overall composition of the survey data, which matches well with past estimates of repetitive DNA content obtained by DNA re-association kinetics (Cot analysis. Conclusion This approach provides a potential aid to conventional or shotgun genome assembly, by allowing rapid assessment of copy number in any clone or clone-end sequence. In addition, we show that partial sequencing can provide access to partial protein-coding sequences.

  19. Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis

    Directory of Open Access Journals (Sweden)

    Moore JE

    2006-01-01

    Full Text Available Abstract Background At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Results Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. Conclusion High sequence similarity (99.5% or more was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted.

  20. Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis

    Science.gov (United States)

    Matsuda, M; Tazumi, A; Kagawa, S; Sekizuka, T; Murayama, O; Moore, JE; Millar, BC

    2006-01-01

    Background At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Results Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. Conclusion High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted. PMID:16398935

  1. Mitochondrial DNA sequence variation in Finnish patients with matrilineal diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Soini Heidi K

    2012-07-01

    Full Text Available Abstract Background The genetic background of type 2 diabetes is complex involving contribution by both nuclear and mitochondrial genes. There is an excess of maternal inheritance in patients with type 2 diabetes and, furthermore, diabetes is a common symptom in patients with mutations in mitochondrial DNA (mtDNA. Polymorphisms in mtDNA have been reported to act as risk factors in several complex diseases. Findings We examined the nucleotide variation in complete mtDNA sequences of 64 Finnish patients with matrilineal diabetes. We used conformation sensitive gel electrophoresis and sequencing to detect sequence variation. We analysed the pathogenic potential of nonsynonymous variants detected in the sequences and examined the role of the m.16189 T>C variant. Controls consisted of non-diabetic subjects ascertained in the same population. The frequency of mtDNA haplogroup V was 3-fold higher in patients with diabetes. Patients harboured many nonsynonymous mtDNA substitutions that were predicted to be possibly or probably damaging. Furthermore, a novel m.13762 T>G in MTND5 leading to p.Ser476Ala and several rare mtDNA variants were found. Haplogroup H1b harbouring m.16189 T > C and m.3010 G > A was found to be more frequent in patients with diabetes than in controls. Conclusions Mildly deleterious nonsynonymous mtDNA variants and rare population-specific haplotypes constitute genetic risk factors for maternally inherited diabetes.

  2. Rapid discrimination and classification of the Lactobacillus plantarum group based on a partial dnaK sequence and DNA fingerprinting techniques.

    Science.gov (United States)

    Huang, Chien-Hsun; Lee, Fwu-Ling; Liou, Jong-Shian

    2010-03-01

    The Lactobacillus plantarum group comprises five very closely related species. Some species of this group are considered to be probiotic and widely applied in the food industry. In this study, we compared the use of two different molecular markers, the 16S rRNA and dnaK gene, for discriminating phylogenetic relationships amongst L. plantarum strains using sequencing and DNA fingerprinting. The average sequence similarity for the dnaK gene (89.2%) among five type strains was significantly less than that for the 16S rRNA (99.4%). This result demonstrates that the dnaK gene sequence provided higher resolution than the 16S rRNA and suggests that the dnaK could be used as an additional phylogenetic marker for L. plantarum. Species-specific profiles of the Lactobacillus strains were obtained with RAPD and RFLP methods. Our data indicate that phylogenetic relationships between these strains are easily resolved using sequencing of the dnaK gene or DNA fingerprinting assays.

  3. The nucleotide sequence of human transition protein 1 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Luerssen, H; Hoyer-Fender, S; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors have screened a human testis cDNA library with an oligonucleotide of 81 mer prepared according to a part of the published nucleotide sequence of the rat transition protein TP 1. They have isolated a cDNA clone with the length of 441 bp containing the coding region of 162 bp for human transition protein 1. There is about 84% homology in the coding region of the sequence compared to rat. The human cDNA-clone encodes a polypeptide of 54 amino acids of which 7 are different to that of rat.

  4. Repetitive stress leads to impaired cognitive function that is associated with DNA hypomethylation, reduced BDNF and a dysregulated HPA axis.

    Science.gov (United States)

    Makhathini, Khayelihle B; Abboussi, Oualid; Stein, Dan J; Mabandla, Musa V; Daniels, William M U

    2017-08-01

    Exposure to repetitive stress has a negative influence on cognitive-affective functioning, with growing evidence that these effects may be mediated by a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, abnormal neurotrophic factor levels and its subsequent impact on hippocampal function. However, there are few data about the effect of repetitive stressors on epigenetic changes in the hippocampus. In the present study, we examine how repetitive restrain stress (RRS) affects cognitive-affective functioning, HPA axis regulation, brain-derived neurotrophic factor (BDNF) levels, and global hippocampal DNA methylation. RRS was induced in rats by restraining the animals for 6h per day for 28 days. The novel object recognition test (NORT) was used to assess cognitive functioning and the open field test (OFT) was performed to assess anxiety-like behavior during the last week of stress. Hippocampal BDNF levels, glucocorticoid (GR) and mineralocorticoid (MR) receptor mRNA were assessed using real-time PCR and confirmed with Western blot, while ELISAs were used to determine plasma corticosterone levels and the global methylation status of the hippocampus. Animals exposed to repetitive stress demonstrated significant alterations in the NORT and OFT, had significantly increased plasma corticosterone and significantly decreased hippocampal BDNF concentrations. The expression levels of GR and MR mRNA and protein levels of these genes were significantly decreased in the stressed group compared to control animals. The global DNA methylation of the hippocampal genome of stressed animals was also significantly decreased compared to controls. The data here are consistent with previous work emphasizing the role of the HPA axis and neurotrophic factors in mediating cognitive-affective changes after exposure to repetitive stressors. Our findings, however, extend the literature by indicating that epigenetic alterations in the hippocampal genome may also play an important role in the

  5. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.

    Science.gov (United States)

    Adalsteinsson, Viktor A; Ha, Gavin; Freeman, Samuel S; Choudhury, Atish D; Stover, Daniel G; Parsons, Heather A; Gydush, Gregory; Reed, Sarah C; Rotem, Denisse; Rhoades, Justin; Loginov, Denis; Livitz, Dimitri; Rosebrock, Daniel; Leshchiner, Ignaty; Kim, Jaegil; Stewart, Chip; Rosenberg, Mara; Francis, Joshua M; Zhang, Cheng-Zhong; Cohen, Ofir; Oh, Coyin; Ding, Huiming; Polak, Paz; Lloyd, Max; Mahmud, Sairah; Helvie, Karla; Merrill, Margaret S; Santiago, Rebecca A; O'Connor, Edward P; Jeong, Seong H; Leeson, Rachel; Barry, Rachel M; Kramkowski, Joseph F; Zhang, Zhenwei; Polacek, Laura; Lohr, Jens G; Schleicher, Molly; Lipscomb, Emily; Saltzman, Andrea; Oliver, Nelly M; Marini, Lori; Waks, Adrienne G; Harshman, Lauren C; Tolaney, Sara M; Van Allen, Eliezer M; Winer, Eric P; Lin, Nancy U; Nakabayashi, Mari; Taplin, Mary-Ellen; Johannessen, Cory M; Garraway, Levi A; Golub, Todd R; Boehm, Jesse S; Wagle, Nikhil; Getz, Gad; Love, J Christopher; Meyerson, Matthew

    2017-11-06

    Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.

  6. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Directory of Open Access Journals (Sweden)

    Soichi Inagaki

    Full Text Available Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  7. Food Fish Identification from DNA Extraction through Sequence Analysis

    Science.gov (United States)

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  8. Sequencing historical specimens: successful preparation of small specimens with low amounts of degraded DNA.

    Science.gov (United States)

    Sproul, John S; Maddison, David R

    2017-11-01

    Despite advances that allow DNA sequencing of old museum specimens, sequencing small-bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small-bodied (3-6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58-159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1-10 ng). We also explored low-cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low-input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens. © 2017 John Wiley & Sons Ltd.

  9. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.

    Science.gov (United States)

    Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua

    2004-01-01

    In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae. Copyright 2004 WILEY-VCH Verlag GmbH & Co.

  10. Spliced DNA Sequences in the Paramecium Germline: Their Properties and Evolutionary Potential

    Science.gov (United States)

    Catania, Francesco; McGrath, Casey L.; Doak, Thomas G.; Lynch, Michael

    2013-01-01

    Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic—often coding—DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation. PMID:23737328

  11. The use of mycobacterial interspersed repetitive unit typing and whole genome sequencing to inform tuberculosis prevention and control activities.

    Science.gov (United States)

    Gilbert, Gwendolyn L; Sintchenko, Vitali

    2013-07-01

    Molecular strain typing of Mycobacterium tuberculosis has been possible for only about 20 years; it has significantly improved our understanding of the evolution and epidemiology of Mycobacterium tuberculosis and tuberculosis disease. Mycobacterial interspersed repetitive unit typing, based on 24 variable number tandem repeat unit loci, is highly discriminatory, relatively easy to perform and interpret and is currently the most widely used molecular typing system for tuberculosis surveillance. Nevertheless, clusters identified by mycobacterial interspersed repetitive unit typing sometimes cannot be confirmed or adequately defined by contact tracing and additional methods are needed. Recently, whole genome sequencing has been used to identify single nucleotide polymorphisms and other mutations, between genotypically indistinguishable isolates from the same cluster, to more accurately trace transmission pathways. Rapidly increasing speed and quality and reduced costs will soon make large scale whole genome sequencing feasible, combined with the use of sophisticated bioinformatics tools, for epidemiological surveillance of tuberculosis.

  12. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    Science.gov (United States)

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria.

    Science.gov (United States)

    Loong, Shih Keng; Khor, Chee Sieng; Jafar, Faizatul Lela; AbuBakar, Sazaly

    2016-11-01

    Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification. One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method. Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates. The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools. © 2016 Wiley Periodicals, Inc.

  14. ABI Base Recall: Automatic Correction and Ends Trimming of DNA Sequences.

    Science.gov (United States)

    Elyazghi, Zakaria; Yazouli, Loubna El; Sadki, Khalid; Radouani, Fouzia

    2017-12-01

    Automated DNA sequencers produce chromatogram files in ABI format. When viewing chromatograms, some ambiguities are shown at various sites along the DNA sequences, because the program implemented in the sequencing machine and used to call bases cannot always precisely determine the right nucleotide, especially when it is represented by either a broad peak or a set of overlaying peaks. In such cases, a letter other than A, C, G, or T is recorded, most commonly N. Thus, DNA sequencing chromatograms need manual examination: checking for mis-calls and truncating the sequence when errors become too frequent. The purpose of this paper is to develop a program allowing the automatic correction of these ambiguities. This application is a Web-based program powered by Shiny and runs under R platform for an easy exploitation. As a part of the interface, we added the automatic ends clipping option, alignment against reference sequences, and BLAST. To develop and test our tool, we collected several bacterial DNA sequences from different laboratories within Institut Pasteur du Maroc and performed both manual and automatic correction. The comparison between the two methods was carried out. As a result, we note that our program, ABI base recall, accomplishes good correction with a high accuracy. Indeed, it increases the rate of identity and coverage and minimizes the number of mismatches and gaps, hence it provides solution to sequencing ambiguities and saves biologists' time and labor.

  15. Probing DNA in nanopores via tunneling: from sequencing to ``quantum'' analogies

    Science.gov (United States)

    di Ventra, Massimiliano

    2012-02-01

    Fast and low-cost DNA sequencing methods would revolutionize medicine: a person could have his/her full genome sequenced so that drugs could be tailored to his/her specific illnesses; doctors could know in advance patients' likelihood to develop a given ailment; cures to major diseases could be found faster [1]. However, this goal of ``personalized medicine'' is hampered today by the high cost and slow speed of DNA sequencing methods. In this talk, I will discuss the sequencing protocol we suggest which requires the measurement of the distributions of transverse currents during the translocation of single-stranded DNA into nanopores [2-5]. I will support our conclusions with a combination of molecular dynamics simulations coupled to quantum mechanical calculations of electrical current in experimentally realizable systems [2-5]. I will also discuss recent experiments that support these theoretical predictions. In addition, I will show how this relatively unexplored area of research at the interface between solids, liquids, and biomolecules at the nanometer length scale is a fertile ground to study quantum phenomena that have a classical counterpart, such as ionic quasi-particles, ionic ``quantized'' conductance [6,7] and Coulomb blockade [8]. Work supported in part by NIH. [4pt] [1] M. Zwolak, M. Di Ventra, Physical Approaches to DNA Sequencing and Detection, Rev. Mod. Phys. 80, 141 (2008).[0pt] [2] M. Zwolak and M. Di Ventra, Electronic signature of DNA nucleotides via transverse transport, Nano Lett. 5, 421 (2005).[0pt] [3] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Fast DNA sequencing via transverse electronic transport, Nano Lett. 6, 779 (2006).[0pt] [4] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport, Biophys. J. 93, 2384 (2007).[0pt] [5] M. Krems, M. Zwolak, Y.V. Pershin, and M. Di Ventra, Effect of noise on DNA sequencing via transverse electronic transport

  16. A sequence-dependent rigid-base model of DNA

    Science.gov (United States)

    Gonzalez, O.; Petkevičiutė, D.; Maddocks, J. H.

    2013-02-01

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can

  17. A sequence-dependent rigid-base model of DNA.

    Science.gov (United States)

    Gonzalez, O; Petkevičiūtė, D; Maddocks, J H

    2013-02-07

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can

  18. RevTrans: multiple alignment of coding DNA from aligned amino acid sequences

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Pedersen, Anders Gorm

    2003-01-01

    The simple fact that proteins are built from 20 amino acids while DNA only contains four different bases, means that the 'signal-to-noise ratio' in protein sequence alignments is much better than in alignments of DNA. Besides this information-theoretical advantage, protein alignments also benefit...... proteins. It is therefore preferable to align coding DNA at the amino acid level and it is for this purpose we have constructed the program RevTrans. RevTrans constructs a multiple DNA alignment by: (i) translating the DNA; (ii) aligning the resulting peptide sequences; and (iii) building a multiple DNA...

  19. Sequence-selective single-molecule alkylation with a pyrrole-imidazole polyamide visualized in a DNA nanoscaffold.

    Science.gov (United States)

    Yoshidome, Tomofumi; Endo, Masayuki; Kashiwazaki, Gengo; Hidaka, Kumi; Bando, Toshikazu; Sugiyama, Hiroshi

    2012-03-14

    We demonstrate a novel strategy for visualizing sequence-selective alkylation of target double-stranded DNA (dsDNA) using a synthetic pyrrole-imidazole (PI) polyamide in a designed DNA origami scaffold. Doubly functionalized PI polyamide was designed by introduction of an alkylating agent 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) and biotin for sequence-selective alkylation at the target sequence and subsequent streptavidin labeling, respectively. Selective alkylation of the target site in the substrate DNA was observed by analysis using sequencing gel electrophoresis. For the single-molecule observation of the alkylation by functionalized PI polyamide using atomic force microscopy (AFM), the target position in the dsDNA (∼200 base pairs) was alkylated and then visualized by labeling with streptavidin. Newly designed DNA origami scaffold named "five-well DNA frame" carrying five different dsDNA sequences in its cavities was used for the detailed analysis of the sequence-selectivity and alkylation. The 64-mer dsDNAs were introduced to five individual wells, in which target sequence AGTXCCA/TGGYACT (XY = AT, TA, GC, CG) was employed as fully matched (X = G) and one-base mismatched (X = A, T, C) sequences. The fully matched sequence was alkylated with 88% selectivity over other mismatched sequences. In addition, the PI polyamide failed to attach to the target sequence lacking the alkylation site after washing and streptavidin treatment. Therefore, the PI polyamide discriminated the one mismatched nucleotide at the single-molecule level, and alkylation anchored the PI polyamide to the target dsDNA.

  20. Polyfluorophore Labels on DNA: Dramatic Sequence Dependence of Quenching

    Science.gov (United States)

    Teo, Yin Nah; Wilson, James N.

    2010-01-01

    We describe studies carried out in the DNA context to test how a common fluorescence quencher, dabcyl, interacts with oligodeoxynu-cleoside fluorophores (ODFs)—a system of stacked, electronically interacting fluorophores built on a DNA scaffold. We tested twenty different tetrameric ODF sequences containing varied combinations and orderings of pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and spacer (S) monomers conjugated to the 3′ end of a DNA oligomer. Hybridization of this probe sequence to a dabcyl-labeled complementary strand resulted in strong quenching of fluorescence in 85% of the twenty ODF sequences. The high efficiency of quenching was also established by their large Stern–Volmer constants (KSV) of between 2.1 × 104 and 4.3 × 105M−1, measured with a free dabcyl quencher. Interestingly, quenching of ODFs displayed strong sequence dependence. This was particularly evident in anagrams of ODF sequences; for example, the sequence BYDS had a KSV that was approximately two orders of magnitude greater than that of BSDY, which has the same dye composition. Other anagrams, for example EDSY and ESYD, also displayed different responses upon quenching by dabcyl. Analysis of spectra showed that apparent excimer and exciplex emission bands were quenched with much greater efficiency compared to monomer emission bands by at least an order of magnitude. This suggests an important role played by delocalized excited states of the π stack of fluorophores in the amplified quenching of fluorescence. PMID:19780115

  1. Templated Chemistry for Sequence-Specific Fluorogenic Detection of Duplex DNA

    Science.gov (United States)

    Li, Hao; Franzini, Raphael M.; Bruner, Christopher; Kool, Eric T.

    2015-01-01

    We describe the development of templated fluorogenic chemistry for detection of specific sequences of duplex DNA in solution. In this approach, two modified homopyrimidine oligodeoxynucleotide probes are designed to bind by triple helix formation at adjacent positions on a specific purine-rich target sequence of duplex DNA. One fluorescein-labeled probe contains an α-azidoether linker to a fluorescence quencher; the second (trigger) probe carries a triarylphosphine, designed to reduce the azide and cleave the linker. The data showed that at pH 5.6 these probes yielded a strong fluorescence signal within minutes on addition to a complementary homopurine duplex DNA target. The signal increased by a factor of ca. 60, and was completely dependent on the presence of the target DNA. Replacement of cytosine in the probes with pseudoisocytosine allowed the templated chemistry to proceed readily at pH 7. Single nucleotide mismatches in the target oligonucleotide slowed the templated reaction considerably, demonstrating high sequence selectivity. The use of templated fluorogenic chemistry for detection of duplex DNAs has not been previously reported and may allow detection of double stranded DNA, at least for homopurine-homopyrimidine target sites, under native, non-disturbing conditions. PMID:20859985

  2. DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms.

    Science.gov (United States)

    Panova, Marina; Aronsson, Henrik; Cameron, R Andrew; Dahl, Peter; Godhe, Anna; Lind, Ulrika; Ortega-Martinez, Olga; Pereyra, Ricardo; Tesson, Sylvie V M; Wrange, Anna-Lisa; Blomberg, Anders; Johannesson, Kerstin

    2016-01-01

    The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.

  3. An Efficient Approach to Mining Maximal Contiguous Frequent Patterns from Large DNA Sequence Databases

    Directory of Open Access Journals (Sweden)

    Md. Rezaul Karim

    2012-03-01

    Full Text Available Mining interesting patterns from DNA sequences is one of the most challenging tasks in bioinformatics and computational biology. Maximal contiguous frequent patterns are preferable for expressing the function and structure of DNA sequences and hence can capture the common data characteristics among related sequences. Biologists are interested in finding frequent orderly arrangements of motifs that are responsible for similar expression of a group of genes. In order to reduce mining time and complexity, however, most existing sequence mining algorithms either focus on finding short DNA sequences or require explicit specification of sequence lengths in advance. The challenge is to find longer sequences without specifying sequence lengths in advance. In this paper, we propose an efficient approach to mining maximal contiguous frequent patterns from large DNA sequence datasets. The experimental results show that our proposed approach is memory-efficient and mines maximal contiguous frequent patterns within a reasonable time.

  4. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    Science.gov (United States)

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  5. cgDNA: a software package for the prediction of sequence-dependent coarse-grain free energies of B-form DNA.

    Science.gov (United States)

    Petkevičiūtė, D; Pasi, M; Gonzalez, O; Maddocks, J H

    2014-11-10

    cgDNA is a package for the prediction of sequence-dependent configuration-space free energies for B-form DNA at the coarse-grain level of rigid bases. For a fragment of any given length and sequence, cgDNA calculates the configuration of the associated free energy minimizer, i.e. the relative positions and orientations of each base, along with a stiffness matrix, which together govern differences in free energies. The model predicts non-local (i.e. beyond base-pair step) sequence dependence of the free energy minimizer. Configurations can be input or output in either the Curves+ definition of the usual helical DNA structural variables, or as a PDB file of coordinates of base atoms. We illustrate the cgDNA package by comparing predictions of free energy minimizers from (a) the cgDNA model, (b) time-averaged atomistic molecular dynamics (or MD) simulations, and (c) NMR or X-ray experimental observation, for (i) the Dickerson-Drew dodecamer and (ii) three oligomers containing A-tracts. The cgDNA predictions are rather close to those of the MD simulations, but many orders of magnitude faster to compute. Both the cgDNA and MD predictions are in reasonable agreement with the available experimental data. Our conclusion is that cgDNA can serve as a highly efficient tool for studying structural variations in B-form DNA over a wide range of sequences. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing.

    Science.gov (United States)

    Thoendel, Matthew; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Yao, Janet Z; Chia, Nicholas; Hanssen, Arlen D; Abdel, Matthew P; Patel, Robin

    2016-08-01

    Metagenomic whole genome sequencing for detection of pathogens in clinical samples is an exciting new area for discovery and clinical testing. A major barrier to this approach is the overwhelming ratio of human to pathogen DNA in samples with low pathogen abundance, which is typical of most clinical specimens. Microbial DNA enrichment methods offer the potential to relieve this limitation by improving this ratio. Two commercially available enrichment kits, the NEBNext Microbiome DNA Enrichment Kit and the Molzym MolYsis Basic kit, were tested for their ability to enrich for microbial DNA from resected arthroplasty component sonicate fluids from prosthetic joint infections or uninfected sonicate fluids spiked with Staphylococcus aureus. Using spiked uninfected sonicate fluid there was a 6-fold enrichment of bacterial DNA with the NEBNext kit and 76-fold enrichment with the MolYsis kit. Metagenomic whole genome sequencing of sonicate fluid revealed 13- to 85-fold enrichment of bacterial DNA using the NEBNext enrichment kit. The MolYsis approach achieved 481- to 9580-fold enrichment, resulting in 7 to 59% of sequencing reads being from the pathogens known to be present in the samples. These results demonstrate the usefulness of these tools when testing clinical samples with low microbial burden using next generation sequencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing.

    Directory of Open Access Journals (Sweden)

    Sarah M Hykin

    Full Text Available For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles, attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens-particularly for use in phylogenetic analyses-has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp. We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens

  8. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing.

    Science.gov (United States)

    Hykin, Sarah M; Bi, Ke; McGuire, Jimmy A

    2015-01-01

    For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens-particularly for use in phylogenetic analyses-has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for

  9. Application of Ammonium Persulfate for Selective Oxidation of Guanines for Nucleic Acid Sequencing

    Directory of Open Access Journals (Sweden)

    Yafen Wang

    2017-07-01

    Full Text Available Nucleic acids can be sequenced by a chemical procedure that partially damages the nucleotide positions at their base repetition. Many methods have been reported for the selective recognition of guanine. The accurate identification of guanine in both single and double regions of DNA and RNA remains a challenging task. Herein, we present a new, non-toxic and simple method for the selective recognition of guanine in both DNA and RNA sequences via ammonium persulfate modification. This strategy can be further successfully applied to the detection of 5-methylcytosine by using PCR.

  10. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    Science.gov (United States)

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-02-09

    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  11. Statistical properties and fractals of nucleotide clusters in DNA sequences

    International Nuclear Information System (INIS)

    Sun Tingting; Zhang Linxi; Chen Jin; Jiang Zhouting

    2004-01-01

    Statistical properties of nucleotide clusters in DNA sequences and their fractals are investigated in this paper. The average size of nucleotide clusters in non-coding sequence is larger than that in coding sequence. We investigate the cluster-size distribution P(S) for human chromosomes 21 and 22, and the results are different from previous works. The cluster-size distribution P(S 1 +S 2 ) with the total size of sequential Pu-cluster and Py-cluster S 1 +S 2 is studied. We observe that P(S 1 +S 2 ) follows an exponential decay both in coding and non-coding sequences. However, we get different results for human chromosomes 21 and 22. The probability distribution P(S 1 ,S 2 ) of nucleotide clusters with the size of sequential Pu-cluster and Py-cluster S 1 and S 2 respectively, is also examined. In the meantime, some of the linear correlations are obtained in the double logarithmic plots of the fluctuation F(l) versus nucleotide cluster distance l along the DNA chain. The power spectrums of nucleotide clusters are also discussed, and it is concluded that the curves are flat and hardly changed and the 1/3 frequency is neither observed in coding sequence nor in non-coding sequence. These investigations can provide some insights into the nucleotide clusters of DNA sequences

  12. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes

    Directory of Open Access Journals (Sweden)

    Leila Braga Ribeiro

    2014-01-01

    Full Text Available The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum.

  13. Close sequence identity between ribosomal DNA episomes of the ...

    Indian Academy of Sciences (India)

    Unknown

    The restriction map of the E. dispar rDNA circle showed close simi- larity to EhR1 .... for 30 cycles in a DNA Thermal cycler (MJ Research,. USA). 3. .... by asterisk. The gaps show the variation between E. dispar and E. histolytica sequences.

  14. DNA interaction with platinum-based cytostatics revealed by DNA sequencing.

    Science.gov (United States)

    Smerkova, Kristyna; Vaculovic, Tomas; Vaculovicova, Marketa; Kynicky, Jindrich; Brtnicky, Martin; Eckschlager, Tomas; Stiborova, Marie; Hubalek, Jaromir; Adam, Vojtech

    2017-12-15

    The main mechanism of action of platinum-based cytostatic drugs - cisplatin, oxaliplatin and carboplatin - is the formation of DNA cross-links, which restricts the transcription due to the disability of DNA to enter the active site of the polymerase. The polymerase chain reaction (PCR) was employed as a simplified model of the amplification process in the cell nucleus. PCR with fluorescently labelled dideoxynucleotides commonly employed for DNA sequencing was used to monitor the effect of platinum-based cytostatics on DNA in terms of decrease in labeling efficiency dependent on a presence of the DNA-drug cross-link. It was found that significantly different amounts of the drugs - cisplatin (0.21 μg/mL), oxaliplatin (5.23 μg/mL), and carboplatin (71.11 μg/mL) - were required to cause the same quenching effect (50%) on the fluorescent labelling of 50 μg/mL of DNA. Moreover, it was found that even though the amounts of the drugs was applied to the reaction mixture differing by several orders of magnitude, the amount of incorporated platinum, quantified by inductively coupled plasma mass spectrometry, was in all cases at the level of tenths of μg per 5 μg of DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Determination of cDNA and genomic DNA sequences of hevamine, a chitinase from the rubber tree Hevea brasiliensis

    NARCIS (Netherlands)

    Bokma, E; Spiering, M; Chow, KS; Mulder, PPMFA; Subroto, T; Beintema, JJ

    Hevamine is a chitinase from the rubber tree Hevea brasiliensis and belongs to the family 18 glycosyl hydrolases. This paper describes the cloning of hevamine DNA and cDNA sequences. Hevamine contains a signal peptide at the N-terminus and a putative vacuolar targeting sequence at the C-terminus

  16. Rhipicephalus microplus strain Deutsch, whole genome shotgun sequencing project Version 2

    Science.gov (United States)

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. Cot filtration/selection techniques were used ...

  17. Roche genome sequencer FLX based high-throughput sequencing of ancient DNA

    DEFF Research Database (Denmark)

    Alquezar-Planas, David E; Fordyce, Sarah Louise

    2012-01-01

    Since the development of so-called "next generation" high-throughput sequencing in 2005, this technology has been applied to a variety of fields. Such applications include disease studies, evolutionary investigations, and ancient DNA. Each application requires a specialized protocol to ensure...... that the data produced is optimal. Although much of the procedure can be followed directly from the manufacturer's protocols, the key differences lie in the library preparation steps. This chapter presents an optimized protocol for the sequencing of fossil remains and museum specimens, commonly referred...

  18. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitin; Dorfman, Adam; Hahm, Jong-in [Department of Chemical Engineering, Pennsylvania State University, 160 Fenske Laboratory, University Park, PA 16802 (United States)

    2006-06-28

    We report that engineered nanoscale zinc oxide structures can be effectively used for the identification of the biothreat agent, Bacillus anthracis by successfully discriminating its DNA sequence from other genetically related species. We explore both covalent and non-covalent linking schemes in order to couple probe DNA strands to the zinc oxide nanostructures. Hybridization reactions are performed with various concentrations of target DNA strands whose sequence is unique to Bacillus anthracis. The use of zinc oxide nanomaterials greatly enhances the fluorescence signal collected after carrying out duplex formation reaction. Specifically, the covalent strategy allows detection of the target species at sample concentrations at a level as low as a few femtomolar as compared to the detection sensitivity in the tens of nanomolar range when using the non-covalent scheme. The presence of the underlying zinc oxide nanomaterials is critical in achieving increased fluorescence detection of hybridized DNA and, therefore, accomplishing rapid and extremely sensitive identification of the biothreat agent. We also demonstrate the easy integration potential of nanoscale zinc oxide into high density arrays by using various types of zinc oxide sensor prototypes in the DNA sequence detection. When combined with conventional automatic sample handling apparatus and computerized fluorescence detection equipment, our approach can greatly promote the use of zinc oxide nanomaterials as signal enhancing platforms for rapid, multiplexed, high-throughput, highly sensitive, DNA sensor arrays.

  19. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays

    International Nuclear Information System (INIS)

    Kumar, Nitin; Dorfman, Adam; Hahm, Jong-in

    2006-01-01

    We report that engineered nanoscale zinc oxide structures can be effectively used for the identification of the biothreat agent, Bacillus anthracis by successfully discriminating its DNA sequence from other genetically related species. We explore both covalent and non-covalent linking schemes in order to couple probe DNA strands to the zinc oxide nanostructures. Hybridization reactions are performed with various concentrations of target DNA strands whose sequence is unique to Bacillus anthracis. The use of zinc oxide nanomaterials greatly enhances the fluorescence signal collected after carrying out duplex formation reaction. Specifically, the covalent strategy allows detection of the target species at sample concentrations at a level as low as a few femtomolar as compared to the detection sensitivity in the tens of nanomolar range when using the non-covalent scheme. The presence of the underlying zinc oxide nanomaterials is critical in achieving increased fluorescence detection of hybridized DNA and, therefore, accomplishing rapid and extremely sensitive identification of the biothreat agent. We also demonstrate the easy integration potential of nanoscale zinc oxide into high density arrays by using various types of zinc oxide sensor prototypes in the DNA sequence detection. When combined with conventional automatic sample handling apparatus and computerized fluorescence detection equipment, our approach can greatly promote the use of zinc oxide nanomaterials as signal enhancing platforms for rapid, multiplexed, high-throughput, highly sensitive, DNA sensor arrays

  20. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Szybka, Malgorzata; Kordek, Radzislaw; Zakrzewska, Magdalena; Rieske, Piotr; Pasz-Walczak, Grazyna; Kulczycka-Wojdala, Dominika; Zawlik, Izabela; Stawski, Robert; Jesionek-Kupnicka, Dorota; Liberski, Pawel P

    2009-01-01

    Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis

  1. Application of synthetic DNA probes to the analysis of DNA sequence variants in man

    International Nuclear Information System (INIS)

    Wallace, R.B.; Petz, L.D.; Yam, P.Y.

    1986-01-01

    Oligonucleotide probes provide a tool to discriminate between any two alleles on the basis of hybridization. Random sampling of the genome with different oligonucleotide probes should reveal polymorphism in a certain percentage of the cases. In the hope of identifying polymorphic regions more efficiently, we chose to take advantage of the proposed hypermutability of repeated DNA sequences and the specificity of oligonucleotide hybridization. Since, under appropriate conditions, oligonucleotide probes require complete base pairing for hybridization to occur, they will only hybridize to a subset of the members of a repeat family when all members of the family are not identical. The results presented here suggest that oligonucleotide hybridization can be used to extend the genomic sequences that can be tested for the presence of RFLPs. This expands the tools available to human genetics. In addition, the results suggest that repeated DNA sequences are indeed more polymorphic than single-copy sequences. 28 references, 2 figures

  2. PNA Directed Sequence Addressed Self-Assembly of DNA Nanostructures

    DEFF Research Database (Denmark)

    Nielsen, Peter E.

    2008-01-01

    sequence specifically recognize another PNA oligomer. We describe how such three domain PNAs have utility for assembling dsDNA grid and clover leaf structures, and in combination with SNAP-tag technol. of protein dsDNA structures. (c) 2008 American Institute of Physics. [on SciFinder (R)] Udgivelsesdato...

  3. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus

  4. Special Issue: Next Generation DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Paul Richardson

    2010-10-01

    Full Text Available Next Generation Sequencing (NGS refers to technologies that do not rely on traditional dideoxy-nucleotide (Sanger sequencing where labeled DNA fragments are physically resolved by electrophoresis. These new technologies rely on different strategies, but essentially all of them make use of real-time data collection of a base level incorporation event across a massive number of reactions (on the order of millions versus 96 for capillary electrophoresis for instance. The major commercial NGS platforms available to researchers are the 454 Genome Sequencer (Roche, Illumina (formerly Solexa Genome analyzer, the SOLiD system (Applied Biosystems/Life Technologies and the Heliscope (Helicos Corporation. The techniques and different strategies utilized by these platforms are reviewed in a number of the papers in this special issue. These technologies are enabling new applications that take advantage of the massive data produced by this next generation of sequencing instruments. [...

  5. Spectral sum rules and search for periodicities in DNA sequences

    International Nuclear Information System (INIS)

    Chechetkin, V.R.

    2011-01-01

    Periodic patterns play the important regulatory and structural roles in genomic DNA sequences. Commonly, the underlying periodicities should be understood in a broad statistical sense, since the corresponding periodic patterns have been strongly distorted by the random point mutations and insertions/deletions during molecular evolution. The latent periodicities in DNA sequences can be efficiently displayed by Fourier transform. The criteria of significance for observed periodicities are obtained via the comparison versus the counterpart characteristics of the reference random sequences. We show that the restrictions imposed on the significance criteria by the rigorous spectral sum rules can be rationally described with De Finetti distribution. This distribution provides the convenient intermediate asymptotic form between Rayleigh distribution and exact combinatoric theory. - Highlights: → We study the significance criteria for latent periodicities in DNA sequences. → The constraints imposed by sum rules can be described with De Finetti distribution. → It is intermediate between Rayleigh distribution and exact combinatoric theory. → Theory is applicable to the study of correlations between different periodicities. → The approach can be generalized to the arbitrary discrete Fourier transform.

  6. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  7. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.

    Science.gov (United States)

    Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie

    2015-06-17

    High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This

  8. AU2EU : Privacy-preserving matching of DNA sequences

    NARCIS (Netherlands)

    Ignatenko, T.; Petkovic, M.; Naccache, D.; Sauveron, D.

    2014-01-01

    Advances in DNA sequencing create new opportunities for the use of DNA data in healthcare for diagnostic and treatment purposes, but also in many other health and well-being services. This brings new challenges with regard to the protection and use of this sensitive data. Thus, special technical

  9. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    Science.gov (United States)

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  10. cDNA sequences of two apolipoproteins from lamprey

    International Nuclear Information System (INIS)

    Pontes, M.; Xu, X.; Graham, D.; Riley, M.; Doolittle, R.F.

    1987-01-01

    The messages for two small but abundant apolipoproteins found in lamprey blood plasma were cloned with the aid of oligonucleotide probes based on amino-terminal sequences. In both cases, numerous clones were identified in a lamprey liver cDNA library, consistent with the great abundance of these proteins in lamprey blood. One of the cDNAs (LAL1) has a coding region of 105 amino acids that corresponds to a 21-residue signal peptide, a putative 8-residue propeptide, and the 76-residue mature protein found in blood. The other cDNA (LAL2) codes for a total of 191 residues, the first 23 of which constitute a signal peptide. The two proteins, which occur in the high-density lipoprotein fraction of ultracentrifuged plasma, have amino acid compositions similar to those of apolipoproteins found in mammalian blood; computer analysis indicates that the sequences are largely helix-permissive. When the sequences were searched against an amino acid sequence data base, rat apolipoprotein IV was the best matching candidate in both cases. Although a reasonable alignment can be made with that sequence and LAL1, definitive assignment of the two lamprey proteins to typical mammalian classes cannot be made at this point

  11. Early Lyme disease with spirochetemia - diagnosed by DNA sequencing

    Directory of Open Access Journals (Sweden)

    Jones William

    2010-11-01

    Full Text Available Abstract Background A sensitive and analytically specific nucleic acid amplification test (NAAT is valuable in confirming the diagnosis of early Lyme disease at the stage of spirochetemia. Findings Venous blood drawn from patients with clinical presentations of Lyme disease was tested for the standard 2-tier screen and Western Blot serology assay for Lyme disease, and also by a nested polymerase chain reaction (PCR for B. burgdorferi sensu lato 16S ribosomal DNA. The PCR amplicon was sequenced for B. burgdorferi genomic DNA validation. A total of 130 patients visiting emergency room (ER or Walk-in clinic (WALKIN, and 333 patients referred through the private physicians' offices were studied. While 5.4% of the ER/WALKIN patients showed DNA evidence of spirochetemia, none (0% of the patients referred from private physicians' offices were DNA-positive. In contrast, while 8.4% of the patients referred from private physicians' offices were positive for the 2-tier Lyme serology assay, only 1.5% of the ER/WALKIN patients were positive for this antibody test. The 2-tier serology assay missed 85.7% of the cases of early Lyme disease with spirochetemia. The latter diagnosis was confirmed by DNA sequencing. Conclusion Nested PCR followed by automated DNA sequencing is a valuable supplement to the standard 2-tier antibody assay in the diagnosis of early Lyme disease with spirochetemia. The best time to test for Lyme spirochetemia is when the patients living in the Lyme disease endemic areas develop unexplained symptoms or clinical manifestations that are consistent with Lyme disease early in the course of their illness.

  12. Identification of tissue-embedded ascarid larvae by ribosomal DNA sequencing.

    Science.gov (United States)

    Ishiwata, Kenji; Shinohara, Akio; Yagi, Kinpei; Horii, Yoichiro; Tsuchiya, Kimiyuki; Nawa, Yukifumi

    2004-01-01

    Polymerase chain reaction (PCR) was applied to identify tissue-embedded ascarid nematode larvae. Two sequences of the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA), ITS1 and ITS2, of the ascarid parasites were amplified and compared with those of ascarid-nematodes registered in a DNA database (GenBank). The ITS sequences of the PCR products obtained from the ascarid parasite specimen in our laboratory were compatible with those of registered adult Ascaris and Toxocara parasites. PCR amplification of the ITS regions was sensitive enough to detect a single larva of Ascaris suum mixed with porcine liver tissue. Using this method, ascarid larvae embedded in the liver of a naturally infected turkey were identified as Toxocara canis. These results suggest that even a single larva embedded in tissues from patients with larva migrans could be identified by sequencing the ITS regions.

  13. Micropatterning stretched and aligned DNA for sequence-specific nanolithography

    Science.gov (United States)

    Petit, Cecilia Anna Paulette

    Techniques for fabricating nanostructured materials can be categorized as either "top-down" or "bottom-up". Top-down techniques use lithography and contact printing to create patterned surfaces and microfluidic channels that can corral and organize nanoscale structures, such as molecules and nanorods in contrast; bottom-up techniques use self-assembly or molecular recognition to direct the organization of materials. A central goal in nanotechnology is the integration of bottom-up and top-down assembly strategies for materials development, device design; and process integration. With this goal in mind, we have developed strategies that will allow this integration by using DNA as a template for nanofabrication; two top-down approaches allow the placement of these templates, while the bottom-up technique uses the specific sequence of bases to pattern materials along each strand of DNA. Our first top-down approach, termed combing of molecules in microchannels (COMMIC), produces microscopic patterns of stretched and aligned molecules of DNA on surfaces. This process consists of passing an air-water interface over end adsorbed molecules inside microfabricated channels. The geometry of the microchannel directs the placement of the DNA molecules, while the geometry of the airwater interface directs the local orientation and curvature of the molecules. We developed another top-down strategy for creating micropatterns of stretched and aligned DNA using surface chemistry. Because DNA stretching occurs on hydrophobic surfaces, this technique uses photolithography to pattern vinyl-terminated silanes on glass When these surface-, are immersed in DNA solution, molecules adhere preferentially to the silanized areas. This approach has also proven useful in patterning protein for cell adhesion studies. Finally, we describe the use of these stretched and aligned molecules of DNA as templates for the subsequent bottom-up construction of hetero-structures through hybridization

  14. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-01

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecue, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G•U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G•U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  15. DNA Sequences of RAPD Fragments in the Egyptian cotton ...

    African Journals Online (AJOL)

    Random Amplified Polymorphic DNAs (RAPDs) is a DNA polymorphism assay based on the amplification of random DNA segments with single primers of arbitrary nucleotide sequence. Despite the fact that the RAPD technique has become a very powerful tool and has found use in numerous applications, yet, the nature of ...

  16. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    Energy Technology Data Exchange (ETDEWEB)

    Hidajat, Rachmat; Nickols, Brian [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Forrester, Naomi [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Tretyakova, Irina [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Weaver, Scott [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2016-03-15

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  17. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    International Nuclear Information System (INIS)

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi; Tretyakova, Irina; Weaver, Scott; Pushko, Peter

    2016-01-01

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  18. A microfluidic DNA library preparation platform for next-generation sequencing.

    Science.gov (United States)

    Kim, Hanyoup; Jebrail, Mais J; Sinha, Anupama; Bent, Zachary W; Solberg, Owen D; Williams, Kelly P; Langevin, Stanley A; Renzi, Ronald F; Van De Vreugde, James L; Meagher, Robert J; Schoeniger, Joseph S; Lane, Todd W; Branda, Steven S; Bartsch, Michael S; Patel, Kamlesh D

    2013-01-01

    Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  19. A microfluidic DNA library preparation platform for next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Hanyoup Kim

    Full Text Available Next-generation sequencing (NGS is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM. The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  20. Phylogenetic relationships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences

    Science.gov (United States)

    Admir J. Giachini; Kentaro Hosaka; Eduardo Nouhra; Joseph Spatafora; James M. Trappe

    2010-01-01

    Phylogenetic relationships among Geastrales, Gomphales, Hysterangiales, and Phallales were estimated via combined sequences: nuclear large subunit ribosomal DNA (nuc-25S-rDNA), mitochondrial small subunit ribosomal DNA (mit-12S-rDNA), and mitochondrial atp6 DNA (mit-atp6-DNA). Eighty-one taxa comprising 19 genera and 58 species...

  1. Sequence Dependencies of DNA Deformability and Hydration in the Minor Groove

    Science.gov (United States)

    Yonetani, Yoshiteru; Kono, Hidetoshi

    2009-01-01

    Abstract DNA deformability and hydration are both sequence-dependent and are essential in specific DNA sequence recognition by proteins. However, the relationship between the two is not well understood. Here, systematic molecular dynamics simulations of 136 DNA sequences that differ from each other in their central tetramer revealed that sequence dependence of hydration is clearly correlated with that of deformability. We show that this correlation can be illustrated by four typical cases. Most rigid basepair steps are highly likely to form an ordered hydration pattern composed of one water molecule forming a bridge between the bases of distinct strands, but a few exceptions favor another ordered hydration composed of two water molecules forming such a bridge. Steps with medium deformability can display both of these hydration patterns with frequent transition. Highly flexible steps do not have any stable hydration pattern. A detailed picture of this correlation demonstrates that motions of hydration water molecules and DNA bases are tightly coupled with each other at the atomic level. These results contribute to our understanding of the entropic contribution from water molecules in protein or drug binding and could be applied for the purpose of predicting binding sites. PMID:19686662

  2. Comparative d2/d3 LSU–rDNA sequence study of some Iranian ...

    African Journals Online (AJOL)

    SERVER

    2007-11-05

    Nov 5, 2007 ... segments yielded one fragment at over all sequenced isolates as 787 bp in size. The DNA sequences were aligned .... expansion segments of the 28S rDNA subunit (D2/D3. LSU-rDNA) are the ... isolated from different geographical location from tea shrubs infested roots of Guilan province, Iran (Table 1).

  3. Integration of hepatitis B virus DNA in chromosome-specific satellite sequences

    International Nuclear Information System (INIS)

    Shaul, Y.; Garcia, P.D.; Schonberg, S.; Rutter, W.J.

    1986-01-01

    The authors previously reported the cloning and detailed analysis of the integrated hepatitis B virus sequences in a human hepatoma cell line. They report here the integration of at least one of hepatitis B virus at human satellite DNA sequences. The majority of the cellular sequences identified by this satellite were organized as a multimeric composition of a 0.6-kilobase EcoRI fragment. This clone hybridized in situ almost exclusively to the centromeric heterochromatin of chromosomes 1 and 16 and to a lower extent to chromosome 2 and to the heterochromatic region of the Y chromosome. The immediate flanking host sequence appeared as a hierarchy of repeating units which were almost identical to a previously reported human satellite III DNA sequence

  4. Autonomous replication of plasmids bearing monkey DNA origin-enriched sequences

    International Nuclear Information System (INIS)

    Frappier, L.; Zannis-Hadjopoulos, M.

    1987-01-01

    Twelve clones of origin-enriched sequences (ORS) isolated from early replicating monkey (CV-1) DNA were examined for transient episomal replication in transfected CV-1, COS-7, and HeLa cells. Plasmid DNA was isolated at time intervals after transfection and screened by the Dpn I resistance assay or by the bromodeoxyuridine substitution assay to differentiate between input and replicated DNA. The authors have identified four monkey ORS (ORS3, -8, -9, and -12) that can support plasmid replication in mammalian cells. This replication is carried out in a controlled and semiconservative manner characteristic of mammalian replicons. ORS replication was most efficient in HeLa cells. Electron microscopy showed ORS8 and ORS12 plasmids of the correct size with replication bubbles. Using a unique restriction site in ORS12, we have mapped the replication bubble within the monkey DNA sequence

  5. Presence of a consensus DNA motif at nearby DNA sequence of the mutation susceptible CG nucleotides.

    Science.gov (United States)

    Chowdhury, Kaushik; Kumar, Suresh; Sharma, Tanu; Sharma, Ankit; Bhagat, Meenakshi; Kamai, Asangla; Ford, Bridget M; Asthana, Shailendra; Mandal, Chandi C

    2018-01-10

    Complexity in tissues affected by cancer arises from somatic mutations and epigenetic modifications in the genome. The mutation susceptible hotspots present within the genome indicate a non-random nature and/or a position specific selection of mutation. An association exists between the occurrence of mutations and epigenetic DNA methylation. This study is primarily aimed at determining mutation status, and identifying a signature for predicting mutation prone zones of tumor suppressor (TS) genes. Nearby sequences from the top five positions having a higher mutation frequency in each gene of 42 TS genes were selected from a cosmic database and were considered as mutation prone zones. The conserved motifs present in the mutation prone DNA fragments were identified. Molecular docking studies were done to determine putative interactions between the identified conserved motifs and enzyme methyltransferase DNMT1. Collective analysis of 42 TS genes found GC as the most commonly replaced and AT as the most commonly formed residues after mutation. Analysis of the top 5 mutated positions of each gene (210 DNA segments for 42 TS genes) identified that CG nucleotides of the amino acid codons (e.g., Arginine) are most susceptible to mutation, and found a consensus DNA "T/AGC/GAGGA/TG" sequence present in these mutation prone DNA segments. Similar to TS genes, analysis of 54 oncogenes not only found CG nucleotides of the amino acid Arg as the most susceptible to mutation, but also identified the presence of similar consensus DNA motifs in the mutation prone DNA fragments (270 DNA segments for 54 oncogenes) of oncogenes. Docking studies depicted that, upon binding of DNMT1 methylates to this consensus DNA motif (C residues of CpG islands), mutation was likely to occur. Thus, this study proposes that DNMT1 mediated methylation in chromosomal DNA may decrease if a foreign DNA segment containing this consensus sequence along with CG nucleotides is exogenously introduced to dividing

  6. Research on Image Encryption Based on DNA Sequence and Chaos Theory

    Science.gov (United States)

    Tian Zhang, Tian; Yan, Shan Jun; Gu, Cheng Yan; Ren, Ran; Liao, Kai Xin

    2018-04-01

    Nowadays encryption is a common technique to protect image data from unauthorized access. In recent years, many scientists have proposed various encryption algorithms based on DNA sequence to provide a new idea for the design of image encryption algorithm. Therefore, a new method of image encryption based on DNA computing technology is proposed in this paper, whose original image is encrypted by DNA coding and 1-D logistic chaotic mapping. First, the algorithm uses two modules as the encryption key. The first module uses the real DNA sequence, and the second module is made by one-dimensional logistic chaos mapping. Secondly, the algorithm uses DNA complementary rules to encode original image, and uses the key and DNA computing technology to compute each pixel value of the original image, so as to realize the encryption of the whole image. Simulation results show that the algorithm has good encryption effect and security.

  7. Sequence heterogeneity accelerates protein search for targets on DNA

    International Nuclear Information System (INIS)

    Shvets, Alexey A.; Kolomeisky, Anatoly B.

    2015-01-01

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome

  8. Sequence heterogeneity accelerates protein search for targets on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Alexey A.; Kolomeisky, Anatoly B., E-mail: tolya@rice.edu [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2015-12-28

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  9. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  10. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.).

    Science.gov (United States)

    Čížková, Jana; Hřibová, Eva; Humplíková, Lenka; Christelová, Pavla; Suchánková, Pavla; Doležel, Jaroslav

    2013-01-01

    Satellite DNA sequences consist of tandemly arranged repetitive units up to thousands nucleotides long in head-to-tail orientation. The evolutionary processes by which satellites arise and evolve include unequal crossing over, gene conversion, transposition and extra chromosomal circular DNA formation. Large blocks of satellite DNA are often observed in heterochromatic regions of chromosomes and are a typical component of centromeric and telomeric regions. Satellite-rich loci may show specific banding patterns and facilitate chromosome identification and analysis of structural chromosome changes. Unlike many other genomes, nuclear genomes of banana (Musa spp.) are poor in satellite DNA and the information on this class of DNA remains limited. The banana cultivars are seed sterile clones originating mostly from natural intra-specific crosses within M. acuminata (A genome) and inter-specific crosses between M. acuminata and M. balbisiana (B genome). Previous studies revealed the closely related nature of the A and B genomes, including similarities in repetitive DNA. In this study we focused on two main banana DNA satellites, which were previously identified in silico. Their genomic organization and molecular diversity was analyzed in a set of nineteen Musa accessions, including representatives of A, B and S (M. schizocarpa) genomes and their inter-specific hybrids. The two DNA satellites showed a high level of sequence conservation within, and a high homology between Musa species. FISH with probes for the satellite DNA sequences, rRNA genes and a single-copy BAC clone 2G17 resulted in characteristic chromosome banding patterns in M. acuminata and M. balbisiana which may aid in determining genomic constitution in interspecific hybrids. In addition to improving the knowledge on Musa satellite DNA, our study increases the number of cytogenetic markers and the number of individual chromosomes, which can be identified in Musa.

  11. Rhipicephalus microplus dataset of nonredundant raw sequence reads from 454 GS FLX sequencing of Cot-selected (Cot = 660) genomic DNA

    Science.gov (United States)

    A reassociation kinetics-based approach was used to reduce the complexity of genomic DNA from the Deutsch laboratory strain of the cattle tick, Rhipicephalus microplus, to facilitate genome sequencing. Selected genomic DNA (Cot value = 660) was sequenced using 454 GS FLX technology, resulting in 356...

  12. Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase

    International Nuclear Information System (INIS)

    Hjalmarsson, K.; Marklund, S.L.; Engstroem, A.; Edlund, T.

    1987-01-01

    A complementary DNA (cDNA) clone from a human placenta cDNA library encoding extracellular superoxide dismutase has been isolated and the nucleotide sequence determined. The cDNA has a very high G + C content. EC-SOD is synthesized with a putative 18-amino acid signal peptide, preceding the 222 amino acids in the mature enzyme, indicating that the enzyme is a secretory protein. The first 95 amino acids of the mature enzyme show no sequence homology with other sequenced proteins and there is one possible N-glycosylation site (Asn-89). The amino acid sequence from residues 96-193 shows strong homology (∼ 50%) with the final two-thirds of the sequences of all know eukaryotic CuZn SODs, whereas the homology with the P. leiognathi CuZn SOD is clearly lower. The ligands to Cu and Zn, the cysteines forming the intrasubunit disulfide bridge in the CuZn SODs, and the arginine found in all CuZn SODs in the entrance to the active site can all be identified in EC-SOD. A comparison with bovine CuZn SOD, the three-dimensional structure of which is known, reveals that the homologies occur in the active site and the divergencies are in the part constituting the subunit contact area in CuZn SOD. Amino acid sequence 194-222 in the carboxyl-terminal end of EC-SOD is strongly hydrophilic and contains nine amino acids with a positive charge. This sequence probably confers the affinity of EC-SOD for heparin and heparan sulfate. An analysis of the amino acid sequence homologies with CuZn SODs from various species indicates that the EC-SODs may have evolved form the CuZn SODs before the evolution of fungi and plants

  13. Comparison of DNA Quantification Methods for Next Generation Sequencing.

    Science.gov (United States)

    Robin, Jérôme D; Ludlow, Andrew T; LaRanger, Ryan; Wright, Woodring E; Shay, Jerry W

    2016-04-06

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library's heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality.

  14. Genomic signal processing for DNA sequence clustering.

    Science.gov (United States)

    Mendizabal-Ruiz, Gerardo; Román-Godínez, Israel; Torres-Ramos, Sulema; Salido-Ruiz, Ricardo A; Vélez-Pérez, Hugo; Morales, J Alejandro

    2018-01-01

    Genomic signal processing (GSP) methods which convert DNA data to numerical values have recently been proposed, which would offer the opportunity of employing existing digital signal processing methods for genomic data. One of the most used methods for exploring data is cluster analysis which refers to the unsupervised classification of patterns in data. In this paper, we propose a novel approach for performing cluster analysis of DNA sequences that is based on the use of GSP methods and the K-means algorithm. We also propose a visualization method that facilitates the easy inspection and analysis of the results and possible hidden behaviors. Our results support the feasibility of employing the proposed method to find and easily visualize interesting features of sets of DNA data.

  15. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

    Energy Technology Data Exchange (ETDEWEB)

    Motackova, Veronika; Novacek, Jiri [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Zawadzka-Kazimierczuk, Anna; Kazimierczuk, Krzysztof [University of Warsaw, Faculty of Chemistry (Poland); Zidek, Lukas, E-mail: lzidek@chemi.muni.c [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Sanderova, Hana; Krasny, Libor [Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria and Department of Bacteriology, Institute of Microbiology (Czech Republic); Kozminski, Wiktor [University of Warsaw, Faculty of Chemistry (Poland); Sklenar, Vladimir [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic)

    2010-11-15

    A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, {delta} subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.

  16. Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks

    Science.gov (United States)

    Belotserkovskii, Boris P.; Neil, Alexander J.; Saleh, Syed Shayon; Shin, Jane Hae Soo; Mirkin, Sergei M.; Hanawalt, Philip C.

    2013-01-01

    The ability of DNA to adopt non-canonical structures can affect transcription and has broad implications for genome functioning. We have recently reported that guanine-rich (G-rich) homopurine-homopyrimidine sequences cause significant blockage of transcription in vitro in a strictly orientation-dependent manner: when the G-rich strand serves as the non-template strand [Belotserkovskii et al. (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences., Proc. Natl Acad. Sci. USA, 107, 12816–12821]. We have now systematically studied the effect of the sequence composition and single-stranded breaks on this blockage. Although substitution of guanine by any other base reduced the blockage, cytosine and thymine reduced the blockage more significantly than adenine substitutions, affirming the importance of both G-richness and the homopurine-homopyrimidine character of the sequence for this effect. A single-strand break in the non-template strand adjacent to the G-rich stretch dramatically increased the blockage. Breaks in the non-template strand result in much weaker blockage signals extending downstream from the break even in the absence of the G-rich stretch. Our combined data support the notion that transcription blockage at homopurine-homopyrimidine sequences is caused by R-loop formation. PMID:23275544

  17. Inspecting Targeted Deep Sequencing of Whole Genome Amplified DNA Versus Fresh DNA for Somatic Mutation Detection: A Genetic Study in Myelodysplastic Syndrome Patients.

    Science.gov (United States)

    Palomo, Laura; Fuster-Tormo, Francisco; Alvira, Daniel; Ademà, Vera; Armengol, María Pilar; Gómez-Marzo, Paula; de Haro, Nuri; Mallo, Mar; Xicoy, Blanca; Zamora, Lurdes; Solé, Francesc

    2017-08-01

    Whole genome amplification (WGA) has become an invaluable method for preserving limited samples of precious stock material and has been used during the past years as an alternative tool to increase the amount of DNA before library preparation for next-generation sequencing. Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic stem cell disorders characterized by presenting somatic mutations in several myeloid-related genes. In this work, targeted deep sequencing has been performed on four paired fresh DNA and WGA DNA samples from bone marrow of MDS patients, to assess the feasibility of using WGA DNA for detecting somatic mutations. The results of this study highlighted that, in general, the sequencing and alignment statistics of fresh DNA and WGA DNA samples were similar. However, after variant calling and when considering variants detected at all frequencies, there was a high level of discordance between fresh DNA and WGA DNA (overall, a higher number of variants was detected in WGA DNA). After proper filtering, a total of three somatic mutations were detected in the cohort. All somatic mutations detected in fresh DNA were also identified in WGA DNA and validated by whole exome sequencing.

  18. Nucleotide sequence determination of the region in adenovirus 5 DNA involved in cell transformation

    International Nuclear Information System (INIS)

    Maat, J.

    1978-01-01

    A description is given of investigations into the primary structure of the transforming region of adenovirus type 5 DNA. The phenomenon of cell transformation is discussed in general terms and the principles of a number of fairly recent techniques, which have been in use for DNA sequence determination since 1975 are dealt with. A few of the author's own techniques are described which deal both with nucleotide sequence analysis and with the determination of DNA cleavage sites of restriction endonucleases. The results are given of the mapping of cleavage sites in the HpaI-E fragment of adenovirus DNA of HpaII, HaeIII, AluI, HinfI and TaqI and of the determination of the nucleotide sequence in the transforming region of adenovirus type 5 DNA. The results of the sequence determination of the Ad5 HindIII-G fragment are discussed in relation with the investigation on the transforming proteins isolated from in vitro and in vivo synthesizing systems. Labelling procedures of DNA are described including the exonuclease III/DNA polymerase 1 method and TA polynucleotide kinase labelling of DNA fragments. (Auth.)

  19. Frequency of Epstein-Barr virus DNA sequences in human gliomas

    Directory of Open Access Journals (Sweden)

    Renata Fragelli Fonseca

    Full Text Available CONTEXT AND OBJECTIVE: The Epstein-Barr virus (EBV is the most common cause of infectious mononucleosis and is also associated with several human tumors, including Burkitt's lymphoma, Hodgkin's lymphoma, some cases of gastric carcinoma and nasopharyngeal carcinoma, among other neoplasms. The aim of this study was to screen 75 primary gliomas for the presence of specific EBV DNA sequences by means of the polymerase chain reaction (PCR, with confirmation by direct sequencing. DESIGN AND SETTING: Prevalence study on EBV molecular genetics at a molecular pathology laboratory in a university hospital and at an applied genetics laboratory in a national institution. METHODS: A total of 75 primary glioma biopsies and 6 others from other tumors from the central nervous system were obtained. The tissues were immediately frozen for subsequent DNA extraction by means of traditional methods using proteinase K digestion and extraction with a phenol-chloroform-isoamyl alcohol mixture. DNA was precipitated with ethanol, resuspended in buffer and stored. The PCRs were carried out using primers for amplification of the EBV BamM region. Positive and negative controls were added to each reaction. The PCR products were used for direct sequencing for confirmation. RESULTS: The viral sequences were positive in 11/75 (14.7% of our samples. CONCLUSION: The prevalence of EBV DNA was 11/75 (14.7% in our glioma collection. Further molecular and epidemiological studies are needed to establish the possible role played by EBV in the tumorigenesis of gliomas.

  20. A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents.

    Science.gov (United States)

    Murray, V

    1999-01-01

    This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.

  1. Using Synthetic Nanopores for Single-Molecule Analyses: Detecting SNPs, Trapping DNA Molecules, and the Prospects for Sequencing DNA

    Science.gov (United States)

    Dimitrov, Valentin V.

    2009-01-01

    This work focuses on studying properties of DNA molecules and DNA-protein interactions using synthetic nanopores, and it examines the prospects of sequencing DNA using synthetic nanopores. We have developed a method for discriminating between alleles that uses a synthetic nanopore to measure the binding of a restriction enzyme to DNA. There exists…

  2. The influence of DNA sequence on epigenome-induced pathologies

    Directory of Open Access Journals (Sweden)

    Meagher Richard B

    2012-07-01

    Full Text Available Abstract Clear cause-and-effect relationships are commonly established between genotype and the inherited risk of acquiring human and plant diseases and aberrant phenotypes. By contrast, few such cause-and-effect relationships are established linking a chromatin structure (that is, the epitype with the transgenerational risk of acquiring a disease or abnormal phenotype. It is not entirely clear how epitypes are inherited from parent to offspring as populations evolve, even though epigenetics is proposed to be fundamental to evolution and the likelihood of acquiring many diseases. This article explores the hypothesis that, for transgenerationally inherited chromatin structures, “genotype predisposes epitype”, and that epitype functions as a modifier of gene expression within the classical central dogma of molecular biology. Evidence for the causal contribution of genotype to inherited epitypes and epigenetic risk comes primarily from two different kinds of studies discussed herein. The first and direct method of research proceeds by the examination of the transgenerational inheritance of epitype and the penetrance of phenotype among genetically related individuals. The second approach identifies epitypes that are duplicated (as DNA sequences are duplicated and evolutionarily conserved among repeated patterns in the DNA sequence. The body of this article summarizes particularly robust examples of these studies from humans, mice, Arabidopsis, and other organisms. The bulk of the data from both areas of research support the hypothesis that genotypes predispose the likelihood of displaying various epitypes, but for only a few classes of epitype. This analysis suggests that renewed efforts are needed in identifying polymorphic DNA sequences that determine variable nucleosome positioning and DNA methylation as the primary cause of inherited epigenome-induced pathologies. By contrast, there is very little evidence that DNA sequence directly

  3. Modeling genetic imprinting effects of DNA sequences with multilocus polymorphism data

    Directory of Open Access Journals (Sweden)

    Staud Roland

    2009-08-01

    Full Text Available Abstract Single nucleotide polymorphisms (SNPs represent the most widespread type of DNA sequence variation in the human genome and they have recently emerged as valuable genetic markers for revealing the genetic architecture of complex traits in terms of nucleotide combination and sequence. Here, we extend an algorithmic model for the haplotype analysis of SNPs to estimate the effects of genetic imprinting expressed at the DNA sequence level. The model provides a general procedure for identifying the number and types of optimal DNA sequence variants that are expressed differently due to their parental origin. The model is used to analyze a genetic data set collected from a pain genetics project. We find that DNA haplotype GAC from three SNPs, OPRKG36T (with two alleles G and T, OPRKA843G (with alleles A and G, and OPRKC846T (with alleles C and T, at the kappa-opioid receptor, triggers a significant effect on pain sensitivity, but with expression significantly depending on the parent from which it is inherited (p = 0.008. With a tremendous advance in SNP identification and automated screening, the model founded on haplotype discovery and statistical inference may provide a useful tool for genetic analysis of any quantitative trait with complex inheritance.

  4. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it

  5. Stored word sequences in language learning: the effect of familiarity on children's repetition of four-word combinations.

    Science.gov (United States)

    Bannard, Colin; Matthews, Danielle

    2008-03-01

    Recent accounts of the development of grammar propose that children remember utterances they hear and draw generalizations over these stored exemplars. This study tested these accounts' assumption that children store utterances as wholes by testing memory for familiar sequences of words. Using a newly available, dense corpus of child-directed speech, we identified frequently occurring chunks in the input (e.g., sit in your chair) and matched them to infrequent sequences (e.g., sit in your truck). We tested young children's ability to produce these sequences in a sentence-repetition test. Three-year-olds (n= 21) and 2-year-olds (n= 17) were significantly more likely to repeat frequent sequences correctly than to repeat infrequent sequences correctly. Moreover, the 3-year-olds were significantly faster to repeat the first three words of an item if they formed part of a chunk (e.g., they were quicker to say sit in your when the following word was chair than when it was truck). We discuss the implications of these results for theories of language development and processing.

  6. Underwound DNA under Tension: Structure, Elasticity, and Sequence-Dependent Behaviors

    Science.gov (United States)

    Sheinin, Maxim Y.; Forth, Scott; Marko, John F.; Wang, Michelle D.

    2011-09-01

    DNA melting under torsion plays an important role in a wide variety of cellular processes. In the present Letter, we have investigated DNA melting at the single-molecule level using an angular optical trap. By directly measuring force, extension, torque, and angle of DNA, we determined the structural and elastic parameters of torsionally melted DNA. Our data reveal that under moderate forces, the melted DNA assumes a left-handed structure as opposed to an open bubble conformation and is highly torsionally compliant. We have also discovered that at low forces melted DNA properties are highly dependent on DNA sequence. These results provide a more comprehensive picture of the global DNA force-torque phase diagram.

  7. A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression

    International Nuclear Information System (INIS)

    Dey, Indranil; Rath, Pramod C.

    2005-01-01

    Mammalian genome contains a wide variety of repetitive DNA sequences of relatively unknown function. We report a novel 227 bp simple repeat DNA (3.3 DNA) with a d {(GA) 7 A (AG) 7 } dinucleotide mirror repeat from the rat (Rattus norvegicus) genome. 3.3 DNA showed 75-85% homology with several eukaryotic mRNAs due to (GA/CU) n dinucleotide repeats by nBlast search and a dispersed distribution in the rat genome by Southern blot hybridization with [ 32 P]3.3 DNA. The d {(GA) 7 A (AG) 7 } mirror repeat formed a triplex (H-DNA)-like structure in vitro. Two large RNAs of 9.1 and 7.5 kb were detected by [ 32 P]3.3 DNA in rat brain by Northern blot hybridization indicating expression of such simple sequence repeats at RNA level in vivo. Further, several cDNAs were isolated from a rat cDNA library by [ 32 P]3.3 DNA probe. Three such cDNAs showed tissue-specific RNA expression in rat. pRT 4.1 cDNA showed strong expression of a 2.39 kb RNA in brain and spleen, pRT 5.5 cDNA showed strong expression of a 2.8 kb RNA in brain and a 3.9 kb RNA in lungs, and pRT 11.4 cDNA showed weak expression of a 2.4 kb RNA in lungs. Thus, genomic simple sequence repeats containing d (GA/CT) n dinucleotides are transcriptionally expressed and regulated in rat tissues. Such d (GA/CT) n dinucleotide repeats may form structural elements (e.g., triplex) which may be sites for functional regulation of genomic coding sequences as well as RNAs. This may be a general function of such transcriptionally active simple sequence repeats widely dispersed in mammalian genome

  8. Bacterial DNA Sequence Compression Models Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Armando J. Pinho

    2013-08-01

    Full Text Available It is widely accepted that the advances in DNA sequencing techniques have contributed to an unprecedented growth of genomic data. This fact has increased the interest in DNA compression, not only from the information theory and biology points of view, but also from a practical perspective, since such sequences require storage resources. Several compression methods exist, and particularly, those using finite-context models (FCMs have received increasing attention, as they have been proven to effectively compress DNA sequences with low bits-per-base, as well as low encoding/decoding time-per-base. However, the amount of run-time memory required to store high-order finite-context models may become impractical, since a context-order as low as 16 requires a maximum of 17.2 x 109 memory entries. This paper presents a method to reduce such a memory requirement by using a novel application of artificial neural networks (ANN to build such probabilistic models in a compact way and shows how to use them to estimate the probabilities. Such a system was implemented, and its performance compared against state-of-the art compressors, such as XM-DNA (expert model and FCM-Mx (mixture of finite-context models , as well as with general-purpose compressors. Using a combination of order-10 FCM and ANN, similar encoding results to those of FCM, up to order-16, are obtained using only 17 megabytes of memory, whereas the latter, even employing hash-tables, uses several hundreds of megabytes.

  9. Mesoscopic modeling of DNA denaturation rates: Sequence dependence and experimental comparison

    Energy Technology Data Exchange (ETDEWEB)

    Dahlen, Oda, E-mail: oda.dahlen@ntnu.no; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117 7491 Trondheim (Norway)

    2015-06-21

    Using rare event simulation techniques, we calculated DNA denaturation rate constants for a range of sequences and temperatures for the Peyrard-Bishop-Dauxois (PBD) model with two different parameter sets. We studied a larger variety of sequences compared to previous studies that only consider DNA homopolymers and DNA sequences containing an equal amount of weak AT- and strong GC-base pairs. Our results show that, contrary to previous findings, an even distribution of the strong GC-base pairs does not always result in the fastest possible denaturation. In addition, we applied an adaptation of the PBD model to study hairpin denaturation for which experimental data are available. This is the first quantitative study in which dynamical results from the mesoscopic PBD model have been compared with experiments. Our results show that present parameterized models, although giving good results regarding thermodynamic properties, overestimate denaturation rates by orders of magnitude. We believe that our dynamical approach is, therefore, an important tool for verifying DNA models and for developing next generation models that have higher predictive power than present ones.

  10. NeSSie: a tool for the identification of approximate DNA sequence symmetries.

    Science.gov (United States)

    Berselli, Michele; Lavezzo, Enrico; Toppo, Stefano

    2018-03-07

    Non-B DNA conformations play an important role in genomic rearrangements, structural three-dimensional organization and gene regulation. Many non-B DNA structures show symmetrical properties as palindromes and mirrors that can form hairpins, cruciform structures or triplexes. A comprehensive tool, capable to perform a fast genome wide search for exact and degenerate symmetrical patterns, is needed for further investigating nucleotide tracts potentially forming non-B DNA structures. We developed NeSSie, an easily customizable C/C ++ 64-bit library and tool, based on dynamic programming, to quickly scan for perfect and degenerate DNA palindromes, mirrors, and potential triplex forming patterns. In addition, the tool computes linguistic complexity and Shannon entropy measures to verify the repetitive nature of the DNA regions enriched in these motifs. As a case study, the analysis of the Mycobacterium bovis genome is presented. http://www.medcomp.medicina.unipd.it/main_site/doku.php?id=nessie https://github.com/B3rse/nessie. stefano.toppo@unipd.it. Supplementary data are available at Bioinformatics online.

  11. Fascioliasis transmission by Lymnaea neotropica confirmed by nuclear rDNA and mtDNA sequencing in Argentina.

    Science.gov (United States)

    Mera y Sierra, Roberto; Artigas, Patricio; Cuervo, Pablo; Deis, Erika; Sidoti, Laura; Mas-Coma, Santiago; Bargues, Maria Dolores

    2009-12-03

    Fascioliasis is widespread in livestock in Argentina. Among activities included in a long-term initiative to ascertain which are the fascioliasis areas of most concern, studies were performed in a recreational farm, including liver fluke infection in different domestic animal species, classification of the lymnaeid vector and verification of natural transmission of fascioliasis by identification of the intramolluscan trematode larval stages found in naturally infected snails. The high prevalences in the domestic animals appeared related to only one lymnaeid species present. Lymnaeid and trematode classification was verified by means of nuclear ribosomal DNA and mitochondrial DNA marker sequencing. Complete sequences of 18S rRNA gene and rDNA ITS-2 and ITS-1, and a fragment of the mtDNA cox1 gene demonstrate that the Argentinian lymnaeid belongs to the species Lymnaea neotropica. Redial larval stages found in a L. neotropica specimen were ascribed to Fasciola hepatica after analysis of the complete ITS-1 sequence. The finding of L. neotropica is the first of this lymnaeid species not only in Argentina but also in Southern Cone countries. The total absence of nucleotide differences between the sequences of specimens from Argentina and the specimens from the Peruvian type locality at the levels of rDNA 18S, ITS-2 and ITS-1, and the only one mutation at the mtDNA cox1 gene suggest a very recent spread. The ecological characteristics of this lymnaeid, living in small, superficial water collections frequented by livestock, suggest that it may be carried from one place to another by remaining in dried mud stuck to the feet of transported animals. The presence of L. neotropica adds pronounced complexity to the transmission and epidemiology of fascioliasis in Argentina, due to the great difficulties in distinguishing, by traditional malacological methods, between the three similar lymnaeid species of the controversial Galba/Fossaria group present in this country: L. viatrix

  12. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation.

    Directory of Open Access Journals (Sweden)

    Si-Yang Liu

    Full Text Available Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing data and the methylome comparisons with other fungi confirm that the DNA methylation level of this fungus is negligible. Further investigation into the DNA methyltransferase of Aspergillus uncovers its close relationship with RID-like enzymes as well as its divergence with the methyltransferase of species with validated DNA methylation. The lack of repeat contents of the A. flavus' genome and the high RIP-index of the small amount of remanent repeat potentially support our speculation that DNA methylation may be absent in A. flavus or that it may possess de novo DNA methylation which occurs very transiently during the obscure sexual stage of this fungal species. This work contributes to our understanding on the DNA methylation status of A. flavus, as well as reinforces our views on the DNA methylation in fungal species. In addition, our strategy of applying bisulfite sequencing to DNA methylation detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species.

  13. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins.

    Directory of Open Access Journals (Sweden)

    Adam Ameur

    2011-03-01

    Full Text Available Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.

  14. Ray Wu as Fifth Business: Deconstructing collective memory in the history of DNA sequencing.

    Science.gov (United States)

    Onaga, Lisa A

    2014-06-01

    The concept of 'Fifth Business' is used to analyze a minority standpoint and bring serious attention to the role of scientists who play a galvanizing role in a science but for multiple reasons appear less prominently in more common recounts of any particular development. Biochemist Ray Wu (1928-2008) published a DNA sequencing experiment in March 1970 using DNA polymerase catalysis and specific nucleotide labeling, both of which are foundational to general sequencing methods today. The scant mention of Wu's work from textbooks, research articles, and other accounts of DNA sequencing calls into question how scientific collective memory forms. This alternative history seeks to understand why a key figure in nucleic acid sequence analysis has remained less visibly connected or peripheral to solidifying narratives about the history of DNA sequencing. The study resists predictable dismissals of Wu's work in order to seriously examine the formation of his nucleic acid sequence analysis research program and how he shared his knowledge of sequencing during a period of rapid advancement in the field. An analysis of Wu's work on sequencing the cohesive ends of lambda bacteriophage in the 1960s and 1970s exemplifies how a variety of individuals and groups attempted to develop protocol for sequencing the order of nucleotide base pairs comprising DNA. This historical examination of the sociality of scientific research suggests a way to understand how Wu and others contributed to the very collective memory of DNA sequencing that Wu eventually tried to repair. The study of Wu, who was a Chinese immigrant to the United States, provides a foundation for further critical scholarship on the heterogeneous histories of Asian American bioscientists, the sociality of their scientific works, and how the resulting knowledge produced is preserved, if not evenly, in a scientific field's collective memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Comparative study of five different DNA fingerprint techniques for molecular typing of Streptococcus pneumoniae strains

    NARCIS (Netherlands)

    P.W.M. Hermans (Peter); M. Sluijter (Marcel); T. Hoogenboezem (Theo); H. Heersma; A.F. van Belkum (Alex); R. de Groot (Ronald)

    1995-01-01

    textabstractThe aim of this study was to identify the strengths and weaknesses of five DNA fingerprint methods for epidemiological typing of Streptococcus pneumoniae. We investigated the usefulness of (i) ribotyping, (ii) BOX fingerprinting with the BOX repetitive sequence of S.

  16. High-throughput sequencing of three Lemnoideae (duckweeds chloroplast genomes from total DNA.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.

  17. Roles of genes and Alu repeats in nonlinear correlations of HUMHBB DNA sequence

    International Nuclear Information System (INIS)

    Xiao Yi; Huang Yanzhao

    2004-01-01

    DNA sequences of different species and different portion of the DNA of the same species may have completely different correlation properties, but the origin of these correlations is still not very clear and is currently being investigated, especially in different particular cases. We report here a study of the DNA sequence of human beta globin region (HUMHBB) which has strong linear and nonlinear correlations. We studied the roles of two of the typical elements of DNA sequence, genes and Alu repeats, in the nonlinear correlations of HUMHBB. We find that there exist strong nonlinear correlations between the exons or introns in different genes and between the Alu repeats. They may be one of the major sources of the nonlinear correlations in HUMBHB

  18. Sequence specificity and biological consequences of drugs that bind covalently in the minor groove of DNA

    International Nuclear Information System (INIS)

    Hurley, L.H.; Needham-VanDevanter, D.R.

    1986-01-01

    DNA ligands which bind within the minor groove of DNA exhibit varying degrees of sequence selectivity. Factors which contribute to nucleotide sequence recognition by minor groove ligands have been extensively investigated. Electrostatic interactions, ligand and DNA dehydration energies, hydrophobic interactions and steric factors all play significant roles in sequence selectivity in the minor groove. Interestingly, ligand recognition of nucleotide sequence in the minor groove does not involve significant hydrogen bonding. This is in sharp contrast to cellular enzyme and protein recognition of nucleotide sequence, which is achieved in the major groove via specific hydrogen bond formation between individual bases and the ligand. The ability to read nucleotide sequence via hydrogen bonding allows precise binding of proteins to specific DNA sequences. Minor groove ligands examined to date exhibit a much lower sequence specificity, generally binding to a subset of possible sequences, rather than a single sequence. 19 refs., 7 figs

  19. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  20. Engineering of a DNA Polymerase for Direct m6 A Sequencing.

    Science.gov (United States)

    Aschenbrenner, Joos; Werner, Stephan; Marchand, Virginie; Adam, Martina; Motorin, Yuri; Helm, Mark; Marx, Andreas

    2018-01-08

    Methods for the detection of RNA modifications are of fundamental importance for advancing epitranscriptomics. N 6 -methyladenosine (m 6 A) is the most abundant RNA modification in mammalian mRNA and is involved in the regulation of gene expression. Current detection techniques are laborious and rely on antibody-based enrichment of m 6 A-containing RNA prior to sequencing, since m 6 A modifications are generally "erased" during reverse transcription (RT). To overcome the drawbacks associated with indirect detection, we aimed to generate novel DNA polymerase variants for direct m 6 A sequencing. Therefore, we developed a screen to evolve an RT-active KlenTaq DNA polymerase variant that sets a mark for N 6 -methylation. We identified a mutant that exhibits increased misincorporation opposite m 6 A compared to unmodified A. Application of the generated DNA polymerase in next-generation sequencing allowed the identification of m 6 A sites directly from the sequencing data of untreated RNA samples. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Complete cDNA sequence coding for human docking protein

    Energy Technology Data Exchange (ETDEWEB)

    Hortsch, M; Labeit, S; Meyer, D I

    1988-01-11

    Docking protein (DP, or SRP receptor) is a rough endoplasmic reticulum (ER)-associated protein essential for the targeting and translocation of nascent polypeptides across this membrane. It specifically interacts with a cytoplasmic ribonucleoprotein complex, the signal recognition particle (SRP). The nucleotide sequence of cDNA encoding the entire human DP and its deduced amino acid sequence are given.

  2. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Science.gov (United States)

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman W; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-12-20

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.

  3. Characteristics of palindromic sequences in DNA of the sea urchin Stronglyocentrotus intermedius

    International Nuclear Information System (INIS)

    Brykov, V.A.; Kukhlevskii, A.D.

    1986-01-01

    The fraction of palindromic sequences in the nuclear DNA of the sea urchin S. intermedius was characterized. Using chromatography on hydroxyapatite and treatment with S1 nuclease, it was shown that the fraction of palindromic sequences more than doubles when the sodium concentration in solution is increased or the temperature of reassociation is lowered. The increase is due to the involvement of inverted repeats in reassociation, which are characterized by a substantial nonhomologous character and/or the presence of an extended intervening DNA sequence. It was found by the method of reassociation of a nicked palindrome fraction with an excess of total homologous DNA that most of the inverted repeats in the sea urchin genome are unique sequences. The complexity of the palindrome fraction was estimated at 8.2 x 10 7 nucleotide pairs, and the number of palindromes per haploid genome ∼ 500,000

  4. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  5. The function analysis of full-length cDNA sequence from IRM-2 mouse cDNA library

    International Nuclear Information System (INIS)

    Wang Qin; Liu Xiaoqiu; Xu Chang; Du Liqing; Sun Zhijuan; Wang Yan; Liu Qiang; Song Li; Li Jin; Fan Feiyue

    2013-01-01

    Objective: To identify the function of full-length cDNA sequence from IRM-2 mouse cDNA library. Methods: Full-length cDNA products were amplified by PCR from IRM-2 mouse cDNA library according to twenty-one pieces of expressed sequence tag. The expression of full-length cDNAs were detected after mouse embryonic fibroblasts were exposed to 6.5 Gy γ-ray radiation. And the effect on the growth of radiosensitivity cells AT5B1VA transfected with full-length cDNAs was investigated. Results: The expression of No.4, 5 and 2 full-length cDNAs from IRM-2 mouse were higher than that of parental ICR and 615 mouse after mouse embryonic fibroblasts irradiated with γ-ray radiation. And the survival rate of AT5B1VA cells transfected with No.4, 5 and 2 full-length cDNAs was high. Conclusion: No.4, 5 and 2 full-length cDNAs of IRM-2 mouse are of high radioresistance. (authors)

  6. Sequence specificity of DNA cleavage by Micrococcus luteus γ endonuclease

    International Nuclear Information System (INIS)

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-01-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by γ-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus γ endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to γ radiation

  7. High Performance Systolic Array Core Architecture Design for DNA Sequencer

    Directory of Open Access Journals (Sweden)

    Saiful Nurdin Dayana

    2018-01-01

    Full Text Available This paper presents a high performance systolic array (SA core architecture design for Deoxyribonucleic Acid (DNA sequencer. The core implements the affine gap penalty score Smith-Waterman (SW algorithm. This time-consuming local alignment algorithm guarantees optimal alignment between DNA sequences, but it requires quadratic computation time when performed on standard desktop computers. The use of linear SA decreases the time complexity from quadratic to linear. In addition, with the exponential growth of DNA databases, the SA architecture is used to overcome the timing issue. In this work, the SW algorithm has been captured using Verilog Hardware Description Language (HDL and simulated using Xilinx ISIM simulator. The proposed design has been implemented in Xilinx Virtex -6 Field Programmable Gate Array (FPGA and improved in the core area by 90% reduction.

  8. Effect of DNA sequence, ionic strength, and cationic DNA affinity binders on the methylation of DNA by N-methyl-N-nitrosourea

    International Nuclear Information System (INIS)

    Wurdeman, R.L.; Gold, B.

    1988-01-01

    DNA alkylation by N-alkyl-N-nitrosoureas is generally accepted to be responsible for their mutagenic, carcinogenic, and antineoplastic activities. The exact nature of the ultimate alkylating intermediate is still controversial, with a variety of species having been nominated. The sequence specificity for DNA alkylation by simple N-alkyl-N-nitrosoureas has not been reported, although such information is basic in understanding the specific point mutations induced by these compounds in oncogene targets. These two points are addressed by using N-methyl-N-nitrosourea methylation of a 576 base-pair 32 P-end-labeled DNA restriction fragment and high-resolution polyacrylamide sequencing gels. This method provides information on the formation of N 7 -methylguanine, by the generation of single-strand breaks upon exposure to piperidine

  9. Identification and molecular epidemiology of dermatophyte isolates by repetitive-sequence-PCR-based DNA fingerprinting using the DiversiLab system in Turkey.

    Science.gov (United States)

    Koc, A Nedret; Atalay, Mustafa A; Inci, Melek; Sariguzel, Fatma M; Sav, Hafize

    2017-05-01

    Dermatophyte species, isolation and identification in clinical samples are still difficult and take a long time. The identification and molecular epidemiology of dermatophytes commonly isolated in a clinical laboratory in Turkey by repetitive sequence-based PCR (rep-PCR) were assessed by comparing the results with those of reference identification. A total of 44 dermatophytes isolated from various clinical specimens of 20 patients with superficial mycoses in Kayseri and 24 patients in Hatay were studied. The identification of dermatophyte isolates was based on the reference identification and rep-PCR using the DiversiLab System (BioMerieux). The genotyping of dermatophyte isolates from different patients was determined by rep-PCR. In the identification of dermatophyte isolates, agreement between rep-PCR and conventional methods was 87.8 % ( 36 of 41). The dermatophyte strains belonged to four clones (A -D) which were determined by the use of rep-PCR. The dermatophyte strains in Clone B, D showed identical patterns with respect to the region. In conclusion, rep-PCR appears to be useful for evaluation of the identification and clonal relationships between Trichophyton rubrum species complex and Trichophyton mentagrophytes species complex isolates. The similarity and diversity of these isolates may be assessed according to different regions by rep-PCR. © 2017 Blackwell Verlag GmbH.

  10. Sequence specific electronic conduction through polyion-stabilized double-stranded DNA in nanoscale break junctions

    International Nuclear Information System (INIS)

    Mahapatro, Ajit K; Jeong, Kyung J; Lee, Gil U; Janes, David B

    2007-01-01

    This paper presents a study of sequence specific electronic conduction through short (15-base-pair) double-stranded (ds) DNA molecules, measured by immobilizing 3 ' -thiol-derivatized DNAs in nanometre scale gaps between gold electrodes. The polycation spermidine was used to stabilize the ds-DNA structure, allowing electrical measurements to be performed in a dry state. For specific sequences, the conductivity was observed to scale with the surface density of immobilized DNA, which can be controlled by the buffer concentration. A series of 15-base DNA oligonucleotide pairs, in which the centre sequence of five base pairs was changed from G:C to A:T pairs, has been studied. The conductivity per molecule is observed to decrease exponentially with the number of adjacent A:T pairs replacing G:C pairs, consistent with a barrier at the A:T sites. Conductance-based devices for short DNA sequences could provide sensing approaches with direct electrical readout, as well as label-free detection

  11. Targeted DNA Methylation Analysis by High Throughput Sequencing in Porcine Peri-attachment Embryos

    OpenAIRE

    MORRILL, Benson H.; COX, Lindsay; WARD, Anika; HEYWOOD, Sierra; PRATHER, Randall S.; ISOM, S. Clay

    2013-01-01

    Abstract The purpose of this experiment was to implement and evaluate the effectiveness of a next-generation sequencing-based method for DNA methylation analysis in porcine embryonic samples. Fourteen discrete genomic regions were amplified by PCR using bisulfite-converted genomic DNA derived from day 14 in vivo-derived (IVV) and parthenogenetic (PA) porcine embryos as template DNA. Resulting PCR products were subjected to high-throughput sequencing using the Illumina Genome Analyzer IIx plat...

  12. DNA repair-related genes in sugarcane expressed sequence tags (ESTs

    Directory of Open Access Journals (Sweden)

    R.M.A. Costa

    2001-12-01

    Full Text Available There is much interest in the identification and characterization of genes involved in DNA repair because of their importance in the maintenance of the genome integrity. The high level of conservation of DNA repair genes means that these genetic elements may be used in phylogenetic studies as a source of information on the genetic origin and evolution of species. The mechanisms by which damaged DNA is repaired are well understood in bacteria, yeast and mammals, but much remains to be learned as regards plants. We identified genes involved in DNA repair mechanisms in sugarcane using a similarity search of the Brazilian Sugarcane Expressed Sequence Tag (SUCEST database against known sequences deposited in other public databases (National Center of Biotechnology Information (NCBI database and the Munich Information Center for Protein Sequences (MIPS Arabidopsis thaliana database. This search revealed that most of the various proteins involved in DNA repair in sugarcane are similar to those found in other eukaryotes. However, we also identified certain intriguing features found only in plants, probably due to the independent evolution of this kingdom. The DNA repair mechanisms investigated include photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, non-homologous end joining, homologous recombination repair and DNA lesion tolerance. We report the main differences found in the DNA repair machinery in plant cells as compared to other organisms. These differences point to potentially different strategies plants employ to deal with DNA damage, that deserve further investigation.A identificação e caracterização de genes envolvidos com reparo de DNA são de grande interesse, dada a sua importância na manutenção da integridade genômica. Além disso, a alta conservação dos genes de reparo de DNA faz com que possam ser utilizados como fonte de informação no que diz respeito à origem e evolução das esp

  13. Applications of statistical physics and information theory to the analysis of DNA sequences

    Science.gov (United States)

    Grosse, Ivo

    2000-10-01

    DNA carries the genetic information of most living organisms, and the of genome projects is to uncover that genetic information. One basic task in the analysis of DNA sequences is the recognition of protein coding genes. Powerful computer programs for gene recognition have been developed, but most of them are based on statistical patterns that vary from species to species. In this thesis I address the question if there exist universal statistical patterns that are different in coding and noncoding DNA of all living species, regardless of their phylogenetic origin. In search for such species-independent patterns I study the mutual information function of genomic DNA sequences, and find that it shows persistent period-three oscillations. To understand the biological origin of the observed period-three oscillations, I compare the mutual information function of genomic DNA sequences to the mutual information function of stochastic model sequences. I find that the pseudo-exon model is able to reproduce the mutual information function of genomic DNA sequences. Moreover, I find that a generalization of the pseudo-exon model can connect the existence and the functional form of long-range correlations to the presence and the length distributions of coding and noncoding regions. Based on these theoretical studies I am able to find an information-theoretical quantity, the average mutual information (AMI), whose probability distributions are significantly different in coding and noncoding DNA, while they are almost identical in all studied species. These findings show that there exist universal statistical patterns that are different in coding and noncoding DNA of all studied species, and they suggest that the AMI may be used to identify genes in different living species, irrespective of their taxonomic origin.

  14. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Jackson Stuart

    2010-04-01

    Full Text Available Abstract Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value, and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  15. Sequence Dependent Electrophoretic Separations of DNA in Pluronic F127 Gels

    Science.gov (United States)

    You, Seungyong; van Winkle, David H.

    2010-03-01

    Two-dimensional (2-D) electrophoresis has successfully been used to visualize the separation of DNA fragments of the same length. We electrophorese a double-stranded DNA ladder in an Agarose gel for the first dimension and in gels of Pluronic F127 for the second dimension at room temperature. The 1000 bp band that travels together as a single band in an Agarose gel is split into two bands in Pluronic gels. The slower band follows the exponential decay trend that the other ladder constituents do. After sequencing the DNA fragments, the faster band has an apparently random sequence, while the slower band and the others have two A-tracts in each 250 bp segment. The A-tracts consist of a series of at least five adenine bases pairing with thymine bases. This result leads to the conclusion that the migration of the DNA molecules bent with A-tracts is more retarded in Pluronic gels than the wild-type of DNA molecules.

  16. High-Throughput DNA sequencing of ancient wood.

    Science.gov (United States)

    Wagner, Stefanie; Lagane, Frédéric; Seguin-Orlando, Andaine; Schubert, Mikkel; Leroy, Thibault; Guichoux, Erwan; Chancerel, Emilie; Bech-Hebelstrup, Inger; Bernard, Vincent; Billard, Cyrille; Billaud, Yves; Bolliger, Matthias; Croutsch, Christophe; Čufar, Katarina; Eynaud, Frédérique; Heussner, Karl Uwe; Köninger, Joachim; Langenegger, Fabien; Leroy, Frédéric; Lima, Christine; Martinelli, Nicoletta; Momber, Garry; Billamboz, André; Nelle, Oliver; Palomo, Antoni; Piqué, Raquel; Ramstein, Marianne; Schweichel, Roswitha; Stäuble, Harald; Tegel, Willy; Terradas, Xavier; Verdin, Florence; Plomion, Christophe; Kremer, Antoine; Orlando, Ludovic

    2018-03-01

    Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management. © 2018 John Wiley & Sons Ltd.

  17. Repetitive DNAs highlight the role of chromosomal fusions in the karyotype evolution of Dascyllus species (Pomacentridae, Perciformes).

    Science.gov (United States)

    Getlekha, Nuntaporn; Molina, Wagner Franco; de Bello Cioffi, Marcelo; Yano, Cassia Fernanda; Maneechot, Nuntiya; Bertollo, Luiz Antonio Carlos; Supiwong, Weerayuth; Tanomtong, Alongklod

    2016-04-01

    The Dascyllus genus consists of 11 species spread over vast regions of the Indo-Pacific, showing remarkable reductions in the diploid chromosome numbers (2n). The present study analyzed the karyotypes and other chromosomal characteristics of D. trimaculatus (2n = 48; 2st + 46a; NF = 50), D. carneus (2n = 48; 2st + 46a; NF = 50) and D. aruanus (2n = 30; 18m + 2st + 10a; NF = 50) from the Thailand Gulf (Pacific Ocean) and D. melanurus (2n = 48; 2st + 46a; NF = 50) from the Andaman Sea (Indian Ocean), employing conventional cytogenetic analyses and the chromosomal mapping of repetitive DNAs, using 18S and 5S rDNA, telomeric sequences and (CA)15, (GA)15, and (CAA)10 microsatellites as probes. The C-positive heterochromatin was found in the centromeric regions of most chromosomal pairs and 18S rDNA phenotypes were single in all species. However, in D. aruanus (2n = 30), which harbors nine metacentric pairs; the 5S rDNA sites were located in the centromeric region of the shortest one. The mapping of the telomeric sequences in D. aruanus revealed the presence of interstitial telomeric sites (ITS) in the centromeric region of four metacentric pairs, with one of these pairs also displaying an additional ITS in the long arms. Distinct chromosomal markers confirmed the reduction of the 2n by chromosomal fusions, highlighting the precise characterization of these rearrangements by the cytogenetic mapping of the repetitive DNAs.

  18. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    International Nuclear Information System (INIS)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in λ gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated λ hARG6 and λ hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying λ hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes

  19. Simulating efficiently the evolution of DNA sequences.

    Science.gov (United States)

    Schöniger, M; von Haeseler, A

    1995-02-01

    Two menu-driven FORTRAN programs are described that simulate the evolution of DNA sequences in accordance with a user-specified model. This general stochastic model allows for an arbitrary stationary nucleotide composition and any transition-transversion bias during the process of base substitution. In addition, the user may define any hypothetical model tree according to which a family of sequences evolves. The programs suggest the computationally most inexpensive approach to generate nucleotide substitutions. Either reproducible or non-repeatable simulations, depending on the method of initializing the pseudo-random number generator, can be performed. The corresponding options are offered by the interface menu.

  20. Plant DNA sequences from feces: potential means for assessing diets of wild primates.

    Science.gov (United States)

    Bradley, Brenda J; Stiller, Mathias; Doran-Sheehy, Diane M; Harris, Tara; Chapman, Colin A; Vigilant, Linda; Poinar, Hendrik

    2007-06-01

    Analyses of plant DNA in feces provides a promising, yet largely unexplored, means of documenting the diets of elusive primates. Here we demonstrate the promise and pitfalls of this approach using DNA extracted from fecal samples of wild western gorillas (Gorilla gorilla) and black and white colobus monkeys (Colobus guereza). From these DNA extracts we amplified, cloned, and sequenced small segments of chloroplast DNA (part of the rbcL gene) and plant nuclear DNA (ITS-2). The obtained sequences were compared to sequences generated from known plant samples and to those in GenBank to identify plant taxa in the feces. With further optimization, this method could provide a basic evaluation of minimum primate dietary diversity even when knowledge of local flora is limited. This approach may find application in studies characterizing the diets of poorly-known, unhabituated primate species or assaying consumer-resource relationships in an ecosystem. (c) 2007 Wiley-Liss, Inc.

  1. DNA Qualification Workflow for Next Generation Sequencing of Histopathological Samples

    Science.gov (United States)

    Simbolo, Michele; Gottardi, Marisa; Corbo, Vincenzo; Fassan, Matteo; Mafficini, Andrea; Malpeli, Giorgio; Lawlor, Rita T.; Scarpa, Aldo

    2013-01-01

    Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for

  2. DNA qualification workflow for next generation sequencing of histopathological samples.

    Directory of Open Access Journals (Sweden)

    Michele Simbolo

    Full Text Available Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF tissues, 6 formalin-fixed paraffin-embedded (FFPE tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard

  3. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics.

    Science.gov (United States)

    De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos

    2014-06-01

    Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.

  4. Nonlinear analysis of sequence repeats of multi-domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yanzhao [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Li Mingfeng [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiao Yi [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)]. E-mail: lmf_bill@sina.com

    2007-11-15

    Many multi-domain proteins have repetitive three-dimensional structures but nearly-random amino acid sequences. In the present paper, by using a modified recurrence plot proposed by us previously, we show that these amino acid sequences have hidden repetitions in fact. These results indicate that the repetitive domain structures are encoded by the repetitive sequences. This also gives a method to detect the repetitive domain structures directly from amino acid sequences.

  5. Tactile Ranschburg effects: facilitation and inhibitory repetition effects analogous to verbal memory.

    Science.gov (United States)

    Roe, Daisy; Miles, Christopher; Johnson, Andrew J

    2017-07-01

    The present paper examines the effect of within-sequence item repetitions in tactile order memory. Employing an immediate serial recall procedure, participants reconstructed a six-item sequence tapped upon their fingers by moving those fingers in the order of original stimulation. In Experiment 1a, within-sequence repetition of an item separated by two-intervening items resulted in a significant reduction in recall accuracy for that repeated item (i.e., the Ranschburg effect). In Experiment 1b, within-sequence repetition of an adjacent item resulted in significant recall facilitation for that repeated item. These effects mirror those reported for verbal stimuli (e.g., Henson, 1998a . Item repetition in short-term memory: Ranschburg repeated. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(5), 1162-1181. doi:doi.org/10.1037/0278-7393.24.5.1162). These data are the first to demonstrate the Ranschburg effect with non-verbal stimuli and suggest further cross-modal similarities in order memory.

  6. True single-molecule DNA sequencing of a pleistocene horse bone

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Ginolhac, Aurélien; Raghavan, Maanasa

    2011-01-01

    -preserved Pleistocene horse bone using the Helicos HeliScope and Illumina GAIIx platforms, respectively. We find that the percentage of endogenous DNA sequences derived from the horse is higher among the Helicos data than Illumina data. This result indicates that the molecular biology tools used to generate sequencing...

  7. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.

    Science.gov (United States)

    Osipiuk, J; Joachimiak, A

    1997-09-12

    We propose that the dnaK operon of Thermus thermophilus HB8 is composed of three functionally linked genes: dnaK, grpE, and dnaJ. The dnaK and dnaJ gene products are most closely related to their cyanobacterial homologs. The DnaK protein sequence places T. thermophilus in the plastid Hsp70 subfamily. In contrast, the grpE translated sequence is most similar to GrpE from Clostridium acetobutylicum, a Gram-positive anaerobic bacterium. A single promoter region, with homology to the Escherichia coli consensus promoter sequences recognized by the sigma70 and sigma32 transcription factors, precedes the postulated operon. This promoter is heat-shock inducible. The dnaK mRNA level increased more than 30 times upon 10 min of heat shock (from 70 degrees C to 85 degrees C). A strong transcription terminating sequence was found between the dnaK and grpE genes. The individual genes were cloned into pET expression vectors and the thermophilic proteins were overproduced at high levels in E. coli and purified to homogeneity. The recombinant T. thermophilus DnaK protein was shown to have a weak ATP-hydrolytic activity, with an optimum at 90 degrees C. The ATPase was stimulated by the presence of GrpE and DnaJ. Another open reading frame, coding for ClpB heat-shock protein, was found downstream of the dnaK operon.

  8. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    Science.gov (United States)

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  10. High Interlaboratory Reprocucibility of DNA Sequence-based Typing of Bacteria in a Multicenter Study

    DEFF Research Database (Denmark)

    Sousa, MA de; Boye, Kit; Lencastre, H de

    2006-01-01

    Current DNA amplification-based typing methods for bacterial pathogens often lack interlaboratory reproducibility. In this international study, DNA sequence-based typing of the Staphylococcus aureus protein A gene (spa, 110 to 422 bp) showed 100% intra- and interlaboratory reproducibility without...... extensive harmonization of protocols for 30 blind-coded S. aureus DNA samples sent to 10 laboratories. Specialized software for automated sequence analysis ensured a common typing nomenclature....

  11. A MapReduce Framework for DNA Sequencing Data Processing

    Directory of Open Access Journals (Sweden)

    Samy Ghoneimy

    2016-12-01

    Full Text Available Genomics and Next Generation Sequencers (NGS like Illumina Hiseq produce data in the order of ‎‎200 billion base pairs in a single one-week run for a 60x human genome coverage, which ‎requires modern high-throughput experimental technologies that can ‎only be tackled with high performance computing (HPC and specialized software algorithms called ‎‎“short read aligners”. This paper focuses on the implementation of the DNA sequencing as a set of MapReduce programs that will accept a DNA data set as a FASTQ file and finally generate a VCF (variant call format file, which has variants for a given DNA data set. In this paper MapReduce/Hadoop along with Burrows-Wheeler Aligner (BWA, Sequence Alignment/Map (SAM ‎tools, are fully utilized to provide various utilities for manipulating alignments, including sorting, merging, indexing, ‎and generating alignments. The Map-Sort-Reduce process is designed to be suited for a Hadoop framework in ‎which each cluster is a traditional N-node Hadoop cluster to utilize all of the Hadoop features like HDFS, program ‎management and fault tolerance. The Map step performs multiple instances of the short read alignment algorithm ‎‎(BoWTie that run in parallel in Hadoop. The ordered list of the sequence reads are used as input tuples and the ‎output tuples are the alignments of the short reads. In the Reduce step many parallel instances of the Short ‎Oligonucleotide Analysis Package for SNP (SOAPsnp algorithm run in the cluster. Input tuples are sorted ‎alignments for a partition and the output tuples are SNP calls. Results are stored via HDFS, and then archived in ‎SOAPsnp format. ‎ The proposed framework enables extremely fast discovering somatic mutations, inferring population genetical ‎parameters, and performing association tests directly based on sequencing data without explicit genotyping or ‎linkage-based imputation. It also demonstrate that this method achieves comparable

  12. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    International Nuclear Information System (INIS)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    1990-01-01

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove

  13. Cloning and sequence analysis of cDNA coding for rat nucleolar protein C23

    International Nuclear Information System (INIS)

    Ghaffari, S.H.; Olson, M.O.J.

    1986-01-01

    Using synthetic oligonucleotides as primers and probes, the authors have isolated and sequenced cDNA clones encoding protein C23, a putative nucleolus organizer protein. Poly(A + ) RNA was isolated from rat Novikoff hepatoma cells and enriched in C23 mRNA by sucrose density gradient ultracentrifugation. Two deoxyoligonuleotides, a 48- and a 27-mer, were synthesized on the basis of amino acid sequence from the C-terminal half of protein C23 and cDNA sequence data from CHO cell protein. The 48-mer was used a primer for synthesis of cDNA which was then inserted into plasmid pUC9. Transformed bacterial colonies were screened by hybridization with 32 P labeled 27-mer. Two clones among 5000 gave a strong positive signal. Plasmid DNAs from these clones were purified and characterized by blotting and nucleotide sequence analysis. The length of C23 mRNA was estimated to be 3200 bases in a northern blot analysis. The sequence of a 267 b.p. insert shows high homology with the CHO cDNA with only 9 nucleotide differences and an identical amino acid sequence. These studies indicate that this region of the protein is highly conserved

  14. Reconstruction of DNA sequences using genetic algorithms and cellular automata: towards mutation prediction?

    Science.gov (United States)

    Mizas, Ch; Sirakoulis, G Ch; Mardiris, V; Karafyllidis, I; Glykos, N; Sandaltzopoulos, R

    2008-04-01

    Change of DNA sequence that fuels evolution is, to a certain extent, a deterministic process because mutagenesis does not occur in an absolutely random manner. So far, it has not been possible to decipher the rules that govern DNA sequence evolution due to the extreme complexity of the entire process. In our attempt to approach this issue we focus solely on the mechanisms of mutagenesis and deliberately disregard the role of natural selection. Hence, in this analysis, evolution refers to the accumulation of genetic alterations that originate from mutations and are transmitted through generations without being subjected to natural selection. We have developed a software tool that allows modelling of a DNA sequence as a one-dimensional cellular automaton (CA) with four states per cell which correspond to the four DNA bases, i.e. A, C, T and G. The four states are represented by numbers of the quaternary number system. Moreover, we have developed genetic algorithms (GAs) in order to determine the rules of CA evolution that simulate the DNA evolution process. Linear evolution rules were considered and square matrices were used to represent them. If DNA sequences of different evolution steps are available, our approach allows the determination of the underlying evolution rule(s). Conversely, once the evolution rules are deciphered, our tool may reconstruct the DNA sequence in any previous evolution step for which the exact sequence information was unknown. The developed tool may be used to test various parameters that could influence evolution. We describe a paradigm relying on the assumption that mutagenesis is governed by a near-neighbour-dependent mechanism. Based on the satisfactory performance of our system in the deliberately simplified example, we propose that our approach could offer a starting point for future attempts to understand the mechanisms that govern evolution. The developed software is open-source and has a user-friendly graphical input interface.

  15. Sequencing of BAC pools by different next generation sequencing platforms and strategies

    Directory of Open Access Journals (Sweden)

    Scholz Uwe

    2011-10-01

    Full Text Available Abstract Background Next generation sequencing of BACs is a viable option for deciphering the sequence of even large and highly repetitive genomes. In order to optimize this strategy, we examined the influence of read length on the quality of Roche/454 sequence assemblies, to what extent Illumina/Solexa mate pairs (MPs improve the assemblies by scaffolding and whether barcoding of BACs is dispensable. Results Sequencing four BACs with both FLX and Titanium technologies revealed similar sequencing accuracy, but showed that the longer Titanium reads produce considerably less misassemblies and gaps. The 454 assemblies of 96 barcoded BACs were improved by scaffolding 79% of the total contig length with MPs from a non-barcoded library. Assembly of the unmasked 454 sequences without separation by barcodes revealed chimeric contig formation to be a major problem, encompassing 47% of the total contig length. Masking the sequences reduced this fraction to 24%. Conclusion Optimal BAC pool sequencing should be based on the longest available reads, with barcoding essential for a comprehensive assessment of both repetitive and non-repetitive sequence information. When interest is restricted to non-repetitive regions and repeats are masked prior to assembly, barcoding is non-essential. In any case, the assemblies can be improved considerably by scaffolding with non-barcoded BAC pool MPs.

  16. By-product formation in repetitive PCR amplification of DNA libraries during SELEX.

    Science.gov (United States)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper; Mayer, Günter

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments. Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation and improving the success rate of aptamer selection.

  17. Transcriptional blockages in a cell-free system by sequence-selective DNA alkylating agents.

    Science.gov (United States)

    Ferguson, L R; Liu, A P; Denny, W A; Cullinane, C; Talarico, T; Phillips, D R

    2000-04-14

    There is considerable interest in DNA sequence-selective DNA-binding drugs as potential inhibitors of gene expression. Five compounds with distinctly different base pair specificities were compared in their effects on the formation and elongation of the transcription complex from the lac UV5 promoter in a cell-free system. All were tested at drug levels which killed 90% of cells in a clonogenic survival assay. Cisplatin, a selective alkylator at purine residues, inhibited transcription, decreasing the full-length transcript, and causing blockage at a number of GG or AG sequences, making it probable that intrastrand crosslinks are the blocking lesions. A cyclopropylindoline known to be an A-specific alkylator also inhibited transcription, with blocks at adenines. The aniline mustard chlorambucil, that targets primarily G but also A sequences, was also effective in blocking the formation of full-length transcripts. It produced transcription blocks either at, or one base prior to, AA or GG sequences, suggesting that intrastrand crosslinks could again be involved. The non-alkylating DNA minor groove binder Hoechst 33342 (a bisbenzimidazole) blocked formation of the full-length transcript, but without creating specific blockage sites. A bisbenzimidazole-linked aniline mustard analogue was a more effective transcription inhibitor than either chlorambucil or Hoechst 33342, with different blockage sites occurring immediately as compared with 2 h after incubation. The blockages were either immediately prior to AA or GG residues, or four to five base pairs prior to such sites, a pattern not predicted from in vitro DNA-binding studies. Minor groove DNA-binding ligands are of particular interest as inhibitors of gene expression, since they have the potential ability to bind selectively to long sequences of DNA. The results suggest that the bisbenzimidazole-linked mustard does cause alkylation and transcription blockage at novel DNA sites. in addition to sites characteristic of

  18. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Directory of Open Access Journals (Sweden)

    Carr Steven M

    2007-09-01

    Full Text Available Abstract Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by

  19. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    Science.gov (United States)

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. G-quadruplex and G-rich sequence stimulate Pif1p-catalyzed downstream duplex DNA unwinding through reducing waiting time at ss/dsDNA junction

    Science.gov (United States)

    Zhang, Bo; Wu, Wen-Qiang; Liu, Na-Nv; Duan, Xiao-Lei; Li, Ming; Dou, Shuo-Xing; Hou, Xi-Miao; Xi, Xu-Guang

    2016-01-01

    Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA unwinding phenomenon by means of single-molecule fluorescence resonance energy transfer. It was found that Pif1p did not unwind the partial duplex DNA immediately after unfolding the upstream G4 structure, but rather, it would dwell at the ss/dsDNA junction with a ‘waiting time’. Further studies revealed that the waiting time was in fact related to a protein dimerization process that was sensitive to ssDNA sequence and would become rapid if the sequence is G-rich. Furthermore, we identified that the G-rich sequence, as the G4 structure, equally stimulates duplex DNA unwinding. The present work sheds new light on the molecular mechanism by which G4-unwinding helicase Pif1p resolves physiological G4/duplex DNA structures in cells. PMID:27471032

  1. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

    Czech Academy of Sciences Publication Activity Database

    Puterová, J.; Razumova, O.; Martínek, T.; Alexandrov, O.; Divashuk, M.; Kubát, Z.; Hobza, Roman; Karlov, G.; Kejnovský, E.

    2017-01-01

    Roč. 9, č. 1 (2017), s. 197-212 ISSN 1759-6653 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : sex-chromosomes * repetitive sequences * silene-latifolia * molecular cytogenetics * arabidopsis-thaliana * genome size * evolution * organization * alignment * database * sex chromosomes * genome composition * chromosomal localization * repetitive DNA Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.979, year: 2016

  2. Evaluation of DNA bending models in their capacity to predict electrophoretic migration anomalies of satellite DNA sequences.

    Science.gov (United States)

    Matyášek, Roman; Fulneček, Jaroslav; Kovařík, Aleš

    2013-09-01

    DNA containing a sequence that generates a local curvature exhibits a pronounced retardation in electrophoretic mobility. Various theoretical models have been proposed to explain relationship between DNA structural features and migration anomaly. Here, we studied the capacity of 15 static wedge-bending models to predict electrophoretic behavior of 69 satellite monomers derived from four divergent families. All monomers exhibited retarded mobility in PAGE corresponding to retardation factors ranging 1.02-1.54. The curvature varied both within and across the groups and correlated with the number, position, and lengths of A-tracts. Two dinucleotide models provided strong correlation between gel mobility and curvature prediction; two trinucleotide models were satisfactory while remaining dinucleotide models provided intermediate results with reliable prediction for subsets of sequences only. In some cases, similarly shaped molecules exhibited relatively large differences in mobility and vice versa. Generally less accurate predictions were obtained in groups containing less homogeneous sequences possessing distinct structural features. In conclusion, relatively universal theoretical models were identified suitable for the analysis of natural sequences known to harbor relatively moderate curvature. These models could be potentially applied to genome wide studies. However, in silico predictions should be viewed in context of experimental measurement of intrinsic DNA curvature. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Poincaré recurrences of DNA sequences

    Science.gov (United States)

    Frahm, K. M.; Shepelyansky, D. L.

    2012-01-01

    We analyze the statistical properties of Poincaré recurrences of Homo sapiens, mammalian, and other DNA sequences taken from the Ensembl Genome data base with up to 15 billion base pairs. We show that the probability of Poincaré recurrences decays in an algebraic way with the Poincaré exponent β≈4 even if the oscillatory dependence is well pronounced. The correlations between recurrences decay with an exponent ν≈0.6 that leads to an anomalous superdiffusive walk. However, for Homo sapiens sequences, with the largest available statistics, the diffusion coefficient converges to a finite value on distances larger than one million base pairs. We argue that the approach based on Poncaré recurrences determines new proximity features between different species and sheds a new light on their evolution history.

  4. Chromosomal Mapping of Repetitive DNAs in the Grasshopper Abracris flavolineata Reveal Possible Ancestry of the B Chromosome and H3 Histone Spreading

    Science.gov (United States)

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Cabral-de-Mello, Diogo Cavalcanti

    2013-01-01

    Supernumerary chromosomes (B chromosomes) occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes. PMID:23826099

  5. The role of short-term memory impairment in nonword repetition, real word repetition, and nonword decoding: A case study.

    Science.gov (United States)

    Peter, Beate

    2018-01-01

    In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.

  6. Brownian dynamics simulations of sequence-dependent duplex denaturation in dynamically superhelical DNA

    Science.gov (United States)

    Mielke, Steven P.; Grønbech-Jensen, Niels; Krishnan, V. V.; Fink, William H.; Benham, Craig J.

    2005-09-01

    The topological state of DNA in vivo is dynamically regulated by a number of processes that involve interactions with bound proteins. In one such process, the tracking of RNA polymerase along the double helix during transcription, restriction of rotational motion of the polymerase and associated structures, generates waves of overtwist downstream and undertwist upstream from the site of transcription. The resulting superhelical stress is often sufficient to drive double-stranded DNA into a denatured state at locations such as promoters and origins of replication, where sequence-specific duplex opening is a prerequisite for biological function. In this way, transcription and other events that actively supercoil the DNA provide a mechanism for dynamically coupling genetic activity with regulatory and other cellular processes. Although computer modeling has provided insight into the equilibrium dynamics of DNA supercoiling, to date no model has appeared for simulating sequence-dependent DNA strand separation under the nonequilibrium conditions imposed by the dynamic introduction of torsional stress. Here, we introduce such a model and present results from an initial set of computer simulations in which the sequences of dynamically superhelical, 147 base pair DNA circles were systematically altered in order to probe the accuracy with which the model can predict location, extent, and time of stress-induced duplex denaturation. The results agree both with well-tested statistical mechanical calculations and with available experimental information. Additionally, we find that sites susceptible to denaturation show a propensity for localizing to supercoil apices, suggesting that base sequence determines locations of strand separation not only through the energetics of interstrand interactions, but also by influencing the geometry of supercoiling.

  7. Cluster analysis of Helicobacter pylori genomic DNA fingerprints suggests gastroduodenal disease-specific associations.

    Science.gov (United States)

    Go, M F; Chan, K Y; Versalovic, J; Koeuth, T; Graham, D Y; Lupski, J R

    1995-07-01

    Helicobacter pylori infection is now accepted as the most common cause of chronic active gastritis and peptic ulcer disease. The etiologies of many infectious diseases have been attributed to specific or clonal strains of bacterial pathogens. Polymerase chain reaction (PCR) amplification of DNA between repetitive DNA sequences, REP elements (REP-PCR), has been utilized to generate DNA fingerprints to examine similarity among strains within a bacterial species. Genomic DNA from H. pylori isolates obtained from 70 individuals (39 duodenal ulcers and 31 simple gastritis) was PCR-amplified using consensus probes to repetitive DNA elements. The H. pylori DNA fingerprints were analyzed for similarity and correlated with disease presentation using the NTSYS-pc computer program. Each H. pylori strain had a distinct DNA fingerprint except for two pairs. Single-colony DNA fingerprints of H. pylori from the same patient were identical, suggesting that each patient harbors a single strain. Computer-assisted cluster analysis of the REP-PCR DNA fingerprints showed two large clusters of isolates, one associated with simple gastritis and the other with duodenal ulcer disease. Cluster analysis of REP-PCR DNA fingerprints of H. pylori strains suggests that duodenal ulcer isolates, as a group, are more similar to one another and different from gastritis isolates. These results suggest that disease-specific strains may exist.

  8. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Science.gov (United States)

    Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039

  9. A statistical model for investigating binding probabilities of DNA nucleotide sequences using microarrays.

    Science.gov (United States)

    Lee, Mei-Ling Ting; Bulyk, Martha L; Whitmore, G A; Church, George M

    2002-12-01

    There is considerable scientific interest in knowing the probability that a site-specific transcription factor will bind to a given DNA sequence. Microarray methods provide an effective means for assessing the binding affinities of a large number of DNA sequences as demonstrated by Bulyk et al. (2001, Proceedings of the National Academy of Sciences, USA 98, 7158-7163) in their study of the DNA-binding specificities of Zif268 zinc fingers using microarray technology. In a follow-up investigation, Bulyk, Johnson, and Church (2002, Nucleic Acid Research 30, 1255-1261) studied the interdependence of nucleotides on the binding affinities of transcription proteins. Our article is motivated by this pair of studies. We present a general statistical methodology for analyzing microarray intensity measurements reflecting DNA-protein interactions. The log probability of a protein binding to a DNA sequence on an array is modeled using a linear ANOVA model. This model is convenient because it employs familiar statistical concepts and procedures and also because it is effective for investigating the probability structure of the binding mechanism.

  10. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine

    Science.gov (United States)

    Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson

    2011-01-01

    Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...

  11. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Science.gov (United States)

    Kelly, Laura J; Renny-Byfield, Simon; Pellicer, Jaume; Macas, Jiří; Novák, Petr; Neumann, Pavel; Lysak, Martin A; Day, Peter D; Berger, Madeleine; Fay, Michael F; Nichols, Richard A; Leitch, Andrew R; Leitch, Ilia J

    2015-10-01

    Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences.

    Directory of Open Access Journals (Sweden)

    Mohammed Bakkali

    Full Text Available Among the many bacteria naturally competent for transformation by DNA uptake-a phenomenon with significant clinical and financial implications- Pasteurellaceae and Neisseriaceae species preferentially take up DNA containing specific short sequences. The genomic overrepresentation of these DNA uptake enhancing sequences (DUES causes preferential uptake of conspecific DNA, but the function(s behind this overrepresentation and its evolution are still a matter for discovery. Here I analyze DUES genome dynamics and evolution and test the validity of the results to other selectively constrained oligonucleotides. I use statistical methods and computer simulations to examine DUESs accumulation in Haemophilus influenzae and Neisseria gonorrhoeae genomes. I analyze DUESs sequence and nucleotide frequencies, as well as those of all their mismatched forms, and prove the dependence of DUESs genomic overrepresentation on their preferential uptake by quantifying and correlating both characteristics. I then argue that mutation, uptake bias, and weak selection against DUESs in less constrained parts of the genome combined are sufficient enough to cause DUESs accumulation in susceptible parts of the genome with no need for other DUES function. The distribution of overrepresentation values across sequences with different mismatch loads compared to the DUES suggests a gradual yet not linear molecular drive of DNA sequences depending on their similarity to the DUES. Other genomically overrepresented sequences, both pro- and eukaryotic, show similar distribution of frequencies suggesting that the molecular drive reported above applies to other frequent oligonucleotides. Rare oligonucleotides, however, seem to be gradually drawn to genomic underrepresentation, thus, suggesting a molecular drag. To my knowledge this work provides the first clear evidence of the gradual evolution of selectively constrained oligonucleotides, including repeated, palindromic and protein

  13. A DNA sequence element that advances replication origin activation time in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pohl, Thomas J; Kolor, Katherine; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K

    2013-11-06

    Eukaryotic origins of DNA replication undergo activation at various times in S-phase, allowing the genome to be duplicated in a temporally staggered fashion. In the budding yeast Saccharomyces cerevisiae, the activation times of individual origins are not intrinsic to those origins but are instead governed by surrounding sequences. Currently, there are two examples of DNA sequences that are known to advance origin activation time, centromeres and forkhead transcription factor binding sites. By combining deletion and linker scanning mutational analysis with two-dimensional gel electrophoresis to measure fork direction in the context of a two-origin plasmid, we have identified and characterized a 19- to 23-bp and a larger 584-bp DNA sequence that are capable of advancing origin activation time.

  14. RNA-DNA sequence differences spell genetic code ambiguities

    DEFF Research Database (Denmark)

    Bentin, Thomas; Nielsen, Michael L

    2013-01-01

    A recent paper in Science by Li et al. 2011(1) reports widespread sequence differences in the human transcriptome between RNAs and their encoding genes termed RNA-DNA differences (RDDs). The findings could add a new layer of complexity to gene expression but the study has been criticized. ...

  15. (Brassicaceae) based on nuclear ribosomal ITS DNA sequences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 2. Phylogeny and biogeography of Alyssum (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Yan Li Yan Kong Zhe Zhang Yanqiang Yin Bin Liu Guanghui Lv Xiyong Wang. Research Article Volume 93 Issue 2 August 2014 pp 313-323 ...

  16. Genomic Variability of Haemophilus influenzae Isolated from Mexican Children Determined by Using Enterobacterial Repetitive Intergenic Consensus Sequences and PCR

    OpenAIRE

    Gomez-De-Leon, Patricia; Santos, Jose I.; Caballero, Javier; Gomez, Demostenes; Espinosa, Luz E.; Moreno, Isabel; Piñero, Daniel; Cravioto, Alejandro

    2000-01-01

    Genomic fingerprints from 92 capsulated and noncapsulated strains of Haemophilus influenzae from Mexican children with different diseases and healthy carriers were generated by PCR using the enterobacterial repetitive intergenic consensus (ERIC) sequences. A cluster analysis by the unweighted pair-group method with arithmetic averages based on the overall similarity as estimated from the characteristics of the genomic fingerprints, was conducted to group the strains. A total of 69 fingerprint...

  17. Cloning, sequencing and expression of cDNA encoding growth ...

    Indian Academy of Sciences (India)

    Unknown

    of medicine, animal husbandry, fish farming and animal ..... northern pike (Esox lucius) growth hormone; Mol. Mar. Biol. ... prolactin 1-luciferase fusion gene in African catfish and ... 1988 Cloning and sequencing of cDNA that encodes goat.

  18. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Directory of Open Access Journals (Sweden)

    Kiran Zahid

    2015-01-01

    Full Text Available Satellite RNAs (satRNAs are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS transgene fused with a Cucumber mosaic virus (CMV Y satellite RNA (Y-Sat sequence (35S-GUS:Sat was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  19. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    Science.gov (United States)

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  20. Insights into N-calls of mitochondrial DNA sequencing using MitoChip v2.0

    Directory of Open Access Journals (Sweden)

    Blakely Emma L

    2011-10-01

    Full Text Available Abstract Background Developments in DNA resequencing microarrays include mitochondrial DNA (mtDNA sequencing and mutation detection. Failure by the microarray to identify a base, compared to the reference sequence, is designated an 'N-call.' This study re-examined the N-call distribution of mtDNA samples sequenced by the Affymetrix MitoChip v.2.0, based on the hypothesis that N-calls may represent insertions or deletions (indels in mtDNA. Findings We analysed 16 patient mtDNA samples using MitoChip. N-calls by the proprietary GSEQ software were significantly reduced when either of the freeware on-line algorithms ResqMi or sPROFILER was utilized. With sPROFILER, this decrease in N-calls had no effect on the homoplasmic or heteroplasmic mutation levels compared to GSEQ software, but ResqMi produced a significant change in mutation load, as well as producing longer N-cell stretches. For these reasons, further analysis using ResqMi was not attempted. Conventional DNA sequencing of the longer N-calls stretches from sPROFILER revealed 7 insertions and 12 point mutations. Moreover, analysis of single-base N-calls of one mtDNA sample found 3 other point mutations. Conclusions Our study is the first to analyse N-calls produced from GSEQ software for the MitoChipv2.0. By narrowing the focus to longer stretches of N-calls revealed by sPROFILER, conventional sequencing was able to identify unique insertions and point mutations. Shorter N-calls also harboured point mutations, but the absence of deletions among N-calls suggests that probe confirmation affects binding and thus N-calling. This study supports the contention that the GSEQ is more capable of assigning bases when used in conjunction with sPROFILER.

  1. HLA class I sequence-based typing using DNA recovered from frozen plasma.

    Science.gov (United States)

    Cotton, Laura A; Abdur Rahman, Manal; Ng, Carmond; Le, Anh Q; Milloy, M-J; Mo, Theresa; Brumme, Zabrina L

    2012-08-31

    We describe a rapid, reliable and cost-effective method for intermediate-to-high-resolution sequence-based HLA class I typing using frozen plasma as a source of genomic DNA. The plasma samples investigated had a median age of 8.5 years. Total nucleic acids were isolated from matched frozen PBMC (~2.5 million) and plasma (500 μl) samples from a panel of 25 individuals using commercial silica-based kits. Extractions yielded median [IQR] nucleic acid concentrations of 85.7 [47.0-130.0]ng/μl and 2.2 [1.7-2.6]ng/μl from PBMC and plasma, respectively. Following extraction, ~1000 base pair regions spanning exons 2 and 3 of HLA-A, -B and -C were amplified independently via nested PCR using universal, locus-specific primers and sequenced directly. Chromatogram analysis was performed using commercial DNA sequence analysis software and allele interpretation was performed using a free web-based tool. HLA-A, -B and -C amplification rates were 100% and chromatograms were of uniformly high quality with clearly distinguishable mixed bases regardless of DNA source. Concordance between PBMC and plasma-derived HLA types was 100% at the allele and protein levels. At the nucleotide level, a single partially discordant base (resulting from a failure to call both peaks in a mixed base) was observed out of >46,975 bases sequenced (>99.9% concordance). This protocol has previously been used to perform HLA class I typing from a variety of genomic DNA sources including PBMC, whole blood, granulocyte pellets and serum, from specimens up to 30 years old. This method provides comparable specificity to conventional sequence-based approaches and could be applied in situations where cell samples are unavailable or DNA quantities are limiting. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Compilation and analysis of Escherichia coli promoter DNA sequences.

    OpenAIRE

    Hawley, D K; McClure, W R

    1983-01-01

    The DNA sequence of 168 promoter regions (-50 to +10) for Escherichia coli RNA polymerase were compiled. The complete listing was divided into two groups depending upon whether or not the promoter had been defined by genetic (promoter mutations) or biochemical (5' end determination) criteria. A consensus promoter sequence based on homologies among 112 well-defined promoters was determined that was in substantial agreement with previous compilations. In addition, we have tabulated 98 promoter ...

  3. Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs.

    Science.gov (United States)

    Pancoska, Petr; Moravek, Zdenek; Moll, Ute M

    2004-01-01

    Nucleic acids are molecules of choice for both established and emerging nanoscale technologies. These technologies benefit from large functional densities of 'DNA processing elements' that can be readily manufactured. To achieve the desired functionality, polynucleotide sequences are currently designed by a process that involves tedious and laborious filtering of potential candidates against a series of requirements and parameters. Here, we present a complete novel methodology for the rapid rational design of large sets of DNA sequences. This method allows for the direct implementation of very complex and detailed requirements for the generated sequences, thus avoiding 'brute force' filtering. At the same time, these sequences have narrow distributions of melting temperatures. The molecular part of the design process can be done without computer assistance, using an efficient 'human engineering' approach by drawing a single blueprint graph that represents all generated sequences. Moreover, the method eliminates the necessity for extensive thermodynamic calculations. Melting temperature can be calculated only once (or not at all). In addition, the isostability of the sequences is independent of the selection of a particular set of thermodynamic parameters. Applications are presented for DNA sequence designs for microarrays, universal microarray zip sequences and electron transfer experiments.

  4. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  5. Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences

    Directory of Open Access Journals (Sweden)

    De Marzo Angelo M

    2011-06-01

    Full Text Available Abstract Background DNA methylation has been linked to genome regulation and dysregulation in health and disease respectively, and methods for characterizing genomic DNA methylation patterns are rapidly emerging. We have developed/refined methods for enrichment of methylated genomic fragments using the methyl-binding domain of the human MBD2 protein (MBD2-MBD followed by analysis with high-density tiling microarrays. This MBD-chip approach was used to characterize DNA methylation patterns across all non-repetitive sequences of human chromosomes 21 and 22 at high-resolution in normal and malignant prostate cells. Results Examining this data using computational methods that were designed specifically for DNA methylation tiling array data revealed widespread methylation of both gene promoter and non-promoter regions in cancer and normal cells. In addition to identifying several novel cancer hypermethylated 5' gene upstream regions that mediated epigenetic gene silencing, we also found several hypermethylated 3' gene downstream, intragenic and intergenic regions. The hypermethylated intragenic regions were highly enriched for overlap with intron-exon boundaries, suggesting a possible role in regulation of alternative transcriptional start sites, exon usage and/or splicing. The hypermethylated intergenic regions showed significant enrichment for conservation across vertebrate species. A sampling of these newly identified promoter (ADAMTS1 and SCARF2 genes and non-promoter (downstream or within DSCR9, C21orf57 and HLCS genes hypermethylated regions were effective in distinguishing malignant from normal prostate tissues and/or cell lines. Conclusions Comparison of chromosome-wide DNA methylation patterns in normal and malignant prostate cells revealed significant methylation of gene-proximal and conserved intergenic sequences. Such analyses can be easily extended for genome-wide methylation analysis in health and disease.

  6. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.

    Science.gov (United States)

    Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-28

    Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.

  7. Contrasting the Chromosomal Organization of Repetitive DNAs in Two Gryllidae Crickets with Highly Divergent Karyotypes.

    Directory of Open Access Journals (Sweden)

    Octavio M Palacios-Gimenez

    Full Text Available A large percentage of eukaryotic genomes consist of repetitive DNA that plays an important role in the organization, size and evolution. In the case of crickets, chromosomal variability has been found using classical cytogenetics, but almost no information concerning the organization of their repetitive DNAs is available. To better understand the chromosomal organization and diversification of repetitive DNAs in crickets, we studied the chromosomes of two Gryllidae species with highly divergent karyotypes, i.e., 2n(♂ = 29,X0 (Gryllus assimilis and 2n = 9, neo-X1X2Y (Eneoptera surinamensis. The analyses were performed using classical cytogenetic techniques, repetitive DNA mapping and genome-size estimation. Conserved characteristics were observed, such as the occurrence of a small number of clusters of rDNAs and U snDNAs, in contrast to the multiple clusters/dispersal of the H3 histone genes. The positions of U2 snDNA and 18S rDNA are also conserved, being intermingled within the largest autosome. The distribution and base-pair composition of the heterochromatin and repetitive DNA pools of these organisms differed, suggesting reorganization. Although the microsatellite arrays had a similar distribution pattern, being dispersed along entire chromosomes, as has been observed in some grasshopper species, a band-like pattern was also observed in the E. surinamensis chromosomes, putatively due to their amplification and clustering. In addition to these differences, the genome of E. surinamensis is approximately 2.5 times larger than that of G. assimilis, which we hypothesize is due to the amplification of repetitive DNAs. Finally, we discuss the possible involvement of repetitive DNAs in the differentiation of the neo-sex chromosomes of E. surinamensis, as has been reported in other eukaryotic groups. This study provided an opportunity to explore the evolutionary dynamics of repetitive DNAs in two non-model species and will contribute to the

  8. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    International Nuclear Information System (INIS)

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S.; Rocchi, M.

    1991-01-01

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH 2 -terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH 2 -terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids

  9. Open source tools to exploit DNA sequence data from livestock species

    Science.gov (United States)

    Next-Generation Sequencing (NGS) is a recent technological development that allows researchers to rapidly determine the DNA sequence of an individual. The decrease in cost of NGS has brought the technology into the realm of practical applications in livestock genomics, where it can be used to genera...

  10. Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement

    International Nuclear Information System (INIS)

    Medof, M.E.; Lublin, D.M.; Holers, V.M.; Ayers, D.J.; Getty, R.R.; Leykam, J.F.; Atkinson, J.P.; Tykocinski, M.L.

    1987-01-01

    cDNAs encoding the complement decay-accelerating factor (DAF) were isolated from HeLa and differentiated HL-60 λgt cDNA libraries by screening with a codon preference oligonucleotide corresponding to DAF NH 2 -terminal amino acids 3-14. The composite cDNA sequence showed a 347-amino acid protein preceded by an NH 2 -terminal leader peptide sequence. The translated sequence beginning at the DAF NH 2 terminus encodes four contiguous ≅ 61-amino acid long repetitive units of internal homology. The repetitive regions contain four conserved cysteines, one proline, one glycine, one glycine/alanine, four leucines/isoleucines/valines, one serine, three tyrosines/phenylalanines, and on tryptophan and show striking homology to similar regions previously identified in factor B, C2, C4 binding protein, factor H, C1r, factor XIII, interleukin 2 receptor, and serum β 2 -glycoprotein I. The consensus repeats are attached to a 70-amino acid long segment rich in serine and threonine (potential O-glycosylation sites), which is in turn followed by a stretch of hydrophobic amino acids. RNA blot analysis of HeLa and HL-60 RNA revealed three DAF mRNA species of 3.1, 2.7, and 2.0 kilobases. The results indicate that portions of the DAF gene may have evolved from a DNA element common to the above proteins, that DAF cDNA predicts a COOH-terminal anchoring polypeptide, and that distinct species of DAF message are elaborated in cells

  11. ADN-Viewer: a 3D approach for bioinformatic analyses of large DNA sequences.

    Science.gov (United States)

    Hérisson, Joan; Ferey, Nicolas; Gros, Pierre-Emmanuel; Gherbi, Rachid

    2007-01-20

    Most of biologists work on textual DNA sequences that are limited to the linear representation of DNA. In this paper, we address the potential offered by Virtual Reality for 3D modeling and immersive visualization of large genomic sequences. The representation of the 3D structure of naked DNA allows biologists to observe and analyze genomes in an interactive way at different levels. We developed a powerful software platform that provides a new point of view for sequences analysis: ADNViewer. Nevertheless, a classical eukaryotic chromosome of 40 million base pairs requires about 6 Gbytes of 3D data. In order to manage these huge amounts of data in real-time, we designed various scene management algorithms and immersive human-computer interaction for user-friendly data exploration. In addition, one bioinformatics study scenario is proposed.

  12. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  13. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.

  14. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  15. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.

  16. Default cycle phases determined after modifying discrete DNA sequences in plant cells

    International Nuclear Information System (INIS)

    Sans, J.; Leyton, C.

    1997-01-01

    After bromosubstituting DNA sequences replicated in the first, second, or third part of the S phase, in Allium cepa L. meristematic cells, radiation at 313 nm wavelength under anoxia allowed ascription of different sequences to both the positive and negative regulation of some cycle phase transitions. The present report shows that the radiation forced cells in late G 1 phase to advance into S, while those in G 2 remained in G 2 and cells in prophase returned to G 2 when both sets of sequences involved in the positive and negative controls were bromosubstituted and later irradiated. In this way, not only G 2 but also the S phase behaved as cycle phases where cells accumulated by default when signals of different sign functionally cancelled out. The treatment did not halt the rates of replication or transcription of plant bromosubstituted DNA. The irradiation under hypoxia apparently prevents the binding of regulatory proteins to Br-DNA. (author)

  17. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties.

    Science.gov (United States)

    Pan, Gaofeng; Jiang, Limin; Tang, Jijun; Guo, Fei

    2018-02-08

    DNA methylation is an important biochemical process, and it has a close connection with many types of cancer. Research about DNA methylation can help us to understand the regulation mechanism and epigenetic reprogramming. Therefore, it becomes very important to recognize the methylation sites in the DNA sequence. In the past several decades, many computational methods-especially machine learning methods-have been developed since the high-throughout sequencing technology became widely used in research and industry. In order to accurately identify whether or not a nucleotide residue is methylated under the specific DNA sequence context, we propose a novel method that overcomes the shortcomings of previous methods for predicting methylation sites. We use k -gram, multivariate mutual information, discrete wavelet transform, and pseudo amino acid composition to extract features, and train a sparse Bayesian learning model to do DNA methylation prediction. Five criteria-area under the receiver operating characteristic curve (AUC), Matthew's correlation coefficient (MCC), accuracy (ACC), sensitivity (SN), and specificity-are used to evaluate the prediction results of our method. On the benchmark dataset, we could reach 0.8632 on AUC, 0.8017 on ACC, 0.5558 on MCC, and 0.7268 on SN. Additionally, the best results on two scBS-seq profiled mouse embryonic stem cells datasets were 0.8896 and 0.9511 by AUC, respectively. When compared with other outstanding methods, our method surpassed them on the accuracy of prediction. The improvement of AUC by our method compared to other methods was at least 0.0399 . For the convenience of other researchers, our code has been uploaded to a file hosting service, and can be downloaded from: https://figshare.com/s/0697b692d802861282d3.

  18. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties

    Directory of Open Access Journals (Sweden)

    Gaofeng Pan

    2018-02-01

    Full Text Available DNA methylation is an important biochemical process, and it has a close connection with many types of cancer. Research about DNA methylation can help us to understand the regulation mechanism and epigenetic reprogramming. Therefore, it becomes very important to recognize the methylation sites in the DNA sequence. In the past several decades, many computational methods—especially machine learning methods—have been developed since the high-throughout sequencing technology became widely used in research and industry. In order to accurately identify whether or not a nucleotide residue is methylated under the specific DNA sequence context, we propose a novel method that overcomes the shortcomings of previous methods for predicting methylation sites. We use k-gram, multivariate mutual information, discrete wavelet transform, and pseudo amino acid composition to extract features, and train a sparse Bayesian learning model to do DNA methylation prediction. Five criteria—area under the receiver operating characteristic curve (AUC, Matthew’s correlation coefficient (MCC, accuracy (ACC, sensitivity (SN, and specificity—are used to evaluate the prediction results of our method. On the benchmark dataset, we could reach 0.8632 on AUC, 0.8017 on ACC, 0.5558 on MCC, and 0.7268 on SN. Additionally, the best results on two scBS-seq profiled mouse embryonic stem cells datasets were 0.8896 and 0.9511 by AUC, respectively. When compared with other outstanding methods, our method surpassed them on the accuracy of prediction. The improvement of AUC by our method compared to other methods was at least 0.0399 . For the convenience of other researchers, our code has been uploaded to a file hosting service, and can be downloaded from: https://figshare.com/s/0697b692d802861282d3.

  19. Efficient DNA fingerprinting based on the targeted sequencing of active retrotransposon insertion sites using a bench-top high-throughput sequencing platform.

    Science.gov (United States)

    Monden, Yuki; Yamamoto, Ayaka; Shindo, Akiko; Tahara, Makoto

    2014-10-01

    In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2,024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification.

    Science.gov (United States)

    Liu, Meng; Yin, Qingxin; McConnell, Erin M; Chang, Yangyang; Brennan, John D; Li, Yingfu

    2018-03-26

    Technologies capable of linking DNA amplification to molecular recognition are very desirable for ultrasensitive biosensing applications. We have developed a simple but powerful isothermal DNA amplification method, termed DNAzyme feedback amplification (DFA), that is capable of relaying molecular recognition to exponential DNA amplification. The method incorporates both an RNA-cleaving DNAzyme (RCD) and rolling circle amplification (RCA) carried out by a special DNA polymerase using a circular DNA template. DFA begins with a stimulus-dependent RCA reaction, producing tandemly linked RCDs in long-chain DNA products. These RCDs cleave an RNA-containing DNA sequence to form additional primers that hybridize to the circular DNA molecule, giving rise to DNA assemblies that act as the new inputs for RCA. The RCA reaction and the cleavage event keep on feeding each other autonomously, resulting in exponential growth of repetitive DNA sequences that can be easily detected. This method can be used for the detection of both nucleic acid based targets and non-nucleic acid analytes. In this article, we discuss the conceptual framework of the feedback amplification approach, the essential features of this method as well as remaining challenges and possible solutions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor.

    Science.gov (United States)

    Davis, C A; Wyatt, G R

    1989-01-01

    The mealworm beetle, Tenebrio molitor, contains an unusually abundant and homogeneous satellite DNA which constitutes up to 60% of its genome. The satellite DNA is shown to be present in all of the chromosomes by in situ hybridization. 18 dimers of the repeat unit were cloned and sequenced. The consensus sequence is 142 nt long and lacks any internal repeat structure. Monomers of the sequence are very similar, showing on average a 2% divergence from the calculated consensus. Variant nucleotides are scattered randomly throughout the sequence although some variants are more common than others. Neighboring repeat units are no more alike than randomly chosen ones. The results suggest that some mechanism, perhaps gene conversion, is acting to maintain the homogeneity of the satellite DNA despite its abundance and distribution on all of the chromosomes. Images PMID:2762148

  2. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David R.; Lee, Robert W.; Cushman, John C.; Magnuson, Jon K.; Tran, Duc; Polle, Juergen E.

    2010-05-07

    Abstract Background: Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results: The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions: These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable

  3. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA

    Directory of Open Access Journals (Sweden)

    Tran Duc

    2010-05-01

    Full Text Available Abstract Background Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA. Conclusions These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the

  4. Sequence analysis of the canine mitochondrial DNA control region from shed hair samples in criminal investigations.

    Science.gov (United States)

    Berger, C; Berger, B; Parson, W

    2012-01-01

    In recent years, evidence from domestic dogs has increasingly been analyzed by forensic DNA testing. Especially, canine hairs have proved most suitable and practical due to the high rate of hair transfer occurring between dogs and humans. Starting with the description of a contamination-free sample handling procedure, we give a detailed workflow for sequencing hypervariable segments (HVS) of the mtDNA control region from canine evidence. After the hair material is lysed and the DNA extracted by Phenol/Chloroform, the amplification and sequencing strategy comprises the HVS I and II of the canine control region and is optimized for DNA of medium-to-low quality and quantity. The sequencing procedure is based on the Sanger Big-dye deoxy-terminator method and the separation of the sequencing reaction products is performed on a conventional multicolor fluorescence detection capillary electrophoresis platform. Finally, software-aided base calling and sequence interpretation are addressed exemplarily.

  5. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22

    International Nuclear Information System (INIS)

    Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C.

    1988-01-01

    Two overlapping cDNA clones encoding human DNA topoisomerase II were identified by two independent methods. In one, a human cDNA library in phage λ was screened by hybridization with a mixed oligonucleotide probe encoding a stretch of seven amino acids found in yeast and Drosophila DNA topoisomerase II; in the other, a different human cDNA library in a λgt11 expression vector was screened for the expression of antigenic determinants that are recognized by rabbit antibodies specific to human DNA topoisomerase II. The entire coding sequences of the human DNA topoisomerase II gene were determined from these and several additional clones, identified through the use of the cloned human TOP2 gene sequences as probes. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is encoded by a single-copy gene. The location of the gene was mapped to chromosome 17q21-22 by in situ hybridization of a cloned fragment to metaphase chromosomes and by hybridization analysis with a panel of mouse-human hybrid cell lines, each retaining a subset of human chromosomes

  6. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role?

    Science.gov (United States)

    Barros, Alain Victor; Wolski, Michele Andressa Vier; Nogaroto, Viviane; Almeida, Mara Cristina; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo

    2017-04-15

    Repetitive DNA regions are known as fragile chromosomal sites which present a high flexibility and low stability. Our focus was characterize fragile sites in 5S rDNA regions. The Ancistrus sp. species shows a diploid number of 50 and an indicative Robertsonian fusion at chromosomal pair 1. Two sequences of 5S rDNA were identified: 5S.1 rDNA and 5S.2 rDNA. The first sequence gathers the necessary structures to gene expression and shows a functional secondary structure prediction. Otherwise, the 5S.2 rDNA sequence does not contain the upstream sequences that are required to expression, furthermore its structure prediction reveals a nonfunctional ribosomal RNA. The chromosomal mapping revealed several 5S.1 and 5S.2 rDNA clusters. In addition, the 5S.2 rDNA clusters were found in acrocentric and metacentric chromosomes proximal regions. The pair 1 5S.2 rDNA cluster is co-located with interstitial telomeric sites (ITS). Our results indicate that its clusters are hotspots to chromosomal breaks. During the meiotic prophase bouquet arrangement, double strand breaks (DSBs) at proximal 5S.2 rDNA of acrocentric chromosomes could lead to homologous and non-homologous repair mechanisms as Robertsonian fusions. Still, ITS sites provides chromosomal instability, resulting in telomeric recombination via TRF2 shelterin protein and a series of breakage-fusion-bridge cycles. Our proposal is that 5S rDNA derived sequences, act as chromosomal fragile sites in association with some chromosomal rearrangements of Loricariidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. DNA sequence and prokaryotic expression analysis of vitellogenin ...

    African Journals Online (AJOL)

    In this study, the DNA sequence of vitellogenin from Antheraea pernyi (Ap-Vg) was identified and its functional domain (30-740 aa, Ap-Vg-1) was expressed in Escherichia coli BL21 (DE3) cells. The recombinant Ap-Vg-1 proteins were purified and used for antibody preparation. The results showed that the intact DNA ...

  8. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA.

    Science.gov (United States)

    Herzner, Anna-Maria; Hagmann, Cristina Amparo; Goldeck, Marion; Wolter, Steven; Kübler, Kirsten; Wittmann, Sabine; Gramberg, Thomas; Andreeva, Liudmila; Hopfner, Karl-Peter; Mertens, Christina; Zillinger, Thomas; Jin, Tengchuan; Xiao, Tsan Sam; Bartok, Eva; Coch, Christoph; Ackermann, Damian; Hornung, Veit; Ludwig, Janos; Barchet, Winfried; Hartmann, Gunther; Schlee, Martin

    2015-10-01

    Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.

  9. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43% in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97 and lower for avian species (0.70. PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  10. Chimeric TALE recombinases with programmable DNA sequence specificity.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  11. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S. [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa); Arbuthnot, Patrick, E-mail: Patrick.Arbuthnot@wits.ac.za [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa)

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  12. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    International Nuclear Information System (INIS)

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S.; Arbuthnot, Patrick

    2009-01-01

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  13. Nucleotide sequence of a cDNA coding for the amino-terminal region of human prepro. alpha. 1(III) collagen

    Energy Technology Data Exchange (ETDEWEB)

    Toman, P D; Ricca, G A [Rorer Biotechnology, Inc., Springfield, VA (USA); de Crombrugghe, B [National Institutes of Health, Bethesda, MD (USA)

    1988-07-25

    Type III Collagen is synthesized in a variety of tissues as a precursor macromolecule containing a leader sequence, a N-propeptide, a N-telopeptide, the triple helical region, a C-telopeptide, and C-propeptide. To further characterize the human type III collagen precursor, a human placental cDNA library was constructed in gt11 using an oligonucleotide derived from a partial cDNA sequence corresponding to the carboxy-terminal part of the 1(III) collagen. A cDNA was identified which contains the leader sequence, the N-propeptide and N-telopeptide regions. The DNA sequence of these regions are presented here. The triple helical, C-telopeptide and C-propeptide amino acid sequence for human type III collagen has been determined previously. A comparison of the human amino acid sequence with mouse, chicken, and calf sequence shows 81%, 81%, and 92% similarity, respectively. At the DNA level, the sequence similarity between human and mouse or chicken type III collagen sequences in this area is 82% and 77%, respectively.

  14. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo

    2010-03-28

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5\\'-TGGTC-3\\') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain. The Author(s) 2010. Published by Oxford University Press.

  15. [An analysis of the DNA fingerprinting of intestinal flora in inflammatory bowel disease].

    Science.gov (United States)

    Li, Run-mei; Han, Ying; Wang, Ji-heng; Wang, Zhi-hong

    2007-02-01

    DNA fingerprinting for inflammatory bowel disease (IBD) patients and healthy subjects was carried out to compare the difference of intestinal flora between the two groups. DNA fingerprinting for IBD patients and healthy persons was set up with enterobacterial repetitive intergenic consensus (ERIC-PCR) technology and the difference of intestinal flora between the two groups compared. DNA fingerprinting of the IBD patients and healthy subjects was identified and a significant difference was noticed between them. There were lots of bands in the DNA fingerprinting of the healthy subjects but few in that of the IBD patients. Strikingly, same distribution of the principal band of DNA fingerprinting was noticed in IBD patients. The variety of intestinal flora in healthy subjects is more apparent than that in IBD patients. An unique principal band might be the sequence of the presence of specific etiopathogenetic bacterium, or it might be the combined sequence of mixed bacterial flora.

  16. GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP

    NARCIS (Netherlands)

    Qin Ling,; Prins, P.; Jones, J.T.; Popeijus, H.; Smant, G.; Bakker, J.; Helder, J.

    2001-01-01

    The release of vast quantities of DNA sequence data by large-scale genome and expressed sequence tag (EST) projects underlines the necessity for the development of efficient and inexpensive ways to link sequence databases with temporal and spatial expression profiles. Here we demonstrate the power

  17. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach.

    Science.gov (United States)

    Hurst, Sarah J; Han, Min Su; Lytton-Jean, Abigail K R; Mirkin, Chad A

    2007-09-15

    We have developed a novel competition assay that uses a gold nanoparticle (Au NP)-based, high-throughput colorimetric approach to screen the sequence selectivity of DNA-binding molecules. This assay hinges on the observation that the melting behavior of DNA-functionalized Au NP aggregates is sensitive to the concentration of the DNA-binding molecule in solution. When short, oligomeric hairpin DNA sequences were added to a reaction solution consisting of DNA-functionalized Au NP aggregates and DNA-binding molecules, these molecules may either bind to the Au NP aggregate interconnects or the hairpin stems based on their relative affinity for each. This relative affinity can be measured as a change in the melting temperature (Tm) of the DNA-modified Au NP aggregates in solution. As a proof of concept, we evaluated the selectivity of 4',6-diamidino-2-phenylindone (an AT-specific binder), ethidium bromide (a nonspecific binder), and chromomycin A (a GC-specific binder) for six sequences of hairpin DNA having different numbers of AT pairs in a five-base pair variable stem region. Our assay accurately and easily confirmed the known trends in selectivity for the DNA binders in question without the use of complicated instrumentation. This novel assay will be useful in assessing large libraries of potential drug candidates that work by binding DNA to form a drug/DNA complex.

  18. Applicability of Ion Torrent Colon and Lung sequencing panel on circulating cell-free DNA

    DEFF Research Database (Denmark)

    Demuth, Christina; Tranberg Madsen, Anne; Larsen, Anne Winther

    of targeted sequencing have been optimised for clinical use on FFPE, e.g. the Ion Torrent Colon and Lung panel. The size of DNA extracted from FFPE tissue is comparable with that from cfDNA. We therefore investigated the performance of the clinically relevant Ion Torrent Colon and Lung panel on cfDNA. Methods...... a baseline for the panel. Lastly, the panel was tested on 52 patient samples. Patient plasma samples are from a previously collected cohort of EGFR wild-type non-small cell lung cancer patients (ClinicalTrial.gov: NCT02043002) All samples were sequenced using the Ion Torrent Oncomine Solid Tumor DNA kit...... (Colon and Lung panel) from Thermo Fisher. Sample preparation was performed using the Ion Torrent Chef and sequencing was performed on the Personal Genome Machine (PGM) system. Data was analyzed using the Torrent Suite software, and variants called by Ion Reporter. Results: No somatic mutations were...

  19. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    OpenAIRE

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    2012-01-01

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it possible to map SCEs at orders-of-magnitude greater resolution than was previously possible. On average, murine embryonic stem (mES) cells exhibit eight SCEs, which are detected at a resolution of up...

  20. Cloning, sequencing and expression of a novel xylanase cDNA from ...

    African Journals Online (AJOL)

    A strain SH 2016, capable of producing xylanase, was isolated and identified as Aspergillus awamori, based on its physiological and biochemical characteristics as well as its ITS rDNA gene sequence analysis. A xylanase gene of 591 bp was cloned from this newly isolated A. awamori and the ORF sequence predicted a ...

  1. A likelihood ratio test for species membership based on DNA sequence data

    DEFF Research Database (Denmark)

    Matz, Mikhail V.; Nielsen, Rasmus

    2005-01-01

    DNA barcoding as an approach for species identification is rapidly increasing in popularity. However, it remains unclear which statistical procedures should accompany the technique to provide a measure of uncertainty. Here we describe a likelihood ratio test which can be used to test if a sampled...... sequence is a member of an a priori specified species. We investigate the performance of the test using coalescence simulations, as well as using the real data from butterflies and frogs representing two kinds of challenge for DNA barcoding: extremely low and extremely high levels of sequence variability....

  2. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    Science.gov (United States)

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  3. [Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB 24.2].

    Science.gov (United States)

    Bolotin, A P; Sorokin, A V; Aleksandrov, N N; Danilenko, V N; Kozlov, Iu I

    1985-11-01

    The nucleotide sequence of DNA in plasmid pSB 24.2, a natural deletion derivative of plasmid pSB 24.1 isolated from S. cyanogenus was studied. The plasmid amounted by its size to 3706 nucleotide pairs. The G-C composition was equal to 73 per cent. The analysis of the DNA structure in plasmid pSB 24.2 revealed the protein-encoding sequence of DNA, the continuity of which was significant for replication of the plasmid containing more than 1300 nucleotide pairs. The analysis also revealed two A-T-rich areas of DNA, the G-C composition of which was less than 55 per cent and a DNA area with a branched pin structure. The results may be of value in investigation of plasmid replication in actinomycetes and experimental cloning of DNA with this plasmid as a vector.

  4. Repetition and the Concept of Repetition

    Directory of Open Access Journals (Sweden)

    Arne Grøn

    2013-11-01

    Full Text Available This paper offers a description of the meaning of the category of repetition. Firstly, it is pointed out that Constantin uses repetition as a concept that means the creation of epochs; the passing from Greece to Modernity is accomplished distinguishing between recollection, a concept that looks back to the past, and repetition, a concept that looks forward to future. Secondly, it is showed that the category of repetition, as a religious category, relates with what Climacus calls “ethic despair” and with what Vigilius calls “second ethics”; it is through repetition that it can be understood that sin finds its place in ethics and these shows the tension between it and dogmatics. And thirdly, it is showed that the descovery of the new category of repetition is a rediscovery of what Kierkegaard calls category of spirit; repetition has for its object the individuality, and coming to be oneself is what Kierkegaard undertands as liberty. At the end of the paper it is questioned if the category of repetition is inconsistent with the book Repetition.

  5. DNA sequence analysis of X-ray induced Adh null mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mahmoud, J.; Fossett, N.G.; Arbour-Reily, P.; McDaniel, M.; Tucker, A.; Chang, S.H.; Lee, W.R.

    1991-01-01

    The mutational spectrum for 28 X-ray induced mutations and 2 spontaneous mutations, previously determined by genetic and cytogenetic methods, consisted of 20 multilocus deficiencies (19 induced and 1 spontaneous) and 10 intragenic mutations (9 induced and 1 spontaneous). One of the X-ray induced intragenic mutations was lost, and another was determined to be a recombinant with the allele used in the recovery scheme. The DNA sequence of two X-ray induced intragenic mutations has been published. This paper reports the results of DNA sequence analysis of the remaining intragenic mutations and a summary of the X-ray induced mutational spectrum. The combination of DNA sequence analysis with genetic complementation analysis shows a continuous distribution in size of deletions rather than two different types of mutations consisting of deletions and 'point mutations'. Sequencing is shown to be essential for detecting intragenic deletions. Of particular importance for future studies is the observation that all of the intragenic deletions consist of a direct repeat adjacent to the breakpoint with one of the repeats deleted

  6. DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1T

    OpenAIRE

    Choudhary, M.; Kaplan, Samuel

    2000-01-01

    This paper describes the DNA sequence of the photosynthesis region of Rhodobacter sphaeroides 2.4.1T. The photosynthesis gene cluster is located within a ~73 kb AseI genomic DNA fragment containing the puf, puhA, cycA and puc operons. A total of 65 open reading frames (ORFs) have been identified, of which 61 showed significant similarity to genes/proteins of other organisms while only four did not reveal any significant sequence similarity to any gene/protein sequences in the database. The da...

  7. DNA Sequence-Mediated, Evolutionarily Rapid Redistribution of Meiotic Recombination Hotspots

    Science.gov (United States)

    Wahls, Wayne P.; Davidson, Mari K.

    2011-01-01

    Hotspots regulate the position and frequency of Spo11 (Rec12)-initiated meiotic recombination, but paradoxically they are suicidal and are somehow resurrected elsewhere in the genome. After the DNA sequence-dependent activation of hotspots was discovered in fission yeast, nearly two decades elapsed before the key realizations that (A) DNA site-dependent regulation is broadly conserved and (B) individual eukaryotes have multiple different DNA sequence motifs that activate hotspots. From our perspective, such findings provide a conceptually straightforward solution to the hotspot paradox and can explain other, seemingly complex features of meiotic recombination. We describe how a small number of single-base-pair substitutions can generate hotspots de novo and dramatically alter their distribution in the genome. This model also shows how equilibrium rate kinetics could maintain the presence of hotspots over evolutionary timescales, without strong selective pressures invoked previously, and explains why hotspots localize preferentially to intergenic regions and introns. The model is robust enough to account for all hotspots of humans and chimpanzees repositioned since their divergence from the latest common ancestor. PMID:22084420

  8. Genomic DNA sequence and cytosine methylation changes of adult rice leaves after seeds space flight

    Science.gov (United States)

    Shi, Jinming

    In this study, cytosine methylation on CCGG site and genomic DNA sequence changes of adult leaves of rice after seeds space flight were detected by methylation-sensitive amplification polymorphism (MSAP) and Amplified fragment length polymorphism (AFLP) technique respectively. Rice seeds were planted in the trial field after 4 days space flight on the shenzhou-6 Spaceship of China. Adult leaves of space-treated rice including 8 plants chosen randomly and 2 plants with phenotypic mutation were used for AFLP and MSAP analysis. Polymorphism of both DNA sequence and cytosine methylation were detected. For MSAP analysis, the average polymorphic frequency of the on-ground controls, space-treated plants and mutants are 1.3%, 3.1% and 11% respectively. For AFLP analysis, the average polymorphic frequencies are 1.4%, 2.9%and 8%respectively. Total 27 and 22 polymorphic fragments were cloned sequenced from MSAP and AFLP analysis respectively. Nine of the 27 fragments from MSAP analysis show homology to coding sequence. For the 22 polymorphic fragments from AFLP analysis, no one shows homology to mRNA sequence and eight fragments show homology to repeat region or retrotransposon sequence. These results suggest that although both genomic DNA sequence and cytosine methylation status can be effected by space flight, the genomic region homology to the fragments from genome DNA and cytosine methylation analysis were different.

  9. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    1993-02-16

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a pu GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  10. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    Science.gov (United States)

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  11. Two Tetrahymena G-DNA-binding proteins, TGP1 and TGP3, share novel motifs and may play a role in micronuclear division

    OpenAIRE

    Lu, Quan; Henderson, Eric

    2000-01-01

    G-DNA is a four-stranded DNA structure with diverse putative biological roles. We have previously purified and cloned a novel G-DNA-binding protein TGP1 from the ciliate Tetrahymena thermophila. Here we report the molecular cloning of TGP3, an additional G-DNA-binding protein from the same organism. The TGP3 cDNA encodes a 365 amino acid protein that is homologous to TGP1 (34% identity and 44% similarity). The proteins share a sequence pattern that contains two novel repetitive and homologous...

  12. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing

    Czech Academy of Sciences Publication Activity Database

    Hřibová, Eva; Neumann, Pavel; Matsumoto, T.; Roux, N.; Macas, Jiří; Doležel, Jaroslav

    2010-01-01

    Roč. 10, č. 204 (2010), s. 1-10 ISSN 1471-2229 R&D Projects: GA AV ČR KJB500380901; GA AV ČR IAA600380703; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50510513 Keywords : IN-SITU HYBRIDIZATION * RIBOSOMAL-RNA GENES * DNA-SEQUENCES Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.085, year: 2010

  13. Yeast identification by sequencing, biochemical kits, MALDI-TOF MS and rep-PCR DNA fingerprinting.

    Science.gov (United States)

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Chan, Jasper F W; Lau, Susanna K P; Kong, Fanrong; Xu, Yingchun; Woo, Patrick C Y

    2017-12-08

    No study has comprehensively evaluated the performance of 28S nrDNA and ITS sequencing, commercial biochemical test kits, MALDI-TOF MS platforms, and the emerging rep-PCR DNA fingerprinting technology using a cohort of yeast strains collected from a clinical microbiology laboratory. In this study, using 71 clinically important yeast isolates (excluding Candida albicans) collected from a single centre, we determined the concordance of 28S nrDNA and ITS sequencing and evaluated the performance of two commercial test kits, two MALDI-TOF MS platforms, and rep-PCR DNA fingerprinting. 28S nrDNA and ITS sequencing showed complete agreement on the identities of the 71 isolates. Using sequencing results as the standard, 78.9% and 71.8% isolates were correctly identified using the API 20C AUX and Vitek 2 YST ID Card systems, respectively; and 90.1% and 80.3% isolates were correctly identified using the Bruker and Vitek MALDI-TOF MS platforms, respectively. Of the 18 strains belonging to the Candida parapsilosis species complex tested by DiversiLab automated rep-PCR DNA fingerprinting, all were identified only as Candida parapsilosis with similarities ≥93.2%, indicating the misidentification of Candida metapsilosis and Candida orthopsilosis. However, hierarchical cluster analysis of the rep-PCR DNA fingerprints of these three species within this species complex formed three different discrete clusters, indicating that this technology can potentially differentiate the three species. To achieve higher accuracies of identification, the databases of commercial biochemical test kits, MALDI-TOF MS platforms, and DiversiLab automated rep-PCR DNA fingerprinting needs further enrichment, particularly for uncommonly encountered yeast species. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  15. Highly accurate fluorogenic DNA sequencing with information theory-based error correction.

    Science.gov (United States)

    Chen, Zitian; Zhou, Wenxiong; Qiao, Shuo; Kang, Li; Duan, Haifeng; Xie, X Sunney; Huang, Yanyi

    2017-12-01

    Eliminating errors in next-generation DNA sequencing has proved challenging. Here we present error-correction code (ECC) sequencing, a method to greatly improve sequencing accuracy by combining fluorogenic sequencing-by-synthesis (SBS) with an information theory-based error-correction algorithm. ECC embeds redundancy in sequencing reads by creating three orthogonal degenerate sequences, generated by alternate dual-base reactions. This is similar to encoding and decoding strategies that have proved effective in detecting and correcting errors in information communication and storage. We show that, when combined with a fluorogenic SBS chemistry with raw accuracy of 98.1%, ECC sequencing provides single-end, error-free sequences up to 200 bp. ECC approaches should enable accurate identification of extremely rare genomic variations in various applications in biology and medicine.

  16. Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex

    Directory of Open Access Journals (Sweden)

    Madhav Jagannathan

    2017-02-01

    Full Text Available Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia using multi-color fluorescent in situ hybridization (FISH probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia, and suggests the presence of unidentified satellite sequences in these species.

  17. A DNA 'barcode blitz': rapid digitization and sequencing of a natural history collection.

    Science.gov (United States)

    Hebert, Paul D N; Dewaard, Jeremy R; Zakharov, Evgeny V; Prosser, Sean W J; Sones, Jayme E; McKeown, Jaclyn T A; Mantle, Beth; La Salle, John

    2013-01-01

    DNA barcoding protocols require the linkage of each sequence record to a voucher specimen that has, whenever possible, been authoritatively identified. Natural history collections would seem an ideal resource for barcode library construction, but they have never seen large-scale analysis because of concerns linked to DNA degradation. The present study examines the strength of this barrier, carrying out a comprehensive analysis of moth and butterfly (Lepidoptera) species in the Australian National Insect Collection. Protocols were developed that enabled tissue samples, specimen data, and images to be assembled rapidly. Using these methods, a five-person team processed 41,650 specimens representing 12,699 species in 14 weeks. Subsequent molecular analysis took about six months, reflecting the need for multiple rounds of PCR as sequence recovery was impacted by age, body size, and collection protocols. Despite these variables and the fact that specimens averaged 30.4 years old, barcode records were obtained from 86% of the species. In fact, one or more barcode compliant sequences (>487 bp) were recovered from virtually all species represented by five or more individuals, even when the youngest was 50 years old. By assembling specimen images, distributional data, and DNA barcode sequences on a web-accessible informatics platform, this study has greatly advanced accessibility to information on thousands of species. Moreover, much of the specimen data became publically accessible within days of its acquisition, while most sequence results saw release within three months. As such, this study reveals the speed with which DNA barcode workflows can mobilize biodiversity data, often providing the first web-accessible information for a species. These results further suggest that existing collections can enable the rapid development of a comprehensive DNA barcode library for the most diverse compartment of terrestrial biodiversity - insects.

  18. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations.

    Science.gov (United States)

    Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis

    2016-08-24

    To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.

  19. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    Science.gov (United States)

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  20. Full-length cDNA sequences from Rhesus monkey placenta tissue: analysis and utility for comparative mapping

    Directory of Open Access Journals (Sweden)

    Lee Sang-Rae

    2010-07-01

    Full Text Available Abstract Background Rhesus monkeys (Macaca mulatta are widely-used as experimental animals in biomedical research and are closely related to other laboratory macaques, such as cynomolgus monkeys (Macaca fascicularis, and to humans, sharing a last common ancestor from about 25 million years ago. Although rhesus monkeys have been studied extensively under field and laboratory conditions, research has been limited by the lack of genetic resources. The present study generated placenta full-length cDNA libraries, characterized the resulting expressed sequence tags, and described their utility for comparative mapping with human RefSeq mRNA transcripts. Results From rhesus monkey placenta full-length cDNA libraries, 2000 full-length cDNA sequences were determined and 1835 rhesus placenta cDNA sequences longer than 100 bp were collected. These sequences were annotated based on homology to human genes. Homology search against human RefSeq mRNAs revealed that our collection included the sequences of 1462 putative rhesus monkey genes. Moreover, we identified 207 genes containing exon alterations in the coding region and the untranslated region of rhesus monkey transcripts, despite the highly conserved structure of the coding regions. Approximately 10% (187 of all full-length cDNA sequences did not represent any public human RefSeq mRNAs. Intriguingly, two rhesus monkey specific exons derived from the transposable elements of AluYRa2 (SINE family and MER11B (LTR family were also identified. Conclusion The 1835 rhesus monkey placenta full-length cDNA sequences described here could expand genomic resources and information of rhesus monkeys. This increased genomic information will greatly contribute to the development of evolutionary biology and biomedical research.