WorldWideScience

Sample records for repetitive dna family

  1. Molecular characterization and evolution of an interspersed repetitive DNA family of oysters.

    Science.gov (United States)

    López-Flores, Inmaculada; Ruiz-Rejón, Carmelo; Cross, Ismael; Rebordinos, Laureana; Robles, Francisca; Navajas-Pérez, Rafael; de la Herrán, Roberto

    2010-12-01

    When genomic DNA from the European flat oyster Ostrea edulis L. was digested by BclI enzyme, a band of about 150 bp was observed in agarose gel. After cloning and sequencing this band and analysing their molecular characteristics and genomic organization by means of Southern blot, in situ hybridisation, and polymerase chain reaction (PCR) protocols, we concluded that this band is an interspersed highly repeated DNA element, which is related in sequence to the flanking regions of (CT)-microsatellite loci of the species O. edulis and Crassostrea gigas. Furthermore, we determined that this element forms part of a longer repetitive unit of 268 bp in length that, at least in some loci, is present in more than one copy. By Southern blot hybridisation and PCR amplifications-using primers designed for conserved regions of the 150-bp BclI clones of O. edulis-we determined that this repetitive DNA family is conserved in five other oyster species (O. stentina, C. angulata, C. gigas, C. ariakensis, and C. sikamea) while it is apparently absent in C. gasar. Finally, based on the analysis of the repetitive units in these oyster species, we discuss the slow degree of concerted evolution in this interspersed repetitive DNA family and its use for phylogenetic analysis.

  2. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Carmo, Edson; Neves, Rogerio O; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by C ot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by C ot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using C ot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, C ot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of C ot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position.

  3. The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C

    2015-01-01

    Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes.

  4. Molecular cytogenetics of Alstroemeria: identification of parental genomes in interspecific hybrids and characterization of repetitive DNA families in constitutive heterochromatin.

    Science.gov (United States)

    Kuipers, A G; van Os, D P; de Jong, J H; Ramanna, M S

    1997-02-01

    The genus Alstroemeria consists of diploid (2n = 2x = 16) species originating mainly from Chile and Brazil. Most cultivars are triploid or tetraploid interspecific hybrids. C-banding of eight species revealed obvious differentiation of constitutive heterochromatin within the genus. The present study focused on the molecular (cyto)genetic background of this differentiation. Genomic slot-blot analysis demonstrated strong conservation of major parts of the genomes among six species. The chromosomes of A. aurea and A. ligtu, species with pronounced interstitial C-bands, were found to contain large amounts of highly repetitive and species-specific DNA. The variation in size, number and intensity of strongly probed bands of major repetitive DNA families observed in genomic Southern blots of Sau3A, HaeIII, and MseI digests indicated a strong correlation between variation in genomic DNA composition and different C-banding patterns among Alstroemeria species. Genomic in situ hybridization (GISH) revealed a clear distinction between parental chromosomes in the hybrids between Chilean and Brazilian species and also between Chilean species, as long as at least one of the parental species possessed prominent C-banding. Regarding the latter, discriminative hybridization resulted from highly repetitive species specific DNA in the heterochromatic chromosome regions of A. aurea and A. ligtu, and caused GISH banding patterns that coincided with the C-banding patterns.

  5. Repetitive DNA Sequences in Wheat and Its Relatives

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-yong; LI Da-yong

    2001-01-01

    Repetitive DNA sequences form a large portion of eukaryote genomes. Using wheat ( Triticum )as a model, the classification, features and functions of repetitive DNA sequences in the Tritieeae grass tribe is reviewed as well as the role of these sequences in genome differentiation, control and regulation of homologous chromosome synapsis and pairing. Transposable elements, as an important portion of dispersed repetitives,may play an essential role in gene mutation of the host. Dynamic models for change of copy number and sequences of the repetitive family are also presented after the models of Charlesworth et al. Application of repetitive DNA sequences in the study of evolution, chromosome fingerprinting and marker assisted gene transfer and breeding are described by taking wheat as an example.

  6. Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species

    NARCIS (Netherlands)

    Kuipers, A.G.J.; Kamstra, S.A.; Jeu, de M.J.; Jacobsen, E.

    2002-01-01

    Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragm

  7. Repetitive DNA in three Gramineae species with low DNA content.

    Science.gov (United States)

    Deshpande, V G; Ranjekar, P K

    1980-08-01

    The genomes of three Gramineae species, namely finger millet (Eleusine coracana), pearl millet (Pennisetum americanum) and rice (Oryza sativa) are characterized by studying their DNA denaturation-reassociation properties. The reassociation kinetics measurement of the sonicated DNA (500--700 nucleotide pairs) indicate the presence of a heterogeneous, repetitive DNA fraction accounting for 49--54% of the total DNA in all three species. From the cot 1/2 value of the slow reassociating DNA, the genome size is estimated as 3.0 X 10(8) np in finger millet, 7.8 X 10(8) np in pearl millet and 9.0 X 10(8) np in rice. The melting patterns of the total DNAs reveal Tm value of 88.6 degrees C in the case of pearl millet and 85.0 degrees C in the case of finger millet and rice. Total repetitive and cot 1.0 DNA fractions in all the three species are isolated and their melting properties are compared with those of respective sonicated DNAs. In finger millet, the Tm values of cot 25 and cot 1 fractions are lower by 10.8 degrees C and 12.8 degrees C, respectively, than that of sonicated DNA and thus exhibit the presence of a base pair mismatch in the range of 10.8--12.8%. In rice, the Tm values of the fractions cot 50 and cot 1 are slightly lower than that of sonicated DNA and reveal a nucleotide mismatching of only 1.8--3.8%. In the case of pearl millet cot 10 DNA fraction a high-melting DNA component (Tm = 92 degrees C) representing 12% of the total cot 10 DNA and a low-melting component with a Tm of 78 degrees C are present. In cot 1 DNA fraction of pearl millet the proportion of the high-melting component is 35% and it has a Tm or 94.8 degrees C. Optical reassociation studies of cot 1.0 DNA fractions have revealed the presence of two kinetically distinct components, namely minor fast-reassociating and major slow-reassociating, having complexities in the range of 330--390 np and 1.28 X 10(5)--6.0 X 10(5) np, respectively in pearl millet and rice and only one DNA fraction with an

  8. Analysis of repetitive DNA in chromosomes by flow cytometry.

    Science.gov (United States)

    Brind'Amour, Julie; Lansdorp, Peter M

    2011-06-01

    We developed a flow cytometry method, chromosome flow fluorescence in situ hybridization (FISH), called CFF, to analyze repetitive DNA in chromosomes using FISH with directly labeled peptide nucleic acid (PNA) probes. We used CFF to measure the abundance of interstitial telomeric sequences in Chinese hamster chromosomes and major satellite sequences in mouse chromosomes. Using CFF we also identified parental homologs of human chromosome 18 with different amounts of repetitive DNA.

  9. Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota).

    Science.gov (United States)

    Chaiprasertsri, Nampech; Uno, Yoshinobu; Peyachoknagul, Surin; Prakhongcheep, Ornjira; Baicharoen, Sudarath; Charernsuk, Saranon; Nishida, Chizuko; Matsuda, Yoichi; Koga, Akihiko; Srikulnath, Kornsorn

    2013-01-01

    Two novel repetitive DNA sequences, VSAREP1 and VSAREP2, were isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota) and characterized using molecular cytogenetics. The respective lengths and guanine-cytosine (GC) contents of the sequences were 190 bp and 57.5% for VSAREP1 and 185 bp and 59.7% for VSAREP2, and both elements were tandemly arrayed as satellite DNA in the genome. VSAREP1 and VSAREP2 were each located at the C-positive heterochromatin in the pericentromeric region of chromosome 2q, the centromeric region of chromosome 5, and 3 pairs of microchromosomes. This suggests that genomic compartmentalization between macro- and microchromosomes might not have occurred in the centromeric repetitive sequences of V. salvator macromaculatus. These 2 sequences did only hybridize to genomic DNA of V. salvator macromaculatus, but no signal was observed even for other squamate reptiles, including Varanus exanthematicus, which is a closely related species of V. salvator macromaculatus. These results suggest that these sequences were differentiated rapidly or were specifically amplified in the V. salvator macromaculatus genome.

  10. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  11. Distribution of repetitive DNA sequences in chromosomes of five opisthorchid species (Trematoda, Opisthorchiidae).

    Science.gov (United States)

    Zadesenets, Kira S; Karamysheva, Tatyana V; Katokhin, Alexei V; Mordvinov, Viatcheslav A; Rubtsov, Nikolay B

    2012-03-01

    Genomes of opisthorchid species are characterized by small size, suggesting a reduced amount of repetitive DNA in their genomes. Distribution of repetitive DNA sequences in the chromosomes of five species of the family Opisthorchiidae (Opisthorchis felineus 2n = 14 (Rivolta, 1884), Opisthorchis viverrini 2n = 12 (Poirier, 1886), Metorchis xanthosomus 2n = 14 (Creplin, 1846), Metorchis bilis 2n = 14 (Braun, 1890), Clonorchis sinensis 2n = 14 (Cobbold, 1875)) was studied with C- and AgNOR-banding, generation of microdissected DNA probes from individual chromosomes and fluorescent in situ hybridization on mitotic and meiotic chromosomes. Small-sized C-bands were discovered in pericentric regions of chromosomes. Ag-NOR staining of opisthorchid chromosomes and FISH with ribosomal DNA probe showed that karyotypes of all studied species were characterized by the only nucleolus organizer region in one of small chromosomes. The generation of DNA probes from chromosomes 1 and 2 of O. felineus and M. xanthosomus was performed with chromosome microdissection followed by DOP-PCR. FISH of obtained microdissected DNA probes on chromosomes of these species revealed chromosome specific DNA repeats in pericentric C-bands. It was also shown that microdissected DNA probes generated from chromosomes could be used as the Whole Chromosome Painting Probes without suppression of repetitive DNA hybridization. Chromosome painting using microdissected chromosome specific DNA probes showed the overall repeat distribution in opisthorchid chromosomes.

  12. Identification of two new repetitive elements and chromosomal mapping of repetitive DNA sequences in the fish Gymnothorax unicolor (Anguilliformes: Muraenidae

    Directory of Open Access Journals (Sweden)

    E. Coluccia

    2011-05-01

    Full Text Available Muraenidae is a species-rich family, with relationships among genera and species and taxonomy that have not been completely clarified. Few cytogenetic studies have been conducted on this family, and all of them showed the same diploid chromosome number (2n=42 but with conspicuous karyotypic variation among species. The Mediterranean moray eel Gymnothorax unicolor was previously cytogenetically studied using classical techniques that allowed the characterization of its karyotype structure and the constitutive heterochromatin and argyrophilic nucleolar organizer regions (Ag-NORs distribution pattern. In the present study, we describe two new repetitive elements (called GuMboI and GuDdeI obtained from restricted genomic DNA of G. unicolor that were characterized by Southern blot and physically localized by in situ hybridization on metaphase chromosomes. As they are highly repetitive DNA sequences, they map in heterochromatic regions. However, while GuDdeI was localized in the centromeric regions, the GuMboI fraction was distributed on some centromeres and was co-localized with the nucleolus organizer region (NOR. Comparative analysis with other Mediterranean species such as Muraena helena pointed out that these DNA fractions are species-specific and could potentially be used for species discrimination. As a new contribution to the karyotype of this species, we found that the major ribosomal genes are localized on acrocentric chromosome 9 and that the telomeres of each chromosome are composed of a tandem repeat derived from a poly-TTAGGG DNA sequence, as it occurs in most vertebrate species. The results obtained add new information useful in comparative genomics at the chromosomal level and contribute to the cytogenetic knowledge regarding this fish family, which has not been extensively studied.

  13. A New Revised DNA Cramp Tool Based Approach of Chopping DNA Repetitive and Non-Repetitive Genome Sequences

    Directory of Open Access Journals (Sweden)

    V.Hari Prasad

    2012-11-01

    Full Text Available In vogue tremendous amount of data generated day by day by the living organism of genetic sequences and its accumulation in database, their size is growing in an exponential manner. Due to excessive storage of DNA sequences in public databases like NCBI, EMBL and DDBJ archival maintenance is tedious task. Transmission of information from one place to another place in network management systems is also a critical task. So To improve the efficiency and to reduce the overhead of the database need of compression arises in database optimization. In this connection different techniques were bloomed, but achieved results are not bountiful. Many classical algorithms are fails to compress genetic sequences due to the specificity of text encoded in dna and few of the existing techniques achieved positive results. DNA is repetitive and non repetitive in nature. Our proposed technique DNACRAMP is applicable on repetitive and non repetitive sequences of dna and it yields better compression ratio in terms of bits per bases. This is compared with existing techniques and observed that our one is the optimum technique and compression results are on par with existing techniques.

  14. Code domains in tandem repetitive DNA sequence structures.

    Science.gov (United States)

    Vogt, P

    1992-10-01

    Traditionally, many people doing research in molecular biology attribute coding properties to a given DNA sequence if this sequence contains an open reading frame for translation into a sequence of amino acids. This protein coding capability of DNA was detected about 30 years ago. The underlying genetic code is highly conserved and present in every biological species studied so far. Today, it is obvious that DNA has a much larger coding potential for other important tasks. Apart from coding for specific RNA molecules such as rRNA, snRNA and tRNA molecules, specific structural and sequence patterns of the DNA chain itself express distinct codes for the regulation and expression of its genetic activity. A chromatin code has been defined for phasing of the histone-octamer protein complex in the nucleosome. A translation frame code has been shown to exist that determines correct triplet counting at the ribosome during protein synthesis. A loop code seems to organize the single stranded interaction of the nascent RNA chain with proteins during the splicing process, and a splicing code phases successive 5' and 3' splicing sites. Most of these DNA codes are not exclusively based on the primary DNA sequence itself, but also seem to include specific features of the corresponding higher order structures. Based on the view that these various DNA codes are genetically instructive for specific molecular interactions or processes, important in the nucleus during interphase and during cell division, the coding capability of tandem repetitive DNA sequences has recently been reconsidered.

  15. Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences

    DEFF Research Database (Denmark)

    Svitashev, S.; Bryngelsson, T.; Vershinin, A.

    1994-01-01

    A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. In situ hybridization experiments showed dispersed organization of the sequences...... over all chromosomes of H. vulgare and the wild barley species H. bulbosum, H. marinum and H. murinum. Southern blot hybridization revealed different levels of polymorphism among barley species and the RFLP data were used to generate a phylogenetic tree for the genus Hordeum. Our data are in a good...

  16. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh

    Science.gov (United States)

    Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas

    2009-01-01

    Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal

  17. Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species.

    Science.gov (United States)

    Kuipers, A G J; Kamstra, S A; de Jeu, M J; Visser, R G F

    2002-01-01

    Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragments with sizes varying from 68-127 bp, and constituted a larger HinfI repeat of approximately 400 bp. Southern hybridization showed a similar molecular organization of the tandem repeats in each of the Brazilian Alstroemeria species tested. None of the repeats hybridized with DNA from Chilean Alstroemeria species, which indicates that they are specific for the Brazilian species. In-situ localization studies revealed the tandem repeats to be localized in clusters on the chromosomes of A. inodora and A. psittacina: distal hybridization sites were found on chromosome arms 2PS, 6PL, 7PS, 7PL and 8PL, interstitial sites on chromosome arms 2PL, 3PL, 4PL and 5PL. The applicability of the tandem repeats for cytogenetic analysis of interspecific hybrids and their role in heterochromatin organization are discussed.

  18. Shared Y chromosome repetitive DNA sequences in stallion and donkey as visualized using whole-genomic comparative hybridization

    Directory of Open Access Journals (Sweden)

    R. Mezzanotte

    2010-01-01

    Full Text Available The genome of stallion (Spanish breed and donkey (Spanish endemic Zamorano-Leonés were compared using whole comparative genomic in situ hybridization (W-CGH technique, with special reference to the variability observed in the Y chromosome. Results show that these diverging genomes still share some highly repetitive DNA families localized in pericentromeric regions and, in the particular case of the Y chromosome, a sub-family of highly repeated DNA sequences, greatly expanded in the donkey genome, accounts for a large part of the chromatin in the stallion Y chromosome.

  19. Shared Y chromosome repetitive DNA sequences in stallion and donkey as visualized using whole-genomic comparative hybridization

    Directory of Open Access Journals (Sweden)

    J. Gosalvez

    2010-01-01

    Full Text Available The genome of stallion (Spanish breed and donkey (Spanish endemic Zamorano-Leonés were compared using whole comparative genomic in situ hybridization (W-CGH technique, with special reference to the variability observed in the Y chromosome. Results show that these diverging genomes still share some highly repetitive DNA families localized in pericentromeric regions and, in the particular case of the Y chromosome, a sub-family of highly repeated DNA sequences, greatly expanded in the donkey genome, accounts for a large part of the chromatin in the stallion Y chromosome.

  20. Cloning and characterization of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa.

    Science.gov (United States)

    Mariotti, Beatrice; Navajas-Pérez, Rafael; Lozano, Rafael; Parker, John S; de la Herrán, Roberto; Rejón, Carmelo Ruiz; Rejón, Manuel Ruiz; Garrido-Ramos, Manuel; Jamilena, Manuel

    2006-02-01

    Rumex acetosa is characterized by a multiple chromosome system (2n = 12 + XX for females, and 2n = 12 + XY1Y2 for males), in which sex is determined by the ratio between the number of X chromosomes and autosome sets. For a better understanding of the molecular structure and evolution of plant sex chromosomes, we have generated a sex chromosome specific library of R. acetosa by microdissection. The screening of this library has allowed us to identify 5 repetitive DNA families that have been characterized in detail. One of these families, DOP-20, has shown no homology with other sequences in databases. Nevertheless, the putative proteins encoded by the other 4 families, DOP-8, DOP-47, DOP-60, and DOP-61, show homology with proteins from different plant retroelements, including poly proteins from Ty3-gypsy- and Ty1-copia-like long terminal repeat (LTR) retroelements, and reverse transcriptase from non-LTR retro elements. Results indicate that sequences from these 5 families are dispersed throughout the genome of both males and females, but no appreciable accumulation or differentiation of these types of sequences have been found in the Y chromosomes. These repetitive DNA sequences are more conserved in the genome of other dioecious species such as Rumex papillaris, Rumex intermedius, Rumex thyrsoides, Rumex hastatulus, and Rumex suffruticosus, than in the polygamous, gynodioecious, or hermaphrodite species Rumex induratus, Rumex lunaria, Rumex con glom er atus, Rumex crispus, and Rumex bucephalo phorus, which supports a single origin of dioecious species in this genus. The implication of these transposable elements in the origin and evolution of the heteromorphic sex chromosomes of R. acetosa is discussed.

  1. One-way sequencing of multiple amplicons from tandem repetitive mitochondrial DNA control region.

    Science.gov (United States)

    Xu, Jiawu; Fonseca, Dina M

    2011-10-01

    Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.

  2. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants.

    Science.gov (United States)

    Smulders, M J; Rus-Kortekaas, W; Vosman, B

    1995-12-01

    The propagation of plants through tissue culture can induce a variety of genetic and epigenetic changes. Variation in DNA methylation has been proposed as a mechanism that may explain at least a part of these changes. In the present study, the methylation of tomato callus DNA was compared with that of leaf DNA, from control or regenerated plants, at MspI/HpaII sites around five middle-repetitive sequences. Although the methylation of the internal cytosine in the recognition sequence CCGG varied from zero to nearly full methylation, depending on the probe used, no differences were found between callus and leaf DNA. For the external cytosine, small differences were revealed between leaf and callus DNA with two probes, but no polymorphisms were detected among DNA samples of calli or DNA samples of leaves of regenerated plants. When callus DNA cut with HindIII was studied with one of the probes, H9D9, most of the signal was found in high-molecular-weight DNA, as opposed to control leaf DNA where almost all the signal was in a fragment of 530 bp. Also, an extra fragment of 630 bp was found in the callus DNA that was not present in control leaf DNA. Among leaves of plants regenerated from tissue culture, the 630-bp fragment was found in 10 of 68 regenerated plants. This 630-bp fragment was present among progeny of only 4 of these 10 plants after selfing, i.e. it was partly inherited. In these cases, the fragment was not found in all progeny plants, indicating heterozygosity of the regenerated plants. The data are interpreted as indicating that a HindIII site becomes methylated in callus tissue, and that some of this methylation persists in regenerated plants and is partly transmitted to their progeny.

  3. Repetitive sequences in Eurasian lynx (Lynx lynx L.) mitochondrial DNA control region.

    Science.gov (United States)

    Sindičić, Magda; Gomerčić, Tomislav; Galov, Ana; Polanc, Primož; Huber, Duro; Slavica, Alen

    2012-06-01

    Mitochondrial DNA (mtDNA) control region (CR) of numerous species is known to include up to five different repetitive sequences (RS1-RS5) that are found at various locations, involving motifs of different length and extensive length heteroplasmy. Two repetitive sequences (RS2 and RS3) on opposite sides of mtDNA central conserved region have been described in domestic cat (Felis catus) and some other felid species. However, the presence of repetitive sequence RS3 has not been detected in Eurasian lynx (Lynx lynx) yet. We analyzed mtDNA CR of 35 Eurasian lynx (L. lynx L.) samples to characterize repetitive sequences and to compare them with those found in other felid species. We confirmed the presence of 80 base pairs (bp) repetitive sequence (RS2) at the 5' end of the Eurasian lynx mtDNA CR L strand and for the first time we described RS3 repetitive sequence at its 3' end, consisting of an array of tandem repeats five to ten bp long. We found that felid species share similar RS3 repetitive pattern and fundamental repeat motif TACAC.

  4. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function.

    Science.gov (United States)

    Mehrotra, Shweta; Goyal, Vinod

    2014-08-01

    Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size. They can be divided into minisatellite, microsatellite and satellite sequences. Satellite DNA sequences are considered to be a fast-evolving component of eukaryotic genomes, comprising tandemly-arrayed, highly-repetitive and highly-conserved monomer sequences. The monomer unit of satellite DNA is 150-400 base pairs (bp) in length. Repetitive sequences may be species- or genus-specific, and may be centromeric or subtelomeric in nature. They exhibit cohesive and concerted evolution caused by molecular drive, leading to high sequence homogeneity. Repetitive sequences accumulate variations in sequence and copy number during evolution, hence they are important tools for taxonomic and phylogenetic studies, and are known as "tuning knobs" in the evolution. Therefore, knowledge of repetitive sequences assists our understanding of the organization, evolution and behavior of eukaryotic genomes. Repetitive sequences have cytoplasmic, cellular and developmental effects and play a role in chromosomal recombination. In the post-genomics era, with the introduction of next-generation sequencing technology, it is possible to evaluate complex genomes for analyzing repetitive sequences and deciphering the yet unknown functional potential of repetitive sequences. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  5. Investigating the work-family conflict and health link: Repetitive thought as a mechanism.

    Science.gov (United States)

    Davis, Kelly D; Gere, Judith; Sliwinski, Martin J

    2016-10-06

    Research is needed to investigate mechanisms linking work-family conflict to poor health in working adults. We took a novel approach to build on extant studies by testing a potential mechanism in these associations - repetitive thought. Data came from a sample of 203 partnered working adults. There were significant direct effects of work-family conflict with lower life satisfaction, positive affect, and perceived health as well as greater fatigue. As for total effects, work-family conflict was significantly associated with all health outcomes - life satisfaction, positive affect, negative affect, fatigue, perceived health, and chronic health conditions - in the expected directions through repetitive thought. This study provides support that repetitive thought is one potential mechanism of how work-family conflict can take a toll on psychological and physical health. Findings are discussed in relation to improving workplace policies to improve the health of working adults managing work-family conflict.

  6. Interspecific "common" repetitive DNA sequences in salamanders of the genus Plethodon.

    Science.gov (United States)

    Mizuno, S; Andrews, C; Macgregor, H C

    1976-10-12

    Intermediate repetitive sequences of Plethodon cinereus which comprised about 30% of the genomic DNA were isolated and iodinated with 125I. About 5% of the 125I-repetitive fraction hybridized with a large excess of DNA from P. dunni at Cot 20. About half of the 125I-DNA in the hybrids was resistant to extensive digestion with S-1 nuclease. The average molecular size of the S-1 nuclease-resistant fraction was about 100 nucleotide pairs. The melting temperature of the S-1 nuclease-resistant fraction was about 2 degrees lower than that of the corresponding fraction made with P. cinereus DNA. These results are taken to indicate the presence in the genomes of P. cinereus and P. dunni of evolutionarily stable "common" repetitive sequences. The average frequency of repetition of the common repetitive sequences is about 6,000 X in both species. The common repetitive fraction is also present in the genomes of other species of Plethodon, although the general populations of intermediate repetitive sequences are markedly different from one species to another. The cinereus--dunni common repetitive sequences could not be detected in plethodontids belonging to different tribes, nor in more distantly related amphibians. The profiles of binding of the common repetitive sequences to CsCl or CS2SO4-Ag+ density gradient fractions of P. dunni DNA suggested that these sequences consisted of heterogeneous components with respect to base compositions, and that they did not include large amounts of the genes for ribosomal RNA, 5S RNA, 4S RNA, or histone messenger RNA. In situ hybridization of the 3H-labelled intermediate repetitive sequences of P. cinereus to male meiotic chromosomes of the same species gave autoradiographs after an exposure of seven days showing all 14 chromosomes labelled. The pattern of labelling appeared not to be random, but was impossible to analyse on account of the irregular shapes and different degrees of stretching of diplotene and prometaphase chromosomes. In

  7. A method for generating subtractive cDNA libraries retaining clones containing repetitive elements.

    OpenAIRE

    1997-01-01

    Here we describe a two-stepped photobiotin-based procedure to enrich a target (canine retinal) cDNA library for tissue specific clones without removing those containing repetitive ( SINE ) elements, despite the presence of these elements in the driver population. In a first hybridization excess SINE elements were hybridized to a driver (canine cerebellar) cDNA. In a second hybridization target cDNA was added to this reaction. The resulting cDNA library was enriched for retinal specific clones...

  8. Karyotypic Evolution and Chromosomal Organization of Repetitive DNA Sequences in Species of Panaque, Panaqolus, and Scobinancistrus (Siluriformes and Loricariidae) from the Amazon Basin.

    Science.gov (United States)

    Ayres-Alves, Thayana; Cardoso, Adauto Lima; Nagamachi, Cleusa Yoshiko; Sousa, Leandro Melo de; Pieczarka, Julio Cesar; Noronha, Renata Coelho Rodrigues

    2017-06-01

    Loricariidae family comprises the greatest variability of Neotropical catfish species, with more than 800 valid species. This family shows significant chromosomal diversity. Mapping of repetitive DNA sequences can be very useful in exploring such diversity, especially among groups that appear to share a preserved karyotypic macrostructure. We describe the karyotypes of Panaque armbrusteri and Panaqolus sp., as assessed using classical cytogenetic methods. Moreover, we offer a map of their repetitive sequences, including 18S and 5S ribosomal DNAs, the Rex1 and Rex3 retrotransposons, and the Tc1-mariner transposon in P. armbrusteri, Panaqolus sp., Scobinancistrus aureatus, and Scobinancistrus pariolispos. Those species share chromosome numbers of 2n = 52, but are divergent in their chromosome structures and the distributions of their repetitive DNA sequences. In situ hybridization with 18S and 5S rDNA probes confirms chromosome location in different pairs; in Panaqolus sp. these sites are in synteny. This multigene family organization can be explained by the occurrence of chromosome rearrangements, and possible events, such as transposition and unequal crossing-over. Rex1 and Rex3 retrotransposons and the Tc1-mariner transposon appeared predominantly dispersed and in small clusters in some chromosome regions. These data emphasize the importance of repetitive sequences in promoting the karyotypic evolution of these species.

  9. Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes)

    Science.gov (United States)

    Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Villa, Mateo Andres; de Oliveira, Ezequiel Aguiar; Tanomtong, Alongklod; Yano, Cassia Fernanda; Supiwong, Weerayuth; Chaveerach, Arunrat

    2015-01-01

    Channid fishes, commonly referred to as “snakeheads”, are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes. PMID:26067030

  10. Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes.

    Directory of Open Access Journals (Sweden)

    Marcelo de Bello Cioffi

    Full Text Available Channid fishes, commonly referred to as "snakeheads", are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.

  11. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart.

    Science.gov (United States)

    Koturbash, Igor; Miousse, Isabelle R; Sridharan, Vijayalakshmi; Nzabarushimana, Etienne; Skinner, Charles M; Melnyk, Stepan B; Pavliv, Oleksandra; Hauer-Jensen, Martin; Nelson, Gregory A; Boerma, Marjan

    2016-05-01

    DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation-proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ((56)Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or (56)Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with (56)Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and expression of repetitive elements may serve as early biomarkers of exposure to space radiation.

  12. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Koturbash, Igor, E-mail: ikoturbash@uams.edu [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Miousse, Isabelle R. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Sridharan, Vijayalakshmi [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne; Skinner, Charles M. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melnyk, Stepan B.; Pavliv, Oleksandra [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA 92354 (United States); Boerma, Marjan [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2016-05-15

    Highlights: • Radiation-induced dynamic changes in cardiac DNA methylation were detected. • Early LINE-1 hypomethylation was followed by hypermethylation at a later time-point. • Radiation affected one-carbon metabolism in the heart tissue. • Irradiation resulted in accumulation of satellite DNA mRNA transcripts. - Abstract: DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation—proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ({sup 56}Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or {sup 56}Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with {sup 56}Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and

  13. Genomic Organization of Repetitive DNA in Woodpeckers (Aves, Piciformes): Implications for Karyotype and ZW Sex Chromosome Differentiation.

    Science.gov (United States)

    de Oliveira, Thays Duarte; Kretschmer, Rafael; Bertocchi, Natasha Avila; Degrandi, Tiago Marafiga; de Oliveira, Edivaldo Herculano Corrêa; Cioffi, Marcelo de Bello; Garnero, Analía Del Valle; Gunski, Ricardo José

    2017-01-01

    Birds are characterized by a low proportion of repetitive DNA in their genome when compared to other vertebrates. Among birds, species belonging to Piciformes order, such as woodpeckers, show a relatively higher amount of these sequences. The aim of this study was to analyze the distribution of different classes of repetitive DNA-including microsatellites, telomere sequences and 18S rDNA-in the karyotype of three Picidae species (Aves, Piciformes)-Colaptes melanochloros (2n = 84), Colaptes campestris (2n = 84) and Melanerpes candidus (2n = 64)-by means of fluorescence in situ hybridization. Clusters of 18S rDNA were found in one microchromosome pair in each of the three species, coinciding to a region of (CGG)10 sequence accumulation. Interstitial telomeric sequences were found in some macrochromosomes pairs, indicating possible regions of fusions, which can be related to variation of diploid number in the family. Only one, from the 11 different microsatellite sequences used, did not produce any signals. Both species of genus Colaptes showed a similar distribution of microsatellite sequences, with some difference when compared to M. candidus. Microsatellites were found preferentially in the centromeric and telomeric regions of micro and macrochromosomes. However, some sequences produced patterns of interstitial bands in the Z chromosome, which corresponds to the largest element of the karyotype in all three species. This was not observed in the W chromosome of Colaptes melanochloros, which is heterochromatic in most of its length, but was not hybridized by any of the sequences used. These results highlight the importance of microsatellite sequences in differentiation of sex chromosomes, and the accumulation of these sequences is probably responsible for the enlargement of the Z chromosome.

  14. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.).

    Science.gov (United States)

    He, Qunyan; Cai, Zexi; Hu, Tianhua; Liu, Huijun; Bao, Chonglai; Mao, Weihai; Jin, Weiwei

    2015-04-18

    Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish. We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish. Proportions

  15. LINE-1 repetitive DNA probes for species-specific cloning from Mus spretus and Mus domesticus genomes.

    Science.gov (United States)

    Rikke, B A; Hardies, S C

    1991-12-01

    Mus domesticus and Mus spretus mice are closely related subspecies. For genetic investigations involving hybrid mice, we have developed a set of species-specific oligonucleotide probes based on the detection of LINE-1 sequence differences. LINE-1 is a repetitive DNA family whose many members are interspersed among the genes. In this study, library screening experiments were used to fully characterize the species specificity of four M. domesticus LINE-1 probes and three M. spretus LINE-1 probes. It was found that the nucleotide differences detected by the probes define large, species-specific subfamilies. We show that collaborative use of such probes can be employed to selectively detect thousands of species-specific library clones. Consequently, these probes could be exploited to monitor and access almost any given species-specific region of interest within hybrid genomes.

  16. The genome of the stick insect Medauroidea extradentata is strongly methylated within genes and repetitive DNA.

    Directory of Open Access Journals (Sweden)

    Veiko Krauss

    Full Text Available BACKGROUND: Cytosine DNA methylation has been detected in many eukaryotic organisms and has been shown to play an important role in development and disease of vertebrates including humans. Molecularly, DNA methylation appears to be involved in the suppression of initiation or of elongation of transcription. Resulting organismal functions are suggested to be the regulation of gene silencing, the suppression of transposon activity and the suppression of initiation of transcription within genes. However, some data concerning the distribution of methylcytosine in insect species appear to contradict such roles. PRINCIPAL FINDINGS: By comparison of MspI and HpaII restriction patterns in genomic DNA of several insects we show that stick insects (Phasmatodea have highly methylated genomes. We isolated methylated DNA fragments from the Vietnamese Walking Stick Medauroidea extradentata (formerly known as Baculum extradentatum and demonstrated that most of the corresponding sequences are repetitive. Bisulfite sequencing of one of these fragments and of parts of conserved protein-coding genes revealed a methylcytosine content of 12.6%, mostly found at CpG, but also at CpT and CpA dinucleotides. Corresponding depletions of CpG and enrichments of TpG and CpA dinucleotides in some highly conserved protein-coding genes of Medauroidea reach a similar degree as in vertebrates and show that CpG methylation has occurred in the germline of these insects. CONCLUSIONS: Using four different methods, we demonstrate that the genome of Medauroidea extradentata is strongly methylated. Both repetitive DNA and coding genes appear to contain high levels of methylcytosines. These results argue for similar functions of DNA methylation in stick insects as those already known for vertebrates.

  17. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.

    Science.gov (United States)

    Afek, Ariel; Cohen, Hila; Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B

    2015-08-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  18. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.

    Directory of Open Access Journals (Sweden)

    Ariel Afek

    2015-08-01

    Full Text Available Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large

  19. Random DNA libraries from three species of the stick insect genus Bacillus (Insecta: Phasmida): repetitive DNA characterization and first observation of polyneopteran MITEs.

    Science.gov (United States)

    Ricci, Marco; Luchetti, Andrea; Bonandin, Livia; Mantovani, Barbara

    2013-12-01

    The repetitive DNA content of the stick insect species Bacillus rossius (facultative parthenogenetic), Bacillus grandii (gonochoric), and Bacillus atticus (obligate parthenogenetic) was analyzed through the survey of random genomic libraries roughly corresponding to 0.006% of the genome. By repeat masking, 19 families of transposable elements were identified (two LTR and six non-LTR retrotransposons; 11 DNA transposons). Moreover, a de novo analysis revealed, among the three libraries, the first MITE family observed in polyneopteran genomes. On the whole, transposable element abundance represented 23.3% of the genome in B. rossius, 22.9% in B. atticus, and 18% in B. grandii. Tandem repeat content in the three libraries is much lower: 1.32%, 0.64%, and 1.86% in B. rossius, B. grandii, and B. atticus, respectively. Microsatellites are the most abundant in all species. Minisatellites were only found in B. rossius and B. atticus, and five monomers belonging to the Bag320 satellite family were detected in B. atticus. Assuming the survey provides adequate representation of the relative genome, the obligate parthenogenetic species (B. atticus), compared with the other two species analyzed, does not show a lower transposable element content, as expected from some theoretical and empirical studies.

  20. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Lienert, F; Boehm, CR; Chen, JH; Way, JC; Silver, PA

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.

  1. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae: emphasis in the organization of repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Gomes de Oliveira Sarah

    2012-11-01

    Full Text Available Abstract Background To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ hybridization (FISH mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like non-LTR transposable element (TE. Results The conventional analysis detected 3 individuals (among 50 analyzed carrying one small metacentric and mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was observed for the LOA-like element in the sex chromosomes. Conclusions The results indicate that the origin of the B chromosome is associated with the autosomal elements, as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin and evolution of the B chromosome in C. cyanescens.

  2. Genomic Organization of Repetitive DNA in Woodpeckers (Aves, Piciformes): Implications for Karyotype and ZW Sex Chromosome Differentiation

    Science.gov (United States)

    Kretschmer, Rafael; Bertocchi, Natasha Avila; Degrandi, Tiago Marafiga; de Oliveira, Edivaldo Herculano Corrêa; Cioffi, Marcelo de Bello; Garnero, Analía del Valle; Gunski, Ricardo José

    2017-01-01

    Birds are characterized by a low proportion of repetitive DNA in their genome when compared to other vertebrates. Among birds, species belonging to Piciformes order, such as woodpeckers, show a relatively higher amount of these sequences. The aim of this study was to analyze the distribution of different classes of repetitive DNA—including microsatellites, telomere sequences and 18S rDNA—in the karyotype of three Picidae species (Aves, Piciformes)—Colaptes melanochloros (2n = 84), Colaptes campestris (2n = 84) and Melanerpes candidus (2n = 64)–by means of fluorescence in situ hybridization. Clusters of 18S rDNA were found in one microchromosome pair in each of the three species, coinciding to a region of (CGG)10 sequence accumulation. Interstitial telomeric sequences were found in some macrochromosomes pairs, indicating possible regions of fusions, which can be related to variation of diploid number in the family. Only one, from the 11 different microsatellite sequences used, did not produce any signals. Both species of genus Colaptes showed a similar distribution of microsatellite sequences, with some difference when compared to M. candidus. Microsatellites were found preferentially in the centromeric and telomeric regions of micro and macrochromosomes. However, some sequences produced patterns of interstitial bands in the Z chromosome, which corresponds to the largest element of the karyotype in all three species. This was not observed in the W chromosome of Colaptes melanochloros, which is heterochromatic in most of its length, but was not hybridized by any of the sequences used. These results highlight the importance of microsatellite sequences in differentiation of sex chromosomes, and the accumulation of these sequences is probably responsible for the enlargement of the Z chromosome. PMID:28081238

  3. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants

    NARCIS (Netherlands)

    Smulders, M.J.M.; Rus-Kortekaas, W.; Vosman, B.

    1995-01-01

    The propagation of plants through tissue culture can induce a variety of genetic and epigenetic changes. Variation in DNA methylation has been proposed as a mechanism that may explain at least a part of these changes. In the present study, the methylation of tomato callus DNA was compared with that

  4. Karyotype differentiation of four Cestrum species (Solanaceae based on the physical mapping of repetitive DNA

    Directory of Open Access Journals (Sweden)

    Jéferson Nunes Fregonezi

    2006-01-01

    Full Text Available We studied the karyotypes of four Brazilian Cestrum species (C. amictum, C. intermedium, C. sendtnerianum and C. strigilatum using conventional Feulgen staining, C-Giemsa and C-CMA3/DAPI banding, induction of cold-sensitive regions (CSRs and fluorescent in situ hybridization (FISH with rDNA probes. We found that the karyotypes of all four species was 2n = 2x = 16, with, except for the eighth acrocentric pair, a predominance of meta- and submetacentric chromosomes and various heterochromatin classes. Heterochromatic types previously unreported in Cestrum as neutral C-CMA3(0/DAPI0 bands, CMA3+ bands not associated with NORs, and C-Giemsa/CSR/DAPI- bands were found. The heterochromatic blocks varied in size, number, position and composition. The 45S rDNA probe preferentially located in the terminal and subterminal regions of some chromosomes, while 5S rDNA appeared close to the centromere of the long arm of pair 8. These results suggest that karyotype differentiation can occur mainly due to changes in repetitive DNA, with little modification in the general composition of the conventionally stained karyotype.

  5. Cooperativity between DNA Methyltransferases in the Maintenance Methylation of Repetitive Elements

    Science.gov (United States)

    Liang, Gangning; Chan, Matilda F.; Tomigahara, Yoshitaka; Tsai, Yvonne C.; Gonzales, Felicidad A.; Li, En; Laird, Peter W.; Jones, Peter A.

    2002-01-01

    We used mouse embryonic stem (ES) cells with systematic gene knockouts for DNA methyltransferases to delineate the roles of DNA methyltransferase 1 (Dnmt1) and Dnmt3a and -3b in maintaining methylation patterns in the mouse genome. Dnmt1 alone was able to maintain methylation of most CpG-poor regions analyzed. In contrast, both Dnmt1 and Dnmt3a and/or Dnmt3b were required for methylation of a select class of sequences which included abundant murine LINE-1 promoters. We used a novel hemimethylation assay to show that even in wild-type cells these sequences contain high levels of hemimethylated DNA, suggestive of poor maintenance methylation. We showed that Dnmt3a and/or -3b could restore methylation of these sequences to pretreatment levels following transient exposure of cells to 5-aza-CdR, whereas Dnmt1 by itself could not. We conclude that ongoing de novo methylation by Dnmt3a and/or Dnmt3b compensates for inefficient maintenance methylation by Dnmt1 of these endogenous repetitive sequences. Our results reveal a previously unrecognized degree of cooperativity among mammalian DNA methyltransferases in ES cells. PMID:11756544

  6. Repetitive DNA Sequences and Evolution of ZZ/ZW Sex Chromosomes in Characidium (Teleostei: Characiformes).

    Science.gov (United States)

    Scacchetti, Priscilla Cardim; Utsunomia, Ricardo; Pansonato-Alves, José Carlos; da Costa Silva, Guilherme José; Vicari, Marcelo Ricardo; Artoni, Roberto Ferreira; Oliveira, Claudio; Foresti, Fausto

    2015-01-01

    Characidium constitutes an interesting model for cytogenetic studies, since a large degree of karyotype variation has been detected in this group, like the presence/absence of sex and supernumerary chromosomes and variable distribution of repetitive sequences in different species/populations. In this study, we performed a comparative cytogenetic analysis in 13 Characidium species collected at different South American river basins in order to investigate the karyotype diversification in this group. Chromosome analyses involved the karyotype characterization, cytogenetic mapping of repetitive DNA sequences and cross-species chromosome painting using a W-specific probe obtained in a previous study from Characidium gomesi. Our results evidenced a conserved diploid chromosome number of 2n = 50, and almost all the species exhibited homeologous ZZ/ZW sex chromosomes in different stages of differentiation, except C. cf. zebra, C. tenue, C. xavante and C. stigmosum. Notably, some ZZ/ZW sex chromosomes showed 5S and/or 18S rDNA clusters, while no U2 snDNA sites could be detected in the sex chromosomes, being restricted to a single chromosome pair in almost all the analyzed species. In addition, the species Characidium sp. aff. C. vidali showed B chromosomes with an inter-individual variation of 1 to 4 supernumerary chromosomes per cell. Notably, these B chromosomes share sequences with the W-specific probe, providing insights about their origin. Results presented here further confirm the extensive karyotype diversity within Characidium in contrast with a conserved diploid chromosome number. Such chromosome differences seem to constitute a significant reproductive barrier, since several sympatric Characidium species had been described during the last few years and no interespecific hybrids were found.

  7. Characterization of two unrelated satellite DNA families in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae).

    Science.gov (United States)

    Lorite, Pedro; Torres, M Isabel; Palomeque, Teresa

    2013-10-01

    The Colorado potato beetle (Leptinotarsa decemlineata, family Chrysomelidae),a phytophagous insect, which feeds preferably on potatoes, constitutes a serious pest of this crop and causes extensive damage to tomatoes and egg plants. It has a remarkable ability to develop resistance quickly against insecticides and shows a diversified and flexible life history. Consequently, the control of this pest has become difficult, requiring the development of new alternative biotechnology-based strategies. Such strategies require a thorough knowledge of the beetle’s genome,including the repetitive DNA. Satellite DNA (stDNA), composed of long arrays of tandemly arranged repeat units, constitutes the major component of heterochromatin and is located mainly in centromeric and telomeric chromosomal regions. We have studied two different unrelated satellite-DNA families of which the consensus sequences were 295 and 109bp in length, named LEDE-I and LEDE-II, respectively.Both were AT-rich (70.8% and 71.6%, respectively). Predictive models of sequence-dependent DNA bending and the study of electrophoretic mobility on non-denaturing polyacrylamide gels have shown that the DNA was curved in both satellite-DNA families. Among other features, the chromosome localization of both stDNAs has been studied. In situ hybridization performed on meiotic and mitoticnuclei showed chromosomes, including the X chromosome, with zero, one, or two stDNAs. In recent years, it has been proposed that the repetitive DNA may play a key role in biological diversification processes. This is the first molecular and cytogenetic study conducted on L. decemlineata repetitive DNA and specifically on stDNA, which is one of the important constituents of eukaryotic genomes.

  8. Physical localisation of repetitive DNA sequences in Alstroemeria: karyotyping of two species with species-specific and ribosomal DNA.

    Science.gov (United States)

    Kamstra, S A; Kuipers, A G; De Jeu, M J; Ramanna, M S; Jacobsen, E

    1997-10-01

    Fluorescence in situ hybridization (FISH) was used to localise two species-specific repetitive DNA sequences, A001-I and D32-13, and two highly conserved 25S and 5S rDNA sequences on the metaphase chromosomes of two species of Alstroemeria. The Chilean species, Alstroemeria aurea (2n = 16), has abundant constitutive heterochromatin, whereas the Brazilian species, Alstroemeria inodora, has hardly any heterochromatin. The A. aurea specific A001-I probe hybridized specifically to the C-band regions on all chromosomes. The FISH patterns on A. inodora chromosomes using species-specific probe D32-13 resembled the C-banding pattern and the A001-I pattern on A. aurea chromosomes. There were notable differences in number and distribution of rDNA sites between the two species. The 25S rDNA probe revealed 16 sites in A. aurea that closely colocalised with A001-I sites and 12 in A. inodora that were predominantly detected in the centromeric regions. FISH karyotypes of the two Alstroemeria species were constructed accordingly, enabling full identification of all individual chromosomes. These FISH karyotypes will be useful for monitoring the chromosomes of both Alstroemeria species in hybrids and backcross derivatives.

  9. Double-strand breaks associated with repetitive DNA can reshape the genome

    Science.gov (United States)

    Argueso, Juan Lucas; Westmoreland, James; Mieczkowski, Piotr A.; Gawel, Malgorzata; Petes, Thomas D.; Resnick, Michael A.

    2008-01-01

    Ionizing radiation is an established source of chromosome aberrations (CAs). Although double-strand breaks (DSBs) are implicated in radiation-induced and other CAs, the underlying mechanisms are poorly understood. Here, we show that, although the vast majority of randomly induced DSBs in G2 diploid yeast cells are repaired efficiently through homologous recombination (HR) between sister chromatids or homologous chromosomes, ≈2% of all DSBs give rise to CAs. Complete molecular analysis of the genome revealed that nearly all of the CAs resulted from HR between nonallelic repetitive elements, primarily Ty retrotransposons. Nonhomologous end-joining (NHEJ) accounted for few, if any, of the CAs. We conclude that only those DSBs that fall at the 3–5% of the genome composed of repetitive DNA elements are efficient at generating rearrangements with dispersed small repeats across the genome, whereas DSBs in unique sequences are confined to recombinational repair between the large regions of homology contained in sister chromatids or homologous chromosomes. Because repeat-associated DSBs can efficiently lead to CAs and reshape the genome, they could be a rich source of evolutionary change. PMID:18701715

  10. Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9.

    Science.gov (United States)

    Magnusson, Mattias; Tobes, Raquel; Sancho, Jaime; Pareja, Eduardo

    2007-07-01

    Bacterial DNA exerts immunostimulatory effects on mammalian cells via the intracellular TLR9. Although broad analysis of TLR9-mediated immunostimulatory potential of synthetic oligonucleotides has been developed, which kinds of natural bacterial DNA sequences are responsible for immunostimulation are not known. This work provides evidence that the natural DNA sequences named repetitive extragenic palindromic (REPs) sequences present in Gram-negative bacteria are able to produce innate immune system stimulation via TLR9. A strong induction of IFN-alpha production by REPs from Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, and Neisseria meningitidis was detected in splenocytes from 129 mice. In addition, the involvement of TLR9 in immune stimulation by REPs was confirmed using B6.129P2-Tlr9(tm1Aki) knockout mice. Considering the involvement of TLRs in Gram-negative septic shock, it is conceivable that REPs play a role in its pathogenesis. This study highlights REPs as a potential novel target in septic shock treatment.

  11. Cloning and characterization of a repetitive DNA sequence specific for Trichomonas vaginalis.

    Science.gov (United States)

    Paces, J; Urbánková, V; Urbánek, P

    1992-09-01

    A family of 650-bp-long repeats from the Trichomonas vaginalis genome, designated the Tv-E650 family, was cloned and sequenced. The nucleotide sequence is A+T-rich (73.3% A+T in the consensus sequence) and highly conserved among the 8 molecular clones analyzed. The differences among the clones are single-nucleotide and 2-nucleotide substitutions and insertions or deletions. The sequence uniformity of the clones as well as the presence of identical mutations in different clones suggest that efficient sequence homogenization mechanisms, such as gene conversion or recurring unequal crossing-over, operate in T. vaginalis. The copy number of the Tv-E650 repeats was estimated to be about 10(2)-10(3) per genome. Based on the DNA hybridization results, the Tv-E650 repeat family is conserved in all T. vaginalis strains examined, regardless of their diverse geographical origin. No hybridization of the Tv-E650 probe was found with the DNA from Trichomonas tenax, Trichomonas gallinae and Pentatrichomonas hominis, indicating that the Tv-E650 repeated sequences are species-specific. A dot blot hybridization protocol was developed which does not require isolation of DNA. By using this protocol it was possible to detect the DNA released from approximately 10(3) T. vaginalis cells per dot. These observations suggest that the Tv-E650 probe is potentially applicable to the identification and detection of T. vaginalis.

  12. Familial searching on DNA mixtures with dropout.

    Science.gov (United States)

    Slooten, K

    2016-05-01

    Familial searching, the act of searching a database for a relative of an unknown individual whose DNA profile has been obtained, is usually restricted to cases where the DNA profile of that person has been unambiguously determined. Therefore, it is normally applied only with a good quality single source profile as starting point. In this article we investigate the performance of the method if applied to mixtures with and without allelic dropout, when likelihood ratios are computed with a semi-continuous (binary) model. We show that mixtures with dropout do not necessarily perform worse than mixtures without, especially if some separation between the donors is possible due to their different dropout probabilities. The familial searching true and false positive rates of mixed profiles on 15 loci are in some cases better than those of single source profiles on 10 loci. Thus, the information loss due to the fact that the person of interest's DNA has been mixed with that of other, and is affected by dropout, can be less than the loss of information corresponding to having 5 fewer loci available for a single source trace. Profiles typed on 10 autosomal loci are often involved in familial searching casework since many databases, including the Dutch one, in part consist of such profiles. Therefore, from this point of view, there seems to be no objection to extend familial searching to mixed or degraded profiles.

  13. Restriction enzyme-mediated DNA family shuffling.

    Science.gov (United States)

    Behrendorff, James B Y H; Johnston, Wayne A; Gillam, Elizabeth M J

    2014-01-01

    DNA shuffling is an established recombinatorial method that was originally developed to increase the speed of directed evolution experiments beyond what could be accomplished using error-prone PCR alone. To achieve this, mutated copies of a protein-coding sequence are fragmented with DNase I and the fragments are then reassembled in a PCR without primers. The fragments anneal where there is sufficient sequence identity, resulting in full-length variants of the original gene that have inherited mutations from multiple templates. Subsequent studies demonstrated that directed evolution could be further accelerated by shuffling similar native protein-coding sequences from the same gene family, rather than mutated variants of a single gene. Generally at least 65-75 % global identity between parental sequences is required in DNA family shuffling, with recombination mostly occurring at sites with at least five consecutive nucleotides of local identity. Since DNA shuffling was originally developed, many variations on the method have been published. In particular, the use of restriction enzymes in the fragmentation step allows for greater customization of fragment lengths than DNase I digestion and avoids the risk that parental sequences may be over-digested into unusable very small fragments. Restriction enzyme-mediated fragmentation also reduces the occurrence of undigested parental sequences that would otherwise reduce the number of unique variants in the resulting library. In the current chapter, we provide a brief overview of the alternative methods currently available for DNA shuffling as well as a protocol presented here that improves on several previous implementations of restriction enzyme-mediated DNA family shuffling, in particular with regard to purification of DNA fragments for reassembly.

  14. Pattern self-repetition of fingerprints, lip prints, and palatal rugae among three generations of family: A forensic approach to identify family hierarchy.

    Science.gov (United States)

    Mala, Sankeerti; Rathod, Vanita; Pundir, Siddharth; Dixit, Sudhanshu

    2017-01-01

    The unique pattern and structural diversity of fingerprints, lip prints, palatal rugae, and their occurrence in different patterns among individuals make it questionable whether they are completely unique even in a family hierarchy? Do they have any repetition of the patterns among the generations? Or is this a mere chaos theory? The present study aims to assess the pattern self-repetition of fingerprints, lip prints, and palatal rugae among three generations of ten different families. The present study was conducted at Rungta College of Dental Science and Research, Bhilai, India. Participants birth by origin of Chhattisgarh were only included in the study. Thirty participants from three consecutive generations of ten different families were briefed about the purpose of the study, and their fingerprints, lip prints, and palatal rugae impression were recorded and analyzed for the pattern of self-repetition. Multiple comparisons among the generations and one-way analysis of variance test were performed using SPSS 20 trial version. Among the pattern of primary palatal rugae, 10% showed repetition in all the three generations. Thirty percent showed repetition of the pattern of thumb fingerprints in all the three generation. The pattern of lip prints in the middle 1/3(rd) of lower lip, 20% showed repetition in alternative generations. The evaluations of fingerprints, lip prints, and palatal rugae showed fractal dimensions, occurring variations in dimensions according to the complexity of each structure. Even though a minute self-repetition in the patterns of lip, thumb, and palate among the three consequent generations in a family was observed considering the sample size, these results need to be confirmed in a larger sample, either to establish the role of chaos theory in forensic science or identifying a particular pattern of the individual in his family hierarchy.

  15. The Daxx/Atrx Complex Protects Tandem Repetitive Elements during DNA Hypomethylation by Promoting H3K9 Trimethylation.

    Science.gov (United States)

    He, Quanyuan; Kim, Hyeung; Huang, Rui; Lu, Weisi; Tang, Mengfan; Shi, Fengtao; Yang, Dong; Zhang, Xiya; Huang, Junjiu; Liu, Dan; Songyang, Zhou

    2015-09-03

    In mammals, DNA methylation is essential for protecting repetitive sequences from aberrant transcription and recombination. In some developmental contexts (e.g., preimplantation embryos) DNA is hypomethylated but repetitive elements are not dysregulated, suggesting that alternative protection mechanisms exist. Here we explore the processes involved by investigating the role of the chromatin factors Daxx and Atrx. Using genome-wide binding and transcriptome analysis, we found that Daxx and Atrx have distinct chromatin-binding profiles and are co-enriched at tandem repetitive elements in wild-type mouse ESCs. Global DNA hypomethylation further promoted recruitment of the Daxx/Atrx complex to tandem repeat sequences, including retrotransposons and telomeres. Knockdown of Daxx/Atrx in cells with hypomethylated genomes exacerbated aberrant transcriptional de-repression of repeat elements and telomere dysfunction. Mechanistically, Daxx/Atrx-mediated repression seems to involve Suv39h recruitment and H3K9 trimethylation. Our data therefore suggest that Daxx and Atrx safeguard the genome by silencing repetitive elements when DNA methylation levels are low.

  16. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Margaret L.; Tan, Frederick J.; Lai, David C.; Celniker, Sue E.; Hoskins, Roger A.; Dunham, Maitreya J.; Zheng, Yixian; Koshland, Douglas

    2010-08-27

    Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.

  17. Variability and evolutionary implications of repetitive DNA dynamics in genome of Astyanax scabripinnis (Teleostei, Characidae)

    Science.gov (United States)

    Barbosa, Patrícia; Leal, Eliza Viola; da Silva, Maelin; de Almeida, Mara Cristina; Moreira-Filho, Orlando; Artoni, Roberto Ferreira

    2017-01-01

    Abstract DNA sequences of multiple copies help in understanding evolutionary mechanisms, genomic structures and karyotype differentiation. The current study investigates the organization and distribution of different repetitive DNA in the standard complement and B chromosomes in Astyanax scabripinnis (Jenyns, 1842) chromosomes from three allopatric populations in Campos do Jordão region, São Paulo State, Brazil. The location of microsatellite sequences showed different chromosome distribution between Lavrinha Farm Stream (LFS) and Lake of Pedalinho (LP) populations. However, the karyotype of these populations basically followed the pattern of dispersed distribution in the A complement, conspicuous in telomeric/interstitial regions and preferential accumulation in the B chromosome. The B chromosome showed heterogeneous location of microsatellite probes CA, CAC and GA. The H3 and H4 histone genes were isolated from the total genome of the species and then the chromosomal mapping was performed by fluorescence in situ hybridization (FISH). The FISH signals showed high similarity for the probes H3 and H4 mapping in genomes of the populations analyzed. The sequences (GATA)n revealed a sex-specific trend between the chromosomal location in males and females at (LFS) and (LP) populations. Although species that comprise the Astyanax scabripinnis complex do not have morphologically differentiated sex chromosomes, the preferential GATA location – sex-associated – may represent a sex chromosome in differentiation. PMID:28919955

  18. Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements

    Directory of Open Access Journals (Sweden)

    Pareja Eduardo

    2006-03-01

    Full Text Available Abstract Background Mobile elements are involved in genomic rearrangements and virulence acquisition, and hence, are important elements in bacterial genome evolution. The insertion of some specific Insertion Sequences had been associated with repetitive extragenic palindromic (REP elements. Considering that there are a sufficient number of available genomes with described REPs, and exploiting the advantage of the traceability of transposition events in genomes, we decided to exhaustively analyze the relationship between REP sequences and mobile elements. Results This global multigenome study highlights the importance of repetitive extragenic palindromic elements as target sequences for transposases. The study is based on the analysis of the DNA regions surrounding the 981 instances of Insertion Sequence elements with respect to the positioning of REP sequences in the 19 available annotated microbial genomes corresponding to species of bacteria with reported REP sequences. This analysis has allowed the detection of the specific insertion into REP sequences for ISPsy8 in Pseudomonas syringae DC3000, ISPa11 in P. aeruginosa PA01, ISPpu9 and ISPpu10 in P. putida KT2440, and ISRm22 and ISRm19 in Sinorhizobium meliloti 1021 genome. Preference for insertion in extragenic spaces with REP sequences has also been detected for ISPsy7 in P. syringae DC3000, ISRm5 in S. meliloti and ISNm1106 in Neisseria meningitidis MC58 and Z2491 genomes. Probably, the association with REP elements that we have detected analyzing genomes is only the tip of the iceberg, and this association could be even more frequent in natural isolates. Conclusion Our findings characterize REP elements as hot spots for transposition and reinforce the relationship between REP sequences and genomic plasticity mediated by mobile elements. In addition, this study defines a subset of REP-recognizer transposases with high target selectivity that can be useful in the development of new tools for

  19. Stem-loop structures of the repetitive DNA sequences located at human centromeres

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.; Garcia, A.E.; Ratliff, R.; Moyzis, R.K. [Los Alamos National Lab., NM (United States); Catasti, P.; Hong, Lin; Yau, P. [California Univ., Davis, CA (United States). Dept. of Biological Chemistry; Bradbury, E.M. [Los Alamos National Lab., NM (United States)]|[California Univ., Davis, CA (United States). Dept. of Biological Chemistry

    1993-09-01

    The presence of the highly conserved repetitive DNA sequences in the human centromeres argues for a special role of these sequences in their biological functions - most likely achieved by the formation of unusual structures. This prompted us to carry out quantitative one- and two-dimensional nuclear magnetic resonance (lD/2D NMR) spectroscopy to determine the structural properties of the human centromeric repeats, d(AATGG){sub n.d}(CCATT){sub n}. The studies on centromeric DNAs reveal that the complementary sequence, d(AATGG){sub n.d}(CCATT){sub n}, adopts the usual Watson-Crick B-DNA duplex and the pyrimidine-rich d(CCATT){sub n} strand is essentially a random coil. However, the purine-rich d(AATGG){sub n} strand is shown to adopt unusual stem-loop structures for repeat lengths, n=2,3,4, and 6. In addition to normal Watson-Crick A{center_dot}T pairs, the stem-loop structures are stabilized by mismatch A{center_dot}G and G{center_dot}G pairs in the stem and G-G-A stacking in the loop. Stem-loop structures of d(AATGG)n are independently verified by gel electrophoresis and nuclease digestion studies. Thermal melting studies show that the DNA repeats, d(AATGG){sub n}, are as stable as the corresponding Watson-Crick duplex d(AATGG){sub n.d}(CCATT){sub n}. Therefore, the sequence d(AATGG){sub n} can, indeed, nucleate a stem-loop structure at little free-energy cost and if, during mitosis, they are located on the chromosome surface they can provide specific recognition sites for kinetochore function.

  20. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences.

    Science.gov (United States)

    Koo, Dal-Hoe; Nam, Young-Woo; Choi, Doil; Bang, Jae-Wook; de Jong, Hans; Hur, Yoonkang

    2010-04-01

    Chromosomes often serve as one of the most important molecular aspects of studying the evolution of species. Indeed, most of the crucial mutations that led to differentiation of species during the evolution have occurred at the chromosomal level. Furthermore, the analysis of pachytene chromosomes appears to be an invaluable tool for the study of evolution due to its effectiveness in chromosome identification and precise physical gene mapping. By applying fluorescence in situ hybridization of 45S rDNA and CsCent1 probes to cucumber pachytene chromosomes, here, we demonstrate that cucumber chromosomes 1 and 2 may have evolved from fusions of ancestral karyotype with chromosome number n = 12. This conclusion is further supported by the centromeric sequence similarity between cucumber and melon, which suggests that these sequences evolved from a common ancestor. It may be after or during speciation that these sequences were specifically amplified, after which they diverged and specific sequence variants were homogenized. Additionally, a structural change on the centromeric region of cucumber chromosome 4 was revealed by fiber-FISH using the mitochondrial-related repetitive sequences, BAC-E38 and CsCent1. These showed the former sequences being integrated into the latter in multiple regions. The data presented here are useful resources for comparative genomics and cytogenetics of Cucumis and, in particular, the ongoing genome sequencing project of cucumber.

  1. Evaluation of the Relationship Between Family History of Breast Cancer and Risk Perception and Impacts on Repetition of Mammography.

    Science.gov (United States)

    Khoshravesh, Sahar; Taymoori, Parvaneh; Roshani, Daem

    2016-01-01

    Since the mean age of breast cancer in women living in developing countries, compared with those in developed countries, is lower by about 10 years, repetition of mammography can play an important role in reducing morbidity and mortality. Hence, this study aimed to investigate the relationship between family history of breast cancer and risk perception and its impact on repetition of mammography. In this cross-sectional study, 1,507 women aged 50 years and older, referred to the mammography center of Regions 1 and 6 in Tehran, Iran, were enrolled. Data were collected using a self-report questionnaire and analyzed using SPSS and LISREL. According to our findings, knowledge about the time interval of mammography was found to have the highest correlation with repetition of mammography (r =0.4). Among the demographic variables, marital status (β= -0.1) and family history of breast cancer (β=0.1) had the most direct and significant impact on repetition of mammography (P mammography (P mammography, but the results did not prove any relationship with risk perception. Further studies are needed to assess the effect of risk perception and knowledge about time interval on the initiation and continuation of mammography.

  2. Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA.

    Science.gov (United States)

    Silva, Duilio M Z A; Utsunomia, Ricardo; Pansonato-Alves, José C; Oliveira, Cláudio; Foresti, Fausto

    2015-01-01

    Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group. © 2015 S. Karger AG, Basel.

  3. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships.

    Science.gov (United States)

    Zhao, Xin; Lu, Jingyuan; Zhang, Zhonghua; Hu, Jiajin; Huang, Sanwen; Jin, Weiwei

    2011-01-01

    Repetitive DNA sequences with variability in copy number or/and sequence polymorphism can be employed as useful molecular markers to study phylogenetics and identify species/chromosomes when combined with fluorescence in situ hybridization (FISH). Cucumis sativus has three variants, Cucumis sativus L. var. sativus, Cucumis sativus L. var. hardwickii and Cucumis sativus L. var. xishuangbannesis. The phylogenetics among these three variants has not been well explored using cytological landmarks. Here, we concentrate on the organization and distribution of highly repetitive DNA sequences in cucumbers, with emphasis on the differences between cultivar and wild cucumber. The diversity of chromosomal karyotypes in cucumber and its relatives was detected in our study. Thereby, sequential FISH with three sets of multi-probe cocktails (combined repetitive DNA with chromosome-specific fosmid clones as probes) were conducted on the same metaphase cell, which helped us to simultaneously identify each of the 7 metaphase chromosomes of wild cucumber C. sativus var. hardwickii. A standardized karyotype of somatic metaphase chromosomes was constructed. Our data also indicated that the relationship between cultivar cucumber and C. s. var. xishuangbannesis was closer than that of C. s. var. xishuangbannesis and C. s. var. hardwickii.

  4. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships

    Institute of Scientific and Technical Information of China (English)

    Xin Zhao; Jingyuan Lu; Zhonghua Zhang; Jiajin Hu; Sanwen Huang; Weiwei Jin

    2011-01-01

    Repetitive DNA sequences with variability in copy number or/and sequence polymorphism can be employed as useful molecular markers to study phylogenetics and identify species/chromosomes when combined with fluorescence in situ hybridization (FISH). Cucumis sativus has three variants, Cucumis sativus L. var. sativus, Cucumis sativus L. var. hardwickii and Cucumis sativus L. var. xishuangbannesis. The phylogenetics among these three variants has not been well explored using cytological landmarks. Here, we concentrate on the organization and distribution of highly repetitive DNA sequences in cucumbers, with emphasis on the differences between cultivar and wild cucumber. The diversity of chromosomal karyotypes in cucumber and its relatives was detected in our study. Thereby, sequential FISH with three sets of multi-probe cocktails (combined repetitive DNA with chromosome-specific fosmid clones as probes) were conducted on the same metaphase cell, which helped us to simultaneously identify each of the 7 metaphase chromosomes of wild cucumber C. sativus var. hardwickii. A standardized karyotype of somatic metaphase chromosomes was constructed. Our data also indicated that the relationship between cultivar cucumber and C. s.var. xishuangbannesis was closer than that of C. s. var. xishuangbannesis and C. s. var. hardwickii.

  5. S1 satellite DNA repetitive units display identical structure and overall variability in all Anatolian brown frog taxa.

    Science.gov (United States)

    Picariello, Orfeo; Feliciello, Isidoro; Chinali, Gianni

    2016-02-01

    S1 satellite DNA from Palearctic brown frogs has a species-specific structure in all European species. We characterized S1 satellite DNA from the Anatolian brown frogs Rana macrocnemis, R. camerani, and R. holtzi in order to define their taxonomic rank and the structure of this satellite in this frog lineage. Southern blots of genomic DNA digested with KpnI, EcoRV, NdeI, NheI, or StuI produced the same pattern of satellite DNA bands. Moreover, quantitative dot blots showed that this satellite DNA accounts for 0.1 % of the genome in all taxa. Analysis of the overall genomic variability of the S1a repeat sequence in specimens from various populations demonstrated that this repetitive unit also has the same size (476 bp), the same most common sequence (MCS) and the same overall variability in all three taxa, and also in R. macrocnemis tavasensis. The S1a repetitive unit presents three deletions of 9, 8 and 1 bp compared to the 494-bp S1a repeat from European frogs. The S1a MCS has three variable positions (sequence WWTK in positions 183-186), due to the presence of two repeat subpopulations with motifs AATG and WWTT in all taxa. Unlike previously analyzed mitochondrial and nuclear sequences that show considerable variations among these taxa, no difference could be detected in the structure and variability of the S1 satellite repetitive units. This suggests that these taxa should belong to a single species. Our results indicate that this satellite DNA variety probably formed when the Anatolian lineage radiated from common ancestor about 4 mya, and since then has maintained its structure in all four taxa examined.

  6. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements.

    Directory of Open Access Journals (Sweden)

    Karin B Michels

    Full Text Available Low birthweight, premature birth, intrauterine growth retardation, and maternal malnutrition have been related to an increased risk of cardiovascular disease, type 2 diabetes mellitus, obesity, and neuropsychiatric disorders later in life. Conversely, high birthweight has been linked to future risk of cancer. Global DNA methylation estimated by the methylation of repetitive sequences in the genome is an indicator of susceptibility to chronic diseases. We used data and biospecimens from an epigenetic birth cohort to explore the association between trajectories of fetal and maternal weight and LINE-1 methylation in 319 mother-child dyads. Newborns with low or high birthweight had significantly lower LINE-1 methylation levels in their cord blood compared to normal weight infants after adjusting for gestational age, sex of the child, maternal age at delivery, and maternal smoking during pregnancy (p = 0.007 and p = 0.036, respectively, but the magnitude of the difference was small. Infants born prematurely also had lower LINE-1 methylation levels in cord blood compared to term infants, and this difference, though small, was statistically significant (p = 0.004. We did not find important associations between maternal prepregnancy BMI or gestational weight gain and global methylation of the cord blood or fetal placental tissue. In conclusion, we found significant differences in cord blood LINE-1 methylation among newborns with low and high birthweight as well as among prematurely born infants. Future studies may elucidate whether chromosomal instabilities or other functional consequences of these changes contribute to the increased risk of chronic diseases among individuals with these characteristics.

  7. Patterns of rDNA and telomeric sequences diversification: contribution to repetitive DNA organization in Phyllostomidae bats.

    Science.gov (United States)

    Calixto, Merilane da Silva; de Andrade, Izaquiel Santos; Cabral-de-Mello, Diogo Cavalcanti; Santos, Neide; Martins, Cesar; Loreto, Vilma; de Souza, Maria José

    2014-02-01

    Chromosomal organization and the evolution of genome architecture can be investigated by physical mapping of the genes for 45S and 5S ribosomal DNAs (rDNAs) and by the analysis of telomeric sequences. We studied 12 species of bats belonging to four subfamilies of the family Phyllostomidae in order to correlate patterns of distribution of heterochromatin and the multigene families for rDNA. The number of clusters for 45S gene ranged from one to three pairs, with exclusively location in autosomes, except for Carollia perspicillata that had in X chromosome. The 5S gene all the species studied had only one site located on an autosomal pair. In no species the 45S and 5S genes collocated. The fluorescence in situ hybridization (FISH) probe for telomeric sequences revealed fluorescence on all telomeres in all species, except in Carollia perspicillata. Non-telomeric sites in the pericentromeric region of the chromosomes were observed in most species, ranged from one to 12 pairs. Most interstitial telomeric sequences were coincident with heterochromatic regions. The results obtained in the present work indicate that different evolutionary mechanisms are acting in Phyllostomidae genome architecture, as well as the occurrence of Robertsonian fusion during the chromosomal evolution of bats without a loss of telomeric sequences. These data contribute to understanding the organization of multigene families and telomeric sequences on bat genome as well as the chromosomal evolutionary history of Phyllostomidae bats.

  8. Structural biology of disease-associated repetitive DNA sequences and protein-DNA complexes involved in DNA damage and repair

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.; Santhana Mariappan, S.V.; Chen, X.; Catasti, P.; Silks, L.A. III; Moyzis, R.K.; Bradbury, E.M.; Garcia, A.E.

    1997-07-01

    This project is aimed at formulating the sequence-structure-function correlations of various microsatellites in the human (and other eukaryotic) genomes. Here the authors have been able to develop and apply structure biology tools to understand the following: the molecular mechanism of length polymorphism microsatellites; the molecular mechanism by which the microsatellites in the noncoding regions alter the regulation of the associated gene; and finally, the molecular mechanism by which the expansion of these microsatellites impairs gene expression and causes the disease. Their multidisciplinary structural biology approach is quantitative and can be applied to all coding and noncoding DNA sequences associated with any gene. Both NIH and DOE are interested in developing quantitative tools for understanding the function of various human genes for prevention against diseases caused by genetic and environmental effects.

  9. Rapid proliferation of repetitive palindromic elements in mtDNA of the endemic Baikalian sponge Lubomirskia baicalensis.

    Science.gov (United States)

    Lavrov, Dennis V

    2010-04-01

    Animal mitochondrial DNA (mtDNA) is a remarkably compact molecule largely because of the scarcity of noncoding "selfish" DNA. Recently, however, we found that mitochondrial genomes of several phylogenetically diverse species of demosponges contain small repetitive palindromic sequences, interspersed within intergenic regions and fused in protein and ribosomal RNA genes. Here, I report and analyze the proliferation of such elements in the mitochondrial genome of the endemic sponge of Lake Baikal Lubomirskia baicalensis. Because Baikal sponges are closely related to the circumglobally distributed freshwater sponge Ephydatia muelleri with which they shared a common ancestor approximately 3-10 Ma, both the rate of single nucleotide substitutions and the rate of palindromic repeat insertions can be calculated in this system. I found the rate of nucleotide substitutions in mtDNA of freshwater sponges to be extremely low (0.5-1.6 x 10(-9) per site per year), more similar to that in plants than bilaterian animals. By contrast, the per/nucleotide rate of insertions of repetitive elements is at least four times higher. This rapid rate of proliferation combined with the broad phylogenetic distribution of hairpin elements can make them a defining force in the evolution of mitochondrial genomes of demosponges.

  10. Development of two highly sensitive forensic sex determination assays based on human DYZ1 and Alu repetitive DNA elements.

    Science.gov (United States)

    Fazi, Amanda; Gobeski, Brianne; Foran, David

    2014-11-01

    Sex determination is a critical component of forensic identification, the standard genetic method for which is detection of the single copy amelogenin gene that has differing homologues on the X and Y chromosomes. However, this assay may not be sensitive enough when DNA samples are minute or highly compromised, thus other strategies for sex determination are needed. In the current research, two ultrasensitive sexing assays, based on real-time PCR and pyrosequencing, were developed targeting the highly repetitive elements DYZ1 on the Y chromosome and Alu on the autosomes. The DYZ1/Alu strategy was compared to amelogenin for overall sensitivity based on high molecular weight and degraded DNA, followed by assaying the sex of 34 touch DNA samples and DNA from 30 hair shafts. The real-time DYZ1/Alu assay proved to be approximately 1500 times more sensitive than its amelogenin counterpart based on high molecular weight DNA, and even more sensitive when sexing degraded DNA. The pyrosequencing DYZ1/Alu assay correctly sexed 26 of the touch DNAs, compared to six using amelogenin. Hair shaft DNAs showed equally improved sexing results using the DYZ1/Alu assays. Overall, both DYZ1/Alu assays were far more sensitive and accurate than was the amelogenin assay, and thus show great utility for sexing poor quality and low quantity DNA evidence.

  11. Interactions within the mammalian DNA methyltransferase family

    Directory of Open Access Journals (Sweden)

    Ehrenhofer-Murray Ann E

    2003-05-01

    Full Text Available Abstract Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.

  12. Genomic organization and dynamics of repetitive DNA sequences in representatives of three Fagaceae genera.

    Science.gov (United States)

    Alves, Sofia; Ribeiro, Teresa; Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2012-05-01

    Oaks, chestnuts, and beeches are economically important species of the Fagaceae. To understand the relationship between these members of this family, a deep knowledge of their genome composition and organization is needed. In this work, we have isolated and characterized several AFLP fragments obtained from Quercus rotundifolia Lam. through homology searches in available databases. Genomic polymorphisms involving some of these sequences were evaluated in two species of Quercus, one of Castanea, and one of Fagus with specific primers. Comparative FISH analysis with generated sequences was performed in interphase nuclei of the four species, and the co-immunolocalization of 5-methylcytosine was also studied. Some of the sequences isolated proved to be genus-specific, while others were present in all the genera. Retroelements, either gypsy-like of the Tat/Athila clade or copia-like, are well represented, and most are dispersed in euchromatic regions of these species with no DNA methylation associated, pointing to an interspersed arrangement of these retroelements with potential gene-rich regions. A particular gypsy-sequence is dispersed in oaks and chestnut nuclei, but its confinement to chromocenters in beech evidences genome restructuring events during evolution of Fagaceae. Several sequences generated in this study proved to be good tools to comparatively study Fagaceae genome organization.

  13. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA

    Directory of Open Access Journals (Sweden)

    Lee Robert W

    2009-03-01

    Full Text Available Abstract Background The magnitude of noncoding DNA in organelle genomes can vary significantly; it is argued that much of this variation is attributable to the dissemination of selfish DNA. The results of a previous study indicate that the mitochondrial DNA (mtDNA of the green alga Volvox carteri abounds with palindromic repeats, which appear to be selfish elements. We became interested in the evolution and distribution of these repeats when, during a cursory exploration of the V. carteri nuclear DNA (nucDNA and plastid DNA (ptDNA sequences, we found palindromic repeats with similar structural features to those of the mtDNA. Upon this discovery, we decided to investigate the diversity and evolutionary implications of these palindromic elements by sequencing and characterizing large portions of mtDNA and ptDNA and then comparing these data to the V. carteri draft nuclear genome sequence. Results We sequenced 30 and 420 kilobases (kb of the mitochondrial and plastid genomes of V. carteri, respectively – resulting in partial assemblies of these genomes. The mitochondrial genome is the most bloated green-algal mtDNA observed to date: ~61% of the sequence is noncoding, most of which is comprised of short palindromic repeats spread throughout the intergenic and intronic regions. The plastid genome is the largest (>420 kb and most expanded (>80% noncoding ptDNA sequence yet discovered, with a myriad of palindromic repeats in the noncoding regions, which have a similar size and secondary structure to those of the mtDNA. We found that 15 kb (~0.01% of the nuclear genome are homologous to the palindromic elements of the mtDNA, and 50 kb (~0.05% are homologous to those of the ptDNA. Conclusion Selfish elements in the form of short palindromic repeats have propagated in the V. carteri mtDNA and ptDNA, resulting in the distension of these genomes. Copies of these same repeats are also found in a small fraction of the nucDNA, but appear to be inert in this

  14. Database likelihood ratios and familial DNA searching

    CERN Document Server

    Slooten, Klaas

    2012-01-01

    Familial Searching is the process of searching in a DNA database for relatives of a given individual. It is well known that in order to evaluate the genetic evidence in favour of a certain given form of relatedness between two individuals, one needs to calculate the appropriate likelihood ratio, which is in this context called a Kinship Index. Suppose that the database contains, for a given type of relative, at most one related individual. Given prior probabilities of being the relative for all persons in the database, we derive the likelihood ratio for each database member in favour of being that relative. This likelihood ratio takes all the Kinship Indices between target and members of the database into account. We also compute the corresponding posterior probabilities. We then discuss two ways of selecting a subset from the database that contains the relative with a known probability, or at least a useful lower bound thereof. We discuss the relation between these approaches and illustrate them with Familia...

  15. Repetitive DNA in the pea (Pisum sativum L. genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Navrátilová Alice

    2007-11-01

    Full Text Available Abstract Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum. Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data

  16. A Twenty-First Century View of Evolution: Genome System Architecture, Repetitive DNA, and Natural Genetic Engineering

    Science.gov (United States)

    Shapiro, James A.

    It is essential for nonbiologists to understand that evolutionary theory based on random mutation of autonomous genes is far from the last word on how genomes have changed in the course of biological evolution. The last 50 years of molecular genetics have produced an abundance of new discoveries and data that make it useful to revisit some basic concepts and assumptions in our thinking about genomes and evolution. Chief among these observations are the complex modularity of genome organization, the biological ubiquity of mobile and repetitive DNA sequences, and the fundamental importance of DNA rearrangements in the evolution of sequenced genomes. This review will take a broad overview of these developments and suggest some new ways of thinking about genomes as sophisticated informatic storage systems and about evolution as a systems engineering process.

  17. Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae).

    Science.gov (United States)

    Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas

    2013-07-01

    The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100-500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S-5·8S-25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.

  18. Phylogeny of Trypanosoma brucei and Trypanosoma evansi in naturally infected cattle in Nigeria by analysis of repetitive and ribosomal DNA sequences.

    Science.gov (United States)

    Takeet, Michael I; Peters, Sunday O; Fagbemi, Benjamin O; De Donato, Marcos; Takeet, Vivian O; Wheto, Mathew; Imumorin, Ikhide G

    2016-08-01

    In continuing efforts to better understand the genetics of bovine trypanosomosis, we assessed genetic diversity of Trypanosoma brucei and Trypanosoma evansi in naturally infected Nigerian cattle using repetitive DNA and internal transcribed spacer 1 of rDNA sequences and compared these sequences to species from other countries. The length of repetitive DNA sequences in both species ranged from 161 to 244 bp and 239 to 240 bp for T. brucei and T. evansi, respectively, while the ITS1 rDNA sequences length range from 299 to 364 bp. The mean GC content of ITS1 rDNA sequences was 33.57 %, and that of repetitive sequences were 39.9 and 31.1 % for T. brucei and T. evansi, respectively. Result from sequence alignment revealed both T. brucei and T. evansi repetitive DNA sequences to be more polymorphic than ITS1 rDNA sequences, with moderate points of deletion and insertions. T. brucei separated into two clades when subjected to phylogenetic analysis. T. evansi repetitive DNA sequences clustered tightly within the T. brucei clade while the ITS1 rDNA sequences of T. brucei were clearly separated from T. theileri and T. vivax individually used as outgroups. This study suggest that ITS1 rDNA sequences may not be suitable for phylogenetic differentiation of the Trypanozoon group and also suggest that T. evansi may be a phenotypic variant of T. brucei which may have potential implications in designing prevention and therapeutic strategies.

  19. By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX

    DEFF Research Database (Denmark)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recogniz......The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target......-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments...

  20. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter.

    Science.gov (United States)

    Maumus, Florian; Quesneville, Hadi

    2014-01-01

    Eukaryotic genomes contain highly variable amounts of DNA with no apparent function. This so-called junk DNA is composed of two components: repeated and repeat-derived sequences (together referred to as the repeatome), and non-annotated sequences also known as genomic dark matter. Because of their high duplication rates as compared to other genomic features, transposable elements are predominant contributors to the repeatome and the products of their decay is thought to be a major source of genomic dark matter. Determining the origin and composition of junk DNA is thus important to help understanding genome evolution as well as host biology. In this study, we have used a combination of tools enabling to show that the repeatome from the small and reducing A. thaliana genome is significantly larger than previously thought. Furthermore, we present the concepts and results from a series of innovative approaches suggesting that a significant amount of the A. thaliana dark matter is of repetitive origin. As a tentative standard for the community, we propose a deep compendium annotation of the A. thaliana repeatome that may help addressing farther genome evolution as well as transcriptional and epigenetic regulation in this model plant.

  1. Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris).

    Science.gov (United States)

    Gao, Dongying; Zhao, Dongyan; Abernathy, Brian; Iwata-Otsubo, Aiko; Herrera-Estrella, Alfredo; Jiang, Ning; Jackson, Scott A

    2016-07-07

    Transposons are ubiquitous genomic components that play pivotal roles in plant gene and genome evolution. We analyzed two genome sequences of common bean (Phaseolus vulgaris) and identified a new CACTA transposon family named pvCACTA1. The family is extremely abundant, as more than 12,000 pvCACTA1 elements were found. To our knowledge, this is the most abundant CACTA family reported thus far. The computational and fluorescence in situ hybridization (FISH) analyses indicated that the pvCACTA1 elements were concentrated in terminal regions of chromosomes and frequently generated AT-rich 3 bp target site duplications (TSD, WWW, W is A or T). Comparative analysis of the common bean genomes from two domesticated genetic pools revealed that new insertions or excisions of pvCACTA1 elements occurred after the divergence of the two common beans, and some of the polymorphic elements likely resulted in variation in gene sequences. pvCACTA1 elements were detected in related species but not outside the Phaseolus genus. We calculated the molecular evolutionary rate of pvCACTA1 transposons using orthologous elements that indicated that most transposition events likely occurred before the divergence of the two gene pools. These results reveal unique features and evolution of this new transposon family in the common bean genome.

  2. Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Dongying Gao

    2016-07-01

    Full Text Available Transposons are ubiquitous genomic components that play pivotal roles in plant gene and genome evolution. We analyzed two genome sequences of common bean (Phaseolus vulgaris and identified a new CACTA transposon family named pvCACTA1. The family is extremely abundant, as more than 12,000 pvCACTA1 elements were found. To our knowledge, this is the most abundant CACTA family reported thus far. The computational and fluorescence in situ hybridization (FISH analyses indicated that the pvCACTA1 elements were concentrated in terminal regions of chromosomes and frequently generated AT-rich 3 bp target site duplications (TSD, WWW, W is A or T. Comparative analysis of the common bean genomes from two domesticated genetic pools revealed that new insertions or excisions of pvCACTA1 elements occurred after the divergence of the two common beans, and some of the polymorphic elements likely resulted in variation in gene sequences. pvCACTA1 elements were detected in related species but not outside the Phaseolus genus. We calculated the molecular evolutionary rate of pvCACTA1 transposons using orthologous elements that indicated that most transposition events likely occurred before the divergence of the two gene pools. These results reveal unique features and evolution of this new transposon family in the common bean genome.

  3. Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome

    Science.gov (United States)

    Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo

    2006-01-01

    We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…

  4. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat

    Science.gov (United States)

    In hexaploid wheat (Triticum aestivum L.) (AABBDD, C=17,000Mb), repeat DNA accounts for ~ 90% of the genome of which transposable elements (TEs) constitute 60-80 %. Despite the dynamic evolution of TEs, our previous study indicated that the majority of TEs between the homologous wheat genomes are co...

  5. Mycoplasma pneumoniae large DNA repetitive elements RepMP1 show type specific organization among strains.

    Directory of Open Access Journals (Sweden)

    Oxana Musatovova

    Full Text Available Mycoplasma pneumoniae is the smallest self-replicating bacterium with a streamlined genome of 0.81 Mb. Complete genome analysis revealed the presence of multiple copies of four large repetitive elements (designated RepMP1, RepMP2/3, RepMP4 and RepMP5 that are implicated in creating sequence variations among individual strains. Recently, we described RepMP1-associated sequence variations between reference strain M129 and clinical isolate S1 that involved three RepMP1-genes (i.e. mpn130, mpn137 and mpn138. Using PCR and sequencing we analyze 28 additional M. pneumoniae strains and demonstrate the existence of S1-like sequence variants in nine strains and M129-like variants in the remaining nineteen strains. We propose a series of recombination steps that facilitates transition from M129- to S1-like sequence variants. Next we examined the remaining RepMP1-genes and observed no other rearrangements related to the repeat element. The only other detected difference was varying numbers of the 21-nucleotide tandem repeats within mpn127, mpn137, mpn501 and mpn524. Furthermore, typing of strains through analysis of large RepMPs localized within the adhesin P1 operon revealed that sequence divergence involving RepMP1-genes mpn130, mpn137 and mpn138 is strictly type-specific. Once more our analysis confirmed existence of two highly conserved groups of M. pneumoniae strains.

  6. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    Science.gov (United States)

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  7. Feline Non-repetitive Mitochondrial DNA Control Region Database for Forensic Evidence

    Science.gov (United States)

    Grahn, R. A.; Kurushima, J. D.; Billings, N. C.; Grahn, J.C.; Halverson, J. L.; Hammer, E.; Ho, C.K.; Kun, T. J.; Levy, J.K.; Lipinski, M. J.; Mwenda, J.M.; Ozpinar, H.; Schuster, R.K; Shoorijeh, S.J.; Tarditi, C. R.; Waly, N.E.; Wictum, E. J.; Lyons, L. A.

    2010-01-01

    The domestic cat is the one of the most popular pets throughout the world. A by-product of owning, interacting with, or being in a household with a cat is the transfer of shed fur to clothing or personal objects. As trace evidence, transferred cat fur is a relatively untapped resource for forensic scientists. Both phenotypic and genotypic characteristics can be obtained from cat fur, but databases for neither aspect exist. Because cats incessantly groom, cat fur may have nucleated cells, not only in the hair bulb, but also as epithelial cells on the hair shaft deposited during the grooming process, thereby generally providing material for DNA profiling. To effectively exploit cat hair as a resource, representative databases must be established. This study evaluates 402 bp of the mtDNA control region (CR) from 1,394 cats, including cats from 25 distinct worldwide populations and 26 breeds. Eighty-three percent of the cats are represented by 12 major mitotypes. An additional 8.0% are clearly derived from the major mitotypes. Unique sequences were found in 7.5% of the cats. The overall genetic diversity for this data set was 0.8813 ± 0.0046 with a random match probability of 11.8%. This region of the cat mtDNA has discriminatory power suitable for forensic application worldwide. PMID:20457082

  8. Feline non-repetitive mitochondrial DNA control region database for forensic evidence.

    Science.gov (United States)

    Grahn, R A; Kurushima, J D; Billings, N C; Grahn, J C; Halverson, J L; Hammer, E; Ho, C K; Kun, T J; Levy, J K; Lipinski, M J; Mwenda, J M; Ozpinar, H; Schuster, R K; Shoorijeh, S J; Tarditi, C R; Waly, N E; Wictum, E J; Lyons, L A

    2011-01-01

    The domestic cat is the one of the most popular pets throughout the world. A by-product of owning, interacting with, or being in a household with a cat is the transfer of shed fur to clothing or personal objects. As trace evidence, transferred cat fur is a relatively untapped resource for forensic scientists. Both phenotypic and genotypic characteristics can be obtained from cat fur, but databases for neither aspect exist. Because cats incessantly groom, cat fur may have nucleated cells, not only in the hair bulb, but also as epithelial cells on the hair shaft deposited during the grooming process, thereby generally providing material for DNA profiling. To effectively exploit cat hair as a resource, representative databases must be established. The current study evaluates 402 bp of the mtDNA control region (CR) from 1394 cats, including cats from 25 distinct worldwide populations and 26 breeds. Eighty-three percent of the cats are represented by 12 major mitotypes. An additional 8.0% are clearly derived from the major mitotypes. Unique sequences are found in 7.5% of the cats. The overall genetic diversity for this data set is 0.8813±0.0046 with a random match probability of 11.8%. This region of the cat mtDNA has discriminatory power suitable for forensic application worldwide.

  9. Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria.

    Directory of Open Access Journals (Sweden)

    Frederic Bertels

    2011-06-01

    Full Text Available Repetitive sequences are a conserved feature of many bacterial genomes. While first reported almost thirty years ago, and frequently exploited for genotyping purposes, little is known about their origin, maintenance, or processes affecting the dynamics of within-genome evolution. Here, beginning with analysis of the diversity and abundance of short oligonucleotide sequences in the genome of Pseudomonas fluorescens SBW25, we show that over-represented short sequences define three distinct groups (GI, GII, and GIII of repetitive extragenic palindromic (REP sequences. Patterns of REP distribution suggest that closely linked REP sequences form a functional replicative unit: REP doublets are over-represented, randomly distributed in extragenic space, and more highly conserved than singlets. In addition, doublets are organized as inverted repeats, which together with intervening spacer sequences are predicted to form hairpin structures in ssDNA or mRNA. We refer to these newly defined entities as REPINs (REP doublets forming hairpins and identify short reads from population sequencing that reveal putative transposition intermediates. The proximal relationship between GI, GII, and GIII REPINs and specific REP-associated tyrosine transposases (RAYTs, combined with features of the putative transposition intermediate, suggests a mechanism for within-genome dissemination. Analysis of the distribution of REPs in a range of RAYT-containing bacterial genomes, including Escherichia coli K-12 and Nostoc punctiforme, show that REPINs are a widely distributed, but hitherto unrecognized, family of miniature non-autonomous mobile DNA.

  10. On DNA codes from a family of chain rings

    Directory of Open Access Journals (Sweden)

    Elif Segah Oztas

    2017-01-01

    Full Text Available In this work, we focus on reversible cyclic codes which correspond to reversible DNA codes or reversible-complement DNA codes over a family of finite chain rings, in an effort to extend what was done by Yildiz and Siap in [20]. The ring family that we have considered are of size $2^{2^k}$, $k=1,2, \\cdots$ and we match each ring element with a DNA $2^{k-1}$-mer. We use the so-called $u^2$-adic digit system to solve the reversibility problem and we characterize cyclic codes that correspond to reversible-complement DNA-codes. We then conclude our study with some examples.

  11. Chromosomal mapping of repetitive DNAs in Gobionellus oceanicus and G. stomatus (Gobiidae; Perciformes): A shared XX/XY system and an unusual distribution of 5S rDNA sites on the Y chromosome.

    Science.gov (United States)

    Lima-Filho, Paulo A; Amorim, Karlla D J; Cioffi, Marcelo B; Bertollo, Luiz A C; Molina, Wagner F

    2014-01-01

    With nearly 2,000 species, Gobiidae is the most specious family of the vertebrates. This high level of speciation is accompanied by conspicuous karyotypic modifications, where the role of repetitive sequences remains largely unknown. This study analyzed the karyotype of 2 species of the genus Gobionellus and mapped 18S and 5S ribosomal RNA genes and (CA)15 microsatellite sequences onto their chromosomes. G. oceanicus (2n = 56; ♂ 12 metacentrics (m) + 4 submetacentrics (sm) + 1 subtelocentric (st) + 39 acrocentrics (a); ♀ 12m + 4sm + 2st + 38a) and G. stomatus (2n = 56; ♂ 20m + 14sm + 1st + 21a; ♀ 20m + 14sm + 2st + 20a) possess the highest diploid chromosome number among the Gobiidae and have different karyotypes. Both species share an XX/XY sex chromosome system with a large subtelocentric X and a small acrocentric Y chromosome which is rich in (CA)15 sequences and bears 5S rRNA sites. Although coding and noncoding repetitive DNA sequences may be involved in the genesis or differentiation of the sex chromosomes, the exclusive presence of 5S rDNA sites on the Y, but not on the X chromosome of both species, represents a novelty in fishes. In summary, the karyotypic differences, as well as new data on the sex chromosome systems in these 2 Gobiidae species, confirm the high chromosomal dynamism observed in this family.

  12. A novel class of small repetitive DNA sequences in Enterococcus faecalis.

    Science.gov (United States)

    Venditti, Rossella; De Gregorio, Eliana; Silvestro, Giustina; Bertocco, Tullia; Salza, Maria Francesca; Zarrilli, Raffaele; Di Nocera, Pier Paolo

    2007-06-01

    The structural organization of Enterococcus faecalis repeats (EFAR) is described, palindromic DNA sequences identified in the genome of the Enterococcus faecalis V583 strain by in silico analyses. EFAR are a novel type of miniature insertion sequences, which vary in size from 42 to 650 bp. Length heterogeneity results from the variable assembly of 16 different sequence types. Most elements measure 170 bp, and can fold into peculiar L-shaped structures resulting from the folding of two independent stem-loop structures (SLSs). Homologous chromosomal regions lacking or containing EFAR sequences were identified by PCR among 20 E. faecalis clinical isolates of different genotypes. Sequencing of a representative set of 'empty' sites revealed that 24-37 bp-long sequences, unrelated to each other but all able to fold into SLSs, functioned as targets for the integration of EFAR. In the process, most of the SLS had been deleted, but part of the targeted stems had been retained at EFAR termini.

  13. Cytogenetic variation of repetitive DNA elements in Hoplias malabaricus (Characiformes - Erythrinidae) from white, black and clear water rivers of the Amazon basin.

    Science.gov (United States)

    Santos, Fabíola Araújo Dos; Marques, Diego Ferreira; Terencio, Maria Leandra; Feldberg, Eliana; Rodrigues, Luís Reginaldo R

    2016-03-01

    Hoplias malabaricus is a common fish species occurring in white, black and clear water rivers of the Amazon basin. Its large distribution across distinct aquatic environments can pose stressful conditions for dispersal and creates possibilities for the emergence of local adaptive profiles. We investigated the chromosomal localization of repetitive DNA markers (constitutive heterochromatin, rDNA and the transposable element REX-3) in populations from the Amazonas river (white water), the Negro river (black water) and the Tapajós river (clear water), in order to address the variation/association of cytogenomic features and environmental conditions. We found a conserved karyotypic macrostructure with a diploid number of 40 chromosomes (20 metacentrics + 20 submetacentrics) in all the samples. Heteromorphism in pair 14 was detected as evidence for the initial differentiation of an XX/XY system. Minor differences detected in the amount of repetitive DNA markers are interpreted as possible signatures of local adaptations to distinct aquatic environments.

  14. Effectiveness of enterobacterial repetitive intergenic consensus PCR and random amplified polymorphic DNA fingerprinting for Helicobacter pylori strain differentiation.

    Science.gov (United States)

    Finger, S Alison; Velapatiño, Billie; Kosek, Margaret; Santivañez, Livia; Dailidiene, Daiva; Quino, Willi; Balqui, Jacqueline; Herrera, Phabiola; Berg, Douglas E; Gilman, Robert H

    2006-07-01

    We compared the robustness and discriminatory power of the enterobacterial repetitive intergenic consensus (ERIC) and random amplified polymorphic DNA (RAPD) fingerprinting methods for detecting cases of mixed Helicobacter pylori infection in Peruvian shantytown residents. H. pylori isolates from 63 participants were cultured, and five single colonies and a pool of additional colonies from each participant were analyzed by ERIC-PCR and by RAPD tests with four 10-nucleotide primers (one primer per reaction). There was 94% agreement between the ERIC and RAPD profiles in classifying sets of isolates as uniform versus closely related but not identical versus probably unrelated, indicating a high kappa statistic of 0.8942. Subtle differences in related ERIC or RAPD patterns likely reflect gene transfer between strains, recombination, and/or mutation, whereas markedly different patterns reflect infection by unrelated strains. At least half of infected shantytown residents seemed to carry more than one H. pylori strain, although in 19 of 31 persons, the strains were closely related. Three RAPD tests, each with a different primer, were needed to achieve the sensitivity of one ERIC test. ERIC-PCR constitutes a resource- and time-efficient method for H. pylori strain differentiation.

  15. The Salmon Smai Family of Short Interspersed Repetitive Elements (Sines): Interspecific and Intraspecific Variation of the Insertion of Sines in the Genomes of Chum and Pink Salmon

    OpenAIRE

    Takasaki, N.; Yamaki, T.; Hamada, M.; Park, L; Okada, N

    1997-01-01

    The genomes of chum salmon and pink salmon contain a family of short interspersed repetitive elements (SINEs), designated the salmon SmaI family. It is restricted to these two species, a distribution that suggests that this SINE family might have been generated in their common ancestor. When insertions of the SmaI SINEs at 10 orthologous loci of these species were analyzed, however, it was found that there were no shared insertion sites between chum and pink salmon. Furthermore, at six loci w...

  16. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  17. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  18. Maternal inheritance and mitochondrial DNA variants in familial Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Pfeiffer Ronald F

    2010-04-01

    Full Text Available Abstract Background Mitochondrial function is impaired in Parkinson's disease (PD and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to the risk of PD. Methods We examined the possibility of a maternal inheritance bias as well as the association between mitochondrial haplogroups and maternal inheritance and disease risk in a case-control study of 168 multiplex PD families in which the proband and one parent were diagnosed with PD. 2-tailed Fisher Exact Tests and McNemar's tests were used to compare allele frequencies, and a t-test to compare ages of onset. Results The frequency of affected mothers of the proband with PD (83/167, 49.4% was not significantly different from the frequency of affected females of the proband generation (115/259, 44.4% (Odds Ratio 1.22; 95%CI 0.83 - 1.81. After correcting for multiple tests, there were no significant differences in the frequencies of mitochondrial haplogroups or of the 10398G complex I gene polymorphism in PD patients compared to controls, and no significant associations with age of onset of PD. Mitochondrial haplogroup and 10398G polymorphism frequencies were similar in probands having an affected father as compared to probands having an affected mother. Conclusions These data fail to demonstrate a bias towards maternal inheritance in familial PD. Consistent with this, we find no association of common haplogroup-defining mtDNA variants or for the 10398G variant with the risk of PD. However, these data do not exclude a role for mtDNA variants in other populations, and it remains possible that other inherited mitochondrial DNA variants, or somatic mDNA

  19. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus

    2010-01-01

    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic

  20. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus

    2010-01-01

    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic prope

  1. An ancient satellite DNA has maintained repetitive units of the original structure in most species of the living fossil plant genus Zamia.

    Science.gov (United States)

    Cafasso, Donata; Chinali, Gianni

    2014-03-01

    ZpS1 satellite DNA is specific to the genus Zamia and presents repetitive units organized as long arrays and also as very short arrays dispersed in the genome. We have characterized the structure of the ZpS1 repeats in 12 species representative of the whole geographic distribution of the genus. In most species, the clone most common sequences (cMCS) were so similar that a general most common sequence (GMCS) of the ZpS1 repetitive unit in the genus could be obtained. The few partial variations from the GMCS found in cMCS of some species correspond to variable positions present in most other species, as indicated by the clone consensus sequences (cCS). Two species have an additional species-specific variety of ZpS1 satellite. The dispersed repeats were found to contain more mutations than repeats from long arrays. Our results indicate that all or most species of Zamia inherited the ZpS1 satellite from a common ancestor in Miocene and have maintained repetitive units of the original structure till present. The features of ZpS1 satellite in the genus Zamia are poorly compatible with the model of concerted evolution, but they are perfectly consistent with a new model of satellite evolution based on experimental evidences indicating that a specific amplification-substitution repair mechanism maintains the homogeneity and stability of the repeats structure in each satellite DNA originally present in a species as long as the species exists.

  2. The Y-Family DNA Polymerase Dpo4 Uses a Template Slippage Mechanism To Create Single-Base Deletions

    Energy Technology Data Exchange (ETDEWEB)

    Y Wu; R Wilson; J Pata

    2011-12-31

    The Y-family polymerases help cells tolerate DNA damage by performing translesion synthesis, yet they also can be highly error prone. One distinctive feature of the DinB class of Y-family polymerases is that they make single-base deletion errors at high frequencies in repetitive sequences, especially those that contain two or more identical pyrimidines with a 5? flanking guanosine. Intriguingly, different deletion mechanisms have been proposed, even for two archaeal DinB polymerases that share 54% sequence identity and originate from two strains of Sulfolobus. To reconcile these apparent differences, we have characterized Dpo4 from Sulfolobus solfataricus using the same biochemical and crystallographic approaches that we have used previously to characterize Dbh from Sulfolobus acidocaldarius. In contrast to previous suggestions that Dpo4 uses a deoxynucleoside triphosphate (dNTP)-stabilized misalignment mechanism when creating single-base deletions, we find that Dpo4 predominantly uses a template slippage deletion mechanism when replicating repetitive DNA sequences, as was previously shown for Dbh. Dpo4 stabilizes the skipped template base in an extrahelical conformation between the polymerase and the little-finger domains of the enzyme. This contrasts with Dbh, in which the extrahelical base is stabilized against the surface of the little-finger domain alone. Thus, despite sharing a common deletion mechanism, these closely related polymerases use different contacts with the substrate to accomplish the same result.

  3. New Evidence for the Theory of Chromosome Organization by Repetitive Elements (CORE).

    Science.gov (United States)

    Tang, Shao-Jun

    2017-02-20

    Repetitive DNA elements were proposed to coordinate chromatin folding and interaction in chromosomes by their intrinsic homology-based clustering ability. A recent analysis of the data sets from chromosome-conformation-capture experiments confirms the spatial clustering of DNA repeats of the same family in the nuclear space, and thus provides strong new support for the CORE theory.

  4. DNA barcoding of the Lemnaceae, a family of aquatic monocots

    Directory of Open Access Journals (Sweden)

    Wang Wenqin

    2010-09-01

    Full Text Available Abstract Background Members of the aquatic monocot family Lemnaceae (commonly called duckweeds represent the smallest and fastest growing flowering plants. Their highly reduced morphology and infrequent flowering result in a dearth of characters for distinguishing between the nearly 38 species that exhibit these tiny, closely-related and often morphologically similar features within the same family of plants. Results We developed a simple and rapid DNA-based molecular identification system for the Lemnaceae based on sequence polymorphisms. We compared the barcoding potential of the seven plastid-markers proposed by the CBOL (Consortium for the Barcode of Life plant-working group to discriminate species within the land plants in 97 accessions representing 31 species from the family of Lemnaceae. A Lemnaceae-specific set of PCR and sequencing primers were designed for four plastid coding genes (rpoB, rpoC1, rbcL and matK and three noncoding spacers (atpF-atpH, psbK-psbI and trnH-psbA based on the Lemna minor chloroplast genome sequence. We assessed the ease of amplification and sequencing for these markers, examined the extent of the barcoding gap between intra- and inter-specific variation by pairwise distances, evaluated successful identifications based on direct sequence comparison of the "best close match" and the construction of a phylogenetic tree. Conclusions Based on its reliable amplification, straightforward sequence alignment, and rates of DNA variation between species and within species, we propose that the atpF-atpH noncoding spacer could serve as a universal DNA barcoding marker for species-level identification of duckweeds.

  5. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature.

    Science.gov (United States)

    Sakofsky, Cynthia J; Foster, Patricia L; Grogan, Dennis W

    2012-04-01

    The intrinsically thermostable Y-family DNA polymerases of Sulfolobus spp. have revealed detailed three-dimensional structure and catalytic mechanisms of trans-lesion DNA polymerases, yet their functions in maintaining their native genomes remain largely unexplored. To identify functions of the Y-family DNA polymerase Dbh in replicating the Sulfolobus genome under extreme conditions, we disrupted the dbh gene in Sulfolobus acidocaldarius and characterized the resulting mutant strains phenotypically. Disruption of dbh did not cause any obvious growth defect, sensitivity to any of several DNA-damaging agents, or change in overall rate of spontaneous mutation at a well-characterized target gene. Loss of dbh did, however, cause significant changes in the spectrum of spontaneous forward mutation in each of two orthologous target genes of different sequence. Relative to wild-type strains, dbh(-) constructs exhibited fewer frame-shift and other small insertion-deletion mutations, but exhibited more base-pair substitutions that converted G:C base pairs to T:A base pairs. These changes, which were confirmed to be statistically significant, indicate two distinct activities of the Dbh polymerase in Sulfolobus cells growing under nearly optimal culture conditions (78-80°C and pH 3). The first activity promotes slipped-strand events within simple repetitive motifs, such as mononucleotide runs or triplet repeats, and the second promotes insertion of C opposite a potentially miscoding form of G, thereby avoiding G:C to T:A transversions.

  6. Repetitive, Marker-Free, Site-Specific Integration as a Novel Tool for Multiple Chromosomal Integration of DNA

    DEFF Research Database (Denmark)

    Petersen, Kia Vest; Martinussen, Jan; Jensen, Peter Ruhdal

    2013-01-01

    We present a tool for repetitive, marker-free, site-specific integration in Lactococcus lactis, in which a nonreplicating plasmid vector (pKV6) carrying a phage attachment site (attP) can be integrated into a bacterial attachment site (attB). The novelty of the tool described here is the inclusio...

  7. Assessment of candidate plant DNA barcodes using the Rutaceae family.

    Science.gov (United States)

    Luo, Kun; Chen, ShiLin; Chen, KeLi; Song, JingYuan; Yao, Hui; Ma, XinYe; Zhu, YingJie; Pang, XiaoHui; Yu, Hua; Li, XiWen; Liu, Zhen

    2010-06-01

    DNA barcoding is a rapidly developing frontier technology that is gaining worldwide attention. Here, seven regions (psbA-trnH, matK, ycf5, rpoC1, rbcL, ITS2, and ITS) with potential for use as DNA barcodes were tested for their ability to identify 300 samples of 192 species from 72 genera of the family Rutaceae. To evaluate each barcode's utility for species authentication, PCR amplification efficiency, genetic divergence, and barcoding gaps were assessed. We found that the ITS2 region exhibited the highest inter-specific divergence, and that this was significantly higher than the intra-specific variation in the "DNA barcoding gap" assessment and Wilcoxon two-sample tests. The ITS2 locus had the highest identification efficiency among all tested regions. In a previous study, we found that ITS2 was able to discriminate a wide range of plant taxa, and here we confirmed that ITS2 was also able to discriminate a number of closely related species. Therefore, we propose that ITS2 is a promising candidate barcode for plant species identification.

  8. Assessment of candidate plant DNA barcodes using the Rutaceae family

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    DNA barcoding is a rapidly developing frontier technology that is gaining worldwide attention.Here,seven regions (psbA-trnH,matK,ycf5,rpoC1,rbcL,ITS2,and ITS) with potential for use as DNA barcodes were tested for their ability to identify 300 samples of 192 species from 72 genera of the family Rutaceae.To evaluate each barcode’s utility for species authentication,PCR amplification efficiency,genetic divergence,and barcoding gaps were assessed.We found that the ITS2 region exhibited the highest inter-specific divergence,and that this was significantly higher than the intra-specific variation in the "DNA barcoding gap" assessment and Wilcoxon two-sample tests.The ITS2 locus had the highest identification efficiency among all tested regions.In a previous study,we found that ITS2 was able to discriminate a wide range of plant taxa,and here we confirmed that ITS2 was also able to discriminate a number of closely related species.Therefore,we propose that ITS2 is a promising candidate barcode for plant species identification.

  9. Characterization of Family D DNA polymerase from Thermococcus sp. 9°N

    OpenAIRE

    Greenough, Lucia; Menin, Julie F.; Desai, Nirav S.; Kelman, Zvi; Gardner, Andrew F.

    2014-01-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we repor...

  10. Characterization of Family D DNA polymerase from Thermococcus sp. 9°N

    OpenAIRE

    Greenough, Lucia; Menin, Julie F.; Desai, Nirav S.; Kelman, Zvi; Gardner, Andrew F.

    2014-01-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we repor...

  11. Epigenetic analyses and the distribution of repetitive DNA and resistance genes reveal the complexity of common bean (Phaseolus vulgaris L., Fabaceae) heterochromatin.

    Science.gov (United States)

    Fonsêca, Artur; Richard, Manon M S; Geffroy, Valérie; Pedrosa-Harand, Andrea

    2014-01-01

    The common bean (Phaseolus vulgaris L.) is the main representative of its genus and one of most important sources of proteins in African and Latin American countries. Although it is a species with a small genome, its pericentromeric and subtelomeric heterochromatin fractions are interspersed with single-copy sequences and active genes, suggesting a less compartmentalized genome organization. The present study characterized its chromatin fractions, associating the distribution of repetitive sequences and resistance genes with histone and DNA epigenetic modifications with and without biotic stress. Immunostaining with H3K4me3 and H4K5ac were generally associated with euchromatic regions, whereas H3K9me2, H3K27me1, and 5mC preferentially labeled the pericentromeric heterochromatin. The 45S rDNA and centromeric DNA sequences were hypomethylated as were most of the terminal heterochromatic blocks. The largest of them, which is associated with resistance genes, was also hypomethylated after the plants were infected with virulent and avirulent strains of the fungus Colletotrichum lindemuthianum, suggesting no correlation with control of resistance gene expression. The results highlighted the differences between subtelomeric and pericentromeric heterochromatin as well as variation within the pericentromeric heterochromatin. © 2014 S. Karger AG, Basel.

  12. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294; Zhukovskaya, Natalia [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Bedwell, Gregory [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Nuth, Manunya [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca New York 14853; Prevelige, Peter E. [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Ricciardi, Robert P. [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Banerjee, Surajit [Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT Argonne Illinois 60439; Chattopadhyay, Debasish [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  13. Maternal inheritance and mitochondrial DNA variants in familial Parkinson's disease

    OpenAIRE

    Pfeiffer Ronald F; Rudolph Alice; Halter Cheryl A; Pauciulo Michael W; Kissell Diane K; Pankratz Nathan; Simon David K; Nichols William C; Foroud Tatiana

    2010-01-01

    Abstract Background Mitochondrial function is impaired in Parkinson's disease (PD) and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA) from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to t...

  14. Kaposi's Sarcoma-Associated Herpesvirus Rta Tetramers Make High-Affinity Interactions with Repetitive DNA Elements in the Mta Promoter To Stimulate DNA Binding of RBP-Jk/CSL ▿ †

    Science.gov (United States)

    Palmeri, Diana; Carroll, Kyla Driscoll; Gonzalez-Lopez, Olga; Lukac, David M.

    2011-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]) is the etiologic agent of Kaposi's sarcoma (KS) and lymphoproliferative diseases. We previously demonstrated that the KSHV lytic switch protein Rta stimulates DNA binding of the cellular RBP-Jk/CSL protein, the nuclear component of the Notch pathway, on Rta target promoters. In the current study, we define the promoter requirements for formation of transcriptionally productive Rta/RBP-Jk/DNA complexes. We show that highly pure Rta footprints 7 copies of a previously undescribed repetitive element in the promoter of the essential KSHV Mta gene. We have termed this element the “CANT repeat.” CANT repeats are found on both strands of DNA and have a consensus sequence of ANTGTAACANT(A/T)(A/T)T. We demonstrate that Rta tetramers make high-affinity interactions (i.e., nM) with 64 bp of the Mta promoter but not single CANT units. The number of CANT repeats, their presence in palindromes, and their positions relative to the RBP-Jk binding site determine the optimal target for Rta stimulation of RBP-Jk DNA binding and formation of ternary Rta/RBP-Jk/DNA complexes. DNA binding and tetramerization mutants of Rta fail to stimulate RBP-Jk DNA binding. Our chromatin immunoprecipitation assays show that RBP-Jk DNA binding is broadly, but selectively, stimulated across the entire KSHV genome during reactivation. We propose a model in which tetramerization of Rta allows it to straddle RBP-Jk and contact repeat units on both sides of RBP-Jk. Our study integrates high-affinity Rta DNA binding with the requirement for a cellular transcription factor in Rta transactivation. PMID:21880753

  15. GENETIC DIVERSITY OF TYPHA LATIFOLIA (TYPHACEAE) AND THE IMPACT OF POLLUTANTS EXAMINED WITH TANDEM-REPETITIVE DNA PROBES

    Science.gov (United States)

    Genetic diversity at variable-number-tandem-repeat (VNTR) loci was examined in the common cattail, Typha latifolia (Typhaceae), using three synthetic DNA probes composed of tandemly repeated "core" sequences (GACA, GATA, and GCAC). The principal objectives of this investigation w...

  16. Association of hypomethylation of LINE-1 repetitive element in blood leukocyte DNA with an increased risk of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jian-zhong DI; Xiao-dong HAN; Wen-ye GU; Yu WANG; Qi ZHENG; Pin ZHANG; Hui-min WU; Zhong-zheng ZHU

    2011-01-01

    Global DNA hypomethylation has been associated with increased risk for cancers of the colorectum,bladder,breast,head and neck,and testicular germ cells.The aim of this study was to examine whether global hypomethylation in blood leukocyte DNA is associated with the risk of hepatocellular carcinoma (HCC).A total of 315HCC cases and 356 age-,sex- and HBsAg status-matched controls were included.Global methylation in blood leukocyte DNA was estimated by analyzing long interspersed element-1 (LINE-1) repeats using bisulfite-polymerase chain reaction (PCR) and pyrosequencing.We observed that the median methylation level in HCC cases (percentage of 5-methylcytosine (5mC)=77.7%) was significantly lower than that in controls (79.5% 5mC) (P=0.004,Wilcoxon rank-sum test).The odds ratios (ORs) of HCC for individuals in the third,second,and first (lowest) quartiles of LINE-1methylation were 1.1 (95% confidence interval (CI) 0.7-1.8),1.4 (95% CI 0.8-2.2),and 2.6 (95% CI 1.7-4.1) (P for trend <0.001),respectively,compared to individuals in the fourth (highest) quartile.A 1.9-fold (95% CI 1.4-2.6) increased risk of HCC was observed among individuals with LINE-1 methylation below the median compared to individuals with higher (>median) LINE-1 methylation.Our results demonstrate for the first time that individuals with global hypomethylation measured in LINE-1 repeats in blood leukocyte DNA have an increased risk for HCC.Our data provide the evidence that global hypomethylation detected in the easily obtainable DNA source of blood leukocytes may help identify individuals at risk of HCC.

  17. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    Science.gov (United States)

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus.

  18. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  19. Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs.

    Science.gov (United States)

    Mölleken, Katja; Schmidt, Eleni; Hegemann, Johannes H

    2010-11-01

    Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. Adhesion of the infectious elementary body to the eukaryotic host cell is a pivotal step in chlamydial pathogenesis. Here we describe the characterization of members of the polymorphic membrane protein family (Pmp), the largest protein family (with up to 21 members) unique to Chlamydiaceae. We show that yeast cells displaying Pmp6, Pmp20 or Pmp21 on their surfaces, or beads coated with the recombinant proteins, adhere to human epithelial cells. A hallmark of the Pmp protein family is the presence of multiple repeats of the tetrapeptide motifs FxxN and GGA(I, L, V) and deletion analysis shows that at least two copies of these motifs are needed for adhesion. Importantly, pre-treatment of human cells with recombinant Pmp6, Pmp20 or Pmp21 protein reduces infectivity upon subsequent challenge with Chlamydia pneumoniae and correlates with diminished attachment of Chlamydiae to target cells. Antibodies specific for Pmp21 can neutralize infection in vitro. Finally, a combination of two different Pmp proteins in infection blockage experiments shows additive effects, possibly suggesting similar functions. Our findings imply that Pmp6, Pmp20 and Pmp21 act as adhesins, are vital during infection and thus represent promising vaccine candidates.

  20. The Role of Depressive Symptoms, Family Invalidation and Behavioral Impulsivity in the Occurrence and Repetition of Non-Suicidal Self-Injury in Chinese Adolescents: A 2-Year Follow-Up Study

    Science.gov (United States)

    You, Jianing; Leung, Freedom

    2012-01-01

    This study used zero-inflated poisson regression analysis to examine the role of depressive symptoms, family invalidation, and behavioral impulsivity in the occurrence and repetition of non-suicidal self-injury among Chinese community adolescents over a 2-year period. Participants, 4782 high school students, were assessed twice during the…

  1. Tandem repeat DNA localizing on the proximal DAPI bands of chromosomes in Larix, Pinaceae.

    Science.gov (United States)

    Hizume, Masahiro; Shibata, Fukashi; Matsumoto, Ayako; Maruyama, Yukie; Hayashi, Eiji; Kondo, Teiji; Kondo, Katsuhiko; Zhang, Shozo; Hong, Deyuan

    2002-08-01

    Repetitive DNA was cloned from HindIII-digested genomic DNA of Larix leptolepis. The repetitive DNA was about 170 bp long, had an AT content of 67%, and was organized tandemly in the genome. Using fluorescence in situ hybridization and subsequent DAPI banding, the repetitive DNA was localized in DAPI bands at the proximal region of one arm of chromosomes in L. leptolepis and Larix chinensis. Southern blot hybridization to genomic DNA of seven species and five varieties probed with cloned repetitive DNA showed that the repetitive DNA family was present in a tandem organization in genomes of all Larix taxa examined. In addition to the 170-bp sequence, a 220-bp sequence belonging to the same DNA family was also present in 10 taxa. The 220-bp repeat unit was a partial duplication of the 170-bp repeat unit. The 220-bp repeat unit was more abundant in L. chinensis and Larix potaninii var. macrocarpa than in other taxa. The repetitive DNA composed 2.0-3.4% of the genome in most taxa and 0.3 and 0.5% of the genome in L. chinensis and L. potaninii var. macrocarpa, respectively. The unique distribution of the 220-bp repeat unit in Larix indicates the close relationship of these two species. In the family Pinaceae, the LPD (Larix proximal DAPI band specific repeat sequence family) family sequence is widely distributed, but their amount is very small except in the genus Larix. The abundant LPD family in Larix will occur after its speciation.

  2. Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors.

    Science.gov (United States)

    He, Gaofei; Tolic, Ana; Bashkin, James K; Poon, Gregory M K

    2015-04-30

    The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Differential sensitivity to methylated DNA by ETS-family transcription factors is intrinsically encoded in their DNA-binding domains.

    Science.gov (United States)

    Stephens, Dominique C; Poon, Gregory M K

    2016-10-14

    Transactivation by the ETS family of transcription factors, whose members share structurally conserved DNA-binding domains, is variably sensitive to methylation of their target genes. The mechanism by which DNA methylation controls ETS proteins remains poorly understood. Uncertainly also pervades the effects of hemi-methylated DNA, which occurs following DNA replication and in response to hypomethylating agents, on site recognition by ETS proteins. To address these questions, we measured the affinities of two sequence-divergent ETS homologs, PU.1 and Ets-1, to DNA sites harboring a hemi- and fully methylated CpG dinucleotide. While the two proteins bound unmethylated DNA with indistinguishable affinity, their affinities to methylated DNA are markedly heterogeneous and exhibit major energetic coupling between the two CpG methylcytosines. Analysis of simulated DNA and existing co-crystal structures revealed that hemi-methylation induced non-local backbone and groove geometries that were not conserved in the fully methylated state. Indirect readout of these perturbations was differentially achieved by the two ETS homologs, with the distinctive interfacial hydration in PU.1/DNA binding moderating the inhibitory effects of DNA methylation on binding. This data established a biophysical basis for the pioneering properties associated with PU.1, which robustly bound fully methylated DNA, but not Ets-1, which was substantially inhibited. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement.

    Science.gov (United States)

    Cabral-de-Mello, D C; Moura, R C; Martins, C

    2010-04-01

    Chromosomal banding techniques and repetitive DNA mapping are useful tools in comparative analysis and in the elucidation of genome organization of several groups of eukaryotes. In this study, we contributed to the knowledge of Coleoptera genomes by reporting the chromosomal organization of repetitive DNA sequences, as well as the presence and characteristics of a B chromosome in two natural populations of Dichotomius geminatus (Coleoptera; Scarabaeidae) using classical, chromosomal banding and molecular cytogenetic techniques. As in other coleopteran species, the heterochromatin was mainly concentrated in pericentromeric regions and the B chromosome was composed almost entirely of heterochromatin. Physical mapping using double fluorescent in situ hybridization was performed for the first time in Coleoptera; using DNA probes for 5S and 18S ribosomal RNA (rRNA) and histone H3 genes, we showed that ribosomal 18S rDNAs are located in chromosomes 3 and 4, whereas 5S rRNA and histone H3 genes are colocalized in chromosomal pair 2 and show an apparently interspersed organization. Moreover, these genes are not present in the B chromosome, suggesting that the B chromosome did not originate from chromosomal pairs 2, 3 or 4. On the other hand, mapping of the C(0)t-1 DNA fraction showed that the B chromosome is enriched in repetitive DNA elements, also present in the standard complement, indicating an intraspecific origin of this element in D. geminatus. These results will contribute to our understanding of genome organization and evolution of repetitive elements in Coleoptera and other insects regarding both A and B chromosomes.

  5. Retroposition of the AFC family of SINEs (short interspersed repetitive elements) before and during the adaptive radiation of cichlid fishes in Lake Malawi and related inferences about phylogeny.

    Science.gov (United States)

    Takahashi, K; Nishida, M; Yuma, M; Okada, N

    2001-01-01

    Lake Malawi is home to more than 450 species of endemic cichlids, which provide a spectacular example of adaptive radiation. To clarify the phylogenetic relationships among these fish, we examined the presence and absence of SINEs (short interspersed repetitive elements) at orthologous loci. We identified six loci at which a SINE sequence had apparently been specifically inserted by retroposition in the common ancestor of all the investigated species of endemic cichlids in Lake Malawi. At another locus, unique sharing of a SINE sequence was evident among all the investigated species of endemic non-Mbuna cichlids with the exception of Rhamphochromis sp. The relationships were in good agreement with those deduced in previous studies with various different markers, demonstrating that the SINE method is useful for the elucidation of phylogenetic relationships among cichlids in Lake Malawi. We also characterized a locus that exhibited transspecies polymorphism with respect to the presence or absence of the SINE sequence among non-Mbuna species. This result suggests that incomplete lineage sorting and/or interspecific hybridization might have occurred or be occurring among the species in this group, which might potentially cause misinterpretation of phylogenetic data, in particular when a single-locus marker, such as a sequence in the mitochondrial DNA, is used for analysis.

  6. Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA.

    Science.gov (United States)

    Serfaty, Dayane Martins Barbosa; Carvalho, Natália Dayane Moura; Gross, Maria Claudia; Gordo, Marcelo; Schneider, Carlos Henrique

    2017-06-20

    Saguinus is the largest and most complex genus of the subfamily Callitrichinae, with 23 species distributed from the south of Central America to the north of South America with Saguinus midas having the largest geographical distribution while Saguinus bicolor has a very restricted one, affected by the population expansion in the state of Amazonas. Considering the phylogenetic proximity of the two species along with evidence on the existence of hybrids between them, as well as cytogenetic studies on Saguinus describing a conserved karyotypic macrostructure, we carried out a physical mapping of DNA repeated sequences in the mitotic chromosome of both species, since these sequences are less susceptible to evolutionary pressure and possibly perform an important function in speciation. Both species presented 2n = 46 chromosomes; in S. midas, chromosome Y is the smallest. Multiple ribosomal sites occur in both species, but chromosome pairs three and four may be regarded as markers that differ the species when subjected to G banding and distribution of retroelement LINE 1, suggesting that it may be cytogenetic marker in which it can contribute to identification of first generation hybrids in contact zone. Saguinus bicolor also presented differences in the LINE 1 distribution pattern for sexual chromosome X in individuals from different urban fragments, probably due to geographical isolation. In this context, cytogenetic analyses reveal a differential genomic organization pattern between species S. midas and S. bicolor, in addition to indicating that individuals from different urban fragments have been accumulating differences because of the isolation between them.

  7. Indole acetic acid production by fluorescent Pseudomonas spp. from the rhizosphere of Plectranthus amboinicus (Lour.) Spreng. and their variation in extragenic repetitive DNA sequences.

    Science.gov (United States)

    Sethia, Bedhya; Mustafa, Mariam; Manohar, Sneha; Patil, Savita V; Jayamohan, Nellickal Subramanian; Kumudini, Belur Satyan

    2015-06-01

    Fluorescent Pseudomonas (FP) is a heterogenous group of growth promoting rhizobacteria that regulate plant growth by releasing secondary metabolic compounds viz., indole acetic acid (IAA), siderophores, ammonia and hydrogen cyanide. In the present study, IAA producing FPs from the rhizosphere of Plectranthus amboinicus were characterized morphologically, biochemically and at the molecular level. Molecular identification of the isolates were carried out using Pseudomonas specific primers. The effect of varying time (24, 48, 72 and 96 h), Trp concentrations (100, 200, 300, 400 and 500 μg x ml(-1)), temperature (10, 26, 37 and 50 ± 2 degrees C) and pH (6, 7 and 8) on IAA production by 10 best isolates were studied. Results showed higher IAA production at 72 h incubation, at 300 μg x ml(-1) Trp concentration, temperature 26 ± 2 degrees C and pH 7. TLC with acidified ethyl acetate extract showed that the IAA produced has a similar Rf value to that of the standard IAA. Results of TLC were confirmed by HPLC analysis. Genetic diversity of the isolates was also studied using 40 RAPD and 4 Rep primers. Genetic diversity parameters such as dominance, Shannon index and Simpson index were calculated. Out of 40 RAPD primers tested, 9 (2 OP-D series and 7 OP-E series) were shortlisted for further analysis. Studies using RAPD, ERIC, BOX, REP and GTG5 primers revealed that isolates exhibit significant diversity in repetitive DNA sequences irrespective of the rhizosphere.

  8. Cloning and analysis of DnaJ family members in the silkworm, Bombyx mori.

    Science.gov (United States)

    Li, Yinü; Bu, Cuiyu; Li, Tiantian; Wang, Shibao; Jiang, Feng; Yi, Yongzhu; Yang, Huipeng; Zhang, Zhifang

    2016-01-15

    Heat shock proteins (Hsps) are involved in a variety of critical biological functions, including protein folding, degradation, and translocation and macromolecule assembly, act as molecular chaperones during periods of stress by binding to other proteins. Using expressed sequence tag (EST) and silkworm (Bombyx mori) transcriptome databases, we identified 27 cDNA sequences encoding the conserved J domain, which is found in DnaJ-type Hsps. Of the 27 J domain-containing sequences, 25 were complete cDNA sequences. We divided them into three types according to the number and presence of conserved domains. By analyzing the gene structures, intron numbers, and conserved domains and constructing a phylogenetic tree, we found that the DnaJ family had undergone convergent evolution, obtaining new domains to expand the diversity of its family members. The acquisition of the new DnaJ domains most likely occurred prior to the evolutionary divergence of prokaryotes and eukaryotes. The expression of DnaJ genes in the silkworm was generally higher in the fat body. The tissue distribution of DnaJ1 proteins was detected by western blotting, demonstrating that in the fifth-instar larvae, the DnaJ1 proteins were expressed at their highest levels in hemocytes, followed by the fat body and head. We also found that the DnaJ1 transcripts were likely differentially translated in different tissues. Using immunofluorescence cytochemistry, we revealed that in the blood cells, DnaJ1 was mainly localized in the cytoplasm.

  9. Identification of the remains of the Romanov family by DNA analysis.

    Science.gov (United States)

    Gill, P; Ivanov, P L; Kimpton, C; Piercy, R; Benson, N; Tully, G; Evett, I; Hagelberg, E; Sullivan, K

    1994-02-01

    Nine skeletons found in a shallow grave in Ekaterinburg, Russia, in July 1991, were tentatively identified by Russian forensic authorities as the remains of the last Tsar, Tsarina, three of their five children, the Royal Physician and three servants. We have performed DNA based sex testing and short tandem repeat (STR) analysis and confirm that a family group was present in the grave. Analysis of mitochondrial (mt) DNA reveals an exact sequence match between the putative Tsarina and the three children with a living maternal relative. Amplified mtDNA extracted from the remains of the putative Tsar has been cloned to demonstrate heteroplasmy at a single base within the mtDNA control region. One of these sequences matches two living maternal relatives of the Tsar. We conclude that the DNA evidence supports the hypothesis that the remains are those of the Romanov family.

  10. The Bartonella vinsonii subsp. arupensis Immunodominant Surface Antigen BrpA Gene, Encoding a 382-Kilodalton Protein Composed of Repetitive Sequences, Is a Member of a Multigene Family Conserved among Bartonella Species

    OpenAIRE

    Gilmore, Robert D.; Bellville, Travis M.; Sviat, Steven L.; Frace, Michael

    2005-01-01

    Bartonella proteins that elicit an antibody response during an infection are poorly defined; therefore, to characterize antigens recognized by the host, a Bartonella genomic expression library was screened with serum from an infected mouse. This process led to the discovery of a Bartonella vinsonii subsp. arupensis gene encoding a 382-kDa protein, part of a gene family encoding large proteins, each containing multiple regions of repetitive segments. The genes were termed brpA to -C (bartonell...

  11. Novel mtDNA mutations and oxidative phosphorylation dysfunction in Russian LHON families.

    Science.gov (United States)

    Brown, M D; Zhadanov, S; Allen, J C; Hosseini, S; Newman, N J; Atamonov, V V; Mikhailovskaya, I E; Sukernik, R I; Wallace, D C

    2001-07-01

    Leber's hereditary optic neuropathy (LHON) is characterized by maternally transmitted, bilateral, central vision loss in young adults. It is caused by mutations in the mitochondrial DNA (mtDNA) encoded genes that contribute polypeptides to NADH dehydrogenase or complex I. Four mtDNA variants, the nucleotide pair (np) 3460A, 11778A, 14484C, and 14459A mutations, are known as "primary" LHON mutations and are found in most, but not all, of the LHON families reported to date. Here, we report the extensive genetic and biochemical analysis of five Russian families from the Novosibirsk region of Siberia manifesting maternally transmitted optic atrophy consistent with LHON. Three of the five families harbor known LHON primary mutations. Complete sequence analysis of proband mtDNA in the other two families has revealed novel complex I mutations at nps 3635A and 4640C, respectively. These mutations are homoplasmic and have not been reported in the literature. Biochemical analysis of complex I in patient lymphoblasts and transmitochondrial cybrids demonstrated a respiration defect with complex-I-linked substrates, although the specific activity of complex I was not reduced. Overall, our data suggests that the spectrum of mtDNA mutations associated with LHON in Russia is similar to that in Europe and North America and that the np 3635A and 4640C mutations may be additional mtDNA complex I mutations contributing to LHON expression.

  12. DNA polymorphism analysis in families with recurrence of free trisomy 21

    Energy Technology Data Exchange (ETDEWEB)

    Pangalos, C.G.; Rethore, M.O.; Blois, M.C. de; Prieur, M.; Raoul, O.; Lejeune, J.; Talbot, C.C. Jr.; Lewis, J.G.; Adelsberger, P.A.; Peterson, M.B. (and others)

    1992-11-01

    The authors used DNA polymorphic markers on the long arm of human chromosome 21 in order to determine the parental and meiotic origin of the extra chromosome 21 in families with recurrent free trisomy 21. A total of 22 families were studied, 13 in which the individuals with trisomy 21 were siblings (category 1), four families in which the individuals with trisomy 21 were second-degree relatives (category 2), and five families in which the individuals with trisomy 21 were third-degree relatives, that is, their parents were siblings (category 3). In five category 1 families, parental mosaicism was detected, while in the remaining eight families, the origin of nondisjunction was maternal. In two of the four families of category 2 the nondisjunctions originated in individuals who were related. In only one of five category 3 families, the nondisjunctions originated in related individuals. These results suggest that parental mosaicism is an important etiologic factor in recurrent free trisomy 21 (5 of 22 families) and that chance alone can explain the recurrent trisomy 21 in many of the remaining families (14 of 22 families). However, in a small number of families (3 of 22), a familial predisposing factor or undetected mosaicism cannot be excluded. 34 refs., 3 figs., 1 tab.

  13. Characterization of a highly repeated DNA sequence family in five species of the genus Eulemur.

    Science.gov (United States)

    Ventura, M; Boniotto, M; Cardone, M F; Fulizio, L; Archidiacono, N; Rocchi, M; Crovella, S

    2001-09-19

    The karyotypes of Eulemur species exhibit a high degree of variation, as a consequence of the Robertsonian fusion and/or centromere fission. Centromeric and pericentromeric heterochromatin of eulemurs is constituted by highly repeated DNA sequences (including some telomeric TTAGGG repeats) which have so far been investigated and used for the study of the systematic relationships of the different species of the genus Eulemur. In our study, we have cloned a set of repetitive pericentromeric sequences of five Eulemur species: E. fulvus fulvus (EFU), E. mongoz (EMO), E. macaco (EMA), E. rubriventer (ERU), and E. coronatus (ECO). We have characterized these clones by sequence comparison and by comparative fluorescence in situ hybridization analysis in EMA and EFU. Our results showed a high degree of sequence similarity among Eulemur species, indicating a strong conservation, within the five species, of these pericentromeric highly repeated DNA sequences.

  14. DNA methylation of the LIN28 pseudogene family.

    Science.gov (United States)

    Davis, Aaron P; Benninghoff, Abby D; Thomas, Aaron J; Sessions, Benjamin R; White, Kenneth L

    2015-04-11

    DNA methylation directs the epigenetic silencing of selected regions of DNA, including the regulation of pseudogenes, and is widespread throughout the genome. Pseudogenes are decayed copies of duplicated genes that have spread throughout the genome by transposition. Pseudogenes are transcriptionally silenced by DNA methylation, but little is known about how pseudogenes are targeted for methylation or how methylation levels are maintained in different tissues. We employed bisulfite next generation sequencing to examine the methylation status of the LIN28 gene and four processed pseudogenes derived from LIN28. The objective was to determine whether LIN28 pseudogenes maintain the same pattern of methylation as the parental gene or acquire a methylation pattern independent of the gene of origin. In this study, we determined that the methylation status of LIN28 pseudogenes does not resemble the pattern evident for the LIN28 gene, but rather these pseudogenes appear to acquire methylation patterns independent of the parental gene. Furthermore, we observed that methylation levels of the examined pseudogenes correlate to the location of insertion within the genome. LIN28 pseudogenes inserted into gene bodies were highly methylated in all tissues examined. In contrast, pseudogenes inserted into genomic regions that are not proximal to genes were differentially methylated in various tissue types. Our analysis suggests that Lin28 pseudogenes do not acquire patterns of tissue-specific methylation as for the parental gene, but rather are methylated in patterns specific to the local genomic environment into which they were inserted.

  15. Spontaneous event of mitochondrial DNA mutation, A3243G, found in a family of identical twins.

    Science.gov (United States)

    Harihara, Shinji; Nakamura, Kennichi; Takubo, Kaiyo; Takeuchi, Fujio

    2013-04-01

    A mutation in mitochondrial DNA (mtDNA) A3243G is an important cause of some serious mitochondrial diseases, and maternal inheritance of the mutation has been reported. In order to investigate the heredity of the mutation, we measured the ratio of the mutated mtDNA molecule among 32 families of identical twins. Both twins from one family showed 20.16% and 18.49% mutated molecules, and the level is significantly high in comparison with members of other families and control subjects (0.23-0.86%). Their parents, however, showed normal level of mutated molecules (0.70% and 0.66%). The high-level mutation of the twins may be due to a spontaneous event, which occurred during development of germ line of their mother, or oogenesis of their mother, or during early stage of their development.

  16. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family

    Directory of Open Access Journals (Sweden)

    Joerger Andreas C

    2009-12-01

    Full Text Available Abstract Background Transcription factors activate their target genes by binding to specific response elements. Many transcription factor families evolved from a common ancestor by gene duplication and subsequent divergent evolution. Members of the p53 family, which play key roles in cell-cycle control and development, share conserved DNA binding and oligomerisation domains but exhibit distinct functions. In this study, the molecular basis of the functional divergence of related transcription factors was investigated. Results We characterised the DNA-binding specificity and oligomerisation properties of human p53, p63 and p73, as well as p53 from other organisms using novel biophysical approaches. All p53 family members bound DNA cooperatively as tetramers with high affinity. Despite structural differences in the oligomerisation domain, the dissociation constants of the tetramers was in the low nanomolar range for all family members, indicating that the strength of tetramerisation was evolutionarily conserved. However, small differences in the oligomerisation properties were observed, which may play a regulatory role. Intriguingly, the DNA-binding specificity of p53 family members was highly conserved even for evolutionarily distant species. Additionally, DNA recognition was only weakly affected by CpG methylation. Prediction of p53/p63/p73 binding sites in the genome showed almost complete overlap between the different homologs. Conclusion Diversity of biological function of p53 family members is not reflected in differences in sequence-specific DNA binding. Hence, additional specificity factors must exist, which allowed the acquisition of novel functions during evolution while preserving original roles.

  17. Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, D.R.; Sapp, P.; O`Regan, J.; McKenna-Yasek, D.; Schlumpf, K.S.; Haines, J.L.; Gusella, J.F.; Horvitz, H.R.; Brown, R.H. Jr. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1994-05-15

    Amyotrophic lateral sclerosis (ALS; Lou Gehrig`s Disease) is a lethal neurodegenerative disease of upper and lower motorneurons in the brain and spinal cord. We previously reported linkage of a gene for familial ALS (FALS) to human chromosome 21 using 4 restriction fragment length polymorphism DNA markers and identified disease-associated mutations in the superoxide dismutase (SOD)-1 gene in some ALS families. We report here the genetic linkage data that led us to examine the SOD-1 gene for mutations. We also report a new microsatellite DNA marker for D21S63, derived from the cosmid PW517. Ten microsatellite DNA markers, including the new marker D21S63, were used to reinvestigate linkage of FALS to chromosome 21. Genetic linkage analysis performed with 13 ALS familes for these 10 DNA markers confirmed the presence of a FALS gene on chromosome 21. The highest total 2-point LOD score for all families was 4.33, obtained at a distance of 10 cM from the marker D21S223. For 5 ALS families linked to chromosome 21, a peak 2-point LOD score of 5.94 was obtained at the DNA marker D21S223. A multipoint score of 6.50 was obtained with the markers D21S213, D21S223, D21S167, and FALS for 5 chromosome 21-linked ALS families. The haplotypes of these families for the 10 DNA markers reveal recombination events that further refined the location of the FALS gene to a segment of approximately 5 megabases (Mb) between D21S213 and D21S219. The only characterized gene within this segment was SOD-1, the structural gene for Cu, Zn SOD. 30 refs., 4 figs., 4 tabs.

  18. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2010-10-01

    Full Text Available Abstract Background Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. Results The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. Conclusions ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.

  19. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  20. Characterization of family D DNA polymerase from Thermococcus sp. 9°N.

    Science.gov (United States)

    Greenough, Lucia; Menin, Julie F; Desai, Nirav S; Kelman, Zvi; Gardner, Andrew F

    2014-07-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3'-5' exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3'-5' exonuclease proofreading activity, polD has a relatively high error rate (95 × 10(-5)) compared to polB (19 × 10(-5)) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.

  1. DNA barcoding for species identification in the Palmae family.

    Science.gov (United States)

    Naeem, A; Khan, A A; Cheema, H M N; Khan, I A; Buerkert, A

    2014-12-04

    DNA barcoding is a promising tool for species identification at the molecular level. The barcoding system is well established for species differentiation in animals, while it is less common in plants. We evaluated 2 barcoding regions, maturase K (matK) and ribulose bisphosphate carboxylase (rbcL), to compare species of Palmae according to amplification success, discrimination power, and inter- and intra-specific divergence. Both regions appear to have potential to discriminate most species of Palmae, but 2 species, Phoenix dactylifera and Phoenix sylvestris, did not show variation in the nucleotides of the barcode genes. P. sylvestris is said to be the sister species of P. dactilyfera according to its morphological and genetic proximity to the cultivated date palm. Thus, the status of these 2 species needs to be re-evaluated considering more genes as barcodes. Furthermore, rbcL has a higher discrimination power (90%) than matK (66.6%) and can thus be potentially used as a standard barcode to discriminate the species of Palmae.

  2. NMR studies of a new family of DNA binding proteins: the THAP proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, Virginie, E-mail: virginie.gervais@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France); Campagne, Sebastien [ETH Zurich (Switzerland); Durand, Jade; Muller, Isabelle; Milon, Alain, E-mail: alain.milon@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France)

    2013-05-15

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.

  3. Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.

    Science.gov (United States)

    Lunardi, Andrea; Varmeh, Shohreh; Chen, Ming; Taulli, Riccardo; Guarnerio, Jlenia; Ala, Ugo; Seitzer, Nina; Ishikawa, Tomoki; Carver, Brett S; Hobbs, Robin M; Quarantotti, Valentina; Ng, Christopher; Berger, Alice H; Nardella, Caterina; Poliseno, Laura; Montironi, Rodolfo; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Signoretti, Sabina; Pandolfi, Pier Paolo

    2015-05-01

    The ETS family of transcription factors has been repeatedly implicated in tumorigenesis. In prostate cancer, ETS family members, such as ERG, ETV1, ETV4, and ETV5, are frequently overexpressed due to chromosomal translocations, but the molecular mechanisms by which they promote prostate tumorigenesis remain largely undefined. Here, we show that ETS family members, such as ERG and ETV1, directly repress the expression of the checkpoint kinase 1 (CHK1), a key DNA damage response cell-cycle regulator essential for the maintenance of genome integrity. Critically, we find that ERG expression correlates with CHK1 downregulation in human patients and demonstrate that Chk1 heterozygosity promotes the progression of high-grade prostatic intraepithelial neoplasia into prostatic invasive carcinoma in Pten(+) (/-) mice. Importantly, CHK1 downregulation sensitizes prostate tumor cells to etoposide but not to docetaxel treatment. Thus, we identify CHK1 as a key functional target of the ETS proto-oncogenic family with important therapeutic implications. Genetic translocation and aberrant expression of ETS family members is a common event in different types of human tumors. Here, we show that through the transcriptional repression of CHK1, ETS factors may favor DNA damage accumulation and consequent genetic instability in proliferating cells. Importantly, our findings provide a rationale for testing DNA replication inhibitor agents in ETS-positive TP53-proficient tumors. ©2015 American Association for Cancer Research.

  4. Comparative analysis of DNA methyltransferase gene family in fungi: a focus on Basidiomycota

    Directory of Open Access Journals (Sweden)

    Ruirui Huang

    2016-10-01

    Full Text Available DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes.

  5. Comparative Analysis of DNA Methyltransferase Gene Family in Fungi: A Focus on Basidiomycota

    Science.gov (United States)

    Huang, Ruirui; Ding, Qiangqiang; Xiang, Yanan; Gu, Tingting; Li, Yi

    2016-01-01

    DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases) in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes. PMID:27818666

  6. Comparative Analysis of DNA Methyltransferase Gene Family in Fungi: A Focus on Basidiomycota.

    Science.gov (United States)

    Huang, Ruirui; Ding, Qiangqiang; Xiang, Yanan; Gu, Tingting; Li, Yi

    2016-01-01

    DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases) in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes.

  7. Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.

    Directory of Open Access Journals (Sweden)

    Elisson A C Romanel

    Full Text Available BACKGROUND: The B3 DNA binding domain includes five families: auxin response factor (ARF, abscisic acid-insensitive3 (ABI3, high level expression of sugar inducible (HSI, related to ABI3/VP1 (RAV and reproductive meristem (REM. The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily. METHODOLOGY: In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family. CONCLUSIONS: Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.

  8. Dynamic Conformational Change Regulates the Protein-DNA Recognition: An Investigation on Binding of a Y-Family Polymerase to Its Target DNA

    Science.gov (United States)

    Chu, Xiakun; Liu, Fei; Maxwell, Brian A.; Wang, Yong; Suo, Zucai; Wang, Haijun; Han, Wei; Wang, Jin

    2014-01-01

    Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4) during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates. PMID:25188490

  9. Family-specific vs. universal PCR primers for the study of mitochondrial DNA in plants

    Directory of Open Access Journals (Sweden)

    Aleksić Jelena M.

    2016-01-01

    Full Text Available Mitochondrial genomes (mtDNAs or mitogenomes of seed plants are characterized by a notoriously unstable organization on account of which available so-called universal or consensus primers may fail to fulfil their foreseen function - amplification of various mtDNA regions in a broad range of plant taxa. Thus, the primers developed for groups assumed to have similar organization of their mitogenomes, such as families, may facilitate a broader usage of more variable non-coding portions of these genomes in group members. Using in silico PCR method and six available complete mitogenomes of Fabaceae, it has been demonstrated that only three out of 36 published universal primer and three Medicago sativa-specific primer pairs that amplify various mtDNA regions are suitable for six representatives of the Fabaceae family upon minor modifications, and develop 21 Fabaceae-specific primer pairs for amplification of all 14 cis-splicing introns in genes of NADH subunits (nad genes which represent the most commonly used non-coding mtDNA regions in various studies in plants. Using the same method and six available complete mitogenomes of representatives of related families Cucurbitaceae, Euphorbiaceae and Rosaceae and a model plant, Arabidopsis thaliana, it has further been demonstrated that applicability of newly developed primer pairs for amplification of nad introns in more or less related taxa was dependent not only on species evolutionary distances but also on their genome sizes. A reported set of 24 primer pairs is a valuable resource which may facilitate a broader usage of mtDNA variability in future studies at both intra- and inter-specific levels in Fabaceae, which is the third largest family of flowering plants rarely studied at the mtDNA level, and in other more or less related taxa. [Projekat Ministarstva nauke Republike Srbije, br. 173005

  10. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    -wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum......-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  11. Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo

    Science.gov (United States)

    Wei, Gong-Hong; Badis, Gwenael; Berger, Michael F; Kivioja, Teemu; Palin, Kimmo; Enge, Martin; Bonke, Martin; Jolma, Arttu; Varjosalo, Markku; Gehrke, Andrew R; Yan, Jian; Talukder, Shaheynoor; Turunen, Mikko; Taipale, Mikko; Stunnenberg, Hendrik G; Ukkonen, Esko; Hughes, Timothy R; Bulyk, Martha L; Taipale, Jussi

    2010-01-01

    Members of the large ETS family of transcription factors (TFs) have highly similar DNA-binding domains (DBDs)—yet they have diverse functions and activities in physiology and oncogenesis. Some differences in DNA-binding preferences within this family have been described, but they have not been analysed systematically, and their contributions to targeting remain largely uncharacterized. We report here the DNA-binding profiles for all human and mouse ETS factors, which we generated using two different methods: a high-throughput microwell-based TF DNA-binding specificity assay, and protein-binding microarrays (PBMs). Both approaches reveal that the ETS-binding profiles cluster into four distinct classes, and that all ETS factors linked to cancer, ERG, ETV1, ETV4 and FLI1, fall into just one of these classes. We identify amino-acid residues that are critical for the differences in specificity between all the classes, and confirm the specificities in vivo using chromatin immunoprecipitation followed by sequencing (ChIP-seq) for a member of each class. The results indicate that even relatively small differences in in vitro binding specificity of a TF contribute to site selectivity in vivo. PMID:20517297

  12. Multiple DNA-binding modes for the ETS family transcription factor PU.1.

    Science.gov (United States)

    Esaki, Shingo; Evich, Marina G; Erlitzki, Noa; Germann, Markus W; Poon, Gregory M K

    2017-09-29

    The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Familial longevity study reveals a significant association of mitochondrial DNA copy number between centenarians and their offspring.

    Science.gov (United States)

    He, Yong-Han; Chen, Xiao-Qiong; Yan, Dong-Jing; Xiao, Fu-Hui; Lin, Rong; Liao, Xiao-Ping; Liu, Yao-Wen; Pu, Shao-Yan; Yu, Qin; Sun, Hong-Peng; Jiang, Jian-Jun; Cai, Wang-Wei; Kong, Qing-Peng

    2016-11-01

    Reduced mitochondrial function is an important cause of aging and age-related diseases. We previously revealed a relatively higher level of mitochondrial DNA (mtDNA) content in centenarians. However, it is still unknown whether such an mtDNA content pattern of centenarians could be passed on to their offspring and how it was regulated. To address these issues, we recruited 60 longevity families consisting of 206 family members (cohort 1) and explored their mtDNA copy number. The results showed that the first generation of the offspring (F1 offspring) had a higher level of mtDNA copy number than their spouses (p copy number in centenarians with that in F1 offspring (r = 0.54, p = 0.0008) but not with that in F1 spouses. These results were replicated in another independent cohort consisting of 153 subjects (cohort 2). RNA sequencing analysis suggests that the single-stranded DNA-binding protein 4 was significantly associated with mtDNA copy number and was highly expressed in centenarians as well as F1 offspring versus the F1 spouses, thus likely regulates the mtDNA copy number in the long-lived family members. In conclusion, our results suggest that the pattern of high mtDNA copy number is likely inheritable, which may act as a favorable factor to familial longevity through assuring adequate energy supply. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Repetitive maladaptive behavior: beyond repetition compulsion.

    Science.gov (United States)

    Bowins, Brad

    2010-09-01

    Maladaptive behavior that repeats, typically known as repetition compulsion, is one of the primary reasons that people seek psychotherapy. However, even with psychotherapeutic advances it continues to be extremely difficult to treat. Despite wishes and efforts to the contrary repetition compulsion does not actually achieve mastery, as evidenced by the problem rarely resolving without therapeutic intervention, and the difficulty involved in producing treatment gains. A new framework is proposed, whereby such behavior is divided into behavior of non-traumatic origin and traumatic origin with some overlap occurring. Repetitive maladaptive behavior of non-traumatic origin arises from an evolutionary-based process whereby patterns of behavior frequently displayed by caregivers and compatible with a child's temperament are acquired and repeated. It has a familiarity and ego-syntonic aspect that strongly motivates the person to retain the behavior. Repetitive maladaptive behavior of traumatic origin is characterized by defensive dissociation of the cognitive and emotional components of trauma, making it very difficult for the person to integrate the experience. The strong resistance of repetitive maladaptive behavior to change is based on the influence of both types on personality, and also factors specific to each. Psychotherapy, although very challenging at the best of times, can achieve the mastery wished and strived for, with the aid of several suggestions provided.

  15. Variation in extragenic repetitive DNA sequences in Pseudomonas syringae and potential use of modified REP primers in the identification of closely related isolates

    Directory of Open Access Journals (Sweden)

    Elif Çepni

    2012-01-01

    Full Text Available In this study, Pseudomonas syringe pathovars isolated from olive, tomato and bean were identified by species-specific PCR and their genetic diversity was assessed by repetitive extragenic palindromic (REP-PCR. Reverse universal primers for REP-PCR were designed by using the bases of A, T, G or C at the positions of 1, 4 and 11 to identify additional polymorphism in the banding patterns. Binding of the primers to different annealing sites in the genome revealed additional fingerprint patterns in eight isolates of P. savastanoi pv. savastanoi and two isolates of P. syringae pv. tomato. The use of four different bases in the primer sequences did not affect the PCR reproducibility and was very efficient in revealing intra-pathovar diversity, particularly in P. savastanoi pv. savastanoi. At the pathovar level, the primer BOX1AR yielded shared fragments, in addition to five bands that discriminated among the pathovars P. syringae pv. phaseolicola, P. savastanoi pv. savastanoi and P. syringae pv. tomato. REP-PCR with a modified primer containing C produced identical bands among the isolates in a pathovar but separated three pathovars more distinctly than four other primers. Although REP-and BOX-PCRs have been successfully used in the molecular identification of Pseudomonas isolates from Turkish flora, a PCR based on inter-enterobacterial repetitive intergenic concensus (ERIC sequences failed to produce clear banding patterns in this study.

  16. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies.

    Directory of Open Access Journals (Sweden)

    Shaun Mahony

    2007-03-01

    Full Text Available Transcription factor (TF proteins recognize a small number of DNA sequences with high specificity and control the expression of neighbouring genes. The evolution of TF binding preference has been the subject of a number of recent studies, in which generalized binding profiles have been introduced and used to improve the prediction of new target sites. Generalized profiles are generated by aligning and merging the individual profiles of related TFs. However, the distance metrics and alignment algorithms used to compare the binding profiles have not yet been fully explored or optimized. As a result, binding profiles depend on TF structural information and sometimes may ignore important distinctions between subfamilies. Prediction of the identity or the structural class of a protein that binds to a given DNA pattern will enhance the analysis of microarray and ChIP-chip data where frequently multiple putative targets of usually unknown TFs are predicted. Various comparison metrics and alignment algorithms are evaluated (a total of 105 combinations. We find that local alignments are generally better than global alignments at detecting eukaryotic DNA motif similarities, especially when combined with the sum of squared distances or Pearson's correlation coefficient comparison metrics. In addition, multiple-alignment strategies for binding profiles and tree-building methods are tested for their efficiency in constructing generalized binding models. A new method for automatic determination of the optimal number of clusters is developed and applied in the construction of a new set of familial binding profiles which improves upon TF classification accuracy. A software tool, STAMP, is developed to host all tested methods and make them publicly available. This work provides a high quality reference set of familial binding profiles and the first comprehensive platform for analysis of DNA profiles. Detecting similarities between DNA motifs is a key step in the

  17. Evaluation of four commonly used DNA barcoding Loci for chinese medicinal plants of the family schisandraceae.

    Science.gov (United States)

    Zhang, Jian; Chen, Min; Dong, Xiaoyu; Lin, Ruozhu; Fan, Jianhua; Chen, Zhiduan

    2015-01-01

    Many species of Schisandraceae are used in traditional Chinese medicine and are faced with contamination and substitution risks due to inaccurate identification. Here, we investigated the discriminatory power of four commonly used DNA barcoding loci (ITS, trnH-psbA, matK, and rbcL) and corresponding multi-locus combinations for 135 individuals from 33 species of Schisandraceae, using distance-, tree-, similarity-, and character-based methods, at both the family level and the genus level. Our results showed that the two spacer regions (ITS and trnH-psbA) possess higher species-resolving power than the two coding regions (matK and rbcL). The degree of species resolution increased with most of the multi-locus combinations. Furthermore, our results implied that the best DNA barcode for the species discrimination at the family level might not always be the most suitable one at the genus level. Here we propose the combination of ITS+trnH-psbA+matK+rbcL as the most ideal DNA barcode for discriminating the medicinal plants of Schisandra and Kadsura, and the combination of ITS+trnH-psbA as the most suitable barcode for Illicium species. In addition, the closely related species Schisandra rubriflora Rehder & E. H. Wilson and Schisandra grandiflora Hook.f. & Thomson, were paraphyletic with each other on phylogenetic trees, suggesting that they should not be distinct species. Furthermore, the samples of these two species from the southern Hengduan Mountains region formed a distinct cluster that was separated from the samples of other regions, implying the presence of cryptic diversity. The feasibility of DNA barcodes for identification of geographical authenticity was also verified here. The database and paradigm that we provide in this study could be used as reference for the authentication of traditional Chinese medicinal plants utilizing DNA barcoding.

  18. Evaluation of four commonly used DNA barcoding Loci for chinese medicinal plants of the family schisandraceae.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Many species of Schisandraceae are used in traditional Chinese medicine and are faced with contamination and substitution risks due to inaccurate identification. Here, we investigated the discriminatory power of four commonly used DNA barcoding loci (ITS, trnH-psbA, matK, and rbcL and corresponding multi-locus combinations for 135 individuals from 33 species of Schisandraceae, using distance-, tree-, similarity-, and character-based methods, at both the family level and the genus level. Our results showed that the two spacer regions (ITS and trnH-psbA possess higher species-resolving power than the two coding regions (matK and rbcL. The degree of species resolution increased with most of the multi-locus combinations. Furthermore, our results implied that the best DNA barcode for the species discrimination at the family level might not always be the most suitable one at the genus level. Here we propose the combination of ITS+trnH-psbA+matK+rbcL as the most ideal DNA barcode for discriminating the medicinal plants of Schisandra and Kadsura, and the combination of ITS+trnH-psbA as the most suitable barcode for Illicium species. In addition, the closely related species Schisandra rubriflora Rehder & E. H. Wilson and Schisandra grandiflora Hook.f. & Thomson, were paraphyletic with each other on phylogenetic trees, suggesting that they should not be distinct species. Furthermore, the samples of these two species from the southern Hengduan Mountains region formed a distinct cluster that was separated from the samples of other regions, implying the presence of cryptic diversity. The feasibility of DNA barcodes for identification of geographical authenticity was also verified here. The database and paradigm that we provide in this study could be used as reference for the authentication of traditional Chinese medicinal plants utilizing DNA barcoding.

  19. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  20. The bldC Developmental Locus of Streptomyces coelicolor Encodes a Member of a Family of Small DNA-Binding Proteins Related to the DNA-Binding Domains of the MerR Family

    OpenAIRE

    Hunt, AC; Servin-Gonzalez, L; Kelemen, GH; Buttner, MJ

    2005-01-01

    The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-n...

  1. Sea cucumber species identification of family Caudinidae from Surabaya based on morphological and mitochondrial DNA evidence

    Science.gov (United States)

    Amin, Muhammad Hilman Fu'adil; Pidada, Ida Bagus Rai; Sugiharto, Widyatmoko, Johan Nuari; Irawan, Bambang

    2016-03-01

    Species identification and taxonomy of sea cucumber remains a challenge problem in some taxa. Caudinidae family of sea cucumber was comerciallized in Surabaya, and it was used as sea cucumber chips. Members of Caudinid sea cucumber have similiar morphology, so it is hard to identify this sea cucumber only from morphological appearance. DNA barcoding is useful method to overcome this problem. The aim of this study was to determine Caudinid specimen of sea cucumber in East Java by morphological and molecular approach. Sample was collected from east coast of Surabaya, then preserved in absolute ethanol. After DNA isolation, Cytochrome Oxydase I (COI) gene amplification was performed using Echinoderm universal primer and PCR product was sequenced. Sequencing result was analyzed and identified in NCBI database using BLAST. Results showed that Caudinid specimen in have closely related to Acaudina molpadioides sequence in GenBank with 86% identity. Morphological data, especially based on ossicle, also showed that the specimen is Acaudina molpadioides.

  2. Grammatical Change through Repetition.

    Science.gov (United States)

    Arevart, Supot

    1989-01-01

    The effect of repetition on grammatical change in an unrehearsed talk is examined based on a case study of a single learner. It was found that repetition allows for accuracy monitoring in that errors committed in repeated contexts undergo correction. Implications for teaching are discussed. (23 references) (LB)

  3. The Negative Repetition Effect

    Science.gov (United States)

    Mulligan, Neil W.; Peterson, Daniel J.

    2013-01-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…

  4. Functional studies of ssDNA binding ability of MarR family protein TcaR from Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Yu-Ming Chang

    Full Text Available The negative transcription regulator of the ica locus, TcaR, regulates proteins involved in the biosynthesis of poly-N-acetylglucosamine (PNAG. Absence of TcaR increases PNAG production and promotes biofilm formation in Staphylococci. Previously, the 3D structure of TcaR in its apo form and its complex structure with several antibiotics have been analyzed. However, the detailed mechanism of multiple antibiotic resistance regulator (MarR family proteins such as TcaR is unclear and only restricted on the binding ability of double-strand DNA (dsDNA. Here we show by electrophoretic mobility shift assay (EMSA, electron microscopy (EM, circular dichroism (CD, and Biacore analysis that TcaR can interact strongly with single-stranded DNA (ssDNA, thereby identifying a new role in MarR family proteins. Moreover, we show that TcaR preferentially binds 33-mer ssDNA over double-stranded DNA and inhibits viral ssDNA replication. In contrast, such ssDNA binding properties were not observed for other MarR family protein and TetR family protein, suggesting that the results from our studies are not an artifact due to simple charge interactions between TcaR and ssDNA. Overall, these results suggest a novel role for TcaR in regulation of DNA replication. We anticipate that the results of this work will extend our understanding of MarR family protein and broaden the development of new therapeutic strategies for Staphylococci.

  5. The archaeal “7 kDa DNA-binding” proteins: extended characterization of an old gifted family

    OpenAIRE

    Valentina Kalichuk; Ghislaine Béhar; Axelle Renodon-Cornière; Georgi Danovski; Gonzalo Obal; Jacques Barbet; Barbara Mouratou; Frédéric Pecorari

    2016-01-01

    International audience; The " 7 kDa DNA-binding " family, also known as the Sul7d family, is composed of chromatin proteins from the Sulfolobales archaeal order. Among them, Sac7d and Sso7d have been the focus of several studies with some characterization of their properties. Here, we studied eleven other proteins alongside Sac7d and Sso7d under the same conditions. The dissociation constants of the purified proteins for binding to double-stranded DNA (dsDNA) were determined in phosphate-buff...

  6. Phylogenetic position of the family Orientocreadiidae within the superfamily Plagiorchioidea (Trematoda) based on partial 28S rDNA sequence.

    Science.gov (United States)

    Sokolov, S G; Shchenkov, S V

    2017-08-22

    Trematodes of the family Orientocreadiidae are mostly parasites of freshwater fishes. Here, the phylogenetic position of this family is inferred based on the partial 28S rDNA sequence from a representative of the genus Orientocreadium s. str.-О. pseudobagri Yamaguti, 1934. Sequences were analysed by maximum likelihood and Bayesian inference algorithms. Both approaches placed the Orientocreadiidae within a clade corresponding to the superfamily Plagiorchioidea and supported the family Leptophallidae as a sister taxon.

  7. Molecular and cytogenetic characterization of an AT-rich satellite DNA family in Urvillea chacoensis Hunz. (Paullinieae, Sapindaceae).

    Science.gov (United States)

    Urdampilleta, Juan D; de Souza, Anete Pereira; Schneider, Dilaine R S; Vanzela, André L L; Ferrucci, María S; Martins, Eliana R F

    2009-05-01

    Urvillea chacoensis is a climber with 2n = 22 and some terminal AT-rich heterochromatin blocks that differentiate it from other species of the genus. The AT-rich highly repeated satellite DNA was isolated from U. chacoensis by the digestion of total nuclear DNA with HindIII and XbaI and cloned in Escherichia coli. Satellite DNA structure and chromosomal distribution were investigated. DNA sequencing revealed that the repeat length of satDNA ranges between 721 and 728 bp, the percentage of AT-base pairs was about 72-73% and the studied clones showed an identity of 92.5-95.9%. Although this monomer has a tetranucleosomal size, direct imperfect repetitions of ~180 bp subdividing it in four nucleosomal subregions were observed. The results obtained with FISH indicate that this monomer usually appears distributed in the terminal regions of most chromosomes and is associated to heterochromatin blocks observed after DAPI staining. These observations are discussed in relation to the satellite DNA evolution and compared with other features observed in several plant groups.

  8. Chromosomal Mapping of Repetitive DNAs in the Grasshopper Abracris flavolineata Reveal Possible Ancestry of the B Chromosome and H3 Histone Spreading.

    Directory of Open Access Journals (Sweden)

    Danilo Bueno

    Full Text Available Supernumerary chromosomes (B chromosomes occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes.

  9. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  10. Identification and molecular epidemiology of dermatophyte isolates by repetitive-sequence-PCR-based DNA fingerprinting using the DiversiLab system in Turkey.

    Science.gov (United States)

    Koc, A Nedret; Atalay, Mustafa A; Inci, Melek; Sariguzel, Fatma M; Sav, Hafize

    2017-05-01

    Dermatophyte species, isolation and identification in clinical samples are still difficult and take a long time. The identification and molecular epidemiology of dermatophytes commonly isolated in a clinical laboratory in Turkey by repetitive sequence-based PCR (rep-PCR) were assessed by comparing the results with those of reference identification. A total of 44 dermatophytes isolated from various clinical specimens of 20 patients with superficial mycoses in Kayseri and 24 patients in Hatay were studied. The identification of dermatophyte isolates was based on the reference identification and rep-PCR using the DiversiLab System (BioMerieux). The genotyping of dermatophyte isolates from different patients was determined by rep-PCR. In the identification of dermatophyte isolates, agreement between rep-PCR and conventional methods was 87.8 % ( 36 of 41). The dermatophyte strains belonged to four clones (A -D) which were determined by the use of rep-PCR. The dermatophyte strains in Clone B, D showed identical patterns with respect to the region. In conclusion, rep-PCR appears to be useful for evaluation of the identification and clonal relationships between Trichophyton rubrum species complex and Trichophyton mentagrophytes species complex isolates. The similarity and diversity of these isolates may be assessed according to different regions by rep-PCR. © 2017 Blackwell Verlag GmbH.

  11. Lay perceptions of predictive testing for diabetes based on DNA test results versus family history assessment: a focus group study

    Directory of Open Access Journals (Sweden)

    Cornel Martina C

    2011-07-01

    Full Text Available Abstract Background This study assessed lay perceptions of issues related to predictive genetic testing for multifactorial diseases. These perceived issues may differ from the "classic" issues, e.g. autonomy, discrimination, and psychological harm that are considered important in predictive testing for monogenic disorders. In this study, type 2 diabetes was used as an example, and perceptions with regard to predictive testing based on DNA test results and family history assessment were compared. Methods Eight focus group interviews were held with 45 individuals aged 35-70 years with (n = 3 and without (n = 1 a family history of diabetes, mixed groups of these two (n = 2, and diabetes patients (n = 2. All interviews were transcribed and analysed using Atlas-ti. Results Most participants believed in the ability of a predictive test to identify people at risk for diabetes and to motivate preventive behaviour. Different reasons underlying motivation were considered when comparing DNA test results and a family history risk assessment. A perceived drawback of DNA testing was that diabetes was considered not severe enough for this type of risk assessment. In addition, diabetes family history assessment was not considered useful by some participants, since there are also other risk factors involved, not everyone has a diabetes family history or knows their family history, and it might have a negative influence on family relations. Respect for autonomy of individuals was emphasized more with regard to DNA testing than family history assessment. Other issues such as psychological harm, discrimination, and privacy were only briefly mentioned for both tests. Conclusion The results suggest that most participants believe a predictive genetic test could be used in the prevention of multifactorial disorders, such as diabetes, but indicate points to consider before both these tests are applied. These considerations differ with regard to the method of assessment

  12. Familial searching: a specialist forensic DNA profiling service utilising the National DNA Database to identify unknown offenders via their relatives--the UK experience.

    Science.gov (United States)

    Maguire, C N; McCallum, L A; Storey, C; Whitaker, J P

    2014-01-01

    The National DNA Database (NDNAD) of England and Wales was established on April 10th 1995. The NDNAD is governed by a variety of legislative instruments that mean that DNA samples can be taken if an individual is arrested and detained in a police station. The biological samples and the DNA profiles derived from them can be used for purposes related to the prevention and detection of crime, the investigation of an offence and for the conduct of a prosecution. Following the South East Asian Tsunami of December 2004, the legislation was amended to allow the use of the NDNAD to assist in the identification of a deceased person or of a body part where death has occurred from natural causes or from a natural disaster. The UK NDNAD now contains the DNA profiles of approximately 6 million individuals representing 9.6% of the UK population. As the science of DNA profiling advanced, the National DNA Database provided a potential resource for increased intelligence beyond the direct matching for which it was originally created. The familial searching service offered to the police by several UK forensic science providers exploits the size and geographic coverage of the NDNAD and the fact that close relatives of an offender may share a significant proportion of that offender's DNA profile and will often reside in close geographic proximity to him or her. Between 2002 and 2011 Forensic Science Service Ltd. (FSS) provided familial search services to support 188 police investigations, 70 of which are still active cases. This technique, which may be used in serious crime cases or in 'cold case' reviews when there are few or no investigative leads, has led to the identification of 41 perpetrators or suspects. In this paper we discuss the processes, utility, and governance of the familial search service in which the NDNAD is searched for close genetic relatives of an offender who has left DNA evidence at a crime scene, but whose DNA profile is not represented within the NDNAD. We

  13. Trialogue: Preparation, Repetition and...

    Science.gov (United States)

    Oberg, Antoinette; And Others

    1996-01-01

    This paper interrogates both curriculum theory and the limits and potentials of textual forms. A set of overlapping discourses (a trialogue) focuses on inquiring into the roles of obsession and repetition in creating deeply interpretive locations for understanding. (SM)

  14. Power analysis of QTL detection in half-sib families using selective DNA pooling

    Directory of Open Access Journals (Sweden)

    López Teresa

    2001-05-01

    Full Text Available Abstract Individual loci of economic importance (QTL can be detected by comparing the inheritance of a trait and the inheritance of loci with alleles readily identifiable by laboratory methods (genetic markers. Data on allele segregation at the individual level are costly and alternatives have been proposed that make use of allele frequencies among progeny, rather than individual genotypes. Among the factors that may affect the power of the set up, the most important are those intrinsic to the QTL: the additive effect of the QTL, and its dominance, and distance between markers and QTL. Other factors are relative to the choice of animals and markers, such as the frequency of the QTL and marker alleles among dams and sires. Data collection may affect the detection power through the size of half-sib families, selection rate within families, and the technical error incurred when estimating genetic frequencies. We present results for a sensitivity analysis for QTL detection using pools of DNA from selected half-sibs. Simulations showed that conclusive detection may be achieved with families of at least 500 half-sibs if sires are chosen on the criteria that most of their marker alleles are either both missing, or one is fixed, among dams.

  15. Polyphyly of the fern family Tectariaceae sensu Ching: Insights from cpDNA sequence data

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Tectariaceae are a pantropical fern family of about 20 genera, among which 8 are distributed in China. The morphological distinctiveness of the family is widely recognized, yet relatively little systematic research has been conducted on members of Tectariaceae. Phylogenetic analyses of chloroplast DNA sequence data (rbcL and atpB) from 15 species representing all 8 genera in China were carried out under parsimony criteria and Bayesian inference. The phylogenetic reconstructions indicated that the fern family Tectariaceae as traditionally circumscribed are polyphyletic. Ctenitis, Dryopsis, Lastreopsis clustered with and should be included within the newly-defined Dryopteridaceae, and Pleocnemia is also tentatively assigned to it. A narrowly monophyletic Tectariaceae is identified, which includes Ctenitopsis, Hemigramma, Pteridrys, Quercifilix, and Tectaria. In the single rbcL analysis, Arthropteris clustered with the above-mentioned monophyletic Tectariaceae. Although further investigations are still needed to identify infrafamilial relationships within the monophyletic Tectariaceae and to redefine several problematic genera, we propose a working concept here that better reflects the inferred evolutionary history of this group.

  16. Polyphyly of the fern family Tectariaceae sensu Ching: insights from cpDNA sequence data.

    Science.gov (United States)

    Liu, HongMei; Zhang, XianChun; Chen, ZhiDuan; Dong, ShiYong; Qiu, YinLong

    2007-12-01

    Tectariaceae are a pantropical fern family of about 20 genera, among which 8 are distributed in China. The morphological distinctiveness of the family is widely recognized, yet relatively little systematic research has been conducted on members of Tectariaceae. Phylogenetic analyses of chloroplast DNA sequence data (rbcL and atpB) from 15 species representing all 8 genera in China were carried out under parsimony criteria and Bayesian inference. The phylogenetic reconstructions indicated that the fern family Tectariaceae as traditionally circumscribed are polyphyletic. Ctenitis, Dryopsis, Lastreopsis clustered with and should be included within the newly-defined Dryopteridaceae, and Pleocnemia is also tentatively assigned to it. A narrowly monophyletic Tectariaceae is identified, which includes Ctenitopsis, Hemigramma, Pteridrys, Quercifilix, and Tectaria. In the single rbcL analysis, Arthropteris clustered with the above-mentioned monophyletic Tectariaceae. Although further investigations are still needed to identify infrafamilial relationships within the monophyletic Tectariaceae and to redefine several problematic genera, we propose a working concept here that better reflects the inferred evolutionary history of this group.

  17. SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily

    Directory of Open Access Journals (Sweden)

    Verjovski-Almeida Sergio

    2006-11-01

    Full Text Available Abstract Background The CACTA (also called En/Spm superfamily of DNA-only transposons contain the core sequence CACTA in their Terminal Inverted Repeats (TIRs and so far have only been described in plants. Large transcriptome and genome sequence data have recently become publicly available for Schistosoma mansoni, a digenetic blood fluke that is a major causative agent of schistosomiasis in humans, and have provided a comprehensive repository for the discovery of novel genes and repetitive elements. Despite the extensive description of retroelements in S. mansoni, just a single DNA-only transposon belonging to the Merlin family has so far been reported in this organism. Results We describe a novel S. mansoni transposon named SmTRC1, for S. mansoni Transposon Related to CACTA 1, an element that shares several characteristics with plant CACTA transposons. Southern blotting indicates approximately 30–300 copies of SmTRC1 in the S. mansoni genome. Using genomic PCR followed by cloning and sequencing, we amplified and characterized a full-length and a truncated copy of this element. RT-PCR using S. mansoni mRNA followed by cloning and sequencing revealed several alternatively spliced transcripts of this transposon, resulting in distinct ORFs coding for different proteins. Interestingly, a survey of complete genomes from animals and fungi revealed several other novel TRC elements, indicating new families of DNA transposons belonging to the CACTA superfamily that have not previously been reported in these kingdoms. The first three bases in the S. mansoni TIR are CCC and they are identical to those in the TIRs of the insects Aedes aegypti and Tribolium castaneum, suggesting that animal TRCs may display a CCC core sequence. Conclusion The DNA-only transposable element SmTRC1 from S. mansoni exhibits various characteristics, such as generation of multiple alternatively-spliced transcripts, the presence of terminal inverted repeats at the extremities of

  18. Cytomolecular analysis of ribosomal DNA evolution in a natural allotetraploid Brachypodium hybridum and its putative ancestors – dissecting complex repetitive structure of intergenic spacers

    Directory of Open Access Journals (Sweden)

    Natalia Borowska-Zuchowska

    2016-10-01

    Full Text Available Nucleolar dominance is an epigenetic phenomenon associated with nuclear 35S rRNA genes and consists in selective suppression of gene loci inherited from one of the progenitors in the allopolyploid. Our understanding of the exact mechanisms that determine this process is still fragmentary, especially in case of the grass species. This study aimed to shed some light on the molecular basis of this genome-specific inactivation of 35S rDNA loci in an allotetraploid Brachypodium hybridum (2n=30, which arose from the interspecific hybridization between two diploid ancestors that were very similar to modern B. distachyon (2n=10 and B. stacei (2n=20. Using fluorescence in situ hybridization with 25S rDNA and chromosome-specific BAC clones as probes we revealed that the nucleolar dominance is present not only in meristematic root-tip cells but also in differentiated cell fraction of B. hybridum. Additionally, the intergenic spacers (IGSs from both of the putative ancestors and the allotetraploid were sequenced and analyzed. The presumptive transcription initiation sites, spacer promoters and repeated elements were identified within the IGSs. Two different length variants, 2.3 kb and 3.5 kb, of IGSs were identified in B. distachyon and B. stacei, respectively, however only the IGS that had originated from B. distachyon-like ancestor was present in the allotetraploid. The amplification pattern of B. hybridum IGSs suggests that some genetic changes occurred in inactive B. stacei-like rDNA loci during the evolution of the allotetraploid. We hypothesize that their preferential silencing is an effect of structural changes in the sequence rather than just the result of the sole inactivation at the epigenetic level.

  19. Next-generation sequencing detects repetitive elements expansion in giant genomes of annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae).

    Science.gov (United States)

    García, G; Ríos, N; Gutiérrez, V

    2015-06-01

    Among Neotropical fish fauna, the South American killifish genus Austrolebias (Cyprinodontiformes: Rivulidae) constitutes an excellent model to study the genomic evolutionary processes underlying speciation events. Recently, unusually large genome size has been described in 16 species of this genus, with an average DNA content of about 5.95 ± 0.45 pg per diploid cell (mean C-value of about 2.98 pg). In the present paper we explore the possible origin of this unparallel genomic increase by means of comparative analysis of the repetitive components using NGS (454-Roche) technology in the lowest and highest Rivulidae genomes. Here, we provide the first annotated Rivulidae-repeated sequences composition and their relative repetitive fraction in both genomes. Remarkably, the genomic proportion of the moderately repetitive DNA in Austrolebias charrua genome represents approximately twice (45%) of the repetitive components of the highly related rivulinae taxon Cynopoecilus melanotaenia (25%). Present work provides evidence about the impact of the repeat families that could be distinctly proliferated among sublineages within Rivulidae fish group, explaining the great genome size differences encompassing the differentiation and speciation events in this family.

  20. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance*

    OpenAIRE

    Schermerhorn, Kelly M.; Gardner, Andrew F.

    2015-01-01

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, k pol and Kd , for corre...

  1. Use of competitive PCR to assay copy number of repetitive elements in banana.

    Science.gov (United States)

    Baurens, F C; Noyer, J L; Lanaud, C; Lagoda, P J

    1996-11-27

    Banana is one of the most important subtropical fruit crops. Genetic improvement by traditional breeding strategies is difficult and better knowledge of genomic structure is needed. Repeated sequences are powerful markers for genetic fingerprinting. The method proposed here to determine the copy number of nuclear repetitive elements is based on competitive reverse transcription-polymerase chain reaction and can also be used for quantifying cytosolic sequences. The reliability of this method was investigated on crude preparations of total DNA. Variations due to the heterogeneity of crude DNA extracts showed that a single locus reference is needed for accurate quantification. A mapped microsatellite locus was used to normalize copy number measurements. Copy number assay of repetitive elements using this method clearly distinguishes between the two banana subspecies investigated: Musa acuminata spp. banskii and M. acuminata spp. malaccensis. Two repetitive sequence families, pMaCIR1115 and pA9-26, were assayed that cover up to 1% of the M. acuminata genome. Their copy number varied up to six fold between the two subspecies. Furthermore, sequence quantification showed that mitochondrial genomes are present in crude leaf-extracted banana DNA at up to 40 copies per cell.

  2. Organization of some repetitive DNAs and B chromosomes in the grasshopper Eumastusia koebelei koebelei (Rehn, 1909) (Orthoptera, Acrididae, Leptysminae)

    Science.gov (United States)

    Anjos, Allison; Loreto, Vilma; Cabral-de-Mello, Diogo C.

    2016-01-01

    Abstract B chromosomes occur in approximately 15% of eukaryotes and are usually heterochromatic and rich in repetitive DNAs. Here we describe characteristics of a B chromosome in the grasshopper Eumastusia koebelei koebelei (Rehn, 1909) through classical cytogenetic methods and mapping of some repetitive DNAs, including multigene families, telomeric repeats and a DNA fraction enriched with repetitive DNAs obtained from DOP-PCR. Eumastusia koebelei koebelei presented 2n=23, X0 and, in one individual, two copies of the same variant of a B chromosome were noticed, which are associated during meiosis. The C-positive blocks were located in the pericentromeric regions of the standard complement and along the entire length of the B chromosomes. Some G+C-rich heterochromatic blocks were noticed, including conspicuous blocks in the B chromosomes. The mapping of 18S rDNA and U2 snDNA revealed only autosomal clusters, and the telomeric probe hybridized in terminal regions. Finally, the DOP-PCR probe obtained from an individual without a B chromosome revealed signals in the heterochromatic regions, including the entire length of the B chromosome. The possible intraspecific origin of the B chromosomes, due to the shared pool of repetitive DNAs between the A and B chromosomes and the possible consequences of their association are discussed. PMID:27551344

  3. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae).

    Science.gov (United States)

    Park, D-S; Suh, S-J; Hebert, P D N; Oh, H-W; Hong, K-J

    2011-08-01

    Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.

  4. Analysis of unstable DNA sequence in FRM1 gene in Polish families with fragile X syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, Michal; Bal, Jerzy; Obersztyn, Ewa; Bocian, Ewa; Mazurczak, Tadeusz [Instytut Matki i Dziecka, Warsaw (Poland); Zygulska, Marta; Horst, Juergen [Institute of Human Genetics, Muenster (Germany); Deelen, Wout H.; Halley, Dicky J.J. [Erasmus Univ., Rotterdam (Netherlands)

    1996-12-31

    The unstable DNA sequence in the FMR1 gene was analyzed in 85 individuals from Polish families with fragile X syndrome in order to characterize mutations responsible for the disease in Poland. In all affected individuals classified on the basis of clinical features and expression of the fragile site at X(q27.3) a large expansion of the unstable sequence (full mutation) was detected. About 5% (2 of 43) of individuals with full mutation did not express the fragile site. Among normal alleles, ranging in size from 20 to 41 CGC repeats, allele with 29 repeats was the most frequent (37%). Transmission of premutated and fully mutated alleles to the offspring was always associated with size increase. No change in repeat number was found when normal alleles were transmitted. (author). 19 refs., 4 figs, 1 tab.

  5. A novel mtDNA ND6 gene mutation associated with LHON in a Caucasian family.

    Science.gov (United States)

    Zhadanov, Sergey I; Atamanov, Vasily V; Zhadanov, Nikolay I; Oleinikov, Oleg V; Osipova, Ludmila P; Schurr, Theodore G

    2005-07-15

    Leber's hereditary optic neuropathy (LHON) is a frequent cause of inherited blindness. A routine screening for common mtDNA mutations constitutes an important first in its diagnosis. However, a substantial number of LHON patients do not harbor known variants, both pointing to the genetic heterogeneity of LHON and bringing into question its genetic diagnosis. We report a familial case that exhibited typical features of LHON but lacked any of the common mutations. Genetic analysis revealed a novel pathogenic defect in the ND6 gene at 14279A that was not detected in any haplogroup-matched controls screened for it, nor has it been previously reported. This mutation causes a substantial conformational change in the secondary structure of the polypeptide matrix coil and may explain the LHON expression. Thus, it expands the spectrum of deleterious changes affecting ND6-encoding subunit and further highlights the functional significance of this gene, providing additional clues to the disease pathogenesis.

  6. PCR amplification of repetitive sequences as a possible approach in relative species quantification

    DEFF Research Database (Denmark)

    Ballin, Nicolai Zederkopff; Vogensen, Finn Kvist; Karlsson, Anders H

    2012-01-01

    in binary mixtures. PCR LUX primers were designed that amplify repetitive and single copy sequences to establish the species dependent number (constants) (SDC) of amplified repetitive sequences per genome. The SDCs and data from amplification of repetitive sequences were tested for their applicability...... to relatively quantify the amount of chicken DNA in a binary mixture of chicken DNA and pig DNA. However, the designed PCR primers lack the specificity required for regulatory species control....

  7. Intense genomic reorganization in the genus Oecomys (Rodentia, Sigmodontinae: comparison between DNA barcoding and mapping of repetitive elements in three species of the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Renan Gabriel Gomes Junior

    2016-09-01

    Full Text Available Oecomys Thomas, 1906 is one of the most diverse and widely distributed genera within the tribe Oryzomyini. At least sixteen species in this genus have been described to date, but it is believed this genus contains undescribed species. Morphological, molecular and cytogenetic study has revealed an uncertain taxonomic status for several Oecomys species, suggesting the presence of a complex of species. The present work had the goal of contributing to the genetic characterization of the genus Oecomys in the Brazilian Amazon. Thirty specimens were collected from four locations in the Brazilian Amazon and three nominal species recognized: Oecomys auyantepui (Tate, 1939, O. bicolor (Tomes, 1860 and O. rutilus (Anthony, 1921. COI sequence analysis grouped O. auyantepui, O. bicolor and O. rutilus specimens into one, three and two clades, respectively, which is consistent with their geographic distribution. Cytogenetic data for O. auyantepui revealed the sympatric occurrence of two different diploid numbers, 2n=64/NFa=110 and 2n=66/NFa=114, suggesting polymorphism while O. bicolor exhibited 2n=80/NFa=142 and O. rutilus 2n=54/NFa=90. The distribution of constitutive heterochromatin followed a species-specific pattern. Interspecific variation was evident in the chromosomal location and number of 18S rDNA loci. However, not all loci showed signs of activity. All three species displayed a similar pattern for 5S rDNA, with only one pair carrying this locus. Interstitial telomeric sites were found only in O. auyantepui. The data presented in this work reinforce intra- and interspecific variations observed in the diploid number of Oecomys species and indicate that chromosomal rearrangements have led to the appearance of different diploid numbers and karyotypic formulas.

  8. DNA barcode identification of freshwater snails in the family Bithyniidae from Thailand.

    Science.gov (United States)

    Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Ruangsittichai, Jiraporn; Ruangjirachuporn, Wipaporn; Boonmars, Thidarut; Viyanant, Vithoon; Pierossi, Paola; Hebert, Paul D N; Tesana, Smarn

    2013-01-01

    Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5' region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy.

  9. DNA barcode identification of freshwater snails in the family Bithyniidae from Thailand.

    Directory of Open Access Journals (Sweden)

    Jutharat Kulsantiwong

    Full Text Available Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini, the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5' region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %, whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %. Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy.

  10. Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining

    Directory of Open Access Journals (Sweden)

    Rebecca Cook

    2015-03-01

    Full Text Available Deficiencies in DNA double-strand break (DSB repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1 is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ. Support of cNHEJ involves a mechanism independent of RB1’s cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution.

  11. Stimulation of BK virus DNA replication by NFI family transcription factors.

    Science.gov (United States)

    Liang, Bo; Tikhanovich, Irina; Nasheuer, Heinz Peter; Folk, William R

    2012-03-01

    BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind. Six nuclear factor I (NFI) binding sites occur in sequences flanking the late side of the core origin (the enhancer) of the archetype virus, and their mutation, either individually or in toto, reduces BKV DNA replication when placed in competition with templates containing intact BKV NCCRs. NFI family members interacted with the helicase domain of BKV Tag in pulldown assays, suggesting that NFI helps recruit Tag to the viral core origin and may modulate its function. However, Tag may not be the sole target of the replication-modulatory activities of NFI: the NFIC/CTF1 isotype stimulates BKV template replication in vitro at low concentrations of DNA polymerase-α primase (Pol-primase), and the p58 subunit of Pol-primase associates with NFIC/CTF1, suggesting that NFI also recruits Pol-primase to the NCCR. These results suggest that NFI proteins (and the signaling pathways that target them) activate BKV replication and contribute to the consequent pathologies caused by acute infection.

  12. [Heterogeneity and homologies of the repeating and unique DNA of dragonflies (Odonata, Insecta)].

    Science.gov (United States)

    Petrov, N B; Aleshin, V V

    1983-01-01

    A relative content of unique and reiterated nucleotide sequences in DNA of eleven dragonfly species was estimated. The degree of intra- and intergenomic divergence of these DNA sequences was determined by means of DNA-DNA hybridization. Species from different genera share 40-45% of the repetitive sequences and those from different families--from 11 to 20% only. Data on the thermostability of homo- and heteroduplexes suggest that new families of the repetitive sequences have arisen repeatedly during dragonflies evolution. The quality of homologous unique sequences in the DNA compared (20-97%) correlates with the taxonomic relationships of species. Phylogenesis of some dragonfly families is discussed in view of the results obtained.

  13. Nuclear DNA C-values in 30 species double the familial representation in pteridophytes.

    Science.gov (United States)

    Obermayer, Renate; Leitch, Ilia J; Hanson, Lynda; Bennett, Michael D

    2002-08-01

    Nuclear DNA C-values and genome size are important biodiversity characters with fundamental biological significance. Yet C-value data for pteridophytes, a diverse group of vascular plants with approx. 9000 extant species, remain scarce. A recent survey by Bennett and Leitch (2001, Annals of Botany 87: 335-345) found that C-values were reported for only 48 pteridophyte species. To improve phylogenetic representation in this group and to check previously reported estimates, C-values for 30 taxa in 17 families were measured using flow cytometry for all but one species. This technique proved generally applicable, but the ease with which C-value data were generated varied greatly between materials. Comparing the new data with those previously published revealed several large discrepancies. After discounting doubtful data, C-values for 62 pteridophyte species remained acceptable for analysis. The present work has increased the number of such species' C-values by 93 %, and more than doubled the number of families represented (from 10 to 21). Analysis shows that pteridophyte C-values vary approx. 450-fold, from 0-16 pg in Selaginella kraussiana to 72.7 pg in Psilotum nudum var. gasa. Superimposing C-value data onto a robust phylogeny of pteridophytes suggests some possible trends in C-value evolution and highlights areas for future work.

  14. Imprinting mutations suggested by abnormal DNA methylation patterns in familial angelman and Prader-Willi syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Reis, A. (Freie Universitaet, Berlin (Germany)); Dittrich, B.; Buiting, K.; Gillessen-Kaesbach, G.; Horsthemke, B. (Institut fuer Humangenetik, Essen (United Kingdom)); Greger, V.; Lalande, M. (Harvard Medical School, Boston, MA (United States)); Anvret, M. (Karolinska Hospital, Stockholm (Sweden))

    1994-05-01

    The D15S9 and D15S63 loci in the Prader-Willi/Angelman syndrome region on chromosome 15 are subject to parent-of-origin-specific DNA methylation. The authors have found two Prader-Willi syndrome families in which the patients carry a maternal methylation imprint on the paternal chromosome. In one of these families, the patients have a small deletion encompassing the gene for the small nuclear ribonucleoprotein polypeptide N, which maps 130 kb telomeric to D15S63. Furthermore, they have identified a pair of nondeletion Angelman syndrome sibs and two isolated Angelman syndrome patients who carry a paternal methylation imprint on the maternal chromosome. These Angelman and Prader-Willi syndrome patients may have a defect in the imprinting process in 15q11-13. The authors propose a model in which a cis-acting mutation prevents the resetting of the imprinting signal in the germ line and thus disturbs the expression of imprinted genes in this region. 39 refs., 4 figs., 1 tab.

  15. Eubacterial SpoVG homologs constitute a new family of site-specific DNA-binding proteins.

    Directory of Open Access Journals (Sweden)

    Brandon L Jutras

    Full Text Available A site-specific DNA-binding protein was purified from Borrelia burgdorferi cytoplasmic extracts, and determined to be a member of the highly conserved SpoVG family. This is the first time a function has been attributed to any of these ubiquitous bacterial proteins. Further investigations into SpoVG orthologues indicated that the Staphylococcus aureus protein also binds DNA, but interacts preferentially with a distinct nucleic acid sequence. Site-directed mutagenesis and domain swapping between the S. aureus and B. burgdorferi proteins identified that a 6-residue stretch of the SpoVG α-helix contributes to DNA sequence specificity. Two additional, highly conserved amino acid residues on an adjacent β-sheet are essential for DNA-binding, apparently by contacts with the DNA phosphate backbone. Results of these studies thus identified a novel family of bacterial DNA-binding proteins, developed a model of SpoVG-DNA interactions, and provide direction for future functional studies on these wide-spread proteins.

  16. A Cold Case and a Warm Conversation: A Discourse Analysis of Focus Groups on Large-scale DNA Familial Searching

    NARCIS (Netherlands)

    Klarenbeek, Annette; Renes, Reint Jan

    2013-01-01

    In this case study, we want to gain insight into how residents of three municipalities communicate about the new murder scenario of the cold case of Marianne Vaatstra and the possibility of a large-scale DNA familial searching. We investigate how stakeholders shape their arguments in conversation wi

  17. A Cold Case and a Warm Conversation. : A Discourse Analysis of Focus Groups on Large-scale DNA Familial Searching.

    NARCIS (Netherlands)

    Klarenbeek, Annette; Renes, Reint-Jan

    2013-01-01

    In this case study, we want to gain insights into how residents of three municipalities communicate about the new murder scenario of the cold case of Marianne Vaatstra and the possibility of a large-scale DNA familial searching. We investigate how stakeholders shape their arguments in conversation w

  18. Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferases and demethylase families in wild and cultivated peanut

    Directory of Open Access Journals (Sweden)

    Pengfei eWang

    2016-02-01

    Full Text Available AbstractDNA methylation plays important roles in genome protection, regulation of gene expression and was associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferases and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequence, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases and demethylase in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in known MET, CMT and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 numbers didn’t contain UBA domain which was different from other plants such as Arabidopsis, maize, soybean. Five DNA demethylase were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTases gene mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferases and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or drought stress could influence the expression level of C5-MTases and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut.

  19. Distinct Roles for Interfacial Hydration in Site-Specific DNA Recognition by ETS-Family Transcription Factors.

    Science.gov (United States)

    Xhani, Suela; Esaki, Shingo; Huang, Kenneth; Erlitzki, Noa; Poon, Gregory M K

    2017-04-06

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. Unlike other ETS homologues, such as Ets-1, DNA recognition by PU.1 is highly sensitive to its osmotic environment due to excess interfacial hydration in the complex. To investigate interfacial hydration in the two homologues, we mutated a conserved tyrosine residue, which is exclusively engaged in coordinating a well-defined water contact between the protein and DNA among ETS proteins, to phenylalanine. The loss of this water-mediated contact blunted the osmotic sensitivity of PU.1/DNA binding, but did not alter binding under normo-osmotic conditions, suggesting that PU.1 has evolved to maximize osmotic sensitivity. The homologous mutation in Ets-1, which was minimally sensitive to osmotic stress due to a sparsely hydrated interface, reduced DNA-binding affinity at normal osmolality but the complex became stabilized by osmotic stress. Molecular dynamics simulations of wildtype and mutant PU.1 and Ets-1 in their free and DNA-bound states, which recapitulated experimental features of the proteins, showed that abrogation of this tyrosine-mediated water contact perturbed the Ets-1/DNA complex not through disruption of interfacial hydration, but by inhibiting local dynamics induced specifically in the bound state. Thus, a configurationally identical water-mediated contact plays mechanistically distinct roles in mediating DNA recognition by structurally homologous ETS transcription factors.

  20. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)).

    Science.gov (United States)

    Lim, Seonhee; Song, Insil; Guengerich, F Peter; Choi, Jeong-Yun

    2012-08-20

    Archaeal and eukaryotic B-family DNA polymerases (pols) mainly replicate chromosomal DNA but stall at lesions, which are often bypassed with Y-family pols. In this study, a B-family pol Vent (exo(-)) from the euryarchaeon Thermococcus litoralis was studied with three types of DNA lesions-N(2)-alkylG, O(6)-alkylG, and an abasic (AP) site-in comparison with a model Y-family pol Dpo4 from Sulfolobus solfataricus, to better understand the effects of various DNA modifications on binding, bypass efficiency, and fidelity of pols. Vent (exo(-)) readily bypassed N(2)-methyl(Me)G and O(6)-MeG, but was strongly blocked at O(6)-benzyl(Bz)G and N(2)-BzG, whereas Dpo4 efficiently bypassed N(2)-MeG and N(2)-BzG and partially bypassed O(6)-MeG and O(6)-BzG. Vent (exo(-)) bypassed an AP site to an extent greater than Dpo4, corresponding with steady-state kinetic data. Vent (exo(-)) showed ~110-, 180-, and 300-fold decreases in catalytic efficiency (k(cat)/K(m)) for nucleotide insertion opposite an AP site, N(2)-MeG, and O(6)-MeG but ~1800- and 5000-fold decreases opposite O(6)-BzG and N(2)-BzG, respectively, as compared to G, whereas Dpo4 showed little or only ~13-fold decreases opposite N(2)-MeG and N(2)-BzG but ~260-370-fold decreases opposite O(6)-MeG, O(6)-BzG, and the AP site. Vent (exo(-)) preferentially misinserted G opposite N(2)-MeG, T opposite O(6)-MeG, and A opposite an AP site and N(2)-BzG, while Dpo4 favored correct C insertion opposite those lesions. Vent (exo(-)) and Dpo4 both bound modified DNAs with affinities similar to unmodified DNA. Our results indicate that Vent (exo(-)) is as or more efficient as Dpo4 in synthesis opposite O(6)-MeG and AP lesions, whereas Dpo4 is much or more efficient opposite (only) N(2)-alkylGs than Vent (exo(-)), irrespective of DNA-binding affinity. Our data also suggest that Vent (exo(-)) accepts nonbulky DNA lesions (e.g., N(2)- or O(6)-MeG and an AP site) as manageable substrates despite causing error-prone synthesis, whereas Dpo4

  1. Characterization of family IV UDG from Aeropyrum pernix and its application in hot-start PCR by family B DNA polymerase.

    Directory of Open Access Journals (Sweden)

    Xi-Peng Liu

    Full Text Available Recombinant uracil-DNA glycosylase (UDG from Aeropyrum pernix (A. pernix was expressed in E. coli. The biochemical characteristics of A. pernix UDG (ApeUDG were studied using oligonucleotides carrying a deoxyuracil (dU base. The optimal temperature range and pH value for dU removal by ApeUDG were 55-65°C and pH 9.0, respectively. The removal of dU was inhibited by the divalent ions of Zn, Cu, Co, Ni, and Mn, as well as a high concentration of NaCl. The opposite base in the complementary strand affected the dU removal by ApeUDG as follows: U/C≈U/G>U/T≈U/AP≈U/->U/U≈U/I>U/A. The phosphorothioate around dU strongly inhibited dU removal by ApeUDG. Based on the above biochemical characteristics and the conservation of amino acid residues, ApeUDG was determined to belong to the IV UDG family. ApeUDG increased the yield of PCR by Pfu DNA polymerase via the removal of dU in amplified DNA. Using the dU-carrying oligonucleotide as an inhibitor and ApeUDG as an activator of Pfu DNA polymerase, the yield of undesired DNA fragments, such as primer-dimer, was significantly decreased, and the yield of the PCR target fragment was increased. This strategy, which aims to amplify the target gene with high specificity and yield, can be applied to all family B DNA polymerases.

  2. Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly cy-dye labelled DNA.

    Directory of Open Access Journals (Sweden)

    Samantha A Wynne

    Full Text Available Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10 of Pyrococcus furiosus (Pfu polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP in PCR and synthesise highly fluorescent "CyDNA" densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers.

  3. Do DNA extraction methods and Taq polimerase quality improve the double repetitive element (DRE PCR typing method for Mycobacterium tuberculosis strains? Os métodos de extração de DNA e a qualidade DA Taq polimerase podem melhorar a tipagem molecular de M. tuberculosis por DRE-PCR

    Directory of Open Access Journals (Sweden)

    Hebe Rodrigues Cavalcanti

    2007-09-01

    Full Text Available Double repetitive element (DRE PCR amplification is a simple Mycobacterium tuberculosis typing method, however amplification failure or poor resolution of bands commit its efficacy. In order to verify if whether or not these features could be minimized by improving DNA extraction procedures or Taq polymerise quality, DRE-PCR was performed on 24 M. tuberculosis DNA samples extracted by heat-shock, mechanical and enzymatic methods applying conventional and hot start Taq pol. We demonstrated that when dealing with the Mycobacterium tuberculosis DRE-PCR typing method, Taq pol of better quality might be more important to improve amplification than the DNA extraction method.Amplificação de duplo elemento repetido (DRE por PCR é um método simples para tipagem de Mycobacterium tuberculosis, entretanto falha ou a baixa resolução das bandas na amplificação compromete a eficiência do método. Com o objetivo de verificar se estes problemas podem ou não ser minimizados pela utilização de diferentes procedimentos de extração de DNA ou de qualidades de Taq polimerase, DRE-PCR foi ensaiado em 24 amostras de DNA de M. tuberculosis extraídos pelos métodos de choque-térmico, - mecânico e enzimático utilizando Taq polimerase convencional e hot start Taq pol. Foi demonstrado que a qualidade da Taq pol utilizada talvez seja mais importante para uma melhor amplificação que o método de extração de DNA empregado.

  4. Comprehensive Molecular Phylogeny of the Sub-Family Dipterocarpoideae (Dipterocarpaceae) Based on Chloroplast DNA Sequences

    National Research Council Canada - National Science Library

    Gamage, Dayananda Thawalama; Silva, Morley P. de; Inomata, Nobuyuki; Yamazaki, Tsuneyuki; Szmidt, Alfred E

    2006-01-01

    .... Although several previous studies addressed the phylogeny of the Dipterocarpaceae family, relationships among many of its genera from the Dipterocarpoideae sub-family are still not well understood...

  5. Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions

    Science.gov (United States)

    Kocman, Vojč; Plavec, Janez

    2017-05-01

    Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5'-AGCGA-3' tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5'-AGCGA-3' and 5'-GGG-3' repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development.

  6. Using DNA-barcoding to make the necrobiont beetle family Cholevidae accessible for forensic entomology.

    Science.gov (United States)

    Schilthuizen, Menno; Scholte, Cindy; van Wijk, Renske E J; Dommershuijzen, Jessy; van der Horst, Devi; Zu Schlochtern, Melanie Meijer; Lievers, Rik; Groenenberg, Dick S J

    2011-07-15

    The beetle family Cholevidae (Coleoptera: Staphylinoidea), sometimes viewed as the subfamily Cholevinae of the Leiodidae, consists of some 1700 species worldwide. With the exception of specialized cave-dwelling species and species living in bird and mammal nests and burrows, the species are generalized soil-dwellers that, at least in temperate regions, are mostly found on vertebrate cadavers. Although they have been regularly reported from human corpses, and offer potential because of many species' peak activity in the cold season, they have not been a focus of forensic entomologists so far. This is probably due to their small size and the difficulty in identifying the adults and their larvae. In this paper, we show that DNA-barcoding can help make this group of necrobiont beetles available as a tool for forensic research. We collected 86 specimens of 20 species of the genera Catops, Fissocatops, Apocatops, Choleva, Nargus, Ptomaphagus, and Sciodrepoides from the Netherlands and France and show that a broad "barcoding gap" allows almost all species to be easily and unambiguously identified by the sequence of the "barcoding gene" cytochrome c oxidase I (COI). This opens up the possibility of adding Cholevidae to the set of insect taxa routinely used in forensic entomology.

  7. Efficient detection of unpaired DNA requires a member of the rad54-like family of homologous recombination proteins.

    Science.gov (United States)

    Samarajeewa, Dilini A; Sauls, Pegan A; Sharp, Kevin J; Smith, Zachary J; Xiao, Hua; Groskreutz, Katie M; Malone, Tyler L; Boone, Erin C; Edwards, Kevin A; Shiu, Patrick K T; Larson, Erik D; Hammond, Thomas M

    2014-11-01

    Meiotic silencing by unpaired DNA (MSUD) is a process that detects unpaired regions between homologous chromosomes and silences them for the duration of sexual development. While the phenomenon of MSUD is well recognized, the process that detects unpaired DNA is poorly understood. In this report, we provide two lines of evidence linking unpaired DNA detection to a physical search for DNA homology. First, we have found that a putative SNF2-family protein (SAD-6) is required for efficient MSUD in Neurospora crassa. SAD-6 is closely related to Rad54, a protein known to facilitate key steps in the repair of double-strand breaks by homologous recombination. Second, we have successfully masked unpaired DNA by placing identical transgenes at slightly different locations on homologous chromosomes. This masking falls apart when the distance between the transgenes is increased. We propose a model where unpaired DNA detection during MSUD is achieved through a spatially constrained search for DNA homology. The identity of SAD-6 as a Rad54 paralog suggests that this process may be similar to the searching mechanism used during homologous recombination. Copyright © 2014 by the Genetics Society of America.

  8. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation

    Science.gov (United States)

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5’ upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile. PMID:28005945

  9. Subunit interaction and regulation of activity through terminal domains of the family D DNA polymerase from Pyrococcus horikoshii.

    Science.gov (United States)

    Shen, Y; Tang, X-F; Matsui, E; Matsui, I

    2004-04-01

    Family D DNA polymerase (PolD) has recently been found in the Euryarchaeota subdomain of Archaea. Its genes are adjacent to several other genes related to DNA replication, repair and recombination in the genome, suggesting that this enzyme may be the major DNA replicase in Euryarchaeota. We successfully cloned, expressed, and purified the family D DNA polymerase from Pyrococcus horikoshii (PolDPho). By site-directed mutagenesis, we identified amino acid residues Asp-1122 and Asp-1124 of a large subunit as the essential residues responsible for DNA-polymerizing activity. We analysed the domain structure using proteins truncated at the N- and C-termini of both small and large subunits (DP1Pho and DP2Pho), and identified putative regions responsible for subunit interaction, oligomerization and regulation of the 3'-5' exonuclease activity in PolDPho. It was also found that the internal region of the putative zinc finger motif (cysteine cluster II) at the C-terminal of DP2Pho is involved in the 3'-5' exonuclease activity. Using gel filtration analysis, we determined the molecular masses of the recombinant PolDPho and the N-terminal putative dimerization domain of the large subunit, and proposed that PolD from P. horikoshii probably forms a heterotetrameric structure in solution. Based on these results, a model regarding the subunit interaction and regulation of activity of PolDPho is proposed.

  10. Molecular cytogenetics of Alstroemeria: identification of parental genomes in interspecific hy brids and characterization of repetitive DNA families in constitutive heterochromatin.

    NARCIS (Netherlands)

    Kuipers, A.G.J.; Os, van D.P.M.; Jong, de J.H.; Ramanna, M.S.

    1997-01-01

    The genus Alstroemeria consists of diploid(2n=2x=16) species originating mainly from Chile and Brazil. Most cultivars are triploid or tetraploid interspecific hybrids. C-banding of eight species revealed obvious differentiation of constitutive heterochromatin within the genus. The present study focu

  11. Glycidol-carbohydrate hybrids: a new family of DNA alkylating agents.

    Science.gov (United States)

    Toshima, Kazunobu; Okuno, Yukiko; Matsumura, Shuichi

    2003-10-06

    Novel and chiral glycidol-carbohydrate hybrids possessing an epoxy group as a DNA alkylating moiety were designed and synthesized. These artificial hybrids selectively alkylated DNA at the N-7 sites of the guanines and cleaved DNA without any additives. The binding ability of the glycidol was significantly enhanced by the attachment of the carbohydrate.

  12. Characterization of cDNA encoding human placental anticoagulant protein (PP4): Homology with the lipocortin family

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Abel, K.J.; Bohn, H.; Loebermann, H.; Lottspeich, F.; Kuepper, H. (Research Institutes, Postfach (West Germany))

    1988-06-01

    A cDNA library prepared from human placenta was screened for sequences encoding the placental protein 4 (PP4). PP4 is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade. Partial amino acid sequence information from PP4-derived cyanogen bromide fragments was used to design three oligonucleotide probes for screening the library. From 10{sup 6} independent recombinants, 18 clones were identified that hybridized to all three probes. These 18 recombinants contained cDNA inserts encoding a protein of 320 amino acid residues. In addition to the PP4 cDNA the authors identified 9 other recombinants encoding a protein with considerable similarity (74%) to PP4, which was termed PP4-X. PP4 and PP4-X belong to the lipocortin family, as judged by their homology to lipocortin I and calpactin I.

  13. Segregation pattern and biochemical effect of the G3460A mtDNA mutation in 27 members of LHON family.

    Science.gov (United States)

    Kaplanová, Vilma; Zeman, Jirí; Hansíková, Hana; Cerná, Leona; Houst'ková, Hana; Misovicová, Nadezda; Houstek, Josef

    2004-08-30

    Inheritance and expression of mitochondrial DNA (mtDNA) mutations are crucial for the pathogenesis of Leber hereditary optic neuropathy (LHON). We have investigated the segregation and functional consequences of G3460A mtDNA mutation in 27 members of a three-generation family with LHON syndrome. Specific activity of respiratory chain complex I in platelets was reduced in average to 56%, but no direct correlation between the mutation load and its biochemical expression was found. Heteroplasmy in blood, platelets and hair follicles varied from 7% to 100%. Segregation pattern exhibited tissue specificity and influence of different nuclear backgrounds in four branches of the pedigree. Longitudinal analysis revealed a significant (p=0.02) decrease in blood mutation load. Although enzyme assay showed reduction of complex I activity, our results give additional support to the hypothesis that expression of LHON mutation depends on complex nuclear-mitochondrial interaction.

  14. Isolation, characterization and cDNA sequencing of a Kazal family proteinase inhibitor from seminal plasma of turkey (Meleagris gallopavo).

    Science.gov (United States)

    Słowińska, Mariola; Olczak, Mariusz; Wojtczak, Mariola; Glogowski, Jan; Jankowski, Jan; Watorek, Wiesław; Amarowicz, Ryszard; Ciereszko, Andrzej

    2008-06-01

    The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.

  15. MIMICRY, DIFFERENCE AND REPETITION

    Directory of Open Access Journals (Sweden)

    Marcelo Mendes de Souza

    2008-07-01

    Full Text Available This article addresses Homi K. Bhabha’s concept of mimicry in a broader context, other than that of cultural studies and post-colonial studies, bringing together other concepts, such as that of Gilles Deleuze in Difference and repetition, among other texts, and other names, such as Silviano Santiago, Jorge Luís Borges, Franz Kafka and Giorgio Agamben. As a partial conclusion, the article intends to oppose Bhabha’s freudian-marxist view to Five propositions on Psychoanalysis (1973, Gilles Deleuze’s text about Psychoanalysis published right after his book The Anti-Oedipus.

  16. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation.

    Directory of Open Access Journals (Sweden)

    Jason Gertz

    2011-08-01

    Full Text Available The methylation of cytosines in CpG dinucleotides is essential for cellular differentiation and the progression of many cancers, and it plays an important role in gametic imprinting. To assess variation and inheritance of genome-wide patterns of DNA methylation simultaneously in humans, we applied reduced representation bisulfite sequencing (RRBS to somatic DNA from six members of a three-generation family. We observed that 8.1% of heterozygous SNPs are associated with differential methylation in cis, which provides a robust signature for Mendelian transmission and relatedness. The vast majority of differential methylation between homologous chromosomes (>92% occurs on a particular haplotype as opposed to being associated with the gender of the parent of origin, indicating that genotype affects DNA methylation of far more loci than does gametic imprinting. We found that 75% of genotype-dependent differential methylation events in the family are also seen in unrelated individuals and that overall genotype can explain 80% of the variation in DNA methylation. These events are under-represented in CpG islands, enriched in intergenic regions, and located in regions of low evolutionary conservation. Even though they are generally not in functionally constrained regions, 22% (twice as many as expected by chance of genes harboring genotype-dependent DNA methylation exhibited allele-specific gene expression as measured by RNA-seq of a lymphoblastoid cell line, indicating that some of these events are associated with gene expression differences. Overall, our results demonstrate that the influence of genotype on patterns of DNA methylation is widespread in the genome and greatly exceeds the influence of imprinting on genome-wide methylation patterns.

  17. Repetitive element hypermethylation in multiple sclerosis patients.

    Science.gov (United States)

    Neven, K Y; Piola, M; Angelici, L; Cortini, F; Fenoglio, C; Galimberti, D; Pesatori, A C; Scarpini, E; Bollati, V

    2016-06-18

    Multiple sclerosis (MS) is a complex disorder of the central nervous system whose cause is currently unknown. Evidence is increasing that DNA methylation alterations could be involved in inflammatory and neurodegenerative diseases and could contribute to MS pathogenesis. Repetitive elements Alu, LINE-1 and SAT-α, are widely known as estimators of global DNA methylation. We investigated Alu, LINE-1 and SAT-α methylation levels to evaluate their difference in a case-control setup and their role as a marker of disability. We obtained blood samples from 51 MS patients and 137 healthy volunteers matched by gender, age and smoking. Methylation was assessed using bisulfite-PCR-pyrosequencing. For all participants, medical history, physical and neurological examinations and screening laboratory tests were collected. All repetitive elements were hypermethylated in MS patients compared to healthy controls. A lower Expanded Disability Status Scale (EDSS) score was associated with a lower levels of LINE-1 methylation for 'EDSS = 1.0' and '1.5 ≤ EDSS ≤ 2.5' compared to an EDSS higher than 3, while Alu was associated with a higher level of methylation in these groups: 'EDSS = 1.0' and '1.5 ≤ EDSS ≤ 2.5'. MS patients exhibit an hypermethylation in repetitive elements compared to healthy controls. Alu and LINE-1 were associated with degree of EDSS score. Forthcoming studies focusing on epigenetics and the multifactorial pathogenetic mechanism of MS could elucidate these links further.

  18. Searching for first-degree familial relationships in California's offender DNA database: validation of a likelihood ratio-based approach.

    Science.gov (United States)

    Myers, Steven P; Timken, Mark D; Piucci, Matthew L; Sims, Gary A; Greenwald, Michael A; Weigand, James J; Konzak, Kenneth C; Buoncristiani, Martin R

    2011-11-01

    A validation study was performed to measure the effectiveness of using a likelihood ratio-based approach to search for possible first-degree familial relationships (full-sibling and parent-child) by comparing an evidence autosomal short tandem repeat (STR) profile to California's ∼1,000,000-profile State DNA Index System (SDIS) database. Test searches used autosomal STR and Y-STR profiles generated for 100 artificial test families. When the test sample and the first-degree relative in the database were characterized at the 15 Identifiler(®) (Applied Biosystems(®), Foster City, CA) STR loci, the search procedure included 96% of the fathers and 72% of the full-siblings. When the relative profile was limited to the 13 Combined DNA Index System (CODIS) core loci, the search procedure included 93% of the fathers and 61% of the full-siblings. These results, combined with those of functional tests using three real families, support the effectiveness of this tool. Based upon these results, the validated approach was implemented as a key, pragmatic and demonstrably practical component of the California Department of Justice's Familial Search Program. An investigative lead created through this process recently led to an arrest in the Los Angeles Grim Sleeper serial murders.

  19. Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family

    Directory of Open Access Journals (Sweden)

    Rothblatt Jonathan

    2008-07-01

    Full Text Available Abstract Background In contrast to the three mammalian p53 family members, p53, which is generally involved in DNA damage responses, and p63 and p73 which are primarily needed for developmental regulation, cep-1 encodes for the single C. elegans p53-like gene. cep-1 acts as a transcription activator in a primordial p53 pathway that involves CEP-1 activation and the CEP-1 dependent transcriptional induction of the worm BH3 only domain encoding genes egl-1 and ced-13 to induce germ cell apoptosis. EGL-1 and CED-13 proteins inactivate Bcl-2 like CED-9 to trigger CED-4 and CED-3 caspase dependent germ cell apoptosis. To address the function of p53 in global transcriptional regulation we investigate genome-wide transcriptional responses upon DNA damage and cep-1 deficiency. Results Examining C. elegans expression profiles using whole genome Affymetrix GeneChip arrays, we found that 83 genes were induced more than two fold upon ionizing radiation (IR. None of these genes, with exception of an ATP ribosylase homolog, encode for known DNA repair genes. Using two independent cep-1 loss of function alleles we did not find genes regulated by cep-1 in the absence of IR. Among the IR-induced genes only three are dependent on cep-1, namely egl-1, ced-13 and a novel C. elegans specific gene. The majority of IR-induced genes appear to be involved in general stress responses, and qRT-PCR experiments indicate that they are mainly expressed in somatic tissues. Interestingly, we reveal an extensive overlap of gene expression changes occurring in response to DNA damage and in response to bacterial infection. Furthermore, many genes induced by IR are also transcriptionally regulated in longevity mutants suggesting that DNA damage and aging induce an overlapping stress response. Conclusion We performed genome-wide gene expression analyses which indicate that only a surprisingly small number of genes are regulated by CEP-1 and that DNA damage induced apoptosis via the

  20. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase.

    Science.gov (United States)

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi

    2013-07-05

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  1. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Hideshi Yokoyama

    2013-07-01

    Full Text Available Archaea-specific D-family DNA polymerase (PolD forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  2. Repetitive sequence analysis and karyotyping reveal different genome evolution and speciation of diploid and tetraploid Tripsacum dactyloides

    Directory of Open Access Journals (Sweden)

    Qilin Zhu

    2016-08-01

    Full Text Available In the subtribe Maydeae, Tripsacum and Zea are closely related genera. Tripsacum is a horticultural crop widely used as pasture forage. Previous studies suggested that Tripsacum might play an important role in maize origin and evolution. However, our understanding of the genomics and the evolution of Tripsacum remains limited. In this study, two diploids, T. dactyloides var. meridionale (2n = 36, MR and T. dactyloides (2n = 36, DD, and one tetraploid, T. dactyloides (2n = 72, DL were sequenced by low-coverage genome sequencing followed by graph-based cluster analysis. The results showed that 63.23%, 59.20%, and 61.57% of the respective genome of MR, DD, and DL were repetitive DNA sequence. The proportions of different repetitive sequences varied greatly among the three species. Fluorescence in situ hybridization (FISH analysis of mitotic metaphase chromosomes with satellite repeats as the probes showed that the FISH signal patterns of DL were more similar to that of DD than to that of MR. Comparative analysis of the repeats also showed that DL shared more common repeat families with DD than with MR. Phylogenetic analysis of internal transcribed spacer region sequences further supported the evolutionary relationship among the three species. Repetitive sequences comparison showed that Tripsacum shared more repeat families with Zea than with Coix and Sorghum. Our study sheds new light on the genomics of Tripsacum and differential speciation in the Poaceae family.

  3. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  4. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  5. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The PCNA-RFC families of DNA clamps and clamp loaders.

    Science.gov (United States)

    Majka, Jerzy; Burgers, Peter M J

    2004-01-01

    The proliferating cell nuclear antigen PCNA functions at multiple levels in directing DNA metabolic pathways. Unbound to DNA, PCNA promotes localization of replication factors with a consensus PCNA-binding domain to replication factories. When bound to DNA, PCNA organizes various proteins involved in DNA replication, DNA repair, DNA modification, and chromatin modeling. Its modification by ubiquitin directs the cellular response to DNA damage. The ring-like PCNA homotrimer encircles double-stranded DNA and slides spontaneously across it. Loading of PCNA onto DNA at template-primer junctions is performed in an ATP-dependent process by replication factor C (RFC), a heteropentameric AAA+ protein complex consisting of the Rfc1, Rfc2, Rfc3, Rfc4, and Rfc5 subunits. Loading of yeast PCNA (POL30) is mechanistically distinct from analogous processes in E. coli (beta subunit by the gamma complex) and bacteriophage T4 (gp45 by gp44/62). Multiple stepwise ATP-binding events to RFC are required to load PCNA onto primed DNA. This stepwise mechanism should permit editing of this process at individual steps and allow for divergence of the default process into more specialized modes. Indeed, alternative RFC complexes consisting of the small RFC subunits together with an alternative Rfc1-like subunit have been identified. A complex required for the DNA damage checkpoint contains the Rad24 subunit, a complex required for sister chromatid cohesion contains the Ctf18 subunit, and a complex that aids in genome stability contains the Elg1 subunit. Only the RFC-Rad24 complex has a known associated clamp, a heterotrimeric complex consisting of Rad17, Mec3, and Ddc1. The other putative clamp loaders could either act on clamps yet to be identified or act on the two known clamps.

  7. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  8. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  9. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    Science.gov (United States)

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected.

  10. Repetition in Waiting for Godot

    Institute of Scientific and Technical Information of China (English)

    李想; 魏妍

    2015-01-01

    Waiting for Godot is one of the most famous plays written by Samuel Barclay Beckett, and also is the founding work of“Theatre of the Absurd”. In the drama, repetitive phenomena shed light on the whole construction considerably. All the charac-ters were helpless and unthinking. Their dialogues were simple, nonsense and repetitive. Two scenes were cyclical. Repetition was used subtly in order to express the theme of the play, showing mental crisis after depravation of WWII.

  11. DNA testing for fragile X syndrome: implications for parents and family.

    OpenAIRE

    van Rijn, M A; de Vries, B B; Tibben, A; van den Ouweland, A M; Halley, D J; Niermeijer, M F

    1997-01-01

    The fragile X syndrome is an X linked, semidominant mental retardation disorder caused by the amplification of a CGG repeat in the 5' UTR of the FMR1 gene. Nineteen fragile X families in which the mutated FMR1 gene segregated were evaluated. The implications of the diagnosis for the parents and family were studied through pedigree information, interviews, and questionnaires. Information about the heredity of fragile X syndrome was only disseminated by family members to a third (124/366) of th...

  12. DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder

    OpenAIRE

    2016-01-01

    Background Bipolar disorder (BD) is a severe, familial psychiatric condition. Progress in understanding the aetiology of BD has been hampered by substantial phenotypic and genetic heterogeneity. We sought to mitigate these confounders by studying a multi-generational family multiply affected by BD and major depressive disorder (MDD), who carry an illness-linked haplotype on chromosome 4p. Within a family, aetiological heterogeneity is likely to be reduced, thus conferring greater power to det...

  13. Leber's hereditary optic neuroretinopathy (LHON) associated with mitochondrial DNA point mutation G11778A in two Croatian families.

    Science.gov (United States)

    Martin-Kleiner, Irena; Gabrilovac, Jelka; Bradvica, Mario; Vidović, Tomislav; Cerovski, Branimir; Fumić, Ksenija; Boranić, Milivoj

    2006-03-01

    Leber's hereditary optic neuroretinopathy (LHON) is manifested as a bilateral acute or subacute loss of central vision due to optic atrophy. It is linked to point mutations of mitochondrial DNA, which is inherited maternally. The most common mitochondrial DNA point mutations associated with LHON are G3460A, G11778A and T14484C. These mutations are linked with the defects of subunits of the complex I (NADH-dehydrogenase-ubiquinone reductase) in mitochondria. The G11778A mitochondrial DNA point mutation is manifested by a severe visual impairment. In this paper two Croatian families with the LHON G11778A mutation are presented. Three LHON patients from two families were younger males which had the visual acuity of 0.1 or below, the ophthalmoscopy revealed telangiectatic microangiopathy and papilloedema, while Goldmann kinetic perimetry showed a central scotoma. The mothers and female relatives were LHON mutants without symptoms, whereas their sons suffered from a severe visual impairment. Molecular diagnosis helps to explain the cause of LHON disease.

  14. The Mitochondrial DNA Mutation at Position 11778 in Chinese Families with Leber's Hereditary Optic Neuropathy

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    We amplified the 340 bp of mitochondrial DMA (mtDNA) by PCR including the recognized sequence of restriction enzyme of SfaN I . After amplification and digestion of SfaN I , two bands of 190 bp and 150 bp appeared in the mtDNA of four normal individuals but only one band of 340 bp appeared in the mtDNA with the mutation of G to A at the site of the nucleotide 11778 because such mutation destroyed the recognized sequence of SfaN I . We studied the mtDNAs of the patients with Leber's hereditary optic neur...

  15. Characterization of cDNA from the miracidial antigen family of Schistosoma japonicum (Chinese strain)

    Institute of Scientific and Technical Information of China (English)

    余传信; 平山謙二; 朱荫昌; 菊池三惠子; 殷旭仁

    2003-01-01

    Objective To identify the egg antigens related to the formation of hepatic granulomas and fibrosis of Schistosomiasis japonica.Methods The egg cDNA library of Schistosoma japonicum (S.japonicum) was constructed and screened by immunological methods with the pooled sera of advanced schistosomiasis patients. The inserted foreign DNA fragments of positive clones were sequenced. The sequence data were analyzed using Wdnasis 2.5 and compared with Genebank data using blast software. Conclusion The cDNA sequence of the miracidial antigen of S.japonicum (Chinese strain) was obtained for the first time.

  16. The use of DNA markers in the pre-clinical diagnosis of familial ...

    African Journals Online (AJOL)

    Histopathological proof of FAP was .... second degree, provided further evidence that probes Pi227 .... eventually enable the development of rapid DNA-based .... non-Jewish adult G.,a gangliosidosis patients share a common genetic defect.

  17. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae)

    Science.gov (United States)

    Jan, Catherine

    2016-01-01

    The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species. PMID:27688959

  18. Two families with Leber's hereditary optic neuropathy carrying G11778A and T14502C mutations with haplogroup H2a2a1 in mitochondrial DNA.

    Science.gov (United States)

    Qiao, Chen; Wei, Tanwei; Hu, Bo; Peng, Chunyan; Qiu, Xueping; Wei, Li; Yan, Ming

    2015-08-01

    The mitochondrial haplogroup has been reported to affect the clinical expression of Leber's hereditary optic neuropathy (LHON). The present study aimed to investigate the interaction between mutations and the haplogroup of mitochondrial DNA (mtDNA) in families. Two unrelated families with LHON were enrolled in the study, and clinical, genetic and molecular characterizations were determined in the affected and unaffected family members. Polymerase chain reaction direct sequencing was performed using 24 pairs of overlapping primers for whole mtDNA to screen for mutations and haplogroup. Bioinformatics analysis was performed to evaluate the pathogenic effect of these mtDNA mutations and the haplogroup. The G11778A mutation was identified in the two families. In addition, the members of family 2 exhibited the T14502C mutation and those in family 1 exhibited the T3394C and T14502C mutations, which were regarded as secondary mutations. The penetrance of visual loss in families 1 and 2 were 30.8 and 33.3%, respectively. In addition, the two families were found to be in the H2a2a1 haplogroup. In this limited sample size, it was demonstrated that the H2a2a1 haplogroup had a possible protective effect against LHON. Additional modifying factors, including environmental factors, lifestyle, estrogen levels and nuclear genes may also be important in LHON.

  19. Understanding maximal repetitions in strings

    CERN Document Server

    Crochemore, Maxime

    2008-01-01

    The cornerstone of any algorithm computing all repetitions in a string of length n in O(n) time is the fact that the number of runs (or maximal repetitions) is O(n). We give a simple proof of this result. As a consequence of our approach, the stronger result concerning the linearity of the sum of exponents of all runs follows easily.

  20. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    Science.gov (United States)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  1. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    OpenAIRE

    Hideshi Yokoyama; Kazuhiko Yamasaki; Ikuo Matsui; Eriko Matsui

    2013-01-01

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large sub...

  2. Kinetic characterization of exonuclease-deficient Staphylococcus aureus PolC, a C-family replicative DNA polymerase.

    Directory of Open Access Journals (Sweden)

    Indrajit Lahiri

    Full Text Available PolC is the C-family replicative polymerase in low G+C content Gram-positive bacteria. To date several structures of C-family polymerases have been reported, including a high resolution crystal structure of a ternary complex of PolC with DNA and incoming deoxynucleoside triphosphate (dNTP. However, kinetic information needed to understand the enzymatic mechanism of C-family polymerases is limited. For this study we have performed a detailed steady-state and pre-steady-state kinetic characterization of correct dNTP incorporation by PolC from the Gram-positive pathogen Staphylococcus aureus, using a construct lacking both the non-conserved N-terminal domain and the 3'-5' exonuclease domain (Sau-PolC-ΔNΔExo. We find that Sau-PolC-ΔNΔExo has a very fast catalytic rate (k(pol 330 s(-1 but also dissociates from DNA rapidly (k(off ∼150 s(-1, which explains the low processivity of PolC in the absence of sliding clamp processivity factor. Although Sau-PolC-ΔNΔExo follows the overall enzymatic pathway defined for other polymerases, some significant differences exist. The most striking feature is that the nucleotidyl transfer reaction for Sau-PolC-ΔNΔExo is reversible and is in equilibrium with dNTP binding. Simulation of the reaction pathway suggests that rate of pyrophosphate release, or a conformational change required for pyrophosphate release, is much slower than rate of bond formation. The significance of these findings is discussed in the context of previous data showing that binding of the β-clamp processivity factor stimulates the intrinsic nucleotide incorporation rate of the C-family polymerases, in addition to increasing processivity.

  3. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes

    Institute of Scientific and Technical Information of China (English)

    LIU Nian; ZHU Yong; WEI ZongXian; CHEN Jie; WANG QingBiao; JIAN ShuGuang; ZHOU DangWei; SHI Jing; YANG Yong; ZHONG Yang

    2009-01-01

    Araucariaceae is one of the most primitive families of the living conifers,and its phylogenetic relationships and divergence times are critically important issues.The DNA sequences of 8 genes,i.e.,nuclear ribosomal 18S and 26S rRNA,chloroplast 16S rRNA,rbcL,mafK and rps4,and mitochondrial coxl and atp1,obtained from this study and GenBank were used for constructing the molecular phylogenetic trees of Araucariaceae,indicating that the phylogenetic relationships among the three genera of this family should be ((Wollemia,Agathis),Araucaria).On the basis of the fossil calibrations of Wollemia and the two tribes Araucaria and Eutacta of the genus Araucaria,the divergence time of Araucariaceae was estimated to be (308±53) million years ago,that is,the origin of the family was in the Late Carboniferous rather than Triassic as a traditional view.With the same gene combination,the divergence times of the genera Araucaria and Agathis were (246 ±47) and (61±5) Ma,respectively.Statistical analyses on the phylogenetic trees generated by using different genes and comparisons of thedivergence times estimated by using those genes suggested that the chloroplast mafK and rps4 genes are most suitable for investigating the phylogenetic relationships and divergence times of the family Araucariaceae.

  4. DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition.

    Science.gov (United States)

    Ollier, Marie; Radosevic-Robin, Nina; Kwiatkowski, Fabrice; Ponelle, Flora; Viala, Sandrine; Privat, Maud; Uhrhammer, Nancy; Bernard-Gallon, Dominique; Penault-Llorca, Frédérique; Bignon, Yves-Jean; Bidet, Yannick

    2015-01-01

    Among breast cancers, 10 to 15% of cases would be due to hereditary risk. In these familial cases, mutations in BRCA1 and BRCA2 are found in only 15% to 20%, meaning that new susceptibility genes remain to be found. Triple-negative breast cancers represent 15% of all breast cancers, and are generally aggressive tumours without targeted therapies available. Our hypothesis is that some patients with triple negative breast cancer could share a genetic susceptibility different from other types of breast cancers. We screened 36 candidate genes, using pyrosequencing, in all the 50 triple negative breast cancer patients with familial history of cancer but no BRCA1 or BRCA2 mutation of a population of 3000 families who had consulted for a familial breast cancer between 2005 and 2013. Any mutations were also sequenced in available relatives of cases. Protein expression and loss of heterozygosity were explored in tumours. Seven deleterious mutations in 6 different genes (RAD51D, MRE11A, CHEK2, MLH1, MSH6, PALB2) were observed in one patient each, except the RAD51D mutation found in two cases. Loss of heterozygosity in the tumour was found for 2 of the 7 mutations. Protein expression was absent in tumour tissue for 5 mutations. Taking into consideration a specific subtype of tumour has revealed susceptibility genes, most of them in the homologous recombination DNA repair pathway. This may provide new possibilities for targeted therapies, along with better screening and care of patients.

  5. Perceptual Repetition Blindness Effects

    Science.gov (United States)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    The phenomenon of repetition blindness (RB) may reveal a new limitation on human perceptual processing. Recently, however, researchers have attributed RB to post-perceptual processes such as memory retrieval and/or reporting biases. The standard rapid serial visual presentation (RSVP) paradigm used in most RB studies is, indeed, open to such objections. Here we investigate RB using a "single-frame" paradigm introduced by Johnston and Hale (1984) in which memory demands are minimal. Subjects made only a single judgement about whether one masked target word was the same or different than a post-target probe. Confidence ratings permitted use of signal detection methods to assess sensitivity and bias effects. In the critical condition for RB a precue of the post-target word was provided prior to the target stimulus (identity precue), so that the required judgement amounted to whether the target did or did not repeat the precue word. In control treatments, the precue was either an unrelated word or a dummy.

  6. Structure-function analysis of ribonucleotide bypass by B family DNA replicases

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Anders R.; Murray, Michael S.; Passer, Andrew R.; Pedersen, Lars C.; Kunkel, Thomas A. [NIH

    2013-11-01

    Ribonucleotides are frequently incorporated into DNA during replication, they are normally removed, and failure to remove them results in replication stress. This stress correlates with DNA polymerase (Pol) stalling during bypass of ribonucleotides in DNA templates. Here we demonstrate that stalling by yeast replicative Pols δ and ε increases as the number of consecutive template ribonucleotides increases from one to four. The homologous bacteriophage RB69 Pol also stalls during ribonucleotide bypass, with a pattern most similar to that of Pol ε. Crystal structures of an exonuclease-deficient variant of RB69 Pol corresponding to multiple steps in single ribonucleotide bypass reveal that increased stalling is associated with displacement of Tyr391 and an unpreferred C2´-endo conformation for the ribose. Even less efficient bypass of two consecutive ribonucleotides in DNA correlates with similar movements of Tyr391 and displacement of one of the ribonucleotides along with the primer-strand DNA backbone. These structure–function studies have implications for cellular signaling by ribonucleotides, and they may be relevant to replication stress in cells defective in ribonucleotide excision repair, including humans suffering from autoimmune disease associated with RNase H2 defects.

  7. The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family.

    Science.gov (United States)

    Hunt, Alison C; Servín-González, Luis; Kelemen, Gabriella H; Buttner, Mark J

    2005-01-01

    The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-negative bacteria. Constructed DeltabldC mutants were defective in differentiation and antibiotic production. They failed to form an aerial mycelium on minimal medium and showed severe delays in aerial mycelium formation on rich medium. In addition, they failed to produce the polyketide antibiotic actinorhodin, and bldC was shown to be required for normal and sustained transcription of the pathway-specific activator gene actII-orf4. Although DeltabldC mutants produced the tripyrrole antibiotic undecylprodigiosin, transcripts of the pathway-specific activator gene (redD) were reduced to almost undetectable levels after 48 h in the bldC mutant, in contrast to the bldC+ parent strain in which redD transcription continued during aerial mycelium formation and sporulation. This suggests that bldC may be required for maintenance of redD transcription during differentiation. bldC is expressed from a single promoter. S1 nuclease protection assays and immunoblotting showed that bldC is constitutively expressed and that transcription of bldC does not depend on any of the other known bld genes. The bldC18 mutation that originally defined the locus causes a Y49C substitution that results in instability of the protein.

  8. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family

    DEFF Research Database (Denmark)

    Franch, Oskar; Iacovelli, Federico; Falconi, Mattia

    2016-01-01

    and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724–9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin...... forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening–closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation...

  9. Decreased DNA repair capacity in familial, but not in sporadic Alzheimer's disease

    NARCIS (Netherlands)

    M.E.T.I. Boerrigter; C.M. van Duijn (Cock); E. Mullaart; P. Eikelenboom (Piet); C.M.A. van der Togt; D.L. Knook; J. Vijg (Jan); A. Hofman (Albert)

    1991-01-01

    textabstractUsing the alkaline filter elution technique we determined the induction and disappearance of DNA single-strand breaks (SSB) in freshly isolated peripheral blood lymphocytes (PBL) from 43 Alzheimer's disease (AD) patients and 48 normal, healthy age- and sex-matched control subjects

  10. How a Small Family of Yeast IDPs Control Complicated Processes Related to DNA Replication

    DEFF Research Database (Denmark)

    Marabini, Riccardo

    Ribonucleotide reductase (RNR) and proliferating cell nuclear antigen (PCNA) are two essential proteins involved in DNA replication. RNR catalyzes the last and rate limiting step of the deoxyribonucleotide biosynthetic pathway. The dysregulation of RNR has been related to higher mutation rate...

  11. Identification of BC005512 as a DNA damage responsive murine endogenous retrovirus of GLN family involved in cell growth regulation.

    Directory of Open Access Journals (Sweden)

    Yuanfeng Wu

    Full Text Available Genotoxicity assessment is of great significance in drug safety evaluation, and microarray is a useful tool widely used to identify genotoxic stress responsive genes. In the present work, by using oligonucleotide microarray in an in vivo model, we identified an unknown gene BC005512 (abbreviated as BC, official full name: cDNA sequence BC005512, whose expression in mouse liver was specifically induced by seven well-known genotoxins (GTXs, but not by non-genotoxins (NGTXs. Bioinformatics revealed that BC was a member of the GLN family of murine endogenous retrovirus (ERV. However, the relationship to genotoxicity and the cellular function of GLN are largely unknown. Using NIH/3T3 cells as an in vitro model system and quantitative real-time PCR, BC expression was specifically induced by another seven GTXs, covering diverse genotoxicity mechanisms. Additionally, dose-response and linear regression analysis showed that expression level of BC in NIH/3T3 cells strongly correlated with DNA damage, measured using the alkaline comet assay,. While in p53 deficient L5178Y cells, GTXs could not induce BC expression. Further functional studies using RNA interference revealed that down-regulation of BC expression induced G1/S phase arrest, inhibited cell proliferation and thus suppressed cell growth in NIH/3T3 cells. Together, our results provide the first evidence that BC005512, a member from GLN family of murine ERV, was responsive to DNA damage and involved in cell growth regulation. These findings could be of great value in genotoxicity predictions and contribute to a deeper understanding of GLN biological functions.

  12. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells.

    Science.gov (United States)

    Shatz, Maria; Menendez, Daniel; Resnick, Michael A

    2012-08-15

    The transcription factor p53 regulates genes associated with a wide range of functions, including the Toll-like receptor (TLR) set of innate immunity genes, suggesting that p53 also modulates the human immune response. The TLR family comprises membrane glycoproteins that recognize pathogen-associated molecular patterns (PAMP) and mediate innate immune responses, and TLR agonists are being used as adjuvants in cancer treatments. Here, we show that doxorubicin, 5-fluorouracil, and UV and ionizing radiation elicit changes in TLR expression that are cell line- and damage-specific. Specifically, treatment-induced expression changes led to increased downstream cytokine expression in response to ligand stimulation. The effect of DNA stressors on TLR expression was mainly mediated by p53, and several p53 cancer-associated mutants dramatically altered the pattern of TLR gene expression. In all cell lines tested, TLR3 induction was p53-dependent, whereas induction of TLR9, the most stress-responsive family member, was less dependent on status of p53. In addition, each of the 10 members of the innate immune TLR gene family tested was differentially inducible. Our findings therefore show that the matrix of p53 status, chromosome stress, and responsiveness of individual TLRs should be considered in TLR-based cancer therapies.

  13. Genome-wide analysis of ets-family DNA-binding in vitro and in vivo

    National Research Council Canada - National Science Library

    Wei, G.H; Badis, G; Berger, M.F; Kivioja, T; Palin, K; Enge, M; Bonke, M; Jolma, A; Varjosalo, M; Gehrke, A.R; Yan, J.A; Talukder, S; Turunen, M; Taipale, M; Stunnenberg, H.G; Ukkonen, E; Hughes, T.R; Bulyk, M.L; Taipale, J

    2010-01-01

    ... these questions, we have in this work concentrated on the study of the large ETS family of TFs, whose members have diverse functions and activities in physiology and oncogenesis ( Bartel , 2000 ; Sharrocks, 2001 ; Kumar‐Sinha , 2008 ). The first ETS factor identified was ETS1, which was discovered as a homolog of the avian leukaemia virus E26 oncoge...

  14. Phylogenetic relationships among the family Ommastrephidae (Mollusca: Cephalopoda) inferred from two mitochondrial DNA gene sequences.

    Science.gov (United States)

    Wakabayashi, T; Suzuki, N; Sakai, M; Ichii, T; Chow, S

    2012-09-01

    Squids of the family Ommastrephidae are distributed worldwide, and the family includes many species of commercial importance. To investigate phylogenetic relationships among squid species of the family Ommastrephidae, partial nucleotide sequences of two mitochondrial gene loci (cytochrome c oxidase subunit I [1277bp] and 16S rRNA [443bp]) of 15 ommastrephid species and two outgroup species from the families Loliginidae and Enoploteuthidae were determined and used to construct parsimony and distance based phylogenetic trees. The molecular data provided several new phylogenetic inferences. The monophyletic status of three subfamilies (Illicinae, Todarodinae and Ommastrephinae) was well supported, although phylogenetic relationships between the subfamilies were not resolved. Inclusion of a problematic species, Ornithoteuthis volatilis, to Todarodinae was indicated. Within Todarodinae, the Japanese common squid Todarodes pacificus was observed to have much closer relationship to the species of the genus Nototodarus than to its congener (Todarodes filippovae). These results indicate that re-evaluation of several morphological key characters for ommastrephid taxonomy may be necessary.

  15. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family

    Science.gov (United States)

    Franch, Oskar; Iacovelli, Federico; Falconi, Mattia; Juul, Sissel; Ottaviani, Alessio; Benvenuti, Claudia; Biocca, Silvia; Ho, Yi-Ping; Knudsen, Birgitta R.; Desideri, Alessandro

    2016-07-01

    In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands.In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous

  16. DNA

    Science.gov (United States)

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  17. The tumorigenic diversity of the three PLAG family members is associated with different DNA binding capacities.

    Science.gov (United States)

    Hensen, Karen; Van Valckenborgh, Isabelle C C; Kas, Koen; Van de Ven, Wim J M; Voz, Marianne L

    2002-03-01

    Pleomorphic adenoma gene (PLAG) 1, the main translocation target in pleomorphic adenomas of the salivary glands, is a member of a new subfamily of zinc finger proteins comprising the tumor suppressor candidate PLAG-like1 (also called ZAC1 or lost on transformation 1) and PLAGL2. In this report, we show that NIH3T3 cells overexpressing PLAG1 or PLAGL2 display the typical markers of neoplastic transformation: (a) the cells lose cell-cell contact inhibition; (b) show anchorage-independent growth; and (c) are able to induce tumors in nude mice. In contrast, PLAGL1 has been shown to prevent the proliferation of tumor cells by inducing cell cycle arrest and apoptosis. This difference in function is also reflected in their DNA binding, as we show here that the three PLAG proteins, although highly homologous in their DNA-binding domain, bind different DNA sequences in a distinct fashion. Interestingly, the PLAG1- and PLAGL2-induced transformation is accompanied by a drastic up-regulation of insulin-like growth factor-II, which we prove is a target of PLAG1 and PLAGL2. This strongly suggests that the oncogenic capacity of PLAG1 and PLAGL2 is mediated at least partly by activating the insulin-like growth factor-II mitogenic pathway.

  18. Characterization of a Y-Family DNA Polymerase eta from the Eukaryotic Thermophile Alvinella pompejana

    Science.gov (United States)

    Kashiwagi, Sayo; Kuraoka, Isao; Fujiwara, Yoshie; Hitomi, Kenichi; Cheng, Quen J.; Fuss, Jill O.; Shin, David S.; Masutani, Chikahide; Tainer, John A.; Hanaoka, Fumio; Iwai, Shigenori

    2010-01-01

    Human DNA polymerase η (HsPolη) plays an important role in translesion synthesis (TLS), which allows for replication past DNA damage such as UV-induced cis-syn cyclobutane pyrimidine dimers (CPDs). Here, we characterized ApPolη from the thermophilic worm Alvinella pompejana, which inhabits deep-sea hydrothermal vent chimneys. ApPolη shares sequence homology with HsPolη and contains domains for binding ubiquitin and proliferating cell nuclear antigen. Sun-induced UV does not penetrate Alvinella's environment; however, this novel DNA polymerase catalyzed efficient and accurate TLS past CPD, as well as 7,8-dihydro-8-oxoguanine and isomers of thymine glycol induced by reactive oxygen species. In addition, we found that ApPolη is more thermostable than HsPolη, as expected from its habitat temperature. Moreover, the activity of this enzyme was retained in the presence of a higher concentration of organic solvents. Therefore, ApPolη provides a robust, human-like Polη that is more active after exposure to high temperatures and organic solvents. PMID:20936172

  19. pRB Takes an EZ Path to a Repetitive Task.

    Science.gov (United States)

    Sanidas, Ioannis; Dyson, Nicholas J

    2016-12-15

    Repetitive DNA elements are essential for genome function; in this issue of Molecular Cell, Ishak et al. (2016) describe a novel mechanism of epigenetic repression at these elements that requires pRB-dependent recruitment of EZH2.

  20. A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons

    DEFF Research Database (Denmark)

    Nielsen, M.L.; Hermansen, T.D.; Aleksenko, Alexei Y.

    2001-01-01

    In the course of a chromosomal walk towards the centromere of chromosome IV of Aspergillus nidulans, several cross- hybridizing genomic cosmid clones were isolated. Restriction mapping of two such clones revealed that their restriction patterns were similar in a region of at least 15 kb, indicati......) phenomenon, first described in Neurospora crassa, may have operated in A. nidulans. The data indicate that this family of repeats has assimilated mobile elements that subsequently degenerated but then underwent further duplications as a part of the host repeats....... the presence of a large repeat. The nature of the repeat was further investigated by sequencing and Southern analysis. The study revealed a family of long dispersed repeats with a high degree of sequence similarity. The number and location of the repeats vary between wild isolates. Two copies of the repeat...

  1. Chloroplast DNA inversions and the origin of the grass family (Poaceae).

    OpenAIRE

    Doyle, J.J.; Davis, J I; Soreng, R J; Garvin, D; Anderson, M J

    1992-01-01

    The phylogenetic affinities of the grass family (Poaceae) have long been debated. The chloroplast genomes of at least some grasses have been known to possess three inversions relative to the typical gene arrangement found in most flowering plants. We have surveyed for the presence of these inversions in grasses and other monocots by polymerase chain reaction amplification with primers constructed from sequences flanking the inversion end points. Amplification phenotypes diagnostic for the lar...

  2. Genomic DNA copy-number alterations of the let-7 family in human cancers.

    Directory of Open Access Journals (Sweden)

    Yanling Wang

    Full Text Available In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e, breast cancer (let-7a-2, and ovarian cancer (let-7a-3/let-7b. For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer.

  3. Grade repetition in primary school from teachers’ perspective

    Directory of Open Access Journals (Sweden)

    Malinić Dušica

    2011-01-01

    Full Text Available School underachievement is exhibited gradually, in different forms, while grade repetition figures as one of the most prominent forms of underachievement. In order to observe this phenomenon from different perspectives, we conducted a research aimed at identifying teacher attitudes towards grade repetition and grade repeaters in primary school, based on their perceptions of: (a the cause of grade repetition; (b the responsibility for grade repetition and (c grade repetition as an educational measure. The administered questionnaire was constructed for the purposes of the research, descriptive statistics was used, and data were obtained on the sample of 136 teachers from 31 primary schools from the territory of the City of Belgrade. The results point out to the conclusion that teachers perceive grade repetition as, first and foremost, the consequence of students’ lack of interest in school and learning and undisciplined behavior in class. By treating student underachievement mainly as a consequence of laziness, lack of motivation and insufficient effort, teachers transfer responsibility to others, assessing that the personal degree of responsibility for the underachievement of their students is very low. The responsibility for underachievement is perceived more as a problem of the student, his/her family, peer group, than as the problem of teachers themselves. The concluding part points out to certain teaching procedures and methods that have proved to be useful in the prevention of student underachievement.

  4. DNA variation in myoMIRs of the 1, 133, and 208 families in hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ana I. Corao

    2011-08-01

    Full Text Available MicroRNAs (miRNAs are small RNAs that bind to mRNAs and regulate gene expression. MyoMirs are miRNAs implicated in cardiogenesis. Some MyoMirs have been found deregulated in hearts from patients with left ventricular hypertrophy (LVH. DNA variants at these miRNAs could contribute to the risk of developing hypertrophic cardiomyopathy (HCM. To test this hypothesis we used single strand conformation analysis and direct sequencing to search for DNA variants in the mir-208a, miR-208b, miR-133a-1, miR-133a-2, miR-133b, miR-1-1, and miR-1-2 genes in patients with HCM (n=245, LVH secondary to hypertension (n=120, and healthy controls (n=250. We found several nucleotide variants. Genotyping of patients and healthy controls showed significantly associations between a 133a-1 polymorphism and HCM and a 133b polymorphism and hypertensive- LVH. We concluded that rare variants in these mature miRNAs would be rarely found among HCM patients, but miR-133a-1 and 133b polymorphisms could contribute to the risk of developing cardiac hypertrophy.

  5. The 5S rDNA high dynamism in Diplodus sargus is a transposon-mediated mechanism. Comparison with other multigene families and Sparidae species.

    Science.gov (United States)

    Merlo, Manuel A; Cross, Ismael; Manchado, Manuel; Cárdenas, Salvador; Rebordinos, Laureana

    2013-03-01

    There has been considerable discussion in recent years on the evolution of the tandemly repeated multigene families, since some organisms show a concerted model whereas others show a birth-and-death model. This controversial subject extends to several species of fish. In this study, three species of the Sparidae family (Pagrus pagrus, P. auriga and Diplodus sargus) and an interspecific hybrid (P. pagrus (♀) × P. auriga (♂)) have been studied at both molecular and cytogenetic level, taking three different multigene families (5S rDNA, 45S rDNA and U2 snDNA). Results obtained with the 5S rDNA in P. pagrus and P. auriga are characterized by a considerable degree of conservation at the two levels; however, an extraordinary variation was observed in D. sargus at the two levels, which has never been found in other fishes studied to date. As a consequence of this, the evolutionary model of the multigene families is discussed considering the results obtained and others from the bibliography. The result obtained in the hybrid allowed the recombination frequency in each multigene family to be estimated.

  6. Molecular cytogenetic characterization of chromosome site-specific repetitive sequences in the Arctic lamprey (Lethenteron camtschaticum, Petromyzontidae)

    Science.gov (United States)

    Ishijima, Junko; Uno, Yoshinobu; Nunome, Mitsuo; Nishida, Chizuko; Kuraku, Shigehiro

    2017-01-01

    Abstract All extant lamprey karyotypes are characterized by almost all dot-shaped microchromosomes. To understand the molecular basis of chromosome structure in lampreys, we performed chromosome C-banding and silver staining and chromosome mapping of the 18S–28S and 5S ribosomal RNA (rRNA) genes and telomeric TTAGGG repeats in the Arctic lamprey (Lethenteron camtschaticum). In addition, we cloned chromosome site-specific repetitive DNA sequences and characterized them by nucleotide sequencing, chromosome in situ hybridization, and filter hybridization. Three types of repetitive sequences were detected; a 200-bp AT-rich repetitive sequence, LCA-EcoRIa that co-localized with the 18S–28S rRNA gene clusters of 3 chromosomal pairs; a 364-bp AT-rich LCA-EcoRIb sequence that showed homology to the EcoRI sequence family from the sea lamprey (Petromyzon marinus), which contains short repeats as centromeric motifs; and a GC-rich 702-bp LCA-ApaI sequence that was distributed on nearly all chromosomes and showed significant homology with the integrase-coding region of a Ty3/Gypsy family long terminal repeat (LTR) retrotransposon. All three repetitive sequences are highly conserved within the Petromyzontidae or within Petromyzontidae and Mordaciidae. Molecular cytogenetic characterization of these site-specific repeats showed that they may be correlated with programed genome rearrangement (LCA-EcoRIa), centromere structure and function (LCA-EcoRIb), and site-specific amplification of LTR retroelements through homogenization between non-homologous chromosomes (LCA-ApaI). PMID:28025319

  7. Repetition in English Political Public Speaking

    Institute of Scientific and Technical Information of China (English)

    李红梅

    2010-01-01

    Repetition is frequently used in English political public speaking to make it easy to be remembered and powerful to move the feelings of the public. This paper is intended to analyze the functions of repetition and different levels of repetition to highlight the significance of repetition in English political public speaking and the ability of using it in practice.

  8. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA.

    Science.gov (United States)

    Waits, L P; Sullivan, J; O'Brien, S J; Ward, R H

    1999-10-01

    The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species.

  9. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris).

    Science.gov (United States)

    Menzel, Gerhard; Dechyeva, Daryna; Wenke, Torsten; Holtgräwe, Daniela; Weisshaar, Bernd; Schmidt, Thomas

    2008-10-01

    The aim of this work was the identification and molecular characterization of novel sugar beet (Beta vulgaris) repetitive sequences to unravel the impact of repetitive DNA on size and evolution of Beta genomes via amplification and diversification. Genomic DNA and a pool of B. vulgaris repetitive sequences were separately used as probes for a screening of high-density filters from a B. vulgaris plasmid library. Novel repetitive motifs were identified by sequencing and further used as probes for Southern analyses in the genus Beta. Chromosomal localization of the repeats was analysed by fluorescent in situ hybridization on chromosomes of B. vulgaris and two other species of the section Beta. Two dispersed repetitive families pDvul1 and pDvul2 and the tandemly arranged repeat family pRv1 were isolated from a sugar beet plasmid library. The dispersed repetitive families pDvul1 and pDvul2 were identified in all four sections of the genus Beta. The members of the pDvul1 and pDvul2 family are scattered over all B. vulgaris chromosomes, although amplified to a different extent. The pRv1 satellite repeat is exclusively present in species of the section Beta. The centromeric satellite pBV1 by structural variations of the monomer and interspersion of pRv1 units forms complex satellite structures, which are amplified in different degrees on the centromeres of 12 chromosomes of the three species of the Beta section. The complexity of the pBV1 satellite family observed in the section Beta of the genus Beta and, in particular, the strong amplification of the pBV1/pRv1 satellite in the domesticated B. vulgaris indicates the dynamics of centromeric satellite evolution during species radiation within the genus. The dispersed repeat families pDvul1 and pDvul2 might represent derivatives of transposable elements.

  10. Illegitimacy and sibship assignments in oil palm (Elaeis guineensis Jacq.) half-sib families using single locus DNA microsatellite markers.

    Science.gov (United States)

    Hama-Ali, Emad Omer; Alwee, Sharifah Shahrul Rabiah Syed; Tan, Soon Guan; Panandam, Jothi Malar; Ling, Ho Chai; Namasivayam, Parameswari; Peng, Hoh Boon

    2015-05-01

    Oil palm breeding has been progressing very well in Southeast Asia, especially in Malaysia and Indonesia. Despite this progress, there are still problems due to the difficulty of controlled crossing in oil palm. Contaminated/illegitimate progeny has appeared in some breeding programs; late and failure of detection by the traditional method causes a waste of time and labor. The use of molecular markers improves the integrity of breeding programs in perennial crops such as oil palm. Four half-sib families with a total of 200 progeny were used in this study. Thirty polymorphic single locus DNA microsatellites markers were typed to identify the illegitimate individuals and to obtain the correct parental and progeny assignments by using the CERVUS and COLONY programs. Three illegitimate palms (1.5%) were found, and 16 loci proved to be sufficient for sibship assignments without parental genotypes by using the COLONY program. The pairwise-likelihood score (PLS) method was better for half-sib family assignments than the full likelihood (FL) method.

  11. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas.

    Science.gov (United States)

    Dong, Chen; Hu, Huigang; Xie, Jianghui

    2016-12-01

    DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.

  12. Curious Repetitions in Magnetars

    Science.gov (United States)

    Archibald, Robert

    2016-07-01

    Magnetars, the slowly spinning branch of the pulsar family with extremely high inferred dipole magnetic fields, often display bizarre spin behaviour rarely seen in their more typical rotation-powered cousins. In this talk, I will tell a tale of two magnetars, 1E 1048.1-5937 and 4U 0142+61 -- both of which seem to be repeating themselves. 1E 1048.1-5937 has, three times, shown flux increases of a factor of ~3 which which decayed over hundreds of days, followed months later by unique order of magnitude torque oscillations. 4U 0142+61, on the other hand, has displayed only short-term, i.e. minutes long, flux increases. In 2006, and now again in 2014, 4U 0142+61 has had typical 1E-7 Hz spin-up glitches which then over-recover on a timescale of weeks, leading to a net spin-down event associated with these short-term flux increases. Both of these sources seem to display a coupling between their X-ray flux and spin-down, but at vastly different timescales. By comparing these repeating events, we will try to shed some new light on the physics driving these extreme objects.

  13. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance.

    Science.gov (United States)

    Schermerhorn, Kelly M; Gardner, Andrew F

    2015-09-04

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼ 2.5 s(-1)) and especially tight nucleotide binding (Kd (dNTP) ∼ 1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3'-5' exonuclease hydrolysis activity in the presence of Mg(2+) and Mn(2+). Interestingly, substituting Mn(2+) for Mg(2+) accelerated hydrolysis rates > 40-fold (kexo ≥ 110 s(-1) versus ≥ 2.5 s(-1)). Preference for Mn(2+) over Mg(2+) in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance*

    Science.gov (United States)

    Schermerhorn, Kelly M.; Gardner, Andrew F.

    2015-01-01

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. PMID:26160179

  15. Varianish: Jamming with Pattern Repetition

    Directory of Open Access Journals (Sweden)

    Jort Band

    2014-10-01

    Full Text Available In music, patterns and pattern repetition are often regarded as a machine-like task, indeed often delegated to drum Machines and sequencers. Nevertheless, human players add subtle differences and variations to repeated patterns that are musically interesting and often unique. Especially when looking at minimal music, pattern repetitions create hypnotic effects and the human mind blends out the actual pattern to focus on variation and tiny differences over time. Varianish is a musical instrument that aims at turning this phenomenon into a new musical experience for musician and audience: Musical pattern repetitions are found in live music and Varianish generates additional (musical output accordingly that adds substantially to the overall musical expression. Apart from the theory behind the pattern finding and matching and the conceptual design, a demonstrator implementation of Varianish is presented and evaluated.

  16. REPETITIVE CLUSTER-TILTED ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Zhang Shunhua; Zhang Yuehui

    2012-01-01

    Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras.Moreover,we generalize Theorem 4.2 in [12](Buan A,Marsh R,Reiten I.Cluster-tilted algebra,Trans.Amer.Math.Soc.,359(1)(2007),323-332.) to the situation of CFm,and prove that the tilting graph KCFm of CFm is connected.

  17. Impact of a novel homozygous mutation in nicotinamide nucleotide transhydrogenase on mitochondrial DNA integrity in a case of familial glucocorticoid deficiency

    Directory of Open Access Journals (Sweden)

    Yasuko Fujisawa

    2015-06-01

    General significance: By studying a family affected with a novel point mutation in the NNT gene, a gene–dose response was found for various mitochondrial outcomes providing for novel insights into the role of NNT in the maintenance of mtDNA integrity beyond that described for preventing oxidative stress.

  18. Homoplasmy of the G7444A mtDNA and heterozygosity of the GJB2 c.35delG mutations in a family with hearing loss

    DEFF Research Database (Denmark)

    Kokotas, Haris; Grigoriadou, Maria; Li, Yang;

    2011-01-01

    Mitochondrial mutations have been shown to be responsible for syndromic as well as non-syndromic hearing loss. The G7444A mitochondrial DNA mutation affects COI/the precursor of tRNA(Ser(UCN)), encoding the first subunit of cytochrome oxidase. Here we report on the first Greek family with the G7444...

  19. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.

    Science.gov (United States)

    Tobiason, D M; Buchner, J M; Thiel, W H; Gernert, K M; Karls, A C

    2001-02-01

    Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.

  20. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  1. Hammerhead-mediated processing of satellite pDo500 family transcripts from Dolichopoda cave crickets.

    Science.gov (United States)

    Rojas, A A; Vazquez-Tello, A; Ferbeyre, G; Venanzetti, F; Bachmann, L; Paquin, B; Sbordoni, V; Cedergren, R

    2000-10-15

    This work reports the discovery and functional characterization of catalytically active hammerhead motifs within satellite DNA of the pDo500 family from several DOLICHOPODA: cave cricket species. We show that in vitro transcribed RNA of some members of this satellite DNA family do self-cleave in vitro. This self-cleavage activity is correlated with the efficient in vivo processing of long primary transcripts into monomer-sized RNA. The high sequence conservation of the satellite pDo500 DNA family among genetically isolated DOLICHOPODA: schiavazzii populations, as well as other DOLICHOPODA: species, along with the fact that satellite members are actively transcribed in vivo suggests that the hammerhead-encoding satellite transcripts are under selective pressure, perhaps because they fulfil an important physiological role or function. Remarkably, this is the third example of hammerhead ribozyme structures associated with transcribed repetitive DNA sequences from animals. The possibility that such an association may not be purely coincidental is discussed.

  2. DNA barcoding of authentic and substitute samples of herb of the family Asparagaceae and Asclepiadaceae based on the ITS2 region

    Directory of Open Access Journals (Sweden)

    Padmalatha S Rai

    2012-01-01

    Full Text Available Background : Herbal drugs used to treat illness according to Ayurveda are often misidentified or adulterated with similar plant materials. Objective: To aid taxonomical identification, we used DNA barcoding to evaluate authentic and substitute samples of herb and phylogenetic relationship of four medicinal plants of family Asparagaceace and Asclepiadaceae. Materials and Methods : DNA extracted from dry root samples of two authentic and two substitutes of four specimens belonging to four species were subjected to polymerase chain reaction (PCR and DNA sequencing. Primers for nuclear DNA (nu ITS2 and plastid DNA (matK and rpoC1 were used for PCR and sequence analysis was performed by Clustal W. The intraspecific variation and interspecific divergence were calculated using MEGA V 4.0. Statistical Analysis : Kimura′s two parameter model, neighbor joining and bootstrapping methods were used in this work. Results: The result indicates the efficiency of amplification for ITS2 candidate DNA barcodes was 100% for four species tested. The average interspecific divergence is 0.12 and intraspecific variation was 0.232 in the case of two Asparagaceae species. In two Asclepiadaceae species, average interspecific divergence and intraspecific variation were 0.178 and 0.004 respectively. Conclusions: Our findings show that the ITS2 region can effectively discriminate Asparagus racemosus and Hemidesmus indicus from its substitute samples and hence can resolve species admixtures in raw samples. The ITS2 region may be used as one of the standard DNA barcodes to identify closely related species of family Asclepiadaceae but was noninformative for Asparagaceae species suggesting a need for the development of new markers for each family. More detailed studies involving more species and substitutes are warranted.

  3. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family.

    Science.gov (United States)

    Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  4. A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications.

    Science.gov (United States)

    Burroughs, A Maxwell; Aravind, L

    2014-01-01

    A protein family including mammalian NEMF, Drosophila caliban, yeast Tae2, and bacterial FpbA-like proteins was first defined over a decade ago and found to be universally distributed across the three domains/superkingdoms of life. Since its initial characterization, this family of proteins has been tantalizingly linked to a wide range of biochemical functions. Tapping the enormous wealth of genome information that has accumulated since the initial characterization of these proteins, we perform a detailed computational analysis of the family, identifying multiple conserved domains. Domains identified include an enzymatic domain related to the formamidopyrimidine (Fpg), MutM, and Nei/EndoVIII family of DNA glycosylases, a novel, predicted RNA-binding domain, and a domain potentially mediating protein-protein interactions. Through this characterization, we predict that the DNA glycosylase-like domain catalytically operates on double-stranded RNA, as part of a hitherto unknown base modification mechanism that probably targets rRNAs. At least in archaea, and possibly eukaryotes, this pathway might additionally include the AMMECR1 family of proteins. The predicted RNA-binding domain associated with this family is also observed in distinct architectural contexts in other proteins across phylogenetically diverse prokaryotes. Here it is predicted to play a key role in a new pathway for tRNA 4-thiouridylation along with TusA-like sulfur transfer proteins.

  5. Repetition suppression and repetition priming are processing outcomes.

    Science.gov (United States)

    Wig, Gagan S

    2012-01-01

    Abstract There is considerable evidence that repetition suppression (RS) is a cortical signature of previous exposure to the environment. In many instances RS in specific brain regions is accompanied by improvements in specific behavioral measures; both observations are outcomes of repeated processing. In understanding the mechanism by which brain changes give rise to behavioral changes, it is important to consider what aspect of the environment a given brain area or set of areas processes, and how this might be expressed behaviorally.

  6. Engineered holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator.

    Science.gov (United States)

    Sarkar, Susanta K; Andoy, Nesha May; Benítez, Jaime J; Chen, Peng R; Kong, Jason S; He, Chuan; Chen, Peng

    2007-10-17

    Protein-DNA interactions are essential for gene maintenance, replication, and expression. Characterizing how proteins interact with and change the structure of DNA is crucial in elucidating the mechanisms of protein function. Here, we present a novel and generalizable method of using engineered DNA Holliday junctions (HJs) that contain specific protein-recognition sequences to report protein-DNA interactions in single-molecule FRET measurements, utilizing the intrinsic structural dynamics of HJs. Because the effects of protein binding are converted to the changes in the structure and dynamics of HJs, protein-DNA interactions that involve small structural changes of DNA can be studied. We apply this method to investigate how the MerR-family regulator PbrR691 interacts with DNA for transcriptional regulation. Both apo- and holo-PbrR691 bind the stacked conformers of the engineered HJ, change their structures, constrain their conformational distributions, alter the kinetics, and shift the equilibrium of their structural dynamics. The information obtained maps the potential energy surfaces of HJ before and after PbrR691 binding and reveals the protein actions that force DNA structural changes for transcriptional regulation. The ability of PbrR691 to bind both HJ conformers and still allow HJ structural dynamics also informs about its conformational flexibility that may have significance for its regulatory function. This method of using engineered HJs offers quantification of the changes both in structure and in dynamics of DNA upon protein binding and thus provides a new tool to elucidate the correlation of structure, dynamics, and function of DNA-binding proteins.

  7. Cohesive Function of Lexical Repetition in Text

    Institute of Scientific and Technical Information of China (English)

    张莉; 卢沛沛

    2013-01-01

    Lexical repetition is the most direct form of lexical cohesion,which is the central device for making texts hang together. Although repetition is the most direct way to emphasize,it performs the cohesive effect more apparently.

  8. Mechanistic Heterogeneity in Site Recognition by the Structurally Homologous DNA-binding Domains of the ETS Family Transcription Factors Ets-1 and PU.1*

    Science.gov (United States)

    Wang, Shuo; Linde, Miles H.; Munde, Manoj; Carvalho, Victor D.; Wilson, W. David; Poon, Gregory M. K.

    2014-01-01

    ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a “dry” mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1·DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages. PMID:24952944

  9. Evidence for 5S rDNA horizontal transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families.

    Science.gov (United States)

    Merlo, Manuel A; Cross, Ismael; Palazón, José L; Ubeda-Manzanaro, María; Sarasquete, Carmen; Rebordinos, Laureana

    2012-10-07

    The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes and Clupeiformes orders. Two

  10. Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801 based on the analysis of three multigene families

    Directory of Open Access Journals (Sweden)

    Merlo Manuel A

    2012-10-01

    Full Text Available Abstract Background The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH. Results Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. Conclusions A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not

  11. Polymerase Chain Reaction-based Suppression of Repetitive Sequences in Whole Chromosome Painting Probes for FISH

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, L C; Pattee, M; Williams, J; Eklund, M; Bedford, J S; Christian, A T

    2004-04-21

    We have developed a method to suppress the PCR amplification of repetitive sequences in whole chromosome painting probes by adding Cot-1 DNA to the amplification mixture. The repetitive sequences in the Cot-1 DNA bind to their homologous sequences in the probe library, prevent the binding of primers, and interfere with extension of the probe sequences, greatly decreasing PCR efficiency selectively across these blocked regions. A second labeling reaction is then done and this product is resuspended in FISH hybridization mixture without further addition of blocking DNA. The hybridization produces little if any non-specific binding on any other chromosomes. We have been able to successfully use this procedure with both human and rat chromosome probes. This technique should be applicable in producing probes for CGH, M-FISH and SKY, as well as reducing the presence of repetitive DNA in genomic libraries.

  12. Exome sequencing of germline DNA from non-BRCA1/2 familial breast cancer cases selected on the basis of aCGH tumor profiling.

    Directory of Open Access Journals (Sweden)

    Florentine S Hilbers

    Full Text Available The bulk of familial breast cancer risk (∼70% cannot be explained by mutations in the known predisposition genes, primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array comparative genomic hybridization (aCGH. Linkage analysis in these families revealed a region on chromosome 4 with a LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2 hereditary breast cancer families have a very heterogeneous genetic basis.

  13. A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes

    Directory of Open Access Journals (Sweden)

    Ricardo Utsunomia

    2017-08-01

    Full Text Available Satellite DNA (satDNA is an abundant fraction of repetitive DNA in eukaryotic genomes and plays an important role in genome organization and evolution. In general, satDNA sequences follow a concerted evolutionary pattern through the intragenomic homogenization of different repeat units. In addition, the satDNA library hypothesis predicts that related species share a series of satDNA variants descended from a common ancestor species, with differential amplification of different satDNA variants. The finding of a same satDNA family in species belonging to different genera within Characidae fish provided the opportunity to test both concerted evolution and library hypotheses. For this purpose, we analyzed here sequence variation and abundance of this satDNA family in ten species, by a combination of next generation sequencing (NGS, PCR and Sanger sequencing, and fluorescence in situ hybridization (FISH. We found extensive between-species variation for the number and size of pericentromeric FISH signals. At genomic level, the analysis of 1000s of DNA sequences obtained by Illumina sequencing and PCR amplification allowed defining 150 haplotypes which were linked in a common minimum spanning tree, where different patterns of concerted evolution were apparent. This also provided a glimpse into the satDNA library of this group of species. In consistency with the library hypothesis, different variants for this satDNA showed high differences in abundance between species, from highly abundant to simply relictual variants.

  14. A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes)

    Science.gov (United States)

    Utsunomia, Ricardo; Ruiz-Ruano, Francisco J.; Silva, Duílio M. Z. A.; Serrano, Érica A.; Rosa, Ivana F.; Scudeler, Patrícia E. S.; Hashimoto, Diogo T.; Oliveira, Claudio; Camacho, Juan Pedro M.; Foresti, Fausto

    2017-01-01

    Satellite DNA (satDNA) is an abundant fraction of repetitive DNA in eukaryotic genomes and plays an important role in genome organization and evolution. In general, satDNA sequences follow a concerted evolutionary pattern through the intragenomic homogenization of different repeat units. In addition, the satDNA library hypothesis predicts that related species share a series of satDNA variants descended from a common ancestor species, with differential amplification of different satDNA variants. The finding of a same satDNA family in species belonging to different genera within Characidae fish provided the opportunity to test both concerted evolution and library hypotheses. For this purpose, we analyzed here sequence variation and abundance of this satDNA family in ten species, by a combination of next generation sequencing (NGS), PCR and Sanger sequencing, and fluorescence in situ hybridization (FISH). We found extensive between-species variation for the number and size of pericentromeric FISH signals. At genomic level, the analysis of 1000s of DNA sequences obtained by Illumina sequencing and PCR amplification allowed defining 150 haplotypes which were linked in a common minimum spanning tree, where different patterns of concerted evolution were apparent. This also provided a glimpse into the satDNA library of this group of species. In consistency with the library hypothesis, different variants for this satDNA showed high differences in abundance between species, from highly abundant to simply relictual variants. PMID:28855916

  15. Evolutionary Dynamics of 5S rDNA and Recurrent Association of Transposable Elements in Electric Fish of the Family Gymnotidae (Gymnotiformes): The Case of Gymnotus mamiraua.

    Science.gov (United States)

    da Silva, Maelin; Barbosa, Patricia; Artoni, Roberto F; Feldberg, Eliana

    2016-01-01

    Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome. © 2016 S. Karger AG, Basel.

  16. Molecular Cloning of a Novel cDNA From Mus Muscular BALB/c Mice Encoding Glycosyl Hydrolase Family 1: A Homolog of HumanLactase-Phlorizin Hydrolase

    Institute of Scientific and Technical Information of China (English)

    WEI HE; ZHEN-YU JI; CHENG-YU HUANG

    2006-01-01

    Objective To study the mechanism of lactose intolerance (LI) by cloning the mouse lactase cDNA and recombining a vector. Methods Total murine RNA was isolated from the small intestine of a 4-week-old BALB/c mouse (♂).Gene-specific primers were designed and synthesized according to the cDNA sequences of lactase-phlorizin hydrolase (LPH) in human, rat, and rabbit. A coding sequence (CDS) fragment was obtained using RT-PCR, and inserted into a clone vector pNEB-193, then the cDNA was sequenced and analyzed using bioinformatics. Results The cDNA from the BALB/c mouse with 912 bp encoding 303 amino acid residues. Analysis of the deduced amino acid sequence using bioinformatics revealed that this cDNA shared extensive sequence homology with human LPH containing a conserved glycosy1 hydrolase family 1 motif important for regulating lactase intolerance. Conclusion BALB/c mouse LPH cDNA (GenBank accession No: AY751548) provides a necessary foundation for study of the biological function and regulatory mechanism of the lactose intolerance in mice.

  17. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  18. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences.

    Directory of Open Access Journals (Sweden)

    Kazumi Matsubara

    Full Text Available Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be highly conserved yet the sex chromosomes in this family have not been fully investigated. Here, we compare male and female karyotypes of three Australian monitor lizards, Varanus acanthurus, V. gouldii and V. rosenbergi, from two different clades. V. acanthurus belongs to the acanthurus clade and the other two belong to the gouldii clade. We applied C-banding and comparative genomic hybridization to reveal that these species have ZZ/ZW sex micro-chromosomes in which the W chromosome is highly differentiated from the Z chromosome. In combination with previous reports, all six Varanus species in which sex chromosomes have been identified have ZZ/ZW sex chromosomes, spanning several clades on the varanid phylogeny, making it likely that the ZZ/ZW sex chromosome is ancestral for this family. However, repetitive sequences of these ZW chromosome pairs differed among species. In particular, an (AATn microsatellite repeat motif mapped by fluorescence in situ hybridization on part of W chromosome in V. acanthurus only, whereas a (CGGn motif mapped onto the W chromosomes of V. gouldii and V. rosenbergi. Furthermore, the W chromosome probe for V. acanthurus produced hybridization signals only on the centromeric regions of W chromosomes of the other two species. These results suggest that the W chromosome sequences were not conserved between gouldii and acanthurus clades and that these repetitive sequences have been amplified rapidly and independently on the W chromosome of the two clades after their divergence.

  19. Use of Long-Range Repetitive Element Polymorphism-PCR To Differentiate Bacillus anthracis Strains

    OpenAIRE

    Brumlik, Michael J.; Szymajda, Urszula; Zakowska, Dorota; Liang, Xudong; Redkar, Rajendra J.; Patra, Guy; Del Vecchio, Vito G.

    2001-01-01

    The genome of Bacillus anthracis is extremely monomorphic, and thus individual strains have often proven to be recalcitrant to differentiation at the molecular level. Long-range repetitive element polymorphism-PCR (LR REP-PCR) was used to differentiate various B. anthracis strains. A single PCR primer derived from a repetitive DNA element was able to amplify variable segments of a bacterial genome as large as 10 kb. We were able to characterize five genetically distinct groups by examining 10...

  20. Characterization of a DNA sequence family in the Prader-Willi/Angelman syndrome chromosome region in 15q11-q13

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, B.; Knoblauch, H.; Buiting, K.; Horsthemke, B. (Universitaetsklinikum Essen (Germany))

    1993-04-01

    IR4-3R (D15S11) is an anonymous DNA sequence from human chromosome 15. Using YAC cloning and restriction enzyme analysis, the authors have found that IR4-3R detects five related DNA sequences, which are spread over 700 kb within the Prader-Willi/Angelman syndrome chromosome region in 15q11-q 13. The RsaI and StyI polymorphisms, which were described previously, are associated with the most proximal copy of IR4-3R and are in strong linkage disequilibrium. IR4-3R represents the third DNA sequence family that has been identified in 15q11-q13. 14 refs., 2 figs., 1 tab.

  1. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Çeşme-Karaburun Peninsula (Turkey).

    Science.gov (United States)

    Theodoridis, Spyros; Stefanaki, Anastasia; Tezcan, Meltem; Aki, Cuneyt; Kokkini, Stella; Vlachonasios, Konstantinos E

    2012-07-01

    The plant family Labiatae (Lamiaceae) is known for its fine medicinal and aromatic herbs like lavender, mint, oregano, sage and thyme and is a rich source of essential oils for the food, pharmaceutical and cosmetic industry. Besides its great economic importance, the Labiatae family contributes significantly to the endemic flora of Greece and Turkey. Owing to its economic and biological significance and to the difficult identification based on morphological characters of several of its taxa, the Labiatae family is an ideal case for developing DNA barcodes. The purpose of this study is to evaluate the utility of DNA barcoding on a local scale in discriminating Labiatae species in Chios Island (Greece) and the adjacent Çeşme-Karaburun Peninsula (Turkey). We chose three cpDNA regions (matK, rbcL, trnH-psbA) that were proposed by previous studies and tested them either as single region or as multiregion barcodes based on the criteria determined by Consortium for the Barcode of Life (CBOL). Our results show that matK and trnH-psbA taken as useful in discriminating species of the Labiatae, for the species we examined, as any multiregion combination. matK and trnH-psbA could serve as single-region barcodes for Labiatae species contributing to the conservation and the trade control of valuable plant resources.

  2. Circuit considerations for repetitive railguns

    Energy Technology Data Exchange (ETDEWEB)

    Honih, E.M.

    1986-01-01

    Railgun electromagnetic launchers have significant military and scientific potential. They provide direct conversion of electrical energy to projectile kinetic energy, and they offer the hope of achieving projectile velocities greatly exceeding the limits of conventional guns. With over 10 km/sec already demonstrated, railguns are attracting attention for tactical and strategic weapons systems and for scientific equation-of-state research. The full utilization of railguns will require significant improvements in every aspect of system design - projectile, barrel, and power source - to achieve operation on a large scale. This paper will review fundamental aspects of railguns, with emphasis on circuit considerations and repetitive operation.

  3. Repetitive flanking sequences challenge microsatellite marker development: a case study in the lepidopteran Melanargia galathea.

    Science.gov (United States)

    Schmid, Max; Csencsics, Daniela; Gugerli, Felix

    2016-11-01

    Microsatellite DNA families (MDF) are stretches of DNA that share similar or identical sequences beside nuclear simple-sequence repeat (nSSR) motifs, potentially causing problems during nSSR marker development. Primers positioned within MDFs can bind several times within the genome and might result in multiple banding patterns. It is therefore common practice to exclude MDF loci in the course of marker development. Here, we propose an approach to deal with multiple primer-binding sites by purposefully positioning primers within the detected repetitive element. We developed a new protocol to determine the family type and the primer position in relation to MDFs using the software packages repark and repeatmasker together with an in-house R script. We re-evaluated newly developed nSSR markers for the lepidopteran Marbled White (Melanargia galathea) and explored the implications of our results with regard to published data sets of the butterfly Euphydryas aurinia, the grasshopper Stethophyma grossum, the conifer Pinus cembra and the crucifer Arabis alpina. For M. galathea, we show that it is not only possible to develop reliable nSSR markers for MDF loci, but even to benefit from their presence in some cases: We used one unlabelled primer, successfully binding within an MDF, for two different loci in a multiplex PCR, combining this family primer with uniquely binding and fluorescently labelled primers outside of MDFs, respectively. As MDFs are abundant in many taxa, we propose to consider these during nSSR marker development in taxa concerned. Our new approach might help in reducing the number of tested primers during nSSR marker development. © 2016 John Wiley & Sons Ltd.

  4. Tracking of intercalary DNA sequences integrated into tandem repeat arrays in rye Secale vavilovii

    Directory of Open Access Journals (Sweden)

    Magdalena Achrem

    2017-06-01

    Full Text Available The structure of repetitive sequences of the JNK block present in the pericentromeric region of the 2RL chromosome was studied in Secale vavilovii. Amplification of sequences present between the JNK sequences led to the identification of seven abnormal DNA fragments. Two of these fragments showed high similarity to the glutamate 5-kinase gene and putative alcohol dehydrogenase gene of trypanosomatid from the genus Leishmania, whose presence can be explained by horizontal gene transfer (HGT. Other fragments were similar to mitochondrial gene for ribosomal protein S4 in plants and to the glycoprotein (G gene of the IHNV virus. Presumably, they are pseudogenes inserted into the JNK heterochromatin region. Within this region, also fragments similar to the rye repetitive sequence and chromosome 3B in wheat were found. There is no known mechanism that would explain how foreign sequences were inserted into the block region of tandem repetitive sequences of the JNK family.

  5. High penetrance of a pan-canina type rDNA family in intersection Rosa hybrids suggests strong selection of bivalent chromosomes in the section Caninae.

    Science.gov (United States)

    Crhak Khaitova, Lucie; Werlemark, Gun; Kovarikova, Alena; Nybom, Hilde; Kovarik, Ales

    2014-01-01

    All dogroses (Rosa sect. Caninae) are characterized by the peculiar canina meiosis in which genetic material is unevenly distributed between female and male gametes. The pan-canina rDNA family (termed beta) appears to be conserved in all dogroses analyzed so far. Here, we have studied rDNAs in experimental hybrids obtained from open pollination of F1 plants derived from 2 independent intersectional crosses between the pentaploid dogrose species (2n = 5x = 35) Rosa rubiginosa as female parent (producing 4x egg cells due to the unique asymmetrical canina meiosis) and the tetraploid (2n = 4x = 28) garden rose R. hybrida 'André Brichet' as male parent (producing 2x pollen after normal meiosis). We analyzed the structure of rDNA units by molecular methods [CAPS and extensive sequencing of internal transcribed spacers (ITS)] and determined the number of loci on chromosomes by FISH. FISH showed that R. rubiginosa and 'André Brichet' harbored 5 and 4 highly heteromorphic rDNA loci, respectively. In the second generation of hybrid lines, we observed a reduced number of loci (4 and 5 instead of the expected 6). In R. rubiginosa and 'André Brichet', 2-3 major ITS types were found which is consistent with a weak homogenization pressure maintaining high diversity of ITS types in this genus. In contrast to expectation (the null hypothesis of Mendelian inheritance of ITS families), we observed reduced ITS diversity in some individuals of the second generation which might derive from self-fertilization or from a backcross to R. rubiginosa. In these individuals, the pan-canina beta family appeared to be markedly enriched, while the paternal families were lost or diminished in copies. Although the mechanism of biased meiotic transmission of certain rDNA types is currently unknown, we speculate that the bivalent-forming chromosomes carrying the beta rDNA family exhibit extraordinary pairing efficiency and/or are subjected to strong selection in Caninae polyploids.

  6. Repetitive Daily Blindness with Hemiplegic Migraine and SCN1A Mutations

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-05-01

    Full Text Available Two novel SCN1A mutations are identified in two unrelated families with familial hemiplegic migraine and a unique phenotype of elicited repetitive daily blindness, in a report from Hopital Lariboisiere, and other centers in Paris, France, and Geneva, Switzerland.

  7. The Genomic Diversity and Phylogenetic Relationship in the Family Iridoviridae

    Directory of Open Access Journals (Sweden)

    Brooke A. Ring

    2010-07-01

    Full Text Available The Iridoviridae family are large viruses (~120-200 nm that contain a linear double-stranded DNA genome. The genomic size of Iridoviridae family members range from 105,903 bases encoding 97 open reading frames (ORFs for frog virus 3 to 212,482 bases encoding 211 ORFs for Chilo iridescent virus. The family Iridoviridae is currently subdivided into five genera: Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, and Ranavirus. Iridoviruses have been found to infect invertebrates and poikilothermic vertebrates, including amphibians, reptiles, and fish. With such a diverse array of hosts, there is great diversity in gene content between different genera. To understand the origin of iridoviruses, we explored the phylogenetic relationship between individual iridoviruses and defined the core-set of genes shared by all members of the family. In order to further explore the evolutionary relationship between the Iridoviridae family repetitive sequences were identified and compared. Each genome was found to contain a set of unique repetitive sequences that could be used in future virus identification. Repeats common to more than one virus were also identified and changes in copy number between these repeats may provide a simple method to differentiate between very closely related virus strains. The results of this paper will be useful in identifying new iridoviruses and determining their relationship to other members of the family.

  8. Mechanistic heterogeneity in site recognition by the structurally homologous DNA-binding domains of the ETS family transcription factors Ets-1 and PU.1.

    Science.gov (United States)

    Wang, Shuo; Linde, Miles H; Munde, Manoj; Carvalho, Victor D; Wilson, W David; Poon, Gregory M K

    2014-08-01

    ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a "dry" mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1 · DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Cloning and expression of the cDNA encoding the FXPRL family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera.

    Science.gov (United States)

    Zhang, Tian-Yi; Sun, Jiu-Song; Zhang, Liu-Bin; Shen, Jin-Liang; Xu, Wei-Hua

    2004-01-01

    Diapause hormone (DH) and pheromone biosynthesis activating neuropeptide (PBAN) are encoded by a single mRNA in the suboesophegeal ganglion (SG) and are responsible for induction of embryonic diapause in Bombyx mori and sex pheromone biosynthesis in lepidopteran insects. PBAN cDNA analyses revealed that the DH-like peptide is present in several species that have a pupal diapause. However, the function of the DH-like peptide remains unknown. In the present study, we cloned the cDNA encoding DH-PBAN in Helicoverpa armigera utilizing the rapid amplification of the cDNA ends method. The nucleotide se quence analysis revealed that the longest open reading frame of this cDNA encodes a 194-amino acid precursor protein that con tains a 33-aa PBAN, a 24-aa DH-like peptide, and three other neuropeptides, all of which have a common C-terminal pentapeptide motif FXPR/KL ( X=G, T, S). A homology search showed that H. armigera DH-like and PBAN are highly homologous to those from other insects. Northern blot analysis demonstrated a single message RNA corresponding to the size of Har-DH-PBAN cDNA from pupal SG with significantly higher expression in the SG of nondiapause pupae than diapausing pupae. Western blot analysis showed DH-like peptide expression from SG of both males and females. When DH-like peptide was injected into nondiapause larvae and pupae, it did not induce diapause, but rather efficiently broke pupal diapause in H. armigera. The ED(50) of DH to terminate pupal diapause is 20 pmol/pupae. The other four FXPRLamide neuropeptides from the DH-PBAN polyprotein precursor have cross activity for diapause termination. These observations therefore suggest a potential role for these FXPRL family peptides in promoting continuous development in several noctuid species. The high expression of this gene in pharate adults and adults indicates that the FXPRL family peptides may have multiple physiological functions.

  10. RAD50, an SMC family member with multiple roles in DNA break repair: How does ATP affect function?

    NARCIS (Netherlands)

    E. Kinoshita (Eri); E. van der Linden (Eddy); H. Sanchez (Humberto); C. Wyman (Claire)

    2009-01-01

    textabstractThe protein complex including Mre11, Rad50, and Nbs1 (MRN) functions in DNA double-strand break repair to recognize and process DNA ends as well as signal for cell cycle arrest. Amino acid sequence similarity and overall architecture make Rad50 a member of the structural maintenance of c

  11. Digital repetitive control under varying frequency conditions

    OpenAIRE

    Ramos Fuentes, Germán Andrés

    2012-01-01

    The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This thesis presents some contributions to the open topic of repetitive control workin...

  12. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae).

    Science.gov (United States)

    Mahelka, Václav; Kopecky, David; Baum, Bernard R

    2013-09-01

    We employed sequencing of clones and in situ hybridization (genomic and fluorescent in situ hybridization [GISH and rDNA-FISH]) to characterize both the sequence variation and genomic organization of 45S (herein ITS1-5.8S-ITS2 region) and 5S (5S gene + nontranscribed spacer) ribosomal DNA (rDNA) families in the allohexaploid grass Thinopyrum intermedium. Both rDNA families are organized within several rDNA loci within all three subgenomes of the allohexaploid species. Both families have undergone different patterns of evolution. The 45S rDNA family has evolved in a concerted manner: internal transcribed spacer (ITS) sequences residing within the arrays of two subgenomes out of three got homogenized toward one major ribotype, whereas the third subgenome contained a minor proportion of distinct unhomogenized copies. Homogenization mechanisms such as unequal crossover and/or gene conversion were coupled with the loss of certain 45S rDNA loci. Unlike in the 45S family, the data suggest that neither interlocus homogenization among homeologous chromosomes nor locus loss occurred in 5S rDNA. Consistently with other Triticeae, the 5S rDNA family in intermediate wheatgrass comprised two distinct array types-the long- and short-spacer unit classes. Within the long and short units, we distinguished five and three different types, respectively, likely representing homeologous unit classes donated by putative parental species. Although the major ITS ribotype corresponds in our phylogenetic analysis to the E-genome species, the minor ribotype corresponds to Dasypyrum. 5S sequences suggested the contributions from Pseudoroegneria, Dasypyrum, and Aegilops. The contribution from Aegilops to the intermediate wheatgrass' genome is a new finding with implications in wheat improvement. We discuss rDNA evolution and potential origin of intermediate wheatgrass.

  13. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms.

    Science.gov (United States)

    Pavlek, Martina; Gelfand, Yevgeniy; Plohl, Miroslav; Meštrović, Nevenka

    2015-12-01

    Although satellite DNAs are well-explored components of heterochromatin and centromeres, little is known about emergence, dispersal and possible impact of comparably structured tandem repeats (TRs) on the genome-wide scale. Our bioinformatics analysis of assembled Tribolium castaneum genome disclosed significant contribution of TRs in euchromatic chromosomal arms and clear predominance of satellite DNA-typical 170 bp monomers in arrays of ≥5 repeats. By applying different experimental approaches, we revealed that the nine most prominent TR families Cast1-Cast9 extracted from the assembly comprise ∼4.3% of the entire genome and reside almost exclusively in euchromatic regions. Among them, seven families that build ∼3.9% of the genome are based on ∼170 and ∼340 bp long monomers. Results of phylogenetic analyses of 2500 monomers originating from these families show high-sequence dynamics, evident by extensive exchanges between arrays on non-homologous chromosomes. In addition, our analysis shows that concerted evolution acts more efficiently on longer than on shorter arrays. Efficient genome-wide distribution of nine TR families implies the role of transposition only in expansion of the most dispersed family, and involvement of other mechanisms is anticipated. Despite similarities in sequence features, FISH experiments indicate high-level compartmentalization of centromeric and euchromatic tandem repeats.

  14. [Repetition and fear of dying].

    Science.gov (United States)

    Lerner, B D

    1995-03-01

    In this paper a revision is made of the qualifications of Repetition (R) in Freuds work, i.e. its being at the service of the Pleasure Principle and, beyond it, the binding of free energy due to trauma. Freud intends to explain with this last concept the "fort-da" and the traumatic dreams (obsessively reiterated self-reproaches may be added to them). The main thesis of this work is that R. is not only a defense against the recollection of the ominous past (as in the metaphorical deaths of abandonment and desertion) but also a way of maintaining life and identify fighting against the inescapable omninous future (known but yet experienced), i.e. our own death. Some forms of R. like habits, identificatory behaviors and sometimes even magic, are geared to serve the life instinct. A literary illustration shows this desperate fight.

  15. Pressure rig for repetitive casting

    Science.gov (United States)

    Vasquez, Peter (Inventor); Hutto, William R. (Inventor); Philips, Albert R. (Inventor)

    1989-01-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  16. Normal repair of ultraviolet radiation-induced DNA damage in familial melanoma without CDKN2A or CDK4 gene mutation.

    Science.gov (United States)

    Shannon, J A; Matias, C; Luxford, C; Kefford, R F; Mann, G J

    1999-04-01

    Excessive sun exposure and family history are strong risk factors for the development of cutaneous melanoma. Inherited susceptibility to this type of skin cancer could therefore result from constitutively impaired capacity to repair ultraviolet (UV)-induced DNA lesions. While a proportion of familial melanoma kindreds exhibit germline mutations in the cell cycle regulatory gene CDKN2A (p16INK4a) or its protein target, cyclin-dependent kinase 4 (CDK4), the biochemical basis of most familial melanoma is unknown. We have examined lymphoblastoid cell lines from melanoma-affected and unaffected individuals from large hereditary melanoma kindreds which are not attributable to CDKN2A or CDK4 gene mutation. These lines were tested for sensitivity of clonogenic growth to UV radiation and for their ability to repair transfected UV-damaged plasmid templates (host cell reactivation). Two of seven affected-unaffected pairs differed in colony survival after exposure to UVB radiation; however, no significant differences were observed in the host-cell reactivation assays. These results indicate that melanoma susceptibility genes other than CDKN2A and CDK4 do not impair net capacity to repair UV-induced DNA damage.

  17. Developmental and organ-specific changes in promoter DNA-protein interactions in the tomato rbcS gene family.

    Science.gov (United States)

    Manzara, T; Carrasco, P; Gruissem, W

    1991-12-01

    The five genes encoding ribulose-1,5-bisphosphate carboxylase (rbcS) from tomato are differentially expressed. Transcription of the genes is organ specific and developmentally regulated in fruit and light regulated in cotyledons and leaves. DNase I footprinting assays were used to map multiple sites of DNA-protein interaction in the promoter regions of all five genes and to determine whether the differential transcriptional activity of each gene correlated with developmental or organ-specific changes in DNA-protein interactions. We show organ-specific differences in DNase I protection patterns, suggesting that differential transcription of rbcS genes is controlled at least in part at the level of DNA-protein interactions. In contrast, no changes were detected in the DNase I footprint pattern generated with nuclear extracts from dark-grown cotyledons versus cotyledons exposed to light, implying that light-dependent regulation of rbcS transcription is controlled by protein-protein interactions or modification of DNA binding proteins. During development of tomato fruit, most DNA-protein interactions in the rbcS promoter regions disappear, coincident with the transcriptional inactivation of the rbcS genes. In nuclear extracts from nonphotosynthetic roots and red fruit, the only detectable DNase I protection corresponds to a G-box binding activity. Detection of other DNA binding proteins in extracts from these organs and expression of nonphotosynthetic genes exclude the possibility that roots and red fruit are transcriptionally inactive. The absence of complex promoter protection patterns in these organs suggests either that cooperative interactions between different DNA binding proteins are necessary to form functional transcription complexes or that there is developmental and organ-specific regulation of several rbcS-specific transcription factors in these organs. The DNase I-protected DNA sequences defined in this study are discussed in the context of conserved DNA

  18. Schistosome satellite DNA encodes active hammerhead ribozymes.

    Science.gov (United States)

    Ferbeyre, G; Smith, J M; Cedergren, R

    1998-07-01

    Using a computer program designed to search for RNA structural motifs in sequence databases, we have found a hammerhead ribozyme domain encoded in the Smalpha repetitive DNA of Schistosoma mansoni. Transcripts of these repeats are expressed as long multimeric precursor RNAs that cleave in vitro and in vivo into unit-length fragments. This RNA domain is able to engage in both cis and trans cleavage typical of the hammerhead ribozyme. Further computer analysis of S. mansoni DNA identified a potential trans cleavage site in the gene coding for a synaptobrevin-like protein, and RNA transcribed from this gene was efficiently cleaved by the Smalpha ribozyme in vitro. Similar families of repeats containing the hammerhead domain were found in the closely related Schistosoma haematobium and Schistosomatium douthitti species but were not present in Schistosoma japonicum or Heterobilharzia americana, suggesting that the hammerhead domain was not acquired from a common schistosome ancestor.

  19. Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family.

    Science.gov (United States)

    Gallot-Lavallée, Lucie; Blanc, Guillaume; Claverie, Jean-Michel

    2017-07-15

    Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina, formerly Chrysochromulina ericina), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera (Mimivirus and Cafeteriavirus) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae, they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes.IMPORTANCE Although it infects the microalga Chrysochromulina ericina, CeV is more closely related

  20. A study of methicillin - resistant staphylococcus aureus(MRSA) in a burn unit with repetitive - DNA - sequence- based PCR fingerprinting%烧伤病房耐甲氧西林金黄色葡萄球菌的DNA重复序列PCR研究

    Institute of Scientific and Technical Information of China (English)

    李洁; 徐秀华; 曾海涛

    2001-01-01

    目的研究烧伤病房耐甲氧西林金黄色葡萄球菌( methicillin - resistant Staphylococcus aureus,MRSA)的分布及传播,探讨烧伤病房医院感染的预防、监测及控制工作。方法采集烧伤患者的创面、鼻前庭,工作人员手、鼻前庭,陪护家属的手、鼻前庭及烧伤科病房各种环境表面共504份标本,从中分离到MRSA 58株,对苯唑西林敏感的金黄色葡萄球菌43株,并对所分离的MRSA菌株的基因组DNA进行重复序列PCR检测。结果 53.7%(22/41)的患者创面分离出MRSA,其中5例鼻前庭分离出MRSA;19名工作人员中,3人手分离出MRSA,工作人员鼻前庭未分离到MRSA;43例患者陪护家属中有9人手上分离出MRSA,2人鼻前庭分离出MRSA;193份环境标本共分离MRSA 13株。通过MRSA细菌基因组DNA重复序列PCR分析,发现部分患者创面之间及创面与工作人员、陪护和环境之间存在MRSA同源株。结论 (1)MRSA在烧伤科分布广,其中不乏同源株;(2)基因组DNA重复序列PCR分析,显示烧伤病室存在两例患者之间的交叉感染,MRSA在烧伤病房的传染源为患者,传播途径与陪护及工作人员的手污染有关;(3)MRSA的广泛存在,携带率高,手与环境的污染,是MRSA爆发感染的潜在危险。%bjective To investigate the distribution and spread of MRSA in a burn ward, so as to explore the measures of the prevention,surveillance and control of hospital infection in a burn ward. Methods Five hundred and four specimens were isolated from the wounds and nasal vestibules of burn patients ,the hands and nasal vestibules of medical staffs and lay attendants and the surfaces of various equipments. From these specimens,58 strains of MRSA and 43 methicillin- sensitive staphylococcus aureus (MSSA) were isolated. The genome DNA of isolated MRSA strains was analyzed by repetitive DNA - sequence- based PCR analysis. Results MRSA strains were isolated from the burn wounds

  1. Association studies using family pools of outcrossing crops based on allele-frequency estimates from DNA sequencing

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Jensen, Just; Asp, Torben

    2014-01-01

    effect from F2-family pools was verified and it was shown that the underestimation of the allele effect is correctly described. The optimal design for an association study when sequencing budget would be fixed is obtained using large sample size and lower sequence depth, and using higher SNP density...... types of family pools and is also directly applicable for association studies in polyploids....

  2. Altered Function of the DnaJ Family Cochaperone DNJ-17 Modulates Locomotor Circuit Activity in a Caenorhabditis elegans Seizure Model

    Science.gov (United States)

    Takayanagi-Kiya, Seika; Jin, Yishi

    2016-01-01

    The highly conserved cochaperone DnaJ/Hsp40 family proteins are known to interact with molecular chaperone Hsp70, and can regulate many cellular processes including protein folding, translocation, and degradation. In studies of Caenorhabditis elegans locomotion mutants, we identified a gain-of-function (gf) mutation in dnj-17 closely linked to the widely used e156 null allele of C. elegans GAD (glutamic acid decarboxylase) unc-25. dnj-17 encodes a DnaJ protein orthologous to human DNAJA5. In C. elegans DNJ-17 is a cytosolic protein and is broadly expressed in many tissues. dnj-17(gf) causes a single amino acid substitution in a conserved domain, and behaves as a hypermorphic mutation. The effect of this dnj-17(gf) is most prominent in mutants lacking GABA synaptic transmission. In a seizure model caused by a mutation in the ionotropic acetylcholine receptor acr-2(gf), dnj-17(gf) exacerbates the convulsion phenotype in conjunction with absence of GABA. Null mutants of dnj-17 show mild resistance to aldicarb, while dnj-17(gf) is hypersensitive. These results highlight the importance of DnaJ proteins in regulation of C. elegans locomotor circuit, and provide insights into the in vivo roles of DnaJ proteins in humans. PMID:27185401

  3. Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase.

    Science.gov (United States)

    Baños, Benito; Lázaro, José M; Villar, Laurentino; Salas, Margarita; de Vega, Miguel

    2008-10-01

    Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolX(Bs)), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolX(Bs) possesses an intrinsic 3'-5' exonuclease activity specialized in resecting unannealed 3'-termini in a gapped DNA substrate. Biochemical analysis of a PolX(Bs) deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3'-5' exonuclease activity of PolX(Bs) resides in its PHP domain. Furthermore, site-directed mutagenesis of PolX(Bs) His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3'-termini resection by the 3'-5' exonuclease activity of PolX(Bs) in the DNA repair context are discussed.

  4. A cDNA cloned from Physarum polycephalum encodes new type of family 3 beta-glucosidase that is a fusion protein containing a calx-beta motif.

    Science.gov (United States)

    Maekawa, Akinori; Hayase, Masato; Yubisui, Toshitsugu; Minami, Yoshiko

    2006-01-01

    The microplasmodia of Physarum polycephalum express three types of beta-glucosidases: secretory enzyme, a soluble cytoplasmic enzyme and a membrane-bound enzyme. We are interested in the physiological role of three enzymes. We report the sequence of cDNA for membrane beta-glucosidase 1, which consists of 3825 nucleotides that includes an open reading frame encoding 1248 amino acids. The molecular weight of membrane beta-glucosidase 1 was calculated to be 131,843 based on the predicted amino acid composition. Glycosyl hydrolase family 3 N-terminal and C-terminal domains were found within the N-terminal half of the membrane beta-glucosidase 1 sequence and were highly homologous with the primary structures of fungal beta-glucosidases. Notably, the C-terminal half of membrane beta-glucosidase 1 contains two calx-beta motifs, which are known to be Ca(2+) binding domains in the Drosophila Na(+)/Ca(2+) exchanger; an RGD sequence, which is known to be a cell attachment sequence; and a transmembrane region. In this way, Physarum membrane beta-glucosidase 1 differs from all previously identified family 3 beta-glucosidases. In addition to cDNA for membrane beta-glucosidase 1, two other distinctly different mRNAs were also isolated. Two sequences were largely identical to cDNA for membrane beta-glucosidase 1, but included a long insert sequence having a stop codon, leading to truncation of their products, which could account for other beta-glucosidase forms occurred in Physarum poycephalum. Thus, the membrane beta-glucosidase is a new type family 3 enzyme fused with the Calx-beta domain. We propose that Calx-beta domain may modulate the beta-glucosidase activity in response to changes in the Ca(2+) concentration.

  5. DNA-Level Diversity and Relatedness of Helicobacter pylori Strains in Shantytown Families in Peru and Transmission in a Developing-Country Setting▿

    Science.gov (United States)

    Herrera, Phabiola M.; Mendez, Melissa; Velapatiõ, Billie; Santivaẽz, Livia; Balqui, Jacqueline; Finger, S. Alison; Sherman, Jonathan; Zimic, Mirko; Cabrera, Lilia; Watanabe, Jose; Rodríguez, Carlos; Gilman, Robert H.; Berg, Douglas E.

    2008-01-01

    The efficiency of transmission of a pathogen within families compared with that between unrelated persons can affect both the strategies needed to control or eradicate infection and how the pathogen evolves. In industrialized countries, most cases of transmission of the gastric pathogen Helicobacter pylori seems to be from mother to child. An alternative model, potentially applicable among the very poor in developing countries, where infection is more common and the sanitary infrastructure is often deficient, invokes frequent transmission among unrelated persons, often via environmental sources. In the present study, we compared the genotypes of H. pylori from members of shantytown households in Peru to better understand the transmission of H. pylori in developing-country settings. H. pylori cultures and/or DNAs were obtained with informed consent by the string test (a minimally invasive alternative to endoscopy) from at least one child and one parent from each of 62 families. The random amplified polymorphic DNA fingerprints of 57 of 81 (70%) child-mother strain pairs did not match, nor did the diagnostic gene sequences (>1% DNA sequence difference), independent of the child's age (range, 1 to 39 years). Most strains from siblings or other paired family members were also unrelated. These results suggest that H. pylori infections are often community acquired in the society studied. Transmission between unrelated persons should facilitate the formation of novel recombinant genotypes by interstrain DNA transfer and selection for genotypes that are well suited for individual hosts. It also implies that the effective prevention of H. pylori infection and associated gastroduodenal disease will require anti-H. pylori measures to be applied communitywide. PMID:18842944

  6. Mammalian satellite DNA: a speaking dumb.

    Science.gov (United States)

    Enukashvily, Natella I; Ponomartsev, Nikita V

    2013-01-01

    The tandemly organized highly repetitive satellite DNA is the main DNA component of centromeric/pericentromeric constitutive heterochromatin. For almost a century, it was considered as "junk DNA," only a small portion of which is used for kinetochore formation. The current review summarizes recent data about satellite DNA transcription. The possible functions of the transcripts are discussed.

  7. Comparing repetition-based melody segmentation models

    NARCIS (Netherlands)

    Rodríguez López, M.E.; de Haas, Bas; Volk, Anja

    2014-01-01

    This paper reports on a comparative study of computational melody segmentation models based on repetition detection. For the comparison we implemented five repetition-based segmentation models, and subsequently evaluated their capacity to automatically find melodic phrase boundaries in a corpus of 2

  8. Task Repetition and Second Language Speech Processing

    Science.gov (United States)

    Lambert, Craig; Kormos, Judit; Minn, Danny

    2017-01-01

    This study examines the relationship between the repetition of oral monologue tasks and immediate gains in L2 fluency. It considers the effect of aural-oral task repetition on speech rate, frequency of clause-final and midclause filled pauses, and overt self-repairs across different task types and proficiency levels and relates these findings to…

  9. Repetitions: A Cross-Cultural Study.

    Science.gov (United States)

    Murata, Kumiko

    1995-01-01

    This study investigated how repetition is used in conversation among native speakers of British English, native speakers of Japanese, and Japanese speakers of English. Five interactional functions of repetition (interruption-orientated, solidarity, silence-avoidance, hesitation, and reformulation) were identified, as well as the cultural factors…

  10. Expression of NGF family and their receptors in gastric carcinoma:A cDNA microarray study

    Institute of Scientific and Technical Information of China (English)

    Jian-Jun Du; Ying-Bin Liu; Ze-Guang Han; Ke-Feng Dou; Shu-You Peng; Bing-Zhi Qian; Hua-Sheng Xiao; Feng Liu; Wei-Zhong Wang; Wen-Xian Guan; Zhi-Qing Gao

    2003-01-01

    AIM: To investigate the expression of NGF family and their receptors in gastric carcinoma and normal gastric mucosa,and to elucidate their effects on gastric carcinoma.METHODS: RNA of gastric cancer tissues and normal gastric tissues was respectively isolated and mRNA was purified.Probes of both mRNA reverse transcription product cDNAs labled with α-33P dATP were respectively hybridized with Atlas Array membrane where NGF and their family genes were spotted on. Hybridized signal images were scanned on phosphor screen with ImageQuant 5.1 software after hybridization. Normalized values on spots were analyzed with ArrayVersion 5.0 software. Differential expression of NGF family and their receptors mRNA was confirmed between hybridized Atlas Array membranes of gastric cancer tissues and normal gastric mucosa, then their effects on gastric carcinoma were investigated.RESULTS: Hybridization signal images on Atlas Array membrane appeared in a lower level of nonspecific hybridization. Both of NGF family and their receptors Trk family mRNA were expressed in gastric cancer and normal gastric mucosa. But adversely up-regulated expression in other tissues and organs. NGF, BDGF, NT-3, NT-4/5, NT-6and TrkA, B and C were down-regulated simultaneously in gastric carcinoma in comparison with normal gastric mucosa. Degrees of down-regulation in NGF family were greater than those in their receptors Trk family. Downregulation of NT-3 and BDGF was the most significant,and TrkC down-regulation level was the lowest in receptors Trk family.CONCLUSION: Down-regulated expression of NGF family and their receptors Trk family mRNA in gastric cancer is confirmed. NGF family and their receptors Trk family probably play a unique role in gastric cancer cell apoptosis by a novel Ras or Raf signal transduction pathway. Their synchronous effects are closely associated with occurrence and development of gastric carcinoma induced by reduction of signal transduction of programmed cell death.

  11. Digital repetitive control under varying frequency conditions

    CERN Document Server

    Ramos, Germán A; Olm, Josep M

    2013-01-01

    The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area. Repetitive Control has proven to be an efficient way to face this topic. However, in some applications the frequency of the reference/disturbance signal is time-varying or uncertain. This causes an important performance degradation in the standard Repetitive Control scheme. This book presents some solutions to apply Repetitive Control in varying frequency conditions without loosing steady-state performance. It also includes a complete theoretical development and experimental results in two representative systems. The presented solutions are organized in two complementary branches: varying sampling period Repetitive Control and High Order Repetitive Control. The first approach allows dealing with large range frequency variations while the second allows dealing with small range frequency variations. The book also presents applications of the described techniques to a Roto-magnet plant and...

  12. Cold Spring Harbor symposia on quantitative biology. Volume XLVII, Part 1. Structures of DNA

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The proceedings for the 47th Annual Cold Spring Harbor Symposia on Quantitative Biology are presented. This symposium focused on the Structure of DNA. Topics presented covered research in the handedness of DNA, conformational analysis, chemically modified DNA, chemical synthesis of DNA, DNA-protein interactions, DNA within nucleosomes, DNA methylation, DNA replication, gyrases and topoisomerases, recombining and mutating DNA, transcription of DNA and its regulation, the organization of genes along DNA, repetitive DNA and pseudogenes, and origins of replication, centromeres, and teleomeres.

  13. Evaluation of MiR-34 Family and DNA Methyltransferases 1, 3A, 3B Gene Expression Levels in Hepatocellular Carcinoma Following Treatment with Dendrosomal Nanocurcumin.

    Science.gov (United States)

    Chamani, Fatemeh; Sadeghizadeh, Majid; Masoumi, Mahbobeh; Babashah, Sadegh

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver making up more than 80 percent of cases. It is known to be the sixth most prevalent cancer and the third most frequent cause of cancer related death worldwide. Epigenetic regulation constitutes an important mechanism by which dietary components can selectively activate or inactivate target gene expression. The miR-34 family members including mir-34a, mir-34b and mir-34c are tumor suppressor micro RNAs, which are expressed in the majority of normal tissues. Several studies have indicated silencing of miR-34 expression via DNA methylation in multiple types of cancers. Bioactive nutrients like curcumin (Cur) have excellent anticarcinogenic activity and minimal toxic manifestations in biological systems. This compound has recently been determined to induce epigenetic changes. However, Cur is lipophilic and has a poor systemic bioavailability and poor absorption. Its bioavailability is increased through employing dendrosome nanoparticles. The aim of the current study was to investigate the effect of dendrosomal nanocurcumin (DNC) on expression of mir-34 family members in two HCC cell lines, HepG2 and Huh7. We performed the MTT assay to evaluate DNC and dendrosome effects on cell viability. The ability of DNC to alter expression of the mir-34 family and DNA methyltransferases (DNMT1, DNMT3A and 3B) was evaluated using semi-quantitative and quantitative PCR. We observed the entrance of DNC into HepG2 and Huh7 cells. Gene expression assays indicated that DNC treatment upregulated mir34a, mir34b and mir34c expression (Pexpression (Pexpression. We showed that DNC could awaken the epigenetically silenced miR-34 family by downregulation of DNMTs. Our findings suggest that DNC has potential in epigenetic therapy of HCC.

  14. Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory.

    Science.gov (United States)

    Mládek, Arnošt; Krepl, Miroslav; Svozil, Daniel; Cech, Petr; Otyepka, Michal; Banáš, Pavel; Zgarbová, Marie; Jurečka, Petr; Sponer, Jiří

    2013-05-21

    The DNA sugar-phosphate backbone has a substantial influence on the DNA structural dynamics. Structural biology and bioinformatics studies revealed that the DNA backbone in experimental structures samples a wide range of distinct conformational substates, known as rotameric DNA backbone conformational families. Their correct description is essential for methods used to model nucleic acids and is known to be the Achilles heel of force field computations. In this study we report the benchmark database of MP2 calculations extrapolated to the complete basis set of atomic orbitals with aug-cc-pVTZ and aug-cc-pVQZ basis sets, MP2(T,Q), augmented by ΔCCSD(T)/aug-cc-pVDZ corrections. The calculations are performed in the gas phase as well as using a COSMO solvent model. This study includes a complete set of 18 established and biochemically most important families of DNA backbone conformations and several other salient conformations that we identified in experimental structures. We utilize an electronically sufficiently complete DNA sugar-phosphate-sugar (SPS) backbone model system truncated to prevent undesired intramolecular interactions. The calculations are then compared with other QM methods. The BLYP and TPSS functionals supplemented with Grimme's D3(BJ) dispersion term provide the best tradeoff between computational demands and accuracy and can be recommended for preliminary conformational searches as well as calculations on large model systems. Among the tested methods, the best agreement with the benchmark database has been obtained for the double-hybrid DSD-BLYP functional in combination with a quadruple-ζ basis set, which is, however, computationally very demanding. The new hybrid density functionals PW6B95-D3 and MPW1B95-D3 yield outstanding results and even slightly outperform the computationally more demanding PWPB95 double-hybrid functional. B3LYP-D3 is somewhat less accurate compared to the other hybrids. Extrapolated MP2(D,T) calculations are not as

  15. Sequence analysis of a 10 kb DNA fragment from yeast chromosome VII reveals a novel member of the DnaJ family.

    Science.gov (United States)

    Rodriguez-Belmonte, E; Rodriguez-Torres, A M; Tizon, B; Cadahia, J L; Gonzalez-Siso, I; Ramil, E; Becerra, M; Gonzalez-Dominguez, M; Cerdan, E

    1996-02-01

    We report the sequence analysis of a 10 kb DNA fragment of Saccharomyces cerevisiae chromosome VII. This sequence contains four complete open reading frames (ORFs) of greater than 100 amino acids. There are also two incomplete ORFs flanking the extremes: one of these, G2868, is the 5' part of the SCS3 gene (Hosaka et al., 1994). ORFs G2853 and G2856 correspond to the genes CEG1, coding for the alfa subunit of the mRNA guanylyl transferase and a 3' gene of unknown function previously sequenced (Shibagaki et al., 1992). G2864 is identical to SOH1 also reported (Fan and Klein, 1994).

  16. Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins.

    Science.gov (United States)

    Riley, Sean P; Bykowski, Tomasz; Cooley, Anne E; Burns, Logan H; Babb, Kelly; Brissette, Catherine A; Bowman, Amy; Rotondi, Matthew; Miller, M Clarke; DeMoll, Edward; Lim, Kap; Fried, Michael G; Stevenson, Brian

    2009-04-01

    The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where 'n' can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5' of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding sites are abundantly distributed throughout the B. burgdorferi genome, occurring approximately once every 1 kb. These and other features of EbfC suggest that this small protein and its orthologs may represent a distinctive type of bacterial nucleoid-associated protein. EbfC was shown to bind DNA as a homodimer, and site-directed mutagenesis studies indicated that EbfC and its orthologs appear to bind DNA via a novel alpha-helical 'tweezer'-like structure.

  17. Strategies for Using Repetition as a Powerful Teaching Tool

    Science.gov (United States)

    Saville, Kirt

    2011-01-01

    Brain research indicates that repetition is of vital importance in the learning process. Repetition is an especially useful tool in the area of music education. The success of repetition can be enhanced by accurate and timely feedback. From "simple repetition" to "repetition with the addition or subtraction of degrees of freedom," there are many…

  18. Strategies for Using Repetition as a Powerful Teaching Tool

    Science.gov (United States)

    Saville, Kirt

    2011-01-01

    Brain research indicates that repetition is of vital importance in the learning process. Repetition is an especially useful tool in the area of music education. The success of repetition can be enhanced by accurate and timely feedback. From "simple repetition" to "repetition with the addition or subtraction of degrees of freedom," there are many…

  19. Repetition priming from moving faces.

    Science.gov (United States)

    Lander, Karen; Bruce, Vicki

    2004-06-01

    Recent experiments have suggested that seeing a familiar face move provides additional dynamic information to the viewer, useful in the recognition of identity. In four experiments, repetition priming was used to investigate whether dynamic information is intrinsic to the underlying face representations. The results suggest that a moving image primes more effectively than a static image, even when the same static image is shown in the prime and the test phases (Experiment 1). Furthermore, when moving images are presented in the test phase (Experiment 2), there is an advantage for moving prime images. The most priming advantage is found with naturally moving faces, rather than with those shown in slow motion (Experiment 3). Finally, showing the same moving sequence at prime and test produced more priming than that found when different moving sequences were shown (Experiment 4). The results suggest that dynamic information is intrinsic to the face representations and that there is an advantage to viewing the same moving sequence at prime and test.

  20. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays.

    Science.gov (United States)

    Pinhal, Danillo; Yoshimura, Tatiana S; Araki, Carlos S; Martins, Cesar

    2011-05-31

    Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution.

  1. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Directory of Open Access Journals (Sweden)

    Araki Carlos S

    2011-05-01

    Full Text Available Abstract Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution.

  2. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Science.gov (United States)

    2011-01-01

    Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution. PMID:21627815

  3. Precision markedly attenuates repetitive lift capacity.

    Science.gov (United States)

    Collier, Brooke R; Holland, Laura; McGhee, Deirdre; Sampson, John A; Bell, Alison; Stapley, Paul J; Groeller, Herbert

    2014-01-01

    This study investigated the effect of precision on time to task failure in a repetitive whole-body manual handling task. Twelve participants were required to repetitively lift a box weighing 65% of their single repetition maximum to shoulder height using either precise or unconstrained box placement. Muscle activity, forces exerted at the ground, 2D body kinematics, box acceleration and psychophysical measures of performance were recorded until task failure was reached. With precision, time to task failure for repetitive lifting was reduced by 72%, whereas the duration taken to complete a single lift and anterior deltoid muscle activation increased by 39% and 25%, respectively. Yet, no significant difference was observed in ratings of perceived exertion or heart rate at task failure. In conclusion, our results suggest that when accuracy is a characteristic of a repetitive manual handling task, physical work capacity will decline markedly. The capacity to lift repetitively to shoulder height was reduced by 72% when increased accuracy was required to place a box upon a shelf. Lifting strategy and muscle activity were also modified, confirming practitioners should take into consideration movement precision when evaluating the demands of repetitive manual handling tasks.

  4. Characterization and distribution of repetitive elements in association with genes in the human genome.

    Science.gov (United States)

    Liang, Kai-Chiang; Tseng, Joseph T; Tsai, Shaw-Jenq; Sun, H Sunny

    2015-08-01

    Repetitive elements constitute more than 50% of the human genome. Recent studies implied that the complexity of living organisms is not just a direct outcome of a number of coding sequences; the repetitive elements, which do not encode proteins, may also play a significant role. Though scattered studies showed that repetitive elements in the regulatory regions of a gene control gene expression, no systematic survey has been done to report the characterization and distribution of various types of these repetitive elements in the human genome. Sequences from 5' and 3' untranslated regions and upstream and downstream of a gene were downloaded from the Ensembl database. The repetitive elements in the neighboring of each gene were identified and classified using cross-matching implemented in the RepeatMasker. The annotation and distribution of distinct classes of repetitive elements associated with individual gene were collected to characterize genes in association with different types of repetitive elements using systems biology program. We identified a total of 1,068,400 repetitive elements which belong to 37-class families and 1235 subclasses that are associated with 33,761 genes and 57,365 transcripts. In addition, we found that the tandem repeats preferentially locate proximal to the transcription start site (TSS) of genes and the major function of these genes are involved in developmental processes. On the other hand, interspersed repetitive elements showed a tendency to be accumulated at distal region from the TSS and the function of interspersed repeat-containing genes took part in the catabolic/metabolic processes. Results from the distribution analysis were collected and used to construct a gene-based repetitive element database (GBRED; http://www.binfo.ncku.edu.tw/GBRED/index.html). A user-friendly web interface was designed to provide the information of repetitive elements associated with any particular gene(s). This is the first study focusing on the gene

  5. Cloning of a cDNA encoding a novel human nuclear phosphoprotein belonging to the WD-40 family

    DEFF Research Database (Denmark)

    Honoré, B; Leffers, H; Madsen, Peder

    1994-01-01

    We have cloned and expressed in vaccinia virus a cDNA encoding an ubiquitous 501-amino-acid (aa) phosphoprotein that corresponds to protein IEF SSP 9502 (79,400 Da, pI 4.5) in the master 2-D-gel keratinocyte protein database [Celis et al., Electrophoresis 14 (1993) 1091-1198]. The deduced aa...

  6. Stability of repetitive-sequence PCR patterns with respect to culture age and subculture frequency.

    Science.gov (United States)

    Kang, Hyunseok Peter; Dunne, W Michael

    2003-06-01

    To examine the stability of repetitive-sequence (rep) PCR profiles, six species of bacteria were subcultured to blood agar plates and DNA was extracted from the cultures after 24, 48, and 72 h of incubation at 35 degrees C. In addition, the same species were subcultured to fresh blood plates daily and DNA was extracted from the cultures after growth of 5, 10, and 15 subcultures, respectively. rep PCR analysis demonstrated that all rep PCR fingerprints from a single species were identical.

  7. Avocado cellulase: nucleotide sequence of a putative full-length cDNA clone and evidence for a small gene family.

    Science.gov (United States)

    Tucker, M L; Durbin, M L; Clegg, M T; Lewis, L N

    1987-05-01

    A cDNA library was prepared from ripe avocado fruit (Persea americana Mill. cv. Hass) and screened for clones hybridizing to a 600 bp cDNA clone (pAV5) coding for avocado fruit cellulase. This screening led to the isolation of a clone (pAV363) containing a 2021 nucleotide transcribed sequence and an approximately 150 nucleotide poly(A) tail. Hybridization of pAV363 to a northern blot shows that the length of the homologous message is approximately 2.2 kb. The nucleotide sequence of this putative full-length mRNA clone contains an open reading frame of 1482 nucleotides which codes for a polypeptide of 54.1 kD. The deduced amino acid composition compares favorably with the amino acid composition of native avocado cellulase determined by amino acid analysis. Southern blot analysis of Hind III and Eco RI endonuclease digested genomic DNA indicates a small family of cellulase genes.

  8. Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member in the family Geminiviridae.

    Science.gov (United States)

    Loconsole, Giuliana; Saldarelli, Pasquale; Doddapaneni, Harshavardhan; Savino, Vito; Martelli, Giovanni P; Saponari, Maria

    2012-10-10

    In the attempt to identify the causal agent of Citrus chlorotic dwarf disease (CCDD), a virus-like disorder of citrus, the small RNA fraction and total DNA from symptomatic citrus plants were subjected to high-throughput sequencing. DNA fragments deriving from an apparently new geminivirus-like agent were found and assembled by NGS to re-construct the entire viral genome. The newly identified virus has a circular single-stranded DNA genome comprising five open reading frames (ORFs) with sequence homologies with those encoded by geminiviruses. PCR and qPCR assays were successfully used for determining its presence in the CCDD-affected plants obtained by graft propagation. The larger genome size (3.64 vs. 2.5-3.0 kb) and a number of differences in its structural organization, identified this virus as a highly divergent member of the family Geminiviridae, to which the provisional name of Citrus chlorotic dwarf-associated virus (CCDaV) is assigned. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Repetitive elements dynamics in cell identity programming, maintenance and disease

    KAUST Repository

    Bodega, Beatrice

    2014-12-01

    The days of \\'junk DNA\\' seem to be over. The rapid progress of genomics technologies has been unveiling unexpected mechanisms by which repetitive DNA and in particular transposable elements (TEs) have evolved, becoming key issues in understanding genome structure and function. Indeed, rather than \\'parasites\\', recent findings strongly suggest that TEs may have a positive function by contributing to tissue specific transcriptional programs, in particular as enhancer-like elements and/or modules for regulation of higher order chromatin structure. Further, it appears that during development and aging genomes experience several waves of TEs activation, and this contributes to individual genome shaping during lifetime. Interestingly, TEs activity is major target of epigenomic regulation. These findings are shedding new light on the genome-phenotype relationship and set the premises to help to explain complex disease manifestation, as consequence of TEs activity deregulation.

  10. Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria.

    Science.gov (United States)

    Bideshi, Dennis K; Renault, Sylvaine; Stasiak, Karine; Federici, Brian A; Bigot, Yves

    2003-09-01

    Baculovirus repeated open reading frame (bro) genes and their relatives constitute a multigene family, typically with multiple copies per genome, known to occur among certain insect dsDNA viruses and bacteriophages. Little is known about the evolutionary history and function of the proteins encoded by these genes. Here we have shown that bro and bro-like (bro-l) genes occur among viruses of two additional invertebrate viral families, Ascoviridae and Iridoviridae, and in prokaryotic class II transposons. Analysis of over 100 sequences showed that the N-terminal region, consisting of two subdomains, is the most conserved region and contains a DNA-binding motif that has been characterized previously. Phylogenetic analysis indicated that these proteins are distributed among eight groups, Groups 1-7 consisting of invertebrate virus proteins and Group 8 of proteins in bacteriophages and bacterial transposons. No bro genes were identified in databases of invertebrate or vertebrate genomes, vertebrate viruses and transposons, nor in prokaryotic genomes, except in prophages or transposons of the latter. The phylogenetic relationship between bro genes suggests that they have resulted from recombination of viral genomes that allowed the duplication and loss of genes, but also the acquisition of genes by horizontal transfer over evolutionary time. In addition, the maintenance and diversity of bro-l genes in different types of invertebrate dsDNA viruses, but not in vertebrate viruses, suggests that these proteins play an important role in invertebrate virus biology. Experiments with the unique orf2 bro gene of Autographa californica multicapsid nucleopolyhedrovirus showed that it is not required for replication, but may enhance replication during the occlusion phase of reproduction.

  11. Characterization of new transposable element sub-families from white clover (Trifolium repens) using PCR amplification.

    Science.gov (United States)

    Becker, Kailey E; Thomas, Mary C; Martini, Samer; Shuipys, Tautvydas; Didorchuk, Volodymyr; Shanker, Rachyl M; Laten, Howard M

    2016-10-01

    Transposable elements (TEs) dominate the landscapes of most plant and animal genomes. Once considered junk DNA and genetic parasites, these interspersed, repetitive DNA elements are now known to play major roles in both genetic and epigenetic processes that sponsor genome variation and regulate gene expression. Knowledge of TE consensus sequences from elements in species whose genomes have not been sequenced is limited, and the individual TEs that are encountered in clones or short-reads rarely represent potentially canonical, let alone, functional representatives. In this study, we queried the Repbase database with eight BAC clones from white clover (Trifolium repens), identified a large number of candidate TEs, and used polymerase chain reaction and Sanger sequencing to create consensus sequences for three new TE families. The results show that TE family consensus sequences can be obtained experimentally in species for which just a single, full-length member of a TE family has been sequenced.

  12. Refining borders of genome-rearrangements including repetitions

    Directory of Open Access Journals (Sweden)

    JA Arjona-Medina

    2016-10-01

    Full Text Available Abstract Background DNA rearrangement events have been widely studied in comparative genomic for many years. The importance of these events resides not only in the study about relatedness among different species, but also to determine the mechanisms behind evolution. Although there are many methods to identify genome-rearrangements (GR, the refinement of their borders has become a huge challenge. Until now no accepted method exists to achieve accurate fine-tuning: i.e. the notion of breakpoint (BP is still an open issue, and despite repeated regions are vital to understand evolution they are not taken into account in most of the GR detection and refinement methods. Methods and results We propose a method to refine the borders of GR including repeated regions. Instead of removing these repetitions to facilitate computation, we take advantage of them using a consensus alignment sequence of the repeated region in between two blocks. Using the concept of identity vectors for Synteny Blocks (SB and repetitions, a Finite State Machine is designed to detect transition points in the difference between such vectors. The method does not force the BP to be a region or a point but depends on the alignment transitions within the SBs and repetitions. Conclusion The accurate definition of the borders of SB and repeated genomic regions and consequently the detection of BP might help to understand the evolutionary model of species. In this manuscript we present a new proposal for such a refinement. Features of the SBs borders and BPs are different and fit with what is expected. SBs with more diversity in annotations and BPs short and richer in DNA replication and stress response, which are strongly linked with rearrangements.

  13. Significance of satellite DNA revealed by conservation of a widespread repeat DNA sequence among angiosperms.

    Science.gov (United States)

    Mehrotra, Shweta; Goel, Shailendra; Raina, Soom Nath; Rajpal, Vijay Rani

    2014-08-01

    The analysis of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of plant nuclear DNA. In the present study, we analyzed the nature of pCtKpnI-I and pCtKpnI-II tandem repeated sequences, reported earlier in Carthamus tinctorius. Interestingly, homolog of pCtKpnI-I repeat sequence was also found to be present in widely divergent families of angiosperms. pCtKpnI-I showed high sequence similarity but low copy number among various taxa of different families of angiosperms analyzed. In comparison, pCtKpnI-II was specific to the genus Carthamus and was not present in any other taxa analyzed. The molecular structure of pCtKpnI-I was analyzed in various unrelated taxa of angiosperms to decipher the evolutionary conserved nature of the sequence and its possible functional role.

  14. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome.

    Science.gov (United States)

    Kolano, B; Gardunia, B W; Michalska, M; Bonifacio, A; Fairbanks, D; Maughan, P J; Coleman, C E; Stevens, M R; Jellen, E N; Maluszynska, J

    2011-09-01

    The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18-24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18-24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12-13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12-13P was very similar to GISH results, suggesting that the 12-13P sequence constitutes a major part of the repetitive DNA of C. quinoa.

  15. Contrasting the Chromosomal Organization of Repetitive DNAs in Two Gryllidae Crickets with Highly Divergent Karyotypes.

    Science.gov (United States)

    Palacios-Gimenez, Octavio M; Carvalho, Carlos Roberto; Ferrari Soares, Fernanda Aparecida; Cabral-de-Mello, Diogo C

    2015-01-01

    A large percentage of eukaryotic genomes consist of repetitive DNA that plays an important role in the organization, size and evolution. In the case of crickets, chromosomal variability has been found using classical cytogenetics, but almost no information concerning the organization of their repetitive DNAs is available. To better understand the chromosomal organization and diversification of repetitive DNAs in crickets, we studied the chromosomes of two Gryllidae species with highly divergent karyotypes, i.e., 2n(♂) = 29,X0 (Gryllus assimilis) and 2n = 9, neo-X1X2Y (Eneoptera surinamensis). The analyses were performed using classical cytogenetic techniques, repetitive DNA mapping and genome-size estimation. Conserved characteristics were observed, such as the occurrence of a small number of clusters of rDNAs and U snDNAs, in contrast to the multiple clusters/dispersal of the H3 histone genes. The positions of U2 snDNA and 18S rDNA are also conserved, being intermingled within the largest autosome. The distribution and base-pair composition of the heterochromatin and repetitive DNA pools of these organisms differed, suggesting reorganization. Although the microsatellite arrays had a similar distribution pattern, being dispersed along entire chromosomes, as has been observed in some grasshopper species, a band-like pattern was also observed in the E. surinamensis chromosomes, putatively due to their amplification and clustering. In addition to these differences, the genome of E. surinamensis is approximately 2.5 times larger than that of G. assimilis, which we hypothesize is due to the amplification of repetitive DNAs. Finally, we discuss the possible involvement of repetitive DNAs in the differentiation of the neo-sex chromosomes of E. surinamensis, as has been reported in other eukaryotic groups. This study provided an opportunity to explore the evolutionary dynamics of repetitive DNAs in two non-model species and will contribute to the understanding of

  16. Contrasting the Chromosomal Organization of Repetitive DNAs in Two Gryllidae Crickets with Highly Divergent Karyotypes.

    Directory of Open Access Journals (Sweden)

    Octavio M Palacios-Gimenez

    Full Text Available A large percentage of eukaryotic genomes consist of repetitive DNA that plays an important role in the organization, size and evolution. In the case of crickets, chromosomal variability has been found using classical cytogenetics, but almost no information concerning the organization of their repetitive DNAs is available. To better understand the chromosomal organization and diversification of repetitive DNAs in crickets, we studied the chromosomes of two Gryllidae species with highly divergent karyotypes, i.e., 2n(♂ = 29,X0 (Gryllus assimilis and 2n = 9, neo-X1X2Y (Eneoptera surinamensis. The analyses were performed using classical cytogenetic techniques, repetitive DNA mapping and genome-size estimation. Conserved characteristics were observed, such as the occurrence of a small number of clusters of rDNAs and U snDNAs, in contrast to the multiple clusters/dispersal of the H3 histone genes. The positions of U2 snDNA and 18S rDNA are also conserved, being intermingled within the largest autosome. The distribution and base-pair composition of the heterochromatin and repetitive DNA pools of these organisms differed, suggesting reorganization. Although the microsatellite arrays had a similar distribution pattern, being dispersed along entire chromosomes, as has been observed in some grasshopper species, a band-like pattern was also observed in the E. surinamensis chromosomes, putatively due to their amplification and clustering. In addition to these differences, the genome of E. surinamensis is approximately 2.5 times larger than that of G. assimilis, which we hypothesize is due to the amplification of repetitive DNAs. Finally, we discuss the possible involvement of repetitive DNAs in the differentiation of the neo-sex chromosomes of E. surinamensis, as has been reported in other eukaryotic groups. This study provided an opportunity to explore the evolutionary dynamics of repetitive DNAs in two non-model species and will contribute to the

  17. Repetitive Bibliographical Information in Relational Databases.

    Science.gov (United States)

    Brooks, Terrence A.

    1988-01-01

    Proposes a solution to the problem of loading repetitive bibliographic information in a microcomputer-based relational database management system. The alternative design described is based on a representational redundancy design and normalization theory. (12 references) (Author/CLB)

  18. Computer-Related Repetitive Stress Injuries

    Science.gov (United States)

    ... on the shoulder Epicondylitis: elbow soreness often called "tennis elbow" Ganglion cyst: swelling or lump in the wrist ... Bones, Muscles, and Joints Carpal Tunnel Syndrome Medial Epicondylitis Repetitive Stress Injuries Contact Us Print Resources Send ...

  19. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Science.gov (United States)

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and

  20. Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity

    Science.gov (United States)

    GUERRERO-PRESTON, RAFAEL; HADAR, TAL; OSTROW, KIMBERLY LASKIE; SOUDRY, ETHAN; ECHENIQUE, MIGUEL; ILI-GANGAS, CARMEN; PÉREZ, GABRIELA; PEREZ, JIMENA; BREBI-MIEVILLE, PRISCILLA; DESCHAMPS, JOSÉ; MORALES, LUISA; BAYONA, MANUEL; SIDRANSKY, DAVID; MATTA, JAIME

    2014-01-01

    Methylation alterations of CpG islands, CpG island shores and first exons are key events in the formation and progression of human cancer, and an increasing number of differentially methylated regions and genes have been identified in breast cancer. Recent studies of the breast cancer methylome using deep sequencing and microarray platforms are providing a novel insight on the different roles aberrant methylation plays in molecular subtypes of breast cancer. Accumulating evidence from a subset of studies suggests that promoter methylation of tumor-suppressor genes associated with breast cancer can be quantified in circulating DNA. However, there is a paucity of studies that examine the combined presence of genetic and epigenetic alterations associated with breast cancer using blood-based assays. Dysregulation of DNA repair capacity (DRC) is a genetic risk factor for breast cancer that has been measured in lymphocytes. We isolated plasma DNA from 340 participants in a breast cancer case control project to study promoter methylation levels of five genes previously shown to be associated with breast cancer in frozen tissue and in cell line DNA: MAL, KIF1A, FKBP4, VGF and OGDHL. Methylation of at least one gene was found in 49% of the cases compared to 20% of the controls. Three of the four genes had receiver characteristic operator curve values of ≥0.50: MAL (0.64), KIF1A (0.51) and OGDHL (0.53). KIF1A promoter methylation was associated with breast cancer and inversely associated with DRC. This is the first evidence of a significant association between genetic and epigenetic alterations in breast cancer using blood-based tests. The potential diagnostic utility of these biomarkers and their relevance for breast cancer risk prediction should be examined in larger cohorts. PMID:24927296

  1. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB.

    Directory of Open Access Journals (Sweden)

    Yasar Luqman Ahmed

    2013-12-01

    Full Text Available Morphological development of fungi and their combined production of secondary metabolites are both acting in defence and protection. These processes are mainly coordinated by velvet regulators, which contain a yet functionally and structurally uncharacterized velvet domain. Here we demonstrate that the velvet domain of VosA is a novel DNA-binding motif that specifically recognizes an 11-nucleotide consensus sequence consisting of two motifs in the promoters of key developmental regulatory genes. The crystal structure analysis of the VosA velvet domain revealed an unforeseen structural similarity with the Rel homology domain (RHD of the mammalian transcription factor NF-κB. Based on this structural similarity several conserved amino acid residues present in all velvet domains have been identified and shown to be essential for the DNA binding ability of VosA. The velvet domain is also involved in dimer formation as seen in the solved crystal structures of the VosA homodimer and the VosA-VelB heterodimer. These findings suggest that defence mechanisms of both fungi and animals might be governed by structurally related DNA-binding transcription factors.

  2. Digital repetitive control under varying frequency conditions

    OpenAIRE

    Ramos Fuentes, Germán Andrés

    2012-01-01

    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria Industrial The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This the...

  3. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A.

    Science.gov (United States)

    Wang, Hua-Wei; Jia, Xiaoyun; Ji, Yanli; Kong, Qing-Peng; Zhang, Qingjiong; Yao, Yong-Gang; Zhang, Ya-Ping

    2008-08-25

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (PLHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON.

  4. Unbiased K-mer Analysis Reveals Changes in Copy Number of Highly Repetitive Sequences During Maize Domestication and Improvement

    Science.gov (United States)

    Liu, Sanzhen; Zheng, Jun; Migeon, Pierre; Ren, Jie; Hu, Ying; He, Cheng; Liu, Hongjun; Fu, Junjie; White, Frank F.; Toomajian, Christopher; Wang, Guoying

    2017-01-01

    The major component of complex genomes is repetitive elements, which remain recalcitrant to characterization. Using maize as a model system, we analyzed whole genome shotgun (WGS) sequences for the two maize inbred lines B73 and Mo17 using k-mer analysis to quantify the differences between the two genomes. Significant differences were identified in highly repetitive sequences, including centromere, 45S ribosomal DNA (rDNA), knob, and telomere repeats. Genotype specific 45S rDNA sequences were discovered. The B73 and Mo17 polymorphic k-mers were used to examine allele-specific expression of 45S rDNA in the hybrids. Although Mo17 contains higher copy number than B73, equivalent levels of overall 45S rDNA expression indicates that transcriptional or post-transcriptional regulation mechanisms operate for the 45S rDNA in the hybrids. Using WGS sequences of B73xMo17 doubled haploids, genomic locations showing differential repetitive contents were genetically mapped, which displayed different organization of highly repetitive sequences in the two genomes. In an analysis of WGS sequences of HapMap2 lines, including maize wild progenitor, landraces, and improved lines, decreases and increases in abundance of additional sets of k-mers associated with centromere, 45S rDNA, knob, and retrotransposons were found among groups, revealing global evolutionary trends of genomic repeats during maize domestication and improvement. PMID:28186206

  5. 羊种布氏杆菌基因外重复回文序列经Toll样受体9诱导IFN-α表达的研究%The effects of repetitive extragenic palindromic sequences from Brucella melitensis DNA on the toll-like receptor 9-mediated interferon-α production

    Institute of Scientific and Technical Information of China (English)

    白丽云; 张雅娴; 王占黎; 王英; 于慧

    2015-01-01

    Objective To screen the repetitive extragenic palindromic sequences with activation of toll-like receptor 9(TLR9) activity from Brucella melitensis DNA,providing new ideas and new targets for prevention and treatment of brucellosis.Methods Bioinformatics methods were used to detect repetitive extragenic palindromic(REP) sequences from Brucella melitensis DNA.The studied REPs were selected and synthesized.RAW264.7 was cultured and transfected with REPs mediated by lipofectamine 3000.Additionally,TLR9-siRNA was used to downregulate TLR9 expression.The content of interferon-α(IFN-α) in the supernatant was then measured by ELISA.Results A total of 2 200 REP sequences in Brucella melitensis DNA were identified.Twelve REP sequences were synthesized for further detecting of the TLR9 agonistic activity.IFN-α expression in RAW264.7 treated with M2,M3,M4,M5,M6,M7,M9,M12 were (26.944 ± 1.868),(46.461 ± 2.562),(34.980 ± 2.055),(43.016 ± 2.162),(62.533 ± 4.031),(67.125 ± 5.069),(18.908 ± 1.633),(39.572 ± 2.465) pg/ml respectively,which significantly increased when compared with the negative control group [(12.594 ± 1.338) pg/ml,t =10.817,20.295,15.812,20.724,20.365,18.016,5.180,16.660,all P < 0.05].Additionally,TLR9-siRNA can significantly decrease the levels of IFN-α in RAW264.7 treated with M6.Conclusion REP sequences presented in Brucella melitensis DNA are able to induce IFN-α expression through TLR9,which can be helpful for the understanding of pathogenesis and immunity of Brucella melitensis.%目的 筛选具有活化Toll样受体9(TLR9)活性的羊种布氏杆菌DNA中基因外重复回文序列(REPs),检测其经TLR9诱导的干扰素-α(IFN-α)表达,为羊种布氏杆菌病的防治提供新思路.方法 针对羊种布氏杆菌Brucella melitensis NI基因组序列,利用生物信息学技术识别其REPs后,合成序列.将合成的天然骨架脱氧寡核苷酸(ODNs)转染小鼠单核巨噬细胞株RAW264.7,酶联免疫吸附测定法(ELISA)检测IFN

  6. Karakteristik genetik pada famili cervidae (Cervus unicolor, Cervus timorensis, dan Axis kuhlii berdasarkan 12SrRNA mtDNA

    Directory of Open Access Journals (Sweden)

    Wirdateti

    2004-12-01

    Full Text Available Genetic analysis from three species of Indonesia Cervidae (sambar deer, Cervus unicolor; rusa deer, Cervus timorensis; andBawean deer, Axis kuhlii was conducted to analyze their relationship. Tissues and blood from twelve sambar deer, one rusa deer andthree Bawean deer were collected and analyzed for 12SrRNA using Primer forward (L1091 and reverse (H1478. The results indicatedthe amplication of mtDNA were 389 base nucleotide. There were 22 polimorphic sites, which were dominated by transition and gave9 haplotypes that were 5 in sambar deer, 1 in rusa deer and 3 in Bawean deer.

  7. Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches.

    Science.gov (United States)

    Catacchio, C R; Ragone, R; Chiatante, G; Ventura, M

    2015-09-21

    The centromere/kinetochore interaction is responsible for the pairing and segregation of replicated chromosomes in eukaryotes. Centromere DNA is portrayed as scarcely conserved, repetitive in nature, quickly evolving and protein-binding competent. Among primates, the major class of centromeric DNA is the pancentromeric α-satellite, made of arrays of 171 bp monomers, repeated in a head-to-tail pattern. α-satellite sequences can either form tandem heterogeneous monomeric arrays or assemble in higher-order repeats (HORs). Gorilla centromere DNA has barely been characterized, and data are mainly based on hybridizations of human alphoid sequences. We isolated and finely characterized gorilla α-satellite sequences and revealed relevant structure and chromosomal distribution similarities with other great apes as well as gorilla-specific features, such as the uniquely octameric structure of the suprachromosomal family-2 (SF2). We demonstrated for the first time the orthologous localization of alphoid suprachromosomal families-1 and -2 (SF1 and SF2) between human and gorilla in contrast to chimpanzee centromeres. Finally, the discovery of a new 189 bp monomer type in gorilla centromeres unravels clues to the role of the centromere protein B, paving the way to solve the significance of the centromere DNA's essential repetitive nature in association with its function and the peculiar evolution of the α-satellite sequence.

  8. Outlier Analysis Defines Zinc Finger Gene Family DNA Methylation in Tumors and Saliva of Head and Neck Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Daria A Gaykalova

    Full Text Available Head and Neck Squamous Cell Carcinoma (HNSCC is the fifth most common cancer, annually affecting over half a million people worldwide. Presently, there are no accepted biomarkers for clinical detection and surveillance of HNSCC. In this work, a comprehensive genome-wide analysis of epigenetic alterations in primary HNSCC tumors was employed in conjunction with cancer-specific outlier statistics to define novel biomarker genes which are differentially methylated in HNSCC. The 37 identified biomarker candidates were top-scoring outlier genes with prominent differential methylation in tumors, but with no signal in normal tissues. These putative candidates were validated in independent HNSCC cohorts from our institution and TCGA (The Cancer Genome Atlas. Using the top candidates, ZNF14, ZNF160, and ZNF420, an assay was developed for detection of HNSCC cancer in primary tissue and saliva samples with 100% specificity when compared to normal control samples. Given the high detection specificity, the analysis of ZNF DNA methylation in combination with other DNA methylation biomarkers may be useful in the clinical setting for HNSCC detection and surveillance, particularly in high-risk patients. Several additional candidates identified through this work can be further investigated toward future development of a multi-gene panel of biomarkers for the surveillance and detection of HNSCC.

  9. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huawei [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China); Jia Xiaoyun; Ji Yanli [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China); Kong Qingpeng [State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Zhang Qingjiong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China)], E-mail: qingjiongzhang@yahoo.com; Yao Yonggang [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)], E-mail: ygyaozh@yahoo.com; Zhang Yaping [Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)

    2008-08-25

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON.

  10. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    Science.gov (United States)

    2010-01-01

    Background In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units

  11. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA in the Asteraceae family

    Directory of Open Access Journals (Sweden)

    Garcia Sònia

    2010-08-01

    Full Text Available Abstract Background In flowering plants and animals the most common ribosomal RNA genes (rDNA organisation is that in which 35S (encoding 18S-5.8S-26S rRNA and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae, a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing, gene copy number (quantitative PCR and chromosomal position (FISH of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases, tribe Gnaphalieae (100% and in the "Heliantheae alliance" (23%. The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic

  12. Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family.

    Science.gov (United States)

    Liang, Liang; Zhao, Mujun; Xu, Zhenhua; Yokoyama, Kazunari K; Li, Tsaiping

    2003-02-15

    DNA fragmentation is one of the critical steps in apoptosis, which is induced by DNA fragmentation factor (DFF). DFF is composed of two subunits, a 40 kDa caspase-activated nuclease (DFF40) and a 45 kDa inhibitor (DFF45). Recently a novel family of cell-death-inducing DFF45-like effectors (CIDEs) has been identified. Among CIDEs, two from human (CIDE-A and CIDE-B) and three from mouse (CIDE-A, CIDE-B and FSP27) have been reported. In this study human CIDE-3, a novel member of CIDEs, was identified upon sequence analysis of a previously unidentified cDNA that encoded a protein of 238 amino acids. It was shown to be a human homologue of mouse FSP27, and shared homology with the CIDE-N and CIDE-C domains of CIDEs. Apoptosis-inducing activity was clearly shown by DNA-fragmentation assay of the nuclear DNA of CIDE-3 transfected 293T cells. The expression pattern of CIDE-3 was different from that of CIDE-B. As shown by Northern-blot analysis, CIDE-3 was expressed mainly in human small intestine, heart, colon and stomach, while CIDE-B showed strong expression in liver and small intestine and at a lower level in colon, kidney and spleen. Green-fluorescent-protein-tagged CIDE-3 was revealed in some cytosolic corpuscles. Alternative splicing of the CIDE-3 gene was also identified by reverse transcription PCR, revealing that two transcripts, CIDE-3 and CIDE-3alpha, were present in HepG2 and A375 cells. CIDE-3 comprised a full-length open reading frame with 238 amino acids; in CIDE-3alpha exon 3 was deleted and it encoded a protein of 164 amino acids. Interestingly the CIDE-3alpha isoform still kept the apoptosis-inducing activity and showed the same pattern of subcellular localization as CIDE-3. Consistent with its chromosome localization at 3p25, a region associated with high frequency loss of heterozygosity in many tumours, CIDE-3 may play an important role in prevention of tumorigenesis.

  13. Structural and Functional Analysis of Sulfolobus solfataricus Y-Family DNA Polymerase Dpo4-Catalyzed Bypass of the Malondialdehyde−Deoxyguanosine Adduct

    Energy Technology Data Exchange (ETDEWEB)

    Eoff, Robert L.; Stafford, Jennifer B.; Szekely, Jozsef; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter; Marnett, Lawrence J.; (Vanderbilt)

    2010-01-12

    Oxidative stress can induce the formation of reactive electrophiles, such as DNA peroxidation products, e.g., base propenals, and lipid peroxidation products, e.g., malondialdehyde. Base propenals and malondialdehyde react with DNA to form adducts, including 3-(2'-deoxy-{beta}-d-erythro-pentofuranosyl)pyrimido[1,2-{alpha}]purin-10(3H)-one (M{sub 1}dG). When paired opposite cytosine in duplex DNA at physiological pH, M{sub 1}dG undergoes ring opening to form N{sup 2}-(3-oxo-1-propenyl)-dG (N{sup 2}-OPdG). Previous work has shown that M{sub 1}dG is mutagenic in bacteria and mammalian cells and that its mutagenicity in Escherichia coli is dependent on induction of the SOS response, indicating a role for translesion DNA polymerases in the bypass of M{sub 1}dG. To probe the mechanism by which translesion polymerases bypass M{sub 1}dG, kinetic and structural studies were conducted with a model Y-family DNA polymerase, Dpo4 from Sulfolobus solfataricus. The level of steady-state incorporation of dNTPs opposite M{sub 1}dG was reduced 260-2900-fold and exhibited a preference for dATP incorporation. Liquid chromatography-tandem mass spectrometry analysis of the full-length extension products revealed a spectrum of products arising principally by incorporation of dC or dA opposite M{sub 1}dG followed by partial or full-length extension. A greater proportion of -1 deletions were observed when dT was positioned 5' of M{sub 1}dG. Two crystal structures were determined, including a 'type II' frameshift deletion complex and another complex with Dpo4 bound to a dC-M{sub 1}dG pair located in the postinsertion context. Importantly, M{sub 1}dG was in the ring-closed state in both structures, and in the structure with dC opposite M{sub 1}dG, the dC residue moved out of the Dpo4 active site, into the minor groove. The results are consistent with the reported mutagenicity of M{sub 1}dG and illustrate how the lesion may affect replication events.

  14. Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes).

    Science.gov (United States)

    Maneechot, Nuntiya; Yano, Cassia Fernanda; Bertollo, Luiz Antonio Carlos; Getlekha, Nuntaporn; Molina, Wagner Franco; Ditcharoen, Sukhonthip; Tengjaroenkul, Bundit; Supiwong, Weerayuth; Tanomtong, Alongklod; de Bello Cioffi, Marcelo

    2016-01-01

    The genus Clarias (Clariidae, Siluriformes) contains at least 61 species naturally spread over vast regions of Asia, India and Africa. However, Clarias species have also been introduced in many different countries and represent the most widespread catfishes in the world. These fishes are also known as "walking catfishes" due to their ability to move over land. A large degree of chromosomal variation has been previously found in this family, mainly using conventional cytogenetic investigations, with diploid chromosome numbers ranging between 48 and 100. In this study, we analyzed the karyotype structure and distribution of four repetitive DNA sequences (5S and 18S rDNAs and (CA)15 and (GA)15 microsatellites) in three Clarias species (C. batrachus, C. gariepinus, C. macrocephalus), as well as in a probable natural hybrid of the two latter species from different Thailand river basins. Clarias gariepinus and C. macrocephalus had 2n = 56 and 2n = 54, respectively, as well as karyotypes composed mainly by metacentric and submetacentric chromosomes. Their karyotypes differed in the number and location of 5S and 18S rDNA sites and in the degree of microsatellite accumulation. An intermediate chromosomal pattern incorporating those of the parental species was found in the probable hybrid, confirming its interspecific origin. Clarias batrachus had 2n = 104 chromosomes and its karyotype was dominated by mainly acrocentric elements, indicating that unusual multiple centric fissions were involved in its karyotype differentiation. The karyotype of this species presented an unexpected dispersion of ribosomal DNAs, possessing 54 and 12 sites of 5S and 18S rDNAs, respectively, as well as a high accumulation and differential distribution of both microsatellite repeats, representing 'hot spots' for chromosomal rearrangement. Both conventional and molecular cytogenetic markers were useful tools for demonstrating remarkable evolutionary dynamism and highlighting multiple

  15. Isolation of a cDNA encoding thymic shared antigen-1. A new member of the Ly6 family with a possible role in T cell development.

    Science.gov (United States)

    MacNeil, I; Kennedy, J; Godfrey, D I; Jenkins, N A; Masciantonio, M; Mineo, C; Gilbert, D J; Copeland, N G; Boyd, R L; Zlotnik, A

    1993-12-15

    We have previously characterized a novel mouse thymocyte marker, defined as thymic shared Ag-1 (TSA-1), present on both immature thymocytes and a subset of thymic medullary epithelial cells. MTS 35, a mAb specific for TSA-1, alters T cell differentiation when added to fetal thymic organ cultures, suggesting TSA-1 may be important for T cell development in the thymus. In this study, we describe the isolation of a cDNA encoding TSA-1 using transient expression of COS-7 cells and selection with MTS 35. The predicted amino acid sequence of this cDNA encodes a 15 to 17-kDa protein and the expressed protein is linked to the membrane via a phosphatidylinositol moiety. TSA-1 is transcriptionally active at various levels in all organs examined, suggesting that its role is not solely intrathymic. TSA-1 shares amino acid sequence homology to the mouse Ly6 multigene family, epidermal growth factor-like receptors, and to cobra venom neurotoxin. The Tsa-1 locus is located on chromosome 15 linked to Ly6 on the mouse genome. We also examined the effects of MTS 35 in fetal thymic organ cultures repopulated with two subsets of thymocytes representing defined stages of T cell development. Our results suggest that TSA-1 may play a role during positive selection and the transition from CD4+CD8+ thymocytes to the mature CD4+CD8- and CD4-CD8+ subsets.

  16. Intravascular persistence of Anaplasma platys, Ehrlichia chaffeensis, and Ehrlichia ewingii DNA in the blood of a dog and two family members.

    Science.gov (United States)

    Breitschwerdt, Edward B; Hegarty, Barbara C; Qurollo, Barbara A; Saito, Tais B; Maggi, Ricardo G; Blanton, Lucas S; Bouyer, Donald H

    2014-07-01

    Anaplasmosis, caused by Anaplasma phagocytophilum and Anaplasma platys, and ehrlichiosis, caused by Ehrlichia chaffeensis, Ehrlichia ewingii, the "Panola Mountain Ehrlichia" and Ehrlichia muris-like pathogens have been identified as emerging tick borne infectious diseases in dogs and human patients. Persistent intravascular infection with these bacteria is well documented in dogs, but is less well documented in human beings. Serology and PCR targeting multiple microbial genes, followed by DNA sequencing, was used to test sequential blood samples. Tissue culture isolation was attempted in two laboratories. A. platys, E. chaffeensis, and E. ewingii DNA was amplified from two Anaplasma and Ehrlichia seronegative family members and their dog, all lacking typical symptoms of anaplasmosis or ehrlichiosis. Following treatment with doxycycline, the dog and mother were Anaplasma and Ehrlichia spp. PCR negative. Sequential PCR testing provided molecular evidence supporting intravascular persistence of A. platys and Ehrlichia spp. in two humans and their dog. Diagnosticians and clinicians should consider the potential for co-infections due to these tick borne organisms.

  17. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    Directory of Open Access Journals (Sweden)

    Kimura Shioko

    2012-12-01

    Full Text Available Abstract Background The CCAAT/enhancer binding proteins (C/EBPs play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. Results A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. Conclusions The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.

  18. The Prevalence and Phenomenology of Repetitive Behavior in Genetic Syndromes

    Science.gov (United States)

    Moss, Joanna; Oliver, Chris; Arron, Kate; Burbidge, Cheryl; Berg, Katy

    2009-01-01

    We investigated the prevalence and phenomenology of repetitive behavior in genetic syndromes to detail profiles of behavior. The Repetitive Behaviour Questionnaire (RBQ) provides fine-grained identification of repetitive behaviors. The RBQ was employed to examine repetitive behavior in Angelman (N = 104), Cornelia de Lange (N = 101), Cri-du-Chat…

  19. A leafhopper-transmissible DNA virus with novel evolutionary lineage in the family geminiviridae implicated in grapevine redleaf disease by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sudarsana Poojari

    Full Text Available A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L. cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s associated with this emerging disease, designated as grapevine redleaf disease (GRD. High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV, and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms.

  20. hSmad5 gene, a human hSmad family member: its full length cDNA, genomic structure, promoter region and mutation analysis in human tumors.

    Science.gov (United States)

    Gemma, A; Hagiwara, K; Vincent, F; Ke, Y; Hancock, A R; Nagashima, M; Bennett, W P; Harris, C C

    1998-02-19

    hSmad (mothers against decapentaplegic)-related proteins are important messengers within the Transforming Growth Factor-beta1 (TGF-beta1) superfamily signal transduction pathways. To further characterize a member of this family, we obtained a full length cDNA of the human hSmad5 (hSmad5) gene by rapid amplification of cDNA ends (RACE) and then determined the genomic structure of the gene. There are eight exons and two alternative transcripts; the shorter transcript lacks exon 2. We identified the hSmad5 promoter region from a human genomic YAC clone by obtaining the nucleotide sequence extending 1235 base pairs upstream of the 5' end of the cDNA. We found a CpG island consistent with a promoter region, and we demonstrated promoter activity in a 1232 bp fragment located upstream of the transcription initiation site. To investigate the frequency of somatic hSmad5 mutations in human cancers, we designed intron-based primers to examine coding regions by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. Neither homozygous deletions or point mutations were found in 40 primary gastric tumors and 51 cell lines derived from diverse types of human cancer including 20 cell lines resistant to the growth inhibitory effects of TGF-beta1. These results suggest that the hSmad5 gene is not commonly mutated and that other genetic alterations mediate the loss of TGF-beta1 responsiveness in human cancers.

  1. Likelihood methods and classical burster repetition

    CERN Document Server

    Graziani, C; Graziani, Carlo; Lamb, Donald Q

    1995-01-01

    We develop a likelihood methodology which can be used to search for evidence of burst repetition in the BATSE catalog, and to study the properties of the repetition signal. We use a simplified model of burst repetition in which a number N_{\\rm r} of sources which repeat a fixed number of times N_{\\rm rep} are superposed upon a number N_{\\rm nr} of non-repeating sources. The instrument exposure is explicitly taken into account. By computing the likelihood for the data, we construct a probability distribution in parameter space that may be used to infer the probability that a repetition signal is present, and to estimate the values of the repetition parameters. The likelihood function contains contributions from all the bursts, irrespective of the size of their positional errors --- the more uncertain a burst's position is, the less constraining is its contribution. Thus this approach makes maximal use of the data, and avoids the ambiguities of sample selection associated with data cuts on error circle size. We...

  2. Structural insights into complete metal ion coordination from ternary complexes of B family RB69 DNA polymerase.

    Science.gov (United States)

    Xia, Shuangluo; Wang, Mina; Blaha, Gregor; Konigsberg, William H; Wang, Jimin

    2011-10-25

    We have captured a preinsertion ternary complex of RB69 DNA polymerase (RB69pol) containing the 3' hydroxyl group at the terminus of an extendable primer (ptO3') and a nonhydrolyzable 2'-deoxyuridine 5'-α,β-substituted triphosphate, dUpXpp, where X is either NH or CH(2), opposite a complementary templating dA nucleotide residue. Here we report four structures of these complexes formed by three different RB69pol variants with catalytically inert Ca(2+) and four other structures with catalytically competent Mn(2+) or Mg(2+). These structures provide new insights into why the complete divalent metal-ion coordination complexes at the A and B sites are required for nucleotidyl transfer. They show that the metal ion in the A site brings ptO3' close to the α-phosphorus atom (Pα) of the incoming dNTP to enable phosphodiester bond formation through simultaneous coordination of both ptO3' and the nonbridging Sp oxygen of the dNTP's α-phosphate. The coordination bond length of metal ion A as well as its ionic radius determines how close ptO3' can approach Pα. These variables are expected to affect the rate of bond formation. The metal ion in the B site brings the pyrophosphate product close enough to Pα to enable pyrophosphorolysis and assist in the departure of the pyrophosphate. In these dUpXpp-containing complexes, ptO3' occupies the vertex of a distorted metal ion A coordination octahedron. When ptO3' is placed at the vertex of an undistorted, idealized metal ion A octahedron, it is within bond formation distance to Pα. This geometric relationship appears to be conserved among DNA polymerases of known structure.

  3. Crystal structure and DNA binding activity of a PadR family transcription regulator from hypervirulent Clostridium difficile R20291.

    Science.gov (United States)

    Isom, Catherine E; Menon, Smita K; Thomas, Leonard M; West, Ann H; Richter-Addo, George B; Karr, Elizabeth A

    2016-10-04

    Clostridium difficile is a spore-forming obligate anaerobe that can remain viable for extended periods, even in the presence of antibiotics, which contributes to the persistence of this bacterium as a human pathogen during host-to-host transmission and in hospital environments. We examined the structure and function of a gene product with the locus tag CDR20291_0991 (cdPadR1) as part of our broader goal aimed at elucidating transcription regulatory mechanisms involved in virulence and antibiotic resistance of the recently emergent hypervirulent C. difficile strain R20291. cdPadR1 is genomically positioned near genes that are involved in stress response and virulence. In addition, it was previously reported that cdPadR1 and a homologue from the historical C. difficile strain 630 (CD630_1154) were differentially expressed when exposed to stressors, including antibiotics. The crystal structure of cdPadR1 was determined to 1.9 Å resolution, which revealed that it belongs to the PadR-s2 subfamily of PadR transcriptional regulators. cdPadR1 binds its own promoter and other promoter regions from within the C. difficile R20291 genome. DNA binding experiments demonstrated that cdPadR1 binds a region comprised of inverted repeats and an AT-rich core with the predicted specific binding motif, GTACTAT(N2)ATTATA(N)AGTA, within its own promoter that is also present in 200 other regions in the C. difficile R20291 genome. Mutation of the highly conserved W in α4 of the effector binding/oligomerization domain, which is predicted to be involved in multi-drug recognition and dimerization in other PadR-s2 proteins, resulted in alterations of cdPadR1 binding to the predicted binding motif, potentially due to loss of higher order oligomerization. Our results indicate that cdPadR1 binds a region within its own promoter consisting of the binding motif GTACTAT(N2)ATTATA(N)AGTA and seems to associate non-specifically with longer DNA fragments in vitro, which may facilitate promoter and

  4. DNA profiling of extended tracts of primitive DNA repeats: Direct identification of unstable simple repeat loci in complex genome

    Energy Technology Data Exchange (ETDEWEB)

    Rogaeva, E.A.; Korovaitseva, G.; St. George-Hyslop, P. [Univ. of Toronto (Canada)] [and others

    1994-09-01

    The most simple DNA repetitive elements, with repetitive monomer units of only 1-10 bp in tandem tracts, are an abundant component of the human genome. The expansion of at least one type of these repeats ((CCG)n and (CTG)n) have been detected for a several neurological diseases with anticipation in successive generations. We propose here a simple method for the identification of particularly expanded repeats and for the recovery of flanking sequences. We generated DNA probes using PCR to create long concatamers (n>100) by amplification of the di-, tri-, tetra-, penta- and hexa-nucleotide repeat oligonucleotide primer pairs. To reduce the complexity of the background band pattern, the genomic DNA was restricted with a mixture of at least five different endonucleases, thereby reducing the size of restriction fragments containing short simple repeat arrays while leaving intact the large fragments containing the longer simple repeats arrays. Direct blot hybridization has shown different {open_quotes}DNA fingerprint{close_quotes} patterns with all arbitrary selected di-hexa nucleotide repeat probes. Direct hybridization of the (CTG)n and (CCG)n probes revealed simple or multiple band patterns depending upon stringency conditions. We were able to detect the presence of expanded unstable tri-nucleotide alleles by (CCG)n probe for some FRAXA subjects and by (CTG)n probe for some myotonic dystrophy subjects which were not present in the parental DNA patterns. The cloning of the unstable alleles for simple repeats can be performed by direct recover from agarose gels of the aberrant unstable bands detected above. The recovered flanking regions can be cloned, sequenced and used for PCR detection of expanded alleles or can be used to screen cDNA. This method may be used for testing of small families with diseases thought to display clinical evidence of anticipation.

  5. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing.

    Science.gov (United States)

    Bocak, L; Kundrata, R; Fernández, C Andújar; Vogler, A P

    2016-05-11

    The ongoing exploration of biodiversity and the implementation of new molecular tools continue to unveil hitherto unknown lineages. Here, we report the discovery of three species of neotenic beetles for which we propose the new family Iberobaeniidae. Complete mitochondrial genomes and rRNA genes recovered Iberobaeniidae as a deep branch in Elateroidea, as sister to Lycidae (net-winged beetles). Two species of the new genus Iberobaenia, Iberobaenia minuta sp. nov. and Iberobaenia lencinai sp. nov. were found in the adult stage. In a separate incidence, a related sequence was identified in bulk samples of soil invertebrates subjected to shotgun sequencing and mitogenome assembly, which was traced to a larval voucher specimen of a third species of Iberobaenia Iberobaenia shows characters shared with other elateroid neotenic lineages, including soft-bodiedness, the hypognathous head, reduced mouthparts with reduced labial palpomeres, and extremely small-bodied males without strengthening structures due to miniaturization. Molecular dating shows that Iberobaeniidae represents an ancient relict lineage originating in the Lower Jurassic, which possibly indicates a long history of neoteny, usually considered to be evolutionarily short-lived. The apparent endemism of Iberobaeniidae in the Mediterranean region highlights the importance of this biodiversity hotspot and the need for further species exploration even in the well-studied European continent.

  6. Probing the electrostatics and pharmacological modulation of sequence-specific binding by the DNA-binding domain of the ETS family transcription factor PU.1: a binding affinity and kinetics investigation.

    Science.gov (United States)

    Munde, Manoj; Poon, Gregory M K; Wilson, W David

    2013-05-27

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤10(5)M(-)(1)s(-)(1)), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>10(7)M(-)(1)s(-)(1)). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes.

  7. The Biological Effect of Y-family DNA Polymerases on the Translesion Synthesis%DNA聚合酶Y家族在跨损伤复制中的作用

    Institute of Scientific and Technical Information of China (English)

    弓毅

    2013-01-01

    普通的DNA聚合酶可以对正常的DNA完成复制,但是当DNA发生损伤,损伤位置就会成为DNA复制的阻滞点,普通的DNA聚合酶就无法完成基因组的复制.为了应对这种情况,生物体内还拥有另一类DNA聚合酶:聚合酶Y家族,又被称为跨损伤复制(TLS)聚合酶,它们的主要功能就是跨越损伤位点,完成基因组复制,解救濒死细胞.本文主要对Y家族聚合酶的结构特点、功能效应、作用机制等方面做一综述.%A common DNA polymerase can replicate DNA which functions normally. However, if DNA suffers damage, the genome can not be replicated by a common DNA polymerase because DNA lesions will block the replication apparatus. Another kind of DNA polymerases in organism, Y-family DNA polymerases which is also called transle-sion synthesis (TLS) polymerases, can deal with this problem. Their main functions are bypassing the lesions in DNA, replicating the genome and saving the dying cells. This thesis presents a historical review of the literature pertinent to the structure, functions and roles of Y-family DNA polymerases.

  8. The neurobiology of repetitive behavior : of mice…

    NARCIS (Netherlands)

    Langen, Marieke; Kas, Martien J H; Staal, Wouter G; van Engeland, Herman; Durston, Sarah

    2011-01-01

    Repetitive and stereotyped behavior is a prominent element of both animal and human behavior. Similar behavior is seen across species, in diverse neuropsychiatric disorders and in key phases of typical development. This raises the question whether these similar classes of behavior are caused by simi

  9. Large-scale detection of repetitions.

    Science.gov (United States)

    Smyth, W F

    2014-05-28

    Combinatorics on words began more than a century ago with a demonstration that an infinitely long string with no repetitions could be constructed on an alphabet of only three letters. Computing all the repetitions (such as ∙∙∙TTT ∙∙∙ or ∙∙∙ CGACGA ∙∙∙ ) in a given string x of length n is one of the oldest and most important problems of computational stringology, requiring time in the worst case. About a dozen years ago, it was discovered that repetitions can be computed as a by-product of the Θ(n)-time computation of all the maximal periodicities or runs in x. However, even though the computation is linear, it is also brute force: global data structures, such as the suffix array, the longest common prefix array and the Lempel-Ziv factorization, need to be computed in a preprocessing phase. Furthermore, all of this effort is required despite the fact that the expected number of runs in a string is generally a small fraction of the string length. In this paper, I explore the possibility that repetitions (perhaps also other regularities in strings) can be computed in a manner commensurate with the size of the output.

  10. Verbal Repetitions and Echolalia in Alzheimer's Discourse

    Science.gov (United States)

    Da Cruz, Fernanda Miranda

    2010-01-01

    This article reports on an investigation of echolalic repetition in Alzheimer's disease (AD). A qualitative analysis of data from spontaneous conversations with MHI, a woman with AD, is presented. The data come from the DALI Corpus, a corpus of spontaneous conversations involving subjects with AD. This study argues that echolalic effects can be…

  11. Neurobehavioural Correlates of Abnormal Repetitive Behaviour

    Directory of Open Access Journals (Sweden)

    R. A. Ford

    1991-01-01

    Full Text Available Conditions in which echolalia and echopraxia occur are reviewed, followed by an attempt to elicit possible mechanisms of these phenomena. A brief description of stereotypical and perseverative behaviour and obsessional phenomena is given. It is suggested that abnormal repetitive behaviour may occur partly as a result of central dopaminergic dysfunction.

  12. Reducing Repetitive Speech: Effects of Strategy Instruction.

    Science.gov (United States)

    Dipipi, Caroline M.; Jitendra, Asha K.; Miller, Judith A.

    2001-01-01

    This article describes an intervention with an 18-year-old young woman with mild mental retardation and a seizure disorder, which focused on her repetitive echolalic verbalizations. The intervention included time delay, differential reinforcement of other behaviors, and self-monitoring. Overall, the intervention was successful in facilitating…

  13. Verbal Repetitions and Echolalia in Alzheimer's Discourse

    Science.gov (United States)

    Da Cruz, Fernanda Miranda

    2010-01-01

    This article reports on an investigation of echolalic repetition in Alzheimer's disease (AD). A qualitative analysis of data from spontaneous conversations with MHI, a woman with AD, is presented. The data come from the DALI Corpus, a corpus of spontaneous conversations involving subjects with AD. This study argues that echolalic effects can be…

  14. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh.

    Science.gov (United States)

    Sakofsky, Cynthia J; Grogan, Dennis W

    2015-10-01

    Hyperthermophilic archaea offer certain advantages as models of genome replication, and Sulfolobus Y-family polymerases Dpo4 (S. solfataricus) and Dbh (S. acidocaldarius) have been studied intensively in vitro as biochemical and structural models of trans-lesion DNA synthesis (TLS). However, the genetic functions of these enzymes have not been determined in the native context of living cells. We developed the first quantitative genetic assays of replication past defined DNA lesions and error-prone motifs in Sulfolobus chromosomes and used them to measure the efficiency and accuracy of bypass in normal and dbh(-) strains of Sulfolobus acidocaldarius. Oligonucleotide-mediated transformation allowed low levels of abasic-site bypass to be observed in S. acidocaldarius and demonstrated that the local sequence context affected bypass specificity; in addition, most erroneous TLS did not require Dbh function. Applying the technique to another common lesion, 7,8-dihydro-8-oxo-deoxyguanosine (8-oxo-dG), revealed an antimutagenic role of Dbh. The efficiency and accuracy of replication past 8-oxo-dG was higher in the presence of Dbh, and up to 90% of the Dbh-dependent events inserted dC. A third set of assays, based on phenotypic reversion, showed no effect of Dbh function on spontaneous -1 frameshifts in mononucleotide tracts in vivo, despite the extremely frequent slippage at these motifs documented in vitro. Taken together, the results indicate that a primary genetic role of Dbh is to avoid mutations at 8-oxo-dG that occur when other Sulfolobus enzymes replicate past this lesion. The genetic evidence that Dbh is recruited to 8-oxo-dG raises questions regarding the mechanism of recruitment, since Sulfolobus spp. have eukaryotic-like replisomes but no ubiquitin.

  15. Phylogenetic relationships of some species of the family Echinostomatidae Odner, 1910 (Trematoda), inferred from nuclear rDNA sequences and karyological analysis.

    Science.gov (United States)

    Stanevičiūtė, Gražina; Stunžėnas, Virmantas; Petkevičiūtė, Romualda

    2015-01-01

    The family Echinostomatidae Looss, 1899 exhibits a substantial taxonomic diversity, morphological criteria adopted by different authors have resulted in its subdivision into an impressive number of subfamilies. The status of the subfamily Echinochasminae Odhner, 1910 was changed in various classifications. Genetic characteristics and phylogenetic analysis of four Echinostomatidae species - Echinochasmus sp., Echinochasmuscoaxatus Dietz, 1909, Stephanoprorapseudoechinata (Olsson, 1876) and Echinoparyphiummordwilkoi Skrjabin, 1915 were obtained to understand well enough the homogeneity of the Echinochasminae and phylogenetic relationships within the Echinostomatidae. Chromosome set and nuclear rDNA (ITS2 and 28S) sequences of parthenites of Echinochasmus sp. were studied. The karyotype of this species (2n=20, one pair of large bi-armed chromosomes and others are smaller-sized, mainly one-armed, chromosomes) differed from that previously described for two other representatives of the Echinochasminae, Echinochasmusbeleocephalus (von Linstow, 1893), 2n=14, and Episthmiumbursicola (Creplin, 1937), 2n=18. In phylogenetic trees based on ITS2 and 28S datasets, a well-supported subclade with Echinochasmus sp. and Stephanoprorapseudoechinata clustered with one well-supported clade together with Echinochasmusjaponicus Tanabe, 1926 (data only for 28S) and Echinochasmuscoaxatus. These results supported close phylogenetic relationships between Echinochasmus Dietz, 1909 and Stephanoprora Odhner, 1902. Phylogenetic analysis revealed a clear separation of related species of Echinostomatoidea restricted to prosobranch snails as first intermediate hosts, from other species of Echinostomatidae and Psilostomidae, developing in Lymnaeoidea snails as first intermediate hosts. According to the data based on rDNA phylogeny, it was supposed that evolution of parasitic flukes linked with first intermediate hosts. Digeneans parasitizing prosobranch snails showed higher dynamic of karyotype

  16. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmin, E-mail: taeinlee2011@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Chung, Jeong Min [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of); Yun, Hyung Joong; Won, Jonghan [Advanced Nano Surface Research Group, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon, 305-333 (Korea, Republic of); Jung, Hyun Suk, E-mail: hsjung@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea (Korea, Republic of)

    2016-01-22

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.

  17. White Matter Hyperintensities on T2-Weighted MRI Images among DNA-Verified Older Familial Hypercholesterolemia Patients

    Energy Technology Data Exchange (ETDEWEB)

    Hyttinen, L. (Dept. of Internal Medicine, North Karelia Central Hospital, Joensuu (Finland)); Autti, T.; Soljanlahti, S. (Medical Imaging Center, Helsinki Univ. Central Hospital, Helsinki (Finland)); Rauma, S. (Dept. of Radiology, North Karelia Central Hospital, Joensuu (Finland)); Vuorio, A.F. (Dept. of Medicine, Univ. of Helsinki, Helsinki (Finland)); Strandberg, T.E. (Dept. of Health Sciences/Geriatrics, Univ. of Oulu, Oulu (Finland))

    2009-04-15

    Background: Familial hypercholesterolemia (FH) is a genetic disorder, causing an increased risk of coronary heart disease (CHD) if untreated. Silent brain infarctions and white matter hyperintensities (WMHIs) observed on T2-weighted magnetic resonance images (MRI) are associated with increased risk for stroke and myocardial infarction. Age is a strong predictor of WMHIs. Purpose: To use MRI to assess the presence of clinically silent brain lesions in older FH patients, and to compare the occurrence and size of these lesions in older FH patients with middle-aged FH patients and healthy controls. Material and Methods: A total of 43 older (age = 65 years) FH patients with the same FH North Karelia mutation, living in Finland, were identified. In this comprehensive cohort, 1.5T brain MRI was available for 33 individuals (age 65-84 years, M/F 9/24, mean duration of statin treatment 15.3 years). This group was divided into two age categories: 65-74 years (FHe1 group, n=23) and 75-84 years (FHe2 group, n=10). Infarcts, including lacunas, and WMHIs on T2-weighted images were recorded. Data from brain MRI were compared to those of a group of middle-aged FH patients with CHD (n=19, age 48-64 years) and with middle-aged healthy controls (n=29, age 49-63 years). Results: Only two (6%) of the older FH patients had clinically silent brain infarcts detected by MRI. The amount of large WMHIs (>5 mm in diameter) was similar in the FHe1 group compared with the groups of middle-aged FH patients and healthy controls, even though the FHe1 group was 13 years older. The total amount of WMHIs and the amount of large WMHIs were greatest in the FHe2 group. Conclusion: FH patients aged 65 to 74 years receiving long-term statin treatment (15 years) did not have more WMHIs on brain MRI compared to middle-aged FH patients and healthy controls.

  18. Kin-cohort estimates for familial breast cancer risk in relation to variants in DNA base excision repair, BRCA1 interacting and growth factor genes

    Directory of Open Access Journals (Sweden)

    Rutter Joni L

    2004-03-01

    Full Text Available Abstract Background Subtle functional deficiencies in highly conserved DNA repair or growth regulatory processes resulting from polymorphic variation may increase genetic susceptibility to breast cancer. Polymorphisms in DNA repair genes can impact protein function leading to genomic instability facilitated by growth stimulation and increased cancer risk. Thus, 19 single nucleotide polymorphisms (SNPs in eight genes involved in base excision repair (XRCC1, APEX, POLD1, BRCA1 protein interaction (BRIP1, ZNF350, BRCA2, and growth regulation (TGFß1, IGFBP3 were evaluated. Methods Genomic DNA samples were used in Taqman 5'-nuclease assays for most SNPs. Breast cancer risk to ages 50 and 70 were estimated using the kin-cohort method in which genotypes of relatives are inferred based on the known genotype of the index subject and Mendelian inheritance patterns. Family cancer history data was collected from a series of genotyped breast cancer cases (N = 748 identified within a cohort of female US radiologic technologists. Among 2,430 female first-degree relatives of cases, 190 breast cancers were reported. Results Genotypes associated with increased risk were: XRCC1 R194W (WW and RW vs. RR, cumulative risk up to age 70, risk ratio (RR = 2.3; 95% CI 1.3–3.8; XRCC1 R399Q (QQ vs. RR, cumulative risk up to age 70, RR = 1.9; 1.1–3.9; and BRIP1 (or BACH1 P919S (SS vs. PP, cumulative risk up to age 50, RR = 6.9; 1.6–29.3. The risk for those heterozygous for BRCA2 N372H and APEX D148E were significantly lower than risks for homozygotes of either allele, and these were the only two results that remained significant after adjusting for multiple comparisons. No associations with breast cancer were observed for: APEX Q51H; XRCC1 R280H; IGFPB3 -202A>C; TGFß1 L10P, P25R, and T263I; BRCA2 N289H and T1915M; BRIP1 -64A>C; and ZNF350 (or ZBRK1 1845C>T, L66P, R501S, and S472P. Conclusion Some variants in genes within the base-excision repair pathway (XRCC1 and

  19. Determination of epigenetic inheritance, genetic inheritance, and estimation of genome DNA methylation in a full-sib family of Cupressus sempervirens L.

    Science.gov (United States)

    Avramidou, Evangelia V; Doulis, Andreas G; Aravanopoulos, Filippos A

    2015-05-15

    Genetic inheritance and epigenetic inheritance are significant determinants of plant evolution, adaptation and plasticity. We studied inheritance of restriction site polymorphisms by the f-AFLP method and epigenetic DNA cytosine methylation inheritance by the f-MSAP technique. The study involved parents and 190 progeny of a Cupressus sempervirens L. full-sib family. Results from AFLP genetic data revealed that 71.8% of the fragments studied are under Mendelian genetic control, whereas faithful Mendelian inheritance for the MSAP fragments was low (4.29%). Further, MSAP fragment analysis showed that total methylation presented a mean of 28.2%, which was higher than the midparent value, while maternal inheritance was higher (5.65%) than paternal (3.01%). Interestingly de novo methylation in the progeny was high (19.65%) compared to parental methylation. Genetic and epigenetic distances for parents and offspring were not correlated (R(2)=0.0005). Furthermore, we studied correlation of total relative methylation and CG methylation with growth (height, diameter). We found CG/CNG methylation (N: A, C, T) to be positively correlated with height and diameter, while total relative methylation and CG methylation were positively correlated with height. Results are discussed in light of further research needed and of their potential application in breeding.

  20. Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms

    Science.gov (United States)

    Zhang, Wen-Wei; Lypaczewski, Patrick

    2017-01-01

    ABSTRACT CRISPR-Cas9-mediated genome editing has recently been adapted for Leishmania spp. parasites, the causative agents of human leishmaniasis. We have optimized this genome-editing tool by selecting for cells with CRISPR-Cas9 activity through cotargeting the miltefosine transporter gene; mutation of this gene leads to miltefosine resistance. This cotargeting strategy integrated into a triple guide RNA (gRNA) expression vector was used to delete all 11 copies of the A2 multigene family; this was not previously possible with the traditional gene-targeting method. We found that the Leishmania donovani rRNA promoter is more efficient than the U6 promoter in driving gRNA expression, and sequential transfections of the oligonucleotide donor significantly eased the isolation of edited mutants. A gRNA and Cas9 coexpression vector was developed that was functional in all tested Leishmania species, including L. donovani, L. major, and L. mexicana. By simultaneously targeting sites from two different chromosomes, all four types of targeted chromosomal translocations were generated, regardless of the polycistronic transcription direction from the parent chromosomes. It was possible to use this CRISPR system to create a single conserved amino acid substitution (A189G) mutation for both alleles of RAD51, a DNA recombinase involved in homology-directed repair. We found that RAD51 is essential for L. donovani survival based on direct observation of the death of mutants with both RAD51 alleles disrupted, further confirming that this CRISPR system can reveal gene essentiality. Evidence is also provided that microhomology-mediated end joining (MMEJ) plays a major role in double-strand DNA break repair in L. donovani. IMPORTANCE Leishmania parasites cause human leishmaniasis. To accelerate characterization of Leishmania genes for new drug and vaccine development, we optimized and simplified the CRISPR-Cas9 genome-editing tool for Leishmania. We show that co-CRISPR targeting

  1. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    Science.gov (United States)

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.

  2. Serial rapists and their victims: reenactment and repetition.

    Science.gov (United States)

    Burgess, A W; Hazelwood, R R; Rokous, F E; Hartman, C R; Burgess, A G

    1988-01-01

    The major finding in this study of 41 serial rapists is the large numbers of reported and unreported victims. For over 1200 attempted and completed rapes, there were 200 convictions. The hidden rapes or earliest nonreported victims of these men as boys and adolescents were identified from their families, their neighborhood, and their schools. Examining the possible link between childhood sexual abuse and criminal behavior in this sample of 41 serial rapists, 56.1% were judged to have at least one forced or exploitive abuse experience in boyhood, as compared to a study of 2,972 college males reporting 7.3% experiencing boyhood sexual abuse. Looking within the abused samples, 56.1% of the rapists reported forced sex, compared to the college sample's 30.4%. Also, the rapist sample revealed higher rates of family member as abuser (48.4%), compared to 22.2% for the college sample. Retrospective reconstruction of the sexual activities and assertive behaviors of these men as boys reveals that 51% of the boys reenact the abuse as a preadolescent with their earliest victims being known to them (48% as neighborhood girls), family (25% as sisters), or girlfriend (25%). The onset of rape fantasies in midadolescence (mean age 16.9) crystalizes the earlier sexually initiated behaviors into juvenile behaviors of spying, fetish burglaries, molestations, and rapes. Repetition of these juvenile behaviors set their criminal patters on strangers--their next group of victims. To reduce victimization, serial rapists need to be identified early and stopped. This means acknowledging and reporting boy sexual abuse. This includes being sensitive to the reenactment behaviors noted in the initiated activities of abused children, which in turn need to be differentiated from peer play. Closer attention needs to be paid to families with incest behavior to insure that younger children are protected. Adolescents showing early repetitive juvenile delinquent behaviors must be assessed for physical

  3. Robust Repetitive Controller for Fast AFM Imaging

    CERN Document Server

    Necipoglu, Serkan; Has, Yunus; Guvenc, Levent; Basdogan, Cagatay

    2012-01-01

    Currently, Atomic Force Microscopy (AFM) is the most preferred Scanning Probe Microscopy (SPM) method due to its numerous advantages. However, increasing the scanning speed and reducing the interaction forces between the probe's tip and the sample surface are still the two main challenges in AFM. To meet these challenges, we take advantage of the fact that the lateral movements performed during an AFM scan is a repetitive motion and propose a Repetitive Controller (RC) for the z-axis movements of the piezo-scanner. The RC utilizes the profile of the previous scan line while scanning the current line to achieve a better scan performance. The results of the scanning experiments performed with our AFM set-up show that the proposed RC significantly outperforms a conventional PI controller that is typically used for the same task. The scan error and the average tapping forces are reduced by 66% and 58%, respectively when the scan speed is increased by 7-fold.

  4. A repetitive elements perspective in Polycomb epigenetics.

    Directory of Open Access Journals (Sweden)

    Valentina eCasa

    2012-10-01

    Full Text Available Repetitive elements comprise over two-thirds of the human genome. For a long time, these elements have received little attention since they were considered non functional. On the contrary, recent evidence indicates that they play central roles in genome integrity, gene expression and disease. Indeed, repeats display meiotic instability associated with disease and are located within common fragile sites, which are hotspots of chromosome rearrangements in tumors. Moreover, a variety of diseases have been associated with aberrant transcription of repetitive elements. Overall this indicates that appropriate regulation of repetitive elements’ activity is fundamental.Polycomb group (PcG proteins are epigenetic regulators that are essential for the normal development of multicellular organisms. Mammalian PcG proteins are involved in fundamental processes, such as cellular memory, cell proliferation, genomic imprinting, X-inactivation, and cancer development. PcG proteins can convey their activity through long-distance interactions also on different chromosomes. This indicates that the 3D organization of PcG proteins contributes significantly to their function. However, it is still unclear how these complex mechanisms are orchestrated and which role PcG proteins play in the multi-level organization of gene regulation. Intriguingly, the greatest proportion of Polycomb-mediated chromatin modifications is located in genomic repeats and it has been suggested that they could provide a binding platform for Polycomb proteins.Here, these lines of evidence are woven together to discuss how repetitive elements could contribute to chromatin organization in the 3D nuclear space.

  5. Emotional arousal enhances word repetition priming

    OpenAIRE

    Thomas, Laura A.; LaBar, Kevin S.

    2005-01-01

    Three experiments were conducted to determine if emotional content increases repetition priming magnitude. In the study phase of Experiment 1, participants rated high-arousing negative (taboo) words and neutral words for concreteness. In the test phase, they made lexical decision judgements for the studied words intermixed with novel words (half taboo, half neutral) and pseudowords. In Experiment 2, low-arousing negative (LAN) words were substituted for the taboo words, and in Experiment 3 al...

  6. The Rhythms of Echo. Variations on Repetition

    Directory of Open Access Journals (Sweden)

    Rosa María Aradra Sánchez

    2015-04-01

    Full Text Available This paper presents a study on the echo as metric and rhetorical procedure. It makes a brief tour through some of the poetic manifestations of echo in the Spanish literary tradition, and a brief tour through the attention that metric theory has paid to this phenomenon. Then it stops at the possibilities that rhetoric offers for its analysis from the generic approach of the discursive repetition phenomena.

  7. Repetitive behaviour in autism: Imaging pathways and trajectories

    NARCIS (Netherlands)

    Langen, M.J.G.

    2009-01-01

    Repetitive behaviour in autism: Imaging pathways and trajectories Repetitive and rigid behaviour is one of the core symptoms of autism, a severe and lifelong child psychiatric disorder. Although repetitive behaviour symptoms often form a significant impairment for affected individuals, systematic st

  8. Neural Correlates of Restricted, Repetitive Behaviors in Autism Spectrum Disorders

    Science.gov (United States)

    2014-12-01

    Restrictive Repetitive Behaviors in Autism Spectrum Disorder . Authors: T.Q.Nguyen, B...Manoach. Functional Connectivity of the Dorsal Anterior Cingulate Cortex Predicts Restrictive Repetitive Behaviors in Autism Spectrum Disorder We...Introduction: Although restricted , repetitive behaviors (RRBs) are a highly disabling core feature of Autism Spectrum Disorders (ASDs), they

  9. Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease

    Science.gov (United States)

    Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai

    2012-01-01

    Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…

  10. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  11. FRB repetition and non-Poissonian statistics

    CERN Document Server

    Connor, Liam; Oppermann, Niels

    2016-01-01

    We discuss some of the claims that have been made regarding the statistics of fast radio bursts (FRBs). In an earlier paper \\citep{2015arXiv150505535C} we conjectured that flicker noise associated with FRB repetition could show up in non-cataclysmic neutron star emission models, like supergiant pulses. We show how the current limits of repetition would be significantly weakened if their repeat rate really were non-Poissonian and had a pink or red spectrum. Repetition and its statistics have implications for observing strategy, generally favouring shallow wide-field surveys, since in the non-repeating scenario survey depth is unimportant. We also discuss the statistics of the apparent latitudinal dependence of FRBs, and offer a simple method for calculating the significance of this effect. We provide a generalized Bayesian framework for addressing this problem, which allows for direct model comparison. It is shown how the evidence for a steep latitudinal gradient of the FRB rate is less strong than initially s...

  12. Conectando famílias de construções genéticas: testes de DNA na reunificação da família somali na Finlândia Connecting genes-building families: DNA testing in somali family reunification in Finland

    Directory of Open Access Journals (Sweden)

    Petri Hautaniemi

    2007-12-01

    Full Text Available Os temas centrais desse artigo, reunificação familiar em geral e teste de DNA em particular, surgiram a partir de uma pesquisa em andamento acerca de jovens da Somália na Finlândia. Desde 1996, realizo uma pesquisa etnográfica - em escolas, clubes de jovens, ruas e cafés - com jovens da Somália que chegaram à Finlândia por volta de 1994 e que freqüentam escolas finlandesas nos subúrbios de Helsinki. Meu interesse geral nesta pesquisa longitudinal era conhecer as experiências de passagem para a vida adulta em contextos altamente diferenciados, não apenas do ponto de vista do país anfitrião, mas também cultural e transnacionalmente. O tema, testes de DNA, toca na questão central desta pesquisa de modo profundo. Aqui, crescer não é visto como uma simples questão biológica. É um processo social no qual as relações, como laços de parentesco, são constituídas, vivenciadas e contestadas. Essas relações são poderosas para a identificação individual e social. A testagem-DNA pode violar simbólica e fisicamente o processo social de identificações íntimas e de integridade pessoal.The central themes of this article, family reunification in general, and DNA testing in particular, came to the fore during a research project about young Somalians in Finland. Since 1996, I have been conducting ethnographic research - in schools, youth clubs, streets and cafés - with youngsters from Somalia who arrived in Finland around 1994, and who attend Finnish schools in the suburbs of Helsinki. My general interest in this longitudinal study was to learn about the experiences of coming of age in highly dispersed settings, not only in the vein of a local host country, but also culturally and transnationally. Here, growing up is seen not as a simple biological question. It is a social process in which relationships such as kinship ties are constituted, experienced, and contested. These are powerful relations for individual and social

  13. Amino acid sequence of Coprinus macrorhizus peroxidase and cDNA sequence encoding Coprinus cinereus peroxidase. A new family of fungal peroxidases.

    Science.gov (United States)

    Baunsgaard, L; Dalbøge, H; Houen, G; Rasmussen, E M; Welinder, K G

    1993-04-01

    Sequence analysis and cDNA cloning of Coprinus peroxidase (CIP) were undertaken to expand the understanding of the relationships of structure, function and molecular genetics of the secretory heme peroxidases from fungi and plants. Amino acid sequencing of Coprinus macrorhizus peroxidase, and cDNA sequencing of Coprinus cinereus peroxidase showed that the mature proteins are identical in amino acid sequence, 343 residues in size and preceded by a 20-residue signal peptide. Their likely identity to peroxidase from Arthromyces ramosus is discussed. CIP has an 8-residue, glycine-rich N-terminal extension blocked with a pyroglutamate residue which is absent in other fungal peroxidases. The presence of pyroglutamate, formed by cyclization of glutamine, and the finding of a minor fraction of a variant form lacking the N-terminal residue, indicate that signal peptidase cleavage is followed by further enzymic processing. CIP is 40-45% identical in amino-acid sequence to 11 lignin peroxidases from four fungal species, and 42-43% identical to the two known Mn-peroxidases. Like these white-rot fungal peroxidases, CIP has an additional segment of approximately 40 residues at the C-terminus which is absent in plant peroxidases. Although CIP is much more similar to horseradish peroxidase (HRP C) in substrate specificity, specific activity and pH optimum than to white-rot fungal peroxidases, the sequences of CIP and HRP C showed only 18% identity. Hence, CIP qualifies as the first member of a new family of fungal peroxidases. The nine invariant residues present in all plant, fungal and bacterial heme peroxidases are also found in CIP. The present data support the hypothesis that only one chromosomal CIP gene exists. In contrast, a large number of secretory plant and fungal peroxidases are expressed from several peroxidase gene clusters. Analyses of three batches of CIP protein and of 49 CIP clones revealed the existence of only two highly similar alleles indicating less

  14. JC virus small T antigen binds phosphatase PP2A and Rb family proteins and is required for efficient viral DNA replication activity.

    Directory of Open Access Journals (Sweden)

    Brigitte Bollag

    Full Text Available BACKGROUND: The human polyomavirus, JC virus (JCV produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg and three T' proteins, but little is known about small tumor antigen (tAg functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS: We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A, and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS: JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions.

  15. Chromosome mapping of repetitive sequences in four Serrasalmidae species (Characiformes

    Directory of Open Access Journals (Sweden)

    Leila Braga Ribeiro

    2014-01-01

    Full Text Available The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum.

  16. The 5S rDNA gene family in mollusks: characterization of transcriptional regulatory regions, prediction of secondary structures, and long-term evolution, with special attention to Mytilidae mussels.

    Science.gov (United States)

    Vizoso, Miguel; Vierna, Joaquín; González-Tizón, Ana M; Martínez-Lage, Andrés

    2011-01-01

    Several reports on the characterization of 5S ribosomal DNA (5S rDNA) in various animal groups have been published to date, but there is a lack of studies analyzing this gene family in a much broader context. Here, we have studied 5S rDNA variation in several molluskan species, including bivalves, gastropods, and cephalopods. The degree of conservation of transcriptional regulatory regions was analyzed in these lineages, revealing a conserved TATA-like box in the upstream region. The evolution of the 120 bp coding region (5S) was also studied, suggesting the occurrence of paralogue groups in razor clams, clams, and cockles. In addition, 5S rDNA sequences from 11 species and 7 genus of Mytilidae Rafinesque, 1815 mussels were sampled and studied in detail. Four different 5S rDNA types, based on the nontranscribed spacer region were identified. The phylogenetic analyses performed within each type showed a between-species gene clustering pattern, suggesting ancestral polymorphism. Moreover, some putative pseudogenized 5S copies were also identified. Our report, together with previous studies that found high degree of intragenomic divergence in bivalve species, suggests that birth-and-death evolution may be the main force driving the evolution of 5S rDNA in these animals, even at the genus level.

  17. Indices of methylation in sperm DNA from fertile men differ between distinct geographical regions

    NARCIS (Netherlands)

    Consales, C.; Leter, G.; Bonde, J. P E; Toft, G.; Eleuteri, P.; Moccia, T.; Budillon, A.; Jönsson, B. A G; Giwercman, A.; Pedersen, H. S.; Ludwicki, J. K.; Zviezdai, V.; Heederik, D.|info:eu-repo/dai/nl/072910542; Spanò, M.

    2014-01-01

    STUDY QUESTION Which are the main determinants, if any, of sperm DNA methylation levels? SUMMARY ANSWER Geographical region resulted associated with the sperm methylation status assessed on genome-wide repetitive sequences. WHAT IS KNOWN ALREADY DNA methylation level, assessed on repetitive sequence

  18. Indices of methylation in sperm DNA from fertile men differ between distinct geographical regions

    NARCIS (Netherlands)

    Consales, C.; Leter, G.; Bonde, J. P E; Toft, G.; Eleuteri, P.; Moccia, T.; Budillon, A.; Jönsson, B. A G; Giwercman, A.; Pedersen, H. S.; Ludwicki, J. K.; Zviezdai, V.; Heederik, D.; Spanò, M.

    2014-01-01

    STUDY QUESTION Which are the main determinants, if any, of sperm DNA methylation levels? SUMMARY ANSWER Geographical region resulted associated with the sperm methylation status assessed on genome-wide repetitive sequences. WHAT IS KNOWN ALREADY DNA methylation level, assessed on repetitive sequence

  19. fMRI repetition suppression: neuronal adaptation or stimulus expectation?

    Science.gov (United States)

    Larsson, Jonas; Smith, Andrew T

    2012-03-01

    Measurements of repetition suppression with functional magnetic resonance imaging (fMRI adaptation) have been used widely to probe neuronal population response properties in human cerebral cortex. fMRI adaptation techniques assume that fMRI repetition suppression reflects neuronal adaptation, an assumption that has been challenged on the basis of evidence that repetition-related response changes may reflect unrelated factors, such as attention and stimulus expectation. Specifically, Summerfield et al. (Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T. 2008. Neural repetition suppression reflects fulfilled perceptual expectations. Nat Neurosci. 11:1004-1006) reported that the relative frequency of stimulus repetitions and non-repetitions influenced the magnitude of repetition suppression in the fusiform face area, suggesting that stimulus expectation accounted for most of the effect of repetition. We confirm that stimulus expectation can significantly influence fMRI repetition suppression throughout visual cortex and show that it occurs with long as well as short adaptation durations. However, the effect was attention dependent: When attention was diverted away from the stimuli, the effects of stimulus expectation completely disappeared. Nonetheless, robust and significant repetition suppression was still evident. These results suggest that fMRI repetition suppression reflects a combination of neuronal adaptation and attention-dependent expectation effects that can be experimentally dissociated. This implies that with an appropriate experimental design, fMRI adaptation can provide valid measures of neuronal adaptation and hence response specificity.

  20. Oligomerization and DNA-binding capacity of Pmr, a histone-like protein H1 (H-NS) family protein encoded on IncP-7 carbazole-degradative plasmid pCAR1.

    Science.gov (United States)

    Suzuki, Chiho; Yun, Choong-Soo; Umeda, Takashi; Terabayashi, Tsuguno; Watanabe, Kazuya; Yamane, Hisakazu; Nojiri, Hideaki

    2011-01-01

    Pmr, a histone-like protein H1 (H-NS) family protein encoded on plasmid pCAR1, is a key factor in optimizing gene transcription on both pCAR1 and the host chromosome. To clarify the mode of function of Pmr, we performed gel filtration chromatography analysis and protein-protein cross-linking, and found that Pmr forms homo-oligomers, consisting of its homodimers. We also found, by atomic force microscopy, that Pmr has DNA-bridging capacity. From these results, Pmr was deduced to have features common to H-NS family proteins. Additionally, evaluating protein-DNA affinity is important to clarify the mode of function of Pmr, and hence we performed an electrophoretic mobility shift assay. Though Pmr formed high-order protein-DNA complexes and did not show preference for nucleic acid sequences, the C-terminal region of Pmr did, suggesting that the DNA-binding affinity of Pmr can be evaluated by using its C-terminal region.

  1. Properties of CENP-B and its target sequence in a satellite DNA

    Energy Technology Data Exchange (ETDEWEB)

    Masumoto, H.; Yoda, K.; Ikeno, M.; Kitagawa, K.; Muro, Y.; Okazaki, T. [Nagoya Univ. (Japan)

    1993-12-31

    The centromere plays an essential role in the proper segregation of eukaryotic chromosomes at mitosis and meiosis. The centromere is the multifunctional domain of chromosome responsible for sister chromatid association at the inner site and for microtubule attachment at the outer surface. It also acts as a mechanochemical motor for chromosome movement. These multiple centromere functions must, in some way, be directed by a cis-acting DNA sequence located in the centromere region. Indeed, specific centromere DNA sequences (CEN-DNA) were identified in two yeast species. In Saccharomyces cerevisiae, CEN-DNA consists of roughly 125 bp sequence composed of three conserved elements. In contrast, the centromere sequence of S. pombe is quite different from S. cerevisiae in length and sequence organization. The molecular bases for understanding the structure and function of the centromere/kinetochore domain have not been elucidated in higher eukaryotes. In mammalian cells, satellite DNA`s are localized in the centromeric heterochromatin or heterochromatic arm. In all human chromosomes, the alpha satellite or alphoid DNA family, a highly repetitive DNA composed of about 170 bp fundamental monomer repeating units, is found at the primary constriction. Its function, however, has not been established.

  2. Storytelling and Repetitive Narratives for Design Empathy

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Judice, Andrea; Soini, Katja

    2007-01-01

    Today it is widely established in design research that empathy is an important part of creating a true understanding of user experience as a resource for design. A typical challenge is how to transmit the feeling of empathy acquired by user studies to designers who have not participated in the user...... study. In this paper, we show how we attained an empathic understanding through storytelling and aroused empathy to others using repetitive narratives in an experimental presentation bringing forth factual, reflective and experiential aspects of the user information. Taking as a starting point our...... experiences with the design project Suomenlinna Seclusive, we conclude with the potential of using narratives for invoking design empathy....

  3. A miniature high repetition rate shock tube.

    Science.gov (United States)

    Tranter, R S; Lynch, P T

    2013-09-01

    A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources.

  4. Storytelling and Repetitive Narratives for Design Empathy

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Judice, Andrea; Soini, Katja

    2007-01-01

    Today it is widely established in design research that empathy is an important part of creating a true understanding of user experience as a resource for design. A typical challenge is how to transmit the feeling of empathy acquired by user studies to designers who have not participated in the user...... study. In this paper, we show how we attained an empathic understanding through storytelling and aroused empathy to others using repetitive narratives in an experimental presentation bringing forth factual, reflective and experiential aspects of the user information. Taking as a starting point our...... experiences with the design project Suomenlinna Seclusive, we conclude with the potential of using narratives for invoking design empathy....

  5. The repetitive component of the sunflower genome

    Directory of Open Access Journals (Sweden)

    T. Giordani

    2014-08-01

    Full Text Available The sunflower (Helianthus annuus and species belonging to the genus Helianthus are emerging as a model species and genus for a number of studies on genome evolution. In this review, we report on the repetitive component of the H. annuus genome at the biochemical, molecular, cytological, and genomic levels. Recent work on sunflower genome composition is described, with emphasis on different types of repeat sequences, especially LTR-retrotransposons, of which we report on isolation, characterisation, cytological localisation, transcription, dynamics of proliferation, and comparative analyses within the genus Helianthus.

  6. Association Between Mitochondrial DNA Haplogroup Variation and Autism Spectrum Disorders.

    Science.gov (United States)

    Chalkia, Dimitra; Singh, Larry N; Leipzig, Jeremy; Lvova, Maria; Derbeneva, Olga; Lakatos, Anita; Hadley, Dexter; Hakonarson, Hakon; Wallace, Douglas C

    2017-08-23

    Autism spectrum disorders (ASD) are characterized by impairments in social interaction, communication, and repetitive or restrictive behavior. Although multiple physiologic and biochemical studies have reported defects in mitochondrial oxidative phosphorylation in patients with ASD, the role of mitochondrial DNA (mtDNA) variation has remained relatively unexplored. To assess what impact mitochondrial lineages encompassing ancient mtDNA functional polymorphisms, termed haplogroups, have on ASD risk. In this cohort study, individuals with autism and their families were studied using the Autism Genetic Resource Exchange cohort genome-wide association studies data previously generated at the Children's Hospital of Philadelphia. From October 2010 to January 2017, we analyzed the data and used the mtDNA single-nucleotide polymorphisms interrogated by the Illumina HumanHap 550 chip to determine the mtDNA haplogroups of the individuals. Taking into account the familial structure of the Autism Genetic Resource Exchange data, we then determined whether the mtDNA haplogroups correlate with ASD risk. Odds ratios of mitochondrial haplogroup as predictors of ASD risk. Of 1624 patients with autism included in this study, 1299 were boys (80%) and 325 were girls (20%). Families in the Autism Genetic Resource Exchange collection (933 families, encompassing 4041 individuals: 1624 patients with ASD and 2417 healthy parents and siblings) had been previously recruited in the United States with no restrictions on age, sex, race/ethnicity, or socioeconomic status. Relative to the most common European haplogroup HHV, European haplogroups I, J, K, O-X, T, and U were associated with increased risk of ASD, as were Asian and Native American haplogroups A and M, with odds ratios ranging from 1.55 (95% CI, 1.16-2.06) to 2.18 (95% CI, 1.59-3) (adjusted P < .04). Hence, mtDNA haplogroup variation is an important risk factor for ASD. Because haplogroups I, J, K, O-X, T, and U encompass 55% of the

  7. Structural and Functional Variation within the Alanine-Rich Repetitive Domain of Streptococcal Antigen I/II

    OpenAIRE

    Demuth, Donald R; Irvine, Douglas C.

    2002-01-01

    Members of the antigen I/II family of cell surface proteins are highly conserved, multifunctional adhesins that mediate interactions of oral streptococci with other oral bacteria, with cell matrix proteins (e.g., type I collagen), and with salivary glycoproteins, e.g., gp340. The interaction of gp340 (formerly designated salivary agglutinin) with Streptococcus mutans requires an alanine-rich repetitive domain (A region) of antigen I/II that is highly conserved in all members of this family of...

  8. Identification and chromosome mapping of repetitive elements in the Astyanax scabripinnis (Teleostei: Characidae) species complex.

    Science.gov (United States)

    Barbosa, Patrícia; de Oliveira, Luiz Antonio; Pucci, Marcela Baer; Santos, Mateus Henrique; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo; Nogaroto, Viviane; de Almeida, Mara Cristina; Artoni, Roberto Ferreira

    2015-02-01

    Most part of the eukaryotic genome is composed of repeated sequences or multiple copies of DNA, which were considered as "junk DNA", and may be associated to the heterochromatin. In this study, three populations of Astyanax aff. scabripinnis from Brazilian rivers of Guaratinguetá and Pindamonhangaba (São Paulo) and a population from Maringá (Paraná) were analyzed concerning the localization of the nucleolar organizer regions (Ag-NORs), the As51 satellite DNA, the 18S ribosomal DNA (rDNA), and the 5S rDNA. Repeated sequences were also isolated and identified by the Cot - 1 method, which indicated similarity (90%) with the LINE UnaL2 retrotransposon. The fluorescence in situ hybridization (FISH) showed the retrotransposon dispersed and more concentrated markers in centromeric and telomeric chromosomal regions. These sequences were co-localized and interspaced with 18S and 5S rDNA and As51, confirmed by fiber-FISH essay. The B chromosome found in these populations pointed to a conspicuous hybridization with LINE probe, which is also co-located in As51 sequences. The NORs were active at unique sites of a homologous pair in the three populations. There were no evidences that transposable elements and repetitive DNA had influence in the transcriptional regulation of ribosomal genes in our analyses.

  9. Chromosomal Mapping of Repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): Insights into the Differentiation of the Z and W Chromosomes

    Science.gov (United States)

    Yano, Cassia Fernanda; Poltronieri, Juliana; Bertollo, Luiz Antonio Carlos; Artoni, Roberto Ferreira; Liehr, Thomas; de Bello Cioffi, Marcelo

    2014-01-01

    Repetitive DNA sequences play an important role in the structural and functional organization of chromosomes, especially in sex chromosome differentiation. The genus Triportheus represents an interesting model for such studies because all of its species analyzed so far contain a ZZ/ZW sex chromosome system. A close relationship has been found between the differentiation of the W chromosome and heterochromatinization, with the involvement of different types of repetitive DNA in this process. This study investigated several aspects of this association in the W chromosome of Triportheus trifurcatus (2n = 52 chromosomes), including the cytogenetic mapping of repetitive DNAs such as telomeric sequences (TTAGGG)n, microsatellites and retrotransposons. A remarkable heterochromatic segment on the W chromosome was observed with a preferential accumulation of (CAC)10, (CAG)10, (CGG)10, (GAA)10 and (TA)15. The retrotransposons Rex1 and Rex3 showed a general distribution pattern in the chromosomes, and Rex6 showed a different distribution on the W chromosome. The telomeric repeat (TTAGGG)n was highly evident in both telomeres of all chromosomes without the occurrence of ITS. Thus, the differentiation of the W chromosome of T. trifurcatus is clearly associated with the formation of heterochromatin and different types of repetitive DNA, suggesting that these elements had a prominent role in this evolutionary process. PMID:24632562

  10. "Oh no, not again": representability and a repetitive remark

    Directory of Open Access Journals (Sweden)

    Matt Tierney

    2010-06-01

    Full Text Available

    family: Times New Roman;">Abstract (E: In their most repetitive moments, literature and film can help us respond to common critical assumptions about the temporality of trauma. Rather than posit trauma's latency, anteriority, or unrepresentability, I raise questions about its obviousness, interchangeability, and cliché. Moving past trauma theory, and into general questions about repetition and representation, I therefore turn to a phrase that has often been repeated in texts across a range of forms and genres: "Oh no, not again!"

    family: Times New Roman; font-size: small;"> 

    family: ";Times New Roman";,";serif";; font-size: 12pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: FR; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="FR">Abstract (F:family: ";Times New Roman";,";serif";; font-size: 12pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: FR; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="FR"> Lorsqu’ils se font intensément répétitifs, cinéma et littérature  peuvent nous aider à revoir certaines hypoth

  11. DNA ligase I, the replicative DNA ligase.

    Science.gov (United States)

    Howes, Timothy R L; Tomkinson, Alan E

    2012-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.

  12. A conserved sequence extending motif III of the motor domain in the Snf2-family DNA translocase Rad54 is critical for ATPase activity.

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Zhang

    Full Text Available Rad54 is a dsDNA-dependent ATPase that translocates on duplex DNA. Its ATPase function is essential for homologous recombination, a pathway critical for meiotic chromosome segregation, repair of complex DNA damage, and recovery of stalled or broken replication forks. In recombination, Rad54 cooperates with Rad51 protein and is required to dissociate Rad51 from heteroduplex DNA to allow access by DNA polymerases for recombination-associated DNA synthesis. Sequence analysis revealed that Rad54 contains a perfect match to the consensus PIP box sequence, a widely spread PCNA interaction motif. Indeed, Rad54 interacts directly with PCNA, but this interaction is not mediated by the Rad54 PIP box-like sequence. This sequence is located as an extension of motif III of the Rad54 motor domain and is essential for full Rad54 ATPase activity. Mutations in this motif render Rad54 non-functional in vivo and severely compromise its activities in vitro. Further analysis demonstrated that such mutations affect dsDNA binding, consistent with the location of this sequence motif on the surface of the cleft formed by two RecA-like domains, which likely forms the dsDNA binding site of Rad54. Our study identified a novel sequence motif critical for Rad54 function and showed that even perfect matches to the PIP box consensus may not necessarily identify PCNA interaction sites.

  13. The role of short-term memory impairment in nonword repetition, real word repetition, and nonword decoding: A case study.

    Science.gov (United States)

    Peter, Beate

    2017-09-21

    In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.

  14. A phonetic approach to consonant repetition in early words.

    Science.gov (United States)

    Kim, Namhee; Davis, Barbara L

    2015-08-01

    The goal of this study was to evaluate movement-based principles for understanding early speech output patterns. Consonant repetition patterns within children's actual productions of word forms were analyzed using spontaneous speech data from 10 typically developing American-English learning children between 12 and 36 months of age. Place of articulation, word level patterns, and developmental trends in CVC and CVCV repeated word forms were evaluated. Labial and coronal place repetitions dominated. Regressive repetition (e.g., [gag] for "dog") occurred frequently in CVC but not in CVCV word forms. Consonant repetition decreased over time. However, the children produced sound types available reported as being within young children's production system capabilities in consonant repetitions in all time periods. Findings suggest that a movement-based approach can provide a framework for comprehensively characterizing consonant place repetition patterns in early speech development.

  15. Repetition and Reactance in Graham’s "Underneath" Poems

    Directory of Open Access Journals (Sweden)

    Roghayeh Farsi

    2017-09-01

    Full Text Available The present paper gives a detailed analysis and interpretation of 16 poems in Jorie Graham's collection, Swarm (2000, which bear "UNDERNEATH" as their main titles. The poems are marked with different types of repetition such as graphological repetition, word, phrase, and sentential repetition, semantic repetition, and syntactic repetition. The study draws on Lakoff and Johnson's theories on metaphor and Brehm and Brehm’s reactance theory. It is argued "underneath" is a conceptual (orientational metaphor which signifies a state of being limited, lack of control and freedom, and loss of power. The paper investigates the speaker's reactant behavior in "Underneath" poems, seeking a way to restore her lost freedom. Reactance behaviors can be skepticism, inertia, aggression, and resistance. It is concluded despite her thematic inertia, representing her submission to the oppressed state, her stylistic reactance reflected in repetitions, innovations, and disruptive diction stands for her attempts to regain her lost control.

  16. Genetic analysis of mitochondfial DNA in two consanguineous Chinese Han Leber's hereditary optic neuropathy families%中国汉族Leber遗传性视神经病变家系的遗传学检测与分析

    Institute of Scientific and Technical Information of China (English)

    陈雪娟; 高翔; 赵晨; 赵堪兴

    2013-01-01

    Objective To investigate the genetic basis for two consanguineous Chinese Han Leber's hereditary optic neuropathy(LHON) families.Methods All participants in two families were examined clinically and the genomic DNA was extracted from peripheral venous blood.PCR and Sanger sequencing were performed to screen mutations in the whole mitochondfial DNA(mtDNA).The sequence results were analyzed and compared with the updated consensus Cambridge sequence to identify new mutations and classify the haplotype.Results Genetic analysis identified the ND4 m.11778G>A primary mutaion in both families.The whole mtDNA sequence analysis results showed 45 variants,which classified the two families separately to haplogroup R11b and haplogroup B4b.Conclusion Primary mutation ND4 m.11778G>A is very likely the pathogenical mutation for the two LHON families.In addition,belong to different haplogroups would like the main reason for the differences in penetrance,the age of onset and the severity between the two families.%目的 探讨2个中国汉族Leber遗传性视神经病变(LHON)家系的遗传学基础.方法 提取所有参与者外周血全基因组DNA,并对2个先证者及其他母系成员进行详细的眼科检查.采用PCR方法扩增ND1 m.3460G>A、ND4 m.11778G>A和ND6 m 14484T>C三个原发突变,Sanger测序明确原发突变后,对2个先证者扩增线粒体DNA(mtDNA)全序列;测序结果与最新剑桥标准mtDNA序列比对,分析2个家系的线粒体单体型.结果 2个家系均携带ND4 m 11778G>A原发突变,但LHON的外显性、发病年龄及病情严重程度存在一定差异.2个家系mtDNA全序列测序结果共存在45个mtDNA变异位点,分别归属于东亚单体组R11b和B4b.结论 除受ND4m.11778G>A纯合原发突变影响外,线粒体单体型也可能调控LHON.

  17. ReRep: Computational detection of repetitive sequences in genome survey sequences (GSS

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcelo

    2008-09-01

    Full Text Available Abstract Background Genome survey sequences (GSS offer a preliminary global view of a genome since, unlike ESTs, they cover coding as well as non-coding DNA and include repetitive regions of the genome. A more precise estimation of the nature, quantity and variability of repetitive sequences very early in a genome sequencing project is of considerable importance, as such data strongly influence the estimation of genome coverage, library quality and progress in scaffold construction. Also, the elimination of repetitive sequences from the initial assembly process is important to avoid errors and unnecessary complexity. Repetitive sequences are also of interest in a variety of other studies, for instance as molecular markers. Results We designed and implemented a straightforward pipeline called ReRep, which combines bioinformatics tools for identifying repetitive structures in a GSS dataset. In a case study, we first applied the pipeline to a set of 970 GSSs, sequenced in our laboratory from the human pathogen Leishmania braziliensis, the causative agent of leishmaniosis, an important public health problem in Brazil. We also verified the applicability of ReRep to new sequencing technologies using a set of 454-reads of an Escheria coli. The behaviour of several parameters in the algorithm is evaluated and suggestions are made for tuning of the analysis. Conclusion The ReRep approach for identification of repetitive elements in GSS datasets proved to be straightforward and efficient. Several potential repetitive sequences were found in a L. braziliensis GSS dataset generated in our laboratory, and further validated by the analysis of a more complete genomic dataset from the EMBL and Sanger Centre databases. ReRep also identified most of the E. coli K12 repeats prior to assembly in an example dataset obtained by automated sequencing using 454 technology. The parameters controlling the algorithm behaved consistently and may be tuned to the properties

  18. FEMA Hazard Mitigation Assistance Repetitive Flood Claims (RFC) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Repetitive Flood Claims (RFC). The...

  19. A review of neuroimaging findings in repetitive brain trauma.

    Science.gov (United States)

    Koerte, Inga K; Lin, Alexander P; Willems, Anna; Muehlmann, Marc; Hufschmidt, Jakob; Coleman, Michael J; Green, Isobel; Liao, Huijun; Tate, David F; Wilde, Elisabeth A; Pasternak, Ofer; Bouix, Sylvain; Rathi, Yogesh; Bigler, Erin D; Stern, Robert A; Shenton, Martha E

    2015-05-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease confirmed at postmortem. Those at highest risk are professional athletes who participate in contact sports and military personnel who are exposed to repetitive blast events. All neuropathologically confirmed CTE cases, to date, have had a history of repetitive head impacts. This suggests that repetitive head impacts may be necessary for the initiation of the pathogenetic cascade that, in some cases, leads to CTE. Importantly, while all CTE appears to result from repetitive brain trauma, not all repetitive brain trauma results in CTE. Magnetic resonance imaging has great potential for understanding better the underlying mechanisms of repetitive brain trauma. In this review, we provide an overview of advanced imaging techniques currently used to investigate brain anomalies. We also provide an overview of neuroimaging findings in those exposed to repetitive head impacts in the acute/subacute and chronic phase of injury and in more neurodegenerative phases of injury, as well as in military personnel exposed to repetitive head impacts. Finally, we discuss future directions for research that will likely lead to a better understanding of the underlying mechanisms separating those who recover from repetitive brain trauma vs. those who go on to develop CTE.

  20. FEMA Hazard Mitigation Assistance Severe Repetitive Loss (SRL) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Severe Repetitive Loss (SRL). The...

  1. Characterization of a Leber's hereditary optic neuropathy (LHON) family harboring two primary LHON mutations m.11778G>A and m.14484T>C of the mitochondrial DNA.

    Science.gov (United States)

    Catarino, Claudia B; Ahting, Uwe; Gusic, Mirjana; Iuso, Arcangela; Repp, Birgit; Peters, Katrin; Biskup, Saskia; von Livonius, Bettina; Prokisch, Holger; Klopstock, Thomas

    2016-10-06

    Leber's hereditary optic neuropathy (LHON) is an inherited mitochondrial disease that usually leads to acute or subacute bilateral central vision loss. In 95% of cases, LHON is caused by one of three primary mutations of the mitochondrial DNA (mtDNA), m.11778G>A in the MT-ND4 gene, m.14484T>C in the MT-ND6 gene, or m.3460G>A in the MT-ND1 gene. Here we characterize clinically, genetically, and biochemically a LHON family with multiple patients harboring two of these primary LHON mutations, m.11778G>A homoplasmic and m.14484T>C heteroplasmic. The unusually low male-to-female ratio of affected family members is also seen among the other patients previously reported with two primary LHON mutations m.11778G>A and m.14484T>C. While the index patient had very late onset of symptoms at 75years and severe visual loss, her two daughters had both onset in childhood (6 and 9years), with moderate to mild visual loss. A higher degree of heteroplasmy of the m.14484T>C mutation was found to correlate with an earlier age at onset in this family. Ours is the first LHON family harboring two primary LHON mutations where functional studies were performed in several affected family members. A more pronounced bioenergetic defect was found to correlate with an earlier age at onset. The patient with the earliest age at onset had a more significant complex I dysfunction than all controls, including the LHON patient with only the m.11778G>A mutation, suggesting a synergistic effect of the two primary LHON mutations in this patient.

  2. Advances in Research on Hepatitis B Virus DNA Integration

    Institute of Scientific and Technical Information of China (English)

    Ju-sheng LIN; Lin-lin GAO

    2008-01-01

    Since HBV DNA integration was discovered for the first time in 1980, various methods have been used to detect and study it, such as Southern Blot, in situ hybridization, polymerase chain reaction and so on. HBV DNA integration is thought to be random on the whole although some hot spots of integration were described by some researchers, one of which might be the repetitive sequences of the genomic DNA. Besides, DNA damage, especially double-strand breaks could promote HBV DNA integration into host genome. HBV DNA integration into cells may damage the stability of the genome, cause DNA rearrangement, promote DNA deletion and induce the formation of HCC.

  3. Repetitive control of electrically driven robot manipulators

    Science.gov (United States)

    Fateh, Mohammad Mehdi; Ahsani Tehrani, Hojjat; Karbassi, Seyed Mehdi

    2013-04-01

    This article presents a novel robust discrete repetitive control of electrically driven robot manipulators for tracking of a periodic trajectory. We propose a novel model, which presents the highly non-linear dynamics of robot manipulator in the form of linear discrete-time time-varying system. Based on the proposed model, we develop a two-term control law. The first term is an ordinary time-optimal and minimum-norm (TOMN) control by employing parametric controllers to guarantee stability. The second term is a novel robust control to improve the control performance in the face of uncertainties. The robust control estimates and compensates uncertainties including the parametric uncertainty, unmodelled dynamics and external disturbances. Performance of the proposed method is compared with two discrete methods, namely the TOMN control and an adaptive iterative learning (AIL) control. Simulation results confirm superiority of the proposed method in terms of the convergence speed and precision.

  4. Studies of the uncanny: the repetition factor

    Directory of Open Access Journals (Sweden)

    Julia Teitelroit Martins

    2011-06-01

    Full Text Available Freud’s essay The Uncanny (Das Unheimliche offers many indications for the comprehension of an aesthetics of the uncanny which deserve to be explored. Nonetheless, a concept traverses it from beginning to end: the return – which enables its reading under the light of Beyond the pleasure principle, written along the same span of time. Emphasis is given to the uncanny in the sense of repetition of the different – a paradox in terms, like the strangely familiar uncanny. In order to test the validity of an aesthetic reading under this perspective, follows an analysis of the brief short story “A terceira margem do rio” (“The third margin of the river”, by Guimarães Rosa.

  5. Object color affects identification and repetition priming.

    Science.gov (United States)

    Uttl, Bob; Graf, Peter; Santacruz, Pilar

    2006-10-01

    We investigated the influence of color on the identification of both non-studied and studied objects. Participants studied black and white and color photos of common objects and memory was assessed with an identification test. Consistent with our meta-analysis of prior research, we found that objects were easier to identify from color than from black and white photos. We also found substantial priming in all conditions, and study-to-test changes in an object's color reduced the magnitude of priming. Color-specific priming effects were large for color-complex objects, but minimal for color-simple objects. The pattern and magnitude of priming effects was not influenced either by the extent to which an object always appears in the same color (i.e., whether a color is symptomatic of an object) or by the object's origin (natural versus fabricated). We discuss the implications of our findings for theoretical accounts of object perception and repetition priming.

  6. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor

    Directory of Open Access Journals (Sweden)

    Hankus Lukasz

    2006-10-01

    Full Text Available Abstract Background Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases. Results We describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s, repeat sequences found in the query, and alignments. Conclusion Censor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at http://www.girinst.org/repbase/submission.html (RepbaseSubmitter and http://www.girinst.org/censor/index.php (Censor.

  7. Is radon emission in caves causing deletions in satellite DNA sequences of cave-dwelling crickets?

    Directory of Open Access Journals (Sweden)

    Giuliana Allegrucci

    Full Text Available The most stable isotope of radon, 222Rn, represents the major source of natural radioactivity in confined environments such as mines, caves and houses. In this study, we explored the possible radon-related effects on the genome of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae sampled in caves with different concentrations of radon. We analyzed specimens from ten populations belonging to two genetically closely related species, D. geniculata and D. laetitiae, and explored the possible association between the radioactivity dose and the level of genetic polymorphism in a specific family of satellite DNA (pDo500 satDNA. Radon concentration in the analyzed caves ranged from 221 to 26,000 Bq/m3. Specimens coming from caves with the highest radon concentration showed also the highest variability estimates in both species, and the increased sequence heterogeneity at pDo500 satDNA level can be explained as an effect of the mutation pressure induced by radon in cave. We discovered a specific category of nuclear DNA, the highly repetitive satellite DNA, where the effects of the exposure at high levels of radon-related ionizing radiation are detectable, suggesting that the satDNA sequences might be a valuable tool to disclose harmful effects also in other organisms exposed to high levels of radon concentration.

  8. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  9. The DNA sequence and biology of human chromosome 19.

    Science.gov (United States)

    Grimwood, Jane; Gordon, Laurie A; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Isaac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E; Pennacchio, Len A; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S; Myers, Richard M; Rubin, Edward M; Lucas, Susan M

    2004-04-01

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  10. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  11. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Gordon, Laurie A.; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A.; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M.; Glavina, Tijana; Gomez, Maria; Gonzales, Eldelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Issac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P.; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S.; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E.; Pennacchio, Len A.; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S.; Myers, Richard M.; Rubin, Edward M.; Lucas, Susan M.

    2003-09-15

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G1C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9 percent of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25 percent of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, a nd segments of coding and non-coding conservation with the distant fish species Takifugu.

  12. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  13. A combined approach of DNA probe and RFLP for family and species identification of larval stages of commercially important aquatic species: A study on the surfclam Spisula solidissima

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.

    This paper deals briefly with a technique developed for the identification of the early stages of veligers of surfclam Spisula solidissima from the larval stages of other common bivalve species using a combination of DNA probe and restriction...

  14. Editing of misaligned 3′-termini by an intrinsic 3′–5′ exonuclease activity residing in the PHP domain of a family X DNA polymerase

    Science.gov (United States)

    Baños, Benito; Lázaro, José M.; Villar, Laurentino; de Vega, Miguel

    2008-01-01

    Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolXBs), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolXBs possesses an intrinsic 3′–5′ exonuclease activity specialized in resecting unannealed 3′-termini in a gapped DNA substrate. Biochemical analysis of a PolXBs deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3′–5′ exonuclease activity of PolXBs resides in its PHP domain. Furthermore, site-directed mutagenesis of PolXBs His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3′-termini resection by the 3′–5′ exonuclease activity of PolXBs in the DNA repair context are discussed. PMID:18776221

  15. Evolution of repetitive proteins: spider silks from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae).

    Science.gov (United States)

    Beckwitt, R; Arcidiacono, S; Stote, R

    1998-03-01

    Spider silks are highly repetitive proteins, characterized by regions of polyalanine and glycine-rich repeating units. We have obtained two variants of the Spidroin 1 (NCF-1) silk gene sequence from Nephila clavipes. One sequence (1726 bp) was from a cloned cDNA, and the other (1951 bp) was from PCR of genomic DNA. When these sequences are compared with each other and the previously published Spidroin 1 sequence, there are differences due to sequence rearrangements, as well as single base substitutions. These variations are similar to those that have been reported from other highly repetitive genes, and probably represent the results of unequal cross-overs. We have also obtained 708 bp of sequence from pCR of genomic DNA from Araneus biocentenarius. This sequence shows considerable similarity to a dragline sequence (ADF-3) from A. diadematus, as well as Spidroin 2 (NCF-2) from N. clavipes. Minor but consistent differences in the repeating unit sequence between A. bicentenarius and A. diadematus suggest that concerted evolution or gene conversion processes are acting to maintain similarity among repeat units within a single gene.

  16. The golden ratio of gait harmony: repetitive proportions of repetitive gait phases.

    Science.gov (United States)

    Iosa, Marco; Fusco, Augusto; Marchetti, Fabio; Morone, Giovanni; Caltagirone, Carlo; Paolucci, Stefano; Peppe, Antonella

    2013-01-01

    In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number φ known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with φ, the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (F = 0.870, P = 0.422, repeated measure analysis of variance) or from φ (P = 0.670, 0.820, 0.422, resp., t-tests). The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  17. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  18. Iconicity in Discourse: The Case of Repetition in Japanese.

    Science.gov (United States)

    Ishikawa, Minako

    This analysis of repeated utterances in Japanese conversational discourse focuses on repetition as an expression of iconicity. In the analysis of a 30-minute conversation among 4 Japanese speakers, the iconic meanings expressed by both reduplication and conversational repetition are highlighted. The iconicity characteristic of conversational data…

  19. Evidence-Based Behavioral Interventions for Repetitive Behaviors in Autism

    Science.gov (United States)

    Boyd, Brian A.; McDonough, Stephen G.; Bodfish, James W.

    2012-01-01

    Restricted and repetitive behaviors (RRBs) are a core symptom of autism spectrum disorders (ASD). There has been an increased research emphasis on repetitive behaviors; however, this research primarily has focused on phenomenology and mechanisms. Thus, the knowledge base on interventions is lagging behind other areas of research. The literature…

  20. Visual attention to advertising : The impact of motivation and repetition

    NARCIS (Netherlands)

    Pieters, RGM; Rosbergen, E; Hartog, M; Corfman, KP; Lynch, JG

    1996-01-01

    Using eye-tracking data, we examine the impact of motivation and repetition on visual attention to advertisements differing in argument quality. Our analyses indicate that repetition leads to an overall decrease in the amount of attention. However, while at first high motivation subjects attend to t

  1. On the Functions of Lexical Repetition in English Texts

    Institute of Scientific and Technical Information of China (English)

    XIAO Fuliang

    2016-01-01

    Lexical repetition, as a cohesive device of an English text, can help make up a cohesive and coherent text. Therefore, in English textual learning, it is helpful for students to know about different patterns and functions of lexical repetition to improve their English level and ability.

  2. Epigenetic Patterns of PTSD: DNA Methylation In Serum of OIF/OEF Servicemembers

    Science.gov (United States)

    2011-01-01

    2116-2120. 54. Fenech M (2001): The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutation Research. 475:57-67. 55...and PTSD, (4, 33-35) to our knowledge , this is the first study to investigate the association between DNA methylation in repetitive elements (LINE-1...simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 32:e38. 17. Robertson KD (2005

  3. Meat speciation by restriction fragment length polymorphism analysis using an α-actin cDNA probe.

    Science.gov (United States)

    Fairbrother, K S; Hopwood, A J; Lockley, A K; Bardsley, R G

    1998-09-01

    Classical DNA fingerprinting is based on separation of DNA restriction fragments by electrophoresis and hybridisation to nucleic acid probes containing repetitive nucleotide sequences. The use of such mini- or micro-satellite probes tends to yield patterns specific to an individual rather than to a species, hence their value in forensic analysis but general unsuitability for meat speciation. In the present study, a cDNA probe based on conserved sequences contained in members of the actin multigene family has been evaluated for potential application in meat speciation. Genomic DNA was extracted from muscle and digested with BamHI before electrophoresis and hybridisation to a murine α-actin cDNA probe. Beef, pork, lamb, horse, chicken and fish DNA restriction fragments formed characteristic 'fingerprints' which were reproducible and varied sufficiently to allow discrimination even between closely-related species. However no major differences were seen between individuals of the same breed or between different breeds within a species. When DNA obtained from fresh tissue and also from meat heated at 120 °C was analysed, the gel patterns were essentially the same. An attractive feature of this approach is that it employs a single cross-reacting probe and set of conditions, and gives different patterns with all species so far studied. This simplicity suggests applications in meat speciation or related areas of biology.

  4. A method of identifying and isolating a unique member of a multigene family: application to a trypanosome surface antigen gene.

    Science.gov (United States)

    Ruef, B J; Hecht, J H; Manning, J E

    1991-04-25

    A chimeric oligonucleotide was constructed using DNA sequences from two distal regions of a cDNA which encodes a major surface antigen (TSA-1) of Trypanosoma cruzi. Conditions were found that allowed the chimeric oligonucleotide to hybridize only to a 5.4 kb EcoRI fragment in a Southern blot of total genomic DNA. The 5.4 kb EcoRI genomic DNA fragment has previously been shown to be located at a telomeric site, thus the studies described here directly demonstrate that the TSA-1 gene is telomeric in location. It is also shown that the chimeric oligonucleotide can be used to selectively identify recombinant lambda phage which harbor the TSA-1 gene using standard library screening procedures. Since these studies demonstrate that a chimeric oligonucleotide can be used to identify in both Southern blots and library screens a single member among the more than sixty members of the TSA-1 gene family, it seems likely that chimeric oligonucleotides may be of general use in studies involving repetitive DNA sequence families.

  5. Nonword Repetition and Speech Motor Control in Children

    Directory of Open Access Journals (Sweden)

    Christina Reuterskiöld

    2015-01-01

    Full Text Available This study examined how familiarity of word structures influenced articulatory control in children and adolescents during repetition of real words (RWs and nonwords (NWs. A passive reflective marker system was used to track articulator movement. Measures of accuracy were obtained during repetition of RWs and NWs, and kinematic analysis of movement duration and variability was conducted. Participants showed greater consonant and vowel accuracy during RW than NW repetition. Jaw movement duration was longer in NWs compared to RWs across age groups, and younger children produced utterances with longer jaw movement duration compared to older children. Jaw movement variability was consistently greater during repetition of NWs than RWs in both groups of participants. The results indicate that increases in phonological short-term memory demands affect articulator movement. This effect is most pronounced in younger children. A range of skills may develop during childhood, which supports NW repetition skills.

  6. Soliton repetition rate in a silicon-nitride microresonator

    CERN Document Server

    Bao, Chengying; Wang, Cong; Jaramillo-Villegas, Jose A; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    The repetition rate of a Kerr comb comprising a single soliton in an anomalous dispersion silicon nitride microcavity is measured as a function of pump frequency tuning. The contributions from the Raman soliton self-frequency shift (SSFS) and from thermal effects are evaluated both experimentally and theoretically; the SSFS is found to dominate the changes in repetition rate. The relationship between the changes in repetition rate and pump frequency detuning is found to be independent of the nonlinearity coefficient and dispersion of the cavity. Modeling of the repetition rate change by using the generalized Lugiato-Lefever equation is discussed; the Kerr shock is found to have only a minor effect on repetition rate for cavity solitons with duration down to ~50 fs.

  7. Transgenerational effects of environmental enrichment on repetitive motor behavior development.

    Science.gov (United States)

    Bechard, Allison R; Lewis, Mark H

    2016-07-01

    The favorable consequences of environmental enrichment (EE) on brain and behavior development are well documented. Much less is known, however, about transgenerational benefits of EE on non-enriched offspring. We explored whether transgenerational effects of EE might extend to the development of repetitive motor behaviors in deer mice. Repetitive motor behaviors are invariant patterns of movement that, across species, can be reduced by EE. We found that EE not only attenuated the development of repetitive behavior in dams, but also in their non-enriched offspring. Moreover, maternal behavior did not seem to mediate the transgenerational effect we found, although repetitive behavior was affected by reproductive experience. These data support a beneficial transgenerational effect of EE on repetitive behavior development and suggest a novel benefit of reproductive experience.

  8. Soliton repetition rate in a silicon-nitride microresonator.

    Science.gov (United States)

    Bao, Chengying; Xuan, Yi; Wang, Cong; Jaramillo-Villegas, Jose A; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M

    2017-02-15

    The repetition rate of a Kerr comb composed of a single soliton in an anomalous group velocity dispersion silicon-nitride microcavity is measured as a function of pump frequency. By comparing operation in the soliton and non-soliton states, the contributions from the Raman soliton self-frequency shift (SSFS) and the thermal effects are evaluated; the SSFS is found to dominate the changes in the repetition rate, similar to silica cavities. The relationship between the changes in the repetition rate and the pump frequency detuning is found to be independent of the nonlinearity coefficient and dispersion of the cavity. Modeling of the repetition rate change by using the generalized Lugiato-Lefever equation is discussed; the Kerr shock is found to have only a minor effect on repetition rate for cavity solitons with duration down to ∼50  fs.

  9. Self-controlled KR schedules: does repetition order matter?

    Science.gov (United States)

    Patterson, Jae T; Carter, Michael J; Hansen, Steve

    2013-08-01

    The impact of an experimenter-defined repetition schedule on the utility of a self-controlled KR context during motor skill acquisition was examined. Participants were required to learn three novel spatial-temporal tasks in either a random or blocked repetition schedule with or without the opportunity to control their KR. Results from the retention period showed that participants provided control over their KR schedule in a random repetition schedule demonstrated superior learning. However, performance measures from the transfer test showed that, independent of repetition schedule, learners provided the opportunity to control their KR schedule demonstrated superior transfer performance compared to their yoked counterparts. The dissociated impact of repetition schedule and self-controlled KR schedules on retention and transfer is discussed.

  10. Impaired speech repetition and left parietal lobe damage.

    Science.gov (United States)

    Fridriksson, Julius; Kjartansson, Olafur; Morgan, Paul S; Hjaltason, Haukur; Magnusdottir, Sigridur; Bonilha, Leonardo; Rorden, Christopher

    2010-08-18

    Patients with left hemisphere damage and concomitant aphasia usually have difficulty repeating others' speech. Although impaired speech repetition, the primary symptom of conduction aphasia, has been associated with involvement of the left arcuate fasciculus, its specific lesion correlate remains elusive. This research examined speech repetition among 45 stroke patients who underwent aphasia testing and MRI examination. Based on lesion-behavior mapping, the primary structural damage most closely associated with impaired speech repetition was found in the posterior portion of the left arcuate fasciculus. However, perfusion-weighted MRI revealed that tissue dysfunction, in the form of either frank damage or hypoperfusion, to the left inferior parietal lobe, rather than the underlying white matter, was associated with impaired speech repetition. This latter result suggests that integrity of the left inferior parietal lobe is important for speech repetition and, as importantly, highlights the importance of examining cerebral perfusion for the purpose of lesion-behavior mapping in acute stroke.

  11. Repetition and Emotive Communication in Music Versus Speech

    Directory of Open Access Journals (Sweden)

    Elizabeth Hellmuth eMargulis

    2013-04-01

    Full Text Available Music and speech are often placed alongside one another as comparative cases. Their relative overlaps and disassociations have been well explored (e.g. Patel, 2010. But one key attribute distinguishing these two domains has often been overlooked: the greater preponderance of repetition in music in comparison to speech. Recent fMRI studies have shown that familiarity – achieved through repetition – is a critical component of emotional engagement with music (Pereira et al., 2011. If repetition is fundamental to emotional responses to music, and repetition is a key distinguisher between the domains of music and speech, then close examination of the phenomenon of repetition might help clarify the ways that music elicits emotion differently than speech.

  12. Physical Characteristics Underpinning Repetitive Lunging in Fencing.

    Science.gov (United States)

    Turner, Anthony N; Marshall, Geoff; Phillips, James; Noto, Angelo; Buttigieg, Conor; Chavda, Shyam; Downing, William; Atlay, Nathan; Dimitriou, Lygeri; Kilduff, Laim

    2016-11-01

    Turner, AN, Marshall, G, Phillips, J, Noto, A, Buttigieg, C, Chavda, S, Downing, W, Atlay, N, Dimitriou, L, and Kilduff, L. Physical characteristics underpinning repetitive lunging in fencing. J Strength Cond Res 30(11): 3134-3139, 2016-Given the repetitive demand to execute lunging and changes in direction within fencing, the ability to sustain these at maximal capacity is fundamental to performance. The aim of this study was threefold. First, to provide normative values for this variable referred to as repeat lunge ability (RLA) and second to identify the physical characteristics that underpin it. Third, was to establish if a cause and effect relationship existed by training the associated characteristics. Assessment of lower-body power, reactive strength, speed, change of direction speed (CODS), and a sport-specific RLA were conducted on senior and junior elite male fencers (n = 36). Fencers were on average (±SD) 18.9 ± 3.2 years of age, 174.35 ± 10.42 cm tall, 70.67 ± 7.35 kg in mass, and 8.5 ± 4.2 years fencing experience. The RLA test had average work times of 16.03 ± 1.40 seconds and demonstrated "large" to "very large" associations with all tested variables, but in particular CODS (r = 0.70) and standing broad jump (SBJ; r = -0.68). Through linear regression analysis, these also provided a 2-predictor model accounting for 61% of the common variance associated with RLA. A cause and effect relationship with SBJ and CODS was confirmed by the training group, where RLA performance in these fencers improved from 15.80 ± 1.07 to 14.90 ± 0.86 seconds, with the magnitude of change reported as "moderate" (effect size (ES) = 0.93). Concurrent improvements were also noted in both SBJ (216.86 ± 17.15 vs. 221.71 ± 17.59 cm) and CODS (4.44 ± 0.29 vs. 4.31 ± 0.09 seconds) and while differences were only significant in SBJ, magnitudes of change were classed as "small" (ES = 0.28) and "moderate" (ES = 0.61), respectively. In conclusion, to improve RLA strength

  13. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication.

    Science.gov (United States)

    Chen, Jian; Sickler, Jason W; Fendel, Peter; Ippen, Erich P; Kärtner, Franz X; Wilken, Tobias; Holzwarth, Ronald; Hänsch, Theodor W

    2008-05-01

    Generation of low-timing-jitter 150 fs pulse trains at 1560 nm with 2 GHz repetition rate is demonstrated by locking a 200 MHz fundamental polarization additive-pulse mode-locked erbium fiber laser to high-finesse external Fabry-Perot cavities. The timing jitter and relative intensity noise of the repetition-rate multiplied pulse train are investigated.

  14. [Rehabilitation Using Repetitive Transcranial Magnetic Stimulation].

    Science.gov (United States)

    Takeuchi, Naoyuki; Izumi, Shin-Ichi

    2017-03-01

    Various novel stroke rehabilitative methods have been developed based on findings in basic science and clinical research. Recently, many reports have shown that repetitive transcranial magnetic stimulation (rTMS) improves function in stroke patients by altering the excitability of the human cortex. The interhemispheric competition model proposes that deficits in stroke patients are due to reduced output from the affected hemisphere and excessive interhemispheric inhibition from the unaffected hemisphere to the affected hemisphere. The interhemispheric competition model indicates that improvement in deficits can be achieved either by increasing the excitability of the affected hemisphere using excitatory rTMS or by decreasing the excitability of the unaffected hemisphere using inhibitory rTMS. Recovery after stroke is related to neural plasticity, which involves developing new neural connections, acquiring new functions, and compensating for impairments. Artificially modulating the neural network by rTMS may induce a more suitable environment for use-dependent plasticity and also may interfere with maladaptive neural activation, which weakens function and limits recovery. There is potential, therefore, for rTMS to be used as an adjuvant therapy for developed neurorehabilitation techniques in stroke patients.

  15. SI Engine with repetitive NS spark plug

    Science.gov (United States)

    Pancheshniy, Sergey; Nikipelov, Andrey; Anokhin, Eugeny; Starikovskiy, Andrey; Laplase Team; Mipt Team; Pu Team

    2013-09-01

    Now de-facto the only technology for fuel-air mixtures ignition in IC engines exists. It is a spark discharge of millisecond duration in a short discharge gap. The reason for such a small variety of methods of ignition initiation is very specific conditions of the engine operation. First, it is very high-pressure of fuel-air mixture - from 5-7 atmospheres in old-type engines and up to 40-50 atmospheres on the operating mode of HCCI. Second, it is a very wide range of variation of the oxidizer/fuel ratio in the mixture - from almost stoichiometric (0.8-0.9) at full load to very lean (φ = 0.3-0.5) mixtures at idle and/or economical cruising mode. Third, the high velocity of the gas in the combustion chamber (up to 30-50 m/s) resulting in a rapid compression of swirling inlet flow. The paper presents the results of tests of distributed spark ignition system powered by repetitive pulse nanosecond discharge. Dynamic pressure measurements show the increased pressure and frequency stability for nanosecond excitation in comparison with the standard spark plug. Excitation by single nanosecond high-voltage pulse and short train of pulses was examined. In all regimes the nanosecond pulsed excitation demonstrate a better performance.

  16. Repetitive transcranial magnetic stimulation and drug addiction.

    Science.gov (United States)

    Barr, Mera S; Farzan, Faranak; Wing, Victoria C; George, Tony P; Fitzgerald, Paul B; Daskalakis, Zafiris J

    2011-10-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that is now being tested for its ability to treat addiction. This review discusses current research approaches and results of studies which measured the therapeutic use of rTMS to treat tobacco, alcohol and illicit drug addiction. The research in this area is limited and therefore all studies evaluating the therapeutic use of rTMS in tobacco, alcohol or illicit drug addiction were retained including case studies through NCBI PubMed ( http://www.ncbi.nlm.nih.gov ) and manual searches. A total of eight studies were identified that examined the ability of rTMS to treat tobacco, alcohol and cocaine addiction. The results of this review indicate that rTMS is effective in reducing the level of cravings for smoking, alcohol, and cocaine when applied at high frequencies to the dorsolateral prefrontal cortex (DLPFC). Furthermore, these studies suggest that repeated sessions of high frequency rTMS over the DLPFC may be most effective in reducing the level of smoking and alcohol consumption. Although work in this area is limited, this review indicates that rTMS is a promising modality for treating drug addiction.

  17. Development of a repetitive compact torus injector

    Science.gov (United States)

    Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki

    2013-10-01

    A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.

  18. Differential effects of high-temperatu