WorldWideScience

Sample records for repetition rate range

  1. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  2. Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate.

    Science.gov (United States)

    Aubourg, Adrien; Lhermite, Jérôme; Hocquet, Steve; Cormier, Eric; Santarelli, Giorgio

    2015-12-01

    We report on a watt range laser system generating picosecond pulses using electro-optical modulation of a 1030 nm single frequency low noise laser diode. Its repetition rate is continuously tunable between 11 and 18 GHz. Over this range, output spectra and pulse characteristics are measured and compared with a numerical simulation. Finally, amplitude and residual phase noise measurements of the source are also presented.

  3. High repetition rate Yb:CaF2 multipass amplifiers operating in the 100 mJ range

    OpenAIRE

    Dimitrios PAPADOPOULOS; Friebel, Florence; Pellegrina, Alain; Hanna, Marc; Camy, Patrice; Doualan, Jean-Louis; Moncorgé, Richard; Georges, Patrick; Druon, Frédéric

    2014-01-01

    International audience; — We present the research advances on the development of 50-200 mJ energy range diode-pumped Yb:CaF 2-based multipass amplifiers operating at relatively high repetition rates. These laser amplifiers are based on diverse innovative geometries. All these innovations aim to design compact, stable and reliable amplifiers adapted to our application that consists in pumping ultrashort-pulse OPCPA (optical parametric chirped pulse amplifier) systems in the frame of the Apollo...

  4. A miniature high repetition rate shock tube.

    Science.gov (United States)

    Tranter, R S; Lynch, P T

    2013-09-01

    A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources.

  5. Soliton repetition rate in a silicon-nitride microresonator

    CERN Document Server

    Bao, Chengying; Wang, Cong; Jaramillo-Villegas, Jose A; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    The repetition rate of a Kerr comb comprising a single soliton in an anomalous dispersion silicon nitride microcavity is measured as a function of pump frequency tuning. The contributions from the Raman soliton self-frequency shift (SSFS) and from thermal effects are evaluated both experimentally and theoretically; the SSFS is found to dominate the changes in repetition rate. The relationship between the changes in repetition rate and pump frequency detuning is found to be independent of the nonlinearity coefficient and dispersion of the cavity. Modeling of the repetition rate change by using the generalized Lugiato-Lefever equation is discussed; the Kerr shock is found to have only a minor effect on repetition rate for cavity solitons with duration down to ~50 fs.

  6. Soliton repetition rate in a silicon-nitride microresonator.

    Science.gov (United States)

    Bao, Chengying; Xuan, Yi; Wang, Cong; Jaramillo-Villegas, Jose A; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M

    2017-02-15

    The repetition rate of a Kerr comb composed of a single soliton in an anomalous group velocity dispersion silicon-nitride microcavity is measured as a function of pump frequency. By comparing operation in the soliton and non-soliton states, the contributions from the Raman soliton self-frequency shift (SSFS) and the thermal effects are evaluated; the SSFS is found to dominate the changes in the repetition rate, similar to silica cavities. The relationship between the changes in the repetition rate and the pump frequency detuning is found to be independent of the nonlinearity coefficient and dispersion of the cavity. Modeling of the repetition rate change by using the generalized Lugiato-Lefever equation is discussed; the Kerr shock is found to have only a minor effect on repetition rate for cavity solitons with duration down to ∼50  fs.

  7. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication.

    Science.gov (United States)

    Chen, Jian; Sickler, Jason W; Fendel, Peter; Ippen, Erich P; Kärtner, Franz X; Wilken, Tobias; Holzwarth, Ronald; Hänsch, Theodor W

    2008-05-01

    Generation of low-timing-jitter 150 fs pulse trains at 1560 nm with 2 GHz repetition rate is demonstrated by locking a 200 MHz fundamental polarization additive-pulse mode-locked erbium fiber laser to high-finesse external Fabry-Perot cavities. The timing jitter and relative intensity noise of the repetition-rate multiplied pulse train are investigated.

  8. Properties of water surface discharge at different pulse repetition rates

    Energy Technology Data Exchange (ETDEWEB)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  9. Breakdown behavior of electronics at variable pulse repetition rates

    OpenAIRE

    Korte, S.; H. Garbe

    2006-01-01

    The breakdown behavior of electronics exposed to single transient electromagnetic pulses is subject of investigations for several years. State-of-the-art pulse generators additionally provide the possibility to generate pulse sequences with variable pulse repetition rate. In this article the influence of this repetition rate variation on the breakdown behavior of electronic systems is described. For this purpose microcontroller systems are examined during line-led exposure to pulses with repe...

  10. Bottle microresonator broadband and low repetition rate frequency comb generator

    CERN Document Server

    Dvoyrin, V

    2016-01-01

    We propose a new type of broadband and low repetition rate frequency comb generator which has the shape of an elongated and nanoscale-shallow optical bottle microresonator created at the surface of an optical fiber. The free spectral range (FSR) of the broadband azimuthal eigenfrequency series of this resonator is the exact multiple of the FSR of the dense and narrowband axial series. The effective radius variation of the microresonator is close to a parabola with a nanoscale height which is greater or equal to lambda/2pi*n0 (here lambda is the characteristic radiation wavelength and n0 is the refractive index of the microresonator material). Overall, the microresonator possesses a broadband, small FSR, and accurately equidistant spectrum convenient for the generation of a broadband and low repetition rate optical frequency comb. It is shown that this comb can be generated by pumping with a cw laser, which radiation frequency matches a single axial eigenfrequency of the microresonator, or, alternatively, by p...

  11. Final Report, Photocathodes for High Repetition Rate Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook University

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  12. Coupling coefficient for TEA CO2 laser propulsion with variable pulse repetition rate

    Institute of Scientific and Technical Information of China (English)

    Yijun Zheng; Rongqing Tan; Donglei Wang; Guang Zheng; Changjun Ke; Kuohai Zhang; Chongyi Wan; Jin Wu

    2006-01-01

    @@ Because pulse repetition rate affected directly the momentum coupling coefficient of transversely excited atmospheric (TEA) CO2 laser propulsion, a double pulse trigger, controlling high voltage switch of laser excitation circuit, was designed. The pulse interval ranged between 5 and 100 ms. The momentum coupling coefficient for air-breathing mode laser propulsion was studied experimentally. It was found that the momentum coupling coefficient decreased with the pulse repetition rate increasing.

  13. ROBUST REPETITIVE CONTROL FOR IMPROVING RATE SMOOTHNESS OF TEST TURNTABLE

    Institute of Scientific and Technical Information of China (English)

    LIUYu; ZENGMing; SUBao-ku

    2005-01-01

    A robust repetitive control scheme is used to improve the rate smoothness of a brushless DC motor (BLDCM) driven test turntable. The method synthesizes variable structure control (VSC) laws and repetitive control (RC) laws in a complementary manner. The VSC strategy can stabilize the system and suppress uncertainties, such as the aperiodic disturbance and noises, while RC strategy can eliminate the periodic rate fluctuation in a steady state. The convergence of the repetitive learning process is also guaranteed by VSC. A general nonlinear system model is discussed. The model can be considered as an extension of BLDCMs. The stability and asymptotic position tracking performance are validated by using Lyapunov functions. Simulation results show the effectiveness of the proposed approach for improving the rate smoothness.

  14. Demonstration of a high repetition rate capillary discharge waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J., E-mail: ajgonsalves@lbl.gov; Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, F.; Antipov, S.; Butler, J. E. [Euclid TechLabs, Gaithersburg, Maryland 20879 (United States); Bobrova, N. A.; Sasorov, P. V. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2016-01-21

    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  15. Medium Repetition Rate TEA Laser For Industrial Applications

    Science.gov (United States)

    Walter, Bruno

    1987-09-01

    The design and performance of an inexpensive compact repetitively pulsed TEA CO2 laser is described. The device uses a modified corona preionization technique and a fast transverse gas flow to achieve high repetition rates. An output energy of 500 mJ per pulse and an out-put power of 6.2W at 40Hz have been obtained. Due to the small energy needed for preionization, the efficiency of the device is high, whereas the gas dissociation is low when compared with commercial laser systems. This results in the relatively small fresh laser gas exchange of 20 ltr h-1 for long term operation.

  16. Programmable Control of the Pulse Repetition Rate in the Multiwave Strontium Vapor Laser System

    Directory of Open Access Journals (Sweden)

    Soldatov Anatoly

    2016-01-01

    Full Text Available The aim of the present work was the development of laser systems for ablation of biological tissues with a programmable control over the lasing pulse repetition rate in a wide range. A two-stage laser system consisting of a master oscillator and a power amplifier based on strontium vapor laser has been developed. The operation of the laser system in a single-pulse mode operation, multipulse mode operation, and with a pulse repetition rate up to 20 kHz has been technically implemented. The possibility of a bone tissue ablation with no visible thermal damage is shown.

  17. High voltage high repetition rate pulse using Marx topology

    Science.gov (United States)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  18. Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.

    2009-01-01

    Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.

  19. Knowledge of Repetitions Range Affects Force Production in Trained Females

    Directory of Open Access Journals (Sweden)

    Israel Halperin, Saied J. Aboodarda, Fabien A. Basset, David G. Behm

    2014-12-01

    Full Text Available Most studies have examined pacing strategies with cyclical activities (running and cycling. It has been demonstrated that males employ different pacing strategies during repeated maximal voluntary contractions (MVCs dependent upon a known endpoint. Since different fatiguing mechanisms have been identified between the genders, it is not known if females use comparable pacing strategies. The purpose of this study was to examine if informing female subjects regarding the number of MVCs to perform would affect force and electromyography (EMG. Twenty well-trained females completed 3 fatiguing protocols in a randomized order. In the control condition participants were informed they would perform twelve MVCs and then actually completed twelve. In the unknown condition they were not told how many MVCs to perform but were stopped after twelve. In the deception condition they were initially informed to perform 6 MVCs, but after the 6th MVC they were asked to perform a few more MVCs and were stopped after twelve. During the first 6 MVCs, forces in the deception condition were greater compared to the unknown (p = 0.021, ES = 0.65, 5% and control (p = 0.022, ES = 0.42, 3% conditions. No differences were found between conditions in the last 6 MVCs. A main effect for repetitions showed force deficits during the first 6 MVCs (p = 0.000, ES = 1.81, 13% and last 6 MVCs (p = 0.05, ES = 0.34, 3%. No differences were found between conditions in biceps and triceps EMG. However, EMG decreased during the first 6 MVCs for biceps (p = 0.001, ES = 1.0, 14% and triceps (p = 0.001, ES = 0.76, 14% across conditions. No differences were found in the last 6 MVCs. The anticipation of performing fewer MVCs led to increased force, whereas no endpoint led to decreased force production.

  20. Multi-gigahertz repetition rate ultrafast waveguide lasers mode-locked with graphene saturable absorbers

    Science.gov (United States)

    Obraztsov, P. A.; Okhrimchuk, A. G.; Rybin, M. G.; Obraztsova, E. D.; Garnov, S. V.

    2016-08-01

    We report the development of an approach to build compact waveguide lasers that operate in the stable fundamental mode-locking regime with multigigahertz repetition rates. The approach is based on the use of depressed cladding multi- or single-mode waveguides fabricated directly in the active laser crystal using the femtosecond laser inscription method and a graphene saturable absorber. Using this approach we achieve the stable self-starting mode-locking operation of a diode-pumped waveguide Nd:YAG laser that delivers picosecond pulses at a repetition rate of up to 11.5 GHz with an average power of 12 mW at a central wavelength of 1064 nm. The saturable absorbers are formed through the chemical vapor deposition of single-layer graphene on the output coupler mirror or directly on the end facet of the laser crystal. The stable self-starting mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with an intracavity interferometer. The method developed for the creation of compact ultrashort pulse laser generators with gigahertz repetition rates can be extended further and applied for the development of compact high-repetition rate lasers that operate at a wide range of IR wavelengths.

  1. BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Ventturini, M.; Corlett, J.; Emma, P.; Papadopoulos, C.; Penn, G.; Placidi, M.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Sun, C.; Wells, R.

    2012-05-18

    We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.

  2. Resistive Wall Heating of the Undulator in High Repetition Rate

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, J; Corlett, J; Emma, P; Wu, J

    2012-05-20

    In next generation high repetition rate FELs, beam energy loss due to resistive wall wakefields will produce significant amount of heat. The heat load for a superconducting undulator (operating at low temperature), must be removed and will be expensive to remove. In this paper, we study this effect in an undulator proposed for a Next Generation Light Source (NGLS) at LBNL. We benchmark our calculations with measurements at the LCLS and carry out detailed parameter studies using beam from a start-to-end simulation. Our preliminarym results suggest that the heat load in the undulator is about 2 W/m or lower with an aperture size of 6 mm for nominal NGLS preliminary design parameters.

  3. A high repetition rate XUV seeding source for FLASH2

    Energy Technology Data Exchange (ETDEWEB)

    Willner, Arik

    2012-05-15

    Improved performance of free-electron laser (FEL) light sources in terms of timing stability, pulse shape and spectral properties of the amplified FEL pulses is of interest in material science, the fields of ultrafast dynamics, biology, chemistry and even special branches in industry. A promising scheme for such an improvement is direct seeding with high harmonic generation (HHG) in a noble gas target. A free-electron laser seeded by an external extreme ultraviolet (XUV) source is planned for FLASH2 at DESY in Hamburg. The requirements for the XUV/soft X-ray source can be summarized as follows: A repetition rate of at least 100 kHz in a 10 Hz burst is needed at variable wavelengths from 10 to 40 nm and pulse energies of several nJ within a single laser harmonic. This application requires a laser amplifier system with exceptional parameters, mJ-level pulse energy, 10-15 fs pulse duration at 100 kHz (1 MHz) burst repetition rate. A new optical parametric chirped-pulse amplification (OPCPA) system is under development in order to meet these requirements, and very promising results have been achieved in the last three years. In parallel to this development, a new HHG concept is necessary to sustain high average power of the driving laser system and to generate harmonics with high conversion efficiencies. Currently, the highest conversion efficiency with HHG has been demonstrated using gas-filled capillary targets. For our application, only a free-jet target can be used for HHG, in order to overcome damage threshold limitations of HHG target optics at a high repetition rate. A novel dual-gas multijet gas target has been developed and first experiments show remarkable control of the degree of phase matching forming the basis for improved control of the harmonic photon flux and the XUV pulse characteristics. The basic idea behind the dual-gas concept is the insertion of matching zones in between multiple HHG sources. These matching sections are filled with hydrogen which

  4. Use of Long-Range Repetitive Element Polymorphism-PCR To Differentiate Bacillus anthracis Strains

    OpenAIRE

    Brumlik, Michael J.; Szymajda, Urszula; Zakowska, Dorota; Liang, Xudong; Redkar, Rajendra J.; Patra, Guy; Del Vecchio, Vito G.

    2001-01-01

    The genome of Bacillus anthracis is extremely monomorphic, and thus individual strains have often proven to be recalcitrant to differentiation at the molecular level. Long-range repetitive element polymorphism-PCR (LR REP-PCR) was used to differentiate various B. anthracis strains. A single PCR primer derived from a repetitive DNA element was able to amplify variable segments of a bacterial genome as large as 10 kb. We were able to characterize five genetically distinct groups by examining 10...

  5. High repetition rate, compact micro-pulse all-solid-state laser

    Institute of Scientific and Technical Information of China (English)

    Yutong Feng; Junqing Meng; Weibiao Chen

    2007-01-01

    A high repetition rate, compact micro-pulse all-solid-state laser is designed. The diffusion bonded crystal of YAG, Nd:YAG, and Cr4+:YAG is taken as a monolithic cavity. The optimized initial transmission,output coupling, and pumping size of Cr4+:YAG are calculated. The experimental results show that the laser satisfies the requirement of a spaceborne laser range finder.

  6. KAPTURE-2. A picosecond sampling system for individual THz pulses with high repetition rate

    Science.gov (United States)

    Müller, A.-S.

    2017-01-01

    This paper presents a novel data acquisition system for continuous sampling of ultra-short pulses generated by terahertz (THz) detectors. Karlsruhe Pulse Taking Ultra-fast Readout Electronics (KAPTURE) is able to digitize pulse shapes with a sampling time down to 3 ps and pulse repetition rates up to 500 MHz. KAPTURE has been integrated as a permanent diagnostic device at ANKA and is used for investigating the emitted coherent synchrotron radiation in the THz range. A second version of KAPTURE has been developed to improve the performance and flexibility. The new version offers a better sampling accuracy for a pulse repetition rate up to 2 GHz. The higher data rate produced by the sampling system is processed in real-time by a heterogeneous FPGA and GPU architecture operating up to 6.5 GB/s continuously. Results in accelerator physics will be reported and the new design of KAPTURE be discussed.

  7. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  8. Compact X-ray Source using a High Repetition Rate Laser and Copper Linac

    CERN Document Server

    Graves, W S; Brown, P; Carbajo, S; Dolgashev, V; Hong, K -H; Ihloff, E; Khaykovich, B; Lin, H; Murari, K; Nanni, E A; Resta, G; Tantawi, S; Zapata, L E; Kärtner, F X; Moncton, D E

    2014-01-01

    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The 100 kHz repetition rate is orders of magnitude beyond existing high brightness copper linacs. The entire accelerator is approximately 1 meter long and produces hard x-rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for m...

  9. Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization.

    Science.gov (United States)

    de Vries, Oliver; Saule, Tobias; Plötner, Marco; Lücking, Fabian; Eidam, Tino; Hoffmann, Armin; Klenke, Arno; Hädrich, Steffen; Limpert, Jens; Holzberger, Simon; Schreiber, Thomas; Eberhardt, Ramona; Pupeza, Ioachim; Tünnermann, Andreas

    2015-07-27

    We introduce and experimentally validate a pulse picking technique based on a travelling-wave-type acousto-optic modulator (AOM) having the AOM carrier frequency synchronized to the repetition rate of the original pulse train. As a consequence, the phase noise characteristic of the original pulse train is largely preserved, rendering this technique suitable for applications requiring carrier-envelope phase stabilization. In a proof-of-principle experiment, the 1030-nm spectral part of an 74-MHz, carrier-envelope phase stable Ti:sapphire oscillator is amplified and reduced in pulse repetition frequency by a factor of two, maintaining an unprecedentedly low carrier-envelope phase noise spectral density of below 68 mrad. Furthermore, a comparative analysis reveals that the pulse-picking-induced additional amplitude noise is minimized, when the AOM is operated under synchronicity. The proposed scheme is particularly suitable when the down-picked repetition rate is still in the multi-MHz-range, where Pockels cells cannot be applied due to piezoelectric ringing.

  10. Repetition rate continuously tunable 10-GHz picosecond mode-locked fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    Fang Wan; Ziyu Wang

    2006-01-01

    A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can cover the spacing of the adjoining order mode-locking frequencies.

  11. High-repetition-rate XeCl waveguide laser without gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.P.; Gordon C. III; Moutoulas, C.; Feldman, B.J.

    1987-03-01

    Operation of a microwave discharge XeCl laser at pulse-repetition rates extending to 8 kHz without flow of the laser gas is reported. Present limits on pulse-repetition rate appear to be imposed by thermally induced refractive-index gradients.

  12. HIGH REPETITION RATE MICROCHIP ER3+,YB3+:YAL3(BO34 DIODE-PUMPED LASER

    Directory of Open Access Journals (Sweden)

    K. N. Gorbachenya

    2012-01-01

    Full Text Available Diode-pumped passively Q-switched microchip Er,Yb:YAl3(BO34 laser for range-finding has been demonstrated. By using a Co2+:MgAl2O4 as a saturable absorber TEM00–mode Q-switched average output power of 315 mW was demonstrated at 1522 nm with pulse duration of 5 ns and pulse energy of 5,25 μJ at a repetition rate of 60 kHz.

  13. Safety and efficacy of low fluence, high repetition rate versus high fluence, low repetition rate 810-nm diode laser for axillary hair removal in Chinese women.

    Science.gov (United States)

    Li, Wenhai; Liu, Chengyi; Chen, Zhou; Cai, Lin; Zhou, Cheng; Xu, Qianxi; Li, Houmin; Zhang, Jianzhong

    2016-11-01

    High-fluence diode lasers with contact cooling have emerged as the gold standard to remove unwanted hair. Lowering the energy should result in less pain and could theoretically affect the efficacy of the therapy. To compare the safety and efficacy of a low fluence high repetition rate 810-nm diode laser to those of a high fluence, low repetition rate diode laser for permanent axillary hair removal in Chinese women. Ninety-two Chinese women received four axillae laser hair removal treatments at 4-week intervals using the low fluence, high repetition rate 810-nm diode laser in super hair removal (SHR) mode on one side and the high fluence, low repetition rate diode laser in hair removal (HR) mode on the other side. Hair counts were done at each follow-up visit and 6-month follow-up after the final laser treatment using a "Hi Quality Hair Analysis Program System"; the immediate pain score after each treatment session was recorded by a visual analog scale. The overall median reduction of hair was 90.2% with the 810-nm diode laser in SHR mode and 87% with the same laser in HR mode at 6-month follow-up. The median pain scores in SHR mode and in HR mode were 2.75 and 6.75, respectively. Low fluence, high repetition rate diode laser can efficiently remove unwanted hair but also significantly improve tolerability and reduce adverse events during the course of treatment.

  14. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers.

    Science.gov (United States)

    Ancona, A; Döring, S; Jauregui, C; Röser, F; Limpert, J; Nolte, S; Tünnermann, A

    2009-11-01

    The influence of pulse duration on the laser drilling of metals at repetition rates of up to 1 MHz and average powers of up to 70 W has been experimentally investigated using an ytterbium-doped-fiber chirped-pulse amplification system with pulses from 800 fs to 19 ps. At a few hundred kilohertz particle shielding causes an increase in the number of pulses for breakthrough, depending on the pulse energy and duration. At higher repetition rates, the heat accumulation effect overbalances particle shielding, but significant melt ejection affects the hole quality. Using femtosecond pulses, heat accumulation starts at higher repetition rates, and the ablation efficiency is higher compared with picosecond pulses.

  15. Pulsed pumped Yb-doped fiber amplifier at low repetition rate

    Institute of Scientific and Technical Information of China (English)

    Changgeng Ye; Ping Yan; Mali Gong; Ming Lei

    2005-01-01

    A pulsed pumped Yb-doped double-clad fiber (DCF) master-oscillator power amplifier (MOPA) at low repetition rate is reported. Seeded by a passive Q-switched Nd:YAG microchip laser, the fiber amplifier can generate 167-kW peak-power and 0.83-ns duration pulses at 200-Hz repetition rate. Because of the pulsed pump approach, the amplified spontaneous emission (ASE) and the spurious lasing between pulses are well avoided, and the repetition rate can be set freely from single-shot to 1 kHz. Peak power scaling limitations that arise from the fiber facet damage are discussed.

  16. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael

    2013-08-15

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  17. Fetal Heart Rate Monitoring from Phonocardiograph Signal Using Repetition Frequency of Heart Sounds

    Directory of Open Access Journals (Sweden)

    Hong Tang

    2016-01-01

    Full Text Available As a passive, harmless, and low-cost diagnosis tool, fetal heart rate (FHR monitoring based on fetal phonocardiography (fPCG signal is alternative to ultrasonographic cardiotocography. Previous fPCG-based methods commonly relied on the time difference of detected heart sound bursts. However, the performance is unavoidable to degrade due to missed heart sounds in very low signal-to-noise ratio environments. This paper proposes a FHR monitoring method using repetition frequency of heart sounds. The proposed method can track time-varying heart rate without both heart sound burst identification and denoising. The average accuracy rate comparison to benchmark is 88.3% as the SNR ranges from −4.4 dB to −26.7 dB.

  18. Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water

    Science.gov (United States)

    Menéndez-Manjón, Ana; Barcikowski, Stephan

    2011-02-01

    Most investigations on the laser generation and fragmentation of nanoparticles focus on Feret particle size, although the hydrodynamic size of nanoparticles is of great importance, for example in biotechnology for diffusion in living cells, or in engineering, for a tuned rheology of suspensions. In this sense, the formation and fragmentation of gold colloidal nanoparticles using femtosecond laser ablation at variable pulse repetition rates (100-5000 Hz) in deionized water were investigated through their plasmon resonance and hydrodynamic diameter, measured by Dynamic Light Scattering. The increment of the repetition rate does not influence the ablation efficiency, but produces a decrease of the hydrodynamic diameter and blue-shift of the plasmon resonance of the generated gold nanoparticles. Fragmentation, induced by inter-pulse irradiation of the colloids was measured online, showing to be more effective low repetition rates. The pulse repetition rate is shown to be an appropriate laser parameter for hydrodynamic size control of nanoparticles without further influence on the production efficiency.

  19. High Energy Single Frequency Fiber Laser at Low Repetition Rate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system operating at low repetition rate of 10 Hz to 1 kHz for coherent Lidar systems...

  20. Repetition rate tunable ultra-short optical pulse generation based on electrical pattern generator

    Institute of Scientific and Technical Information of China (English)

    Xin Fu; Hongming Zhang; Meng Yan; Minyu Yao

    2009-01-01

    @@ An actively mode-locked laser with tunable repetition rate is proposed and experimentally demonstrated based on a programmable electrical pattern generator.By changing the repetition rate of the electrical patterns applied on the in-cavity modulator, the repetition rate of the output optical pulse sequences changes accordingly while the pulse width of the optical pulse train remains almost constant.In other words, the output ultra-short pulse train has a tunable duty cycle.In a proof-of-principle experiment, optical pulses with repetition rates of 10, 5, 2.5 and 1.25 GHz are obtained by adjusting the electrical pattern applied on the in-cavity modulator while their pulse widths remain almost unchanged.

  1. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    Directory of Open Access Journals (Sweden)

    Moon Soo Bak

    2012-01-01

    Full Text Available Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronic states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.

  2. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate.

    Science.gov (United States)

    Dantan, Aurélien; Laurat, Julien; Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2007-07-09

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors as high as 17 and 320 nJ Fourier-limited pulses are obtained at a 800 kHz repetition rate.

  3. High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Zysset, B.; LaGasse, M.J.; Fujimoto, J.G.; Kafka, J.D.

    1989-02-06

    A high repetition rate femtosecond dye amplifier is demonstrated using a laser diode pumped Q-switched Nd:YAG laser. Amplification of wavelength tunable 300 fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  4. High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser

    Science.gov (United States)

    Zysset, B.; LaGasse, M. J.; Fujimoto, J. G.; Kafka, J. D.

    1989-02-01

    A high repetition rate femtosecond dye amplifier is demonstrated using a laser diode pumped Q-switched Nd:YAG laser. Amplification of wavelength tunable 300 fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  5. Design Studies for a High-Repetition-Rate FEL Facility at LBNL.

    Energy Technology Data Exchange (ETDEWEB)

    CORLETT, J.; BELKACEM, A.; BYRD, J. M.; FAWLEY, W.; KIRZ, J.; LIDIA, S.; MCCURDY, W.; PADMORE, H.; PENN, G.; POGORELOV, I.; QIANG, J.; ROBIN, D.; SANNIBALE, F.; SCHOENLEIN, R.; STAPLES, J.; STEIER, C.; VENTURINI, M.; WAN, W.; WILCOX, R.; ZHOLENTS, A.

    2007-10-04

    Lawrence Berkeley National Laboratory (LBNL) is working to address the needs of the primary scientific Grand Challenges now being considered by the U.S. Department of Energy, Office of Basic Energy Sciences: we are exploring scientific discovery opportunities, and new areas of science, to be unlocked with the use of advanced photon sources. A partnership of several divisions at LBNL is working to define the science and instruments needed in the future. To meet these needs, we propose a seeded, high-repetition-rate, free-electron laser (FEL) facility. Temporally and spatially coherent photon pulses, of controlled duration ranging from picosecond to sub-femtosecond, are within reach in the vacuum ultraviolet (VUV) to soft X-ray regime, and LBNL is developing critical accelerator physics and technologies toward this goal. We envision a facility with an array of FELs, each independently configurable and tunable, providing a range of photon-beam properties with high average and peak flux and brightness.

  6. Crossatron switch as thyratron replacement in high repetition rate, high average power modulators

    Science.gov (United States)

    Sullivan, J. S.

    1988-06-01

    The Crossatron is a cold cathode, low pressure, gas discharge switch with opening and closing capabilities. Due to its cold cathode operation, the Crossatron may offer lifetime advantages compared to the hydrogen thyratron. Unfortunately, little information regarding Crossatron lifetime and performance in high repetition rate, high average power, pulse modulators exists. Four prototype Crossatron devices, fabricated by Hughes Aircraft, were obtained to evaluate their performance and lifetime in high repetition rate, high average power, pulse modulators that had previously been equipped with hydrogen thyratrons. The prototype Crossatrons were evaluated over a range of operating parameters. Various grid drive, keep alive power levels and triggering schemes were employed in the tests. Switch parameters such as trigger time, anode fall time, jitter, recovery time, peak di/dt, switch efficiency, and the gas pumping effect of the discharge were observed. One Crossatron prototype was also subjected to lifetime tests that accumulated tens of billions of pulses. Lifetime data will be compared to various thyratron models tested similarly.

  7. Investigation of bunch repetition rate deviations in FIR FEL driven by a magnetron-based microtron

    CERN Document Server

    Kazakevitch, Grigori M; Lee Byung Cheol; Lee, J

    2002-01-01

    The stability of the bunch repetition rate in a FIR FEL driven by a 2.8 GHz magnetron-based microtron was investigated using a heterodyne method with a low Q-factor straight-flight measuring cavity. The measuring cavity is located in the straight section of the FIR FEL injection beam line and is excited by the passage of electron bunches. The RF signal from the measuring cavity coupling loop was mixed with a precise heterodyne signal with a frequency difference of several MHz. The beat frequency was analyzed to obtain the temporal distribution of the bunch repetition rate deviation during the macro pulse of the electron beam. The time resolution and the accuracy of measurements are approximately 100 ns and a few kHz, respectively. Based on this data, we could determine the level and shape of the magnetron current and the initial frequency shift between magnetron and accelerating cavity for the FEL operation in the wavelength range 100-300 microns.

  8. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide writing in borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, ON, M5S 3G4 (Canada)

    2007-04-15

    During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials.

  9. Low-repetition rate femtosecond laser writing of optical waveguides in water-white glass slides.

    Science.gov (United States)

    Lazcano, H E; Vázquez, G V

    2016-04-20

    Energy dose ranges for fabrication of subsurface and ablated ridge waveguides were defined using a low repetition rate femtosecond laser. The waveguides were written along the width of water-white glass slides. The buried waveguides written between 0.23 and 0.62  μJ/μm3 energy dose show strong guidance at 633 nm, reaching in the best cases propagation losses of 0.7 dB/cm. Meanwhile, the ridge waveguides were fabricated between 2.04 and 31.9  μJ/μm3, with a best case of 3.1 dB/cm. Outcomes of this study are promising for use in the manufacturing of sensing devices.

  10. Use of long-range repetitive element polymorphism-PCR to differentiate Bacillus anthracis strains.

    Science.gov (United States)

    Brumlik, M J; Szymajda, U; Zakowska, D; Liang, X; Redkar, R J; Patra, G; Del Vecchio, V G

    2001-07-01

    The genome of Bacillus anthracis is extremely monomorphic, and thus individual strains have often proven to be recalcitrant to differentiation at the molecular level. Long-range repetitive element polymorphism-PCR (LR REP-PCR) was used to differentiate various B. anthracis strains. A single PCR primer derived from a repetitive DNA element was able to amplify variable segments of a bacterial genome as large as 10 kb. We were able to characterize five genetically distinct groups by examining 105 B. anthracis strains of diverse geographical origins. All B. anthracis strains produced fingerprints comprising seven to eight bands, referred to as "skeleton" bands, while one to three "diagnostic" bands differentiated between B. anthracis strains. LR REP-PCR fingerprints of B. anthracis strains showed very little in common with those of other closely related species such as B. cereus, B. thuringiensis, and B. mycoides, suggesting relative heterogeneity among the non-B. anthracis strains. Fingerprints from transitional non-B. anthracis strains, which possessed the B. anthracis chromosomal marker Ba813, scarcely resembled those observed for any of the five distinct B. anthracis groups that we have identified. The LR REP-PCR method described in this report provides a simple means of differentiating B. anthracis strains.

  11. Switchable repetition rate bound solitons passively mode-locked fiber laser

    Science.gov (United States)

    Wang, Xuqin; Yao, Yong

    2016-11-01

    We present a kind of a switchable repetition rate mode-locked of bound-state solitons in a fiber laser based on Bi2Se3 saturable absorber (SA). In the fiber laser, two forms of the bound-state optical spectrum with central wavelength of 1532 nm are observed. The fiber laser is operate at the abnormal group velocity dispersion and the bound state pulses are equally distributed to the temporal domain. The fundamental cavity repetition-rate is 1.11 MHz with a pulse duration of 2.27 ps. The output average power and the pulse peak energy are 1.53 mW and 607 W respectively, which the pump power is 267 mW. The different repetition-rates are also achieved by changing the pump power or adjusting the angle of polarization controller. In the experiment, the repetition-rate is switched from 1.11 MHz to 41.32 MHz (37th-order, the highest repetition-rate).

  12. Optical range and range rate estimation for teleoperator systems

    Science.gov (United States)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Malone, T. B.; Huggins, C. T.

    1974-01-01

    Range and range rate are crucial parameters which must be available to the operator during remote controlled orbital docking operations. A method was developed for the estimation of both these parameters using an aided television system. An experiment was performed to determine the human operator's capability to measure displayed image size using a fixed reticle or movable cursor as the television aid. The movable cursor was found to yield mean image size estimation errors on the order of 2.3 per cent of the correct value. This error rate was significantly lower than that for the fixed reticle. Performance using the movable cursor was found to be less sensitive to signal-to-noise ratio variation than was that for the fixed reticle. The mean image size estimation errors for the movable cursor correspond to an error of approximately 2.25 per cent in range suggesting that the system has some merit. Determining the accuracy of range rate estimation using a rate controlled cursor will require further experimentation.

  13. Generation of a Sub-10 fs Laser Pulse by a Ring Oscillator with a High Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing; ZHAO Yan-Ying; WEI Zhi-Yi

    2009-01-01

    @@ A compact femtoescond Ti:sapphire ring oscillator composed of chirped mirrors is designed. By accurately optimizing the intra-cavity dispersion and the mode locking range of the ring configuration, we generate laser pulses as short as 7.7 fs with a repetition rate as high as 745 MHz. The spectrum spans from 660nm to 940nm and the average output power is 480row under the cw pump laser of 7.5 W.

  14. Multi-Rate Fractional-Order Repetitive Control of Shunt Active Power Filter

    DEFF Research Database (Denmark)

    Xie, Chuan; Zhao, Xin; Savaghebi, Mehdi

    2017-01-01

    This paper presents a multi-rate fractional-order repetitive control (MRFORC) scheme for three-phase shunt active power filter (APF). The proposed APF control scheme includes an inner proportional-integral (PI) control loop with a sampling rate identical to switching frequency and an external plug-in...

  15. Near- infrared, mode-locked waveguide lasers with multi-GHz repetition rates

    Science.gov (United States)

    Choudhary, A.; Lagatsky, A. A.; Zhang, Z. Y.; Zhou, K. J.; Wang, Q.; Hogg, R. A.; Pradeesh, K.; Rafailov, E. U.; Resan, B.; Oehler, A. E. H.; Weingarten, K. J.; Sibbett, W.; Brown, C. T. A.; Shepherd, D. P.

    2014-02-01

    In this work, we discuss mode-locking results obtained with low-loss, ion-exchanged waveguide lasers. With Yb3+-doped phosphate glass waveguide lasers, a repetition rate of up to 15.2 GHz was achieved at a wavelength of 1047 nm with an average power of 27 mW and pulse duration of 811 fs. The gap between the waveguide and the SESAM introduced negative group velocity dispersion via the Gires Tournois Interferometer (GTI) effect which allowed the soliton mode-locking of the device. A novel quantum dot SESAM was used to mode-lock Er3+, Yb3+-doped phosphate glass waveguide lasers around 1500 nm. Picosecond pulses were achieved at a maximum repetition rate of 6.8 GHz and an average output power of 30 mW. The repetition rate was tuned by more than 1 MHz by varying the pump power.

  16. Design of a low emittance and high repetition rate S-band photoinjector

    Science.gov (United States)

    Han, Jang-Hui

    2014-09-01

    As an electron beam injector of X-ray free-electron lasers (FELs), photoinjectors have been developed for the past few decades. Such an injector starting with a photocathode RF gun provides high brightness beams and therefore it is being adopted as an injector of X-ray FELs. In this paper we show how to improve photoinjector performance in terms of emittance and repetition rates by means of injector components optimization, especially with the gun. Transverse emittance at the end of an injector is reduced by optimizing the gun design, gun solenoid position, and accelerating section position. The repetition rate of an injector mainly depends on the gun. It is discussed that a repetition rate of 1 kHz at a normal-conducting S-band photoinjector is feasible by adopting a coaxial RF coupler and improving cooling-water channels surrounding the gun.

  17. Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy

    Science.gov (United States)

    Heiner, Zsuzsanna; Petrov, Valentin; Mero, Mark

    2017-06-01

    We present a high-efficiency optical parametric source for broadband vibrational sum-frequency generation (BB-VSFG) for the chemically important mid-infrared spectral range at 2800-3600 cm-1 to study hydrogen bonding interactions affecting the structural organization of biomolecules at water interfaces. The source consists of a supercontinuum-seeded, dual-beam optical parametric amplifier with two broadband infrared output beams and a chirped sum-frequency mixing stage providing narrowband visible pulses with adjustable bandwidth. Utilizing a pulse energy of only 60 μJ from a turn-key, 1.03-μm pump laser operating at a repetition rate of 100 kHz, the source delivers 6-cycle infrared pulses at 1.5 and 3.2 μm with pulse energies of 4.6 and 1.8 μJ, respectively, and narrowband pulses at 0.515 μm with a pulse energy of 5.0 μJ. The 3.2-μm pulses are passively carrier envelope phase stabilized with fluctuations at the 180-mrad level over a 10-s time period. The 1.5-μm beamline can be exploited to deliver pump pulses for time-resolved studies after suitable frequency up-conversion. The high efficiency, stability, and two orders of magnitude higher repetition rate of the source compared to typically employed systems offer great potential for providing a boost in sensitivity in BB-VSFG experiments at a reduced cost.

  18. High repetition rate passively Q-switched fiber and microchip lasers for optical resolution photoacoustic imaging

    Science.gov (United States)

    Shi, Wei; Utkin, Ilya; Ranasinghesagara, Janaka; Pan, Lei; Godwal, Yogesh; Kerr, Shaun; Zemp, Roger J.; Fedosejevs, Robert

    2010-02-01

    Optical-resolution photoacoustic microscopy is a novel imaging technology for visualizing optically-absorbing superficial structures in vivo with lateral spatial resolution determined by optical focusing rather than acoustic detection. Since scanning of the illumination spot is required, the imaging speed is limited by the scanning speed and the laser pulse repetition rate. Unfortunately, lasers with high-repetition rate and suitable pulse durations and energies are difficult to find. We are developing compact laser sources for this application. Passively Q-switched fiber and microchip lasers with pulse repetition rates up to 300 kHz are demonstrated. Using a diode-pumped microchip laser fiber-coupled to a large mode-area Yb-doped fiber amplifier we obtained 60μJ 1-ns pulses at the frequency-doubled 532-nm wavelength. The pulse-repetition rate was determined by the power of the microchip laser pump source at 808nm and may exceed 10 kHz. Additionally, a passively Q-switched fiber laser utilizing a Yb-doped double-cladding fiber and an external saturable absorber has shown to produce 250ns pulses at repetition rates of 100-300 KHz. A photoacoustic probe enabling flexible scanning of the focused output of these lasers consisted of a 45-degree glass prism in an optical index-matching fluid. Photoacoustic signals exiting the sample are deflected by the prism to an ultrasound transducer. Phantom studies with a 7.5-micron carbon fiber demonstrate the ability to image with optical rather than acoustic resolution. We believe that the high pulse-repetition rates and the potentially compact and fiber-coupled nature of these lasers will prove important for clinical imaging applications where realtime imaging performance is essential.

  19. A contactless microwave-based diagnostic tool for high repetition rate laser systems

    CERN Document Server

    Braggio, C

    2014-01-01

    We report on a novel electro-optic device for the diagnostics of high repetition rate laser systems. It is composed of a microwave receiver and of a second order nonlinear crystal, whose irradiation with a train of short laser pulses produces a time-dependent polarization in the crystal itself as a consequence of optical rectification. This process gives rise to the emission of microwave radiation that is detected by a receiver and is analyzed to infer the repetition rate and intensity of the pulses. We believe that this new method may overcome some of the limitations of photodetection techniques.

  20. High power, high repetition rate, few picosecond Nd:LuVO₄ oscillator with cavity dumping.

    Science.gov (United States)

    Gao, Peng; Guo, Jie; Li, Jinfeng; Lin, Hua; Yu, Haohai; Zhang, Huaijin; Liang, Xiaoyan

    2015-12-28

    We investigate the potential use of Nd:LuVO4 in high average power, high repetition rate ultrafast lasers. Maximum mode-locked average power of 28 W is obtained at the repetition rate of 58 MHz. The shortest pulse duration is achieved at 4 ps without dispersion compensation. With a cavity dumping technique, the pulse energy is scaling up to 40.7 μJ at 300 kHz and 14.3 μJ at 1.5 MHz.

  1. Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser.

    Science.gov (United States)

    Eaton, Shane M; Ng, Mi Li; Bonse, Jörn; Mermillod-Blondin, Alexandre; Zhang, Haibin; Rosenfeld, Arkadi; Herman, Peter R

    2008-04-20

    For the first time femtosecond-laser writing has inscribed low-loss optical waveguides in Schott BK7 glass, a commercially important type of borosilicate widely used in optical applications. The use of a variable repetition rate laser enabled the identification of a narrow processing window at 1 MHz repetition rate with optimal waveguides exhibiting propagation losses of 0.3 dB/cm and efficient mode matching to standard optical fibers at a 1550 nm wavelength. The waveguides were characterized by complementary phase contrast and optical transmission microscopy, identifying a micrometer-sized guiding region within a larger complex structure of both positive and negative refractive index variations.

  2. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  3. Research of application of high-repetition-rate green laser in underwater imaging system

    Science.gov (United States)

    Han, Jie-fei; Luo, Tao; Sun, Li-ying; Ding, Chi-zhu; Xia, Min; Yang, Ke-cheng

    2013-09-01

    It is commonly known that absorption and scattering are the main causes of reducing performance of imaging system, especially imaging distance and resolution. Generally, various techniques are applied to decrease the effect of scattering, such as synchronous scanning and range-gated technique. Continuous-laser imaging technique meets requirements of imaging objects in the large field of view in real time, but imaging distance is less than 2 attenuation lengths in natural water. High-repetition-rate green laser, called quasi-continuous wave (QCW) green laser, is a better light source for underwater imaging. It has 1 kHz-100 kHz modulated rate, and its single pulse peak power is KW magnitude, which can be applied to range-gated imaging as Canadian LUCIE system. In addition, its polarization property is excellent for underwater polarization imaging. Therefore, it has enormous potential to underwater imaging. In order to realize its performance in underwater imaging system, we setup a separated underwater staring imaging system. For this system, a theoretic model is built by the lidar equation and optic transmission theory, and the system is evaluated by modulation transfer function (MTF). The effects of laser and receiver's parameters for the system are analyzed. Then the comparative experiments are conducted in turbid water in laboratory. The results indicate that high pulse energy improves imaging distance. Aperture and polarization could reduce the effect of scattering effectively in staring system. The result shows that this underwater system performs better by choosing suitable parameters of source and receiver.

  4. Frequency and amplitude characteristics of a high-repetition-rate hybrid TEA-CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Lachambre, J.L.; Lavigne, P.; Verreault, M.; Otis, G.

    1978-02-01

    The envelope and frequency characteristics of the output pulse of a high-repetition-rate hybrid TEA-CO/sub 2/ laser are presented. Both the intrapulse and interpulse laser frequency stability are experimentally determined at repetition rates up to 300 Hz. The recovery of the CW laser signal following the generation of the TEA laser pulse is analyzed theoretically and experimentally. Short term reproducibilities of + or - 2 MHz are observed at a pulse repetition rate of 300 Hz with initial chirp rates of about 1.5 MHz/microsec. Improvements and limits on power and repetition rate are discussed.

  5. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Laurat, Julien; Ourjoumtsev, Alexei

    2007-01-01

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors...

  6. Effect of the pulse repetition rate on fiber-assisted tissue ablation

    Science.gov (United States)

    Kang, Hyun Wook

    2016-07-01

    The effect of the pulse repetition rate on ablation performance was evaluated ex vivo at various fiber sweeping speeds for an effective 532-nm laser prostatectomy. Three pulse repetition rates (7.5, 15, and 30 kHz) at 100 W were delivered to bovine liver tissue at three sweeping speeds (2, 4, and 6 mm/s) to achieve bulky tissue removal. Ablation performance was quantitatively compared in terms of the ablation volume and the coagulation thickness. The lowest pulse repetition rate of 7.5 kHz attained the highest ablation volume (101.5 ± 12.0 mm3) and the thinnest coagulation (0.7 ± 0.1 mm) along with superficial carbonization. The highest pulse repetition rate of 30 kHz was associated with the least tissue removal (65.8 ± 5.0 mm3) and the deepest thermal denaturation (1.1 ± 0.2 mm). Quantitative evaluations of laser parameters can be instrumental in facilitating ablation efficiency and maintaining hemostatic coagulation during treatment of large-sized benign prostate hyperplasia.

  7. Operation and Thermal Modeling of the ISIS H– Source from 50 to 2 Hz Repetition Rates

    CERN Document Server

    Pereira, H; Lettry, J

    2013-01-01

    CERN’s Linac4 accelerator H− ion source, currently under construction, will operate at a 2 Hz repetition rate, with pulse length of 0.5 ms and a beam current of 80 mA. Its reliability must exceed 99 % with a mandatory 3 month uninterrupted operation period. A Penning ion source is successfully operated at ISIS; at 50 Hz repetition rate it reliably provides 55 mA H− pulses of 0.25 ms duration over 1 month. The discharge plasma ignition is very sensitive to the temperatures of the discharge region, especially of its cathode. The investigation by modeling and measurement of operation parameters suitable for arc ignition and H− production at 2 Hz is of paramount importance and must be understood prior to the implementation of discharge ion sources in the Linac4 accelerator. In its original configuration, the ISIS H− source delivers beam only if the repetition rate is above 12.5 Hz, this paper describes the implementation of a temperature control of the discharge region aiming at lower repetition rate op...

  8. High Repetition Rate and Frequency Stabilized Ho:YLF Laser for CO2 Differential Absorption Lidar

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Petros, M.; Petzar, Pau; Trieu, Bo; Lee, Hyung; Singh, U.

    2009-01-01

    High repetition rate operation of an injection seeded Ho:YLF laser has been demonstrated. For 1 kHz operation, the output pulse energy reaches 5.8mJ and the optical-to-optical efficiency is 39% when the pump power is 14.5W.

  9. SU-E-T-460: Impact of the LINAC Repetition Rate On a High-Resolution Liquid Ionization Chamber Array for Patient-Specific QA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S; Driewer, J; Zheng, D; Lei, Y; Zhang, Q; Zhu, X; Li, S; Enke, C; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States); Xu, B [The Fujian Medical University Union Hospital, Fu Zhou, Fu Jian (China)

    2015-06-15

    Purpose: The purpose of this study is to investigate the LINAC repetition-rate (dose-rate) dependence of OCTAVIUS 1000SRS liquid ionization chamber (LIC) array for patient specific QA of SRT plans delivered with flattening-filter-free (FFF) beams. Methods: 1) The repetition-rate dependence of 1000SRS was measured in a phantom constructed with 5-cm solid water above and below the array for build-up and backscatter. A 0.3cc calibrated ion chamber was also placed along the central axis 2.3cm below the center chamber of the array for normalizing LINAC output fluctuation. The signals from the center chamber of the array under different repetition rates in the range of 400–2400 MU/min for 6xFFF and 10xFFF beams on a Varian TrueBeamSTx LINAC, normalized by the independent chamber readings, were analyzed for the array response dependence on repetition rates. 2) Twelve Step-and-shoot IMRS QA plans (6xFFF and 10xFFF) were delivered to the array under different repetition rates for analysis and comparison. 3) The absolute doses measured by the center chamber were compared to measurements using an independent ionization chamber with the identical setup, taken as the gold standard. 4) The correction factors based on the actual delivery repetition rate were applied to the measurements, and the results were compared again to the gold standard. Results: 1) The 1000SRS array exhibited repetition-rate dependence for FFF beams, up to 5% for 6xFFF and 10% for 10xFFF; 2) The array showed clinically-acceptable repetition-rate dependence for regular flattened beams; 3) This repetition-rate dependence significantly affected the measurement accuracy, thereby affecting IMRS QA results; 4) By applying an empirical repetition-rate correction, the corrected measurements agreed better with the gold standard ion chamber measurements. Conclusion: OCTAVIUS 1000SRS LIC array exhibited considerable repetition-rate dependence for FFF beams, which will affect the accuracy of the absolute QA

  10. DFB diode seeded low repetition rate fiber laser system operating in burst mode

    Science.gov (United States)

    Šajn, M.; Petelin, J.; Agrež, V.; Vidmar, M.; Petkovšek, R.

    2017-02-01

    A distributed feedback (DFB) diode, gain switched to produce pulses from 60 ps at high peak power of over 0.5 W, is used in burst mode to seed a fiber amplifier chain. High seed power, spectral filtering between amplifier stages and pulsed pumping are used to mitigate amplified spontaneous emission (ASE). The effect of pulse pumping synchronized with the seed on the ASE is explored for the power amplifier at low repetition. Different input and output energies at different burst repetition rates are examined and up to 85% reduction in ASE is achieved compared to continuous pumping. Finally, a numerical model is used to predict further reduction of ASE.

  11. Passively Mode-Locked Fiber Laser with a Sub-Megahertz Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiong; JIA Dong-Fang; WU Yong-Chao; WANG Chang-Le; WANG Zhao-Ying; YANG Tian-Xin

    2011-01-01

    We demonstrate an ultra-long cavity by which an all-fiber erbium-doped fiber laser is passively mode-locked by nonlinear polarization rotation.The length of the resonant cavity amounts to 466m,which can be achieved by incorporating a 420m highly nonlinear fiber.The laser generates stable mode-locked pulses with a 444 kHz fundamental repetition rate.A near transform-limited subpicosecond pulse is obtained without any dispersion compensation.The maximum average power of the output pulses is 5.16 mW,which corresponds to a per-pulse energy of 11.62nJ.A low-repetition-rate optical pulse train is required for many applications such as micromachining,biomedical diagnostics and lidar systems.[1-3] However,the repetition rate of conventional fiber lasers is normally tens of MHz.Pulse pickers such as Pockels cells or acousto-optic modulators are always used to lower the repetition rate,however,reduction in this way introduces significant energy losses,impairs the signal-to-noise ratio (SNR) and increases complexity.Because the pulse repetition rate of a modelocked laser is inversely proportional to its resonator length,longer cavities lead to lower pulse repetition rates and,consequently,to higher pulse energy at the same average power of radiation.%We demonstrate an ultra-long cavity by which an all-fiber erbium-doped fiber laser is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 466 m, which can be achieved by incorporating a 420 m highly nonlinear fiber. The laser generates stable mode-locked pulses with a 444 kHz fundamental repetition rate. A near transform-limited subpicosecond pulse is obtained without any dispersion compensation. The maximum average power of the output pulses is 5.16mW, which corresponds to a per-pulse energy of 11.62 nJ.

  12. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia,S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-06-24

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands.

  13. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D. B., E-mail: dbctechnology@earthlink.net [DBC Technology Corp., 4221 Mesa St, Torrance, California 90505 (United States)

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  14. Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures

    Directory of Open Access Journals (Sweden)

    Sanchari Biswas

    2016-12-01

    Full Text Available We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu and titanium (Ti using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse ( F Σ p u l s e values and the effect on the surface texture through lacunarity analysis. Machining both metals at low F Σ p u l s e resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing F Σ p u l s e , the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold F Σ p u l s e values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold F Σ p u l s e on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing F Σ p u l s e . However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter.

  15. Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures.

    Science.gov (United States)

    Biswas, Sanchari; Karthikeyan, Adya; Kietzig, Anne-Marie

    2016-12-19

    We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu) and titanium (Ti) using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse ( F Σ p u l s e ) values and the effect on the surface texture through lacunarity analysis. Machining both metals at low F Σ p u l s e resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing F Σ p u l s e , the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold F Σ p u l s e values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold F Σ p u l s e on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing F Σ p u l s e . However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter.

  16. Longitudinally excited CO2 laser with short laser pulse operating at high repetition rate

    Science.gov (United States)

    Li, Jianhui; Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    A short-pulse longitudinally excited CO2 laser operating at a high repetition rate was developed. The discharge tube was made of a 45 cm-long or 60 cm-long dielectric tube with an inner diameter of 16 mm and two metallic electrodes at the ends of the tube. The optical cavity was formed by a ZnSe output coupler with a reflectivity of 85% and a high-reflection mirror. Mixed gas (CO2:N2:He = 1:1:2) was flowed into the discharge tube. A high voltage of about 33 kV with a rise time of about 200 ns was applied to the discharge tube. At a repetition rate of 300 Hz and a gas pressure of 3.4 kPa, the 45 cm-long discharge tube produced a short laser pulse with a laser pulse energy of 17.5 mJ, a spike pulse energy of 0.2 mJ, a spike width of 153 ns, and a pulse tail length of 90 μs. The output power was 5.3 W. The laser pulse waveform did not depend on the repetition rate, but the laser beam profile did. At a low repetition rate of less than 50 Hz, the laser beam had a doughnut-like shape. However, at a high repetition rate of more than 150 Hz, the discharge concentrated at the center of the discharge tube, and the intensity at the center of the laser beam was higher. The laser beam profile depended on the distribution of the discharge. An output power of 7.0 W was achieved by using the 60 cm-long tube.

  17. Wakefield-acceleration of relativistic electrons with few-cycle laser pulses at kHz-repetition-rate

    Science.gov (United States)

    Guenot, Diego; Gustas, Dominykas; Vernier, Aline; Boehle, Frederik; Beaurepaire, Benoit; Lopez-Martens, Rodrigo; Faure, Jerome; Appli Team

    2016-10-01

    The generation of relativistic electron beams using laser wakefield acceleration has become a standard technique, providing low emittance electron bunches with femtosecond durations. However, this technique usually requires multi-ten-terawatt lasers and is thus limited to low repetition-rate (typically 10 Hz or less). We have recently demonstrated the generation of few MeV electrons using 2.5-mJ, 4-fs, 1-kHz repetition-rate laser pulses, focused to relativistic intensity onto a gas jet with electron density 1020 cm-3. We have investigated the influence of the pulse duration, the gas density. We demonstrated that an electron beam with a charge in the range of 10-fC/shot, with a divergence of 20-mrad and a peaked spectrum with energies between 2 and 4 MeV can be generated at kHz repetition-rate. These results confirm the possibility of using few-cycle laser pulses with very low energy for exciting wakefields in the bubble regime and for trapping electrons, as predicted by PIC simulations. This kHz electron source is ideally suited for performing electron diffraction experiments with very high temporal resolution. Our results also open the way to other applications, such as the generation of a kHz ultrafast X-ray source. ERC femtoelec.

  18. Effects of picosecond laser repetition rate on ablation of Cr12MoV cold work mold steel

    Science.gov (United States)

    Wu, Baoye; Deng, Leimin; Liu, Peng; Zhang, Fei; Duan, Jun; Zeng, Xiaoyan

    2017-07-01

    In this paper, the effects of pulse repetition rate on ablation efficiency and quality of Cr12MoV cold work mold steel have been studied using a picosecond (ps) pulse Nd:YVO4 laser system at λ= 1064 nm. The experimental results of area ablation on target surface reveal that laser repetition rate plays a significant role in controlling ablation efficiency and quality. Increasing the laser repetition rate, while keeping a constant mean power improves the ablation efficiency and quality. For each laser mean power, there is an optimal repetition rate to achieve a higher laser ablation efficiency with low surface roughness. A high ablation efficiency of 42.29, 44.11 and 47.52 μm3/mJ, with surface roughness of 0.476, 0.463 and 0.706 μm could be achieved at laser repetition rate of 10 MHz, for laser mean power of 15, 17 and 19 W, respectively. Scanning electron microcopy images revels that the surface morphology evolves from rough with numerous craters, to flat without pores when we increased the laser repetition rate. The effects of laser repetition rate on the heat accumulation, plasma shield and ablation threshold were analyzed by numerical simulation, spectral analysis and multi-laser shot, respectively. The synergetic effects of laser repetition rate on laser ablation rate and machining quality were analyzed and discussed systemically in this paper.

  19. Generation of low jitter and discrete tunable dual-wavelength optical pulses at arbitrary repetition rates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-jiang; WANG Yun-cai

    2006-01-01

    A novel and simple method to generate low timing jitter and discrete tunable dual-wavelength optical pulses at arbitrary repetition rates is demonstrated in this paper.Two multiple quantum wells distributed feedback laser diodes,were used as the external seeding sources to inject the external photons into a gain-switched Fabry-Perot laser diode.The output wavelengths can be tuned discretely to coincide with any two lasing modes in the gain spectra range of the Fabry-Perot Laser diode,and the output side mode suppression ratio was better than 25 dB.Moreover,the timing jitter of optical pulses was reduced from 1.89 ps to 0.83 ps.It was empirically found that the lowest timing jitter operation occurred when the injected light wavelength is 0.2-0.3 nm shorter than the locked mode of the Fabry-Perot laser diode.To our knowledge,this is the first report of using two DFB laser diodes as a seeding source to reduce pulses jitter and select lasing dual-wavelength simultaneously.

  20. [INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects

    Science.gov (United States)

    Richter, Sören; Zimmermann, Felix; Tünnermann, Andreas; Nolte, Stefan

    2016-09-01

    We report on the welding of various glasses with ultrashort laser pulses. Femtosecond laser pulses at repetition rates in the MHz range are focused at the interface between two substrates, resulting in multiphoton absorption and heat accumulation from successive pulses. This leads to local melting and subsequent resolidification which can be used to weld the glasses. The fundamental interaction process was studied using an in-situ micro Raman setup to measure the laser induced temperature distribution and its temporal decay. The induced network changes were analyzed by Raman spectrocopy identifying an increase of three and four membered silicon rings within the laser irradiated area. In order to determine the stability of the laser welded samples a three point bending test was used. Thereby, we identified that the maximal achievable breaking strength is limited by laser induced stress surrounding the modified material. To minimize the amount of stress bursts of laser pulses or an post processing annealing step can be applied. Besides fused silica, we welded borosilicate glasses and glasses with a low thermal expansion coefficient. Even the welding of different glass combinations is possible demonstrating the versatility of ultrashort pulse induced laser welding.

  1. Bottle microresonator broadband and low-repetition-rate frequency comb generator.

    Science.gov (United States)

    Dvoyrin, V; Sumetsky, M

    2016-12-01

    We propose a new type of broadband and low repetition rate (RR) frequency comb generator that has the shape of an elongated and nanoscale-shallow optical bottle microresonator created at the surface of an optical fiber. The free spectral range (FSR) of the broadband azimuthal eigenfrequency series of this resonator is the exact multiple of the FSR of the dense and narrowband axial series. The effective radius variation of the microresonator is close to a parabola with a nanoscale height that is greater or equal to λ/2πn0. (Here λ is the characteristic radiation wavelength and n0 is the refractive index of the microresonator material.) Overall, the microresonator possesses a broadband, small FSR and accurately equidistant spectrum convenient for the generation of a broadband and low RR optical frequency comb. It is shown that this comb can be generated by pumping with a cw laser, with a radiation frequency that matches a single axial eigenfrequency of the microresonator or, alternatively, by pumping with a mode-locked laser, which generates a narrowband low RR comb matching a series of equidistant axial eigenfrequencies situated between adjacent azimuthal eigenfrequencies.

  2. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    Science.gov (United States)

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.

  3. The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges

    Science.gov (United States)

    Huang, Bang-Dou; Takashima, Keisuke; Zhu, Xi-Ming; Pu, Yi-Kang

    2014-10-01

    The effect of repetition rate on a nanosecond atmospheric pressure discharge is investigated. The discharge is generated between two pins in a mixture of Ne and Ar. The voltage, current, power waveforms and the temporally and spatially resolved electron density and an ‘effective’ electron temperature are measured, with a pulse interval between 1.5 and 200 µs. It is found that not only does the repetition rate have a strong influence on the breakdown voltage and the peak discharge power, but it can also affect the rise rate of the volume averaged electron density and its peak value. Temporally and spatially resolved measurement of the electron density and the effective electron temperature show that the spatial distributions of both quantities are also influenced by the repetition rate. In the initial discharge period of all cases, the sharp rise of the electron density correlates with the drastic drop of the effective electron temperature. It is suggested that the residual charges have a strong impact on the axial distribution of the electric field and energetic electrons between the electrodes during the breakdown period, as illustrated by a simple sheath model.

  4. A High Power and High Repetition Rate Modelocked Ti-Sapphire Laser for Photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    J. Hansknecht; M. Poelker

    2001-07-01

    A high power cw mode-locked Ti-sapphire laser has been constructed to drive the Jefferson Lab polarized photoinjector and provide > 500 mW average power with 50 ps pulsewidths at 499 MHz or 1497 MHz pulse repetition rates. This laser allows efficient, high current synchronous photoinjection for extended periods of time before intrusive steps must be taken to restore the quantum efficiency of the strained layer GaAs photocathode. The use of this laser has greatly enhanced the maximum high polarization beam current capability and operating lifetime of the Jefferson Lab photoinjector compared with previous performance using diode laser systems. A novel modelocking technique provides a simple means to phase-lock the optical pulse train of the laser to the accelerator and allows for operation at higher pulse repetition rates to {approx} 3 GHz without modification of the laser cavity. The laser design and characteristics are described below.

  5. Group velocity locked vector dissipative solitons in a high repetition rate fiber laser

    CERN Document Server

    Luo, Yiyang; Li, Lei; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Fu, Songnian; Zhao, Luming

    2016-01-01

    Vectorial nature of dissipative solitons (DSs) with high repetition rates is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectra, which can be considered as an auxiliary indicator of the group velocity locked vector DSs.

  6. Spectral-temporal encoding and decoding of the femtosecond pulses sequences with a THz repetition rate

    Science.gov (United States)

    Tcypkin, A. N.; Putilin, S. E.

    2017-01-01

    Experimental and numerical modeling techniques demonstrated the possibilities of the spectral-time encoding and decoding for time division multiplexing sequence of femtosecond subpulses with a repetition rate of up to 6.4 THz. The sequence was formed as a result of the interference of two phase-modulated pulses. We report the limits of the application of the developed method of controlling formed sequence at the spectral-temporal coding.

  7. Impact of visual repetition rate on intrinsic properties of low frequency fluctuations in the visual network.

    Directory of Open Access Journals (Sweden)

    Yi-Chia Li

    Full Text Available BACKGROUND: Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01-0.08 Hz fluctuations (LFFs during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1 interactions between visual stimuli and resting-state; (2 impact of repetition rate of visual stimuli. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses, fALFF (fractional Amplitude of Low Frequency Fluctuation, and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated. CONCLUSIONS/SIGNIFICANCE: To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration and disordered behaviors (early blind, but also exogenous sensory stimuli (visual stimuli with various repetition rates. It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains.

  8. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex; Ratner, Daniel; /SLAC; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  9. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-06-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  10. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex; Ratner, Daniel; /SLAC; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  11. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Science.gov (United States)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  12. Ultrafast, high repetition rate, ultraviolet, fiber based laser source: application towards Yb+ fast quantum-logic

    CERN Document Server

    Hussain, Mahmood Irtiza; Bentley, Christopher D B; Taylor, Richard L; Carvalho, Andre R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-01-01

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb$^+$ ions faster than the trap period and with fidelity above 99%.

  13. Effects of shifts in the rate of repetitive stimulation on sustained attention

    Science.gov (United States)

    Krulewitz, J. E.; Warm, J. S.; Wohl, T. H.

    1975-01-01

    The effects of shifts in the rate of presentation of repetitive neutral events (background event rate) were studied in a visual vigilance task. Four groups of subjects experienced either a high (21 events/min) or a low (6 events/min) event rate for 20 min and then experienced either the same or the alternate event rate for an additional 40 min. The temporal occurrence of critical target signals was identical for all groups, irrespective of event rate. The density of critical signals was 12 signals/20 min. By the end of the session, shifts in event rate were associated with changes in performance which resembled contrast effects found in other experimental situations in which shift paradigms were used. Relative to constant event rate control conditions, a shift from a low to a high event rate depressed the probability of signal detections, while a shift in the opposite direction enhanced the probability of signal detections.

  14. Repetition-rate-selectable high-speed optical gating in a VO{sub 2} thin film based on gain modulation of optical amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Wook; Kim, Bong Jun; Choi, Sung Youl; Chae, Byung Gyu; Kim, Hyun Tak [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of); Lee, Yong Wook [Pukyong National University, Busan (Korea, Republic of); Seo, Gi Wan [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Yong Wan [University of Minnesota, Minneapolis, MN (United States)

    2010-12-15

    In this research, we investigated the dependence of the saturation-induced gain modulation (SIGM) on the modulation frequency of the input signal in an erbium-doped fiber amplifier (EDFA). By finding and incorporating the modulation frequency invariance of the SIGM realizable within some frequency range, we demonstrated a repetition-rate-selectable high-speed optical gating in two-terminal electrical devices based on vanadium-dioxide thin films. In the implemented optical gating system, the repetition rate could be freely chosen as an arbitrary frequency between 0.27 and 10 kHz without any degradation of the gating speed and the signal-to-noise ratio.

  15. Optimization of graffiti removal on natural stone by means of high repetition rate UV laser

    Science.gov (United States)

    Fiorucci, M. P.; López, A. J.; Ramil, A.; Pozo, S.; Rivas, T.

    2013-08-01

    The use of laser for graffiti removal is a promising alternative to conventional cleaning methods, though irradiation parameters must be carefully selected in order to achieve the effective cleaning without damaging the substrate, especially when referring to natural stone. From a practical point of view, once a safe working window is selected, it is necessary to determine the irradiation conditions to remove large paint areas, with minimal time consumption. The aim of this paper is to present a systematic procedure to select the optimum parameters for graffiti removal by means of the 3rd harmonic of a high repetition rate nanosecond Nd:YVO4 laser. Ablation thresholds of four spray paint colors were determined and the effect of pulse repetition frequency, beam diameter and line scan separation was analyzed, obtaining a set of values which optimize the ablation process.

  16. Optimization of graffiti removal on natural stone by means of high repetition rate UV laser

    Energy Technology Data Exchange (ETDEWEB)

    Fiorucci, M.P., E-mail: m.p.fiorucci@udc.es [Centro de Investigacións Tecnolóxicas, Universidade da Coruña, 15403 Ferrol (Spain); Dpto. Enxeñaría dos Recursos Naturais e Medio Ambiente, E.T.S.E. Minas, Universidade de Vigo, 36200 Vigo (Spain); López, A.J., E-mail: ana.xesus.lopez@udc.es [Centro de Investigacións Tecnolóxicas, Universidade da Coruña, 15403 Ferrol (Spain); Ramil, A., E-mail: alberto.ramil@udc.es [Centro de Investigacións Tecnolóxicas, Universidade da Coruña, 15403 Ferrol (Spain); Pozo, S., E-mail: ipozo@uvigo.es [Dpto. Enxeñaría dos Recursos Naturais e Medio Ambiente, E.T.S.E. Minas, Universidade de Vigo, 36200 Vigo (Spain); Rivas, T., E-mail: trivas@uvigo.es [Dpto. Enxeñaría dos Recursos Naturais e Medio Ambiente, E.T.S.E. Minas, Universidade de Vigo, 36200 Vigo (Spain)

    2013-08-01

    The use of laser for graffiti removal is a promising alternative to conventional cleaning methods, though irradiation parameters must be carefully selected in order to achieve the effective cleaning without damaging the substrate, especially when referring to natural stone. From a practical point of view, once a safe working window is selected, it is necessary to determine the irradiation conditions to remove large paint areas, with minimal time consumption. The aim of this paper is to present a systematic procedure to select the optimum parameters for graffiti removal by means of the 3rd harmonic of a high repetition rate nanosecond Nd:YVO{sub 4} laser. Ablation thresholds of four spray paint colors were determined and the effect of pulse repetition frequency, beam diameter and line scan separation was analyzed, obtaining a set of values which optimize the ablation process.

  17. 100 kV/2A three-phase constant-current repetitive-rate charging equipment

    CERN Document Server

    Tan Yu Gang; Chen Li Dong; Guo Zhi Gang; Zou Xiao Bing; Luo Min; Cao Shao Yun; Chang An Bi

    2002-01-01

    A 100 kV/2A three-phase constant-current repetitive-rate charging equipment was designed and constructed. A three-phase L-C converter is adopted as constant-current power source. Six Insulated Gate Bipolar Transistors (IGBTs) are connected in parallel to control the stop of charge. A Programmable Logical Controller (PLC) is the central element of the control unit. The equipment is used in the repetitive-rate discharge features test of the switch. It works stably under the conditions of 2A charging current, 10 Hz operating voltage, 100 kV repetitive rate and 1 mu F capacitor

  18. Ultraviolet excimer laser ablation: the effect of wavelength and repetition rate on in vivo guinea pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, J.; Kibbi, A.G.; Farinelli, W.; Boll, J.; Tan, O.T.

    1987-06-01

    Multiple dermatologic conditions that are currently treated with traditional cold-knife surgery are amenable to laser therapy. The ideal surgical treatment would be precise and total removal of abnormal tissue with maximal sparing of remaining structures. The ultraviolet (UV) excimer laser is capable of such precise tissue removal due to the penetration depth of 193 nm and 248 nm irradiation of 1 micron per pulse. This type of ablative tissue removal requires a high repetition rate for efficient lesional destruction. Excimer laser radiation at 193 nm is capable of high repetition rates, which are necessary while 248 nm radiation causes increasing nonspecific thermal injury as the laser repetition rate is increased.

  19. Implementation of time-resolved step-scan fourier transform infrared (FT-IR) spectroscopy using a kHz repetition rate pump laser.

    Science.gov (United States)

    Magana, Donny; Parul, Dzmitry; Dyer, R Brian; Shreve, Andrew P

    2011-05-01

    Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)(3)Cl(2) in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers.

  20. Statistical analysis of laser driven protons using a high-repetition-rate tape drive target system

    Directory of Open Access Journals (Sweden)

    Muhammad Noaman-ul-Haq

    2017-04-01

    Full Text Available One of the challenges for laser-driven proton beams for many potential applications is their stability and reproducibility. We investigate the stability of the laser driven proton beams through statistical analysis of the data obtained by employing a high repetition rate tape driven target system. The characterization of the target system shows the positioning of the target within ∼15  μm in the focal plane of an off-axis parabola, with less than a micron variation in surface flatness. By employing this stable target system, we study the stability of the proton beams driven by ultrashort and intense laser pulses. Protons with maximum energies of ∼6±0.3  MeV were accelerated for a large number of laser shots taken at a rate of 0.2 Hz with a stability of less than 5% variations in cutoff energy. The development of high repetition rate target system may provide a platform to understand the dynamics of laser driven proton beams at the rate required for future applications.

  1. Single-pass high harmonic generation at high repetition rate and photon flux

    Science.gov (United States)

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Demmler, Stefan; Klenke, Arno; Tünnermann, Andreas; Limpert, Jens

    2016-09-01

    Sources of short wavelength radiation with femtosecond to attosecond pulse durations, such as synchrotrons or free electron lasers, have already made possible numerous, and will facilitate more, seminal studies aimed at understanding atomic and molecular processes on fundamental length and time scales. Table-top sources of coherent extreme ultraviolet to soft x-ray radiation enabled by high harmonic generation (HHG) of ultrashort pulse lasers have also gained significant attention in the last few years due to their enormous potential for addressing a plethora of applications, therefore constituting a complementary source to large-scale facilities (synchrotrons and free electron lasers). Ti:sapphire based laser systems have been the workhorses for HHG for decades, but are limited in repetition rate and average power. On the other hand, it has been widely recognized that fostering applications in fields such as photoelectron spectroscopy and microscopy, coincidence detection, coherent diffractive imaging and frequency metrology requires a high repetition rate and high photon flux HHG sources. In this article we will review recent developments in realizing the demanding requirement of producing a high photon flux and repetition rate at the same time. Particular emphasis will be put on suitable ultrashort pulse and high average power lasers, which directly drive harmonic generation without the need for external enhancement cavities. To this end we describe two complementary schemes that have been successfully employed for high power fiber lasers, i.e. optical parametric chirped pulse amplifiers and nonlinear pulse compression. Moreover, the issue of phase-matching in tight focusing geometries will be discussed and connected to recent experiments. We will highlight the latest results in fiber laser driven high harmonic generation that currently produce the highest photon flux of all existing sources. In addition, we demonstrate the first promising applications and

  2. All-optical repetition rate multiplication of pseudorandom bit sequences based on cascaded TOADs

    Science.gov (United States)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2016-03-01

    A scheme for all-optical repetition rate multiplication of pseudorandom bit sequences (PRBS) is demonstrated with all-optical wavelength conversion and optical logic gate 'OR' based on cascaded Tera-Hertz Optical Asymmetric Demultiplexers (TOADs). Its feasibility is verified by multiplication experiments from 500 Mb/s to 4 Gb/s for 23-1 PRBS and from 1 Gb/s to 4 Gb/s for 27-1 PRBS. This scheme can be employed for rate multiplication for much longer cycle PRBS at much higher bit rate over 40 Gb/s when the time-delay, the loss and the dispersion of the optical delay line are all precisely managed. The upper limit of bit rate will be restricted by the recovery time of semiconductor optical amplifier (SOA) finally.

  3. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    Science.gov (United States)

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-11-01

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. The pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  4. Observation of Repetition-Rate Dependent Emission From an Un-Gated Thermionic Cathode Rf Gun

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P.; Sun, Y.; Harris, J.R.; Lewellen, J.W.

    2017-06-02

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionic cathode RF gun to high average current.

  5. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  6. OBSERVATION OF REPETITION-RATE DEPENDANT EMISSION FROM AN UN-GATED THERMIONIC CATHODE RF GUN

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Sun, Y. [Argonne; Harris, J. R. [AFRL, NM; Lewellen, J. W. [Los Alamos Natl. Lab.

    2016-09-28

    Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an ungated thermionic cathode RF gun to high average current machines.

  7. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser

    Science.gov (United States)

    Si Fodil, Rachid; Amrani, Foued; Yang, Changxi; Kellou, Abdelhamid; Grelu, Ph.

    2016-07-01

    We experimentally investigate multipulse regimes obtained within a passively-mode-locked fiber laser that includes a Mach-Zehnder (MZ) interferometer. By adjusting the time delay imbalance of the MZ, ultrashort pulse trains at multi-GHz repetition rates are generated. We compare the observed dynamics with high-harmonic mode locking, and show that the multi-GHz pulse trains display an inherent instability, which has been overlooked. By using a recirculation loop containing the MZ, we demonstrate a significant improvement of the pulse train stability.

  8. Optical Fiber Pumped High Repetition Rate and High Power Nd:YVO4 Picosecond Regenerative Amplifier

    Directory of Open Access Journals (Sweden)

    Zhen-Ao Bai

    2015-08-01

    Full Text Available We report a stable optical fiber pumped Nd:YVO4 all solid state regenerative amplifier with all fiber picosecond laser as seed source. 888 nm Yb optical fiber lasers was chosen as pump source to reduce quantum defect for improved thermal performance. At the repetition rate of 99.6 kHz, maximum power of 19.63 W with 36 ps pulse duration were achieved when seeded by a 150 mW picosecond oscillator. The wavelength delivered was 1064.07 nm with spectral width of 0.14 nm.

  9. High-harmonic generation from plasma mirrors at kilohertz repetition rate

    OpenAIRE

    Quéré, Fabien

    2011-01-01

    International audience; We report the first demonstration of high-harmonic generation from plasma mirrors at a 1 kHz repetition rate. Harmonics up to nineteenth order are generated at peak intensities close to 1018 W=cm2 by focusing 1 mJ, 25 fs laser pulses down to 1:7 μm FWHM spot size without any prior wavefront correction onto a moving target. We minimize target surface motion with respect to the laser focus using online interferometry to ensure reproducible interaction conditions for ever...

  10. Spectrum analysis of all parameter noises in repetition-rate laser pulse train

    Institute of Scientific and Technical Information of China (English)

    Junhua Tang; Yuncai Wang

    2006-01-01

    @@ The theoretical investigation of all parameter noises in repetition-rate laser pulse train was presented. The expression of power spectrum of laser pulse trains with all parameter noises was derived, and the power spectra of pulse trains with different noise parameters were numerically simulated. By comparing the power spectra with and without pulse-width jitter, we noted that pulse-width jitter could not be neglected compared with amplitude noise and timing jitter and contributed a great amount of noise into the power spectrum under the condition that the product of pulse width and angular frequency was larger than 1.

  11. Choppers to optimise the repetition rate multiplication technique on a direct geometry neutron chopper spectrometer

    DEFF Research Database (Denmark)

    Vickery, Anette; Deen, P. P.

    2014-01-01

    In recent years the use of repetition rate multiplication (RRM) on direct geometry neutron spectrometers has been established and is the common mode of operation on a growing number of instruments. However, the chopper configurations are not ideally optimised for RRM with a resultant 100 fold flu...... in time resolution probed for a single European Spallation Source (ESS) period, which is ideal to probe complex relaxational behaviour. These two chopper configurations have been simulated for the Versatile Optimal Resolution direct geometry spectrometer, VOR, that will be built at ESS....

  12. Actual laser removal of black soiling crust from siliceous sandstone by high pulse repetition rate equipment: effects on surface morphology

    Directory of Open Access Journals (Sweden)

    Iglesias-Campos, M. A.

    2016-03-01

    Full Text Available This research project studies the role of pulse repetition rate in laser removal of black soiling crust from siliceous sandstone, and specifically, how laser fluence correlates with high pulse repetition rates in cleaning practice. The aim is to define practical cleaning processes and determine simple techniques for evaluation based on end-users’ perspective (restorers. Spot and surface tests were made using a Q-switched Nd:YAG laser system with a wide range of pulse repetition rates (5–200 Hz, systematically analysed and compared by macrophotography, portable microscope, stereomicroscope with 3D visualizing and area roughness measurements, SEM imaging and spectrophotometry. The results allow the conclusion that for operation under high pulse repetition rates the average of total energy applied per spot on a treated surface should be attendant upon fluence values in order to provide a systematic and accurate description of an actual laser cleaning intervention.En este trabajo se estudia el papel de la frecuencia de repetición en la limpieza láser de costras de contaminación sobre una arenisca silícea, y concretamente, como se relaciona fluencia y frecuencias elevadas en una limpieza real. Se pretende definir un procedimiento práctico de limpieza y determinar técnicas sencillas de evaluación desde el punto de vista de los usuarios finales (restauradores. Para el estudio se realizaron diferentes ensayos en spot y en superficie mediante un equipo Q-switched Nd:YAG con un amplio rango de frecuencias (5–200 Hz, que se analizaron y compararon sistemáticamente mediante macrofotografía, microscopio portátil, estereomicroscopio con visualización 3D y mediciones de rugosidad en área, imágenes SEM y espectrofotometría. Los resultados permiten proponer que, al trabajar con altas frecuencias, la media de la energía total depositada por spot en la superficie debería acompañar los valores de fluencia para describir y comprender mejor una

  13. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  14. High-repetition-rate femtosecond dye amplifier using a laser-diode-pumped neodymium:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Zysset, B.; LaGasse, M.J.; Fujimoto, J.G.; Kafka, J.D.

    1989-02-06

    A high-repetition-rate femotosecond dye amplifier is demonstrated using a laser-diode-pumped Q-switched Nd:YAG laser. Amplification of wavelength-tunable 300-fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  15. Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique.

    Science.gov (United States)

    Nakazawa, Masataka; Yoshida, Masato

    2008-05-15

    We have succeeded in achieving independent control of the repetition rate and optical frequency of a pulse laser by employing a regenerative mode-locking technique. By adopting a voltage-controlled microwave phase shifter or an optical delay line in a regenerative feedback loop we can control the repetition rate of the laser without directly disturbing the optical frequencies. We experimentally show how this independent control can be realized by employing a 40 GHz harmonically and regeneratively mode-locked fiber laser.

  16. Fiber-laser-based, high-repetition-rate, picosecond ultraviolet source tunable across 329-348  nm.

    Science.gov (United States)

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2016-10-15

    We report a compact, fiber-laser-based, high-repetition-rate picosecond source for the ultraviolet (UV), providing multi-tens of milliwatt of average power across 329-348 nm. The source is based on internal sum-frequency-generation (SFG) in a singly resonant optical parametric oscillator (OPO), synchronously pumped at 532 nm by the second harmonic of a picosecond Yb-fiber laser at 80 MHz repetition rate. Using a 30-mm-long single-grating MgO:sPPLT crystal for the OPO and a 5-mm-long BiB3O6 crystal for intracavity SFG, we generate up to 115 mW of average UV power at 339.9 nm, with >50  mW over 73% of the tuning range, for 1.6 W of input pump power. The UV output exhibits a passive rms power stability of ∼2.9% rms over 1 min and 6.5% rms over 2 h in high beam quality. Angular acceptance bandwidth and cavity detuning effects have also been studied.

  17. How Do Algebra I Course Repetition Rates Vary among English Learner Students by Length of Time to Reclassification as English Proficient? REL 2017-222

    Science.gov (United States)

    Jaquet, Karina; Fong, Anthony B.

    2017-01-01

    Research has found high repetition rates for students in Algebra I, with one study finding a repetition rate of 44 percent for students in a large urban high school district. Less is known about how math performance and Algebra I course repetition rates vary among students with different levels of English proficiency. This report examines Algebra…

  18. The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study.

    Science.gov (United States)

    Gill, Ruby K; Smith, Zachary J; Lee, Changwon; Wachsmann-Hogiu, Sebastian

    2016-01-01

    The aim of this study is to understand the effect of varying laser repetition rate on thermal energy accumulation and dissipation as well as femtosecond Laser Induced Breakdown Spectroscopy (fsLIBS) signals, which may help create the framework for clinical translation of femtosecond lasers for surgical procedures. We study the effect of repetition rates on ablation widths, sample temperature, and LIBS signal of bone. SEM images were acquired to quantify the morphology of the ablated volume and fsLIBS was performed to characterize changes in signal intensity and background. We also report for the first time experimentally measured temperature distributions of bone irradiated with femtosecond lasers at repetition rates below and above carbonization conditions. While high repetition rates would allow for faster cutting, heat accumulation exceeds heat dissipation and results in carbonization of the sample. At repetition rates where carbonization occurs, the sample temperature increases to a level that is well above the threshold for irreversible cellular damage. These results highlight the importance of the need for careful selection of the repetition rate for a femtosecond laser surgery procedure to minimize the extent of thermal damage to surrounding tissues and prevent misclassification of tissue by fsLIBS analysis.

  19. Analyzing the effect of high repetition laser shock peening on dynamic corrosion rate of magnesium

    Science.gov (United States)

    Caralapatti, Vinodh Krishna; Narayanswamy, Sivakumar

    2017-08-01

    Magnesium as implant material is being investigated extensively due to its superior suitability. With corrosion rate being the major obstacle, this paper aims to determine the effects of high repetition laser shock peening (HRLSP) on the dynamic corrosion rate of magnesium. While there is lot of research on corrosion of magnesium, in this work, a specially designed test bench was used for characterization of dynamic corrosion to mimic the physiological conditions experienced by the implant inside human body. From the results, it can be inferred that corrosion rate of peened samples reduced by at least 6 times compared to unpeened sample and sample peened with 66% overlap 1 scans exhibited the least corrosion. The wettability of the samples was also determined as a measure to analyze the effects of HRLSP on biocompatibility. In addition, peening is seen to induce surface corrosion, which minimizes the risks of implant failure.

  20. Diagnostic for a high-repetition rate electron photo-gun and first measurements

    Science.gov (United States)

    Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.

    2015-05-01

    The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.

  1. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    Science.gov (United States)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-09-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  2. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    Directory of Open Access Journals (Sweden)

    Venkatakrishnan Krishnan

    2011-01-01

    Full Text Available Abstract In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction analysis (XRD, and X-ray photoelectron spectroscopy (XPS. The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200, (211, and (321 reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure.

  3. The ringer - An efficient, high repetition rate circuit for electromagnetic launchers

    Science.gov (United States)

    Giorgi, D.; Helava, H.; Lindner, K.; Long, J.; Zucker, O.

    1989-01-01

    The Meatgrinder is an efficient, current-multiplying circuit which can be used to optimize the energy transfer to various electromagnetic gun configurations. The authors present a simple variant of the Meatgrinder circuit which permits a first-order current profiling into the gun and recovery of the inductive energy in the barrel at a high repetition rate. The circuit is basically a one-stage Meatgrinder which utilizes the ringing of the energy storage capacitor (less than 40 percent reversal) to perform the opening switch function and a solid-state diode as the crowbar switch between the two mutually coupled inductors. With resonant charging, this results in a completely passive, high-repetiton-rate electromagnetic-gun power supply. Since most of the barrel energy is recovered, a railgun with negligible muzzle flash can be realized.

  4. Temporal dynamics of high repetition rate pulsed single longitudinal mode dye laser

    Indian Academy of Sciences (India)

    G Sridhar; V S Rawar; S Singh; L M Gantayet

    2013-08-01

    Theoretical and experimental studies of temporal dynamics of grazing incidence grating (GIG) cavity, single-mode dye laser pumped by high repetition rate copper vapour laser (CVL) are presented. Spectral chirp of the dye laser as they evolve in the cavity due to transient phase dynamics of the amplifier gain medium is studied. Effect of grating efficiency, focal spot size, pump power and other cavity parameters on the temporal behaviour of narrow band dye laser such as build-up time, pulse shape and pulse width is studied using the four level dye laser rate equation and photon evolution equation. These results are compared with experimental observations of GIG single-mode dye laser cavity. The effect of pulse stretching of CVL pump pulse on the temporal dynamics of the dye laser is studied.

  5. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    Science.gov (United States)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-09-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.

  6. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Buttafava, Mauro, E-mail: mauro.buttafava@polimi.it; Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Dalla Mora, Alberto [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy)

    2014-08-15

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.

  7. Cavity-enhanced field-free molecular alignment at high repetition rate

    CERN Document Server

    Benko, Craig; Allison, Thomas K; Labaye, François; Ye, Jun

    2015-01-01

    Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers to studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order hamonic generation with aligned molecules in a gas jet at 154 MHz repetition rate using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the int...

  8. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  9. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator.

    Science.gov (United States)

    Kienle, Florian; Teh, Peh Siong; Lin, Dejiao; Alam, Shaif-Ul; Price, Jonathan H V; Hanna, D C; Richardson, David J; Shepherd, David P

    2012-03-26

    We report on a picosecond, green-pumped, lithium triborate optical parametric oscillator with record-high output power. It was synchronously pumped by a frequency-doubled (530 nm), pulse-compressed (4.4 ps), high-repetition-rate (230 MHz), fiber-amplified gain-switched laser diode. For a pump power of 17 W, a maximum signal and idler power of 3.7 W and 1.8 W was obtained from the optical parametric oscillator. A signal pulse duration of ~3.2 ps was measured and wide tunability from 651 nm to 1040 nm for the signal and from 1081 nm to 2851 nm for the idler was achieved.

  10. High repetition rate Q-switched radially polarized laser with a graphene-based output coupler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lifei; Jin, Chenjie; Qi, Mei; Chen, Xiaoming; Ren, Zhaoyu, E-mail: zhengxl@nwu.edu.cn, E-mail: rzy@nwu.edu.cn [National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), and Institute of Photonics and Photon-Technology, Northwest University, Xi' an 710069 (China); Zheng, Xinliang, E-mail: zhengxl@nwu.edu.cn, E-mail: rzy@nwu.edu.cn [Department of Physics, Northwest University, Xi' an 710069 (China); Bai, Jintao [National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), and Institute of Photonics and Photon-Technology, Northwest University, Xi' an 710069 (China); Department of Physics, Northwest University, Xi' an 710069 (China); Sun, Zhipei [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland)

    2014-12-01

    We demonstrate a Q-switched radially polarized all-solid-state laser by transferring a graphene film directly onto an output coupler. The laser generates Q-switched radially polarized beam (QRPB) with a pulse width of 192 ns and 2.7 W average output power. The corresponding single pulse energy is up to 16.2 μJ with a high repetition rate of 167 kHz. The M{sup 2} factor and the polarization purity are ∼2.1 and 96%, respectively. Our QRPB source is a simple and low-cost source for a variety of applications, such as industrial material processing, optical trapping, and microscopy.

  11. A high repetition rate passively Q-switched microchip laser for controllable transverse laser modes

    Science.gov (United States)

    Dong, Jun; Bai, Sheng-Chuang; Liu, Sheng-Hui; Ueda, Ken-Ichi; Kaminskii, Alexander A.

    2016-05-01

    A Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser for versatile controllable transverse laser modes has been demonstrated by adjusting the position of the Nd:YVO4 crystal along the tilted pump beam direction. The pump beam diameter-dependent asymmetric saturated inversion population inside the Nd:YVO4 crystal governs the oscillation of various Laguerre-Gaussian, Ince-Gaussian and Hermite-Gaussian modes. Controllable transverse laser modes with repetition rates over 25 kHz and up to 183 kHz, depending on the position of the Nd:YVO4 crystal, have been achieved. The controllable transverse laser beams with a nanosecond pulse width and peak power over hundreds of watts have been obtained for potential applications in optical trapping and quantum computation.

  12. Dual-frequency comb generation with differing GHz repetition rates by parallel Fabry-Perot cavity filtering of a single broadband frequency comb source

    Science.gov (United States)

    Mildner, Jutta; Meiners-Hagen, Karl; Pollinger, Florian

    2016-07-01

    We present a dual-comb-generator based on a coupled Fabry-Perot filtering cavity doublet and a single seed laser source. By filtering a commercial erbium-doped fiber-based optical frequency comb with CEO-stabilisation and 250 MHz repetition rate, two broadband coherent combs of different repetition rates in the GHz range are generated. The filtering doublet consists of two Fabry-Perot cavities with a tunable spacing and Pound-Drever-Hall stabilisation scheme. As a prerequisite for the development of such a filtering unit, we present a method to determine the actual free spectral range and transmission bandwidth of a Fabry-Perot cavity in situ. The transmitted beat signal of two diode lasers is measured as a function of their tunable frequency difference. Finally, the filtering performance and resulting beat signals of the heterodyned combs are discussed as well as the optimisation measures of the whole system.

  13. Assessing Sub-Antarctic Zone primary productivity from fast repetition rate fluorometry

    Science.gov (United States)

    Cheah, Wee; McMinn, Andrew; Griffiths, F. Brian; Westwood, Karen J.; Wright, Simon W.; Molina, Ernesto; Webb, Jason P.; van den Enden, Rick

    2011-11-01

    In situ primary productivity (PP) in the Sub-Antarctic Zone (SAZ) and the Polar Frontal Zone (PFZ) south of Australia was estimated using fast repetition rate fluorometry (FRRF). FRRF-derived PP at Process station 3 (P3) southeast of Tasmania (46°S, 153°E) were higher than P1 in the southwest of Tasmania (46°S, 140°E) and P2 in the Polar Frontal Zone (54°S, 146°E). The FRRF-derived PP rates were well correlated with 14C-uptake rates from one-hour incubations ( r2=0.85, slope=1.23±0.05, pMehler reaction, which are stimulated at high irradiance. Our results indicate that FRRF can be used to estimate photosynthesis rates in the SAZ and PFZ but to derive an accurate estimation of C-fixation requires a detailed understanding of the physiological properties of the cells and their response to oceanographic parameters under different environmental conditions.

  14. High-repetition rate industrial TEA CO2 laser with average output power of 1.5 kW

    Science.gov (United States)

    Wan, Chongyi; Liu, Shiming; Zhou, Jinwen; Qi, Jilan; Yang, Xiaola; Wu, Jin; Tan, Rongqing; Wang, Lichun; Mei, Qichu

    1995-03-01

    High power high repetition rate TEA CO2 laser has potential importance in material processing such as shock hardening, glazing, drilling, welding, and cutting for high damage threshold materials, as well as in chemical reaction and isotope separation. This paper describes a transverse-flow closed-cycle UV-preionized TEA CO2 laser with peak pulse power of 20 MW, maximum average power of 1.5 KW at repetition rate of 300 HZ. The laser has compact constructure of gas flow circulation system using tangential fans. With addition of small amounts of H2 and CO to the normal CO2-N2-He gas mixture, one filling sealed operating lifetime is up to millions of pulses. A novel spark gap switch has been developed for very high repetition rate laser discharge in the condition of high pulse power.

  15. Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser

    CERN Document Server

    Luo, Yiyang; Zhao, Luming; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Fu, Songnian; Liu, Deming

    2016-01-01

    The dynamics of dissipative solitons (DSs) are explored in a high repetition rate normal-dispersion erbium-doped fiber laser for the first time. Despite of the high fundamental repetition rate of 129 MHz and thus the low pulse energy, a DS train with a dechirped pulse width of 418 fs, period-doubling of single and dual DSs, as well as 258 MHz 2nd-order harmonic mode-locking of DSs can be observed in the fiber laser with increasing pump power and appropriate settings. A transmitted semiconductor saturable absorber and a wavelength division multiplexer/isolator/tap hybrid module are employed to simplify the laser configuration, thus not only increasing the repetition rate, but also enhancing the stability and robustness of the fiber laser due to the commercial availability of all the components.

  16. 5 CFR 534.403 - SES rate range.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false SES rate range. 534.403 Section 534.403... Performance Awards Under the Senior Executive Service § 534.403 SES rate range. (a) SES rate range. (1) On the... basic pay of the SES rate range is set at an amount equal to the minimum rate of basic pay under 5...

  17. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Takehiro Tachizaki

    2013-03-01

    Full Text Available We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.

  18. A real-time terahertz time-domain polarization analyzer with 80-MHz repetition-rate femtosecond laser pulses.

    Science.gov (United States)

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-03-11

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.

  19. Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser

    Science.gov (United States)

    Li, Zuohan; Peng, Jiying; Yuan, Ruixia; Wang, Tongtong; Yao, Jianquan; Zheng, Yi

    2015-11-01

    A compact and feasible CW Kerr-lens-induced mode-locked 532 nm Nd:YVO4 laser system was experimentally demonstrated for the first time with theoretical analysis. Kerr-lens mode locking with intracavity second harmonic generation provides a promising method to generate a high-repetition-rate picosecond green laser. With an incident pump power of 6 W, the average output power of mode locking was 258 mW at a high repetition rate of 1.1 GHz.

  20. Study of filamentation with a high power high repetition rate ps laser at 1.03 µm.

    Science.gov (United States)

    Houard, A; Jukna, V; Point, G; André, Y-B; Klingebiel, S; Schultze, M; Michel, K; Metzger, T; Mysyrowicz, A

    2016-04-01

    We study the propagation of intense, high repetition rate laser pulses of picosecond duration at 1.03 µm central wavelength through air. Evidence of filamentation is obtained from measurements of the beam profile as a function of distance, from photoemission imaging and from spatially resolved sonometric recordings. Good agreement is found with numerical simulations. Simulations reveal an important self shortening of the pulse duration, suggesting that laser pulses with few optical cycles could be obtained via double filamentation. An important lowering of the voltage required to induce guided electric discharges between charged electrodes is measured at high laser pulse repetition rate.

  1. Mode-locked Yb-doped fiber laser emitting broadband pulses at ultra-low repetition rates

    CERN Document Server

    Bowen, Patrick; Provo, Richard; Harvey, John D; Broderick, Neil G R

    2016-01-01

    We report on an environmentally stable, Yb-doped, all-normal dispersion, mode-locked fibre laser that is capable of creating broadband pulses with ultra-low repetition rates. Specifically, through careful positioning of fibre sections in an all-PM-fibre cavity mode-locked with a nonlinear amplifying loop mirror, we achieve stable pulse trains with repetition rates as low as 506 kHz. The pulses have several nanojules of energy and are compressible down to ultrashort (< 500 fs) durations.

  2. High-repetition rate relativistic electron beam generation from intense laser solid interactions

    Science.gov (United States)

    Batson, Thomas; Nees, John; Hou, Bixue; Thomas, A. G. R.; Krushelnick, Karl

    2015-05-01

    Relativistic electron beams have applications spanning materials science, medicine, and home- land security. Recent advances in short pulse laser technology have enabled the production of very high focused intensities at kHz rep rates. Consequently this has led to the generation of high ux sources of relativistic electrons- which is a necessary characteristic of these laser plasma sources for any potential application. In our experiments, through the generation of a plasma with the lambda cubed laser system at the University of Michigan (a 5 × 1018W=cm2, 500 Hz, Ti:Sapphire laser), we have measured electrons ejected from the surface of fused silica nd Cu targets having energies in excess of an MeV. The spectrum of these electrons was measured with respect to incident laser angle, prepulse timing, and focusing conditions. While taken at a high repetition rate, the pulse energy of the lambda cubed system was consistently on the order of 10 mJ. In order to predict scaling of the electron energy with laser pulse energy, simulations are underway which compare the spectrum generated with the lambda cubed system to the predicted spectrum generated on the petawatt scale HERCULES laser system at the University of Michigan.

  3. In-situ, variable thickness, liquid crystal film target formation at moderate repetition rate for intense laser applications

    CERN Document Server

    Poole, P L; Cochran, G E; Hanna, R J; Andereck, C D; Schumacher, D W

    2015-01-01

    Liquid crystal films have recently been demonstrated as variable thickness, planar targets for ultra-intense laser matter experiments and applications such as ion acceleration. By controlling the parameters of film formation, including liquid crystal temperature and volume, their thickness can be varied on-demand from 10 $nm$ to above 10 $\\mu m$. This thickness range enables for the first time real-time selection and optimization of various ion acceleration mechanisms using low cost, high quality targets. Our previous work employed these targets in single shot configuration, requiring chamber cycling after the pre-made films were expended. Presented here is a film formation device capable of drawing films from a bulk liquid crystal source volume to any thickness in the aforementioned range. This device will form films under vacuum within 2 $\\mu m$ of the same location each time, well within the Rayleigh range of even tight $F/ \\#$ systems. The repetition rate of the device exceeds 0.1 $Hz$ for sub-100 $nm$ fi...

  4. A high-repetition rate scheme for synchrotron-based picosecond laser pump/x-ray probe experiments on chemical and biological systems in solution.

    Science.gov (United States)

    Lima, Frederico A; Milne, Christopher J; Amarasinghe, Dimali C V; Rittmann-Frank, Mercedes Hannelore; van der Veen, Renske M; Reinhard, Marco; Pham, Van-Thai; Karlsson, Susanne; Johnson, Steven L; Grolimund, Daniel; Borca, Camelia; Huthwelker, Thomas; Janousch, Markus; van Mourik, Frank; Abela, Rafael; Chergui, Majed

    2011-06-01

    We present the extension of time-resolved optical pump/x-ray absorption spectroscopy (XAS) probe experiments towards data collection at MHz repetition rates. The use of a high-power picosecond laser operating at an integer fraction of the repetition rate of the storage ring allows exploitation of up to two orders of magnitude more x-ray photons than in previous schemes based on the use of kHz lasers. Consequently, we demonstrate an order of magnitude increase in the signal-to-noise of time-resolved XAS of molecular systems in solution. This makes it possible to investigate highly dilute samples at concentrations approaching physiological conditions for biological systems. The simplicity and compactness of the scheme allows for straightforward implementation at any synchrotron beamline and for a wide range of x-ray probe techniques, such as time-resolved diffraction or x-ray emission studies.

  5. Broadly wavelength- and pulse width-tunable high-repetition rate light pulses from soliton self-frequency shifting photonic crystal fiber integrated with a frequency doubling crystal.

    Science.gov (United States)

    Lanin, Aleksandr A; Fedotov, Andrei B; Zheltikov, Aleksei M

    2012-09-01

    Soliton self-frequency shift (SSFS) in a photonic crystal fiber (PCF) pumped by a long-cavity mode-locked Cr:forsterite laser is integrated with second harmonic generation (SHG) in a nonlinear crystal to generate ultrashort light pulses tunable within the range of wavelengths from 680 to 1800 nm at a repetition rate of 20 MHz. The pulse width of the second harmonic output is tuned from 70 to 600 fs by varying the thickness of the nonlinear crystal, beam-focusing geometry, and the wavelength of the soliton PCF output. Wavelength-tunable pulses generated through a combination of SSFS and SHG are ideally suited for coherent Raman microspectroscopy at high repetition rates, as verified by experiments on synthetic diamond and polystyrene films.

  6. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate.

    Science.gov (United States)

    Karsch, Leonhard

    2016-04-21

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  7. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate

    Science.gov (United States)

    Karsch, Leonhard

    2016-04-01

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  8. Heart Rate Variability and Skin Conductance During Repetitive TMS Course in Children with Autism.

    Science.gov (United States)

    Wang, Yao; Hensley, Marie K; Tasman, Allan; Sears, Lonnie; Casanova, Manuel F; Sokhadze, Estate M

    2016-03-01

    Autism spectrum disorder (ASD) is a developmental disorder marked by difficulty in social interactions and communication. ASD also often present symptoms of autonomic nervous system (ANS) functioning abnormalities. In individuals with autism the sympathetic branch of the ANS presents an over-activation on a background of the parasympathetic activity deficits, creating an autonomic imbalance, evidenced by a faster heart rate with little variation and increased tonic electrodermal activity. The objective of this study was to explore the effect of 12 sessions of 0.5 Hz repetitive transcranial magnetic stimulation (rTMS) over dorsolateral prefrontal cortex (DLPFC) on autonomic activity in children with ASD. Electrocardiogram and skin conductance level (SCL) were recorded and analyzed during each session of rTMS. The measures of interest were time domain (i.e., R-R intervals, standard deviation of cardiac intervals, NN50-cardio-intervals >50 ms different from preceding interval) and frequency domain heart rate variability (HRV) indices [i.e., power of high frequency (HF) and low frequency (LF) components of HRV spectrum, LF/HF ratio]. Based on our prior pilot studies it was proposed that the course of 12 weekly inhibitory low-frequency rTMS bilaterally applied to the DLPFC will improve autonomic balance probably through improved frontal inhibition of the ANS activity, and will be manifested in an increased length of cardiointervals and their variability, and in higher frequency-domain HRV in a form of increased HF power, decreased LF power, resulting in decreased LF/HF ratio, and in decreased SCL. Our post-12 TMS results showed significant increases in cardiac intervals variability measures and decrease of tonic SCL indicative of increased cardiac vagal control and reduced sympathetic arousal. Behavioral evaluations showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings that correlated with several autonomic variables.

  9. A high repetition rate experimental setup for quantum non-linear optics with cold Rydberg atoms

    Science.gov (United States)

    Busche, Hannes; Ball, Simon W.; Huillery, Paul

    2016-12-01

    Using electromagnetically induced transparency and photon storage, the strong dipolar interactions between Rydberg atoms and the resulting dipole blockade can be mapped onto light fields to realise optical non-linearities and interactions at the single photon level. We report on the realisation of an experimental apparatus designed to study interactions between single photons stored as Rydberg excitations in optically trapped microscopic ensembles of ultracold 87Rb atoms. A pair of in-vacuum high numerical aperture lenses focus excitation and trapping beams down to 1 μm, well below the Rydberg blockade. Thanks to efficient magneto-optical trap (MOT) loading from an atomic beam generated by a 2D MOT and the ability to recycle the microscopic ensembles more than 20000 times without significant atom loss, we achieve effective repetition rates exceeding 110 kHz to obtain good photon counting statistics on reasonable time scales. To demonstrate the functionality of the setup, we present evidence of strong photon interactions including saturation of photon storage and the retrieval of non-classical light. Using in-vacuum antennae operating at up to 40 GHz, we perform microwave spectroscopy on photons stored as Rydberg excitations and observe an interaction induced change in lineshape depending on the number of stored photons.

  10. Design of high gradient, high repetition rate damped C -band rf structures

    Science.gov (United States)

    Alesini, David; Bellaveglia, Marco; Bini, Simone; Gallo, Alessandro; Lollo, Valerio; Pellegrino, Luigi; Piersanti, Luca; Cardelli, Fabio; Migliorati, Mauro; Mostacci, Andrea; Palumbo, Luigi; Tocci, Simone; Ficcadenti, Luca; Pettinacci, Valerio

    2017-03-01

    The gamma beam system of the European Extreme Light Infrastructure-Nuclear Physics project foresees the use of a multibunch train colliding with a high intensity recirculated laser pulse. The linac energy booster is composed of 12 traveling wave C -band structures, 1.8 m long with a field phase advance per cell of 2 π /3 and a repetition rate of 100 Hz. Because of the multibunch operation, the structures have been designed with a dipole higher order mode (HOM) damping system to avoid beam breakup (BBU). They are quasiconstant gradient structures with symmetric input couplers and a very effective damping of the HOMs in each cell based on silicon carbide (SiC) rf absorbers coupled to each cell through waveguides. An optimization of the electromagnetic and mechanical design has been done to simplify the fabrication and to reduce the cost of the structures. In the paper, after a review of the beam dynamics issues related to the BBU effects, we discuss the electromagnetic and thermomechanic design criteria of the structures. We also illustrate the criteria to compensate the beam loading and the rf measurements that show the effectiveness of the HOM damping.

  11. A high repetition rate transverse beam profile diagnostic for laser-plasma proton sources

    Science.gov (United States)

    Dover, Nicholas; Nishiuchi, Mamiko; Sakaki, Hironao; Kando, Masaki; Nishitani, Keita

    2016-10-01

    The recently upgraded J-KAREN-P laser can provide PW peak power and intensities approaching 1022 Wcm-2 at 0.1 Hz. Scaling of sheath acceleration to such high intensities predicts generation of protons to near 100 MeV, but changes in electron heating mechanisms may affect the emitted proton beam properties, such as divergence and pointing. High repetition rate simultaneous measurement of the transverse proton distribution and energy spectrum are therefore key to understanding and optimising the source. Recently plastic scintillators have been used to measure online proton beam transverse profiles, removing the need for time consuming post-processing. We are therefore developing a scintillator based transverse proton beam profile diagnostic for use in ion acceleration experiments using the J-KAREN-P laser. Differential filtering provides a coarse energy spectrum measurement, and time-gating allows differentiation of protons from other radiation. We will discuss the design and implementation of the diagnostic, as well as proof-of-principle results from initial experiments on the J-KAREN-P system demonstrating the measurement of sheath accelerated proton beams up to 20 MeV.

  12. Design of a high repetition rate S-band photocathode gun

    Science.gov (United States)

    Han, Jang-Hui; Cox, Matthew; Huang, Houcheng; Pande, Shivaji

    2011-08-01

    Photocathode RF guns have been developed in many laboratories for generating high quality electron beams for free-electron lasers based on linear accelerators. Such guns can generate electron beams with an exceptionally high peak current as well as a small transverse emittance. Their applications have been recently expanded for ultrafast electron diffraction, coherent terahertz radiation, and X-ray or γ-ray radiation by Compton scattering. In this paper, we design an S-band normal-conducting gun with capabilities of high quality beam generation and high repetition rate operation. The RF design and thermal analysis of the gun cavity and coupler are introduced. Optimal position of the gun focusing solenoid for low emittance beam generation is found by performing particle tracking simulations. Then, the gun system is designed to be able to afford the optimal solenoid position. The cooling-water channel surrounding the gun cavity and coupler is designed and analyzed numerically. The pressure in the gun is simulated with a vacuum model containing the detailed inner structure of the gun. An injector for a free-electron laser application is designed by using this gun and the beam dynamics simulation is shown. A cold test with a prototype gun for confirmation of the RF design is reported.

  13. Design of a VHF-band RF Photoinjector with Megahertz BeamRepetition Rate

    Energy Technology Data Exchange (ETDEWEB)

    Staples, J.W.; Baptiste, K.M.; Corlett, J.N.; Kwiatkowski, S.; Lidia, S.M.; Qiang, J.; Sannibale, F.; Sonnad, K.G.; Virostek, S.P.; Wells, R.P.

    2007-06-01

    New generation accelerator-based X-ray light sources require high quality beams with high average brightness. Normal conducting L- and S-band photoinjectors are limited in repetition rate and D-C (photo)injectors are limited in field strength at the cathode. We propose a low frequency normal-conducting cavity, operating at 50 to 100MHz CW, to provide beam bunches of up to the cavity frequency. The photoinjector uses a re-entrant cavity structure, requiring less than 100 kW CW, with a peak wall power density less than 10 W/cm{sup 2}. The cavity will support a vacuum down to 10 picoTorr, with a load-lock mechanism for easy replacement of photocathodes. The photocathode can be embedded in a magnetic field to provide correlations useful for emittance exchange. Beam dynamics simulations indicate that normalized emittances smaller than 1 mm-mrad are possible with gap voltage of 750 kV, with fields up to 20 MV/m at the photocathode, for 1 nanocoulomb charge per bunch after acceleration and emittance compensation. Long-bunch operation (10's of picosecond) is made possible by the low cavity frequency, permitting low bunch current at the 750 kV gap voltage.

  14. High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification.

    Science.gov (United States)

    Metzger, Thomas; Schwarz, Alexander; Teisset, Catherine Yuriko; Sutter, Dirk; Killi, Alexander; Kienberger, Reinhard; Krausz, Ferenc

    2009-07-15

    We report an optically synchronized picosecond pump laser for optical parametric amplifiers based on an Yb:YAG thin-disk amplifier. At 3 kHz repetition rate, pulse energies of 25 mJ with 1.6 ps pulse duration were achieved with an rms fluctuation in pulse energy of pumped regenerative amplifier.

  15. High-repetition-rate optical delay line using a micromirror array and galvanometer mirror for a terahertz system.

    Science.gov (United States)

    Kitahara, Hideaki; Tani, Masahiko; Hangyo, Masanori

    2009-07-01

    We developed a high-repetition-rate optical delay line based on a micromirror array and galvanometer mirror for terahertz time-domain spectroscopy. The micromirror array is fabricated by using the x-ray lithographic technology. The measurement of terahertz time-domain waveforms with the new optical delay line is demonstrated successfully up to 25 Hz.

  16. High Repetition Rate Electron Beam RF-Acceleration and Sub-Millimeter Wave Generation Via a Free Electron Laser.

    Science.gov (United States)

    1986-02-14

    Period, Including Journal References: (a) D.B. McDermott, W.J. Nunan and N.C. Luhmann, Jr., "A High Duty Cycle, Compact 94 GHz Free Electron Laser...34 submitted to Journal IR and am-Waves. (b) W.J. Nunan , D.B. McDermott and N.C. Luhmann, Jr., "A High Repetition *Rate, Compact 94 GHz Free Electron Laser...34 Bulletin of the American Phy- * ) sical Society 30, 1543 (1985). L J (c) D.B. McDermott, W.J. Nunan and N.C. Luhmann, Jr., "A High RepetitionLL

  17. Optimizing stimulus repetition rate for recording ocular vestibular evoked myogenic potential elicited by air-conduction tone bursts of 500 Hz

    Directory of Open Access Journals (Sweden)

    Niraj Kumar Singh

    2014-03-01

    Full Text Available Amidst several publications reporting the effects of stimulus-related parameters on ocular vestibular evoked myogenic potential (oVEMP, the effect of the repetition rate on oVEMP responses has largely gone unexplored. Studies have used a repetition rate of ~5.1 Hz mainly due to a presumption that oVEMP, like cervical VEMP, should produce best responses for ~5 Hz, although there is paucity of experimental evidence to support this hypothesis. 52 healthy individuals in the age range of 17-35 years underwent air-conduction oVEMP elicited by 500 Hz tone-bursts using seven different repetition rates (3.1, 5.1, 10.1, 15.1, 20.1, 25.1 and 30.1 Hz. The results revealed a tendency for prolongation of latencies and reduction in amplitude with increasing repetition rate. However, significantly longer latencies were observed only for 20.1 Hz and larger amplitudes for 3.1 and 5.1 Hz (P<0.05. There was no significant difference between the rates of 3.1 Hz and 5.1 Hz. However 3.1 Hz produced poorer signal-to-noise ratio and required considerably longer time and thereby had lesser efficiency than 5.1 Hz (P<0.05. This would also result in higher fatigue and irritation levels considering the physical act of maintaining a supero-medial gaze. Thus the use of 5.1 Hz is recommended for clinical recording of oVEMP.

  18. Optimizing Stimulus Repetition Rate for Recording Ocular Vestibular Evoked Myogenic Potential Elicited by Air-Conduction Tone Bursts of 500 Hz.

    Science.gov (United States)

    Singh, Niraj Kumar; Kadisonga, Peter; Ashitha, Palliyath

    2014-03-06

    Amidst several publications reporting the effects of stimulus-related parameters on ocular vestibular evoked myogenic potential (oVEMP), the effect of the repetition rate on oVEMP responses has largely gone unexplored. Studies have used a repetition rate of ~5.1 Hz mainly due to a presumption that oVEMP, like cervical VEMP, should produce best responses for ~5 Hz, although there is paucity of experimental evidence to support this hypothesis. 52 healthy individuals in the age range of 17-35 years underwent air-conduction oVEMP elicited by 500 Hz tone-bursts using seven different repetition rates (3.1, 5.1, 10.1, 15.1, 20.1, 25.1 and 30.1 Hz). The results revealed a tendency for prolongation of latencies and reduction in amplitude with increasing repetition rate. However, significantly longer latencies were observed only for 20.1 Hz and larger amplitudes for 3.1 and 5.1 Hz (P<0.05). There was no significant difference between the rates of 3.1 Hz and 5.1 Hz. However 3.1 Hz produced poorer signal-to-noise ratio and required considerably longer time and thereby had lesser efficiency than 5.1 Hz (P<0.05). This would also result in higher fatigue and irritation levels considering the physical act of maintaining a supero-medial gaze. Thus the use of 5.1 Hz is recommended for clinical recording of oVEMP.

  19. Design study of a low-emittance high-repetition rate thermionic rf gun

    Science.gov (United States)

    Opanasenko, A.; Mytrochenko, V.; Zhaunerchyk, V.; Goryashko, V. A.

    2017-05-01

    We propose a novel gridless continuous-wave radiofrequency (rf) thermionic gun capable of generating nC ns electron bunches with a rms normalized slice emittance close to the thermal level of 0.3 mm mrad. In order to gate the electron emission, an externally heated thermionic cathode is installed into a stripline-loop conductor. Two high-voltage pulses propagating towards each other in the stripline-loop overlap in the cathode region and create a quasielectrostatic field gating the electron emission. The repetition rate of pulses is variable and can reach up to one MHz with modern solid-state pulsers. The stripline attached to a rf gun cavity wall has with the wall a common aperture that allows the electrons to be injected into the rf cavity for further acceleration. Thanks to this innovative gridless design, simulations suggest that the bunch emittance is approximately at the thermal level after the bunch injection into the cavity provided that the geometry of the cathode and aperture are properly designed. Specifically, a concave cathode is adopted to imprint an Ƨ-shaped distribution onto the beam transverse phase-space to compensate for an S-shaped beam distribution created by the spherical aberration of the aperture-cavity region. In order to compensate for the energy spread caused by rf fields of the rf gun cavity, a 3rd harmonic cavity is used. A detailed study of the electrodynamics of the stripline and rf gun cavity as well as the beam optics and bunch dynamics are presented.

  20. Oral-diadochokinetic rates for Hebrew-speaking healthy ageing population: non-word versus real-word repetition.

    Science.gov (United States)

    Ben-David, Boaz M; Icht, Michal

    2017-05-01

    Oral-diadochokinesis (oral-DDK) tasks are extensively used in the evaluation of motor speech abilities. Currently, validated normative data for older adults (aged 65 years and older) are missing in Hebrew. The effect of task stimuli (non-word versus real-word repetition) is also non-clear in the population of older adult Hebrew speakers. (1) To establish a norm for oral-DDK rate for older adult (aged 65 years and older) Hebrew speakers, and to investigate the possible effect of age and gender on performance rate; and (2) to examine the effects of stimuli (non-word versus real word) on oral-DDK rates. In experiment 1, 88 healthy older Hebrew speakers (60-95 years, 48 females and 40 males) were audio-recorded while performing an oral-DDK task (repetition of /pataka/), and repetition rates (syllables/s) were coded. In experiment 2, the effect of real-word repetition was evaluated. Sixty-eight older Hebrew speakers (aged 66-95 years, 43 females and 25 males) were asked to repeat 'pataka' (non-word) and 'bodeket' (Hebrew real word). Experiment 1: Oral-DDK performance for older adult Hebrew speakers was 5.07 syllables/s (SD = 1.16 syllables/s), across age groups and gender. Comparison of this data with Hebrew norms for younger adults (and equivalent data in English) shows the following gradient of oral-DDK rates: ages 15-45 > 65-74 > 75-86 years. Gender was not a significant factor in our data. Experiment 2: Repetition of real words was faster than that of non-words, by 13.5%. The paper provides normative values for oral-DDK rates for older Hebrew speakers. The data show the large impact of ageing on oro-motor functions. The analysis further indicates that speech and language pathologists should consider separate norms for clients of 65-74 years and those of 75-86 years. Hebrew rates were found to be different from English norms for the oldest group, shedding light on the impact of language on these norms. Finally, the data support using a dual-protocol (real- and non

  1. A Device and Methodology for Measuring Repetitive Lifting VO2max (Oxygen Consumption Rate)

    Science.gov (United States)

    1987-08-01

    and its estimate from skinfold thicknesses ; measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77-92. 3. Intaranont K, Ayoub MM...Justificaton --. By ......... AvaI~bty Co’der, L Ust Avdi iUl I r /1- Table of Contents Table of Contents iii List of Figures iv List of Tables v...during 28 repetitive lifting exercise iv List of Tables 1. Repetitive lifting device specifications 15 2. Subject sample descriptive data 24 3

  2. Relativistic electron beams driven by single-cycle laser pulses at kHz repetition rate (Conference Presentation)

    Science.gov (United States)

    Faure, Jérôme; Guénot, Diego; Gustas, Dominykas; Vernier, Aline; Beaurepaire, Benoît; Böhle, Frederik; López-Martens, Rodrigo; Lifschitz, Agustin

    2017-05-01

    Laser-plasma accelerators are usually driven by 100-TW class laser systems with rather low repetition rates. However, recent years have seen the emergence of laser-plasma accelerators operating with kHz lasers and energies lower than 10 mJ. The high repetition-rate is particularly interesting for applications requiring high stability and high signal-to-noise ratio but lower energy electrons. For example, our group recently demonstrated that kHz laser-driven electron beams could be used to capture ultrafast structural dynamics in Silicon nano-membranes via electron diffraction with picosecond resolution. In these first experiments, electrons were injected in the density gradients located at the plasma exit, resulting in rather low energies in the 100 keV range. The electrons being nonrelativistic, the bunch duration quickly becomes picosecond long. Relativistic energies are required to mitigate space charge effects and maintain femtosecond bunches. In this paper, we will show very recent results where electrons are accelerated in laser-driven wakefields to relativistic energies, reaching up to 5 MeV at kHz repetition rate. The electron energy was increased by nearly two orders of magnitude by using single-cycle laser pulses of 3.5 fs, with only 2.5 mJ of energy. Using such short pulses of light allowed us to resonantly excite high amplitude and nonlinear plasma waves at high plasma density, ne=1.5-2×1020 cm-3, in a regime close to the blow-out regime. Electrons had a peaked distribution around 5 MeV, with a relative energy spread of 30 %. Charges in the 100's fC/shot and up to pC/shot where measured depending on plasma density. The electron beam was fairly collimated, 20 mrad divergence at Full Width Half Maximum. The results show remarkable stability of the beam parameters in terms of beam pointing and electron distribution. 3D PIC simulations reproduce the results very well and indicate that electrons are injected by the ionization of Nitrogen atoms, N5+ to N6

  3. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE.

    Science.gov (United States)

    Schmidt, J; Winnerl, S; Seidel, W; Bauer, C; Gensch, M; Schneider, H; Helm, M

    2015-06-01

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

  4. Confirmation of gravitationally induced attitude drift of spinning satellite Ajisai with Graz high repetition rate SLR data

    Science.gov (United States)

    Kucharski, Daniel; Kirchner, Georg; Otsubo, Toshimichi; Lim, Hyung-Chul; Bennett, James; Koidl, Franz; Kim, Young-Rok; Hwang, Joo-Yeon

    2016-02-01

    The high repetition rate Satellite Laser Ranging system Graz delivers the millimeter precision range measurements to the corner cube reflector panels of Ajisai. The analysis of 4599 passes measured from October 2003 until November 2014 reveals the secular precession and nutation of Ajisai spin axis due to the gravitational forces as predicted by Kubo (1987) with the periods of 35.6 years and 116.5 days respectively. The observed precession cone is oriented at RA = 88.9°, Dec = -88.85° (J2000) and has a radius of 1.08°. The radius of the nutation cone increases from 1.32° to 1.57° over the 11 years of the measurements. We also detect a draconitic wobbling of Ajisai orientation due to the 'motion' of the Sun about the satellite's orbit. The observed spin period of Ajisai increases exponentially over the investigated time span according to the trend function: T = 1.492277·exp(0.0148388·Y) [s], where Y is in years since launch (1986.6133), RMS = 0.412 ms. The physical simulation model fitted to the observed spin parameters proves a very low interaction between Ajisai and the Earth's magnetic field, what assures that the satellite's angular momentum vector will remain in the vicinity of the south celestial pole for the coming decades. The developed empirical model of the spin axis orientation can improve the accuracy of the range determination between the ground SLR systems and the satellite's center-of-mass (Kucharski et al., 2015) and enable the accurate attitude prediction of Ajisai for the laser time-transfer experiments (Kunimori et al., 1992).

  5. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xuling; He, Boqu; Zhao, Jian; Liu, Yang; Bai, Dongbi; Wang, Chao; Liu, Geping; Luo, Daping; Liu, Fengjiang; Li, Wenxue; Zeng, Heping, E-mail: hpzeng@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Yang, Kangwen; Hao, Qiang [Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2015-01-19

    We present a method for stabilizing the repetition rate of an erbium-doped all-fiber laser by inserting an electronic polarization controller (EPC) in the fiber laser cavity. The device exhibited good integration, low cost, and convenient operation. Such a repetition rate stabilization may facilitate an all-fiber laser comb system with high integration. The repetition rate was phase-locked to a Rb reference more than 72 h with a low feedback voltage applied to one channel of the EPC. The repetition rate was 74.6 MHz. The standard deviation and the repetition rate linewidth were 1.4 and 1.7 mHz, respectively.

  6. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing.

    Science.gov (United States)

    Tang, Qi-Jie; Yang, Dong-Xu; Wang, Jian; Feng, Yi; Zhang, Hong-Fei; Chen, Teng-Yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  7. 1  J, 0.5  kHz repetition rate picosecond laser.

    Science.gov (United States)

    Baumgarten, Cory; Pedicone, Michael; Bravo, Herman; Wang, Hanchen; Yin, Liang; Menoni, Carmen S; Rocca, Jorge J; Reagan, Brendan A

    2016-07-15

    We report the demonstration of a diode-pumped chirped pulse amplification Yb:YAG laser that produces λ=1.03  μm pulses of up to 1.5 J energy compressible to sub-5 ps duration at a repetition rate of 500 Hz (750 W average power). Amplification to high energy takes place in cryogenically cooled Yb:YAG active mirrors designed for kilowatt average power laser operation. This compact laser system will enable new advances in high-average-power ultrashort-pulse lasers and high-repetition-rate tabletop soft x-ray lasers. As a first application, the laser was used to pump a 400 Hz λ=18.9  nm laser.

  8. High-peak-power, high-repetition-rate intracavity optical parametric oscillator at 1.57μm

    Institute of Scientific and Technical Information of China (English)

    Yuye Wang; Degang Xu; Yizhong Yu; Wuqi Wen; Jingping Xiong; Peng Wang; Jianquan Yao

    2007-01-01

    We report a high-peak-power, high-repetition-rate diode-side-pumped Nd:YAG Q-switched intracavity optical parametric oscillator (IOPO) at 1.57μm with a type-Ⅱ non-critically phase-matched x-cut KTP crystal. The average power of 1.15 W at 1.57μm is obtained at 4.3-kHz repetition rate. The peak power of the pulses amounts to 33.4 kW with 8-ns duration. The average conversion efficiency from Q-switched 1.064-μm-wavelength input power to OPO signal output power is up to 10.5%.

  9. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing

    Science.gov (United States)

    Tang, Qi-jie; Yang, Dong-xu; Wang, Jian; Feng, Yi; Zhang, Hong-fei; Chen, Teng-yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  10. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Science.gov (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  11. Optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate

    Institute of Scientific and Technical Information of China (English)

    Duan Zuo-Liang; Chen Jian-Ping; Li Ru-Xin; Lin Li-Huang; Xu Zhi-Zhan

    2004-01-01

    We report the experiments on the optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate and with several hundreds micro-joule-energy. A 10m-long filament and its breakup and merging at the nonlinear focal region produced by modulational instability of femtosecond laser pulses in air are observed. A simple model based on the nonlinear Schrodinger equation coupled with multiphoton ionization law is presented to explain the several experimental results.

  12. High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers.

    Science.gov (United States)

    Klingebiel, Sandro; Wandt, Christoph; Skrobol, Christoph; Ahmad, Izhar; Trushin, Sergei A; Major, Zsuzsanna; Krausz, Ferenc; Karsch, Stefan

    2011-03-14

    We present a chirped pulse amplification (CPA) system based on diode-pumped Yb:YAG. The stretched ns-pulses are amplified and have been compressed to less than 900 fs with an energy of 200 mJ and a repetition rate of 10 Hz. This system is optically synchronized with a broadband seed laser and therefore ideally suited for pumping optical parametric chirped pulse amplification (OPCPA) stages on a ps-timescale.

  13. Neodymium glass laser with a pulse energy of 220 J and a pulse repetition rate of 0.02 Hz

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, A A; Kulagin, O V; Khazanov, Efim A; Shaykin, A A [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2013-07-31

    A compact neodymium glass laser with a pulse energy of 220 J and a record-high pulse repetition rate of 0.02 Hz (pulse duration 30 ns) is developed. Thermally induced phase distortions are compensated using wave phase conjugation. The integral depolarisation of radiation is decreased to 0.4% by using linear compensation schemes. The second harmonic of laser radiation can be used for pumping Ti : sapphire multipetawatt complexes. (letters)

  14. Subharmonic resonant optical excitation of confined acoustic modes in a free-standing semiconductor membrane at GHz frequencies with a high-repetition-rate femtosecond laser.

    Science.gov (United States)

    Bruchhausen, A; Gebs, R; Hudert, F; Issenmann, D; Klatt, G; Bartels, A; Schecker, O; Waitz, R; Erbe, A; Scheer, E; Huntzinger, J-R; Mlayah, A; Dekorsy, T

    2011-02-18

    We propose subharmonic resonant optical excitation with femtosecond lasers as a new method for the characterization of phononic and nanomechanical systems in the gigahertz to terahertz frequency range. This method is applied for the investigation of confined acoustic modes in a free-standing semiconductor membrane. By tuning the repetition rate of a femtosecond laser through a subharmonic of a mechanical resonance we amplify the mechanical amplitude, directly measure the linewidth with megahertz resolution, infer the lifetime of the coherently excited vibrational states, accurately determine the system's quality factor, and determine the amplitude of the mechanical motion with femtometer resolution.

  15. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system.

    Science.gov (United States)

    Ancona, A; Röser, F; Rademaker, K; Limpert, J; Nolte, S; Tünnermann, A

    2008-06-09

    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms.

  16. Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA).

    Science.gov (United States)

    Jia, Wei; Luo, Yiming; Yu, Jian; Liu, Bowen; Hu, Minglie; Chai, Lu; Wang, Chingyue

    2015-10-19

    The effects of femtosecond laser ablation, with 115 fs pulses at 1040 nm wavelength and 57 MHz repetition-rate, on the physical and chemical properties of polylactide (PLA) were studied in air and in water. The surface of the PLA sample ablated by high-repetition-rate femtosecond laser was analysed using field emission scanning electron microscopy, infrared spectroscopy, raman spectroscopy, as well as X-ray photoelectron spectroscopy. Compared with the experiments in the air at ambient temperature, melting resolidification was negligible for the experiments conducted under water. Neither in air nor under water did oxidation and crystallization process take place in the laser ablated surface. In addition, the intensity of some oxygen related peaks increased for water experiments, probably due to the hydrolysis. Meantime, the chemical shift to higher energies appeared in C1s XPS spectrum of laser processing in water. Interestingly, a large amount of defects were observed after laser processing in air, while no significant change was shown under water experiments. This indicates that thermal and mechanical effects by high-repetition-rate femtosecond laser ablation in water are quite limited, which could be even ignored.

  17. Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic.

    Science.gov (United States)

    Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-07-25

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.

  18. Design concept and performance considerations for fast high power semiconductor switching for high repetition rate and high power excimer laser

    Science.gov (United States)

    Goto, Tatsumi; Kakizaki, Kouji; Takagi, Shigeyuki; Satoh, Saburoh; Shinohe, Takashi; Ohashi, Hiromichi; Endo, Fumihiko; Okamura, Katsuya; Ishii, Akira; Teranishi, Tsuneharu; Yasuoka, Koichi

    1997-07-01

    A semiconductor switching power supply has been developed, in which a novel structure semiconductor device, metal-oxide-semiconductor assisted gate-triggered thyristor (MAGT) was incorporated with a single stage magnetic pulse compression circuit (MPC). The MAGT was specially designed to directly replace thyratrons in a power supply for a high repetition rate laser. Compared with conventional high power semiconductor switching devices, it was designed to enable a fast switching, retaining a high blocking voltage and to extremely reduce the transient turn-on power losses, enduring a higher peak current. A maximum peak current density of 32 kA/cm2 and a current density risetime rate di/dt of 142 kA/(cm2×μs) were obtained at the chip area with an applied anode voltage of 1.5 kV. A MAGT switching unit connecting 32 MAGTs in series was capable of switching on more than 25 kV-300 A at a repetition rate of 5 kHz, which, coupled with the MPC, was equivalent to the capability of a high power thyratron. A high repetition rate and high power XeCl excimer laser was excited by the power supply. The results confirmed the stable laser operation of a repetition rate of up to 5 kHz, the world record to our knowledge. An average output power of 0.56 kW was obtained at 5 kHz where the shortage of the total discharge current was subjoined by a conventional power supply with seven parallel switching thyratrons, simultaneously working, for the MAGT power supply could not switch a greater current than that switched by one thyratron. It was confirmed by those excitations that the MAGT unit with the MPC could replace a high power commercial thyratron directly for excimer lasers. The switching stability was significantly superior to that of the thyratron in a high repetition rate region, judging from the discharge current wave forms. It should be possible for the MAGT unit, in the future, to directly switch the discharge current within a rise time of 0.1 μs with a magnetic assist.

  19. Thermal distortion and birefringence in repetition-rate plasma electrode Pockels cell for high average power

    Institute of Scientific and Technical Information of China (English)

    Dingxiang Cao; Xiongjun Zhang; Wanguo Zheng; Shaobo He; Zhan Sui

    2007-01-01

    We numerically study thermally induced birefringence and distortion in plasma electrode Pockels cell based on KD*P as the electro-optic material. This device can repetitively operate under the heat capacity mode.Simulation results indicate that the excellent switching performances and low wave-front distortion are achieved within several tens seconds working time at average power in excess of 1 kW.

  20. The effect of laser repetition rate on the LASiS synthesis of biocompatible silver nanoparticles in aqueous starch solution

    Directory of Open Access Journals (Sweden)

    Zamiri R

    2013-01-01

    Full Text Available Reza Zamiri,1 Azmi Zakaria,1,* Hossein Abbastabar Ahangar,2 Majid Darroudi,3 Golnoosh Zamiri,1 Zahid Rizwan,1 Gregor PC Drummen4,* 1Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 4Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio&Nano-Solutions, Düsseldorf, Germany*These authors contributed to this work equallyAbstract: Laser ablation-based nanoparticle synthesis in solution is rapidly becoming popular, particularly for potential biomedical and life science applications. This method promises one pot synthesis and concomitant bio-functionalization, is devoid of toxic chemicals, does not require complicated apparatus, can be combined with natural stabilizers, is directly biocompatible, and has high particle size uniformity. Size control and reduction is generally determined by the laser settings; that the size and size distribution scales with laser fluence is well described. Conversely, the effect of the laser repetition rate on the final nanoparticle product in laser ablation is less well-documented, especially in the presence of stabilizers. Here, the influence of the laser repetition rate during laser ablation synthesis of silver nanoparticles in the presence of starch as a stabilizer was investigated. The increment of the repetition rate does not negatively influence the ablation efficiency, but rather shows increased productivity, causes a red-shift in the plasmon resonance peak of the silver–starch nanoparticles, an increase in mean particle size and size distribution, and a distinct lack of agglomerate formation. Optimal results were achieved at 10 Hz repetition rate, with a mean particle size of ~10 nm and a

  1. Oral-diadochokinetic rates for Hebrew-speaking school-age children: real words vs. non-words repetition.

    Science.gov (United States)

    Icht, Michal; Ben-David, Boaz M

    2015-02-01

    Oral-diadochokinesis (DDK) tasks are a common tool for evaluating speech disorders. Usually, these tasks involve repetitions of non-words. It has been suggested that repeating real words can be more suitable for preschool children. But, the impact of using real words with elementary school children has not been studied yet. This study evaluated oral-DDK rates for Hebrew-speaking elementary school children using non-words and real words. The participants were 60 children, 9-11 years old, with normal speech and language development, who were asked to repeat "pataka" (non-word) and "bodeket" (Hebrew real word). Data replicate the advantage generally found for real word repetition with preschoolers. Children produced real words faster than non-words for all age groups, and repetition rates were higher for the older children. The findings suggest that adding real words to the standard oral-DDK task with elementary school children may provide a more comprehensive picture of oro-motor function.

  2. High-repetition-rate compact excimer laser: UV light source for metrology, inspection, direct writing, and material testing

    Science.gov (United States)

    Huber, Heinz P.; Pflanz, Tobias; Goertler, Andreas; Schillinger, Helmut

    2003-06-01

    The discharge pumped excimer laser is a gas laser providing ultra violet (UV) radiation with well defined spectral, temporal and spatial properties. The fast development of excimer lasers in recent years has succeeded in designing very compact, table-top and turn-key systems delivering up to 20 W of radiation at 248 nm, 10 W at 193 nm and 2 W at 157 nm with repetition rates up to 2000 Hz (1, 5). Due to their short emission wavelength and compactness they are continuously replacing other light sources, like lamps and ion lasers, in applications as metrology, inspection, direct writing and material testing. Spatial and temporal beam properties of compact excimer lasers are very suitable to be utilized as illumination source in these applications. The compact excimer laser is combining the advantages of both, lamp and laser sources. It displays low temporal and spatial coherence, but has a narrow spectral emission range of a few hundred pm. The beam area is approximately 1/2 cm2, the divergence is in the order of 1 mrad. Variation of beam position and beam direction are negligible for most illumination applications. Compact excimer lasers are easy to integrate in measurement and inspection systems. Typically their footprint area is 0.25 m2. The power consumption is less than 1 kW, enabling single phase electrical supply and air cooling. State-of-the-art compact excimer lasers are compliant to all relevant SEMI regulations. The laser optics exceeds the life time of the laser tube, thus no optics cleaning and exchange is necessary in a whole life time of a laser tube of a few billion pulses (6).

  3. 3.7 GHz repetition rate operated narrow-bandwidth picosecond pulsed Yb fiber amplifier with an all-fiber multiplier

    Science.gov (United States)

    Wei, K. H.; Wen, R. H.; Guo, Y.

    2016-04-01

    A high power picosecond pulsed Yb fiber amplifier with a pulse repetition rate of 3.7 GHz is experimentally demonstrated. The seed is a gain switched distributed Bragg reflection (DBR) structured laser diode (LD) with a pulse duration of 130 ps and a repetition rate of 460 MHz. The pulse repetition rate is increased to 3.7 GHz by introducing an all-fiber multiplier, which is composed of four 2  ×  2 structured fiber couplers. The multiplied pulse train is amplified to 81 W through two stage Yb fiber amplifiers.

  4. Investigation on repetition rate and pulse duration influences on ablation efficiency of metals using a high average power Yb-doped ultrafast laser

    Directory of Open Access Journals (Sweden)

    Lopez J.

    2013-11-01

    Full Text Available Ultrafast lasers provide an outstanding processing quality but their main drawback is the low removal rate per pulse compared to longer pulses. This limitation could be overcome by increasing both average power and repetition rate. In this paper, we report on the influence of high repetition rate and pulse duration on both ablation efficiency and processing quality on metals. All trials have been performed with a single tunable ultrafast laser (350 fs to 10ps.

  5. End-pumped all solid-state high repetition rate Tm, Ho:LuLF laser

    Institute of Scientific and Technical Information of China (English)

    Shijiang Shu; Ting Yu; Junyan Hou; Rongtao Liu; Minjie Huang; Weibiao Chen

    2011-01-01

    @@ The characteristics of diode end-pumped Tm,Ho:LuLiF for continuous wave (CW) running and high pulse repetition frequency (PRF) Q-switched operation are illustrated. In the CW mode, 950-mW output power with a slope efficiency of 24% is obtained. In the Q-switched mode, output energy of 78 μJ under 10 kHz with a slope efficiency of 23% is achieved. The pulse stability, pulse width as a function of pump intensity, and spectral characteristics are also analyzed.%The characteristics of diode end-pumped Tm,Ho:LuLiF for continuous wave (CW) running and high pulse repetition frequency (PRF) Q-switched operation are illustrated. In the CW mode, 950-mW output power with a slope efficiency of 24% is obtained. In the Q-switched mode, output energy of 78μJ under 10 kHz with a slope efficiency of 23% is achieved. The pulse stability, pulse width as a function of pump intensity, and spectral characteristics are also analyzed.

  6. Long-range dependence in interest rates and monetary policy

    Science.gov (United States)

    Cajueiro, Daniel O.; Tabak, Benjamin M.

    2008-01-01

    This Letter studies the dynamics of Brazilian interest rates for short-term maturities. The Letter employs developed techniques in the econophysics literature and tests for long-range dependence in the term structure of these interest rates for the last decade. Empirical results suggest that the degree of long-range dependence has changed over time due to changes in monetary policy, specially in the short-end of the term structure of interest rates. Therefore, we show that it is possible to identify monetary arrangements using these techniques from econophysics.

  7. Long-range dependence in Interest Rates and Monetary Policy

    CERN Document Server

    Cajueiro, D O; Cajueiro, Daniel O.; Tabak, Benjamin M.

    2006-01-01

    This paper studies the dynamics of Brazilian interest rates for short-term maturities. The paper employs developed techniques in the econophysics literature and tests for long-range dependence in the term structure of these interest rates for the last decade. Empirical results suggest that the degree of long-range dependence has changed over time due to changes in monetary policy, specially in the short-end of the term structure of interest rates. Therefore, we show that it is possible to identify monetary arrangements using these techniques from econophysics.

  8. Efficient intracavity frequency doubling of a high-repetition-rate diode-pumped Nd:YAG laser.

    Science.gov (United States)

    Hanson, F; Poirier, P

    1994-10-01

    Efficient operation of a pulsed, high-repetition-rate diode-pumped and intracavity frequency-doubled Nd:YAG laser is reported. A 3-mm-diameter laser rod was side-pumped with a 5-bar stack of high-duty-cycle 1-cm diodearrays. The average Q-switched power at 1.06microum was 3.8 W at 1.33 kH(z), and more than 4 W at 0.532 ,microm wasobtained through intracavity frequency doubling with LiB(3)O(5).

  9. Femtosecond laser ablation: Experimental study of the repetition rate influence on inductively coupled plasma mass spectrometry performance

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fernandez, Alberto [Centro de Fisicoquimica. Escuela de Quimica, Universidad Central de Venezuela, Caracas 1020-A (Venezuela); Oropeza, Dayana; Mao Xianglei [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Russo, Richard E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: RERusso@lbl.gov

    2008-02-15

    This paper demonstrates the feasibility of performing bulk chemical analysis based on laser ablation for good lateral resolution with only nominal mass ablated per pulse. The influence of repetition rate (1-1000 Hz) and scan speed (1-200 {mu}m/s) using a low energy (30 {mu}J) and a small spot size ({approx} 10 {mu}m) UV-femtosecond laser beam was evaluated for chemical analysis of silica glass samples, based on laser ablation sampling and inductively coupled plasma mass spectrometry (ICP-MS). Accuracy to approximately 14% and precision of 6% relative standard deviation (RSD) were measured.

  10. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses

    Science.gov (United States)

    Gnilitskyi, Iaroslav; Gruzdev, Vitaly; Bulgakova, Nadezhda M.; Mocek, Tomáš; Orazi, Leonardo

    2016-10-01

    Silicon is one of the most abundant materials which is used in many areas of modern research and technology. A variety of those applications require surface nanopatterning with minimum structure defects. However, the high-quality nanostructuring of large areas of silicon surface at industrially acceptable speed is still a challenge. Here, we report a rapid formation of highly regular laser-induced periodic surface structures (HR-LIPSS) in the regime of strong ablation by infrared femtosecond laser pulses at sub-MHz repetition rate. Parameters of the laser-surface interactions and obtained experimental results suggest an important role of electrostatically assisted bond softening in initiating the HR-LIPSS formation.

  11. A Compact, Transportable, Microchip-Based System for High Repetition Rate Production of Bose-Einstein Condensates

    CERN Document Server

    Farkas, Daniel M; Salim, Evan A; Segal, Stephen R; Squires, Matthew B; Anderson, Dana Z

    2009-01-01

    We present a compact, transportable system that produces Bose-Einstein condensates (BECs) near the surface of an integrated atom microchip. The system occupies a volume of 0.4 m^3 and operates at a repetition rate as high as 0.3 Hz. Evaporative cooling in a chip trap with trap frequencies of several kHz leads to nearly pure condensates containing 1.9x10^4 87Rb atoms. Partial condensates are observed at a temperature of 1.58(8) \\mu K, close to the theoretical transition temperature of 1.1 \\mu K.

  12. Performance Optimization of a High-Repetition-Rate KrF Laser Plasma X-Ray Source for Microlithography.

    Science.gov (United States)

    Bukerk, F; Louis, E; Turcu, E C; Tallents, G J; Batani, D

    1992-01-01

    In order to develop a high-intensity laser plasma x-ray source appropriate for industrial application of x-ray lithography, experiments have been carried out using a high-repetition-rate (up to 40 Hz) excimer laser (249 nm, 300 mJ) with a power density of 2 × 1013 W/ cm2 in the laser focus. In this study emphasis is given to remedying specific problems inherent in operating the laser plasma x-ray source at high repetition rates and in its prolonged operation. Two different methods of minimizing the production of target debris are investigated. First, the use of helium as a quenching gas results in a reduction of the amount of atomic debris particles by more than two orders of magnitude with negligible x-ray absorption. Second, a tape target as opposed to a solid target reduces the production of larger debris particles by a further factor of 100. Remaining debris is stopped by an aluminized plastic or beryllium filter used to avoid exposure of the resist by plasma ultraviolet radiation. The x-ray source has been used to image x-ray transmission mask structures down to 0.3 μm onto general purpose x-ray photo-resist. Results have been analyzed with SEM. The x-ray emission spectrum of the repetitive laser plasmas created from an iron target has been recorded and the conversion efficiency of the laser light into x-rays that contribute to exposure of the resist was measured to be 0.3% over 2π sr.

  13. Tunable Yb-doped fiber laser based on a FBG array and a theta ring resonator ensuring a constant repetition rate (Conference Presentation)

    Science.gov (United States)

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias L.

    2017-03-01

    Fiber lasers provide the perfect basis to develop broadly tunable lasers with high efficiency, excellent beam quality and user-friendly operation as they are increasingly demanded by applications in biophotonics and spectroscopy. Recently, a novel tuning scheme has been presented using fiber Bragg grating (FBG) arrays as fiber-integrated spectral filters containing many standard FBGs with different feedback wavelengths. Based on the discrete spectral sampling, these reflective filters uniquely enable tailored tuning ranges and broad bandwidths to be implemented into fiber lasers. Even though the first implementation of FBG arrays in pulsed tunable lasers based on a sigma ring resonators works with good emission properties, the laser wavelength is tuned by a changing repetition rate, which causes problems with applications in synchronized environments. In this work, we present a modified resonator scheme to maintain a constant repetition rate over the tuning range and still benefit from the advantages of FBG arrays as filters. With a theta ring cavity and two counter propagating filter passes, the distributed feedback of the FBG array is compensated resulting in a constant pulse round trip time for each filter wavelength. Together with an adapted gating scheme controlling the emission wavelength with a modulator, the tuning principle has been realized based on a Ytterbium-doped fiber laser. We present first experimental results demonstrating a tuning range of 25nm, high signal contrast and pulse durations of about 10ns. With the prospect of tailored tuning ranges, this pulsed fiber-integrated laser may be the basis to tackle challenging applications in spectroscopy.

  14. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate

    Science.gov (United States)

    Borisov, V. M.; El'tsov, A. V.; Khristoforov, O. B.

    2015-08-01

    An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al2O3 ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energy is 160 mJ pulse-1, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ <= 0.7%) is achieved using an all-solid-state pump system.

  15. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  16. Monolithic all-fiber repetition-rate tunable gain-switched single-frequency Yb-doped fiber laser.

    Science.gov (United States)

    Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu

    2016-12-12

    We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.

  17. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O.

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

  18. Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.; Feng, Yiping

    2017-04-18

    Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energy depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. By performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.

  19. Silicon chip based wavelength conversion of ultra-high repetition rate data signals

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    We report on all-optical wavelength conversion of 160, 320 and 640 Gbit/s line-rate data signals using four-wave mixing in a 3.6 mm long silicon waveguide. Bit error rate measurements validate the performance within FEC limits.......We report on all-optical wavelength conversion of 160, 320 and 640 Gbit/s line-rate data signals using four-wave mixing in a 3.6 mm long silicon waveguide. Bit error rate measurements validate the performance within FEC limits....

  20. Laser ablation efficiency during the production of Ag nanoparticles in ethanol at a low pulse repetition rate (1-10 Hz)

    Science.gov (United States)

    Valverde-Alva, M. A.; García-Fernández, T.; Esparza-Alegría, E.; Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R.; de la Mora, M. B.; Márquez-Herrera, C. E.; Sánchez Llamazares, J. L.

    2016-10-01

    We studied the effect of the repetition rate of laser pulses (RRLP) in the range from 1-10 Hz in the production of silver nanoparticles (Ag-NPs) by laser ablation in ethanol. Laser pulses with a duration of 7 ns, a wavelength of 1064 nm and an energy of 60 mJ were used to ablate a 99.99% pure silver target immersed in 10 ml of ethanol. Transmittance analysis and atomic absorption spectroscopy were used to study the silver concentration in the colloidal solutions. The ablation process was studied by measuring the transmission of the laser pulses through the colloid. It is shown that for a fixed number of laser pulses (NLP) the ablation efficiency, in terms of the ablated silver mass per laser pulse, increases with the RRLP. This result contradicts what had previously been established in the literature.

  1. μJ-level, kHz-repetition rate femtosecond fiber-CPA system at 1555 nm

    Science.gov (United States)

    Sobon, Grzegorz; Kaczmarek, Pawel; Gluszek, Aleksander; Sotor, Jaroslaw; Abramski, Krzysztof M.

    2015-07-01

    In this work, we demonstrate a high-power, fiber-based chirped pulse amplification (CPA) setup utilizing Er- and Er/Yb-doped fibers, operating at 1555 nm central wavelength. The integrated all-fiber pulse-picker allows to reduce the repetition frequency down to the kHz-range, which enables generation of sub-picosecond pulses with energies above 2 μJ and pulse peak power exceeding 1 MW. The system utilizes an Er/Yb co-doped large mode area fiber in the final amplification stage. Thanks to the used mode-field adapters and fiber-based components, the setup is almost fully fiberized, except the bulk grating pulse compressor. In order to provide compactness and simplicity, the compressor was designed using dense 1100 lines per millimeter gratings, that allow to keep the small grating separation.

  2. Age related reference ranges for respiration rate and heart rate from 4 to 16 years

    OpenAIRE

    Wallis, L; Healy, M.; Undy, M; Maconochie, I

    2005-01-01

    Background: Clinical vital signs in children (temperature, heart rate, respiration rate, and blood pressure) are an integral part of clinical assessment of degree of illness or normality. Despite this, only blood pressure and temperature have a reliable evidence base. The accepted ranges of heart and respiration rate vary widely.

  3. High Repetition-Rate Wakefield Electron Source Generated by Few-millijoule, 30 femtosecond Laser Pulses on a Density Downramp

    CERN Document Server

    He, Z -H; Easter, J H; Krushelnick, K; Nees, J A; Thomas, A G R

    2012-01-01

    We report on an experimental demonstration of laser wakefield electron acceleration using a sub-TW power laser by tightly focusing 30-fs laser pulses with only 8 mJ pulse energy on a 100 \\mu m scale gas target. The experiments are carried out at an unprecedented 0.5 kHz repetition rate, allowing "real time" optimization of accelerator parameters. Well-collimated and stable electron beams with a quasi-monoenergetic peak in excess of 100 keV are measured. Particle-in-cell simulations show excellent agreement with the experimental results and suggest an acceleration mechanism based on electron trapping on the density downramp, due to the time varying phase velocity of the plasma waves.

  4. Octave-spanning spectrum of femtosecond Yb:fiber ring laser at 528 MHz repetition rate in microstructured tellurite fiber.

    Science.gov (United States)

    Wang, Guizhong; Jiang, Tongxiao; Li, Chen; Yang, Hongyu; Wang, Aimin; Zhang, Zhigang

    2013-02-25

    The octave-spanning spectrum was generated in a tellurite glass based microstructured fiber pumped by a 528 MHz repetition rate Yb:fiber ring laser without amplification. The laser achieved 40% output optical-to-optical efficiency with the output power of 410 mW. By adjusting the grating pair in the cavity, this oscillator can work at different cavity dispersion regimes with the shortest dechirped pulse width of 46 fs. The output pulses were then launched into a high-nonlinearity tellurite fiber, which has the zero-dispersion wavelength at ~1 μm. The high nonlinearity coefficient (1348 km⁻¹W⁻¹) and the matched zero-dispersion wavelength with pump laser enable the octave-spanning supercontinuum generated from 750 nm to 1700 nm with the coupled pulse energy above 10 pJ.

  5. Development of a 16 kHz repetition rate, 110 W average power copper HyBrID laser

    Indian Academy of Sciences (India)

    R Biswal; P K Agrawal; G K Mishra; S V Nakhe; S K Dixit; J K Mittal

    2010-11-01

    This paper presents the design and performance analysis of an indigenously developed 110 W average output power copper HyBrID laser operating at 16 kHz pulse repetition rate. The laser active medium was confined within a fused silica tube of ∼ 6 cm diameter and ∼ 200 cm active length. An in-house developed high-power (∼ 10 kW) solid-state pulser was used as the electrical excitation source. A simple estimation of deposited electrical power, at the laser head, was carried out and based on it, the laser tube efficiency was found to be 2.9% at 70 W and 2.2% at 110 W laser power levels.

  6. Periodic disruptions induced by high repetition rate femtosecond pulses on magnesium-oxide-doped lithium niobate surfaces

    Science.gov (United States)

    Zhang, Shuanggen; Kan, Hongli; Zhai, Kaili; Ma, Xiurong; Luo, Yiming; Hu, Minglie; Wang, Qingyue

    2017-02-01

    In this paper, we demonstrate the periodic disruption formation on magnesium-oxide-doped lithium niobate surfaces by a femtosecond fiber laser system with wavelength and repetition rate of 1040 nm and 52 MHz, respectively. Three main experimental conditions, laser average power, scanning speed, and orientation of sample were systematically studied. In particular, the ablation morphologies of periodic disruptions under different crystal orientations were specifically researched. The result shows that such disruptions consisting of a bamboo-like inner structure appears periodically for focusing on the surface of X-, Y- and Z-cut wafers, which are formed by a rapid quenching of the material. Meanwhile, due to the anisotropic property, the bamboo-like inner structures consist of a cavity only arise from X- and Z-cut orientation.

  7. Ultrastable fiber amplifier delivering 145-fs pulses with 6-μJ energy at 10-MHz repetition rate.

    Science.gov (United States)

    Wunram, Marcel; Storz, Patrick; Brida, Daniele; Leitenstorfer, Alfred

    2015-03-01

    A high-power femtosecond Yb:fiber amplifier operating with exceptional noise performance and long-term stability is demonstrated. It generates a 10-MHz train of 145-fs pulses at 1.03 μm with peak powers above 36 MW. The system features a relative amplitude noise of 1.5·10⁻⁶  Hz(-1/2) at 1 MHz and drifts of the 60-W average power below 0.3% over 72 hours of continuous operation. The passively phase-stable Er:fiber seed system provides ultrabroadband pulses that are synchronized at a repetition rate of 40 MHz. This combination aims at new schemes for sensitive experiments in ultrafast scientific applications.

  8. The readout of the LHC beam luminosity monitor: accurate shower energy measurements at a 40 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Manfredi, P.F. E-mail: pfmanfredi@lbl.gov; Ratti, L.; Speziali, V.; Traversi, G.; Manghisoni, M.; Re, V.; Denes, P.; Placidi, M.; Ratti, A.; Turner, W.C.; Datte, P.S.; Millaud, J.E

    2004-02-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  9. The readout of the LHC beam luminosity monitor Accurate shower energy measurements at a 40 MHz repetition rate

    CERN Document Server

    Manfredi, P F; Speziali, V; Traversi, G; Manghisoni, M; Re, V; Denes, P; Placidi, Massimo; Ratti, A; Turner, W C; Datte, P S; Millaud, J E

    2004-01-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  10. Experimental and theoretical study of the laser micro-machining of glass using high-repetition-rate ultrafast laser

    Science.gov (United States)

    Yashkir, Yuri; Liu, Qiang

    2006-04-01

    We present a systematic study of the ultrafast laser micro-machining of glass using a Ti:Spp laser with moderate pulse energy (<5 μJ) at a high repetition rate (50 kHz). Optimal conditions were identified for high resolution surface laser etching, and via drilling. Several practical applications were developed: glass templates for micro fluid diffraction devices, phase gratings for excimer laser projection techniques, micro fluid vertical channel-connectors, etc. It is demonstrated that the interaction of ultrafast laser pulses with glass combines several different processes (direct ablation, explosive material ejection, and thermal material modification). A dynamic numerical model was developed for this process. It was successfully used for modelling of laser micro-machining with arbitrary 3D translations of the target.

  11. Miniaturized two-stack Blumlein pulser with a variable repetition-rate for non-thermal irreversible-electroporation experiments

    Science.gov (United States)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Jeong, Jin-Young; Hong, Dongpyo; Park, Seunghyuk; Park, Gun-Sik

    2017-01-01

    Non-thermal irreversible electroporation (NTIRE) to avoid thermal damage to cells during intense DC ns pulsed electric fields (nsPEFs) is a recent modality for medical applications. This mechanism, related to bioelectrical dynamics of the cell, is linked to the effect of a DC electric field and a threshold effect with an electrically stimulated membrane for the charge distribution in the cell. To create the NTIRE condition, the pulse width of the nsPEF should be shorter than the charging time constant of the membrane related to the cell radius, membrane capacitance, cytoplasm resistivity, and medium resistivity. It is necessary to design and fabricate a very intense nanosecond DC electric field pulser that is capable of producing voltages up to the level of 100 kV/cm with an artificial pulse width (˜ns) with controllable repetition rates. Many devices to generate intense DC nsPEF using various pulse-forming line technologies have been introduced thus far. However, the previous Blumlein pulse-generating devices are clearly inefficient due to the energy loss between the input voltage and the output voltage. An improved two-stage stacked Blumlein pulse-forming line can overcome this limitation and decrease the energy loss from a DC power supply. A metal oxide silicon field-effect transistor switch with a fast rise and fall time would enable a high repetition rate (max. 100 kHz) and good endurance against very high voltages (DC ˜ 30 kV). The load is designed to match the sample for exposure to cell suspensions consisting of a 200 Ω resistor matched with a Blumlein circuit and two electrodes without the characteristic RC time effect of the circuit (capacitance =0.174 pF).

  12. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    Science.gov (United States)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  13. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    Science.gov (United States)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2014-02-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  14. A 600 VOLT MULTI-STAGE, HIGH REPETITION RATE GAN FET SWITCH

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, D. [Fermilab; Pfeffer, H. [Fermilab; Saewert, G. [Fermilab

    2016-10-05

    Using recently available GaN FETs, a 600 Volt three- stage, multi-FET switch has been developed having 2 nanosecond rise time driving a 200 Ohm load with the potential of approaching 30 MHz average switching rates. Possible applications include driving particle beam choppers kicking bunch-by-bunch and beam deflectors where the rise time needs to be custom tailored. This paper reports on the engineering issues addressed, the design approach taken and some performance results of this switch.

  15. Tunable repetition rate VECSEL for resonant acoustic-excitation of nanostructures

    Science.gov (United States)

    Chen Sverre, T.; Head, C. R.; Turnbull, A. P.; Shaw, E. A.; Tropper, A. C.; Muskens, O. L.

    2016-03-01

    We report a passively mode-locked InGaAs-quantum well VECSEL, emitting a constant pulse train at an average output power of 18 mW and emission wavelength of 1035 nm, with a continuously tunable pulse repetitionfrequency (PRF) between 0.88 - 1.88 GHz. Pulse duration was 230 fs over 80% of that range. Here we propose a technique making use of the demonstrated VECSEL PRF tunability for a resonant frequency-domain pumpprobe spectroscopic technique for acoustic interrogation of nanostructures. Simulation of suitable GHz acoustic resonators to demonstrate this technique is described.

  16. Femtosecond laser bone ablation with a high repetition rate fiber laser source.

    Science.gov (United States)

    Mortensen, Luke J; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C; Xu, Chris; Intini, Giuseppe; Lin, Charles P

    2015-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process.

  17. Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses.

    Science.gov (United States)

    Chen, Wei-Jen; Eaton, Shane M; Zhang, Haibin; Herman, Peter R

    2008-07-21

    A femtosecond fiber laser was applied to fabricate broadband directional couplers inside bulk glass for general power splitting application in the 1250 to 1650-nm wavelength telecom spectrum. The broadband response was optimized over the 400-nm bandwidth by tailoring the coupling strength and the waveguide interaction length to balance the differing wavelength dependence of the straight interaction and bent transition regions. High spatial finesse of the femtosecond-laser writing technique enabled close placement (approxiamtely 6 microm) of adjacent waveguides that underpinned the wavelength-flattened broadband response at any coupling ratio in the 0% to 100% range. The spectral responses were well-represented by coupled mode theory, permitting simple design and implementation of broadband couplers for bulk 3D optical circuit integration.

  18. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    Science.gov (United States)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  19. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  20. High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping

    Science.gov (United States)

    Sanchez, Daniel; Biegert, Jens; Matras, Guillaume; Simon-Boisson, Christophe

    2017-02-01

    The development of coherent light sources with emission in the mid-IR is currently undergoing a remarkable revolution. The mid-IR spectral range has always been of tremendous interest, mainly to spectroscopists, due to the ability of mid-IR light to access rotational and vibrational resonances of molecules which give rise to superb sensitivity upon optical probing [1-3]. Previously, high energy resolution was achieved with narrowband lasers or parametric sources, but the advent of frequency comb sources has revolutionized spectroscopy by providing high energy resolution within the frequency comb structure of the spectrum and at the same time broadband coverage and short pulse duration [4-6]. Such carrier to envelope phase (CEP) controlled light waveforms, when achieved at ultrahigh intensity, give rise to extreme effects such as the generation of isolated attosecond pulses in the vacuum to extreme ultraviolet range (XUV) [7]. Motivated largely by the vast potential of attosecond science, the development of ultraintense few-cycle and CEP stable sources has intensified [8], and it was recognized that coherent soft X-ray radiation could be generated when driving high harmonic generation (HHG) with long wavelength sources [9-11]. Recently, based on this concept, the highest waveform controlled soft X-ray flux [12] and isolated attosecond pulse emission at 300 eV [13] was demonstrated via HHG from a 1850 nm, sub-2-cycle source [14]. Within strong field physics, long wavelength scaling may lead to further interesting physics such as the direct reshaping of the carrier field [15], scaling of quantum path dynamics [16], the breakdown of the dipole approximation [17] or direct laser acceleration [18]. The experimental development of long wavelength light sources therefore holds great promise in many fields of science and will lead to numerous applications beyond strong field physics and attosecond science. In this paper, we present results about a high energy picosecond

  1. Strong modulation of ectopic focus as a mechanism of repetitive interpolated ventricular bigeminy with heart rate doubling.

    Science.gov (United States)

    Takayanagi, Kan; Nakahara, Shiro; Toratani, Noritaka; Chida, Ryuji; Kobayashi, Sayuki; Sakai, Yoshihiko; Takeuchi, Akihiro; Ikeda, Noriaki

    2013-10-01

    Repetitive interpolated ventricular bigeminy (RIVB) can introduce a doubling of the ventricular rate. To clarify the mechanism of RIVB, we hypothesized that it was introduced by a strong modulation of the ventricular automatic focus. RIVB, defined as more than 7 bigeminy events, was detected by instantaneous heart rate and bigeminy interval (BI) tachograms in 1450 successive patients with frequent ventricular premature contractions (≥3000 per day). Postextrasystolic interval bigeminy interval curves were plotted to determine the degree of modulation. Mean sinus cycle length bigeminy interval curves were plotted for selection. RIVB was simulated by using a computer-based parasystole model. RIVB was observed in 7 patients (age 60 ± 16 years; 2 men and 5 women) with a heart rate of 58.2 ± 6.5 beats/min during a rest period both during the day and at night. The tachograms disclosed the onset of the RIVB with a doubled ventricular rate to 112.3 ± 8.5 beats/min. On the postextrasystolic interval bigeminy interval curves, compensatory bigeminy and interpolated bigeminy constituted overlapping regression lines with slopes close to 1.00 and RIVB was located in the lower left portion. RIVB lasting for up to 3 hours was quickly detected by mean sinus cycle length bigeminy interval curve. The PQ interval immediately after RIVB was prolonged in comparison with baseline (0.18 ± 0.02 to 0.21 ± 0.02 seconds; P heart rate. Our findings support the hypothesis that RIVB was introduced by strongly modulated ventricular pacemaker accelerated by an intervening normal QRS. © 2013 Heart Rhythm Society. All rights reserved.

  2. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source

    Science.gov (United States)

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C.; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

  3. Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror.

    Science.gov (United States)

    Gerhard, Christoph; Druon, Frédéric; Georges, Patrick; Couderc, Vincent; Leproux, Philippe

    2006-08-07

    In this paper, we present the mode-locked operation of an ultra-robustly stabilised Nd:GdVO(4) laser with low repetition rate by combining quadratic polarisation switching and a semiconductor saturable absorber mirror (SESAM). In addition, similar experiment was also done with Nd:YVO(4). For Nd:GdVO(4), 16-ps pulses at 1063 nm with a repetition rate of 3.95 MHz have been obtained for a laser average output power of 1.4 W. For Nd:YVO(4), the performance was 2.5 W of average power for 15-ps pulses at 1064 nm. Moreover, we demonstrate experimentally the advantage of combining these two passive mode locking techniques in terms of stability ranges. We show how the dual mode-locking technique is crucial to obtain a stable and long-term mode-locked regime in our case of a diode-pumped Nd:GdVO(4) laser operating at low repetition rate and more generally how this dual mode-locking technique improves the stability range of the mode-locked operation giving more flexibility on different parameters.

  4. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  5. Synthesis, characterization and evaluation of CO-oxidation catalysts for high repetition rate CO2 TEA lasers

    Science.gov (United States)

    Moser, Thomas P.

    1990-06-01

    An extremely active class of noble metal catalysts supported on titania was developed and fabricated at Hughes for the recombination of oxygen (O2) and carbon monoxide (CO) in closed-cycle CO2 TEA lasers. The incipient wetness technique was used to impregnate titania and alumina pellets with precious metals including platinum and palladium. In particular, the addition of cerium (used as an oxygen storage promoter) produced an extremely active Pt/Ce/TiO2 catalyst. By comparison, the complementary Pt/Ce/ gamma-Al2O3 catalyst was considerably less active. In general, chloride-free catalyst precursors proved critical in obtaining an active catalyst while also providing uniform metal distributions throughout the support structure. Detailed characterization of the Pt/Ce/TiO2 catalyst demonstrated uniform dendritic crystal growth of the metals throughout the support. Electron spectroscopy for Chemical Analysis (ESCA) analysis was used to characterize the oxidation states of Pt, Ce and Ti. The performance of the catalysts was evaluated with an integral flow reactor system incorporating real time analysis of O2 and CO. With this system, the transient and steady-state behavior of the catalysts were evaluated. The kinetic evaluation was complemented by tests in a compact, closed-cycle Hughes CO2 TEA laser operating at a pulse repetition rate of 100 Hz with a catalyst temperature of 75 to 95 C. The Pt/Ce/TiO2 catalyst was compatible with a C(13)O(16)2 gas fill.

  6. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.

    Science.gov (United States)

    Butt, Muhammad Ali; Nguyen, Huu-Dat; Ródenas, Airán; Romero, Carolina; Moreno, Pablo; Vázquez de Aldana, Javier R; Aguiló, Magdalena; Solé, Rosa Maria; Pujol, Maria Cinta; Díaz, Francesc

    2015-06-15

    We report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.5x10(-3) for TE polarized light, while maintaining the negative index change of around -1x10(-2) for TM polarized light. In order to evaluate the local refractive index changes we have followed a multistep procedure: We have first characterized the waveguide cross-sections by means of Raman micro-mapping to access the lattice micro-modifications and their spatial extent. Secondly we have modeled the waveguides following the modified region sizes obtained by micro-Raman with finite element method software to obtain a best match between the experimental propagation modes and the simulated ones. Furthermore we also report the fabrication of Mach-Zehnder structures and the evaluation of propagation losses.

  7. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.; Li, M. H.; Yan, W. C.; Ma, Y.; Zhao, J. R.; Li, Y. F.; Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Guo, X. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Optoelectronics, Beijing Institute of Technology, Beijing 100081 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Y. P.; Zhang, J. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-11-15

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10{sup 10} photons sr{sup −1} s{sup −1}, corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  8. Vernier effect within a versatile femtosecond optical parametric oscillator for broad-tunable, high-repetition-rate oscillator

    CERN Document Server

    Jin, Yuwei; Harren, Frans J M; Mandon, Julien

    2015-01-01

    Within a synchronously pumped optical parametric oscillator (SPOPO), the inherent synchronism between the pump and the resonating signal is the magic to partly transfer the coherence property of the pump to the signal. In our demonstration, Vernier effect is observed within a femtosecond SPOPO by simply detuning the FSR of the cavity, generating signal pulses at tunable repetition rate from several GHz to 1 THz with a maximum 22.58 nm full width half maximum (FWHM) bandwidth supporting 160 fs pulses covering the C- and L-bands of the telecom wavelength region. This technique offers a simple method of active ?filtering of dense frequency comb lines instead of using Fabry-P?erot (FP) cavities with complex locking system for astro-comb generation. Beside, as a promising source for frequency combs with tunable and large comb-spacing, it offers potential opportunities for applications such as high speed coherent data transmission, line-by-line pulse shaping, optical clocks and precision metrology.

  9. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    Science.gov (United States)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  10. Targeted capture sequencing in whitebark pine reveals range-wide demographic and adaptive patterns despite challenges of a large, repetitive genome

    Directory of Open Access Journals (Sweden)

    John eSyring

    2016-04-01

    Full Text Available Whitebark pine (Pinus albicaulis inhabits an expansive range in western North America, and it is a keystone species of subalpine environments. Whitebark is susceptible to multiple threats – climate change, white pine blister rust, mountain pine beetle, and fire exclusion – and it is suffering significant mortality range-wide, prompting the tree to be listed as ‘globally endangered’ by the International Union for Conservation of Nature (IUCN and ‘endangered’ by the Canadian government. Conservation collections (in situ and ex situ are being initiated to preserve the genetic legacy of the species. Reliable, transferrable, and highly variable genetic markers are essential for quantifying the genetic profiles of seed collections relative to natural stands, and ensuring the completeness of conservation collections. We evaluated the use of hybridization-based target capture to enrich specific genomic regions from the 30+ GB genome of whitebark pine, and to evaluate genetic variation across loci, trees, and geography. Probes were designed to capture 7,849 distinct genes, and screening was performed on 48 trees. Despite the inclusion of repetitive elements in the probe pool, the resulting dataset provided information on 4,452 genes and 32% of targeted positions (528,873 bp, and we were able to identify 12,390 segregating sites from 47 trees. Variations reveal strong geographic trends in heterozygosity and allelic richness, with trees from the southern Cascade and Sierra Range showing the greatest distinctiveness and differentiation. Our results show that even under non-optimal conditions (low enrichment efficiency; inclusion of repetitive elements in baits, targeted enrichment produces high quality, codominant genotypes from large genomes. The resulting data can be readily integrated into management and gene conservation activities for whitebark pine, and have the potential to be applied to other members of 5-needle pine group (Pinus subsect

  11. Sub-picosecond Graphene-based Harmonically Mode-Locked Fiber Laser With Repetition Rates up to 2.22 GHz

    Directory of Open Access Journals (Sweden)

    Abramski K.M.

    2013-03-01

    Full Text Available Passive harmonic-mode locking (PHML of erbium-doped fiber laser with multilayer graphene is presented. The laser could operate at several harmonics (from 2nd to 21st of the fundamental repetition frequency of the ring resonator (106 MHz. The highest achieved repetition rate was 2.22 GHz (which corresponds to the 21st harmonic with 900 fs pulse duration and 50 dB of the supermode noise suppression. The saturable absorber was formed by multilayer graphene, mechanically exfoliated from pure graphite block through Scotch-tape and deposited on the fiber ferrule.

  12. Ranging with frequency-shifted feedback lasers: from μm-range accuracy to MHz-range measurement rate

    Science.gov (United States)

    Kim, J. I.; Ogurtsov, V. V.; Bonnet, G.; Yatsenko, L. P.; Bergmann, K.

    2016-12-01

    We report results on ranging based on frequency-shifted feedback (FSF) lasers with two different implementations: (1) An Ytterbium-fiber system for measurements in an industrial environment with accuracy of the order of 1 μm, achievable over a distance of the order of meters with potential to reach an accuracy of better than 100 nm; (2) A semiconductor laser system for a high rate of measurements with an accuracy of 2 mm @ 1 MHz or 75 μm @ 1 kHz and a limit of the accuracy of ≥10 μm. In both implementations, the distances information is derived from a frequency measurement. The method is therefore insensitive to detrimental influence of ambient light. For the Ytterbium-fiber system, a key feature is the injection of a single-frequency laser, phase modulated at variable frequency Ω, into the FSF-laser cavity. The frequency Ω_{max} at which the detector signal is maximal yields the distance. The semiconductor FSF-laser system operates without external injection seeding. In this case, the key feature is frequency counting that allows convenient choice of either accuracy or speed of measurements simply by changing the duration of the interval during which the frequency is measured by counting.

  13. Ranging with frequency-shifted feedback lasers: from $\\mu$m-range accuracy to MHz-range measurement rate

    CERN Document Server

    Kim, J I; Bonnet, G; Yatsenko, L P; Bergmann, K

    2016-01-01

    We report results on ranging based on frequency shifted feedback (FSF) lasers with two different implementations: (1) An Ytterbium-fiber system for measurements in an industrial environment with accuracy of the order of 1 $\\mu$m, achievable over a distance of the order of meters with potential to reach an accuracy of better than 100 nm; (2) A semiconductor laser system for a high rate of measurements with an accuracy of 2 mm @ 1 MHz or 75 $\\mu$m @ 1 kHz and a limit of the accuracy of $\\geq $ 10 $\\mu$m. In both implementations, the distances information is derived from a frequency measurement. The method is therefore insensitive to detrimental influence of ambient light. For the Ytterbium-fiber system a key feature is the injection of a single frequency laser, phase modulated at variable frequency $\\Omega$, into the FSF-laser cavity. The frequency $\\Omega_{max}$ at which the detector signal is maximal yields the distance. The semiconductor FSF laser system operates without external injection seeding. In this c...

  14. 10  GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror.

    Science.gov (United States)

    Resan, B; Kurmulis, S; Zhang, Z Y; Oehler, A E H; Markovic, V; Mangold, M; Südmeyer, T; Keller, U; Hogg, R A; Weingarten, K J

    2016-05-10

    Semiconductor saturable absorber mirror (SESAM) modelocked high pulse repetition rate (≥10  GHz) diode-pumped solid-state lasers are proven as an enabling technology for high data rate coherent communication systems owing to their low noise and high pulse-to-pulse optical phase-coherence. Compared to quantum well, quantum dot (QD)-based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the first 10 GHz pulse repetition rate QD-SESAM modelocked laser at 1.55 μm, exhibiting 2 ps pulse width from an Er-doped glass oscillator (ERGO). The 10 GHz ERGO laser is modelocked with InAs/GaAs QD-SESAM with saturation fluence as low as 9  μJ/cm2.

  15. Fast repetition rate (FRR) fluorometry: variability of chlorophyll a fluorescence yields in colonies of the corals, Montastraea faveolata (w.) and Diploria labyrinthiformes (h.) recovering from bleaching.

    Science.gov (United States)

    Lombardi; Lesser; Gorbunov

    2000-09-05

    Recently, an underwater version of a fast repetition rate fluorometer (FRRF) was developed for the non-destructive study of fluorescence yields in benthic photoautotrophs. We used an FRRF to study bleached colonies of the corals, Montastraea faveolata and Diploria labyrinthiformes at sites surrounding Lee Stocking Island, Exuma, Bahamas, to assess their recovery from bleaching ( approximately 1 year after the initial bleaching event) induced by elevated temperatures. The steady state quantum yields of chlorophyll a fluorescence (DeltaF'/F'(m)) from photosystem II (PSII) within coral colonies were separated into three categories representing visibly distinct degrees of bleaching ranging from no bleaching to completely bleached areas. Differences in DeltaF'/F'(m) were significantly different from bleached to unbleached regions within colonies. Dark, unbleached regions within colonies exhibited significantly higher DeltaF'/F'(m) values (0.438+/-0.019; mean+/-S.D.) when compared to lighter regions, and occupied a majority of the colonies' surface area (46-73%). Bleached regions exhibited significantly lower DeltaF'/F'(m) (0.337+/-0.014) and covered only 7-25% of the colonies' surface area. The observations from this study suggest that zooxanthellae in bleached regions of a colony exhibit reduced photosynthetic activity as long as one year after a bleaching event and that in situ fluorescence techniques such as FRRF are an effective means of studying coral responses and recovery from natural or anthropogenic stress in a non-destructive manner.

  16. Oral-Diadochokinetic Rates for Hebrew-Speaking Healthy Ageing Population: Non-Word versus Real-Word Repetition

    Science.gov (United States)

    Ben-David, Boaz M.; Icht, Michal

    2017-01-01

    Background: Oral-diadochokinesis (oral-DDK) tasks are extensively used in the evaluation of motor speech abilities. Currently, validated normative data for older adults (aged 65 years and older) are missing in Hebrew. The effect of task stimuli (non-word versus real-word repetition) is also non-clear in the population of older adult Hebrew…

  17. Disturbance and recovery of trunk mechanical and neuromuscular behaviours following repetitive lifting: influences of flexion angle and lift rate on creep-induced effects.

    Science.gov (United States)

    Toosizadeh, Nima; Bazrgari, Babak; Hendershot, Brad; Muslim, Khoirul; Nussbaum, Maury A; Madigan, Michael L

    2013-01-01

    Repetitive lifting is associated with an increased risk of occupational low back disorders, yet potential adverse effects of such exposure on trunk mechanical and neuromuscular behaviours were not well described. Here, 12 participants, gender balanced, completed 40 min of repetitive lifting in all combinations of three flexion angles (33, 66, and 100% of each participant's full flexion angle) and two lift rates (2 and 4 lifts/min). Trunk behaviours were obtained pre- and post-exposure and during recovery using sudden perturbations. Intrinsic trunk stiffness and reflexive responses were compromised after lifting exposures, with larger decreases in stiffness and reflexive force caused by larger flexion angles, which also delayed reflexive responses. Consistent effects of lift rate were not found. Except for reflex delay no measures returned to pre-exposure values after 20 min of recovery. Simultaneous changes in both trunk stiffness and neuromuscular behaviours may impose an increased risk of trunk instability and low back injury. An elevated risk of low back disorders is attributed to repetitive lifting. Here, the effects of flexion angle and lift rate on trunk mechanical and neuromuscular behaviours were investigated. Increasing flexion angle had adverse effects on these outcomes, although lift rate had inconsistent effects and recovery time was more than 20 min.

  18. A range-rate extraction unit for determining Doppler effect

    Science.gov (United States)

    1970-01-01

    Active ranging technique devised for VHF or S-band radar systems divides target Doppler frequency by counter-generated number that is proportional to transmitting frequency, thus producing target velocity data in terms of speed and distance relative to target transponder.

  19. High-repetition-rate quasi-CW side-pumped mJ eye-safe laser with a monolithic KTP crystal for intracavity optical parametric oscillator.

    Science.gov (United States)

    Cho, C Y; Chen, Y C; Huang, Y P; Huang, Y J; Su, K W; Chen, Y F

    2014-04-01

    We demonstrate a high-repetition-rate millijoule passively Q-switched eye-safe Nd:YVO(4) laser pumped by a quasi-CW diode stack. A theoretical analysis has been explored for the design criteria of generating TEM(n,0) mode in the diode-stack directly side-pumping configuration. We successfully generate TEM(n,0) modes at 1064 nm by adjusting the gain medium with respected to the laser axis. We further observe the spatial cleaning ability for generating an nearly TEM(0,0) mode output at 1573 nm with a monolithic OPO cavity. At the repetition rate up to 200 Hz, the output pulse energy reaches 1.21 mJ with the threshold pump energy of 17.9 mJ.

  20. Testing of super conducting low-beta 704 Mhz cavities at 50 Hz pulse repetition rate in view of SPL- first results

    CERN Document Server

    Höfle, W; Lollierou, J; Valuch, D; Chel, S; Devanz, G; Desmons, M; Piquet, O; Paparella, R; Pierini, P

    2010-01-01

    In the framework of the preparatory phase for the luminosity upgrade of the LHC (SLHC-PP ) it is foreseen to characterize two superconducting RF cavities and demonstrate compliance of the required SPL field stability in amplitude and phase using a prototype LLRF system. We report on the preparation for testing of two superconducting low-beta cavities at 50 Hz pulse repetition rate including the setting-up of the low level RF control system to evaluate the performance of the piezo-tuning system and cavity field stability in amplitude and phase. Results from tests with 50 Hz pulse repetition rate are presented. Simulations of the RF system will be used to predict the necessary specifications for power and bandwidth to control the cavity field and derive specifications for the RF system and its control. Exemplary results of the simulation are presented.

  1. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser

    CERN Document Server

    Yang, Heewon; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13-GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz - 10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-walled carbon nanotube (SWCNT)-coated mirrors. To our knowledge, this is the lowest timing jitter optical pulse train with the GHz repetition rate ever measured. If this pulse train is used for direct sampling of 565-MHz signals (Nyquist frequency of the pulse train), the demonstrated jitter level corresponds to the projected effective-number-of-bit (ENOB) of 17.8, which is much higher than the thermal noise limit of 50-ohm load resistance (~14 bits).

  2. 5 CFR 532.253 - Special rates or rate ranges for leader, supervisory, and production facilitating positions.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Special rates or rate ranges for leader....253 Special rates or rate ranges for leader, supervisory, and production facilitating positions. (a... shall establish special rates for leader, supervisory, and production facilitating positions,...

  3. Compact High-Repetition-Rate Monochromatic Terahertz Source Based on Difference Frequency Generation from a Dual-Wavelength Nd:YAG Laser and DAST Crystal

    Science.gov (United States)

    Zhong, Kai; Mei, Jialin; Wang, Maorong; Liu, Pengxiang; Xu, Degang; Wang, Yuye; Shi, Wei; Yao, Jianquan; Teng, Bing; Xiao, Yong

    2017-01-01

    Although high-repetition-rate dual-wavelength Nd:YAG lasers at 1319 and 1338 nm have been realized for quite a long time, we have employed it in generating monochromatic terahertz (THz) wave in this paper for the first time. The dual-wavelength laser was LD-end-pumped and acousto-optically (AO) Q-switched with the output power of watt level operating at different repetition rates from 5.5 to 30 kHz. Using a 0.6-mm-thick organic nonlinear crystal DAST for difference frequency generation (DFG), a compact terahertz source was achieved at 3.28 THz. The maximum average output power was about 0.58 μW obtained at a repetition rate of 5.5 kHz, corresponding to the conversion efficiency of about 6.4 × 10-7. The output power scaling is still feasible with higher pump power and a longer nonlinear DFG crystal. Owing to the compactness of the dual-wavelength laser and the nonlinear crystal, a palm-top terahertz source is expected for portable applications such as imaging and so on.

  4. Tunable GHz pulse repetition rate operation in high-power TEM(00)-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking.

    Science.gov (United States)

    Huang, Y J; Tzeng, Y S; Tang, C Y; Huang, Y P; Chen, Y F

    2012-07-30

    We report on a high-power diode-pumped self-mode-locked Nd:YLF laser with the pulse repetition rate up to several GHz. A novel tactic is developed to efficiently select the output polarization state for achieving the stable TEM(00)-mode self-mode-locked operations at 1053 nm and 1047 nm, respectively. At an incident pump power of 6.93 W and a pulse repetition rate of 2.717 GHz, output powers as high as 2.15 W and 1.35 W are generated for the σ- and π-polarization, respectively. We experimentally find that decreasing the separation between the gain medium and the input mirror not only brings in the pulse shortening thanks to the enhanced effect of the spatial hole burning, but also effectively introduces the effect of the spectral filtering to lead the Nd:YLF laser to be in a second harmonic mode-locked status. Consequently, pulse durations as short as 8 ps and 8.5 ps are obtained at 1053 nm and 1047 nm with a pulse repetition rate of 5.434 GHz.

  5. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince-Gaussian modes for optical trapping

    Science.gov (United States)

    Dong, Jun; He, Yu; Zhou, Xiao; Bai, Shengchuang

    2016-03-01

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping.

  6. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai [Department of Electronics Engineering, School of Information Science and Engineering, Xiamen, 361005 (China)

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  7. Landslide Rates in the Eastern Cascade Mountain Range

    Science.gov (United States)

    Bergen, K. J.; Doten, C. O.; Lettenmaier, D. P.

    2003-12-01

    Assessing landslide rates is an important factor in quantifying sediment generation in mountainous watersheds. Prediction of the role of land cover change, especially forest harvest and fires, on sediment generation is currently a problem of particular interest to forest management agencies. Traditional aerial photograph interpretation techniques have long been used for estimation of failure rates, however to date such data has rarely been used in a predictive modeling context. Furthermore, relatively little quantitative data exist that are applicable to the east slopes of the Cascade Mountains, where recent fires have created an interest in improved prediction techniques that might help better understand the implications of post-fire sediment generation for the health of streams. Using aerial stereo photographs from the years 1970, 1975, 1979, 1985, and 1992, provided by the U.S. Forest Service, landslides were mapped in the Rainy Creek tributary of the Little Wenatchee basin of the northeastern Washington Cascades. The slides were mapped onto digital orthophotos and were categorized by a confidence scheme based on the visible features of a landslide. Slides were further categorized by the land type (forested, harvested, unforested, burned, and road-related) they occurred in, and stream and forest road intersections were also noted. Landslide rates and slide densities were calculated based on the photo record intervals. The volume of removed sediment was also estimated. These rates were compared to precipitation records over the same time period to evaluate the effect of large storms on mass wasting in this region. Estimated slide number and area densities are compared with similar studies elsewhere in the western U.S. Also, predicted and estimated number and area of slides from a numerical model described in a companion paper (Doten et al) are compared with the orthophoto estimates for the 22-years period 1970-92.

  8. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing.

    Science.gov (United States)

    Cordette, S; Vedadi, A; Shoaie, M A; Brès, C-S

    2014-12-01

    We propose and experimentally demonstrate an all-optical Nyquist sinc-shaped pulse train source based on intensity modulation and four-wave mixing. The proposed scheme allows for the tunability of the bandwidth and the full flexibility of the repetition rate in the limit of the electronic bandwidth of the modulators used through the flexible synthesis of rectangular frequency combs. Bandwidth up to 360 GHz at 40 GHz rate and up to 45 frequency lines at 5 GHz rate are demonstrated with 40 GHz modulators.

  9. High-power, high-repetition-rate performance characteristics of β-BaB₂O₄ for single-pass picosecond ultraviolet generation at 266 nm.

    Science.gov (United States)

    Kumar, S Chaitanya; Casals, J Canals; Wei, Junxiong; Ebrahim-Zadeh, M

    2015-10-19

    We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on β-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz.

  10. 1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation.

    Science.gov (United States)

    Divoky, Martin; Tokita, Shigeki; Hwang, Sungin; Kawashima, Toshiyuki; Kan, Hirofumi; Lucianetti, Antonio; Mocek, Tomas; Kawanaka, Junji

    2015-03-15

    Experimental amplification of 10-ns pulses to energy of 1 J at repetition rate of 10-100 Hz in cryogenic multipass total-reflection active-mirror (TRAM) amplifier is reported for the first time. By using a monolithic multi-TRAM, which is a YAG ceramic composite with three thin Yb:YAG active layers, efficient energy extraction was achieved without parasitic lasing. A detailed measurement of output characteristics of the laser amplifier is presented; results are discussed and compared with numerical calculations.

  11. 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate.

    Science.gov (United States)

    Fischer, Jonathan; Heinrich, Alexander-Cornelius; Maier, Simon; Jungwirth, Julian; Brida, Daniele; Leitenstorfer, Alfred

    2016-01-15

    A combination of Er/Yb:fiber and Yb:thin-disk technology produces 615 fs pulses at 1030 nm with an average output power of 72 W. The regenerative amplifier allows variation of the repetition rate between 3 and 5 kHz with pulse energies from 13 to 17 mJ. A broadband and intense seed provided by the compact and versatile fiber front-end minimizes gain narrowing. The resulting sub-ps performance is ideal for nonlinear frequency conversion and pulse compression. Operating in the upper branch of a bifurcated pulse train, the system exhibits exceptional noise performance and stability.

  12. Generation of 220 mJ nanosecond pulses at a 10 Hz repetition rate with excellent beam quality in a diode-pumped Yb:YAG MOPA system.

    Science.gov (United States)

    Wandt, Christoph; Klingebiel, Sandro; Siebold, Mathias; Major, Zsuzsanna; Hein, Joachim; Krausz, Ferenc; Karsch, Stefan

    2008-05-15

    A novel all-diode-pumped master oscillator power amplifier system based on Yb:YAG crystal rods has been developed. It consists of a Q-switched oscillator delivering 3 mJ, 6.4 ns pulses at a 10 Hz repetition rate and an additional four-pass amplifier, which boosts the output energy to 220 mJ, while a close to TEM(00) beam quality could be observed. Additionally a simulation of the amplification was written that allows for further scaling considerations.

  13. 1-MW peak power, 574-kHz repetition rate picosecond pulses at 515 nm from a frequency-doubled fiber amplifier

    Science.gov (United States)

    Zou, Feng; Wang, Ziwei; Wang, Zhaokun; Bai, Yang; Li, Qiurui; Zhou, Jun

    2016-11-01

    1-MW peak power picosecond, 574-kHz repetition rate green laser at 515-nm is generated from a frequency-doubled fiber amplifier. 12-ps pulses with 13.9-μJ energy at 515 nm are achieved with a noncritically phase-matched lithium triborate (LBO) crystal through second harmonic generation of a 1030 nm infrared source. The infrared source employs ultra-large-mode-area rod-type photonic crystal fiber (Rod-PCF) for direct picosecond amplification and delivers 20-W 11.6-ps 2.97-MW pulse train with near-diffraction-limited beam quality (M2 = 1.01).

  14. Laser-induced backside wet etching of silica glass with ns-pulsed DPSS UV laser at the repetition rate of 40 kHz

    Energy Technology Data Exchange (ETDEWEB)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Gumpenberger, Thomas; Kurosaki, Ryozo [Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2007-04-15

    Surface micro-structuring of silica glass plates was performed by using laser- induced backside wet etching (LIBWE) upon irradiation with a single-mode laser beam from a diode-pumped solid-state (DPSS) UV laser with 40 kHz repetition rate at 266 nm. We have succeeded in a well-defined micro-pattern formation without debris and microcrack generation around the etched area on the basis of a galvanometer scanning system for the laser beam. Bubble dynamics after liquid ablation was monitored by impulse pressure detection with a fast- response piezoelectric pressure gauge.

  15. A K-alpha x-ray source using high energy and high repetition rate laser system for phase contrast imaging

    OpenAIRE

    Serbanescu, Cristina; Fourmaux, Sylvain; Kieffer, Jean-Claude; Kincaid, Russell; Krol, Andrzej

    2009-01-01

    K-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum...

  16. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    CERN Document Server

    Ryser, Manuel; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2014-01-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063nm. The diode was driven at a repetition rate of 40MHz and delivered 13$\\mu$W of fiber-coupled average output power. For the low output pulse energy of 0.33pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40MHz repetition rate to 1MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72dBs to an output pulse energy of 5.7$\\mu$J, pulse duration of 11ps and peak power of >0.6MW.

  17. On the Optimality of Repetition Coding among Rate-1 DC-offset STBCs for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan

    2017-07-06

    In this paper, an optical wireless multiple-input multiple-output communication system employing intensity-modulation direct-detection is considered. The performance of direct current offset space-time block codes (DC-STBC) is studied in terms of pairwise error probability (PEP). It is shown that among the class of DC-STBCs, the worst case PEP corresponding to the minimum distance between two codewords is minimized by repetition coding (RC), under both electrical and optical individual power constraints. It follows that among all DC-STBCs, RC is optimal in terms of worst-case PEP for static channels and also for varying channels under any turbulence statistics. This result agrees with previously published numerical results showing the superiority of RC in such systems. It also agrees with previously published analytic results on this topic under log-normal turbulence and further extends it to arbitrary turbulence statistics. This shows the redundancy of the time-dimension of the DC-STBC in this system. This result is further extended to sum power constraints with static and turbulent channels, where it is also shown that the time dimension is redundant, and the optimal DC-STBC has a spatial beamforming structure. Numerical results are provided to demonstrate the difference in performance for systems with different numbers of receiving apertures and different throughput.

  18. Multipath error in range rate measurement by PLL-transponder/GRARR/TDRS

    Science.gov (United States)

    Sohn, S. J.

    1970-01-01

    Range rate errors due to specular and diffuse multipath are calculated for a tracking and data relay satellite (TDRS) using an S band Goddard range and range rate (GRARR) system modified with a phase-locked loop transponder. Carrier signal processing in the coherent turn-around transponder and the GRARR reciever is taken into account. The root-mean-square (rms) range rate error was computed for the GRARR Doppler extractor and N-cycle count range rate measurement. Curves of worst-case range rate error are presented as a function of grazing angle at the reflection point. At very low grazing angles specular scattering predominates over diffuse scattering as expected, whereas for grazing angles greater than approximately 15 deg, the diffuse multipath predominates. The range rate errors at different low orbit altutudes peaked between 5 and 10 deg grazing angles.

  19. Dynamical effects of General Relativity on the satellite-to-satellite range and range-rate in the GRACE mission

    CERN Document Server

    Iorio, Lorenzo

    2010-01-01

    We numerically investigate the impact of the General Theory of Relativity (GTR) on the satellite-to-satellite range \\rho and range-rate \\dot\\rho of the twin GRACE A/B spacecrafts through their dynamical equations of motion. The present-day accuracies in measuring such observables are \\sigma_\\rho <= 1-10 micron, \\sigma_\\dot\\rho <= 1 micron s^-1. Studies for a follow-on of such a mission points toward a range-rate accuracy of the order of \\sigma_\\dot\\rho = 1 nm s^-1 or better. We also compute the dynamical range and range-rate perturbations caused by the first six zonal harmonic coefficients J_L, L=2,3,4,5,6,7$ of the classical multipolar expansion of the terrestrial gravitational potential in order to evaluate their aliasing impact on the relativistic effects. Conversely, we also quantitatively assessed the possible a-priori \\virg{imprinting} of GTR itself, not solved-for in all the GRACE-based Earth's gravity models produced so far, on the estimated values of the low degree zonals of the geopotential. T...

  20. Human sensory-evoked responses differ coincident with either "fusion-memory" or "flash-memory", as shown by stimulus repetition-rate effects

    Directory of Open Access Journals (Sweden)

    Baird Bill

    2006-02-01

    Full Text Available Abstract Background: A new method has been used to obtain human sensory evoked-responses whose time-domain waveforms have been undetectable by previous methods. These newly discovered evoked-responses have durations that exceed the time between the stimuli in a continuous stream, thus causing an overlap which, up to now, has prevented their detection. We have named them "A-waves", and added a prefix to show the sensory system from which the responses were obtained (visA-waves, audA-waves, somA-waves. Results: When A-waves were studied as a function of stimulus repetition-rate, it was found that there were systematic differences in waveshape at repetition-rates above and below the psychophysical region in which the sensation of individual stimuli fuse into a continuity. The fusion phenomena is sometimes measured by a "Critical Fusion Frequency", but for this research we can only identify a frequency-region [which we call the STZ (Sensation-Transition Zone]. Thus, the A-waves above the STZ differed from those below the STZ, as did the sensations. Study of the psychophysical differences in auditory and visual stimuli, as shown in this paper, suggest that different stimulus features are detected, and remembered, at stimulation rates above and below STZ. Conclusion: The results motivate us to speculate that: 1 Stimulus repetition-rates above the STZ generate waveforms which underlie "fusion-memory" whereas rates below the STZ show neuronal processing in which "flash-memory" occurs. 2 These two memories differ in both duration and mechanism, though they may occur in the same cell groups. 3 The differences in neuronal processing may be related to "figure" and "ground" differentiation. We conclude that A-waves provide a novel measure of neural processes that can be detected on the human scalp, and speculate that they may extend clinical applications of evoked response recordings. If A-waves also occur in animals, it is likely that A-waves will provide

  1. A quantum inspired model of radar range and range-rate measurements with applications to weak value measurements

    Science.gov (United States)

    Escalante, George

    2017-05-01

    Weak Value Measurements (WVMs) with pre- and post-selected quantum mechanical ensembles were proposed by Aharonov, Albert, and Vaidman in 1988 and have found numerous applications in both theoretical and applied physics. In the field of precision metrology, WVM techniques have been demonstrated and proven valuable as a means to shift, amplify, and detect signals and to make precise measurements of small effects in both quantum and classical systems, including: particle spin, the Spin-Hall effect of light, optical beam deflections, frequency shifts, field gradients, and many others. In principal, WVM amplification techniques are also possible in radar and could be a valuable tool for precision measurements. However, relatively limited research has been done in this area. This article presents a quantum-inspired model of radar range and range-rate measurements of arbitrary strength, including standard and pre- and post-selected measurements. The model is used to extend WVM amplification theory to radar, with the receive filter performing the post-selection role. It is shown that the description of range and range-rate measurements based on the quantum-mechanical measurement model and formalism produces the same results as the conventional approach used in radar based on signal processing and filtering of the reflected signal at the radar receiver. Numerical simulation results using simple point scatterrer configurations are presented, applying the quantum-inspired model of radar range and range-rate measurements that occur in the weak measurement regime. Potential applications and benefits of the quantum inspired approach to radar measurements are presented, including improved range and Doppler measurement resolution.

  2. Experiment on damage in K9 glass due to repetition rate pulsed CO2 laser radiation%重频脉冲CO2激光损伤K9玻璃的实验

    Institute of Scientific and Technical Information of China (English)

    王玺; 卞进田; 李华; 聂劲松; 孙晓泉; 尹学忠; 雷鹏

    2013-01-01

      对脉冲CO2激光在不同重频模式下损伤K9玻璃进行了实验研究。采用输出能量为10 J,脉宽为90 ns,重复频率在100 Hz至300 Hz之间连续可调的脉冲CO2激光器,对K9玻璃样品进行了激光损伤实验,观察到两次不同重频条件下样品的损伤形貌。实验结果表明,重频越高,对样品的损伤程度就越严重;应力损伤成为K9玻璃激光损伤的最主要的原因,在重频强激光的辐照下,K9玻璃表面出现强烈的等离子体闪光,伴随明显的熔融气化破坏,并形成等离子体爆轰波。爆轰波对玻璃材料产生了严重的力学冲击作用,这种应力作用足以对K9玻璃造成毁灭性破坏。运用有限元分析对激光辐照K9玻璃的温度与应力分布进行仿真,其计算结果与实验基本吻合。%  In this paper, the experiment on damage in K9 glass induced by pulsed CO2 laser under different repetition rates was carried out, which had a pulse width of 90 ns. The laser pulse energy was 10 J and the repetition rate was kept within the range of 100 Hz to 300 Hz. The damage morphologies of two kind repetition rates after laser irradiation were characterized. The experimental results indicate that the effect of laser irradiation on samples can be affected considerably by the change of laser repetition rate, and the intensity of damage morphology on the sample increases with the laser repetition rate, and the damage in K9 glass induced by pulsed CO2 laser is dominated by stress. As a result, the plasma detonation wave induced by laser occured, the material was broken result from the melting and evaporation of K9 glass. It is shown that the plasma detonation wave affected stress damage considerably, and this mechanical effect almost destroyed K9 glass sample. A numerical simulation was performed to calculate temperature and stress distributions in K9 glass sample irradiated by pulsed CO2 laser using finite element method. The model

  3. Phase-matched high-order harmonics by interaction of Ar atoms with high-repetition-rate low-energy femtosecond laser pulses

    Institute of Scientific and Technical Information of China (English)

    XIE Xinhua; ZENG Zhinan; LI Ruxin; CHEN Shu; LU Haihe; YIN Dingjun; XU Zhizhan

    2004-01-01

    Phase-matched high-order harmonic generation in Ar gas-filled cell was investigated experimentally. We obtained phase-matched 27th order harmonic driven by a commercially available solid-state femtosecond laser system at 0.55 m J/pulse energy level and 1 kHz repetition rate. To our knowledge, this is the lowest driving laser energy used to obtain phase-matched 27th order harmonic in a static gas cell. High-order harmonic generation at different gas density was studied systematically. Spectral blueshift and broadening of high harmonics under different pressure were analyzed. We found that the source size and spatial distribution of high-order harmonics are quite different under the phase-matching condition from those of the phase-mismatching case.

  4. Generation of microwave radiation by nonlinear interaction of a high-power, high-repetition rate, 1064-nm laser in KTP crystals

    CERN Document Server

    Borghesani, A F; Carugno, G

    2013-01-01

    We report measurements of microwave (RF) generation in the centimeter band accomplished by irradiating a nonlinear KTiOPO$_4$ (KTP) crystal with a home-made, infrared laser at $1064\\,$nm as a result of optical rectification (OR). The laser delivers pulse trains of duration up to $1\\,\\mu$s. Each train consists of several high-intensity pulses at an adjustable repetition rate of approximately $ 4.6\\,$GHz. The duration of the generated RF pulses is determined by that of the pulse trains. We have investigated both microwave- and second harmonic (SHG) generation as a function of the laser intensity and of the orientation of the laser polarization with respect to the crystallographic axes of KTP.

  5. PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Itzhak, Itzik (Itzhak) [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Carnes, Kevin D. [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Cocke, C. Lew [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Fehrenbach, Charles W. [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Kumarappan, Vinod [PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University; Rudenko, Artem [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Trallero, Carlos [J.R. Macdonald Laboratory, Physics Department, Kansas State University

    2014-05-09

    This instrumentation grant funded the development and installation of a state-of-the-art laser system to be used for the DOE funded research at the J.R. Macdonald Laboratory at Kansas State University. Specifically, we purchased a laser based on the KMLABs Red-Dragon design, which has a high repetition rate of 10-20 kHz crucial for multi-parameter coincidence measurements conducted in our lab. This laser system is carrier-envelope phase (CEP) locked and provides pulses as short as 21 fs directly from the amplifier (see details below). In addition, we have developed a pulse compression setup that provides sub 5 fs pulses and a CEP tagging capability that allows for long measurements of CEP dependent processes.

  6. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    Energy Technology Data Exchange (ETDEWEB)

    Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Sedin, A. A.; Tugushev, V. I. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  7. Application of time-hopping UWB range-bit rate performance in the UWB sensor networks

    NARCIS (Netherlands)

    Nascimento, J.R.V. do; Nikookar, H.

    2008-01-01

    In this paper, the achievable range-bit rate performance is evaluated for Time-Hopping (TH) UWB networks complying with the FCC outdoor emission limits in the presence of Multiple Access Interference (MAI). Application of TH-UWB range-bit rate performance is presented for UWB sensor networks. Result

  8. Effect of pulse repetition rate and number of pulses in the analysis of polypropylene and high density polyethylene by nanosecond infrared laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leme, Flavio O. [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Godoi, Quienly [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); Kiyataka, Paulo H.M. [Centro de Tecnologia de Embalagens, Instituto de Tecnologia de Alimentos, Av. Brasil 2880, 13070-178 Campinas, SP (Brazil); Santos, Dario [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Rua Prof. Artur Riedel 275, 09972-270 Diadema, SP (Brazil); Agnelli, Jose A.M. [Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); and others

    2012-02-01

    Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO{sub 4}. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm{sup -2}), 2 {mu}s delay time and 6 {mu}s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant.

  9. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.

    2015-10-29

    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  10. A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R.J.; Brown, D.J.W.; Piper, J.A. (Macquarie Univ., Sydney (Australia). Centre for Lasers and Applications)

    1994-08-01

    A self-consistent computer model has been developed to simulate the discharge kinetics and lasing characteristics of a copper-vapor laser (CVL) for typical operating conditions. Using a detailed rate-equation analysis, the model calculates the spatio-temporal evolution of the population densities of 11 atomic and ionic copper levels, four neon levels, and includes 70 collisional and radiative processes, in addition to radial particle transport. The long-term evolution of the plasma is taken into account by integrating the set of coupled rate equations describing the discharge and electrical circuit through multiple excitation-afterglow cycles. A time-dependent two-electron group model, based on a bi-Maxwellian electron energy distribution function, has been used to evaluate the energy partitioning between the copper vapor and the neon-buffer gas. The behavior of the plasma in the cooler end regions of the discharge tube near the electrodes, where the plasma kinetics are dominated by the buffer gas, has also been modeled. Results from the model have been compared to experimental data for a narrow-bore ([phi] = 1.8 cm) CVL operating under optimum conditions.

  11. The normal range and determinants of the intrinsic heart rate in man.

    Science.gov (United States)

    Opthof, T

    2000-01-01

    Jose and Collison published a study on the normal range and the determinants of intrinsic heart rate in man in Cardiovascular Research in 1970 [Jose AD, Collison D. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res 1970; 4: 160-167)]. The intrinsic heart rate is the heart rate under complete pharmacological blockade. They showed that (i) the resting heart rate is lower than the intrinsic heart rate and that (ii) the intrinsic heart rate declines with age. They also established that the variability in intrinsic heart rate between individuals of the same age is of the same order as the effect of ageing at the population level. This update discusses the relevance of these data with emphasis on sinus node function and autonomic balance. The paper of Jose and Collison was cited more than 200 times. The frequency of citation started to increase more than 10 years after publication.

  12. Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser

    Science.gov (United States)

    Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide

    2014-12-01

    Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.

  13. Estimation of the dust production rate from the tungsten armour after repetitive ELM-like heat loads

    Science.gov (United States)

    Pestchanyi, S.; Garkusha, I.; Makhlaj, V.; Landman, I.

    2011-12-01

    Experimental simulations for the erosion rate of tungsten targets under ITER edge-localized mode (ELM)-like surface heat loads of 0.75 MJ m-2 causing surface melting and of 0.45 MJ m-2 without melting have been performed in the QSPA-Kh50 plasma accelerator. Analytical considerations allow us to conclude that for both energy deposition values the erosion mechanism is solid dust ejection during surface cracking under the action of thermo-stress. Tungsten influx into the ITER containment of NW~5×1018 W per medium size ELM of 0.75 MJ m-2 and 0.25 ms time duration has been estimated. The radiation cooling power of Prad=150-300 MW due to such influx of tungsten is intolerable: it should cool the ITER core to 1 keV within a few seconds.

  14. Comparative effect of order based resistance exercises on number of repetitions, rating of perceived exertion and muscle damage biomarkers in men

    Directory of Open Access Journals (Sweden)

    H. Arazi

    2015-12-01

    Conclusion: It can be concluded that both of the resistance exercise orders were equally effective in muscle damage parameters (CK, lactate, RPE and the average of the total number of exercise repetitions, although when the exercise session progressed, the number of repetitions performed to volitional failure decreased in last exercise in one single order, and the exercise order can influence performance.

  15. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's response to this solicitation calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life...

  16. The Geodesy of the Main Saturnian Satellites from Range Rate Measurements of the Cassini Spacecraft

    Science.gov (United States)

    Ducci, M.; Iess, L.; Armstrong, J. W.; Asmar, S. W.; Jacobson, R. A.; Lunine, J. I.; Racioppa, P.; Rappaport, N. J.; Stevenson, D. J.; Tortora, P.

    2012-03-01

    During Cassini's eight-year tour in the saturnian system, the gravity field of the main satellites was inferred from range rate measurements of the spacecraft. Here we present our latest results and an overview of our analysis methods.

  17. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's Phase II proposal calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life capabilities. To...

  18. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging.

    Science.gov (United States)

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-09-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.

  19. High-rate low-temperature dc pulsed magnetron sputtering of photocatalytic TiO2films: the effect of repetition frequency

    Directory of Open Access Journals (Sweden)

    Strýhal Z

    2007-01-01

    Full Text Available AbstractThe article reports on low-temperature high-rate sputtering of hydrophilic transparent TiO2thin films using dc dual magnetron (DM sputtering in Ar + O2mixture on unheated glass substrates. The DM was operated in a bipolar asymmetric mode and was equipped with Ti(99.5 targets of 50 mm in diameter. The substrate surface temperature Tsurfmeasured by a thermostrip was less than 180 °C for all experiments. The effect of the repetition frequency frwas investigated in detail. It was found that the increase of frfrom 100 to 350 kHz leads to (a an improvement of the efficiency of the deposition process that results in a significant increase of the deposition rate aDof sputtered TiO2films and (b a decrease of peak pulse voltage and sustaining of the magnetron discharge at higher target power densities. It was demonstrated that several hundreds nm thick hydrophilic TiO2films can be sputtered on unheated glass substrates at aD = 80 nm/min, Tsurf < 180 °C when high value of fr = 350 kHz was used. Properties of a thin hydrophilic TiO2film deposited on a polycarbonate substrate are given.

  20. 新型高重复频率脉冲CO2激光器%Novel high repetition-rate pulse CO2 laser

    Institute of Scientific and Technical Information of China (English)

    郑义军; 刁伟伦; 谭荣清; 王东雷; 张阔海; 黄文武; 刘世明; 李能文; 孙科; 卢远添

    2013-01-01

    A novel transversely excited atmospheric (TEA) CO2 laser with high repetition- rate was reported. The size of laser is 300 mmí300 mmí300 mm. The discharge volume is 12í103 mm3, the length of cavity is 310 mm. The ultraviolet preionization makes the discharge even and stable, the output energy can be as high as 15 mJ under the circumstance of free oscillation, and the full width at half maximum of the light pulse is 70 ns. To acquire the high wind velocity, a turbocharger was used in the system of the fast- gas flow cycle. When the pressure in the cavity is 100 kPa, the wind speed is 100 m/s, and the repetition rate of the TEA CO2 laser is up to 1.5 kHz. On the basis of preliminary experiment, the system of the grating tuning line selection can be applied to the high repetition- rate pulse laser to abtain the output of grating line selection accurately and fast.%报道了一种新型高重复频率的脉冲CO2激光器。该型激光器结构紧凑,激光器外型尺寸为300 mm×300 mm×300 mm,工作气体放电增益体积为12×103 mm3,谐振腔的长度为310 mm。为了获得大体积均匀稳定的气体放电,激光器采用了紫外电晕预电离方式。在激光器自由运转时,单脉冲激光的输出能量达到15 mJ ,输出脉冲的半高全宽为70 ns。激光器采用紧凑型高速涡轮增压风机,在一个大气压的条件下,气流循环速度超过100 m/s,激光脉冲重复频率为1.5 kHz,采用大体积强迫冷却和气体主动置换技术,可以获得较长时间激光稳定输出。在已有的实验基础上,采用光栅调谐,可快速准确地实现高重复频率脉冲CO2激光器的谱线选支输出。

  1. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: A randomized rater blind-sham controlled study.

    Science.gov (United States)

    Garg, Shobit; Sinha, Vinod Kumar; Tikka, Sai Krishna; Mishra, Preeti; Goyal, Nishant

    2016-09-30

    Repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic for schizophrenia. Treatment effects of rTMS have been variable across different symptom clusters, with negative symptoms showing better response, followed by auditory hallucinations. Cerebellum, especially vermis and its abnormalities (both structural and functional) have been implicated in cognitive, affective and positive symptoms of schizophrenia. rTMS to this alternate site has been suggested as a novel target for treating patients with this disorder. Hypothesizing cerebellar vermal magnetic stimulation as an adjunct to treat schizophrenia psychopathology, we conducted a double blind randomized sham controlled rTMS study. In this study, forty patients were randomly allocated (using block randomization method) to active high frequency (theta patterned) rTMS (n=20) and sham (n=20) groups. They received 10 sessions over 2 weeks. The Positive and Negative Syndrome Scale (PANSS) and Calgary Depression Scale for Schizophrenia (CDSS) scores were assessed at baseline, after last session and at 4 weeks (2 weeks post-rTMS). We found a significantly greater improvement in the group receiving active rTMS sessions, compared to the sham group on negative symptoms, and depressive symptoms. We conclude that cerebellar stimulation can be used as an effective adjunct to treat negative and affective symptoms.

  2. Part 5: GPS Telemetry Detection Rates (Cougar Home Ranges), GCS NAD 83 (2015)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Cougar home-ranges were calculated to compare the mean probability of a GPS fix acquisition across the home-range to the actual fix success rate (FSR) of the collar...

  3. Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range

    Science.gov (United States)

    Binnie, S.A.; Phillips, W.M.; Summerfield, M.A.; Fifield, L.K.

    2007-01-01

    Studies across a broad range of drainage basins have established a positive correlation between mean slope gradient and denudation rates. It has been suggested, however, that this relationship breaks down for catchments where slopes are at their threshold angle of stability because, in such cases, denudation is controlled by the rate of tectonic uplift through the rate of channel incision and frequency of slope failure. This mechanism is evaluated for the San Bernardino Mountains, California, a nascent range that incorporates both threshold hill-slopes and remnants of pre-uplift topography. Concentrations of in situ-produced cosmogenic 10Be in alluvial sediments are used to quantify catchment-wide denudation rates and show a broadly linear relationship with mean slope gradient up to ???30??: above this value denudation rates vary substantially for similar mean slope gradients. We propose that this decoupling in the slope gradient-denudation rate relationship marks the emergence of threshold topography and coincides with the transition from transport-limited to detachment-limited denudation. The survival in the San Bernardino Mountains of surfaces formed prior to uplift provides information on the topographic evolution of the range, in particular the transition from slope-gradient-dependent rates of denudation to a regime where denudation rates are controlled by rates of tectonic uplift. This type of transition may represent a general model for the denudational response to orogenic uplift and topographic evolution during the early stages of mountain building. ?? 2007 The Geological Society of America.

  4. Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles.

    Science.gov (United States)

    Wengraitis, Stephen; McCubbin, Patrick; Wade, Mary Margaret; Biggs, Tracey D; Hall, Shane; Williams, Leslie I; Zulich, Alan W

    2013-01-01

    A 2010 study exposed Staphylococcus aureus to ultraviolet (UV) radiation and thermal heating from pulsed xenon flash lamps. The results suggested that disinfection could be caused not only by photochemical changes from UV radiation, but also by photophysical stress damage caused by the disturbance from incoming pulses. The study called for more research in this area. The recent advances in light-emitting diode (LED) technology include the development of LEDs that emit in narrow bands in the ultraviolet-C (UV-C) range (100-280 nm), which is highly effective for UV disinfection of organisms. Further, LEDs would use less power, and allow more flexibility than other sources of UV energy in that the user may select various pulse repetition frequencies (PRFs), pulse irradiances, pulse widths, duty cycles and types of waveform output (e.g. square waves, sine waves, triangular waves, etc.). Our study exposed Escherichia coli samples to square pulses of 272 nm radiation at various PRFs and duty cycles. A statistically significant correlation was found between E. coli's disinfection sensitivity and these parameters. Although our sample size was small, these results show promise and are worthy of further investigation. Comparisons are also made with pulsed disinfection by LEDs emitting at 365 nm, and pulsed disinfection by xenon flash lamps. © 2012 U.S. Government. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  5. Three-dimensional polymer nanostructures for applications in cell biology generated by high-repetition rate sub-15 fs near-infrared laser pulses

    Science.gov (United States)

    Licht, Martin; Straub, Martin; König, Karsten; Afshar, Maziar; Feili, Dara; Seidel, Helmut

    2011-03-01

    In recent years two-photon photopolymerization has emerged as a novel and extremely powerful technique of three-dimensional nanostructure formation. Complex-shaped structures can be generated using appropriate beam steering or nanopositioning systems. Here, we report on the fabrication of three-dimensional arrangements made of biocompatible polymer material, which can be used as templates for cell growth. Using three-dimensional cell cages as cell culture substrates is advantageous, as cells may develop in a more natural environment as compared to conventional planar growth methods. The two-photon fabrication experiments were carried out on a commercial microscope setup. Sub-15 fs pulsed Ti:Sapphire laser light (centre wavelength 800 nm, bandwidth 120 nm, repetition rate 85 MHz) was focused into the polymer material by a high-numerical aperture oil immersion objective. Due to the high peak intensities picojoule pulse energies in the focal spot are sufficient to polymerize the material at sub-100 nm structural element dimensions. Therefore, cell cages of sophisticated architecture can be constructed involving very fine features which take into account the specific needs of various types of cells. Ultimately, our research aims at three-dimensional assemblies of photopolymerized structural elements involving sub-100 nm features, which provide cell culture substrates far superior to those currently existing.

  6. Welding of glasses in optical and partial-optical contact via focal position adjustment of femtosecond-laser pulses at moderately high repetition rate

    Science.gov (United States)

    Tan, Hua; Duan, Ji'an

    2017-07-01

    We used 1030-nm femtosecond-laser pulses focused above/at/below the interface of two fused-silica glass substrates in optical and partial-optical contact to successfully weld them at a moderately high repetition rate of 600 kHz. Variation in the laser focal position for these two gap-distance regimes (optical and partial-optical contact) yields different bonding strengths (BSs) and machining mechanisms. The maximum bonding strength (58.2 MPa) can be achieved for a gap distance ≤λ /4 for optical-contact welding when laser focused below the interface, and the corresponding height of the welding seam was 23 μm. In addition, our results demonstrated that the "filamentation welding technique" is critical to the femtosecond-laser direct welding of glasses. Furthermore, line welding is significantly easier to realize when the femtosecond laser focuses at the interface in partial-optical-contact welding applications due to the combined effects of filamentation welding and ablation.

  7. A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems

    Science.gov (United States)

    Dürrstein, Steffen H.; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof

    2011-08-01

    A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.

  8. Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers.

    Science.gov (United States)

    Erdoğan, Mutlu; Öktem, Bülent; Kalaycıoğlu, Hamit; Yavaş, Seydi; Mukhopadhyay, Pranab K; Eken, Koray; Ozgören, Kıvanç; Aykaç, Yaşar; Tazebay, Uygar H; Ilday, F Ömer

    2011-05-23

    We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns.

  9. High-power LD side-pump Nd: YAG regenerative amplifier at 1 kHz repetition rate with volume Bragg gratings (VBG) for broadening and compressor

    Science.gov (United States)

    Long, Ming-Liang; Chen, Li-Yuan; Chen, Meng; Li, Gang

    2016-05-01

    Pulse width of 8.7 ps was broadened to 102.2, 198 ps with single and double pass the VBG respectively. When the 102.2 ps pulse was injected into 1 kHz repetition rate of LD side-pump Nd: YAG regenerative amplifier (RA), pulse width of 87.5 ps at 1 kHz was obtained with the pulse energy of 9.4 mJ, the beam quality of M^2 factor was 1.2. The pulse width was compressed to 32.7 ps with a single pass VBG and the pulse energy reduced to 8.8 mJ, and the power density was up to 15.2 GW/cm2, the stability for pulse to pulse rms is about 0.6 %, beam pointing was about 35 μrad. In addition, when 198 ps pulse was injected into RA, pulse width of 156 ps was obtained which energy was 9.6 mJ, the pulse width was compressed to 38 ps by double passing the VBG, the pulse energy decreased to 8.5 mJ. Chirped VBG is a new way to obtain high-intensity picosecond pulse laser system simple and smaller.

  10. A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems.

    Science.gov (United States)

    Dürrstein, Steffen H; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof

    2011-08-01

    A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.

  11. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules

    CERN Document Server

    Rothhardt, Jan; Shamir, Yariv; Tschnernajew, Maxim; Klas, Robert; Hoffmann, Armin; Tadesse, Getnet K; Klenke, Arno; Gottschall, Thomas; Eidam, Tino; Boll, Rebecca; Bomme, Cedric; Dachraoui, Hatem; Erk, Benjamin; Di Fraia, Michele; Horke, Daniel A; Kierspel, Thomas; Mullins, Terence; Przystawik, Andreas; Savelyev, Evgeny; Wiese, Joss; Laarmann, Tim; Küpper, Jochen; Rolles, Daniel; Limpert, Jens; Tünnermann, Andreas

    2016-01-01

    Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies. We present a novel high-harmonic source driven by a 100 kHz fiber laser system, which delivers 10$^{11}$ photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The combination of record-high photon flux and high repetition rate paves the way for time-resolved studies of the dissociation dynamics of inner-shell ionized molecules in a coincidence detection scheme. First coincidence measurements on CH$_3$I are shown and it is outlined how the anticipated advancement of fiber laser technology and improved sample delivery will, in the next step, allow pump-probe studies of ultrafas...

  12. A high-repetition rate edge localised mode replication system for the Magnum-PSI and Pilot-PSI linear devices

    Science.gov (United States)

    Morgan, T. W.; de Kruif, T. M.; van der Meiden, H. J.; van den Berg, M. A.; Scholten, J.; Melissen, W.; Krijger, B. J. M.; Bardin, S.; De Temmerman, G.

    2014-09-01

    A high-power edge-localized mode (ELM) striking onto divertor components presents one of the strongest lifetime and performance challenges for plasma facing components in future fusion reactors. A high-repetition-rate ELM replication system has been constructed and was commissioned at the Magnum-PSI linear device to investigate the synergy between steady state plasma exposure and the large increase in heat and particle flux to the plasma facing surface during repeated ELM transients in conditions aiming to mimic as closely as possible those in the ITER divertor. This system is capable of increasing the electron density and temperature from ˜1 × 1020 m-3 to ˜1 × 1021 m-3 and from 1 to 5 eV respectively, leading to a heat flux increase at the surface to ˜130 MW m-2. By combining Thomson scattering measurements with heat fluxes determined using the THEODOR code, the sheath heat transmission factor during the pulses was determined to be ≈7.7, in agreement with sheath theory. The heat flux is found to be linearly dependent upon the strength of the magnetic field at the target position, and, by adapting the system to Pilot-PSI, tests at 1.6 T showed heat fluxes of more than 600 MW m-2. This gives confidence that with the installation of a 2.5 T superconducting magnetic solenoid at Magnum-PSI the heat flux will reach the ITER-relevant gigawatt per square metre heat flux regime.

  13. High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz

    Science.gov (United States)

    Lv, Zhi-Guo; Teng, Hao; Wang, Li-Na; Wang, Jun-Li; Wei, Zhi-Yi

    2016-09-01

    A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification (CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied. We find that the compressed pulse duration is dependent on the amplified energy, the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ, while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ. The measured energy fluctuation is approximately 0.46% root mean square (RMS) over 2 h. The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines, medical therapy, and scientific studies. Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAC23B03), the National Key Basic Research Program of China (Grant No. 2013CB922401), and the National Natural Science Foundation of China (Grant No. 11474002).

  14. A K-alpha x-ray source using high energy and high repetition rate laser system for phase contrast imaging.

    Science.gov (United States)

    Serbanescu, Cristina; Fourmaux, Sylvain; Kieffer, Jean-Claude; Kincaid, Russell; Krol, Andrzej

    2009-01-01

    K-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum pulse energy of 110 mJ before compression. The source has an x-ray conversion efficiency of greater than 10(-5) into K-alpha line emission. In preparation for phase contrast imaging applications, the size of the resultant K-alpha x-ray emission spot has been also characterized. The source exhibits sufficient spatial coherence to observe phase contrast. We observe a relatively small broadening of the K-alpha source size compared to the size of the laser beam itself. Detailed characterization of the source including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented.

  15. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser.

    Science.gov (United States)

    Ruiz de la Cruz, A; Lahoz, R; Siegel, J; de la Fuente, G F; Solis, J

    2014-04-15

    We report on the fabrication of laser-induced periodic surface structures in Cr films upon high repetition rate fs laser irradiation (up to 1 MHz, 500 fs, 1030 nm), employing beam scanning. Highly regular large-area (9  cm2) gratings with a relative diffraction efficiency of 42% can be produced within less than 6 min. The ripple period at moderate and high fluences is 0.9 μm, with a small period of 0.5 μm appearing at lower energies. The role of the irradiation parameters on the characteristics of the laser-induced periodic surface structures (LIPSS) is studied and discussed in the frame of the models presently used. We have identified the polarization vector orientation with respect to the scan direction as a key parameter for the fabrication of high-quality, large-area LIPSS, which, for perpendicular orientation, allows the coherent extension of the sub-wavelength structure over macroscopic distances. The processing strategy is robust in terms of broad parameter windows and applicable to other materials featuring LIPSS.

  16. High Repetition-Rate Neutron Generation by Several-mJ, 35 fs pulses interacting with Free-Flowing D2O

    Science.gov (United States)

    Hah, Jungmoo; Petrov, George; Nees, John; He, Zhaohan; Hammig, Mark; Krushelnick, Karl; Thomas, Alexander

    2016-10-01

    Recent advance in ultra-high power laser technology allows a development of laser-based neutron sources. Here we demonstrate heavy-water based neutron source. Using several-mJ energy pulses from a high-repetition rate (½kHz), ultrashort (35 fs) pulsed laser interacting with a 10 μm diameter stream of free-flowing heavy water (D2O), we get a 2.45 MeV neutron flux of 105/s. In the intentionally generated pre-plasma, laser pulse energy is efficiently absorbed, and energetic deuterons are generated. As a convertor, the bulk heavy water stream target and the large volume of low density D2O vapor near the target are collided with accelerated deuterons, generating neutron through d(d,n)3He reactions. As laser pulse energy increased from 6mJ to 12mJ, the neutron flux increased. From the 2D particle-in-cell simulation, comparable neutron fluxes are shown at the similar laser characteristics to the experiment. Also, simulation shows forward and backward moving deuterons, which are main distributing ions impinging upon D2O stream and vapor, respectively. This material is based upon work supported by the Air Force Office of Scien- tific Research under Award Numbers FA9550-12-1-0310 (Young Investigator Program) and FA9550-14-1-0282.

  17. Spatial spread of Eurasian beavers in river networks: a comparison of range expansion rates.

    Science.gov (United States)

    Barták, Vojtěch; Vorel, Aleš; Símová, Petra; Puš, Vladimír

    2013-05-01

    1. Accurately measuring the rate of spread for expanding populations is important for reliably predicting their future spread, as well as for evaluating the effect of different conditions and management activities on that rate of spread. 2. Although a number of methods have been developed for such measurement, all these are designed only for one- or two-dimensional spread. Species dispersing along rivers, however, require specific methods due to the distinctly branching structure of river networks. 3. In this study, we analyse data regarding Eurasian beavers' modern recolonization of the Czech Republic. We developed a new methodology for quantifying spread of species dispersing along streams based on representation of the river network by means of a weighted graph. 4. We defined two different network-based spread rate measures, one estimating the rate of range expansion, with the range defined as the total length of occupied streams, and the second, named range diameter, quantifying the progress along one or several main streams. In addition, we estimated the population growth rates, and, dividing the population size by the range size, we measured the density of beaver records within their overall range. Using linear regression, we compared four beaver populations under different environmental conditions in terms of each of these measures. Finally, we discuss the differences between our method and the classical approaches. 5. Our method provided substantially higher spread rate values than did the classical methods. Both population growth and range expansion were found to follow logistic growth. In cases of there being no considerable barriers in dispersal routes, the rate of progress along main streams did not differ significantly among populations. In homogeneous environments, population densities remained relatively constant over time even though overall population sizes increased. This indicates that at large spatial scales, the population growth of beavers

  18. Local extinction and turnover rates at the edge and interior of species' ranges

    Science.gov (United States)

    Doherty, P.F.; Boulinier, T.; Nichols, J.D.

    2003-01-01

    One hypothesis for the maintenance of the edge of a species' range suggests that more central (and abundant) populations are relatively stable and edge populations are less stable with increased local extinction and turnover rates. To date, estimates of such metrics are equivocal due to design and analysis flaws. Apparent increased estimates of extinction and turnover rates at the edge of range, versus the interior, could be a function of decreased detection probabilities alone, and not of a biological process. We estimated extinction and turnover rates for species at the interiors and edges of their ranges using an approach which incorporates potential heterogeneity in species detection probabilities. Extinction rates were higher at the edges (0.17 ' 0.03 [SE]) than in the interiors (0.04 ' 0.01), as was turnover. Without taking the probability of detection into account these differences would be artificially magnified. Knowledge of extinction and turnover rates is essential in furthering our understanding of range dynamics, and in directing conservation efforts. This study further illustrates the practical application of methods proposed recently for estimating extinction rates and other community dynamic parameters.

  19. Development of wide-range constitutive equations for calculations of high-rate deformation of metals

    Directory of Open Access Journals (Sweden)

    Preston D.

    2011-01-01

    Full Text Available For development of models of strength and compressibility of metals in wide range of pressures (up to several megabar and strain rates ~ 1÷108 s−1, the method of dynamic tests is used. Since direct measurement of strength is impossible under complicated intensive high-rate loading, a formal model is created at first, and then it is updated basing on comparison with many experiments, which are sensitive to shear strength. Elastic-plastic, viscous-elastic-plastic and relaxation integral models became nowadays most commonly used. The basic unsolved problems in simulation of high-rate deformation of metals are mentioned in the paper.

  20. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    NARCIS (Netherlands)

    Huang, M.; Rivera-Diaz-del-Castillo, P.E.J.; Bouaziz, O.; Van der Zwaag, S.

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that t

  1. Growth rate and maturation of skeletal muscles over a size range of galliform birds

    NARCIS (Netherlands)

    Dietz, MW; Ricklefs, RE; Ricklefs, Robert E.

    1997-01-01

    The relationship between growth rate and development of function in leg and pectoral muscles was studied in four species of galliform birds ranging from 125 g to 18 kg and, for comparison, in an altricial species, the European starling (80 g). An index to neonatal maturity (muscle dry content propor

  2. Rate-optimal scheduling of recursive DSP algorithms based on the scheduling-range chart

    NARCIS (Netherlands)

    Heemstra de Groot, Sonia M.; Herrmann, Otto E.

    1990-01-01

    A method for rate-optimal scheduling of recursive DSP algorithms is presented. The approach is based on the determination of the scheduling window of each operation and the construction of a scheduling-range chart. The information in the chart is used during scheduling to optimize some quality crite

  3. Spaced planar laminations formed by repetitive basal erosion and resurgence to high-sedimentation-rate regime: new insight from a bedform-like structures and laterally continuous exposures

    Science.gov (United States)

    Ishihara, Yoshiro; Yuri, Onishi; Tsuda, Keisuke; Yokokawa, Miwa

    2017-04-01

    Spaced planar laminations (SPL), or so-called traction carpet deposits, are frequently observed in deposits of sediment gravity flows. Several sedimentation models for a succession of inversely graded units have been suggested from field observations and flume experiments. The formation of the inversely graded unit could be summarized as follows: (1) abrupt sedimentation on freezing of an inversely graded layer, or (2) interruptions in flow causing a freezing of an inversely graded layer at the most basal part of flow. In either case, traction carpets as a bed load overlying the erosive boundary at the base of flow are required. Although some descriptions have reported SPLs forming antidune bedform-like structures and the association of SPLs with structureless massive deposits have not been clearly explained. In this study, we suggest a novel model of SPL formation by repetition of basal erosion and resurgence to high-sedimentation rates, based on detail examinations of SPLs both showing bedform-like structures and lateral extents of hundreds of meters. SPLs were investigated in the Mio-Pliocene Kiyosumi Formation in central Japan and the Miocene Aoshima Formation in southwest Japan. In a turbidite in the Kiyosumi Formation, SPLs show three mound-like structures, suggesting antidune bedforms with wavelengths of about 6 to 7 m. On the upcurrent flanks, SPLs show lenticular cross laminations or pinching out of units; those units do not show clear inverse grading. Rip-up mud clasts and relatively high-angle imbrications are also observed. On the other hand, SPLs on the downcurrent flanks show relatively clear inverse grading and transition downcurrent into a massive structureless bed. In the Aoshima Formation, SPLs with ca. 1 cm unit thickness continue approximately 50 m along a palaeocurrent direction without changes in thickness. These SPLs gradually transition upward into a massive structureless unit. From the observations described above, in addition to

  4. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  5. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Bouaziz, Olivier, E-mail: mingxin.huang@arcelormittal.com [ArcelorMittal Maizieres, Research and Development, Voie Romaine-BP30320, 57283 Maizieres-les-Metz Cedex (France)

    2009-07-15

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate ({approx} 10{sup 4} s{sup -1}) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10{sup -5} to 10{sup 6} s{sup -1} showing good agreement with experimental results.

  6. Density of wild prey modulates lynx kill rates on free-ranging domestic sheep.

    Directory of Open Access Journals (Sweden)

    John Odden

    Full Text Available Understanding the factors shaping the dynamics of carnivore-livestock conflicts is vital to facilitate large carnivore conservation in multi-use landscapes. We investigated how the density of their main wild prey, roe deer Capreolus capreolus, modulates individual Eurasian lynx Lynx lynx kill rates on free-ranging domestic sheep Ovis aries across a range of sheep and roe deer densities. Lynx kill rates on free-ranging domestic sheep were collected in south-eastern Norway from 1995 to 2011 along a gradient of different livestock and wild prey densities using VHF and GPS telemetry. We used zero-inflated negative binomial (ZINB models including lynx sex, sheep density and an index of roe deer density as explanatory variables to model observed kill rates on sheep, and ranked the models based on their AICc values. The model including the effects of lynx sex and sheep density in the zero-inflation model and the effect of lynx sex and roe deer density in the negative binomial part received most support. Irrespective of sheep density and sex, we found the lowest sheep kill rates in areas with high densities of roe deer. As roe deer density decreased, males killed sheep at higher rates, and this pattern held for both high and low sheep densities. Similarly, females killed sheep at higher rates in areas with high densities of sheep and low densities of roe deer. However, when sheep densities were low females rarely killed sheep irrespective of roe deer density. Our quantification of depredation rates can be the first step towards establishing fairer compensation systems based on more accurate and area specific estimation of losses. This study demonstrates how we can use ecological theory to predict where losses of sheep will be greatest, and can be used to identify areas where mitigation measures are most likely to be needed.

  7. Putting weathering into a landscape context: Variations in exhumation rates across the Colorado Front Range

    Science.gov (United States)

    Anderson, Suzanne P.; Foster, Melissa A.; Anderson, Scott W.; Dühnforth, Miriam; Anderson, Robert S.

    2015-04-01

    Erosion rates are expected vary with lithology, climate, and topographic slope, yet assembling these variations for an entire landscape is rarely done. The Front Range of the southern Rocky Mountains in Colorado, USA, exhibits contrasts in all three parameters. The range comprises ~2300 m in relief from the Plains to the crags of the Continental Divide. Its abrupt mountain front coincides closely with the boundary between marine sedimentary rocks to the east and Proterozoic crystalline rocks (primarily granodiorite and gneiss) to the west. Mean annual temperature declines and mean annual precipitation increases with elevation, from ~11° C/490 mm at the western edge of the Plains to -3.7° C/930 mm on Niwot Ridge near the range crest. The range contains regions of low relief with rolling topography, in which slopes rarely exceed 20° , as well as deeply incised glacial valleys and fluvial canyons lined by steep slopes (>25° ). Cosmogenic 10Be based erosion rates vary by a factor of ~5 within crystalline rock across the range. The lowest rates (5-10 mm/ka) are found on low relief summit tors in the alpine, where temperatures are low and precipitation is high. Slightly higher erosion rates (20-30 mm/ka) are found in low relief crystalline rock areas with montane forest cover. Taken together, these rates suggest that on low slopes, rock-weathering rates (which place a fundamental limit on erosion rates) are lower in cold alpine settings. Over the 40-150 ka averaging time of 10Be erosion rates, lower rates are found where periglacial/tundra conditions have prevailed, while moderate rates occur where conditions have varied from periglacial/tundra in the past to frigid regime/montane forest in the Holocene. Higher basin-averaged erosion rates of 40-60 mm/ka are reported for 'canyon edge' basins (Dethier et al., 2014, Geology), which are small, steep basins responding to fluvial bedrock incision that formed the canyons in the late Cenozoic. Are higher erosion rates in

  8. WEST NILE VIRUS ANTIBODY DECAY RATE IN FREE-RANGING BIRDS.

    Science.gov (United States)

    McKee, Eileen M; Walker, Edward D; Anderson, Tavis K; Kitron, Uriel D; Brawn, Jeffrey D; Krebs, Bethany L; Newman, Christina; Ruiz, Marilyn O; Levine, Rebecca S; Carrington, Mary E; McLean, Robert G; Goldberg, Tony L; Hamer, Gabriel L

    2015-07-01

    Antibody duration, following a humoral immune response to West Nile virus (WNV) infection, is poorly understood in free-ranging avian hosts. Quantifying antibody decay rate is important for interpreting serologic results and for understanding the potential for birds to serorevert and become susceptible again. We sampled free-ranging birds in Chicago, Illinois, US, from 2005 to 2011 and Atlanta, Georgia, US, from 2010 to 2012 to examine the dynamics of antibody decay following natural WNV infection. Using serial dilutions in a blocking enzyme-linked immunosorbent assay, we quantified WNV antibody titer in repeated blood samples from individual birds over time. We quantified a rate of antibody decay for 23 Northern Cardinals (Cardinalis cardinalis) of 0.198 natural log units per month and 24 individuals of other bird species of 0.178 natural log units per month. Our results suggest that juveniles had a higher rate of antibody decay than adults, which is consistent with nonlinear antibody decay at different times postexposure. Overall, most birds had undetectable titers 2 yr postexposure. Nonuniform WNV antibody decay rates in free-ranging birds underscore the need for cautious interpretation of avian serology results in the context of arbovirus surveillance and epidemiology.

  9. The rate of beneficial mutations surfing on the wave of a range expansion.

    Directory of Open Access Journals (Sweden)

    Rémi Lehe

    Full Text Available Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions.

  10. The rate of beneficial mutations surfing on the wave of a range expansion.

    Science.gov (United States)

    Lehe, Rémi; Hallatschek, Oskar; Peliti, Luca

    2012-01-01

    Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions.

  11. A single-pulse shock tube coupled with high-repetition-rate time-of-flight mass spectrometry and gas chromatography for high-temperature gas-phase kinetics studies

    Science.gov (United States)

    Sela, P.; Shu, B.; Aghsaee, M.; Herzler, J.; Welz, O.; Fikri, M.; Schulz, C.

    2016-10-01

    Shock tubes are frequently used to investigate the kinetics of chemical reactions in the gas phase at high temperatures. Conventionally, two complementary arrangements are used where either time-resolved intermediate species measurements are conducted after the initiation of the reaction or where the product composition is determined after rapid initiation and quenching of the reaction through gas-dynamic processes. This paper presents a facility that combines both approaches to determine comprehensive information. A single-pulse shock tube is combined with high-sensitivity gas chromatography/mass spectrometry for product composition and concentration measurement as well as high-repetition-rate time-of-flight mass spectrometry for time-dependent intermediate concentration determination with 10 μs time resolution. Both methods can be applied simultaneously. The arrangement is validated with investigations of the well-documented thermal unimolecular decomposition of cyclohexene towards ethylene and 1,3-butadiene at temperatures between 1000 and 1500 K and pressures ranging from 0.8 to 2.4 bars. The comparison shows that the experimental results for both detections are in very good agreement with each other and with literature data.

  12. Laser radiation frequency conversion in carbon- and cluster-containing plasma plumes under conditions of single and two-color pumping by pulses with a 10-Hz repetition rate

    Science.gov (United States)

    Ganeev, R. A.

    2013-07-01

    This work reviews a series of investigations of different plasma plumes using single- and two-color laser systems that emit femtosecond pulses with a 10-Hz repetition rate. Results of investigation of the resonant enhancement of harmonics in tin plasma with the use of two types of pumps are analyzed, and it is shown that the tuning of the wavelengths of harmonics to ion-resonance levels plays an important role in increasing the conversion efficiency to high-order harmonics of the radiation to be converted. Investigations of different carbon-containing plasma media (carbon nanotubes, graphite, carbon aerogel, etc.) exhibit attractive properties of the nonlinear medium of this type for efficient generation of high-order harmonics. The results of the first experiments on the use of nanoparticles produced directly in the course of laser ablation of metals for increasing the efficiency of harmonics generated in this cluster-containing medium are analyzed. It is shown that new approaches realized in these investigations give hope that the nonlinear optical response of plasma media in the far-ultraviolet range can be further increased.

  13. Insensitivity of Ion Motional Heating Rate to Trap Material over a Large Temperature Range

    CERN Document Server

    Chiaverini, J

    2014-01-01

    We present measurements of trapped-ion motional-state heating rates in niobium and gold surface-electrode ion traps over a range of trap-electrode temperatures from approximately 4 K up to room temperature (295 K) in a single apparatus. Using the sideband-ratio technique after resolved-sideband cooling of single ions to the motional ground state, we find low-temperature heating rates more than two orders of magnitude below the room-temperature values and approximately equal to the lowest measured heating rates in similarly-sized cryogenic traps. We find similar behavior in the two very different electrode materials, suggesting that the anomalous heating process is dominated by non-material-specific surface contaminants. Through precise control of the temperature of cryopumping surfaces, we also identify conditions under which elastic collisions with the background gas can lead to an apparent steady heating rate, despite rare collisions.

  14. Analysis of GRACE Range-rate Residuals with Emphasis on Reprocessed Star-Camera Datasets

    Science.gov (United States)

    Goswami, S.; Flury, J.; Naeimi, M.; Bandikova, T.; Guerr, T. M.; Klinger, B.

    2015-12-01

    Since March 2002 the two GRACE satellites orbit the Earth at rela-tively low altitude. Determination of the gravity field of the Earth including itstemporal variations from the satellites' orbits and the inter-satellite measure-ments is the goal of the mission. Yet, the time-variable gravity signal has notbeen fully exploited. This can be seen better in the computed post-fit range-rateresiduals. The errors reflected in the range-rate residuals are due to the differ-ent sources as systematic errors, mismodelling errors and tone errors. Here, weanalyse the effect of three different star-camera data sets on the post-fit range-rate residuals. On the one hand, we consider the available attitude data andon other hand we take the two different data sets which has been reprocessedat Institute of Geodesy, Hannover and Institute of Theoretical Geodesy andSatellite Geodesy, TU Graz Austria respectively. Then the differences in therange-rate residuals computed from different attitude dataset are analyzed inthis study. Details will be given and results will be discussed.

  15. LD-pumped high repetition rate Q-switched Nd:YVO4 laser by using La3Ga5SiO14 single crystal electro-optic modulator

    Institute of Scientific and Technical Information of China (English)

    Chunyu Wang; Huaguo Zang; Xiaoli Li; Yutian Lu; Xiaolei Zhu

    2006-01-01

    A diode-end-pumped electro-optic (EO) Q-switched Nd:YVO4 laser operating at repetition rate of 10 kpps (pulses per second) was reported. A block of La3Ga5SiO14 (LGS) single crystal was used as a Q-switch and the driver was a metal oxide semiconductor field effect transistor (MOS-FET) pulser of high repetition rate and high voltage. At continuous wave (CW) operation, the slope efficiency of the laser was 46%, and maximum optical-to-optical efficiency was 38.5%. Using an output coupler with transmission of 70%, a 10-kpps Q-switched pulse train with 0.4-mJ monopulse energy and 8.2-ns pulse width was achieved, the optical conversion efficiency was around 15%, and the beam quality M2 factor was less than 1.2.

  16. Modeling normal tissue complication probability from repetitive computed tomography scans during fractionated high-dose-rate brachytherapy and external beam radiotherapy of the uterine cervix.

    Science.gov (United States)

    Dale, E; Hellebust, T P; Skjønsberg, A; Høgberg, T; Olsen, D R

    2000-07-01

    To calculate the normal tissue complication probability (NTCP) of late radiation effects on the rectum and bladder from repetitive CT scans during fractionated high-dose-rate brachytherapy (HDRB) and external beam radiotherapy (EBRT) of the uterine cervix and compare the NTCP with the clinical frequency of late effects. Fourteen patients with cancer of the uterine cervix (Stage IIb-IVa) underwent 3-6 (mean, 4.9) CT scans in treatment position during their course of HDRB using a ring applicator with an Iridium stepping source. The rectal and bladder walls were delineated on the treatment-planning system, such that a constant wall volume independent of organ filling was achieved. Dose-volume histograms (DVH) of the rectal and bladder walls were acquired. A method of summing multiple DVHs accounting for variable dose per fraction were applied to the DVHs of HDRB and EBRT together with the Lyman-Kutcher NTCP model fitted to clinical dose-volume tolerance data from recent studies. The D(mean) of the DVH from EBRT was close to the D(max) for both the rectum and bladder, confirming that the DVH from EBRT corresponded with homogeneous whole-organ irradiation. The NTCP of the rectum was 19.7% (13.5%, 25. 9%) (mean and 95% confidence interval), whereas the clinical frequency of late rectal sequelae (Grade 3-4, RTOG/EORTC) was 13% based on material from 200 patients. For the bladder the NTCP was 61. 9% (46.8%, 76.9%) as compared to the clinical frequency of Grade 3-4 late effects of 14%. If only 1 CT scan from HDRB was assumed available, the relative uncertainty (standard deviation or SD) of the NTCP value for an arbitrary patient was 20-30%, whereas 4 CT scans provided an uncertainty of 12-13%. The NTCP for the rectum was almost consistent with the clinical frequency of late effects, whereas the NTCP for bladder was too high. To obtain reliable (SD of 12-13%) NTCP values, 3-4 CT scans are needed during 5-7 fractions of HDRB treatments.

  17. Quasi-flat-top frequency-doubled Nd:glass laser for pumping of high-power Ti:sapphire amplifiers at a 0.1 Hz repetition rate.

    Science.gov (United States)

    Yanovsky, Victor; Kalinchenko, Galina; Rousseau, Pascal; Chvykov, Vladimir; Mourou, Gerard; Krushelnick, Karl

    2008-04-20

    A Nd:glass laser based on a novel design delivers up to 120 J energy pulses with a quasi-flat-top spatial profile at a 0.1 Hz repetition rate. The laser output is frequency-doubled with 50% efficiency and used to pump Ti:sapphire amplifiers. The developed design is perspective for use in the currently contemplated next step in ultra-high-intensity laser development.

  18. Task Repetition and Second Language Speech Processing

    Science.gov (United States)

    Lambert, Craig; Kormos, Judit; Minn, Danny

    2017-01-01

    This study examines the relationship between the repetition of oral monologue tasks and immediate gains in L2 fluency. It considers the effect of aural-oral task repetition on speech rate, frequency of clause-final and midclause filled pauses, and overt self-repairs across different task types and proficiency levels and relates these findings to…

  19. Thermomechanical Response of the Rotary Forged Wha Over a Wide Range of Strain Rates and Temperatures

    Science.gov (United States)

    Guo, W. G.; Qu, C.; Liu, F. L.

    This paper is to understand and model the thermomechanical response of the rotary forged WHA, uniaxial compression and tension tests are performed on cylindrical samples, using a material testing machines and the split Hopkinson bar technique. True strains exceeding 40% are achieved in these tests over the range of strain rates from 0.001/s to about 7,000/s, and at initial temperatures from 77K to 1,073K. The results show: 1) the WHA displays a pronounced changing orientation due to mechanical processing, that is, the material is inhomogeneous along the section; 2) the dynamic strain aging occurs at temperatures over 700K and in a strain rate of 10-3 1/s; 3) failure strains decrease with increasing strain rate under uniaxial tension, it is about 1.2% at a strain rate of 1,000 1/s; and 4) flow stress of WHA strongly depends on temperatures and strain rates. Finally, based on the mechanism of dislocation motion, the parameters of a physically-based model are estimated by the experimental results. A good agreement between the modeling prediction and experiments was obtained.

  20. Application of long-range order to predict unfolding rates of two-state proteins.

    Science.gov (United States)

    Harihar, B; Selvaraj, S

    2011-03-01

    Predicting the experimental unfolding rates of two-state proteins and models describing the unfolding rates of these proteins is quite limited because of the complexity present in the unfolding mechanism and the lack of experimental unfolding data compared with folding data. In this work, 25 two-state proteins characterized by Maxwell et al. (Protein Sci 2005;14:602–616) using a consensus set of experimental conditions were taken, and the parameter long-range order (LRO) derived from their three-dimensional structures were related with their experimental unfolding rates ln(k(u)). From the total data set of 30 proteins used by Maxwell et al. (Protein Sci 2005;14:602–616), five slow-unfolding proteins with very low unfolding rates were considered to be outliers and were not included in our data set. Except all beta structural class, LRO of both the all-alpha and mixed-class proteins showed a strong inverse correlation of r = -0.99 and -0.88, respectively, with experimental ln(k(u)). LRO shows a correlation of -0.62 with experimental ln(k(u)) for all-beta proteins. For predicting the unfolding rates, a simple statistical method has been used and linear regression equations were developed for individual structural classes of proteins using LRO, and the results obtained showed a better agreement with experimental results. Copyright © 2010 Wiley-Liss, Inc.

  1. Environmental conditions associated with repetitive behavior in a group of African elephants.

    Science.gov (United States)

    Hasenjager, Matthew J; Bergl, Richard A

    2015-01-01

    Repetitive movement patterns are commonly observed in zoo elephants. The extent to which these behaviors constitute a welfare concern varies, as their expression ranges from stereotypies to potentially beneficial anticipatory behaviors. Nevertheless, their occurrence in zoo animals is often viewed negatively. To better identify conditions that prompt their performance, observations were conducted on six African elephants (Loxodonta africana) at the North Carolina Zoo. Individuals spent most of their time engaged in feeding, locomotion, resting, and repetitive behavior. Both generalized estimating equation and zero-inflated negative binomial models were used to identify factors associated with increased rates of repetitive behavior. Time of day in conjunction with location on- or off-exhibit best explained patterns of repetitive behavior. Repetitive behaviors occurred at a lower rate in the morning when on-exhibit, as compared to afternoons on-exhibit or at any time of day off-exhibit. Increased repetitive behavior rates observed on-exhibit in the afternoon prior to the evening transfer and feeding were possibly anticipatory responses towards those events. In contrast, consistently elevated frequencies of repetitive behavior off-exhibit at all times of day could be related to differences in exhibit complexity between off-exhibit and on-exhibit areas, as well as a lack of additional foraging opportunities. Our study contributes valuable information on captive elephant behavior and represents a good example of how behavioral research can be employed to improve management of zoo animals.

  2. On the sensitivity of extrasolar mass-loss rate ranges: HD 209458b a case study

    CERN Document Server

    D'Angelo, C S Villarreal; Costa, A; Velázquez, P; Raga, A; Esquivel, A

    2013-01-01

    We present a 3D hydrodynamic study of the effects that different stellar wind conditions and planetary wind structures have on the calculated Ly-$\\alpha$ absorptions produced during the transit of HD 209458b. Considering a range of stellar wind speeds $\\sim$[350-800] km s$^{-1}$, coronal temperature $\\sim$[3-7] $\\times10^{6}$ K and two values of the polytropic index $\\Gamma$ $\\sim$[1.01-1.13], while keeping fixed the stellar mass loss rate, we found a that a $\\dot M_p$ range between $\\sim$[3-5] $\\times 10^{10}$g s$^{-1}$ give account for the observational absorption in Ly-$\\alpha$ measured for the planetary system. Also, several models with anisotropic evaporation profiles for the planetary escaping atmosphere were carried out, showing that both, the escape through polar regions and through the night side yields larger absorptions than an isotropic planetary wind.

  3. Non-contact and noise tolerant heart rate monitoring using microwave doppler sensor and range imagery.

    Science.gov (United States)

    Matsunag, Daichi; Izumi, Shintaro; Okuno, Keisuke; Kawaguchi, Hiroshi; Yoshimoto, Masahiko

    2015-01-01

    This paper describes a non-contact and noise-tolerant heart beat monitoring system. The proposed system comprises a microwave Doppler sensor and range imagery using Microsoft Kinect™. The possible application of the proposed system is a driver health monitoring. We introduce the sensor fusion approach to minimize the heart beat detection error. The proposed algorithm can subtract a body motion artifact from Doppler sensor output using time-frequency analysis. The body motion artifact is a crucially important problem for biosignal monitoring using microwave Doppler sensor. The body motion speed is obtainable from range imagery, which has 5-mm resolution at 30-cm distance. Measurement results show that the success rate of the heart beat detection is improved about 75% on average when the Doppler wave is degraded by the body motion artifact.

  4. Note: Inter-satellite laser range-rate measurement by using digital phase locked loop.

    Science.gov (United States)

    Liang, Yu-Rong; Duan, Hui-Zong; Xiao, Xin-Long; Wei, Bing-Bing; Yeh, Hsien-Chi

    2015-01-01

    This note presents an improved high-resolution frequency measurement system dedicated for the inter-satellite range-rate monitoring that could be used in the future's gravity recovery mission. We set up a simplified common signal test instead of the three frequencies test. The experimental results show that the dominant noises are the sampling time jitter and the thermal drift of electronic components, which can be reduced by using the pilot-tone correction and passive thermal control. The improved noise level is about 10(-8) Hz/Hz(1/2)@0.01Hz, limited by the signal-to-noise ratio of the sampling circuit.

  5. New constraints on Holocene uplift rates for the Baudo Mountain Range, northwestern Colombia

    Science.gov (United States)

    González, Juan L.; Shen, Zhixiong; Mauz, Barbara

    2014-07-01

    A beach deposit on the southern end of the Baudo Mountain Range, at an elevation of ˜2.0 m above the backshore of the modern beach, was dated at ˜2870 years using optically stimulated luminescence dating. The calculated average uplift rate necessary to raise this deposit is 0.7 mm/yr. This rate combines the long-term regional deformation associated with the subduction of the Nazca Plate under the South American Plate and the collision of the Choco Block microplate against the South American continent, as well as uplift from local faults. We propose that rapid emergence probably as several pulses, each involving decimeter scale coseismic uplift, is likely to have occurred to elevate the beach above the intertidal zone and offset destructive wave erosion.

  6. Digital repetitive control under varying frequency conditions

    CERN Document Server

    Ramos, Germán A; Olm, Josep M

    2013-01-01

    The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area. Repetitive Control has proven to be an efficient way to face this topic. However, in some applications the frequency of the reference/disturbance signal is time-varying or uncertain. This causes an important performance degradation in the standard Repetitive Control scheme. This book presents some solutions to apply Repetitive Control in varying frequency conditions without loosing steady-state performance. It also includes a complete theoretical development and experimental results in two representative systems. The presented solutions are organized in two complementary branches: varying sampling period Repetitive Control and High Order Repetitive Control. The first approach allows dealing with large range frequency variations while the second allows dealing with small range frequency variations. The book also presents applications of the described techniques to a Roto-magnet plant and...

  7. The effect of stretch rate and activation state on skeletal muscle force in the anatomical range.

    Science.gov (United States)

    Grover, Joel P; Corr, David T; Toumi, Hechmi; Manthei, David M; Oza, Ashish L; Vanderby, Ray; Best, Thomas M

    2007-03-01

    The effects of stretch rate and activation state on muscle mechanics require further clarification. This subject is of particular interest because of the role of skeletal muscle undergoing eccentric contractions in musculoskeletal injuries. The present study investigated the force-displacement behavior of rabbit tibialis anterior muscle at three stretch rates (2.5, 10, 25 cm/s) and three activation states (passive, tetanic, denervated). A phenomenological power law model and a dynamic systems model were used to describe the mechanical responses. The power law model showed excellent agreement with the passive and denervated responses to stretch (R(mean)=0.97). Repeated measures analysis of variance found a difference (P=0.042) in peak force between the passive and denervated states at a stretch rate of 2.5 cm/s. The dynamic systems model closely fit the tetanized muscle responses (R(mean)=0.95). There was no difference in the displacement at yield (P=0.83) for the three stretch rates of the tetanized muscle undergoing stretch. Differences between the passive and denervated responses suggest that mechanoreceptors may play a role in stimulating the muscle as it is stretched through the anatomical range. The displacement at yield did not change significantly over a decade range of stretch velocities, suggesting that a strain threshold exists beyond which cross bridges cannot remain bound. The power law and dynamic systems models presented offer mathematically tractable approaches to interpret the response of lengthening skeletal muscle. These findings on active, passive, and denervated muscle point to a possible role of the muscle spindle to tissue mechanical behavior that should be accounted for in future studies of force-elongation behavior of skeletal muscle.

  8. Repetitive maladaptive behavior: beyond repetition compulsion.

    Science.gov (United States)

    Bowins, Brad

    2010-09-01

    Maladaptive behavior that repeats, typically known as repetition compulsion, is one of the primary reasons that people seek psychotherapy. However, even with psychotherapeutic advances it continues to be extremely difficult to treat. Despite wishes and efforts to the contrary repetition compulsion does not actually achieve mastery, as evidenced by the problem rarely resolving without therapeutic intervention, and the difficulty involved in producing treatment gains. A new framework is proposed, whereby such behavior is divided into behavior of non-traumatic origin and traumatic origin with some overlap occurring. Repetitive maladaptive behavior of non-traumatic origin arises from an evolutionary-based process whereby patterns of behavior frequently displayed by caregivers and compatible with a child's temperament are acquired and repeated. It has a familiarity and ego-syntonic aspect that strongly motivates the person to retain the behavior. Repetitive maladaptive behavior of traumatic origin is characterized by defensive dissociation of the cognitive and emotional components of trauma, making it very difficult for the person to integrate the experience. The strong resistance of repetitive maladaptive behavior to change is based on the influence of both types on personality, and also factors specific to each. Psychotherapy, although very challenging at the best of times, can achieve the mastery wished and strived for, with the aid of several suggestions provided.

  9. Preamplifier development for high count-rate, large dynamic range readout of inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Keshelashvili, Irakli; Erni, Werner; Steinacher, Michael; Krusche, Bernd; Collaboration: PANDA-Collaboration

    2013-07-01

    Electromagnetic calorimeter are central component of many experiments in nuclear and particle physics. Modern ''trigger less'' detectors run with very high count-rates, require good time and energy resolution, and large dynamic range. In addition photosensors and preamplifiers must work in hostile environments (magnetic fields). Due to later constraints mainly Avalanche Photo Diodes (APD's), Vacuum Photo Triodes (VPT's), and Vacuum Photo Tetrodes (VPTT's) are used. A disadvantage is their low gain which together with other requirements is a challenge for the preamplifier design. Our group has developed special Low Noise / Low Power (LNP) preamplifier for this purpose. They will be used to equip PANDA EMC forward end-cap (dynamic range 15'000, rate 1MHz), where the PWO II crystals and preamplifier have to run in an environment cooled down to -25{sup o}C. Further application is the upgrade of the Crystal Barrel detector at the Bonn ELSA accelerator with APD readout for which special temperature comparison of the APD gain and good time resolution is necessary. Development and all test procedures after the mass production done by our group during past several years in Basel University will be reported.

  10. Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates

    Science.gov (United States)

    Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.

    2015-12-01

    The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic

  11. Pain ratings reflect cognitive context: a range frequency model of pain perception.

    Science.gov (United States)

    Watkinson, Pat; Wood, Alex M; Lloyd, Donna M; Brown, Gordon D A

    2013-05-01

    When painful stimuli are evaluated at the time they are experienced, judgments are made not in isolation but with reference to other experienced stimuli. We tested a specific quantitative model of how such context effects occur. Participants experienced 3 blocks of 11 different pressure pain stimuli, and rated each stimulus on a 0-10 scale of intensity. Stimulus distribution was varied between participants. Study 1 found that that the rating of a stimulus of a particular pressure was higher in the context in which it ranked highest. Study 2 found that pain ratings were higher in a context where most stimuli were relatively intense, even when the mean stimulus was constant. It is suggested that pain judgments are relative, involve the same cognitive processes as are used in other psychophysical and socioemotional judgments, and are well described by range frequency theory. This approach can further inform the existing body of research on context-dependent pain evaluation. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. Measurement of peak impact loads differ between accelerometers - Effects of system operating range and sampling rate.

    Science.gov (United States)

    Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C

    2017-06-14

    A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Diabatic heating rate estimates from European Centre for Medium-Range Weather Forecasts analyses

    Science.gov (United States)

    Christy, John R.

    1991-01-01

    Vertically integrated diabatic heating rate estimates (H) calculated from 32 months of European Center for Medium-Range Weather Forecasts daily analyses (May 1985-December 1987) are determined as residuals of the thermodynamic equation in pressure coordinates. Values for global, hemispheric, zonal, and grid point H are given as they vary over the time period examined. The distribution of H is compared with previous results and with outgoing longwave radiation (OLR) measurements. The most significant negative correlations between H and OLR occur for (1) tropical and Northern-Hemisphere mid-latitude oceanic areas and (2) zonal and hemispheric mean values for periods less than 90 days. Largest positive correlations are seen in periods greater than 90 days for the Northern Hemispheric mean and continental areas of North Africa, North America, northern Asia, and Antarctica. The physical basis for these relationships is discussed. An interyear comparison between 1986 and 1987 reveals the ENSO signal.

  14. Grammatical Change through Repetition.

    Science.gov (United States)

    Arevart, Supot

    1989-01-01

    The effect of repetition on grammatical change in an unrehearsed talk is examined based on a case study of a single learner. It was found that repetition allows for accuracy monitoring in that errors committed in repeated contexts undergo correction. Implications for teaching are discussed. (23 references) (LB)

  15. The Negative Repetition Effect

    Science.gov (United States)

    Mulligan, Neil W.; Peterson, Daniel J.

    2013-01-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…

  16. Full-Duplex MIMO Relaying: Achievable Rates under Limited Dynamic Range

    CERN Document Server

    Day, Brian P; Bliss, Daniel W; Schniter, Philip

    2011-01-01

    In this paper we consider the problem of full-duplex multiple-input multiple-output (MIMO) relaying between a source and destination who do not share a direct link. The principal difficulty in implementing such a system is that, due to the limited attenuation between the relay's transmit and receive antenna arrays, the relay's outgoing signal may overwhelm it's limited-dynamic-range input circuitry, making it difficult-if not impossible-to recover the desired incoming signal. While explicitly modeling transmitter/ receiver dynamic-range limitations and channel estimation error, we derive tight upper and lower bounds on the end-to-end achievable rate of decode-and-forward-based full-duplex MIMO relay systems, and propose a transmission scheme based on maximization of the lower bound. The maximization requires us to (numerically) solve a nonconvex optimization problem, for which we detail a novel approach based on bisection search and gradient projection. To gain insights into system design tradeoffs, we also d...

  17. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2016-06-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates ( 10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass ( α ) transition and the secondary ( β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  18. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  19. Long range dependence in the high frequency USD/INR exchange rate

    Science.gov (United States)

    Kumar, Dilip

    2014-02-01

    Using high frequency data, this paper examines the long memory property in the unconditional and conditional volatility of the USD/INR exchange rate at different time scales using the Local Whittle (LW), the Exact Local Whittle (ELW) and the FIAPARCH models. Results indicate that the long memory property remains quite stable across different time scales for both unconditional and conditional volatility measures. Results from the non-overlapping moving window approach indicate that the extreme events (such as the subprime crisis and the European debt crisis) resulted in highly persistent behavior of the USD/INR exchange rate and thus lead to market inefficiency. This paper also examines the long memory property in the realized volatility based on different time scale data. Results indicate that the realized volatility measures based on different scales of the high frequency data exhibit a consistent and stable long memory property. However, the realized volatility measures based on daily data exhibit lower degree of long-range dependence. This study has implications for traders and investors (with different trading horizons) and can be helpful in predicting expected future volatility and in designing and implementing trading strategies at different time scales.

  20. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  1. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  2. Measurements of pulse rate using long-range imaging photoplethysmography and sunlight illumination outdoors

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.

    2017-02-01

    Imaging photoplethysmography, a method using imagers to record absorption variations caused by microvascular blood volume pulsations, shows promise as a non-contact cardiovascular sensing technology. The first long-range imaging photoplethysmography measurements at distances of 25, 50, and 100 meters from the participant was recently demonstrated. Degraded signal quality was observed with increasing imager-to-subject distances. The degradation in signal quality was hypothesized to be largely attributable to inadequate light return to the image sensor with increasing lens focal length. To test this hypothesis, a follow-up evaluation with 27 participants was conducted outdoors with natural sunlight illumination resulting in 5-33 times the illumination intensity. Video was recorded from cameras equipped with ultra-telephoto lenses and positioned at distances of 25, 50, 100, and 150 meters. The brighter illumination allowed high-definition video recordings at increased frame rates of 60fps, shorter exposure times, and lower ISO settings, leading to higher quality image formation than the previous indoor evaluation. Results were compared to simultaneous reference measurements from electrocardiography. Compared to the previous indoor study, we observed lower overall error in pulse rate measurement with the same pattern of degradation in signal quality with respect to increasing distance. This effect was corroborated by the signal-to-noise ratio of the blood volume pulse signal which also showed decreasing quality with respect to increasing distance. Finally, a popular chrominance-based method was compared to a blind source separation approach; while comparable in measurement of signal-to-noise ratio, we observed higher overall error in pulse rate measurement using the chrominance method in this data.

  3. A repetitive 0.14 THz relativistic surface wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guangqiang; Tong Changjiang; Li Xiaoze; Wang Xuefeng; Li Shuang; Lu Xicheng [Northwest Institute of Nuclear Technology, P.O. Box 69-1, Xi' an 710024 (China); Wang Jianguo [Northwest Institute of Nuclear Technology, P.O. Box 69-1, Xi' an 710024 (China); School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2013-04-15

    Preliminary experimental results of a repetitive 0.14 THz overmoded relativistic surface wave oscillator (RSWO) are presented in this paper. The repetitive RSWO is developed by using a rectangularly corrugated slow-wave structure with overmoded ratio of 3 and a foilless diode emitting annular electron beam with thickness of 0.5 mm. The high quality electron beams at the repetition rate of 10 are obtained over a wide range of diode voltage (180 kV < U < 240 kV) and current (700 A < I < 1.2 kA). The generation experiments of RSWO are conducted at an axial pulsed magnetic field whose maximum strength and duration can reach about 2.7 T and 1 s, respectively. The experimental results show that the RSWO successfully produces reasonable uniform terahertz pulses at repetition rate of 10, and the pulse duration, frequency, and power of a single pulse are about 1.5 ns, 0.154 THz, and 2.6 MW, respectively, whereas the dominated radiation mode of the RSWO is TM{sub 02}.

  4. 50-GHz repetition-rate, 280-fs pulse generation at 100-mW average power from a mode-locked laser diode externally compressed in a pedestal-free pulse compressor

    Science.gov (United States)

    Tamura, Kohichi R.; Sato, Kenji

    2002-07-01

    280-fs pedestal-free pulses are generated at average output powers exceeding 100 mW at a repetition rate of 50 GHz by compression of the output of a mode-locked laser diode (MLLD) by use of a pedestal-free pulse compressor (PFPC). The MLLD consists of a monolithically integrated chirped distributed Bragg reflector, a gain section, and an electroabsorption modulator. The PFPC is composed of a dispersion-flattened dispersion-decreasing fiber and a dispersion-flattened dispersion-imbalanced nonlinear optical loop mirror. Frequency modulation for linewidth broadening is used to overcome the power limitation imposed by stimulated Brillouin scattering.

  5. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  6. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    Science.gov (United States)

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T.; Salama, Khaled Nabil

    2016-01-01

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices. PMID:27453767

  7. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.

    Science.gov (United States)

    Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Li, Er Qiang; Thoroddsen, Sigurdur T; Salama, Khaled Nabil

    2016-05-01

    This paper proposes a new "twisted" 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  8. Dewar cooler integrated MWIR spectrometer for high rates and high dynamic range measurements

    Science.gov (United States)

    Guérineau, N.; Rommeluère, S.; Ferrec, Y.; Druart, G.; Lasfargues, G.; de Borniol, E.; Magli, S.

    2015-06-01

    There is a need for compact, hand-held, spectrometers for the measurement of spectral signatures of chemicals or objects. To achieve this goal, a new concept of Fourier-transform interferometer (FTIR) directly integrated on the infrared focal plane array (FPA) has been developed at ONERA. The fundamental properties of this key element called MICROSPOC will be recalled and we will see how those properties can be exploited to get a snapshot, compact and cryogenic MWIR spectrometer. These design rules have been applied to develop a very compact device that combines the metrological properties of a FTIR-FPA of quantum HgCdTe technology with the radiometric performances of a last generation Sofradir detection block (Infrared Detector Dewar Cooler Assembly - IDDCA). The experimental performances of the prototype will be presented, in terms of spectral resolution, acquisition rate, dynamic range and noise equivalent spectral radiance. We will discuss at the end the potential of this technology to meet the requirements of different applications.

  9. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-06-27

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  10. Precision markedly attenuates repetitive lift capacity.

    Science.gov (United States)

    Collier, Brooke R; Holland, Laura; McGhee, Deirdre; Sampson, John A; Bell, Alison; Stapley, Paul J; Groeller, Herbert

    2014-01-01

    This study investigated the effect of precision on time to task failure in a repetitive whole-body manual handling task. Twelve participants were required to repetitively lift a box weighing 65% of their single repetition maximum to shoulder height using either precise or unconstrained box placement. Muscle activity, forces exerted at the ground, 2D body kinematics, box acceleration and psychophysical measures of performance were recorded until task failure was reached. With precision, time to task failure for repetitive lifting was reduced by 72%, whereas the duration taken to complete a single lift and anterior deltoid muscle activation increased by 39% and 25%, respectively. Yet, no significant difference was observed in ratings of perceived exertion or heart rate at task failure. In conclusion, our results suggest that when accuracy is a characteristic of a repetitive manual handling task, physical work capacity will decline markedly. The capacity to lift repetitively to shoulder height was reduced by 72% when increased accuracy was required to place a box upon a shelf. Lifting strategy and muscle activity were also modified, confirming practitioners should take into consideration movement precision when evaluating the demands of repetitive manual handling tasks.

  11. Diagnosis of high-repetition-rate pulse laser with pyroelectric detector%基于热释电探测器的重频脉冲激光诊断

    Institute of Scientific and Technical Information of China (English)

    张磊; 邵碧波; 杨鹏翎; 王振宝; 闫燕

    2011-01-01

    Based on the working principles of a pyroelectric detector, the transient response of the detector to the pulse laser is researched. The model of pyroelectric detector is built, and the response in practical application is simulated according to the parameters of materials and structures. Signal process circuits which are suitable for a high-repetition-rate pulse laser are designed. Finally', a number of the repetition frequency laser radiation experiments on the pyroelectric detector are carried out. The experiments on frequency response and pulse width of the detector are completed, and the feasibility of applying the pyroelectric detector to the energy measurement of the high-repetition-rate and narrow pulse laser is verified.%摘以热释电探测器的工作原理为基础,研究了热释电探测器对重频脉冲激光的瞬态响应特性,建立了热释电探测器对单脉冲激光辐照响应的工作模型,分析了影响探测器频率特性的主要因素。根据材料和结构参数模拟计算了实际应用中的响应模型。设计了信号检测电路并对其进行计算仿事。完成了探测器的频率响应、脉宽响应等实验测量,验证了热释电探测器用于高重频、窄脉冲激光能量测量的可行性。

  12. Field test of a paradigm: hysteresis of heart rate in thermoregulation by a free-ranging lizard (Pogona barbata).

    OpenAIRE

    Grigg, G C; Seebacher, F.

    1999-01-01

    The discovery that changes in heart rate and blood flow allow some reptiles to heat faster than they cool has become a central paradigm in our understanding of reptilian thermoregulation. However, this hysteresis in heart rate has been demonstrated only in simplistic laboratory heating and cooling trials, leaving its functional significance in free-ranging animals unproven. To test the validity of this paradigm, we measured heart rate and body temperature (Tb) in undisturbed, free-ranging bea...

  13. Perceptual Repetition Blindness Effects

    Science.gov (United States)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    The phenomenon of repetition blindness (RB) may reveal a new limitation on human perceptual processing. Recently, however, researchers have attributed RB to post-perceptual processes such as memory retrieval and/or reporting biases. The standard rapid serial visual presentation (RSVP) paradigm used in most RB studies is, indeed, open to such objections. Here we investigate RB using a "single-frame" paradigm introduced by Johnston and Hale (1984) in which memory demands are minimal. Subjects made only a single judgement about whether one masked target word was the same or different than a post-target probe. Confidence ratings permitted use of signal detection methods to assess sensitivity and bias effects. In the critical condition for RB a precue of the post-target word was provided prior to the target stimulus (identity precue), so that the required judgement amounted to whether the target did or did not repeat the precue word. In control treatments, the precue was either an unrelated word or a dummy.

  14. Trialogue: Preparation, Repetition and...

    Science.gov (United States)

    Oberg, Antoinette; And Others

    1996-01-01

    This paper interrogates both curriculum theory and the limits and potentials of textual forms. A set of overlapping discourses (a trialogue) focuses on inquiring into the roles of obsession and repetition in creating deeply interpretive locations for understanding. (SM)

  15. Climate-induced seasonal changes in smallmouth bass growth rate potential at the southern range extent

    Science.gov (United States)

    Middaugh, Christopher R.; Kessinger, Brin; Magoulick, Daniel D.

    2016-01-01

    Temperature increases due to climate change over the coming century will likely affect smallmouth bass (Micropterus dolomieu) growth in lotic systems at the southern extent of their native range. However, the thermal response of a stream to warming climate conditions could be affected by the flow regime of each stream, mitigating the effects on smallmouth bass populations. We developed bioenergetics models to compare change in smallmouth bass growth rate potential (GRP) from present to future projected monthly stream temperatures across two flow regimes: runoff and groundwater-dominated. Seasonal differences in GRP between stream types were then compared. The models were developed for fourteen streams within the Ozark–Ouachita Interior Highlands in Arkansas, Oklahoma and Missouri, USA, which contain smallmouth bass. In our simulations, smallmouth bass mean GRP during summer months decreased by 0.005 g g−1 day−1 in runoff streams and 0.002 g g−1 day−1 in groundwater streams by the end of century. Mean GRP during winter, fall and early spring increased under future climate conditions within both stream types (e.g., 0.00019 g g−1 day−1 in runoff and 0.0014 g g−1 day−1 in groundwater streams in spring months). We found significant differences in change in GRP between runoff and groundwater streams in three seasons in end-of-century simulations (spring, summer and fall). Potential differences in stream temperature across flow regimes could be an important habitat component to consider when investigating effects of climate change as fishes from various flow regimes that are relatively close geographically could be affected differently by warming climate conditions.

  16. Long-range correlations in heart rate variability during computer-mouse work under time pressure

    Science.gov (United States)

    Jiang, Dineng; He, Mulu; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2009-04-01

    The aim of this study was to investigate the influences of time pressure on long-range correlations in heart rate variability (HRV), the effects of relaxation on the cardiovascular regulation system and the advantages of detrended fluctuation analysis (DFA) over the conventional power spectral analysis in discriminating states of the cardiovascular systems under different levels of time pressure. Volunteer subjects ( n=10, male/female=5/5) participated in a computer-mouse task consisting of five sessions, i.e. baseline session (BSS) which was free of time pressure, followed by sessions with 80% (SS80), 100% (SS100), 90% (SS90) and 150% (SS150) of the baseline time. Electrocardiogram (ECG) and task performance were recorded throughout the experiments. Two rest sessions before and after the computer-mouse work, i.e. RS1 and RS2, were also recorded as comparison. HRV series were subsequently analyzed by both conventional power spectral analysis and detrended fluctuation analysis (DFA). The long-term scaling exponent α2 by DFA was significantly lower in SS80 than that in other sessions. It was also found that short-term release of time pressure had positive influences on the cardiovascular system, i.e. the α2 in RS2 was significantly higher than that in SS80, SS100 and SS90. No significant differences were found between any two sessions by conventional power spectral analysis. Our results showed that DFA performed better in discriminating the states of cardiovascular autonomic modulation under time pressure than the conventional power spectral analysis.

  17. Finite Range Effects in Energies and Recombination Rates of Three Identical Bosons

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.;

    2013-01-01

    is large. The models are built on contact potentials which take into account finite range effects; one is a two-channel model and the other is an effective range expansion model implemented through the boundary condition on the three-body wave function when two of the particles are at the same point...... in space. We compare the results with the results of the ubiquitous single-parameter zero-range model where only the scattering length is taken into account. Both finite range models predict variations of the well-known geometric scaling factor 22.7 that arises in Efimov physics. The threshold value...... at negative scattering length for creation of a bound trimer moves to higher or lower values depending on the sign of the effective range compared to the location of the threshold for the single-parameter zero-range model. Large effective ranges, corresponding to narrow resonances, are needed...

  18. A feasible repetitive transcranial magnetic stimulation clinical protocol in migraine prevention

    Directory of Open Access Journals (Sweden)

    Shawn Zardouz

    2016-10-01

    Full Text Available Objective: This case series was conducted to determine the clinical feasibility of a repetitive transcranial magnetic stimulation protocol for the prevention of migraine (with and without aura. Methods: Five patients with migraines underwent five repetitive transcranial magnetic stimulation sessions separated in 1- to 2-week intervals for a period of 2 months at a single tertiary medical center. Repetitive transcranial magnetic stimulation was applied to the left motor cortex with 2000 pulses (20 trains with 1s inter-train interval delivered per session, at a frequency of 10 Hz and 80% resting motor threshold. Pre- and post-treatment numerical rating pain scales were collected, and percent reductions in intensity, frequency, and duration were generated. Results: An average decrease in 37.8%, 32.1%, and 31.2% were noted in the intensity, frequency, and duration of migraines post-repetitive transcranial magnetic stimulation, respectively. A mean decrease in 1.9±1.0 (numerical rating pain scale ± standard deviation; range: 0.4–2.8 in headache intensity scores was noted after the repetitive transcranial magnetic stimulation sessions. Conclusion: The tested repetitive transcranial magnetic stimulation protocol is a well-tolerated, safe, and effective method for migraine prevention.

  19. Measuring Pulse Rate Variability using Long-Range, Non-Contact Imaging Photoplethysmography

    Science.gov (United States)

    2016-08-20

    The quality of the recovered blood volume pulse morphology was sufficient to calculate time-domain measures of pulse rate using inter -pulse interval...rate using inter -pulse interval (IPI) time series. Following this, several features of pulse rate variability were calculated from the IPI time...interval time series was constructed consisting of inter -beat interval (IBI) and inter -pulse interval (IPI) time series for the ECG and PPG

  20. Field test of a paradigm: hysteresis of heart rate in thermoregulation by a free-ranging lizard (Pogona barbata).

    Science.gov (United States)

    Grigg, G C; Seebacher, F

    1999-06-22

    The discovery that changes in heart rate and blood flow allow some reptiles to heat faster than they cool has become a central paradigm in our understanding of reptilian thermoregulation. However, this hysteresis in heart rate has been demonstrated only in simplistic laboratory heating and cooling trials, leaving its functional significance in free-ranging animals unproven. To test the validity of this paradigm, we measured heart rate and body temperature (Tb) in undisturbed, free-ranging bearded dragons (Pogona barbata), the species in which this phenomenon was first described. Our field data confirmed the paradigm and we found that heart rate during heating usually exceeded heart rate during cooling at any Tb. Importantly, however, we discovered that heart rate was proportionally faster in cool lizards whose Tb was still well below the 'preferred Tb range' compared to lizards whose Tb was already close to it. Similarly, heart rate during cooling was proportionally slower the warmer the lizard and the greater its cooling potential compared to lizards whose Tb was already near minimum operative temperature. Further, we predicted that, if heart rate hysteresis has functional significance, a 'reverse hysteresis' pattern should be observable when lizards risked overheating. This was indeed the case and, during heating on those occasions when Tb reached very high levels (> 40 degrees C), heart rate was significantly lower than heart rate during the immediately following cooling phase. These results demonstrate that physiological control of thermoregulation in reptiles is more complex than has been previously recognized.

  1. High-Counting Rate Photon Detectors for Long-Range Space Optical Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long range, RF space communications do not meet anymore the bandwidth requirements or power constraints of future NASA missions. Optical communications offer the...

  2. Finite Strain Behavior of Polyurea for a Wide Range of Strain Rates

    Science.gov (United States)

    2010-02-01

    influence of a surface coating on the high-rate fragmentation of a ductile material ," International Journal of Fracture , 137:89-108. [40] Haupt, P. and Lion...of localization and fragmentation - III. Effect of cladding with a polymer," International Journal of Fracture , 155:101-118. [107] Zhao, H. and Gary... toughness -to-density ratio and high strain rate-sensitivity, so its application is recently extended to structural purpose to form sandwich-type or multi

  3. Measurement of Ion Motional Heating Rates over a Range of Trap Frequencies and Temperatures

    CERN Document Server

    Bruzewicz, C D; Chiaverini, J

    2014-01-01

    We present measurements of the motional heating rate of a trapped ion at different trap frequencies and temperatures between $\\sim$0.6 and 1.5 MHz and $\\sim$4 and 295 K. Additionally, we examine the possible effect of adsorbed surface contaminants with boiling points below $\\sim$105$^{\\circ}$C by measuring the ion heating rate before and after locally baking our ion trap chip under ultrahigh vacuum conditions. We compare the heating rates presented here to those calculated from available electric-field noise models. We can tightly constrain a subset of these models based on their expected frequency and temperature scaling interdependence. Discrepancies between the measured results and predicted values point to the need for refinement of theoretical noise models in order to more fully understand the mechanisms behind motional trapped-ion heating.

  4. Breakdown of Long-Range Correlations in Heart Rate Fluctuations During Meditation

    CERN Document Server

    Papasimakis, Nikitas

    2009-01-01

    The average wavelet coefficient method is applied to investigate the scaling features of heart rate variability during meditation, a state of induced mental relaxation. While periodicity dominates the behavior of the heart rate time series at short intervals, the meditation induced correlations in the signal become significantly weaker at longer time scales. Further study of these correlations by means of an entropy analysis in the natural time domain reveals that the induced mental relaxation introduces substantial loss of complexity at larger scales, which indicates a change in the physiological mechanisms involved.

  5. High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Omachi, J; Yoshioka, K; Kuwata-Gonokami, M

    2012-10-08

    We demonstrate a scheme for efficient generation of a 5.9 eV coherent light source with an average power of 23 mW, 0.34 meV linewidth, and 73 MHz repetition rate from a Ti: sapphire picosecond mode-locked laser with an output power of 1 W. Second-harmonic light is generated in a passive optical cavity by a BiB(3)O(6) crystal with a conversion efficiency as high as 67%. By focusing the second-harmonic light transmitted from the cavity into a β-BaB(2)O(4) crystal, we obtain fourth-harmonic light at 5.9 eV. This light source offers stable operation for at least a week. We discuss the suitability of the laser light source for high-resolution angle-resolved photoelectron spectroscopy by comparing it with other sources (synchrotron radiation facilities and gas discharge lamp).

  6. 基于光导开关的重复频率闪光X光机%Repetitive rate flash X-ray generator with photo conductive semiconductor switches

    Institute of Scientific and Technical Information of China (English)

    马勋; 袁建强; 刘宏伟; 王凌云; 姜苹; 李洪涛

    2016-01-01

    A repetitive rate flash X-ray generator was developed recently to meet the demands in scientific research and in-dustrial area.A repetitive pulsed power supply was fabricated with GaAs photo conductive semiconductor switches and stacked Blumlein pulse forming networks to drive industrial X-ray diode,and a novel X-ray diode was proposed with spoked metal ceramic flashover cathode.The results show that 2 pulse burst X rays were generated under 1 kHz frame rate with novel cathode,and the two power pulses of diode and X-ray signals were identical.%采用砷化镓光导开关和Blumlein 型脉冲形成网络以级联的拓扑形式构建平顶输出功率源,驱动工业 X 光二极管产生 X 射线。提出了一种轮辐状金属-陶瓷沿面阴极,并与普通金属阴极工业 X 光二极管重复频率实验结果进行比较。研究表明:受限于阴极重复频率下的电流发射能力,普通金属阴极工业 X 光二极管难以实现1 kHz 重复频率,采用新型阴极二极管实现了1 kHz 重复频率2猝发脉冲 X 光输出,这两个脉冲的二极管功率、X 射线信号基本一致。

  7. Long range correlations in the heart rate variability following the injury of cardiac arrest

    Science.gov (United States)

    Tong, Shanbao; Jiang, Dineng; Wang, Ziming; Zhu, Yisheng; Geocadin, Romeryko G.; Thakor, Nitish V.

    2007-07-01

    Cardiovascular and neurological recovery following cardiac arrest (CA) largely influence the morbidity and mortality of the patients. Monitoring the cardiovascular system has been an important clinical issue in intensive care unit (ICU). On the other hand, the rhythms of the heart rate variability following CA are still not fully understood, and there are limited number of literatures reporting the cardiovascular function recovery following CA. In this paper, we studied the scaling properties of heart rate variability (HRV) after CA by centered-moving-average-based detrended fluctuation analysis (DFA). Our results showed that the scaling factor of the baseline HRV is close to that of Brownian motion, and after a CA event it shifts to a 1/f noise-like rhythm. DFA could be a promising tool in evaluating the cardiovascular long term recovery following CA injury.

  8. Respiration rate of stream insects measured in situ along a large altitude range

    DEFF Research Database (Denmark)

    Rostgaard, S.; Jacobsen, D.

    2005-01-01

    Field studies of respiration in stream insects are few in comparison with laboratory studies. To evaluate the influence of temperature and oxygen along altitudinal gradients we measured the respiration rate of fully acclimatized larval Trichoptera, Plecoptera and Ephemeroptera under similar field...... at 100 and 50% oxygen saturation indicated that highland animals reduced their oxygen uptake more than their counterparts in the lowland when oxygen availability decreased. The temperature response of respiration calculated between the insect assemblages at different altitudes showed a mean assemblage Q...... conditions in streams from 400 to 3800 m above sea level in tropical Ecuador. Mean active respiration rates of the animals at 3800 m were approximately half of those at 400 m. Trichoptera showed a slightly larger difference in respiration with altitude than Ephemeroptera. Comparative respiration measurements...

  9. Enhanced Rate Capability of Oxide Coated Lithium Titanate within Extended Voltage Ranges

    Directory of Open Access Journals (Sweden)

    Dongjoon eAhn

    2015-06-01

    Full Text Available Lithium titanate (Li4Ti5O12 or LTO is a promising negative electrode material of high power lithium-ion batteries, due to its superior rate capability and excellent capacity retention. However, the specific capacity of LTO is less than one half of that of graphite electrode. In this work, we applied ultrathin oxide coating on LTO by the atomic layer deposition (ALD technique, aiming for increasing the energy density by extending the cell voltage window and specific capacity of LTO. We demonstrated that a few nanometer thick Al2O3 coating can suppress the mechanical distortion of LTO cycled at low potential, which enable the higher specific capacity and excellent capacity retentio. Furthermore, the surface coating can facilitate the charge transfer, leading to significantly improved rate capabilities, comparing with the uncoated LTO.

  10. Influence of Strain Rate on Tensile Strength of Woven Geotextile in the Selected Range of Temperature

    Directory of Open Access Journals (Sweden)

    Stępień Sylwia

    2015-06-01

    Full Text Available Investigation of geosynthetics behaviour has been carried out for many years. Before using geosynthetics in practice, the standard laboratory tests had been carried out to determine basic mechanical parameters. In order to examine the tensile strength of the sample which extends at a constant strain rate, one should measure the value of the tensile force and strain. Note that geosynthetics work under different conditions of stretching and temperatures, which significantly reduce the strength of these materials. The paper presents results of the tensile test of geotextile at different strain rates and temperatures from 20 °C to 100 °C. The aim of this study was to determine the effect of temperature and strain rate on tensile strength and strain of the woven geotextile. The article presents the method of investigation and the results. The data obtained allowed us to assess the parameters of material which should be considered in the design of the load-bearing structures that work at temperatures up to 100 °C.

  11. Influence of Strain Rate on Tensile Strength of Woven Geotextile in the Selected Range of Temperature

    Science.gov (United States)

    Stępień, Sylwia; Szymański, Alojzy

    2015-06-01

    Investigation of geosynthetics behaviour has been carried out for many years. Before using geosynthetics in practice, the standard laboratory tests had been carried out to determine basic mechanical parameters. In order to examine the tensile strength of the sample which extends at a constant strain rate, one should measure the value of the tensile force and strain. Note that geosynthetics work under different conditions of stretching and temperatures, which significantly reduce the strength of these materials. The paper presents results of the tensile test of geotextile at different strain rates and temperatures from 20 °C to 100 °C. The aim of this study was to determine the effect of temperature and strain rate on tensile strength and strain of the woven geotextile. The article presents the method of investigation and the results. The data obtained allowed us to assess the parameters of material which should be considered in the design of the load-bearing structures that work at temperatures up to 100 °C.

  12. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  13. EFFECT OF GROWTH STAGES AND RANGE SYSTEMS ON VEGETATION ATTRIBUTES, CARRYING CAPACITY, STOCKING RATE AND FORAGE PRODUCTIVITY, NORTH KORDOFAN, SUDAN

    Directory of Open Access Journals (Sweden)

    Abdel Moniem M.A. El hag

    2012-03-01

    Full Text Available The range vegetation attributes, carrying capacity, stocking rates and forage productivity were studied in close and open range systems at the flowering and seed setting stages during the September and November 2010, respectively, in El Rosa (El-khuwei locality. Sampling was done by locating 2Km2 in close and open range systems in a radiating manner from the centre of each site. Completely Randomized Design (CRD was used to analyses treatments. Biomass production of plants and plant cover at the flowering stage in the close range system were significantly (P<0.0001 higher than that at the seed setting stage in the open range system. The plant density was significant (P<0.05 higher in the close rang system at the flowering stage and lower at the seed setting stage in the open range system. Bare soil and litter was significantly higher (P<0.0001 in the open range system during the seed setting stage and lower in the close range system during the flowering stage. Forage productivity of plants and shrubs browse kg/ha on rangeland was significantly higher (P<0.05 in the close range system during the flowering stage and lower in open range system at the seed setting stage. Carrying capacity was significantly higher (P<0.0001 in the close range system at the seed setting stage and lower in the open range at the flowering stage. Stoking rates in open range system during the seed setting stage was significantly higher (P<0.0001 and lower in the close range system during the seed setting stage. The frequencies of Huskneet (Cenchrus biflorus, Bano, (Eragrostis tremula, Difra (Echinocloa colonum, leflef Luffa aegyptiaca, Gaw (Aristida sp, Shuleny Zornia glochidiata and Aborakhus Andropogon gayanus were higher in close system during the two stages of growth. Plants such as Abodaib Ceraotheca sesamoid, Bigual Blepharis linarifolia, Tmrfar (Oldenlandia senegalensis, Rabaa (Zalea sp, Himeira Hymerocardia, Diresa (Tribulus terrestris and Huntot Merremia pinnata

  14. LIDAR pulse coding for high resolution range imaging at improved refresh rate.

    Science.gov (United States)

    Kim, Gunzung; Park, Yongwan

    2016-10-17

    In this study, a light detection and ranging system (LIDAR) was designed that codes pixel location information in its laser pulses using the direct- sequence optical code division multiple access (DS-OCDMA) method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. This LIDAR can constantly measure the distance without idle listening time for the return of reflected waves because its laser pulses include pixel location information encoded by applying the DS-OCDMA. Therefore, this emits in each bearing direction without waiting for the reflected wave to return. The MEMS mirror is used to deflect and steer the coded laser pulses in the desired bearing direction. The receiver digitizes the received reflected pulses using a low-temperature-grown (LTG) indium gallium arsenide (InGaAs) based photoconductive antenna (PCA) and the time-to-digital converter (TDC) and demodulates them using the DS-OCDMA. When all of the reflected waves corresponding to the pixels forming a range image are received, the proposed LIDAR generates a point cloud based on the time-of-flight (ToF) of each reflected wave. The results of simulations performed on the proposed LIDAR are compared with simulations of existing LIDARs.

  15. Parallel velocity diffusion and slowing-down rate from long-range collisions in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    2014-05-15

    This paper derives an expression for the rate of collisional slowing of charges in a magnetized plasma for which r{sub c} < λ{sub D}, where r{sub c} is the mean thermal cyclotron radius and λ{sub D} is the Debye length. The rate depends on a new fundamental length scale d that separates collisions into two impact parameter ranges that yield different slowing rates: a Boltzmann rate due to isolated binary collisions for impact parameters ρ < d and a Fokker-Planck rate due to multiple small scatterings for ρ > d. Slowing due to Boltzmann collisions is also shown to depend on the sign of the Coulomb interaction: for repulsive interactions, the slowing is enhanced by “collisional caging,” while for attractive interactions the Boltzmann slowing rate is zero.

  16. Reflection imaging in the millimeter-wave range using a video-rate terahertz camera

    Science.gov (United States)

    Marchese, Linda E.; Terroux, Marc; Doucet, Michel; Blanchard, Nathalie; Pancrati, Ovidiu; Dufour, Denis; Bergeron, Alain

    2016-05-01

    The ability of millimeter waves (1-10 mm, or 30-300 GHz) to penetrate through dense materials, such as leather, wool, wood and gyprock, and to also transmit over long distances due to low atmospheric absorption, makes them ideal for numerous applications, such as body scanning, building inspection and seeing in degraded visual environments. Current drawbacks of millimeter wave imaging systems are they use single detector or linear arrays that require scanning or the two dimensional arrays are bulky, often consisting of rather large antenna-couple focal plane arrays (FPAs). Previous work from INO has demonstrated the capability of its compact lightweight camera, based on a 384 x 288 microbolometer pixel FPA with custom optics for active video-rate imaging at wavelengths of 118 μm (2.54 THz), 432 μm (0.69 THz), 663 μm (0.45 THz), and 750 μm (0.4 THz). Most of the work focused on transmission imaging, as a first step, but some preliminary demonstrations of reflection imaging at these were also reported. In addition, previous work also showed that the broadband FPA remains sensitive to wavelengths at least up to 3.2 mm (94 GHz). The work presented here demonstrates the ability of the INO terahertz camera for reflection imaging at millimeter wavelengths. Snapshots taken at video rates of objects show the excellent quality of the images. In addition, a description of the imaging system that includes the terahertz camera and different millimeter sources is provided.

  17. Shell model based reaction rates for rp-process nuclei in the mass range A=44-63

    CERN Document Server

    Fisker, J L; Görres, J; Langanke, K; Martínez-Pinedo, G; Wiescher, M C

    2001-01-01

    We have used large-scale shell-model diagonalization calculations to determine the level spectra, proton spectroscopic factors, and electromagnetic transition probabilities for proton rich nuclei in the mass range A=44-63. Based on these results and the available experimental data, we calculated the resonances for proton capture reactions on neutron deficient nuclei in this mass range. We also calculated the direct capture processes on these nuclei in the framework of a Woods-Saxon potential model. Taking into account both resonant and direct contributions, we determined the ground-state proton capture reaction rates for these nuclei under hot hydrogen burning conditions for temperatures between 10 sup 8 and 10 sup 1 sup 0 K. The calculated compound-nucleus level properties and the reaction rates are presented here; the rates are also available in computer-readable format from the authors.

  18. Multi-purpose two- and three-dimensional momentum imaging of charged particles for attosecond experiments at 1 kHz repetition rate.

    Science.gov (United States)

    Månsson, Erik P; Sorensen, Stacey L; Arnold, Cord L; Kroon, David; Guénot, Diego; Fordell, Thomas; Lépine, Franck; Johnsson, Per; L'Huillier, Anne; Gisselbrecht, Mathieu

    2014-12-01

    We report on the versatile design and operation of a two-sided spectrometer for the imaging of charged-particle momenta in two dimensions (2D) and three dimensions (3D). The benefits of 3D detection are to discern particles of different mass and to study correlations between fragments from multi-ionization processes, while 2D detectors are more efficient for single-ionization applications. Combining these detector types in one instrument allows us to detect positive and negative particles simultaneously and to reduce acquisition times by using the 2D detector at a higher ionization rate when the third dimension is not required. The combined access to electronic and nuclear dynamics available when both sides are used together is important for studying photoreactions in samples of increasing complexity. The possibilities and limitations of 3D momentum imaging of electrons or ions in the same spectrometer geometry are investigated analytically and three different modes of operation demonstrated experimentally, with infrared or extreme ultraviolet light and an atomic/molecular beam.

  19. 降低焦炉机车电器运行重复故障率%Reduce the Repetition Rate of Electric Operation of the Coke Oven Locomotive

    Institute of Scientific and Technical Information of China (English)

    姜玉怀

    2016-01-01

    the coking coal coking company of masteel outdated 1 # 4 # coke oven in order to real-ize the coal charging and coke pushing, blocking water coke dry quenching, quenching, screen coke and dust removal, etc. By the four major locomotive ( coke pusher, coal car, stop coke car, coke quenching car) , due to the special environment of the equipment operation ( mobile, high tempera-ture, dust, stop frequent restart, etc. ) , make the equipment in the process of running frequent fail-ure, not only increase the workload of maintenance, because maintenance delayed production at the same time, reduces the coke oven coke rate, thus the ascension of the whole economic benefit of mas-teel.%马钢煤焦化公司老区焦化1#-4#焦炉为了实现装煤、推焦、拦焦、干熄焦、水熄焦、筛焦、除尘等工艺。由四大机车(推焦车、装煤车、拦焦车、熄焦车)来实现,由于设备运行的特殊环境(移动、高温、多灰尘、停启动频繁等),使得设备在运行过程中故障频发,这不仅仅增加了维修工作量,同时因为检修耽误了生产,降低了焦炉的出焦率,从而影响了整个马钢的经济效益的提升。

  20. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    Science.gov (United States)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  1. Strain Rates and Contemporary Deformation in the Snake River Plain and Surrounding Basin and Range From GPS and Seismicity

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Payne; R. McCaffrey; R. W. King

    2008-08-01

    New horizontal GPS velocities along with earthquakes, faults, and volcanic features are used to assess how strain is accommodated in the Northern Basin and Range Province. We used GPS phase data collected from 1994 to 2007 to estimate horizontal velocities for 132 stations within the Snake River Plain (SRP) and surrounding basin and range. These velocities show regional scale clockwise rotation indicating basal driving forces beyond those associated with the Yellowstone Hotspot. Within the western Centennial Tectonic Belt (CTB), the GPS measurements indicate the basin and range is extending at a rate between 5x10-9/yr and 10x10-9/yr, which is an order of magnitude greater than the strain rate we observe with GPS in the SRP, explaining its low seismicity. Between these two regions is the “Centennial Shear Zone”, a NE-trending zone of right-lateral shear with estimated slip rates that increase northeastward from 0.9±0.3 mm/yr in the SW to 1.7±0.2 mm/yr in NE. We interpret the new GPS velocities to indicate: 1) right-lateral shear may be accommodated by strike-slip earthquakes on NE-trending faults in the Centennial Shear Zone; 2) three basin and range faults (Lost River, Lemhi, and Beaverhead) do not extend into the SRP, but instead terminate at the SRP margin; and 3) extension in the SRP occurs at a much lower rate than the rate of normal faulting in the western CTB.

  2. All-solid-state high-repetition-rate magnetic pulse compression generator%全固态高重复频率磁脉冲压缩发生器

    Institute of Scientific and Technical Information of China (English)

    张东东; 周媛; 李文峰; 许家雨; 王珏; 邵涛; 赵莹; 徐蓉

    2012-01-01

    The paper presents an all-solid-state high-repetition-rate pulse generator with adjustable output amplitude based on magnetic pulse compression (MPC) technique. The pulse compression network makes use of commercially available IGBTs switching a capacitor bank into a metglas transformer together with a voltage doubling circuit. The capacitor bank is charged to 500 V by a resonant LC charger, and also switched by a commercial diode. The output of the pulse generator is controlled by the gate voltage of the IGBTs. Pulses with a width of 70 ns can be generated with repetition rates up to 5 kHz. The amplitude can be controlled from 4 kV to 40 kV into a 500 Ω load. Equivalent circuits for the final operation stage of the compressor accounting for pre-pulse in magnetic switches are presented and analyzed, and the pre-pulse generation process of the MPC system is discussed. Simulation results show that, increasing the unsaturated inductance of the magnetic switch and reducing the load resistance enhance the pre-pulse peak. Thus to diminish the pre-pulse, a better ferrite core with higher permeability should be considered.%设计制作了全固态高重复频率磁脉冲压缩发生器,最高重复频率5 kHz,脉宽70 ns,通过调节初始储能电容上的电压可在500 Ω阻性负载上获得4~40 kV连续可调的输出电压.通过分析简化的磁压缩末级回路,分析了预脉冲产生的过程,得出了预脉冲的电压表达式,选取适当的磁芯相对磁导率,经过求解,得出在磁开关未饱和电感一定时预脉冲随负载阻值变化的曲线簇,从曲线中可以看出:随着负载的阻值的增大,预脉冲的峰值绝对值也增大;在负载恒定的情况下,增大磁开关未饱和电感的大小可以显著地减小负载两端预脉冲的峰值绝对值,这要求磁开关磁芯有更高的相对磁导率.

  3. Simultaneous assessment of the median annual seismicity rates and their dispersions for Taiwan earthquakes in different depth ranges

    Science.gov (United States)

    Chang, Wen-Yen; Chen, Kuei-Pao; Tsai, Yi-Ben

    2017-03-01

    The main purpose of this study is to apply an innovative approach to assess simultaneously the median annual seismicity rates and their dispersions for Taiwan earthquakes in different depth ranges. In this approach an alternative Gutenberg-Richter (G-R) relation is explicitly expressed in terms of both the logarithmic mean annual seismicity rate and its standard deviation, instead of only by the arithmetic mean in the conventional G-R relation. Seismicity data from 1975 to 2014 in a Taiwan earthquake catalog with homogenized Mw moment magnitudes are used in this study. This catalog consists of high-quality earthquake data originally obtained by the Institute of Earth Sciences (IES) and the Central Weather Bureau (CWB). The selected seismicity data set is shown to be complete for Mw ⩾ 3.0 . The logarithmic mean annual seismicity rate and its standard deviation from the observed annual seismicity rates of individual years are obtained initially for different Mw ranges. It is shown subsequently that the logarithmic annual seismicity rates indeed possess a well-behaved lognormal distribution. It is further shown that our new approach has an added merit that tends to suppress the influences of anomalously high annual seismicity rates due to large numbers of aftershocks from major earthquake sequences. Finally, the observed logarithmic mean annual seismicity rates with their standard deviations for 3.0 ⩽ Mw ⩽ 5.0 are used to obtain the alternative Gutenberg-Richter relations for different depth ranges. The results are as follows: log10 N = 5.75 - 0.90Mw ± (0.25 - 0.01Mw) for focal depth 0-300 km; log10 N = 5.78 - 0.94Mw ± (0.20 + 0.01Mw) for focal depth 0-35 km; log10 N = 4.72 - 0.89Mw ± (- 0.08 + 0.08Mw) for focal depth 35-70 km; log10 N = 4.69 - 0.88Mw ± (- 0.47 + 0.16Mw) for focal depth 70-300 km. In above equations log10N represents the logarithmic annual seismicity rate. These G-R relations give distinctly different values of the parameters a and b for

  4. MIMICRY, DIFFERENCE AND REPETITION

    Directory of Open Access Journals (Sweden)

    Marcelo Mendes de Souza

    2008-07-01

    Full Text Available This article addresses Homi K. Bhabha’s concept of mimicry in a broader context, other than that of cultural studies and post-colonial studies, bringing together other concepts, such as that of Gilles Deleuze in Difference and repetition, among other texts, and other names, such as Silviano Santiago, Jorge Luís Borges, Franz Kafka and Giorgio Agamben. As a partial conclusion, the article intends to oppose Bhabha’s freudian-marxist view to Five propositions on Psychoanalysis (1973, Gilles Deleuze’s text about Psychoanalysis published right after his book The Anti-Oedipus.

  5. Behaviour and modelling of aluminium alloy AA6060 subjected to a wide range of strain rates and temperatures

    Directory of Open Access Journals (Sweden)

    Vilamosa Vincent

    2015-01-01

    Full Text Available The thermo-mechanical behaviour in tension of an as-cast and homogenized AA6060 alloy was investigated at a wide range of strains (the entire deformation process up to fracture, strain rates (0.01–750 s−1 and temperatures (20–350 ∘C. The tests at strain rates up to 1 s−1 were performed in a universal testing machine, while a split-Hopkinson tension bar (SHTB system was used for strain rates from 350 to 750 s−1. The samples were heated with an induction-based heating system. A typical feature of aluminium alloys at high temperatures is that necking occurs at a rather early stage of the deformation process. In order to determine the true stress-strain curve also after the onset of necking, all tests were instrumented with a digital camera. The experimental tests reveal that the AA6060 material has negligible strain-rate sensitivity (SRS for temperatures lower than 200 ∘C, while both yielding and work hardening exhibit a strong positive SRS at higher temperatures. The coupled strain-rate and temperature sensitivity is challenging to capture with most existing constitutive models. The paper presents an outline of a new semi-physical model that expresses the flow stress in terms of plastic strain, plastic strain rate and temperature. The parameters of the model were determined from the tests, and the stress-strain curves from the tests were compared with the predictions of the model. Good agreement was obtained over the entire strain rate and temperature range.

  6. A molecular model for positron complexes: long-range effects on 2{gamma} pair-annihilation rates

    Energy Technology Data Exchange (ETDEWEB)

    Mohallem, Jose R; Rolim, Flavia; Goncalves, Cristina P [Laboratorio de Atomos e Moleculas Especiais, Departamento de FIsica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG (Brazil)

    2004-03-14

    A molecular model for positron complexes is developed and used to study the effects of the nucleus-positron distance long-range regime on the 2{gamma} annihilation rates ({gamma}) of atomic complexes. The available data for {gamma} of some systems are then rationalized on its basis and some predictions are made. The model is shown to be capable of generating information on positron positioning and of making predictions of values of {gamma} in molecular complexes as well.

  7. High Repetition Rate Thermometry System And Method

    KAUST Repository

    Chrystie, Robin

    2015-05-14

    A system and method for rapid thermometry using intrapulse spectroscopy can include a laser for propagating pulses of electromagnetic radiation to a region. Each of the pulses can be chirped. The pulses from the region can be detected. An intrapulse absorbance spectrum can be determined from the pulses. An instantaneous temperature of the region based on the intrapulse absorbance spectrum can be determined.

  8. DOE-HEP Final Report for 2013-2016: Studies of plasma wakefields for high repetition-rate plasma collider, and Theoretical study of laser-plasma proton and ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katsouleas, Thomas C. [Duke Univ., Durham, NC (United States). Dept. of Electrical and Computer Engineering; Sahai, Aakash A. [Imperial College, London (United Kingdom). Dept. of Physics

    2016-08-08

    There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of the laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.

  9. Repetition in Waiting for Godot

    Institute of Scientific and Technical Information of China (English)

    李想; 魏妍

    2015-01-01

    Waiting for Godot is one of the most famous plays written by Samuel Barclay Beckett, and also is the founding work of“Theatre of the Absurd”. In the drama, repetitive phenomena shed light on the whole construction considerably. All the charac-ters were helpless and unthinking. Their dialogues were simple, nonsense and repetitive. Two scenes were cyclical. Repetition was used subtly in order to express the theme of the play, showing mental crisis after depravation of WWII.

  10. Rate of change of the Quincy-Monument Peak baseline from a translocation analysis of Lageos laser range data

    Science.gov (United States)

    Stolz, A.; Bender, P. L.; Vincent, M. A.; Eanes, R. J.; Watkins, M. M.

    1989-01-01

    Translocation studies of Lageos laser range data from Quincy and Monument Peak in California observed during 1984-1987 suggest that plate tectonic motion across the San Andreas fault system in the direction of the baseline between the two stations is uniform at a rate of -30(+ or - 3) mm/yr. Changes in the components of the baseline vector were inferred from repeat determinations using the solutions from successive 0.5-year intervals. The changes in the vertical and transverse components of the Quincy-Monument Peak baseline are -0.4(+ or - 5) mm/yr and +14(+ or -5) mm/yr, respectively. The vertical component determinations attest to the height stability of the laser ranging method. Lageos measurements made from Quincy and Monument Peak before 1984 are inaccurate enough to limit their usefulness for plate tectonic studies.

  11. Multiple ranges of flow rate with bistability and limit cycles for Schlögl's mechanism in a CSTR

    Science.gov (United States)

    Escher, Claus; Ross, John

    1983-10-01

    Continuous flow stirred tank reactor (CSTR) conditions are imposed upon Schlögl's trimolecular reaction mechanism A+2X ⇄ 3X and X ⇄ B. A nonzero constant flow rate (=inverse residence time) rather than constant concentrations of A,B forces the system far away from equilibrium. This change in constraints leads to some surprisingly complex features; first the system has bistability for separate ranges of flow rates, under constraints of all other parameters being fixed including the concentration of the chemical species in the input. This phenomena occurs even if the input contains A alone. Secondly, there occur limit cycle oscillations, but in that case the input has to include B or X as well as A.

  12. Active power filter for harmonic compensation using a digital dual-mode-structure repetitive control approach

    DEFF Research Database (Denmark)

    Zou, Zhixiang; Wang, Zheng; Cheng, Ming;

    2012-01-01

    This paper presents an digital dual-mode-structure repetitive control approach for the single-phase shunt active power filter (APF), which aims to enhance the tracking ability and eliminate arbitrary order harmonic. The proposed repetitive control scheme blends the characteristics of both odd......-harmonic repetitive control and even-harmonic repetitive control. Moreover, the convergence rate is faster than conventional repetitive controller. Additionally, the parameters have been designed and optimized for the dual-mode structure repetitive control to improve the performance of APF system. Experimental...... results on a laboratory setup are given to verify the proposed control scheme....

  13. Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage

    Science.gov (United States)

    Avrani, Sarit; Lindell, Debbie

    2015-01-01

    Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates. PMID:25922520

  14. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.

    Science.gov (United States)

    Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung

    2017-06-20

    In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip.

  15. Neighborhood and habitat effects on vital rates: expansion of the Barred Owl in the Oregon coast ranges.

    Science.gov (United States)

    Yackulic, Charles B; Reid, Janice; Davis, Raymond; Hines, James E; Nichols, James D; Forsman, Eric

    2012-08-01

    In this paper, we modify dynamic occupancy models developed for detection-nondetection data to allow for the dependence of local vital rates on neighborhood occupancy, where neighborhood is defined very flexibly. Such dependence of occupancy dynamics on the status of a relevant neighborhood is pervasive, yet frequently ignored. Our framework permits joint inference about the importance of neighborhood effects and habitat covariates in determining colonization and extinction rates. Our specific motivation is the recent expansion of the Barred Owl (Strix varia) in western Oregon, USA, over the period 1990-2010. Because the focal period was one of dramatic range expansion and local population increase, the use of models that incorporate regional occupancy (sources of colonists) as determinants of dynamic rate parameters is especially appropriate. We began our analysis of 21 years of Barred Owl presence/nondetection data in the Tyee Density Study Area (TDSA) by testing a suite of six models that varied only in the covariates included in the modeling of detection probability. We then tested whether models that used regional occupancy as a covariate for colonization and extinction outperformed models with constant or year-specific colonization or extinction rates. Finally we tested whether habitat covariates improved the AIC of our models, focusing on which habitat covariates performed best, and whether the signs of habitat effects are consistent with a priori hypotheses. We conclude that all covariates used to model detection probability lead to improved AIC, that regional occupancy influences colonization and extinction rates, and that habitat plays an important role in determining extinction and colonization rates. As occupancy increases from low levels toward equilibrium, colonization increases and extinction decreases, presumably because there are more and more dispersing juveniles. While both rates are affected, colonization increases more than extinction decreases

  16. Neighborhood and habitat effects on vital rates: expansion of the Barred Owl in the Oregon Coast Ranges

    Science.gov (United States)

    Yackulic, Charles B.; Reid, Janice; Davis, Raymond; Hines, James E.; Nichols, James D.; Forsman, Eric

    2012-01-01

    In this paper, we modify dynamic occupancy models developed for detection-nondetection data to allow for the dependence of local vital rates on neighborhood occupancy, where neighborhood is defined very flexibly. Such dependence of occupancy dynamics on the status of a relevant neighborhood is pervasive, yet frequently ignored. Our framework permits joint inference about the importance of neighborhood effects and habitat covariates in determining colonization and extinction rates. Our specific motivation is the recent expansion of the Barred Owl (Strix varia) in western Oregon, USA, over the period 1990-2010. Because the focal period was one of dramatic range expansion and local population increase, the use of models that incorporate regional occupancy (sources of colonists) as determinants of dynamic rate parameters is especially appropriate. We began our analysis of 21 years of Barred Owl presence/nondetection data in the Tyee Density Study Area (TDSA) by testing a suite of six models that varied only in the covariates included in the modeling of detection probability. We then tested whether models that used regional occupancy as a covariate for colonization and extinction outperformed models with constant or year-specific colonization or extinction rates. Finally we tested whether habitat covariates improved the AIC of our models, focusing on which habitat covariates performed best, and whether the signs of habitat effects are consistent with a priori hypotheses. We conclude that all covariates used to model detection probability lead to improved AIC, that regional occupancy influences colonization and extinction rates, and that habitat plays an important role in determining extinction and colonization rates. As occupancy increases from low levels toward equilibrium, colonization increases and extinction decreases, presumably because there are more and more dispersing juveniles. While both rates are affected, colonization increases more than extinction decreases

  17. Study of efficiency and optimization parameters of laser device for measuring the range rate of a spacecraft

    Directory of Open Access Journals (Sweden)

    E. I. Starovoitov

    2014-01-01

    Full Text Available To replace the hand-held laser rangefinders on board transport spacecraft (SC a laser rangefinder-speedometer (LRS is developed and installed in the unpressurized area of SC to determine automatically the range rate. Crew, turning the active spacecraft by the video image that is formed by a docking camera, manually provides guidance of LRS to the passive SC. Using a generalized function of efficiency was estimated LRS characteristics. Comparison with the results of existing analogues shows that the LRS has the highest efficiency. As a result of relationship analysis of measuring speed and reliability accuracy of LRS laser source, Pareto sets are obtained, which enable providing the optimal operation conditions of a device It is found that the reliability function of LRS, which is equal to 0.999, is ensured at 1.0 s averaging time of range measurement and 0.8...0.9 m range measurement error. Increasing the averaging time of range measurement up to 1.5 s allows reliability function equal to 0.999 with the range measurement error of 2.5...2.5 m. Energy calculations are performed for 5 km range measurements on space complex with a complicated configuration such as the International Space Station (ISS for the maximum and minimum value of the effective reflection area. When the laser pulse energy is 11.5 mJ for measurements of diffusely reflected signal at ranges of 5 km at least a signal/noise ratio is no less than 10. With LRS illuminating the angular reflector, a measurement range is of over 30 km. Because of a large number of the angular reflectors on the ISS body is considered the use of the geometric factor to protect the photo-detector overload when receiving a signal from the nearby angular reflector. It is found that when the length of the base between the receiving and transmitting optical apertures is equal to 39 mm, a photo-detector is protected from the overload at the pulse energies up to 11.5 mJ. The results of efficiency evaluation

  18. Repetitive energy transfer from an inductive energy store

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1984-01-01

    The theoretical and experimental results of a research program aimed at finding practical ways to transfer energy repetitively from an inductive energy store to various loads are discussed. The objectives were to investigate and develop the high power opening switches and transfer circuits needed to enable high-repetition-rate operation of such systems, including a feasibility demonstration at a current level near 10 kA and a pulse repetition rate of 1-10 kpps with a 1-ohm load. The requirements of nonlinear, time-varying loads, such as the railgun electromagnetic launcher, were also addressed. Energy storage capability is needed for proper power conditioning in systems where the duty factor of the output pulse train is low. Inductive energy storage is attractive because it has both a high energy storage density and a fast discharge capability. By producing a pulse train with a peak power of 75 MW at a pulse repetition rate of 5 kpps in a one-ohm load system, this research program was the first to demonstrate fully-controlled, high-power, high-repetition-rate operation of an inductive energy storage and transfer system with survivable switches. Success was made possible by using triggered vacuum gap switches as repetitive, current-zero opening switches and developing several new repetitive transfer circuits using the counterpulse technique.

  19. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    Science.gov (United States)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  20. Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA

    Science.gov (United States)

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.

  1. Estimating the possible range of recycling rates achieved by dump waste pickers: The case of Bantar Gebang in Indonesia.

    Science.gov (United States)

    Sasaki, Shunsuke; Araki, Tetsuya

    2014-06-01

    This article presents informal recycling contributions made by scavengers in the surrounding area of Bantar Gebang final disposal site for municipal solid waste generated in Jakarta. Preliminary fieldwork was conducted through daily conversations with scavengers to identify recycling actors at the site, and then quantitative field surveys were conducted twice. The first survey (n = 504 households) covered 33% of all households in the area, and the second survey (n = 69 households) was conducted to quantify transactions of recyclables among scavengers. Mathematical equations were formulated with assumptions made to estimate the possible range of recycling rates achieved by dump waste pickers. Slightly over 60% of all respondents were involved in informal recycling and over 80% of heads of households were waste pickers, normally referred to as live-in waste pickers and live-out waste pickers at the site. The largest percentage of their spouses were family workers, followed by waste pickers and housewives. Over 95% of all households of respondents had at least one waste picker or one small boss who has a coequal status of a waste picker. Average weight of recyclables collected by waste pickers at the site was estimated to be approximately 100 kg day(-1) per household on the net weight basis. The recycling rate of solid wastes collected by all scavengers at the site was estimated to be in the range of 2.8-7.5% of all solid wastes transported to the site.

  2. Nonword Repetition and Speech Motor Control in Children

    Directory of Open Access Journals (Sweden)

    Christina Reuterskiöld

    2015-01-01

    Full Text Available This study examined how familiarity of word structures influenced articulatory control in children and adolescents during repetition of real words (RWs and nonwords (NWs. A passive reflective marker system was used to track articulator movement. Measures of accuracy were obtained during repetition of RWs and NWs, and kinematic analysis of movement duration and variability was conducted. Participants showed greater consonant and vowel accuracy during RW than NW repetition. Jaw movement duration was longer in NWs compared to RWs across age groups, and younger children produced utterances with longer jaw movement duration compared to older children. Jaw movement variability was consistently greater during repetition of NWs than RWs in both groups of participants. The results indicate that increases in phonological short-term memory demands affect articulator movement. This effect is most pronounced in younger children. A range of skills may develop during childhood, which supports NW repetition skills.

  3. Understanding maximal repetitions in strings

    CERN Document Server

    Crochemore, Maxime

    2008-01-01

    The cornerstone of any algorithm computing all repetitions in a string of length n in O(n) time is the fact that the number of runs (or maximal repetitions) is O(n). We give a simple proof of this result. As a consequence of our approach, the stronger result concerning the linearity of the sum of exponents of all runs follows easily.

  4. Basin-scale spatio-temporal variability and control of phytoplankton photosynthesis in the Baltic Sea: The first multiwavelength fast repetition rate fluorescence study operated on a ship-of-opportunity

    Science.gov (United States)

    Houliez, Emilie; Simis, Stefan; Nenonen, Susanna; Ylöstalo, Pasi; Seppälä, Jukka

    2017-05-01

    This study presents the results of the first field application of a flow-through multi-wavelength Fast Repetition Rate fluorometer (FRRF) equipped with two excitation channels (458 and 593 nm). This device aims to improve the measurement of mixed cyanobacteria and algae community's photosynthetic parameters and was designed to be easily incorporated into existing ferrybox systems. We present a spatiotemporal analysis of the maximum photochemical efficiency (Fv/Fm) and functional absorption cross section (σPSII) recorded from April to August 2014 on a ship-of-opportunity commuting twice per week between Helsinki (Finland) and Travemünde (Germany). Temporal variations of Fv/Fm and σPSII differed between areas of the Baltic Sea. However, even though the Baltic Sea is characterized by several physico-chemical gradients, no gradient was observed in Fv/Fm and σPSII spatial distribution suggesting complex interactions between biotic and abiotic controls. σPSII was sensitive to phytoplankton seasonal succession and thus differed according to the wavelength used to excite photosystems II (PSII) pigments. This was particularly true in summer when high σPSII(593) values were observed later and longer than high σPSII(458) values, reflecting the role of cyanobacteria in photosynthetic light uptake measured at community scale. In contrast, Fv/Fm variations were similar after excitation at 458 nm or 593 nm suggesting that the adjustment of Fv/Fm in response to environmental factors was similar for the different groups (algae vs. cyanobacteria) present within the phytoplankton community.

  5. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    Science.gov (United States)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  6. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Science.gov (United States)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  7. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Directory of Open Access Journals (Sweden)

    Julia Osten

    2015-05-01

    Full Text Available In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181 in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  8. On the repetitive operation of a self-switched transversely excited atmosphere CO2 laser

    Indian Academy of Sciences (India)

    Pallavi Raote; Gautam Patil; J Padma Nilaya; D J Biswas

    2010-11-01

    The repetition rate capability of self-switched transversely excited atmosphere (TEA) CO2 laser was studied for different gas flow configurations. For an optimized gas flow configuration, repetitive operation was achieved at a much smaller gas replenishment factor between two successive pulses when compared with repetitive systems energized by conventional pulsers.

  9. Emotional arousal enhances word repetition priming

    OpenAIRE

    Thomas, Laura A.; LaBar, Kevin S.

    2005-01-01

    Three experiments were conducted to determine if emotional content increases repetition priming magnitude. In the study phase of Experiment 1, participants rated high-arousing negative (taboo) words and neutral words for concreteness. In the test phase, they made lexical decision judgements for the studied words intermixed with novel words (half taboo, half neutral) and pseudowords. In Experiment 2, low-arousing negative (LAN) words were substituted for the taboo words, and in Experiment 3 al...

  10. Effects of Three Recovery Protocols on Range of Motion, Heart Rate, Rating of Perceived Exertion, and Blood Lactate in Baseball Pitchers During a Simulated Game.

    Science.gov (United States)

    Warren, Courtney D; Szymanski, David J; Landers, Merrill R

    2015-11-01

    Baseball pitching has been described as an anaerobic activity from a bioenergetics standpoint with short bouts of recovery. Depending on the physical conditioning and muscle fiber composition of the pitcher as well as the number of pitches thrown per inning and per game, there is the possibility of pitchers fatiguing during a game, which could lead to a decrease in pitching performance. Therefore, the purpose of this study was to evaluate the effects of 3 recovery protocols: passive recovery, active recovery (AR), and electrical muscle stimulation (EMS) on range of motion (ROM), heart rate (HR), rating of perceived exertion (RPE), and blood lactate concentration in baseball pitchers during a simulated game. Twenty-one Division I intercollegiate baseball pitchers (age = 20.4 ± 1.4 years; height = 185.9 ± 8.4 cm; weight = 86.5 ± 8.9 kg; percent body fat = 11.2 ± 2.6) volunteered to pitch 3 simulated 5-inning games, with a maximum of 70 fastballs thrown per game while wearing an HR monitor. Range of motion was measured pre, post, and 24 hours postpitching for shoulder internal and external rotation at 90° and elbow flexion and extension. Heart rate was recorded after each pitch and after every 30 seconds of the 6-minute recovery period. Rating of perceived exertion was recorded after the last pitch of each inning and after completing each 6-minute recovery period. Immediately after throwing the last pitch of each inning, postpitching blood lactate concentration (PPLa-) was measured. At the end of the 6-minute recovery period, before the next inning started, postrecovery blood lactate concentration (PRLa-) was measured. Pitchers were instructed to throw each pitch at or above 95% of their best-pitched fastball. This was enforced to ensure that each pitcher was throwing close to maximal effort for all 3 simulated games. All data presented represent group mean values. Results revealed that the method of recovery protocol did not significantly influence ROM (p > 0

  11. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    Science.gov (United States)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  12. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    Science.gov (United States)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  13. Call Admission Control with Bandwidth Reallocation for Adaptive Multimedia in High-Rate Short-Range Wireless Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAIXuping; BIGuangguo; XUPingping

    2005-01-01

    In high-rate short-range wireless networks,CAC (Call admission control) scheme plays an important role in quality of service provisioning for adaptive multimedia services. Three functions, namely bandwidth satisfaction function, revenue rate function and bandwidth reallocation cost function, are firstly introduced. Based on these functions, an efficient CAC scheme, the Rev-RT-BRA (Reservation-based and Revenue test with Bandwidth reallocation) CAC scheme is proposed. The main idea is that it reserves some bandwidth for service classes with higher admission priority. The performance of the Rev-RT-BRA CAC scheme is analyzed by solving a multidimension Markov process. Both the numerical and simulation results are given. The advantages of the proposedRev-RT-BRA CAC scheme are as follows. (1) It maximizes the overall bandwidth satisfaction function at any system state. (2) It solves the unfairness problem in admitting multiple classes of services with different bandwidth requirenlents. (3) The required admission priority level can be guaranteed for various classes of services.

  14. Call rates of mothers change with maternal experience and with infant characteristics in free-ranging gray-cheeked mangabeys.

    Science.gov (United States)

    Arlet, Małgorzata E; Veromann, Linda-Liisa; Mänd, Raivo; Lemasson, Alban

    2016-09-01

    Studies have shown that becoming a mother triggers important social changes within females, according to both social experience and infant characteristics, showing different maternal concerns. But how this impacts call usage has been far less studied. Based on 6 months of observations of five free-ranging groups of gray-cheeked mangabeys, we investigated variations in the production of three call types (contact, excitement, and alarm calls) in 29 females of different ages, dominance ranks, and infant rearing experiences: 15 females with infants of different ages and sexes, and 14 females without infants. We found that in females with infants-both maternal and infant characteristics influenced call production in a call type-dependent way. Females produced contact calls at a higher rate during the first month of infant age and after weaning when infants start to move away. Mothers of daughters produced more contact calls than mothers of sons. More excitement calls were recorded for first-time and young mothers and for females with young infants, while alarm call rates were not influenced by any of these factors. Increased mother-infant spatial separation enhanced only contact and excitement call rates. Finally, we found that females with infants vocalized much more than females without infants. Our results contribute to the current debate about the social factors responsible for the flexibility of call usage in nonhuman primates and open new lines for research on mothering behavior in forest-dwelling species. Am. J. Primatol. 78:983-991, 2016. © 2016 Wiley Periodicals, Inc.

  15. HermesD: A High-Rate Long-Range Wireless Transmission System for Simultaneous Multichannel Neural Recording Applications.

    Science.gov (United States)

    Miranda, Henrique; Gilja, Vikash; Chestek, Cindy A; Shenoy, Krishna V; Meng, Teresa H

    2010-06-01

    HermesD is a high-rate, low-power wireless transmission system to aid research in neural prosthetic systems for motor disabilities and basic motor neuroscience. It is the third generation of our "Hermes systems" aimed at recording and transmitting neural activity from brain-implanted electrode arrays. This system supports the simultaneous transmission of 32 channels of broadband data sampled at 30 ks/s, 12 b/sample, using frequency-shift keying modulation on a carrier frequency adjustable from 3.7 to 4.1 GHz, with a link range extending over 20 m. The channel rate is 24 Mb/s and the bit stream includes synchronization and error detection mechanisms. The power consumption, approximately 142 mW, is low enough to allow the system to operate continuously for 33 h, using two 3.6-V/1200-mAh Li-SOCl2 batteries. The transmitter was designed using off-the-shelf components and is assembled in a stack of three 28 mm ? 28-mm boards that fit in a 38 mm ? 38 mm ? 51-mm aluminum enclosure, a significant size reduction over the initial version of HermesD. A 7-dBi circularly polarized patch antenna is used as the transmitter antenna, while on the receiver side, a 13-dBi circular horn antenna is employed. The advantages of using circularly polarized waves are analyzed and confirmed by indoor measurements. The receiver is a stand-alone device composed of several submodules and is interfaced to a computer for data acquisition and processing. It is based on the superheterodyne architecture and includes automatic frequency control that keeps it optimally tuned to the transmitter frequency. The HermesD communications performance is shown through bit-error rate measurements and eye-diagram plots. The sensitivity of the receiver is -83 dBm for a bit-error probability of 10(-9). Experimental recordings from a rhesus monkey conducting multiple tasks show a signal quality comparable to commercial acquisition systems, both in the low-frequency (local field potentials) and upper-frequency bands

  16. FRB repetition and non-Poissonian statistics

    CERN Document Server

    Connor, Liam; Oppermann, Niels

    2016-01-01

    We discuss some of the claims that have been made regarding the statistics of fast radio bursts (FRBs). In an earlier paper \\citep{2015arXiv150505535C} we conjectured that flicker noise associated with FRB repetition could show up in non-cataclysmic neutron star emission models, like supergiant pulses. We show how the current limits of repetition would be significantly weakened if their repeat rate really were non-Poissonian and had a pink or red spectrum. Repetition and its statistics have implications for observing strategy, generally favouring shallow wide-field surveys, since in the non-repeating scenario survey depth is unimportant. We also discuss the statistics of the apparent latitudinal dependence of FRBs, and offer a simple method for calculating the significance of this effect. We provide a generalized Bayesian framework for addressing this problem, which allows for direct model comparison. It is shown how the evidence for a steep latitudinal gradient of the FRB rate is less strong than initially s...

  17. A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    Science.gov (United States)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.

    1979-01-01

    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.

  18. Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites.

    Science.gov (United States)

    Medeiros, Matthew C I; Hamer, Gabriel L; Ricklefs, Robert E

    2013-06-07

    Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite-host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range.

  19. Along-Track Geopotential Difference and Deflection of the Vertical from GRACE Range Rate: Use of GEOGRACE

    Directory of Open Access Journals (Sweden)

    GRACE

    2016-02-01

    Full Text Available We present a theory and numerical algorithm to directly determine the time-varying along-track geopotential difference and deflection of the vertical at the Gravity Recovery and Climate Experiment (GRACE satellite altitude. The determination was implemented using the GEOGRACE computer program using the K-band range rate (KBRR of GRACE from the Level-1B (L1B product. The method treated KBRR, GPS-derived orbit of GRACE and an initial geopotential difference as measurements used in the least-squares estimation of the geopotential difference and its formal error constrained by the energy conservation principle. The computational procedure consisted of three steps: data reading and interpolation, data calibration and estimations of the geopotential difference and its error. The formal error allowed removal of KBRR outliers that contaminated the gravity solutions. We used the most recent models to account for the gravity changes from multiple sources. A case study was carried out over India to estimate surface mass anomalies from GEOGRACE-derived geopotential differences. The 10-day mass changes were consistent with those from the MASCON solutions of NASA (correlation coefficient up to 0.88. Using the geopotential difference at satellite altitude avoids the errors caused by downward continuation, enabling the detection of small-scale mass changes.

  20. Optimization of statistical methods for HpGe gamma-ray spectrometer used in wide count rate ranges

    Science.gov (United States)

    Gervino, G.; Mana, G.; Palmisano, C.

    2016-07-01

    The need to perform γ-ray measurements with HpGe detectors is a common technique in many fields such as nuclear physics, radiochemistry, nuclear medicine and neutron activation analysis. The use of HpGe detectors is chosen in situations where isotope identification is needed because of their excellent resolution. Our challenge is to obtain the "best" spectroscopy data possible in every measurement situation. "Best" is a combination of statistical (number of counts) and spectral quality (peak, width and position) over a wide range of counting rates. In this framework, we applied Bayesian methods and the Ellipsoidal Nested Sampling (a multidimensional integration technique) to study the most likely distribution for the shape of HpGe spectra. In treating these experiments, the prior information suggests to model the likelihood function with a product of Poisson distributions. We present the efforts that have been done in order to optimize the statistical methods to HpGe detector outputs with the aim to evaluate to a better order of precision the detector efficiency, the absolute measured activity and the spectra background. Reaching a more precise knowledge of statistical and systematic uncertainties for the measured physical observables is the final goal of this research project.

  1. Repetition in English Political Public Speaking

    Institute of Scientific and Technical Information of China (English)

    李红梅

    2010-01-01

    Repetition is frequently used in English political public speaking to make it easy to be remembered and powerful to move the feelings of the public. This paper is intended to analyze the functions of repetition and different levels of repetition to highlight the significance of repetition in English political public speaking and the ability of using it in practice.

  2. Nonideal diffusion effects and short-range ordering lead to higher aggregation rates in concentrated hard-sphere dispersions.

    Science.gov (United States)

    Kelkar, Aniruddha V; Franses, Elias I; Corti, David S

    2014-04-08

    Brownian aggregation in concentrated hard-sphere dispersions is studied using models and Brownian dynamics (BD) simulations. Two new theoretical models are presented and compared to several existing approaches and BD simulation results, which serve as benchmarks. The first new model is an improvement over an existing local density approximation (LDA)-based model. The other is based on the more rigorous Fundamental measure theory (FMT) applied to the "liquid-state" dynamic density-functional theory (DDFT). Both models provide significant improvements over the classical Smoluchowski model. The predictions of the new FM-DDFT-based model for aggregation kinetics are in excellent agreement with BD simulation results for dispersions with initial particle volume fractions, ϕ, up to 0.35 (close to the hard-sphere freezing transition at ϕ = 0.494). In contrast to previous approaches, the nonideal particle diffusion effects and the initial and time-dependent short-range ordering in concentrated dispersions due to entropic packing effects are explicitly considered here, in addition to the unsteady-state effects. The greater accuracy of the FM-DDFT-based model compared to that of the LDA-based models indicates that nonlocal contributions to particle diffusion (only accounted for in the former) play important roles in aggregation. At high concentrations, the FM-DDFT-based model predicts aggregation half-times and gelation times that are up to 2 orders of magnitude shorter than those of the Smoluchowski model. Moreover, the FM-DDFT-based model predicts asymmetric cluster-cluster aggregation rate constants, at least for short times. Overall, a rigorous mechanistic understanding of the enhancement of aggregation kinetics in concentrated dispersions is provided.

  3. The repetition effect in building and construction works

    DEFF Research Database (Denmark)

    Gottlieb, Stefan Christoffer; Haugbølle, Kim

    are then applied on the Public Transport Authorities' main account structure of units and costs, and a method for assessing the possibilities of achieving effects of repetition for each account is described. Finally, the report summarises the core conditions necessary to take into consideration in relation......This report summarises the results from the work undertaken for the Public Transport Authority on the effect of learning and repetition in building and construction works. The results are applied by the Public Transport Authority in a new budgeting model, while the agency investigates...... the establishment of a new railway between Copenhagen and Ringsted. Drawing on an extensive literature review, the effect of repetition is determined to be in the range of 6-12 %. Further, the report identifies a series of factors affecting the possibilities of achieving effects of repetition. These factors...

  4. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source; Kurzzeit-Roentgenbeugung mit Hilfe einer Effizienz-optimierten, hochrepetierenden Laser-Plasma-Roentgenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Kaehle, Stephan

    2009-04-23

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10{sup 16} W/cm{sup 2} dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K{sub {alpha}} radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K{sub {alpha}} production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K{sub {alpha}} radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density. [German] Diese Arbeit befasst sich mit der Erzeugung und Anwendung ultrakurzer Roentgenimpulse. Zu Beginn werden verschiedene Moeglichkeiten zur

  5. Varianish: Jamming with Pattern Repetition

    Directory of Open Access Journals (Sweden)

    Jort Band

    2014-10-01

    Full Text Available In music, patterns and pattern repetition are often regarded as a machine-like task, indeed often delegated to drum Machines and sequencers. Nevertheless, human players add subtle differences and variations to repeated patterns that are musically interesting and often unique. Especially when looking at minimal music, pattern repetitions create hypnotic effects and the human mind blends out the actual pattern to focus on variation and tiny differences over time. Varianish is a musical instrument that aims at turning this phenomenon into a new musical experience for musician and audience: Musical pattern repetitions are found in live music and Varianish generates additional (musical output accordingly that adds substantially to the overall musical expression. Apart from the theory behind the pattern finding and matching and the conceptual design, a demonstrator implementation of Varianish is presented and evaluated.

  6. Assessing maladaptive repetitive thought in clinical disorders: A critical review of existing measures.

    Science.gov (United States)

    Samtani, Suraj; Moulds, Michelle L

    2017-04-01

    Rumination and worry have recently been grouped under the broader transdiagnostic construct of repetitive thought (Watkins, 2008). The purpose of this review is to provide an overview of scales used to assess repetitive thinking across a broad range of contexts: depression, anxiety, trauma, stress, illness, interpersonal difficulties, positive affect, and so forth. We also include scales developed or adapted for children and adolescents. In the extant literature, measures of repetitive thinking generally show small-to-moderate correlations with measures of psychopathology. This review highlights problems with the content validity of existing instruments; for example, confounds between repetitive thought and symptomatology, metacognitive beliefs, and affect. This review also builds on previous reviews by including newer transdiagnostic measures of repetitive thinking. We hope that this review will help to expand our understanding of repetitive thinking beyond the mood and anxiety disorders, and suggest ways forward in the measurement of repetitive thinking in individuals with comorbid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. REPETITIVE CLUSTER-TILTED ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Zhang Shunhua; Zhang Yuehui

    2012-01-01

    Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras.Moreover,we generalize Theorem 4.2 in [12](Buan A,Marsh R,Reiten I.Cluster-tilted algebra,Trans.Amer.Math.Soc.,359(1)(2007),323-332.) to the situation of CFm,and prove that the tilting graph KCFm of CFm is connected.

  8. Influence of stocking rate, range condition and rainfall on seasonal beef production patterns in the semi-arid savanna of KwaZulu-Natal

    CSIR Research Space (South Africa)

    Hatch, GP

    1997-06-01

    Full Text Available , range condition and..., By: Hatch, G.P., Tainton, N.M., South African Journal of Animal Science, 03751589, Jun97, Vol. 27, Issue 2 Database: Academic Search Premier THE INFLUENCE OF STOCKING RATE, RANGE CONDITION AND RAINFALL ON SEASONAL BEEF... gain, winter livemass loss, modelling Introduction Although stocking rate influences individual animal performance (Most, 1960: Riewe, 1961; Jones & Sandland, 1974), livestock production in semi-arid systems is strongly influenced by temporal...

  9. Millennial-scale Denudation Rates of the Santa Lucia Mountains, CA: Implications for Landscape Thresholds from a Steep, High Relief, Coastal Mountain Range

    Science.gov (United States)

    Young, H.; Hilley, G. E.; Kiefer, K.; Blisniuk, K.

    2015-12-01

    We report new, 10-Be-derived denudation rates measured from river sands in basins of the Santa Lucia Range, central California. The Santa Lucia Mountains of the California Coast Range are an asymmetrical northwest-southeast trending range bounded by the San Gregorio-Hosgri (SG-HFZ ) and Rinconada-Reliz faults. This area provides an additional opportunity to analyze the relationships between topographic form, denudation rates, and mapped underlying geologic substrate in an actively deforming landscape. Analysis of in situ-produced 10-Be from alluvial sand samples collected in the Santa Lucia Mountains has yielded measurements of spatially varying basin-scale denudation rates. Despite the impressive relief of the Santa Lucia's, denudation rates within catchments draining the coastal side of the range are uniformly low, generally varying between ~90 m/Myr and ~350 m/Myr, with one basin eroding at ~500 m/Myr. Preliminary data suggest the lowest erosion rates are located within the northern interior of the range in sedimentary and granitic lithologies, while higher rates are located directly along the coast in metasedimentary bedrock. This overall trend is punctuated by a single high denudation rate, which is hosted by a watershed whose geometry suggests that it previously has, and continues to experience divide migration as it captures the adjacent watershed's area. Spatial distribution of basins with higher denudation rates is inferred to indicate a zone of uplift adjacent to the SG-HFZ. We compare erosion rates to basin mean channel steepness index, extracted from a 10 m digital elevation model. Denudation rate generally increases with channel steepness index until ~250 m/Myr, at which point the relationship becomes invariant, suggesting a non-linear erosion model may best characterize this region. These hypotheses will be tested further as additional denudation rate results are analyzed.

  10. The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates.

    Science.gov (United States)

    Danto, M I; Woo, S L

    1993-01-01

    The effect of strain rate on the mechanical properties of the rabbit anterior cruciate ligament (ACL) and patellar tendon (PT) was evaluated. The medial portion of the ACL was loaded to tensile failure at rates of 0.003, 0.3, and 113 mm/s, and the middle third of the PT was loaded at rates of 0.008, 0.8, and 113 mm/s. The load was recorded with a high-speed measurement plotting system, and each test was videotaped for strain analysis. The nonlinear portion of the stress-strain curve was curve-fit to an exponential function having two nonlinear constants, representing the initial modulus and rate of change of the modulus. The modulus of the rabbit PT was found to be 89% higher than that of the ACL. The initial modulus and rate of change of the modulus also were greater for the PT than for the ACL. The modulus of the PT was shown to be more sensitive to strain rate than that of the ACL; a 94% increase was observed for the PT, and a 31% increase was observed for the ACL. There was no effect of strain rate on the mode of failure of either the ACL or the PT; all but three of the specimens failed at the insertion site.

  11. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  12. Is It Possible to Predict Heart Rate and Range during Enhanced Cardiac CT Scan from Previous Non-enhanced Cardiac CT?

    OpenAIRE

    Horiguchi, Jun; Yamamoto, Hideya; Arie, Ryuichi; Kiguchi, Masao; Fujioka, Chikako; Ohtaki, Megu; Kihara, Yasuki; Awai, Kazuo

    2010-01-01

    The effect of heart rate and variation during cardiac computed tomography (CT) on the examination quality. The purpose of this study is to investigate whether it is possible to predict heart rate and range during enhanced cardiac computed CT scan from previous non-enhanced cardiac CT scan. Electrocardiograph (ECG) files from 112 patients on three types of cardiac 64-slice CT (non-enhanced, prospective ECG-triggered and retrospective ECG-gated enhanced scans) were recorded. The mean heart rate...

  13. Repetition suppression and repetition priming are processing outcomes.

    Science.gov (United States)

    Wig, Gagan S

    2012-01-01

    Abstract There is considerable evidence that repetition suppression (RS) is a cortical signature of previous exposure to the environment. In many instances RS in specific brain regions is accompanied by improvements in specific behavioral measures; both observations are outcomes of repeated processing. In understanding the mechanism by which brain changes give rise to behavioral changes, it is important to consider what aspect of the environment a given brain area or set of areas processes, and how this might be expressed behaviorally.

  14. Cohesive Function of Lexical Repetition in Text

    Institute of Scientific and Technical Information of China (English)

    张莉; 卢沛沛

    2013-01-01

    Lexical repetition is the most direct form of lexical cohesion,which is the central device for making texts hang together. Although repetition is the most direct way to emphasize,it performs the cohesive effect more apparently.

  15. Efeito da amplitude de movimento no número máximo de repetições no exercício supino livre Efectos de la amplitud de movimiento em el número máximo de repeticiones em el ejercicio de supino libre Effect of range of motion in the maximum number of repetitions in the bench press exercise

    Directory of Open Access Journals (Sweden)

    Fernando Vitor Lima

    2012-12-01

    about increases in strength using different ranges of motion (ROM. The aim of this study was to compare the maximum number of repetitions (MNR in bench press with two different ROM. Fourteen subjects performed familiarization and one repetition maximum (1 RM tests in sessions 1 and 2. MNR in four sets at 50% of 1 RM, one-minute rest with partial (ROMP and complete ROM (ROMC were performed in the third and fourth sessions. The ROMP used half of the bar vertical displacement compared to ROMC. Two-way ANOVA with repeated measures was used to compare the experimental conditions, followed by post hoc Scheffe. There was a significant decrease of the MNR among sets, except from third to fourth sets in both ROM. MNR in all sets was higher in ROMP than ROMC. The reduction of ROM allow to perform higher number of repetitions.

  16. Long range dependency and forecasting of housing price index and mortgage market rate: evidence of subprime crisis

    Directory of Open Access Journals (Sweden)

    Nadhem Selmi

    2015-05-01

    Full Text Available In this paper, we examine and forecast the House Price Index (HPI and mortgage market rate in terms of the description of the subprime crisis. We use a semi-parametric local polynomial Whittle estimator proposed by Shimotsu et al. (2005 [Shimotsu, K., & Phillips, P.C.B. (2005, Exact local Whittle estimation of fractional integration. The Annals of Statistics, 33(4, 1890-1933.] in a long memory parameter time series. Empirical investigation of HPI and mortgage market rate shows that these variables are more persistent when the d estimates are found on the Shimotsu method than on the one of Künsch (1987 [Künsch, H.R. (1987. Statistical aspects of self-similar processes. In Y. Prokhorov and V.V. Sazanov (eds., Proceedings of the First World Congress of the Bernoulli Society, VNU Science Press, Utrecht, 67-74.]. The estimating forecast values are more realistic and they strongly reflect the present US economy actuality in the two series as indicated by the forecast evaluation topics.

  17. A Modified Eyring Equation for Modeling Yield and Flow Stresses of Metals at Strain Rates Ranging from 10−5 to 5 × 104 s−1

    Directory of Open Access Journals (Sweden)

    Ramzi Othman

    2015-01-01

    Full Text Available In several industrial applications, metallic structures are facing impact loads. Therefore, there is an important need for developing constitutive equations which take into account the strain rate sensitivity of their mechanical properties. The Johnson-Cook equation was widely used to model the strain rate sensitivity of metals. However, it implies that the yield and flow stresses are linearly increasing in terms of the logarithm of strain rate. This is only true up to a threshold strain rate. In this work, a three-constant constitutive equation, assuming an apparent activation volume which decreases as the strain rate increases, is applied here for some metals. It is shown that this equation fits well the experimental yield and flow stresses for a very wide range of strain rates, including quasi-static, high, and very high strain rates (from 10−5 to 5 × 104 s−1. This is the first time that a constitutive equation is showed to be able to fit the yield stress over a so large strain rate range while using only three material constants.

  18. Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions

    Directory of Open Access Journals (Sweden)

    K. Schäfer

    2012-07-01

    Full Text Available Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2 are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s−1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.

  19. Dependence of neutron rate production with accelerator beam profile and energy range in an ADS-TRIGA RC1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Firoozabadi, M.M.; Karimi, J. [Birjand Univ. (Iran, Islamic Republic of). Dept. of Physics; Zangian, M. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Nuclear Engineering Dept.

    2016-12-15

    Lead, mercury, tantalum and tungsten were used as target material for calculation of spallation processes in an ADS-TRIGA RC1 reactor. The results show that tungsten has the highest neutron production rate. Therefore it was selected as target material for further calculations. The sensitivity of neutron parameters of the ADS reactor core relative to a change of beam profile and proton energy was determined. The core assembly and parameters of the TRIGA RC1 demonstration facility were used for the calculation model. By changing the proton energy from 115 to 1 400 MeV by using the intra-nuclear cascade model of Bertini (INC-Bertini), the quantity of the relative difference in % for energy gain (G) and spallation neutron yield (Y{sub n/p}), increases to 289.99 % and 5199.15 % respectively. These changes also reduce the amount of relative difference for the proton beam current (I{sub p}) and accelerator power (P{sub acc}), 99.81 % and 81.28 % respectively. In addition, the use of a Gaussian distribution instead of a uniform distribution in the accelerator beam profile increases the quantity of relative difference for energy gain (G), net neutron multiplication (M) and spallation neutron yield (Y{sub n/p}), up to 4.93 %, 4.9 % and 5.55 % respectively.

  20. New Method to Determine the Range of DVB-H Networks and the Influence of MPE-FEC Rate and Modulation Scheme

    Directory of Open Access Journals (Sweden)

    Gauderis Hugo

    2009-01-01

    Full Text Available Abstract DVB-H networks allow high data rate broadcast access for hand-held terminals. A new method to determine the range of good reception quality of such a DVB-H network will be investigated in this paper. To this end, a new subjective criterion is proposed, based on the viewing experience of the users. This criterion is related to the percentage of valid reception. A comparison with existing criteria, based on measured signal strengths, is also made. The ranges are determined for mobile reception inside a car. The influence of the MPE-FEC rate and the modulation scheme on the range is also investigated, enabling wireless telecom operators to select optimal settings for future networks.

  1. New Method to Determine the Range of DVB-H Networks and the Influence of MPE-FEC Rate and Modulation Scheme

    Directory of Open Access Journals (Sweden)

    David Plets

    2009-01-01

    Full Text Available DVB-H networks allow high data rate broadcast access for hand-held terminals. A new method to determine the range of good reception quality of such a DVB-H network will be investigated in this paper. To this end, a new subjective criterion is proposed, based on the viewing experience of the users. This criterion is related to the percentage of valid reception. A comparison with existing criteria, based on measured signal strengths, is also made. The ranges are determined for mobile reception inside a car. The influence of the MPE-FEC rate and the modulation scheme on the range is also investigated, enabling wireless telecom operators to select optimal settings for future networks.

  2. Circuit considerations for repetitive railguns

    Energy Technology Data Exchange (ETDEWEB)

    Honih, E.M.

    1986-01-01

    Railgun electromagnetic launchers have significant military and scientific potential. They provide direct conversion of electrical energy to projectile kinetic energy, and they offer the hope of achieving projectile velocities greatly exceeding the limits of conventional guns. With over 10 km/sec already demonstrated, railguns are attracting attention for tactical and strategic weapons systems and for scientific equation-of-state research. The full utilization of railguns will require significant improvements in every aspect of system design - projectile, barrel, and power source - to achieve operation on a large scale. This paper will review fundamental aspects of railguns, with emphasis on circuit considerations and repetitive operation.

  3. Effect of repetitive mckenzie lumbar spine exercises on cardiovascular system

    Directory of Open Access Journals (Sweden)

    Agrawal Sonal S

    2014-07-01

    Full Text Available Background & Purpose: McKenzie exercises for the lumbar spine, which are done repeatedly, such as flexion in standing (FIS, extension in standing flexion in lying (FIL & extension in lying (EIL have been used in the management of low back pain for over three decades. The cardiovascular effects of exercises that involve postural stabilization, arm exercises and of exercises performed in lying are well known, but there are seldom studies performed to assess the cardiovascular effects of these commonly used McKenzie exercises. Therefore the study focused on evaluating the effects of 4 commonly used McKenzie exercises on the cardiovascular system. Methods: 80 subjects in the age group of 20-59 years were randomly assigned into 4 groups according to their age, such that such that each group comprised of an equal number of subjects & equal number of males & females. Each subject performed all the 4 exercises (FIS, EIS, FIL & EIL for 10, 15 & 20 repetitions respectively. Heart rate, blood pressure & rate pressure product were recorded before & after each set of repetitions & after each type of exercise. Results: Repetitive McKenzie lumbar spine exercises had cardiovascular effects in apparently healthy subjects (both male & female. Exercises performed in lying were hemodynamically more demanding than that performed in standing, also exercises involving flexion of the lumbar spine elicited greater cardiovascular demand as compared to extension exercises i.e. FIL>EIL>FIS>EIS irrespective of the number of repetitions, 10, 15 or 20. The cardiovascular demand for a given subject increased as the number of repetitions increased, for all the 4 exercises. Conclusion: McKenzie exercises when done repetitively have cardiovascular effects in healthy subjects.

  4. Digital repetitive control under varying frequency conditions

    OpenAIRE

    Ramos Fuentes, Germán Andrés

    2012-01-01

    The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This thesis presents some contributions to the open topic of repetitive control workin...

  5. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.

    Science.gov (United States)

    Li, Fuping; Li, Jinshan; Kou, Hongchao; Huang, Tingting; Zhou, Lian

    2015-09-01

    Porous titanium and its alloys are believed to be promising materials for bone implant applications, since they can reduce the "stress shielding" effect by tailoring porosity and improve fixation of implant through bone ingrowth. In the present work, porous Ti6Al4V alloys for biomedical application were fabricated by diffusion bonding of alloy meshes. Compressive mechanical behavior and compatibility in the range of physiological strain rate were studied under quasi-static and dynamic conditions. The results show that porous Ti6Al4V alloys possess anisotropic structure with elongated pores in the out-of-plane direction. For porous Ti6Al4V alloys with 60-70 % porosity, more than 40 % pores are in the range of 200-500 μm which is the optimum pore size suited for bone ingrowth. Quasi-static Young's modulus and yield stress of porous Ti6Al4V alloys with 30-70 % relative density are in the range of 6-40 GPa and 100-500 MPa, respectively. Quasi-static compressive properties can be quantitatively tailored by porosity to match those of cortical bone. Strain rate sensitivity of porous Ti6Al4V alloys is related to porosity. Porous Ti6Al4V alloys with porosity higher than 50 % show enhanced strain rate sensitivity, which is originated from that of base materials and micro-inertia effect. Porous Ti6Al4V alloys with 60-70 % porosity show superior compressive mechanical compatibility in the range of physiological strain rate for cortical bone implant applications.

  6. A short range, low data rate, 7.2 GHz-7.7 GHz FM-UWB receiver front-end

    NARCIS (Netherlands)

    Zhao, Y.; Dong, Y.; Gerrits, J.F.M.; Van Veenendaal, G.; Ling, J.R.; Farserotu, J.R.

    2009-01-01

    A 9 mW FM-UWB receiver front-end for low data rate (<50 kbps), short range (<10 m) applications operating in the ultra-wideband (UWB) band centered at 7.45 GHz is described in this paper. A single-ended-to-differential preamplifier with 30 dB voltage gain, a 1 GHz bandwidth FM demodulator, and a com

  7. [Repetition and fear of dying].

    Science.gov (United States)

    Lerner, B D

    1995-03-01

    In this paper a revision is made of the qualifications of Repetition (R) in Freuds work, i.e. its being at the service of the Pleasure Principle and, beyond it, the binding of free energy due to trauma. Freud intends to explain with this last concept the "fort-da" and the traumatic dreams (obsessively reiterated self-reproaches may be added to them). The main thesis of this work is that R. is not only a defense against the recollection of the ominous past (as in the metaphorical deaths of abandonment and desertion) but also a way of maintaining life and identify fighting against the inescapable omninous future (known but yet experienced), i.e. our own death. Some forms of R. like habits, identificatory behaviors and sometimes even magic, are geared to serve the life instinct. A literary illustration shows this desperate fight.

  8. Pressure rig for repetitive casting

    Science.gov (United States)

    Vasquez, Peter (Inventor); Hutto, William R. (Inventor); Philips, Albert R. (Inventor)

    1989-01-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  9. Quantitative dating of Pleistocene terrace deposits of the Kyrenia Range, northern Cyprus: implications for timing, rates of uplift and driving mechanisms in an incipient collision zone

    Science.gov (United States)

    Palamakumbura, Romesh; Robertson, Alastair; Kinnaird, Tim; van Calsteren, Peter; Kroon, Dick; Tait, Jenny

    2016-04-01

    The Kyrenia Range is a narrow E-W trending mountain range up to c. 180 km long by up to ca. 20 km wide, which is located Cyprus. To help understand the tectonic processes driving the uplift of the Kyrenia Range several quantitative techniques have been used to date uplift-related terrace deposits exposed on the northern flank of the range. Uranium-series disequilibrium (U-series) dating provides ages of 127, 131 and 242 ka from solitary coral in shallow-marine deposits of the lowest terraces, whereas optically stimulated luminescence (OSL) dating gives ages of 53 and 76 ka from coastal aeolianite deposits. Prior to major tectonic uplift a shallow-marine carbonate-depositing sea existed in the vicinity of the Kyrenia Range. Some of the youngest pre-uplift marine carbonates yielded a reversed magnetic polarity, which constrains them as older than the last palaeomagnetic reversal (0.78 Ma). The combined evidence suggests that marine environments persisted into the Early Pleistocene, prior to major surface uplift of the Kyrenia Range lineament, which appears to have climaxed in the Mid-Pleistocene. The inferred uplift rates of the Kyrenia Range lineament range from >1.2 mm/yr during the Mid-Pleistocene to Cyprus, which is in keeping with the model of regional-scale collision of the Eratosthenes Seamount with the Cyprus trench. The uplift of the Kyrenia Range lineament took place directly adjacent to the southern margin of the much larger Anatolian orogenic plateau, which was also mainly uplifted during the Pleistocene. The timing and processes involved in the uplift of the Kyrenia Range lineament are relevant to long-term processes of continental accretion and plateau uplift. On a longer timescale, the uplift of the Kyrenia Range in an incipient collisional setting can be seen as a step towards final accretion into a larger Anatolian orogenic plateau as collision intensifies. Terranes similar to the Kyrenia Range lineament may therefore exist embedded within the

  10. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  11. Output Characteristics of LD End-pumping Nd:YVO_4 Laser with Pulse Repetition Rates up to 1 kHz%LD端面抽运1KHz电光调Q Nd:YVO_4激光器输出功率特性研究

    Institute of Scientific and Technical Information of China (English)

    宋标; 李传起; 谢爱根; 王铁邦

    2009-01-01

    A laser diode (LD) continuous-wave (CW) end-pumping high repetition rate electro-optic ( EO) Q-switching Nd : YVO_4 laser was experimentally and theoretically studied. In experiments , using BBO single crystal as an EO Q-switch,with 10 W pump power ,about 170 mW average power was obtained at 1 kHz repetition rate. The dips in the output power curves were analyzed, A reasonable explaination was given and a way of improving the output was pointed out through the graphic analysis of the transmitting and transforming circle.%报道了全固态激光器连续抽运高重复率电光调Q Nd:YVO_4激光器的实验和理论分析结果,用BBO晶体作电光调Q元件,在激光二极管(LD)端面抽运Nd:YVO_4激光器中实现了较高重复率的电光调Q输出.实验中在1 kHz重复率下,抽运功率为10 W时,平均功率超过170 mW.对输出功率曲线中的凹陷现象进行了分析,指出了制约激光器的内在诸因素,并用传播圆-变换圆图解分析方法给出了合理的解释.

  12. Efeito da ordem dos exercícios no número de repetições e na percepção subjetiva de esforço em homens treinados em força The effect of the exercises order on number of repetitions and rate of perceived effort in resistance trained men

    Directory of Open Access Journals (Sweden)

    Saulo Gil

    2011-03-01

    Full Text Available A ordem dos exercícios refere-se à sequência de execução durante uma sessão de treinamento. Evidências demonstram que essa ordem pode afetar o número de repetições realizadas nos exercícios. A percepção subjetiva de esforço (PSE, assim como o número de repetições realizadas, depende da sobrecarga utilizada. Assim, alterações no número de repetições podem afetar a PSE. O volume total de trabalho (VTT influencia nas adaptações crônicas ao treinamento e também pode ser afetado pela ordem dos exercícios. O objetivo foi verificar o efeito da ordem dos exercícios para membros inferiores no número de repetições realizadas, na PSE e no VTT. Doze homens treinados (19,3 ± 2,1 anos, 71,1 ± 9,8 kg, 172,4 ± 6,1 cm, 23,3 ± 11,5 meses/treino realizaram duas sessões com os exercícios "leg-press" (L, mesa flexora (F e cadeira extensora (E em diferentes ordens (LFE ou EFL. Foram utilizados testes t de "Student" pareados com ajuste de Bonferroni para comparações múltiplas. O número de repetições em L e E diminuiu quando realizados no final da sessão. As repetições realizadas em F diminuíram na LFE. A PSE de E foi maior quando realizada no final da sessão, porém de L e de F não foram afetadas pelas diferentes ordens. O volume de trabalho total de LFE foi maior. Em conclusão, a ordem dos exercícios envolvendo membros inferiores afeta o número de repetições e a PSE de um exercício além do VTT, ressaltando a importância da ordem dos exercícios como uma importante variável na prescrição do treinamento.The order of exercises refers to the sequence during a training bout. Some evidence shows that the number of repetitions may be affected by the order of exercises. Both the number of repetitions and the rate of perceived effort (PSE are influenced by exercise load. Thus, changes in the number of repetitions may affect PSE. Additionally, total work volume influences long term training adaptations and can be

  13. The interaction between duration, velocity and repetitive auditory stimulation.

    Science.gov (United States)

    Makin, Alexis D J; Poliakoff, Ellen; Dillon, Joe; Perrin, Aimee; Mullet, Thomas; Jones, Luke A

    2012-03-01

    Repetitive auditory stimulation (with click trains) and visual velocity signals both have intriguing effects on the subjective passage of time. Previous studies have established that prior presentation of auditory clicks increases the subjective duration of subsequent sensory input, and that faster moving stimuli are also judged to have been presented for longer (the time dilation effect). However, the effect of clicks on velocity estimation is unknown, and the nature of the time dilation effect remains ambiguous. Here were present a series of five experiments to explore these phenomena in more detail. Participants viewed a rightward moving grating which traveled at velocities ranging from 5 to 15°/s and which lasted for durations of 500 to 1500 ms. Gratings were preceded by clicks, silence or white noise. It was found that both clicks and higher velocities increased subjective duration. It was also found that the time dilation effect was a constant proportion of stimulus duration. This implies that faster velocity increases the rate of the pacemaker component of the internal clock. Conversely, clicks increased subjective velocity, but the magnitude of this effect was not proportional to actual velocity. Through considerations of these results, we conclude that clicks independently affect velocity and duration representations.

  14. Comparing repetition-based melody segmentation models

    NARCIS (Netherlands)

    Rodríguez López, M.E.; de Haas, Bas; Volk, Anja

    2014-01-01

    This paper reports on a comparative study of computational melody segmentation models based on repetition detection. For the comparison we implemented five repetition-based segmentation models, and subsequently evaluated their capacity to automatically find melodic phrase boundaries in a corpus of 2

  15. Repetitions: A Cross-Cultural Study.

    Science.gov (United States)

    Murata, Kumiko

    1995-01-01

    This study investigated how repetition is used in conversation among native speakers of British English, native speakers of Japanese, and Japanese speakers of English. Five interactional functions of repetition (interruption-orientated, solidarity, silence-avoidance, hesitation, and reformulation) were identified, as well as the cultural factors…

  16. Absolute Viscosities of Vegetable Oils at Different Temperatures and Shear Rate Range of 64.5 to 4835 s−1

    Directory of Open Access Journals (Sweden)

    Lemuel M. Diamante

    2014-01-01

    Full Text Available A study was carried out to determine the effect of higher shear rates (64.5 to 4835 s−1 on the absolute viscosities of different vegetable oils at different temperatures (26 to 90°C. The absolute viscosities of the different vegetable oils were determined using a Lamy Viscometer RM100, a rotating viscometer with coaxial cylinder. The torque of each sample at different temperatures was recorded at different shear rates. Based on the rheograms (plot of mean shear stress against shear rate, all of the vegetable oils studied were found to be Newtonian fluids. Rice bran oil was the most viscous (0.0398 Pa·s at 38°C while walnut oil was the least viscous (0.0296 Pa·s at 38°C among the oils studied. The higher shear range used did not significantly affect the absolute viscosities of the vegetable oils at the different temperatures. The absolute viscosities of the vegetable oils decreased with increasing temperature and can be fitted with an Arrhenius type relationship. The activation energies for the different vegetable oils ranged from 21 to 30 kJ/mole. The peanut and safflower oils had the highest and lowest activation energies, respectively. This means that greater energy was needed to effect a viscosity change in the peanut oil.

  17. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    Science.gov (United States)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-04-01

    Within the Northern Basin and Range Province, USA, we estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010. The velocities, together with geologic, volcanic, and earthquake data, reveal a slowly deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 × 10-9 yr-1 in the Centennial Tectonic Belt and an ˜E-oriented extensional strain rate of 3.5 ± 0.2 × 10-9 yr-1 in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km × 650 km region of the Snake River Plain and Owyhee-Oregon Plateau, which is indistinguishable from zero (-0.1 ± 0.4 × 10-9 yr-1). Inversions of the velocities with dyke-opening models indicate that rapid extension by dyke intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring in the Snake River Plain. This slow internal deformation, in contrast to the rapidly extending adjacent Basin and Range regions, indicates shear along the boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.3-1.4 mm yr-1 along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm yr-1 along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the

  18. Optical beam dynamics in a gas repetitively heated by femtosecond filaments

    CERN Document Server

    Jhajj, N; Wahlstrand, J K; Milchberg, H M

    2013-01-01

    We investigate beam pointing dynamics in filamentation in gases driven by high repetition rate femtosecond laser pulses. Upon suddenly exposing a gas to a kilohertz train of filamenting pulses, the filament is steered from its original direction to a new stable direction whose equilibrium is determined by a balance among buoyant, viscous, and diffusive processes in the gas. Results are shown for Xe and air, but are broadly applicable to all configurations employing high repetition rate femtosecond laser propagation in gases.

  19. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the

  20. Catchment-scale denudation and chemical erosion rates determined from 10Be and mass balance geochemistry (Mt. Lofty Ranges of South Australia)

    Science.gov (United States)

    Bestland, Erick A.; Liccioli, Caterina; Soloninka, Lesja; Chittleborough, David J.; Fink, David

    2016-10-01

    Global biogeochemical cycles have, as a central component, estimates of physical and chemical erosion rates. These erosion rates are becoming better quantified by the development of a global database of cosmogenic radionuclide 10Be (CRN) analyses of soil, sediment, and outcrops. Here we report the denudation rates for two small catchments (~ 0.9 km2) in the Mt. Lofty Ranges of South Australia as determined from 10Be concentrations from quartz sand from the following landscape elements: 1) dissected plateaux, or summit surfaces (14.10 ± 1.61 t km- 2 y- 1), 2) sandstone outcrops (15.37 ± 1.32 t km- 2 y- 1), 3) zero-order drainages (27.70 ± 1.42 t km- 2 y- 1), and 4) stream sediment which reflect a mix of landscape elements (19.80 ± 1.01 t km- 2 y- 1). Thus, the more slowly eroding plateaux and ridges, when juxtaposed with the more rapidly eroding side-slopes, are leading to increased relief in this landscape. Chemical erosion rates for this landscape are determined by combining cosmogenic denudation rates with the geochemical mass balance of parent rock, soil and saprolite utilizing zirconium immobility and existing mass balance methods. Two different methods were used to correct for chemical weathering and erosion in the saprolite zone that is shielded at depth from CRN production. The corrected values are higher than uncorrected values: total denudation of 33.24 or 29.11 t km- 2 y- 1, and total chemical erosion of 15.64 or 13.68 t km- 2 y- 1. Thus, according to these methods, 32-40% of the denudation is taking place by chemical weathering and erosion in the saprolite below CRN production depth. Compared with other similar areas, the overall denudation and chemical erosion rates are low. In most areas with sub-humid climates and tectonic uplift, physical erosion is much greater than chemical erosion. The low physical erosion rates in these Mt. Lofty Range catchments, in what is a relatively active tectonic setting, are thought to be due to low rainfall intensity

  1. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10‑6 g m‑2 day‑1 range

    Science.gov (United States)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10‑6 g m‑2 day‑1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  2. Analysis of Errors of Deep Space X-Band Range-Rate Measurement%深空X频段测速数据误差分析

    Institute of Scientific and Technical Information of China (English)

    樊敏; 王宏; 李海涛; 赵华

    2013-01-01

    X-band is the primary frequency band used by deep space TT&C (Tracking, Telemetry and Command) systems. X-band range-rate measurement is more accurate than those of S-band as validated in X-band deep space TT&C system experiments of Chang'E-2 spacecraft. The precision of range-rate measurement is about 1 mm/s. For X-band range-rate, theoretical error caused by Doppler effect approximate calculation formula is analyzed. This error could become 1 cm/s during translunar and lunar-orbiting phases. Furthermore, measurement residual error is analyzed based on the precision ephemerides of post orbit determination for X-band deep space TT&C system experiment of Chang'E-2 spacecraft. The results show that the range-rate residual error induced by the approximation increases by 1 mm/s compared to what is calculated by equations. It is close to the actual measurement precision. Therefore, the Doppler effect approximate calculation formula is no longer applicable and the exact formula should be used in the lunar and deep space exploration projects in the future.%X频段是深空测控的主用频段,其多普勒测速精度远高于S频段,这一结论在“嫦娥二号”任务X频段深空测控技术试验中得到了验证,测速精度约为1 mm/s.针对X频段高精度测速,本文分析了目前采用的径向速度近似计算公式,理论分析其产生的误差在地月转移和环月轨道段可达1 cm/s.通过“嫦娥二号”任务X频段测控技术试验,以事后精密轨道为基准进行残差分析,结果表明,相比精确公式,近似公式计算测速数据的残差会增加1 mm/s,已与X频段测速精度本身相当,因此,多普勒测速近似计算在X频段测量中已不再适用,应使用本文中列出的精确计算公式.

  3. Three-dimensional carbon foam supported tin oxide nanocrystallites with tunable size range: Sulfonate anchoring synthesis and high rate lithium storage properties

    Science.gov (United States)

    Ma, Yue; Asfaw, Habtom Desta; Edström, Kristina

    2015-10-01

    The development of a free-standing electrode with high rate capability requires the realization of facile electrolyte percolation, fast charge transfer at the electrode-electrolyte interface as well as the intimate electrical wiring to the current collector. Employing a sulfonated high internal phase emulsion polymer (polyHIPE) as the carbon precursor, we developed a free-standing composite of carbon foam encapsulated SnO2 nanocrystallites, which simultaneously satisfies the aforementioned requirements. When directly evaluated in the pouch cell without using the binder, carbon additive or metallic current collector, the best performing composite exhibits a good rate performance up to 8 A g-1 and very stable cyclability for 250 cycles. This cycling performance was attributed to the synergistic coupling of hierarchical macro/mesoporous carbon foam and SnO2 nanocrystals with optimized size range. Postmortem characterizations unveiled the significant influence of subtle size variation of oxides on the electrochemical performance.

  4. Strategies for Using Repetition as a Powerful Teaching Tool

    Science.gov (United States)

    Saville, Kirt

    2011-01-01

    Brain research indicates that repetition is of vital importance in the learning process. Repetition is an especially useful tool in the area of music education. The success of repetition can be enhanced by accurate and timely feedback. From "simple repetition" to "repetition with the addition or subtraction of degrees of freedom," there are many…

  5. Strategies for Using Repetition as a Powerful Teaching Tool

    Science.gov (United States)

    Saville, Kirt

    2011-01-01

    Brain research indicates that repetition is of vital importance in the learning process. Repetition is an especially useful tool in the area of music education. The success of repetition can be enhanced by accurate and timely feedback. From "simple repetition" to "repetition with the addition or subtraction of degrees of freedom," there are many…

  6. Repetition priming from moving faces.

    Science.gov (United States)

    Lander, Karen; Bruce, Vicki

    2004-06-01

    Recent experiments have suggested that seeing a familiar face move provides additional dynamic information to the viewer, useful in the recognition of identity. In four experiments, repetition priming was used to investigate whether dynamic information is intrinsic to the underlying face representations. The results suggest that a moving image primes more effectively than a static image, even when the same static image is shown in the prime and the test phases (Experiment 1). Furthermore, when moving images are presented in the test phase (Experiment 2), there is an advantage for moving prime images. The most priming advantage is found with naturally moving faces, rather than with those shown in slow motion (Experiment 3). Finally, showing the same moving sequence at prime and test produced more priming than that found when different moving sequences were shown (Experiment 4). The results suggest that dynamic information is intrinsic to the face representations and that there is an advantage to viewing the same moving sequence at prime and test.

  7. Сomparative Analysis of Sounding Range for Aerosol Lidar Alternate Designs

    Directory of Open Access Journals (Sweden)

    S. E. Ivanov

    2015-01-01

    Full Text Available The aerosol lidars intended for expeditious monitoring of the atmosphere allow us to define remotely characteristics of atmospheric aerosol and cloudy formations in the atmosphere. When designing the laser systems, one of the first tasks to be solved is to determine a potential range of laser system operation. The laser system operation range depends on the algorithm for processing laser signals used in laser system. It can be estimated from an equality condition (for the limit range between the power characteristics of the useful laser signal (coming to the receiver and the threshold power characteristics of the laser system receiver. Today, practically, all the existing aerosol lidars operate with rather low repetition rate and with rather powerful single pulses. An alternative to it is operation with high repetition rate and with a low power of single pulses. The paper presents comparative analysis of a sounding range for the Aerosol Lidar in UF (0.355 microns, visible (0.532 microns and near infrared (1.064 microns spectral ranges for various lidar options (with different repetition rates of laser pulses and different algorithms to process laser locational signals. To estimate the limit sounding ranges L three different algorithms were used: - equality of useful signal power and threshold power of the receiver; equality of useful signal power in the no-accumulation mode and minimum detected (threshold power in the no-accumulation mode; equality of useful signal power in the accumulation mode and minimum detected (threshold power in the accumulation mode. Results of mathematical modelling show that the signals accumulation mode provides significantly longer sounding range, than the signals no-accumulation mode. The limit sounding range in the mode of signals accumulation is defined by dependence of the laser pulse power on the repetition rate.

  8. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    Science.gov (United States)

    Girault, M.; Le Garrec, J.-L.; Mitchell, J. B. A.; Jouvard, J.-M.; Carvou, E.; Menneveux, J.; Yu, J.; Ouf, F.-X.; Carles, S.; Potin, V.; Pillon, G.; Bourgeois, S.; Perez, J.; Marco de Lucas, M. C.; Lavisse, L.

    2016-06-01

    The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O2-N2 gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2-5 nm range. A decrease of the NPs size with increasing the O2 percentage in the O2-N2 gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  9. Route to 100 TW Ti: Sapphire laser at repetitive mode

    Directory of Open Access Journals (Sweden)

    Teng Hao

    2013-11-01

    Full Text Available We demonstrated a 100 TW-class femtosecond Ti: sapphire laser running at repetition rate of 0.1 Hz by adding a stage amplifier in the 20 TW/10 Hz laser facility (XL-II. Pumping the new stage amplifier with the 25 J green Nd:glass laser, we successfully upgraded the laser energy to 3.4 J with duration of 29 fs, corresponding to a peak power of 117 TW.

  10. Thermomechanical response of 3D laser-deposited Ti–6Al–4V alloy over a wide range of strain rates and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng-Hui [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Guo, Wei-Guo, E-mail: weiguo@nwpu.edu.cn [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Huang, Wei-Dong [The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Su, Yu [Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Lin, Xin [The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Yuan, Kang-Bo [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China)

    2015-10-28

    To understand and evaluate the thermomechanical property of Ti–6Al–4V alloy prepared by the 3D laser deposition technology, an uniaxial compression test was performed on cylindrical samples using an electronic universal testing machine and enhanced Hopkinson technique, over the range of strain rate from 0.001/s to 5000/s, and at initial temperatures from the room temperature to 1173 K. The microstructure of the undeformed and deformed samples was examined through optical microscopy and the use of scanning electron microscope (SEM). The experimental results show the followings: (1) the anisotropy of the mechanical property of this alloy is not significant despite the visible stratification at the exterior surfaces; (2) initial defects, such as the initial voids and lack of fusion, are found in the microstructure and in the crack surfaces of the deformed samples, and they are considered as a major source of crack initiation and propagation; (3) adiabatic shear bands and shearing can easily develop at all selected temperatures for samples under compression; (4) the yield and ultimate strengths of this laser-deposited Ti–6Al–4V alloy are both lower than those of the Ti–6Al–4V alloy prepared by forging and electron beam melting, whereas both of its strengths are higher than those of a conventional grade Ti–6Al–4V alloy at high strain rate only. In addition to compression tests we also conducted tensile loading tests on the laser-deposited alloy at both low and high strain rates (0.1/s and 1000/s). There is significant tension/compression asymmetry in the mechanical response under high-strain-rate loading. It was found that the quasi-static tensile fracturing exhibits typical composite fracture characteristic with quasi-cleavages and dimples, while the high-strain-rate fracturing is characterized by ductile fracture behavior.

  11. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Girault, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Le Garrec, J.-L.; Mitchell, J.B.A. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Jouvard, J.-M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Carvou, E. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Menneveux, J.; Yu, J. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ouf, F.-X. [Institut de Radioprotection et de Sureté Nucléaire IRSN/PSN-RES/SCA/LPMA BP 68, 91192 Gif-Sur-Yvette (France); Carles, S. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Potin, V.; Pillon, G.; Bourgeois, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Perez, J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex (France); Marco de Lucas, M.C., E-mail: delucas@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); and others

    2016-06-30

    Highlights: • NPs formed in a plasma-plume during laser irradiation of metals (Al, Ti, Ag) were studied. • In situ SAXS and ex situ TEM, XRD and Raman spectra were measured. • NPs size decreased when increasing the O{sub 2} fraction in a controlled O{sub 2}+N{sub 2} atmosphere. • The oxidation of metal NPs in the plasma restricts the increase of the size of the NPs. - Abstract: The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O{sub 2}–N{sub 2} gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2–5 nm range. A decrease of the NPs size with increasing the O{sub 2} percentage in the O{sub 2}–N{sub 2} gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  12. SI Engine with repetitive NS spark plug

    Science.gov (United States)

    Pancheshniy, Sergey; Nikipelov, Andrey; Anokhin, Eugeny; Starikovskiy, Andrey; Laplase Team; Mipt Team; Pu Team

    2013-09-01

    Now de-facto the only technology for fuel-air mixtures ignition in IC engines exists. It is a spark discharge of millisecond duration in a short discharge gap. The reason for such a small variety of methods of ignition initiation is very specific conditions of the engine operation. First, it is very high-pressure of fuel-air mixture - from 5-7 atmospheres in old-type engines and up to 40-50 atmospheres on the operating mode of HCCI. Second, it is a very wide range of variation of the oxidizer/fuel ratio in the mixture - from almost stoichiometric (0.8-0.9) at full load to very lean (φ = 0.3-0.5) mixtures at idle and/or economical cruising mode. Third, the high velocity of the gas in the combustion chamber (up to 30-50 m/s) resulting in a rapid compression of swirling inlet flow. The paper presents the results of tests of distributed spark ignition system powered by repetitive pulse nanosecond discharge. Dynamic pressure measurements show the increased pressure and frequency stability for nanosecond excitation in comparison with the standard spark plug. Excitation by single nanosecond high-voltage pulse and short train of pulses was examined. In all regimes the nanosecond pulsed excitation demonstrate a better performance.

  13. Moderate rates of late Quaternary slip along the northwestern margin of the Basin and Range Province, Surprise Valley fault, northeastern California

    Science.gov (United States)

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Mahan, Shannon; Lidke, David J.

    2009-01-01

    The 86-km-long Surprise Valley normal fault forms part of the active northwestern margin of the Basin and Range province in northeastern California. We use trench mapping and radiocarbon, luminescence, and tephra dating to estimate displacements and timing of the past five surface-rupturing earthquakes on the central part of the fault near Cedarville. A Bayesian OxCal analysis of timing constraints indicates earthquake times of 18.2 ± 2.6, 10.9 ± 3.2, 8.5 ± 0.5, 5.8 ± 1.5, and 1.2 ± 0.1 ka. These data yield recurrence intervals of 7.3 ± 4.1, 2.5 ± 3.2, 2.7 ± 1.6, and 4.5 ± 1.5 ka and an elapsed time of 1.2 ± 0.1 ka since the latest surface-rupturing earthquake. Our best estimate of latest Quaternary vertical slip rate is 0.6 ?? 0.1 mm/a. This late Quaternary rate is remarkably similar to long-term (8-14 Ma) minimum vertical slip rates (>0.4-0.5 ± 0.3 mm/a) calculated from recently acquired seismic reflection and chronologic and structural data in Surprise Valley and the adjacent Warner Mountains. However, our slip rate yields estimates of extension that are lower than recent campaign GPS determinations by factors of 1.5-4 unless the fault has an unusually shallow (30°-35°) dip as suggested by recently acquired seismic reflection data. Coseismic displacements of 2-4.5 ± 1 m documented in the trench and probable rupture lengths of 53-65 km indicate a history of latest Quaternary earthquakes of M 6.8-7.3 on the central part of the. Surprise Valley fault.

  14. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.

    Science.gov (United States)

    Hwang, Yong Seok; Levitas, Valery I

    2016-10-19

    The external surface of metallic particles is usually covered by a thin and strong oxide shell, which significantly affects superheating and melting of particles. The effects of geometric parameters and heating rate on characteristic melting and superheating temperatures and melting behavior of aluminum nanoparticles covered by an oxide shell were studied numerically. For this purpose, the multiphysics model that includes the phase field model for surface melting, a dynamic equation of motion, a mechanical model for stress and strain simulations, interface and surface stresses, and the thermal conduction model including thermoelastic and thermo-phase transformation coupling as well as transformation dissipation rate was formulated. Several nontrivial phenomena were revealed. In comparison with a bare particle, the pressure generated in a core due to different thermal expansions of the core and shell and transformation volumetric expansion during melting, increases melting temperatures with the Clausius-Clapeyron factor of 60 K GPa(-1). For the heating rates Q ≤ 10(9) K s(-1), melting temperatures (surface and bulk start and finish melting temperatures, and maximum superheating temperature) are independent of Q. For Q ≥ 10(12) K s(-1), increasing Q generally increases melting temperatures and temperature for the shell fracture. Unconventional effects start for Q ≥ 10(12) K s(-1) due to kinetic superheating combined with heterogeneous melting and geometry. The obtained results are applied to shed light on the initial stage of the melt-dispersion-mechanism of the reaction of Al nanoparticles. Various physical phenomena that promote or suppress melting and affect melting temperatures and temperature of the shell fracture for different heating-rate ranges are summarized in the corresponding schemes.

  15. Repetitive Bibliographical Information in Relational Databases.

    Science.gov (United States)

    Brooks, Terrence A.

    1988-01-01

    Proposes a solution to the problem of loading repetitive bibliographic information in a microcomputer-based relational database management system. The alternative design described is based on a representational redundancy design and normalization theory. (12 references) (Author/CLB)

  16. Computer-Related Repetitive Stress Injuries

    Science.gov (United States)

    ... on the shoulder Epicondylitis: elbow soreness often called "tennis elbow" Ganglion cyst: swelling or lump in the wrist ... Bones, Muscles, and Joints Carpal Tunnel Syndrome Medial Epicondylitis Repetitive Stress Injuries Contact Us Print Resources Send ...

  17. Resistance to change of operant variation and repetition.

    Science.gov (United States)

    Doughty, A H; Lattal, K A

    2001-09-01

    A multiple chained schedule was used to compare the relative resistance to change of variable and fixed four-peck response sequences in pigeons. In one terminal link, a response sequence produced food only if it occurred infrequently relative to 15 other response sequences (vary). In the other terminal link, a single response sequence produced food (repeat). Identical variable-interval schedules operated in the initial links. During baseline, lower response rates generally occurred in the vary initial link, and similar response and reinforcement rates occurred in each terminal link. Resistance of responding to prefeeding and three rates of response-independent food delivered during the intercomponent intervals then was compared between components. During each disruption condition, initial- and terminal-link response rates generally were more resistant in the vary component than in the repeat component. During the response-independent food conditions, terminal-link response rates were more resistant than initial-link response rates in each component, but this did not occur during prefeeding. Variation (in vary) and repetition (in repeat) both decreased during the response-independent food conditions in the respective components, but with relatively greater disruption in repeat. These results extend earlier findings demonstrating that operant variation is more resistant to disruption than is operant repetition and suggest that theories of response strength, such as behavioral momentum theory, must consider factors other than reinforcement rate. The implications of the results for understanding operant response classes are discussed.

  18. Digital repetitive control under varying frequency conditions

    OpenAIRE

    Ramos Fuentes, Germán Andrés

    2012-01-01

    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria Industrial The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This the...

  19. Size and shape of the repetitive domain of high molecular weight wheat gluten proteins. 1. Small angle neutron scattering

    NARCIS (Netherlands)

    Egelhaaf, SU; van Swieten, E; Bosma, T; de Boef, E; van Dijk, AA; Robillard, GT; Egelhaaf, Stefan U.

    2003-01-01

    The solution structure of the central repetitive domain of high molecular weight (HMW) wheat gluten proteins has been investigated for a range of concentrations and temperatures using mainly small-angle neutron scattering. A representative part of the repetitive domain (dBl) was studied as well as a

  20. Six Years in the Life of a Mother Bear - The Longest Continuous Heart Rate Recordings from a Free-Ranging Mammal

    Science.gov (United States)

    Laske, Timothy G.; Iaizzo, Paul A.; Garshelis, David L.

    2017-01-01

    Physiological monitoring of free-ranging wild animals is providing new insights into their adaptations to a changing environment. American black bears (Ursus americanus) are highly adaptable mammals, spending up to half the year hibernating, and the remainder of the year attempting to gain weight on a landscape with foods that vary seasonally and year to year. We recorded heart rate (HR) and corresponding activity of an adult female black bear over the course of six years, using an implanted monitor. Despite yearly differences in food, and an every-other year reproductive cycle, this bear exhibited remarkable consistency in HR and activity. HR increased for 12 weeks in spring, from minimal hibernation levels (mean 20–25 beats/minute [bpm]; min 10 bpm) to summer active levels (July daytime: mean 95 bpm). Timing was delayed following one cold winter. In August the bear switched from primarily diurnal to nocturnal, coincident with the availability of baits set by legal hunters. Activity in autumn was higher when the bear was with cubs. Birthing of cubs in January was identified by a transient increase in HR and activity. Long-term physiological and behavioral monitoring is valuable for understanding adaptations of free-ranging animals to climate change, food availability, and human-related stressors.

  1. Study on Double Range Neutron Fluence Rate Detector%双探头中子注量率探测器的研究

    Institute of Scientific and Technical Information of China (English)

    刘春雨; 李文杰

    2012-01-01

    At the initial stage of reactor start-up, the neutron fluence is very low, so there exists certain blind area for a general nuclear measurement system. A double probe neutron fluence rate detector was designed which has a wide range and high sensitivity for the measurement of the blind area. The calculation and experiment results show that the double detector works stably and provides a method of measuring very low neutron fluence rate in the process of reactor physical start-up.%反应堆启动初始阶段,中子注量非常低,是一般核测量系统的测量盲区.针对测量盲区的问题,设计了一种高灵敏度宽量程的中子注量率探测器.通过计算及实验表明,该探测器具有稳定的性能,能提供一种反应堆物理启动过程中盲区中子注量率测量的方法.

  2. The dependence on pressure of the plastic flow of rocksalt in the temperature range 25-250° C: implications for the rate controlling mechanism

    Science.gov (United States)

    Muhammad, Nawaz; Spiers, Chris; De Bresser, Hans; Peach, Colin

    2014-05-01

    Despite the large body of data that already exists, the question what microphysical mechanisms govern plastic flow of natural rocksalt at in situ conditions has not yet been answered to full satisfaction. In particular, the exact mechanism controlling dislocation motion at relatively low temperature is still insufficiently understood. As a result, uncertainties exist regarding the appropriate mechanism-based flow-law for low temperature, hampering reliable extrapolation of lab creep data to in situ strain rates. Such extrapolation is required for the modelling of the long term behaviour of salt for geomechanical purposes (e.g. subsidence prognosis). Several dislocation models have been proposed to control plastic flow of rocksalt, such as dislocation climb, cross-slip and (impurity-controlled) glide, but none of these have been rigorously verified. One way to test which model is appropriate is by investigating the pressure dependence of flow of rocksalt. Dislocation glide is expected to be hardly affected by pressure, cross slip (controlled by constriction of partial dislocations) will become easier with increasing pressure, and dislocation climb will become more difficult. We performed conventional axi-symmetric compression tests on synthetic polycrystalline salt samples with an average grain size of 300 μm. The samples were dry, in order to eliminate the possible influence of pressure solution creep. The experiments were carried out at temperatures in the range 25-250° C, i.e. 0.28-0.48Tm, and at pressure ranging 50-600 MPa, which is a range not previously covered for polycrystalline rocksalt. Argon gas was used as the pressure medium. With confining pressure increasing from 50 to 600 MPa, the rocksalt remained of the same strength at RT, but became about 60% stronger at 125oC and about 80% stronger at 250oC at strain rate 10-6 s-1 (at 15% strain). Using a conventional (Dorn-type) power law to describe the mechanical behaviour, stress exponents (n) were found

  3. Magnetic analyses of soils from the Wind River Range, Wyoming, constrain rates and pathways of magnetic enhancement for soils from semiarid climates

    Science.gov (United States)

    Quinton, Emily E.; Dahms, Dennis E.; Geiss, Christoph E.

    2011-07-01

    In order to constrain the rate of magnetic enhancement in soils, we investigated modern soils from five fluvial terraces in the eastern Wind River Range, Wyoming. Profiles up to 1.2 m deep were sampled in 5-cm intervals from hand-dug pits or natural riverbank exposures. Soils formed in fluvial terraces correlated to the Sacajawea Ridge (730-610 ka BP), Bull Lake (130-100 ka BP) and Pinedale-age (˜20 ka BP) glacial advances. One soil profile formed in Holocene-age sediment. Abundance, mineralogy, and grain size of magnetic minerals were estimated through magnetic measurements. Magnetic enhancement of the A-horizon as well as an increase in fine-grained magnetic minerals occurred mostly in Bull Lake profiles but was absent from the older profile. Such low rates of magnetic enhancement may limit the temporal resolution of paleosol-based paleoclimate reconstructions in semiarid regions even where high sedimentation rates result in multiple paleosols. A loss of ferrimagnetic and an increase in antiferromagnetic minerals occurred with age. Our findings suggest either the conversion of ferrimagnetic minerals to weakly magnetic hematite with progressing soil age, or the presence of ferrimagnetic minerals as an intermediate product of pedogenesis. Absolute and relative hematite abundance increase with age, making both useful proxies for soil age and the dating of regional glacial deposits. All coercivity proxies are consistent with each other, which suggests that observed changes in HIRM and S-ratio are representative of real changes in hematite abundance rather than shifts in coercivity distributions, even though the modified L-ratio varies widely.

  4. Sentence repetition is a measure of children's language skills rather than working memory limitations.

    Science.gov (United States)

    Klem, Marianne; Melby-Lervåg, Monica; Hagtvet, Bente; Lyster, Solveig-Alma Halaas; Gustafsson, Jan-Eric; Hulme, Charles

    2015-01-01

    Sentence repetition tasks are widely used in the diagnosis and assessment of children with language difficulties. This paper seeks to clarify the nature of sentence repetition tasks and their relationship to other language skills. We present the results from a 2-year longitudinal study of 216 children. Children were assessed on measures of sentence repetition, vocabulary knowledge and grammatical skills three times at approximately yearly intervals starting at age 4. Sentence repetition was not a unique longitudinal predictor of the growth of language skills. A unidimensional language latent factor (defined by sentence repetition, vocabulary knowledge and grammatical skills) provided an excellent fit to the data, and language abilities showed a high degree of longitudinal stability. Sentence repetition is best seen as a reflection of an underlying language ability factor rather than as a measure of a separate construct with a specific role in language processing. Sentence repetition appears to be a valuable tool for language assessment because it draws upon a wide range of language processing skills. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  5. Physiological responses to four hours of low-level repetitive work.

    Science.gov (United States)

    Garde, A Helene; Hansen, Ase M; Jensen, Bente R

    2003-12-01

    The study investigated physiological responses to 4 hours of standardized low-level repetitive work. It was hypothesized that accumulative effects not observed after 1 hour could be found after 4 hours of repetitive work. Ten healthy women performed intermittent (5 seconds + 5 seconds) handgrip contractions at 10% of the maximal voluntary contraction combined with mental demands for concentration and attention. Muscle activity in the working forearm muscles, cardiovascular responses, and concentrations of biomarkers in biological fluids were recorded along with exerted force, performance, and ratings of perceived physical exertion (RPE), and perceived mental exertion. The urinary epinephrine, norepinephrine, and cortisol concentrations were higher during the repetitive task than on a reference day, but only the norepinephrine concentrations increased progressively during the 4 hours. In accordance, the RPE recorded for the hand, forearm, and shoulder regions increased progressively. For the remaining physiological measures, no accumulative changes were found. Forearm muscle activity was higher during a mental reference task with lower exerted force than during the repetitive task. The variation in exerted force was higher during the repetitive task than during a force reference task without mental demands. The urinary biomarkers were increased during the repetitive task. However, only norepinephrine increased progressively during the 4 hours. Forearm muscle activity during a mental reference task with low exerted force indicated attention-related muscle activity. Finally, it was indicated that repetitive work including high demands for attention is performed at the expense of the precision of the exerted force.

  6. Development of a mobile device optimized cross platform-compatible oral pathology and radiology spaced repetition system for dental education.

    Science.gov (United States)

    Al-Rawi, Wisam; Easterling, Lauren; Edwards, Paul C

    2015-04-01

    Combining active recall testing with spaced repetition increases memory retention. The aim of this study was to evaluate and compare students' perception and utilization of an electronic spaced repetition oral pathology-radiology system in dental hygiene education and predoctoral dental education. The study employed an open-source suite of applications to create electronic "flashcards" that can be individually adjusted for frequency of repetition, depending on a user's assessment of difficulty. Accessible across multiple platforms (iOS, Android, Linux, OSX, Windows) as well as via any web-based browser, this framework was used to develop an oral radiology-oral pathology database of case-based questions. This system was introduced in two courses: sophomore oral pathology for dental students and sophomore radiology for dental hygiene students. Students were provided free software and/or mobile tablet devices as well as a database of 300 electronic question cards. Study participants were surveyed on frequency and extent of use. Perception-based surveys were used to evaluate their attitudes towards this technology. Of the eligible students, 12 of 22 (54.5%) dental hygiene and 49 of 107 (45.8%) dental students responded to the surveys. Adoption rates and student feedback were compared between the two groups. Among the respondents, acceptance of this technology with respect to educational usefulness was similar for the dental and dental hygiene students (median=5 on a five-point scale; dental hygiene interquartile range (IQR)=0; dental IQR=1). Only a minority of the survey respondents (25% dental, 33% dental hygiene) took advantage of one of the main benefits of this technology: automated spaced repetition.

  7. Repetitive motor behavior: further characterization of development and temporal dynamics.

    Science.gov (United States)

    Muehlmann, Amber M; Bliznyuk, Nikolay; Duerr, Isaac; Lewis, Mark H

    2015-03-01

    Repetitive behaviors are diagnostic for autism spectrum disorders, common in related neurodevelopmental disorders, and normative in typical development. In order to identify factors that mediate repetitive behavior development, it is necessary to characterize the expression of these behaviors from an early age. Extending previous findings, we characterized further the ontogeny of stereotyped motor behavior both in terms of frequency and temporal organization in deer mice. A three group trajectory model provided a good fit to the frequencies of stereotyped behavior across eight developmental time points. Group based trajectory analysis using a measure of temporal organization of stereotyped behavior also resulted in a three group solution. Additionally, as the frequency of stereotyped behavior increased with age, the temporal distribution of stereotyped responses became increasingly regular or organized indicating a strong association between these measures. Classification tree and principal components analysis showed that accurate classification of trajectory group could be done with fewer observations. This ability to identify trajectory group membership earlier in development allows for examination of a wide range of variables, both experiential and biological, to determine their impact on altering the expected trajectory of repetitive behavior across development. Such studies would have important implications for treatment efforts in neurodevelopmental disorders such as autism.

  8. Adding heart rate signal to a control-to-range artificial pancreas system improves the protection against hypoglycemia during exercise in type 1 diabetes.

    Science.gov (United States)

    Breton, Marc D; Brown, Sue A; Karvetski, Colleen Hughes; Kollar, Laura; Topchyan, Katarina A; Anderson, Stacey M; Kovatchev, Boris P

    2014-08-01

    We present a clinical trial establishing the feasibility of a control-to-range (CTR) closed-loop system informed by heart rate (HR) and assess the effect of HR information added to CTR on the risk for hypoglycemia during and after exercise. Twelve subjects with type 1 diabetes (five men, seven women; weight, 68.9 ± 3.1 kg; age, 38 ± 3.3 years; glycated hemoglobin, 6.9 ± 0.2%) participated in a randomized crossover clinical trial comparing CTR versus CTR+HR in two 26-h admissions, each including 30 min of mild exercise. The CTR algorithm was implemented in the DiAs portable artificial pancreas platform based on an Android(®) (Google, Mountainview, CA) smartphone. We assessed blood glucose (BG) decline during exercise, the Low BG Index (LBGI) (a measure of hypoglycemic risk), number of hypoglycemic episodes (BG exercise (P=0.022), indicated marginally lower LBGI (P=0.3) and fewer hypoglycemic events during exercise (none vs. two events; P=0.16), and resulted in overall higher percentage time within the target range (81% vs. 75%; P=0.2). LBGI and average BG remained unchanged overall, during recovery, and overnight. HR-informed closed-loop control can be implemented in a portable artificial pancreas. Although closed loop has been shown to reduce hypoglycemia, adding HR signal may further limit the risk for hypoglycemia during and immediately after exercise. The most prominent effect of adding HR information is reduced BG decline during exercise, without deterioration of overall glycemic control.

  9. Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism.

    Science.gov (United States)

    Moy, Sheryl S; Riddick, Natallia V; Nikolova, Viktoriya D; Teng, Brian L; Agster, Kara L; Nonneman, Randal J; Young, Nancy B; Baker, Lorinda K; Nadler, Jessica J; Bodfish, James W

    2014-02-01

    Restricted repetitive behaviors are core symptoms of autism spectrum disorders (ASDs). The range of symptoms encompassed by the repetitive behavior domain includes lower-order stereotypy and self-injury, and higher-order indices of circumscribed interests and cognitive rigidity. Heterogeneity in clinical ASD profiles suggests that specific manifestations of repetitive behavior reflect differential neuropathology. The present studies utilized a set of phenotyping tasks to determine a repetitive behavior profile for the C58/J mouse strain, a model of ASD core symptoms. In an observational screen, C58/J demonstrated overt motor stereotypy, but not over-grooming, a commonly-used measure for mouse repetitive behavior. Amphetamine did not exacerbate motor stereotypy, but had enhanced stimulant effects on locomotion and rearing in C58/J, compared to C57BL/6J. Both C58/J and Grin1 knockdown mice, another model of ASD-like behavior, had marked deficits in marble-burying. In a nose poke task for higher-order repetitive behavior, C58/J had reduced holeboard exploration and preference for non-social, versus social, olfactory stimuli, but did not demonstrate cognitive rigidity following familiarization to an appetitive stimulus. Analysis of available high-density genotype data indicated specific regions of divergence between C58/J and two highly-sociable strains with common genetic lineage. Strain genome comparisons identified autism candidate genes, including Cntnap2 and Slc6a4, located within regions divergent in C58/J. However, Grin1, Nlgn1, Sapap3, and Slitrk5, genes linked to repetitive over-grooming, were not in regions of divergence. These studies suggest that specific repetitive phenotypes can be used to distinguish ASD mouse models, with implications for divergent underlying mechanisms for different repetitive behavior profiles.

  10. The Prevalence and Phenomenology of Repetitive Behavior in Genetic Syndromes

    Science.gov (United States)

    Moss, Joanna; Oliver, Chris; Arron, Kate; Burbidge, Cheryl; Berg, Katy

    2009-01-01

    We investigated the prevalence and phenomenology of repetitive behavior in genetic syndromes to detail profiles of behavior. The Repetitive Behaviour Questionnaire (RBQ) provides fine-grained identification of repetitive behaviors. The RBQ was employed to examine repetitive behavior in Angelman (N = 104), Cornelia de Lange (N = 101), Cri-du-Chat…

  11. Repetition-based Interactive Facade Modeling

    KAUST Repository

    AlHalawani, Sawsan

    2012-07-01

    Modeling and reconstruction of urban environments has gained researchers attention throughout the past few years. It spreads in a variety of directions across multiple disciplines such as image processing, computer graphics and computer vision as well as in architecture, geoscience and remote sensing. Having a virtual world of our real cities is very attractive in various directions such as entertainment, engineering, governments among many others. In this thesis, we address the problem of processing a single fa cade image to acquire useful information that can be utilized to manipulate the fa cade and generate variations of fa cade images which can be later used for buildings\\' texturing. Typical fa cade structures exhibit a rectilinear distribution where in windows and other elements are organized in a grid of horizontal and vertical repetitions of similar patterns. In the firt part of this thesis, we propose an efficient algorithm that exploits information obtained from a single image to identify the distribution grid of the dominant elements i.e. windows. This detection method is initially assisted with the user marking the dominant window followed by an automatic process for identifying its repeated instances which are used to define the structure grid. Given the distribution grid, we allow the user to interactively manipulate the fa cade by adding, deleting, resizing or repositioning the windows in order to generate new fa cade structures. Having the utility for the interactive fa cade is very valuable to create fa cade variations and generate new textures for building models. Ultimately, there is a wide range of interesting possibilities of interactions to be explored.

  12. Likelihood methods and classical burster repetition

    CERN Document Server

    Graziani, C; Graziani, Carlo; Lamb, Donald Q

    1995-01-01

    We develop a likelihood methodology which can be used to search for evidence of burst repetition in the BATSE catalog, and to study the properties of the repetition signal. We use a simplified model of burst repetition in which a number N_{\\rm r} of sources which repeat a fixed number of times N_{\\rm rep} are superposed upon a number N_{\\rm nr} of non-repeating sources. The instrument exposure is explicitly taken into account. By computing the likelihood for the data, we construct a probability distribution in parameter space that may be used to infer the probability that a repetition signal is present, and to estimate the values of the repetition parameters. The likelihood function contains contributions from all the bursts, irrespective of the size of their positional errors --- the more uncertain a burst's position is, the less constraining is its contribution. Thus this approach makes maximal use of the data, and avoids the ambiguities of sample selection associated with data cuts on error circle size. We...

  13. A low background-rate detector for ions in the 5 to 50 keV energy range to be used for radioisotope dating with a small cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, P.G.

    1986-11-25

    Accelerator mass spectrometry in tandem Van de Graaff accelerators has proven successful for radioisotope dating small samples. We are developing a 20 cm diameter 30 to 40 keV cyclotron dedicated to high-sensitivity radioisotope dating, initially for /sup 14/C. At this energy, range and dE/dx methods of particle identification are impossible. Thus arises the difficult problem of reliably detecting 30 to 40 keV /sup 14/C at 10/sup -2/ counts/sec in the high background environment of the cyclotron, where lower energy ions, electrons, and photons bombard the detector at much higher rates. We have developed and tested an inexpensive, generally useful ion detector that allows dark-count rates below 10/sup -4/ counts/sec and excellent background suppression. With the cyclotron tuned near the /sup 13/CH background peak, to the frequency for /sup 14/C, the detector suppresses the background to 6 x 10/sup -4/ counts/sec. For each /sup 14/C ion the detectors grazing-incidence Al/sub 2/O/sub 3/ conversion dynode emits about 20 secondary electrons, which are independently multiplied in separate pores of a microchannel plate. The output signal is proportional to the number of secondary electrons, allowing pulse-height discrimination of background. We have successfully tested the detector with positive /sup 12/C, /sup 23/Na, /sup 39/K, /sup 41/K, /sup 85/Rb, /sup 87/Rb, and /sup 133/Cs at 5 to 40 keV, and with 36 keV negative /sup 12/C and /sup 13/CH. It should detect ions and neutrals of all species, at energies above 5 keV, with good efficiency and excellent background discrimination. Counting efficiency and background discrimination improve with higher ion energy. The detector can be operated at least up to 2 x 10/sup -7/ Torr and be repeatedly exposed to air. The maximum rate is 10/sup 6.4/ ions/sec in pulse counting mode and 10/sup 9.7/ ions/sec in current integrating mode.

  14. Concept mediation in trilingual translation: evidence from response time and repetition priming patterns.

    Science.gov (United States)

    Francis, Wendy S; Gallard, Sabrina L K

    2005-12-01

    Translation responses to individual words were elicited from 48 English-Spanish-French trilinguals, who translated in six directions at study and two directions at test. Patterns of translation response times and error rates at study reflected the relative proficiency of the trilinguals in comprehension and production of their three languages. At test, repeated items were translated more quickly than new items, with the strongest priming effects occurring for identical repetitions. Repetition priming was also substantial when only the stimulus language or only the response language matched from study to test, implying that repeated comprehension and production processes contribute to priming in translation. Patterns of response times and repetition priming indicate that translation in all directions involved conceptual access. Additive patterns in response time asymmetries and repetition priming were consistent with the treatment of word comprehension and production processes of translation as independent.

  15. DC high voltage to drive helium plasma jet comprised of repetitive streamer breakdowns

    CERN Document Server

    Wang, Xingxing

    2016-01-01

    This paper demonstrates and studies helium atmospheric pressure plasma jet comprised of series of repetitive streamer breakdowns, which is driven by a pure DC high voltage (auto-oscillations). Repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV/cm. Repetition frequency of the streamer breakdowns excited using this principle can be simply tuned by reconfiguring the discharge electrode geometry. This custom-designed type of the helium plasma jet, which operates on the DC high voltage and is comprised of the series of the repetitive streamer breakdowns at frequency about 13 kHz, is demonstrated.

  16. Compressed Data Structures for Range Searching

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Vind, Søren Juhl

    2015-01-01

    matrices and web graphs. Our contribution is twofold. First, we show how to compress geometric repetitions that may appear in standard range searching data structures (such as K-D trees, Quad trees, Range trees, R-trees, Priority R-trees, and K-D-B trees), and how to implement subsequent range queries...

  17. Reliability Assessment of Impact Tensile Testing Apparatus using a Drop-bar Striker for Intermediate Strain-rate Range and Evaluation of Dynamic Deformation Behaviors for a Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Kim, Dae Woong; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of); Park, Lee Ju; Kim, Hyung Won [Agency for Defense Development, Daejeon (Korea, Republic of)

    2016-06-15

    Studies on the deformation behavior of materials subjected to impact loads have been carried out in various fields of engineering and industry. The deformation and fracture of members for these machines/structures are known to correspond to the intermediate strain-rate region. Therefore, for the structural design, it is necessary to consider the dynamic deformation behavior in these intermediate strain-rate ranges. However, there have been few reports with useful data about the deformation and fracture behavior at intermediate strain-rate ranges. Because the intermediate strain-rate region is located between quasi-static and high strain-rate regions, it is difficult to obtain the intermediate strain-rate using conventional reasonable test equipment. To solve this problem, in this study, the measurement reliability of the constructed drop-bar impact tensile test apparatus was established and the dynamic behavior at the intermediate strain-rate range of carbon steels was evaluated by utilizing the apparatus.

  18. Assessing Potential Sites for Undersea Warfare Training Ranges: The Effects of Active Sonars on Marine Mammals

    Science.gov (United States)

    2008-10-28

    Bathymetry • System Duty Cycles • Platform Track Patten Active Source Charact* • Source Level • Frequency • Pulse Length • Repetition Rate...whales’ estimated hearing range, (2) maximize the signal-to-noise ratio (obtain the largest difference between background noise), and (3) provide...consisted of tonal exposures with limited frequencies contained in the MFA sonar bandwidth. The Navy and NMFS, however, agree that the three datasets

  19. Why Monotonous Repetition is Unsatisfying

    CERN Document Server

    Salingaros, Nikos A

    2011-01-01

    Human beings prefer ordered complexity and not randomness in their environment, a result of our perceptual system evolving to interpret natural forms. We also recognize monotonously repeating forms as unnatural. Although widespread in today's built environment, such forms generate reactions ranging from boredom to unease. Christopher Alexander has introduced rules for generating forms adapted to natural geometries, which show structured variation with multiple symmetries in a hierarchy of scales. It turns out to be impossible to generate monotonously repeating forms by following those rules. As it is highly probable that traditional artifacts, buildings, and cities were created instinctively using a version of the same rules, this is the reason we never find monotonously repeating forms in traditional cultures.

  20. Intra-population variation in activity ranges, diel patterns, movement rates, and habitat use of American alligators in a subtropical estuary

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mazzotti, Frank M; Cherkiss, Michael S.; Jeffery, Brian M.

    2013-01-01

    Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intrapopulation variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.