WorldWideScience

Sample records for reperfusion liver injury

  1. Autophagy and Liver Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Raffaele Cursio

    2015-01-01

    Full Text Available Liver ischemia-reperfusion (I-R injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS, leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.

  2. Ischemia-reperfusion injury in rat fatty liver: role of nutritional status.

    Science.gov (United States)

    Caraceni, P; Nardo, B; Domenicali, M; Turi, P; Vici, M; Simoncini, M; De Maria, N; Trevisani, F; Van Thiel, D H; Derenzini, M; Cavallari, A; Bernardi, M

    1999-04-01

    Fatty livers are more sensitive to the deleterious effects of ischemia-reperfusion than normal livers. Nutritional status greatly modulates this injury in normal livers, but its role in the specific setting of fatty liver is unknown. This study aimed to determine the effect of nutritional status on warm ischemia-reperfusion injury in rat fatty livers. Fed and fasted rats with normal or fatty liver induced by a choline deficient diet underwent 1 hour of lobar ischemia and reperfusion. Rat survival was determined for 7 days. Serum transaminases, liver histology and cell ultrastructure were assessed before and after ischemia, and at 30 minutes, 2 hours, 8 hours, and 24 hours after reperfusion. Survival was also determined in fatty fasted rats supplemented with glucose before surgery. The preischemic hepatic glycogen was measured in all groups. Whereas survival was similar in fasted and fed rats with normal liver (90% vs. 100%), fasting dramatically reduced survival in rats with fatty liver (14% vs. 64%, P nutritional repletion procedure may be part of a treatment strategy aimed to prevent ischemia-reperfusion injury in fatty livers.

  3. Melatonin Protective Effects against Liver Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Abbas Khonakdar-Tarsi

    2016-02-01

    Full Text Available Hepatic ischemia-reperfusion (I/R is a common phenomenon during liver surgery, transplantation, infection and trauma which results in damage and necrosis of the hepatic tissue through different pathways. Mechanisms involved in I/R damage are very intricate and cover several aspects. Several factors are involved in I/R-induced damages; briefly, decrease in sinusoidal perfusion and ATP generation because of low or no O2 supply, increase in production of reactive oxygen species (ROS and inflammatory factors and destruction of parenchymal cells resulted by these molecules are of the main causes of liver tissue injury during reperfusion. Melatonin’s antioxidant effect, and regulatory roles in the expression of different genes in the I/R insulted liver have been investigated by several studies. Melatonin and its metabolites are of the powerful direct scavengers of free radicals and ROS, so it can directly protect liver cell impairment from oxidative stress following I/R. In addition, this bioactive molecule up-regulates anti-oxidant enzyme genes like superoxide dismutase (SOD, glutathione peroxidase (GSH-Px and catalase (CAT. Tumor necrosis factors (TNF-α and interleukin-1 (IL-1, as potent pro-inflammatory factors, are generated in huge amounts during reperfusion. Melatonin is able to alleviate TNF-α generation and has hepatoprotective effect during I/R. It reduces the production of pro-inflammatory cytokines and chemokines via reducing the binding of NF-κB to DNA. Imbalance between vasodilators (nitric oxide, NO and vasoconstrictors (endothelin, ET during I/R was shown to be the primary cause of liver microcirculation disturbance. Melatonin helps maintaining the stability of liver circulation and reduces hepatic injury during I/R through preventing alteration of the normal balance between ET and NO. The aim of this review was to explore the mechanisms of liver I/R injuries and the protective effects of melatonin against them.

  4. Effects of defibrotide, a novel oligodeoxyribonucleotide, on ischaemia and reperfusion injury of the rat liver.

    Science.gov (United States)

    Kim, Kwang Joon; Shin, Yong Kyoo; Song, Jin Ho; Oh, Byung Kwon; Choi, Myung Sup; Sohn, Uy Dong

    2002-02-01

    1. The purpose of this study was to investigate the protective effects of defibrotide, a single-stranded polydeoxyribonucleotide, on ischaemia-reperfusion injury to the liver using a rat model. 2. Ischaemia of the left and median lobes was created by total inflow occlusion for 30 min followed by 60 min of reperfusion. Hepatic injury was assessed by the release of liver enzymes (alanine transferase, ALT and lactic dehydrogenase, LDH). Hepatic oxidant stress was measured by superoxide production, lipid peroxidation and nitrite/nitrate formation. Leukocyte-endothelium interaction and Kupffer cell mobilization were quantified by measuring hepatic myeloperoxidase (MPO), polymorphonuclear leukocyte adherence to superior mesenteric artery (SMA) and immunostaining of Kupffer cell. 3. Defibrotide treatment resulted in a significant inhibition of postreperfusion superoxide generation, lipid peroxidation, serum ALT activity, serum LDH activity, MPO activity, serum nitrite/nitrate level, leukocyte adherence to SMA, and Kupffer cell mobilization, indicating a significant attenuation of hepatic dysfunction. 4. A significant correlation existed between liver ischaemia/reperfusion and hepatic injury, suggesting that liver ischaemia/reperfusion injury is mediated predominantly by generation of oxygen free radicals and mobilization of Kupffer cells. 5. We conclude that defibrotide significantly protects the liver against liver ischaemia/reperfusion injury by interfering with Kupffer cell mobilization and formation of oxygen free radicals. This study provides strong evidence that defibrotide has important beneficial effects on acute inflammatory tissue injury such as that occurring in the reperfusion of the ischaemic liver.

  5. Hypothermic oxygenated machine perfusion reduces bile duct reperfusion injury after transplantation of donation after circulatory death livers

    Science.gov (United States)

    van Rijn, Rianne; van Leeuwen, Otto B.; Matton, Alix P. M.; Burlage, Laura C.; Wiersema‐Buist, Janneke; van den Heuvel, Marius C.; de Kleine, Ruben H. J.; de Boer, Marieke T.; Gouw, Annette S. H.

    2018-01-01

    Dual hypothermic oxygenated machine perfusion (DHOPE) of the liver has been advocated as a method to reduce ischemia/reperfusion injury (IRI). This study aimed to determine whether DHOPE reduces IRI of the bile ducts in donation after circulatory death (DCD) liver transplantation. In a recently performed phase 1 trial, 10 DCD livers were preserved with DHOPE after static cold storage (SCS; http://www.trialregister.nl NTR4493). Bile duct biopsies were obtained at the end of SCS (before DHOPE; baseline) and after graft reperfusion in the recipient. Histological severity of biliary injury was graded according to an established semiquantitative grading system. Twenty liver transplantations using DCD livers not preserved with DHOPE served as controls. Baseline characteristics and the degree of bile duct injury at baseline (end of SCS) were similar between both groups. In controls, the degree of stroma necrosis (P = 0.002) and injury of the deep peribiliary glands (PBG; P = 0.02) increased after reperfusion compared with baseline. In contrast, in DHOPE‐preserved livers, the degree of bile duct injury did not increase after reperfusion. Moreover, there was less injury of deep PBG (P = 0.04) after reperfusion in the DHOPE group compared with controls. In conclusion, this study suggests that DHOPE reduces IRI of bile ducts after DCD liver transplantation. Liver Transplantation 24 655–664 2018 AASLD. PMID:29369470

  6. The effects of epidural bupivacaine on ischemia/reperfusion-induced liver injury.

    Science.gov (United States)

    Sarikus, Z; Bedirli, N; Yilmaz, G; Bagriacik, U; Bozkirli, F

    2016-01-01

    Several animal studies showed beneficial effects of thoracic epidural anesthesia (TEA) in hippocampal, mesenteric and myocardial IR injury (2-4). In this study, we investigated the effects of epidural bupivacaine on hepatic ischemia reperfusion injury in a rat model. Eighteen rats were randomly divided into three groups each containing 6 animals. The rats in Group C had sham laparotomy. The rats in the Group S were subjected to liver IR through laparotomy and 20 mcg/kg/h 0.9% NaCl was administered to these rats via an epidural catheter. The rats in the Group B were subjected to liver IR and were given 20 mcg/kg/h bupivacaine via an epidural catheter. Liver tissue was harvested for MDA analysis, apoptosis and histopathological examination after 60 minutes of ischemia followed by 360 minutes of reperfusion. Blood samples were also collected for TNF-α, IL-1β, AST and ALT analysis. The AST and ALT levels were higher in ischemia and reperfusion group, which received only normal saline via the thoracic epidural catheter, compared to the sham group. In the ischemia reperfusion group, which received bupivacaine via the epidural catheter, IL-1 levels were significantly higher than in the other groups. TNF-α levels were higher in the Groups S and B compared to the sham group. Bupivacaine administration induced apoptosis in all animals. These results showed that thoracic epidural bupivacaine was not a suitable agent for preventing inflammatory response and lipid peroxidation in experimental hepatic IR injury in rats. Moreover, epidural bupivacaine triggered apoptosis in hepatocytes. Further research is needed as there are no studies in literature investigate the effects of epidural bupivacaine on hepatic ischemia reperfusion injury (Tab. 3, Fig. 3, Ref. 34).

  7. Quantitative evaluation of 99mTc-GSA for fatty liver and ischemia-reperfusion injury in rats

    International Nuclear Information System (INIS)

    Kimoto, Mitsunori

    1996-01-01

    99m Tc-GSA (GSA) liver scintigraphy was performed in rats with fatty liver and ischemia-reperfusion injury to study the usefulness of GSA in evaluating these pathological processes. Fatty liver was produced by feeding rats a choline-deficient diet. The rats with fatty liver were divided into five groups according to the length of the diet (controls, two weeks, six weeks, 10 weeks, and 12 weeks). In the rats dieted for two weeks and six weeks, regional hepatic ischemia was also induced by clamping the left hepatic artery and the left portal vein for 10 minutes, then reperfusion was performed for 15 minutes. GSA was administered via the IVC. t 90 , or the time at which the liver time activity curve reached ninety percent of its peak value, was used as an index of GSA hepatic uptake, Ku and Kd, determined by two compartment analysis, were also used as indices. In rats of the fatty liver group, we confirmed microscopically that various degrees of fatty infiltration existed according to the diet period, and t 90 became significantly longer according to the severity of fatty infiltration. Ku and Kd also decreased according to the severity of fatty infiltration. In the rats with fatty infiltration and ischemia-reperfusion injury, t 90 also increased according to the severity of fatty infiltration, becoming longer than in the rats without ischemia-reperfusion injury. Quantitative analysis of GSA liver scintigraphy was useful for evaluating fatty liver and ischemia-reperfusion injury. (author)

  8. Ultra Low Dose Delta 9-Tetrahydrocannabinol Protects Mouse Liver from Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Edith Hochhauser

    2015-07-01

    Full Text Available Background/Aims: Ischemia/reperfusion (I/R injury is the main cause of both primary graft dysfunction and primary non-function of liver allografts. Cannabinoids has been reported to attenuate myocardial, cerebral and hepatic I/R oxidative injury. Delta-9-tetrahydrocannabinol (THC, a cannabinoid agonist, is the active components of marijuana. In this study we examined the role of ultralow dose THC (0.002mg/kg in the protection of livers from I/R injury. This extremely low dose of THC was previously found by us to protect the mice brain and heart from a variety of insults. Methods: C57Bl Mice were studied in in vivo model of hepatic segmental (70% ischemia for 60min followed by reperfusion for 6 hours. Results: THC administration 2h prior to the induction of hepatic I/R was associated with significant attenuated elevations of: serum liver transaminases ALT and AST, the hepatic oxidative stress (activation of the intracellular signaling CREB pathway, the acute proinflammatory response (TNF-α, IL-1α, IL-10 and c-FOS hepatic mRNA levels, and ERK signaling pathway activation. This was followed by cell death (the cleavage of the pro-apoptotic caspase 3, DNA fragmentation and TUNEL after 6 hours of reperfusion. Significantly less hepatic injury was detected in the THC treated I/R mice and fewer apoptotic hepatocytes cells were identified by morphological criteria compared with untreated mice. Conclusion: A single ultralow dose THC can reduce the apoptotic, oxidative and inflammatory injury induced by hepatic I/R injury. THC may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation, liver resection and trauma.

  9. Edaravone prevents lung injury induced by hepatic ischemia-reperfusion.

    Science.gov (United States)

    Uchiyama, Munehito; Tojo, Kentaro; Yazawa, Takuya; Ota, Shuhei; Goto, Takahisa; Kurahashi, Kiyoyasu

    2015-04-01

    Lung injury is a major clinical concern after hepatic ischemia-reperfusion (I/R), due to the production of reactive oxygen species in the reperfused liver. We investigated the efficacy of edaravone, a potent free-radical scavenger, for attenuating lung injury after hepatic I/R. Adult male Sprague-Dawley rats were assigned to sham + normal saline (NS), I/R + NS, or I/R + edaravone group. Rats in the I/R groups were subjected to 90 min of partial hepatic I/R. Five minutes before reperfusion, 3 mg/kg edaravone was administered to the I/R + edaravone group. After 6 h of reperfusion, we evaluated lung histopathology and wet-to-dry ratio. We also measured malondialdehyde (MDA), an indicator of oxidative stress, in the liver and the lung, as well as cytokine messenger RNA expressions in the reperfused liver and plasma cytokine concentrations. Histopathology revealed lung damages after 6 h reperfusion of partial ischemic liver. Moreover, a significant increase in lung wet-to-dry ratio was observed. MDA concentration increased in the reperfused liver, but not in the lungs. Edaravone administration attenuated the lung injury and the increase of MDA in the reperfused liver. Edaravone also suppressed the reperfusion-induced increase of interleukin-6 messenger RNA expressions in the liver and plasma interleukin-6 concentrations. Edaravone administration before reperfusion of the ischemic liver attenuates oxidative stress in the reperfused liver and the subsequent lung injury. Edaravone may be beneficial for preventing lung injury induced by hepatic I/R. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Protective Effect of Urtica dioica on Liver Injury Induced By Hepatic Ischemia Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Alpaslan TERZİ

    2010-05-01

    Full Text Available Background: This study was designed to investigate the effects of Urtica dioica on liverischemia reperfusion injury in rats. Methods: Thirty male Wistar-albino rats were used in this experimental study. Animals weredivided into three groups as sham operated (group 1, control (group 2, and Urtica dioicatreatment group (group 3. Urtica dioica 2ml/kg were administered intraperitoneally beforeischemia and immediately after the reperfusion. The levels of total antioxidant capacity, totalfree sulfidril group, Total oxidant status, Oxidative stress index, and myeloperoxidase in livertissues were measured. The serum levels of ALT, AST and LDH were also measuredResults: Total antioxidant capacity and total free sulfidril group in liver tissue were significantlyhigher in group 3 than in group 2. Oxidative stress index and myeloperoxidase in liver tissuewere significantly lower in group 3 than the group 2. The levels of liver enzymes in treatmentgroup were significantly lower than those in the control group. Histological tissue damage wasmilder in the treatment group than that in the control group.Conclusion: It is concluded that Urtica dioica increase the antioxidant capacity and decreaseoxidative stress and liver enzymes in the hepatic ischemi reperfusion injury of rats.

  11. Novel Targets for Treating Ischemia-Reperfusion Injury in the Liver

    Directory of Open Access Journals (Sweden)

    Weili Yang

    2018-04-01

    Full Text Available Liver ischemia-reperfusion injury (IRI is a major complication of hemorrhagic shock, liver transplantation, and other liver surgeries. It is one of the leading causes for post-surgery hepatic dysfunction, always leading to morbidity and mortality. Several strategies, such as low-temperature reperfusion and ischemic preconditioning, are useful for ameliorating liver IRI in animal models. However, these methods are difficult to perform in clinical surgeries. It has been reported that the activation of peroxisome proliferator activated receptor gamma (PPARγ protects the liver against IRI, but with unidentified direct target gene(s and unclear mechanism(s. Recently, FAM3A, a direct target gene of PPARγ, had been shown to mediate PPARγ’s protective effects in liver IRI. Moreover, noncoding RNAs, including LncRNAs and miRNAs, had also been reported to play important roles in the process of hepatic IRI. This review briefly discussed the roles and mechanisms of several classes of important molecules, including PPARγ, FAM3A, miRNAs, and LncRNAs, in liver IRI. In particular, oral administration of PPARγ agonists before liver surgery or liver transplantation to activate hepatic FAM3A pathways holds great promise for attenuating human liver IRI.

  12. Levosimendan: a cardiovascular drug to prevent liver ischemia-reperfusion injury?

    Directory of Open Access Journals (Sweden)

    Peter Onody

    Full Text Available INTRODUCTION: Temporary occlusion of the hepatoduodenal ligament leads to an ischemic-reperfusion (IR injury in the liver. Levosimendan is a new positive inotropic drug, which induces preconditioning-like adaptive mechanisms due to opening of mitochondrial KATP channels. The aim of this study was to examine possible protective effects of levosimendan in a rat model of hepatic IR injury. MATERIAL AND METHODS: Levosimendan was administered to male Wistar rats 1 hour (early pretreatment or 24 hours (late pretreatment before induction of 60-minute segmental liver ischemia. Microcirculation of the liver was monitored by laser Doppler flowmeter. After 24 hours of reperfusion, liver and blood samples were taken for histology, immuno- and enzyme-histochemistry (TUNEL; PARP; NADH-TR as well as for laboratory tests. Furthermore, liver antioxidant status was assessed and HSP72 expression was measured. RESULTS: In both groups pretreated with levosimendan, significantly better hepatic microcirculation was observed compared to respective IR control groups. Similarly, histological damage was also reduced after levosimendan administration. This observation was supported by significantly lower activities of serum ALT (p early = 0.02; p late = 0.005, AST (p early = 0.02; p late = 0.004 and less DNA damage by TUNEL test (p early = 0.05; p late = 0.034 and PAR positivity (p early = 0.02; p late = 0.04. Levosimendan pretreatment resulted in significant improvement of liver redox homeostasis. Further, significantly better mitochondrial function was detected in animals receiving late pretreatment. Finally, HSP72 expression was increased by IR injury, but it was not affected by levosimendan pretreatment. CONCLUSION: Levosimendan pretreatment can be hepatoprotective and it could be useful before extensive liver resection.

  13. Protection of Liver as a Remote Organ after Renal Ischemia-Reperfusion Injury by Renal Ischemic Postconditioning

    Directory of Open Access Journals (Sweden)

    Behjat Seifi

    2014-01-01

    Full Text Available This study was designed to investigate the protective effects of local renal ischemic postconditioning (POC on liver damage after renal ischemia-reperfusion (IR injury. Male rats were divided into three groups  (n=8. They underwent a right nephrectomy before induction of 45 minutes of left kidney ischemia or sham operation. POC was performed by four cycles of 10 seconds of ischemia and 10 seconds of reperfusion just at the beginning of 24 hours of reperfusion. Then blood and liver samples were collected to measure serum aspartate aminotransferase (AST, alanine aminotransferase (ALT, and liver oxidative stress parameters including superoxide dismutase (SOD activity and malondialdehyde (MDA level. Renal IR caused a significant increase in liver functional indices as demonstrated by increased serum AST and ALT compared to sham group. These parameters reduced significantly in POC group compared to IR group. Liver MDA levels increased and SOD activity decreased in IR group compared to sham group. Induction of POC reduced the elevated liver MDA levels and increased the reduced liver SOD activity. These results revealed that renal IR injury causes liver damage as a remote organ and POC protects liver from renal IR injury by a modification in the hepatic oxidative stress status.

  14. Effect of selective hepatic inflow occlusion during liver cancer resection on liver ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Yin-Tian Deng

    2016-11-01

    Full Text Available Objective: To study the effect of selective hepatic inflow occlusion during liver cancer resection on liver ischemia-reperfusion injury. Methods: A total of 68 patients with primary liver cancer who underwent left liver resection in our hospital between May 2012 and August 2015 were selected for study and divided into group A (selective hepatic inflow occlusion of left liver and group B (Prignle hepatic inflow occlusion according to different intraoperative blood occlusion methods, serum was collected before and after operation to determine liver enzyme content, the removed liver tissue was collected to determine energy metabolism indexes, inflammation indexes and oxidative stress indexes. Results: 1 d, 3 d and 5 d after operation, GPT, GOT, GGT, LDH and ALP content in serum of both groups were significantly higher than those before operation, and GPT, GOT, GGT, LDH and ALP content in serum of group A 1 d, 3 d and 5 d after operation were significantly lower than those of group B; ATP, ADP, AMP, PI3K, AKT, GSK3β, T-AOC, PrxI and Trx content in liver tissue of group A were significantly higher than those of group B while PTEN, IL-12p40, MDA and MPO content were significantly lower than those of group B. Conclusions: Selective hepatic inflow occlusion during liver cancer resection can reduce the liver ischemia-reperfusion injury, improve the energy metabolism of liver cells and inhibit inflammation and oxidative stress in liver tissue.

  15. Influence of acidosis and hypoxia on liver ischemia and reperfusion injury in an in vivo rat model

    NARCIS (Netherlands)

    Heijnen, Bob H. M.; Elkhaloufi, Yasser; Straatsburg, Irene H.; van Gulik, Thomas M.

    2002-01-01

    The contribution of acidosis to the development of reperfusion injury is controversial. In this study, we examined the effects of respiratory acidosis and hypoxia in a frequently used in vivo liver ischemia and reperfusion (I/R) injury rat model. Rats were anesthetized with intraperitoneal

  16. Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats

    Directory of Open Access Journals (Sweden)

    Sayed M. Mizar

    2015-03-01

    Full Text Available Oxidative stress plays a key role in the pathogenesis of hepatic ischemia/reperfusion (I/R-induced injury, one of the leading causes of liver damage post-surgical intervention, trauma and transplantation. This study aimed to evaluate the protective effect of nebivolol and chrysin against I/R-induced liver injury via their vasodilator and antioxidant effects, respectively. Adult male Wister rats received nebivolol (5 mg/kg and/or chrysin (25 mg/kg by oral gavage daily for one week then subjected to ischemia via clamping the portal triad for 30 min then reperfusion for 30 min. Liver function enzymes, alanine transaminase (ALT and aspartate transaminase (AST, as well as hepatic Myeloperoxidase (MPO, total nitrate (NOx, glutathione (GSH and liver malondialdehyde (MDA were measured at the end of the experiment. Liver tissue damage was examined by histopathology. In addition, the expression levels of nitric oxide synthase (NOS subtypes, endothelial (eNOS and inducible (iNOS in liver samples were assessed by Western blotting and confirmed by immunohistochemical analysis. Both chrysin and nebivolol significantly counteracted I/R-induced oxidative stress and tissue damage biomarkers. The combination of these agents caused additive liver protective effect against I/R-induced damage via the up regulation of nitric oxide expression and the suppression of oxidative stress. Chrysin and nebivolol combination showed a promising protective effect against I/R-induced liver injury, at least in part, via decreasing oxidative stress and increasing nitric oxide levels.

  17. IMPACT OF SEVOFLURANE AND ACETYLCYSTEINE ON ISCHEMIA-REPERFUSION INJURY OF THE LIVER FROM BRAIN-DEAD DONOR

    Directory of Open Access Journals (Sweden)

    A. E. Shcherba

    2013-01-01

    Full Text Available Aim. The purpose of our work was to estimate the impact of preconditioning with acetylcysteine and sevoflurane on ischemia-reperfusion injury of cadaveric donor liver with marginal features. Methods and results. In this prospective randomized controlled trial we recruited 21 heart beating donors with brain death. We assigned 11 donors to the study group, and 10 donors to the control group. Morphological characteristics of ischemia- reperfusion injury in both groups were analyzed. Conclusion. Use of pharmacological preconditioning with acetylcysteine and sevoflurane resulted in necrosis and hepatocyte apoptosis reduction as compared to the control group, thereby had a protective effect against ischemia-reperfusion injury

  18. Riboflavin (vitamin B-2) reduces hepatocellular injury following liver ischaemia and reperfusion in mice.

    Science.gov (United States)

    Sanches, Sheila Cristina; Ramalho, Leandra Naira Z; Mendes-Braz, Mariana; Terra, Vânia Aparecida; Cecchini, Rubens; Augusto, Marlei Josiele; Ramalho, Fernando Silva

    2014-05-01

    Riboflavin has been shown to exhibit anti-inflammatory and antioxidant properties in the settings of experimental sepsis and ischaemia/reperfusion (I/R) injury. We investigated the effect of riboflavin on normothermic liver I/R injury. Mice were submitted to 60 min of ischaemia plus saline or riboflavin treatment (30 μmoles/kg BW) followed by 6 h of reperfusion. Hepatocellular injury was evaluated by aminotransferase levels, reduced glutathione (GSH) content and the histological damage score. Hepatic neutrophil accumulation was assessed using the naphthol method and by measuring myeloperoxidase activity. Hepatic oxidative/nitrosative stress was estimated by immunohistochemistry. Liver endothelial and inducible nitric oxide synthase (eNOS/iNOS) and nitric oxide (NO) amounts were assessed by immunoblotting and a chemiluminescence assay. Riboflavin significantly reduced serum and histological parameters of hepatocellular damage, neutrophil infiltration and oxidative/nitrosative stress. Furthermore, riboflavin infusion partially recovered hepatic GSH reserves and decreased the liver contents of eNOS/iNOS and NO. These data indicate that riboflavin exerts antioxidant and anti-inflammatory effects in the ischaemic liver, protecting hepatocytes against I/R injury. The mechanism of these effects appears to be related to the intrinsic antioxidant potential of riboflavin/dihydroriboflavin and to reduced hepatic expression of eNOS/iNOS and reduced NO levels, culminating in attenuation of oxidative/nitrosative stress and the acute inflammatory response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Renoprotective effect of crocin following liver ischemia/ reperfusion injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    Seyyed Ali Mard

    2017-10-01

    Full Text Available Objective(s: The objectives of the current study were to evaluate the effects of hepatic ‎ischemia/reperfusion (IR injury on the activity of antioxidant enzymes, biochemical factors, and ‎histopathological changes in rat kidney, and to investigate the effect of crocin on IR-‎related changes. Materials and Methods: Thirty-two male Wistar rats were randomly allocated into four groups (n=8. They were ‎sham-operated, IR, crocin pre-treatment, and crocin pretreatment+IR groups. Sham-operated ‎and Crocin pre-treatment groups received normal saline (N/S, 2 ml/day and crocin (200 mg/kg ‎for seven consecutive days intraperitoneally (IP, respectively, then rats underwent laparotomy, only. ‎IR and crocin pretreatment+IR groups received N/S and crocin with the same dose, time, and route, ‎respectively, then rats underwent partial (70% ischemia for 45 min that was followed by reperfusion ‎for 60 min. At the end of the experiment, kidney specimens were taken for histopathological and ‎antioxidant evaluations and also blood samples were obtained for biochemical analysis. Results: The results of the present study showed that crocin pre-treatment significantly increased ‎the activity of antioxidants, decreased the serum levels of liver enzymes and blood urea nitrogen ‎following IR-induced hepatic injury. Crocin also ameliorated kidney´s histopathological ‎disturbance beyond IR-induced hepatic injury. Conclusion: Crocin as an antioxidant agent protected renal insult following liver IR injury by ‎increasing the activity of antioxidant enzymes, reducing serum levels of liver enzymes, and ‎improving histopathological changes.‎

  20. Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats.

    Science.gov (United States)

    Shiotani, Satoko; Shimada, Mitsuo; Suehiro, Taketoshi; Soejima, Yuji; Yosizumi, Tomoharu; Shimokawa, Hiroaki; Maehara, Yoshihiko

    2004-08-15

    Reperfusion of ischemic tissues is known to cause the generation of reactive oxygen species (ROS) with resultant tissue damage. However, the sources of ROS in reperfused tissues are not fully characterized. We hypothesized that the small GTPase Rho and its target effector Rho-kinase/ROK/ROCK are involved in the oxidative burst in reperfused tissue with resultant reperfusion injury. In an in vivo rat model of liver transplantation using cold ischemia for 12 hr followed by reperfusion, a specific Rho-kinase inhibitor, fasudil (30 mg/kg), was administered orally 1 hr before the transplantation. Fasudil suppressed the ischemia-reperfusion (I/R)-induced generation of ROS after reperfusion (P<0.01) and also suppressed the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta) 3 hr after reperfusion, resulting in a significant reduction of I/R-induced hepatocellular injury (P<0.05), necrosis, apoptosis (P<0.01), and neutrophil infiltration (P<0.0001) 12 hr after reperfusion. All animals receiving a graft without fasudil died within 3 days, whereas 40% of those receiving fasudil survived (P<0.001). The present study demonstrates that Rho-kinase-mediated production of ROS and inflammatory cytokines are substantially involved in the pathogenesis of hepatocellular necrosis and apoptosis induced by cold I/R in vivo and that Rho-kinase may be regarded as a novel therapeutic target for the disorder.

  1. Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis.

    Science.gov (United States)

    Vilatoba, Mario; Eckstein, Christopher; Bilbao, Guadalupe; Smyth, Cheryl A; Jenkins, Stacie; Thompson, J Anthony; Eckhoff, Devin E; Contreras, Juan L

    2005-08-01

    Evidence is emerging that the endoplasmic reticulum (ER) participates in initiation of apoptosis induced by the unfolded protein response and by aberrant Ca(++) signaling during cellular stress such as ischemia/reperfusion injury (I/R injury). ER-induced apoptosis involves the activation of caspase-12 and C/EBP homologous protein (CHOP), and the shutdown of translation initiated by phosphorylation of eIF2alpha. Sodium 4-phenylbutyrate (PBA) is a low molecular weight fatty acid that acts as a chemical chaperone reducing the load of mutant or unfolded proteins retained in the ER during cellular stress and also exerting anti-inflammatory activity. It has been used successfully for treatment of urea cycle disorders and sickle cell disease. Thus, we hypothesized that PBA may reduce ER-induced apoptosis triggered by I/R injury to the liver. Groups of male C57BL/6 mice were subjected to warm ischemia (70% of the liver mass, 45 minutes). Serum aspartate aminotransferase was assessed 6 hours after reperfusion; apoptosis was evaluated by enzyme-linked immunosorbent assays of caspase-12 and plasma tumor necrosis factor alpha, Western blot analyses of eIF2alpha, and reverse transcriptase-polymerase chain reaction of CHOP expression. A dose-dependent decrease in aspartate aminotransferase was demonstrated in mice given intraperitoneal PBA (1 hour before and 12 hours after reperfusion), compared with vehicle-treated controls; this effect was associated with reduced pyknosis, parenchymal hemorrhages, and neutrophil infiltrates in PBA-treated mice, compared with controls. In a lethal model of total liver I/R injury, all vehicle-treated controls died within 3 days after reperfusion. In contrast, 50% survival (>30 days) was observed in animals given PBA. The beneficial effects of PBA were associated with a greater than 45% reduction in apoptosis, decreased ER-mediated apoptosis characterized by significant reduction in caspase-12 activation, and reduced levels of both phosphorylated

  2. The effects of dexketoprofen on endogenous leptin and lipid peroxidation during liver ischemia reperfusion injury.

    Science.gov (United States)

    Ustun, Yasemin Burcu; Koksal, Ersin; Kaya, Cengiz; Sener, Elif Bengi; Aksoy, Abdurrahman; Yarim, Gul; Kabak, Yonca; Gulbahar, Yavuz

    2014-01-01

    Hepatic ischemia reperfusion (IR) injury has complex mechanisms. We investigated the effect of dexketoprofen on endogenous leptin and malondialdehyde (MDA) levels. Wistar albino rats were divided into 4 equal groups and were subjected to 1-hour ischemia and different subsequent reperfusion intervals. Dexketoprofen was administered in a dose of 25 mg/kg 15 minutes before ischemia induction and 1-hour reperfusion to the Dexketoprofen one-hour reperfusion group, n = 6 (DIR1) group and 6-hour reperfusion to the Dexketoprofen six-hour reperfusion group, n = 6 (DIR6) group. In the control groups, 0.9% physiologic serum (SF) was administered 15 minutes before ischemia induction and 1-hour reperfusion to the one-hour reperfusion group, n = 6 (IR1) group and 6-hour reperfusion to the six-hour reperfusion group, n = 6 (IR6) group. Although serum leptin (P = 0.044) and hepatic tissue MDA levels (P = 0.004) were significantly higher in the IR6 group than in the IR1 group, there were no significant differences in dexketoprofen pretreatment between the DIR1 and DIR6 groups. There were no differences in serum MDA levels among the 4 groups, and serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were significantly higher in the IR1 (P = 0.026 and P = 0.018, respectively) and IR6 (P = 0.000 and P = 0.002, respectively) groups than in the DIR1 and DIR6 groups. Dexketoprofen pretreatment can protect the liver from IR injury by decreasing inflammation and lipid peroxidation. Our study shows that dexketoprofen has no effects on endogenous leptin during IR injury.

  3. Beneficial effects of enteral nutrition containing with hydrolyzed whey peptide on warm ischemia/reperfusion injury in the rat liver.

    Science.gov (United States)

    Hanaoka, Jun; Shimada, Mitsuo; Utsunomiya, Toru; Morine, Yuji; Imura, Satoru; Ikemoto, Tetsuya; Mori, Hiroki; Sugimoto, Koji; Saito, Yu; Yamada, Shinichiro; Asanoma, Michihito

    2014-01-01

    This study examined the efficacy of enteral nutrition containing hydrolyzed whey peptide (HWP) on warm ischemia/reperfusion (I/R) injury in the rat liver. Male Wistar rats were subjected to 30 min of warm hepatic ischemia followed by immediate p.o. intake of enteral nutrition with WHP (HWP group) or 20% glucose solution (control group) (0.025 mL/g). The animals were killed at 6 or 12 h after reperfusion. The serum aspartate aminotransferase (AST) and alanine aminotransferase alt (ALT) levels were measured. The necrotic areas were assessed histologically. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activation were assessed to evaluate apoptosis. The expressions of hepatic tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nuclear factor (NF)-κB in the liver tissue were assessed by real time reverse transcription polymerase chain reaction. Significant reductions in the serum AST and ALT levels were seen in the HWP group compared with the control group at both 6 and 12 h after reperfusion. The necrotic areas and numbers of TUNEL positive cells were significantly decreased in the HWP group at 6 and 12 h after reperfusion. The caspase-3/7 activities were significantly decreased in HWP group at 6 and 12 h after reperfusion. The mRNA expressions of TNF-α and IL-6 were significantly reduced in the HWP group at 12 h after reperfusion. NF-κB mRNA expression was significantly increased in the HWP group at 6 and 12 h after reperfusion. Enteral nutrition containing HWP ameliorated the hepatic warm I/R injury possibly through the suppression of pro-inflammatory cytokine expressions and the induction of NF-κB in the rat liver. © 2013 The Japan Society of Hepatology.

  4. Evaluation of potential changes in liver and lung tissue of rats in an ischemia-reperfusion injury model (modified pringle maneuver.

    Directory of Open Access Journals (Sweden)

    Silvio Henrique Freitas

    Full Text Available In surgical procedures involving the liver, such as transplantation, resection, and trauma, a temporary occlusion of hepatic vessels may be required. This study was designed to analyze the lesions promoted by ischemia and reperfusion injury of the hepatic pedicle, in the liver and lung, using histopathological and immunohistochemical techniques. In total, 39 Wistar rats were divided into four groups: control group (C n = 3 and ischemia groups subjected to 10, 20, and 30 minutes of hepatic pedicle clamping (I10, n = 12; I20, n = 12; I30, n = 12. Each ischemia group was subdivided into four subgroups of reperfusion (R15, n = 3; R30, n = 3; R60, n = 3; R120, n = 3, after 15, 30, 60, and 120 minutes of reperfusion, respectively. Significant differences were observed in the liver parenchyma (P 0.05. In the lung parenchyma, a significant difference was observed (P 0.05 at different times of ischemia and reperfusion. In the pulmonary parenchyma, the immunoreactivity was not specific, and was not quantified. This study demonstrated that the longer the duration of ischemia and reperfusion, the greater are the morphological lesions found in the hepatic and pulmonary parenchyma.

  5. Characterization of Microparticles after Hepatic Ischemia-Reperfusion Injury

    Science.gov (United States)

    Freeman, Christopher M.; Quillin, Ralph C.; Wilson, Gregory C.; Nojima, Hiroyuki; Johnson, Bobby L.; Sutton, Jeffrey M.; Schuster, Rebecca M.; Blanchard, John; Edwards, Michael J.; Caldwell, Charles C.; Lentsch, Alex B.

    2014-01-01

    Background Hepatic ischemia-reperfusion (I/R) is a well-studied model of liver injury and has demonstrated a biphasic injury followed by recovery and regeneration. Microparticles (MPs) are a developing field of study and these small membrane bound vesicles have been shown to have effector function in other physiologic and pathologic states. This study was designed to quantify the levels of MPs from various cell origins–platelets, neutrophils, and endolethial cells–following hepatic ischemia-reperfusion injury. Methods A murine model was used with mice undergoing 90 minutes of partial hepatic ischemia followed by various times of reperfusion. Following reperfusion, plasma samples were taken and MPs of various cell origins were labeled and levels were measured using flow cytometry. Additionally, cell specific MPs were further assessed by Annexin V, which stains for the presence of phosphatidylserine, a cell surface marker linked to apoptosis. Statistical analysis was performed using one-way analysis of variance with subsequent Student-Newman-Keuls test with data presented as the mean and standard error of the mean. Results MPs from varying sources show an increase in circulating levels following hepatic I/R injury. However, the timing of the appearance of different MP subtypes differs for each cell type. Platelet and neutrophil-derived MP levels demonstrated an acute elevation following injury whereas endothelial-derived MP levels demonstrated a delayed elevation. Conclusion This is the first study to characterize circulating levels of cell-specific MPs after hepatic I/R injury and suggests that MPs derived from platelets and neutrophils serve as markers of inflammatory injury and may be active participants in this process. In contrast, MPs derived from endothelial cells increase after the injury response during the reparative phase and may be important in angiogenesis that occurs in the regenerating liver. PMID:24879335

  6. PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model.

    Science.gov (United States)

    Linares, Ivan; Farrokhi, Kaveh; Echeverri, Juan; Kaths, Johan Moritz; Kollmann, Dagmar; Hamar, Matyas; Urbanellis, Peter; Ganesh, Sujani; Adeyi, Oyedele A; Yip, Paul; Selzner, Markus; Selzner, Nazia

    2018-01-01

    PPAR-gamma (γ) is highly expressed in macrophages and its activation affects their polarization. The effect of PPAR-γ activation on Kupffer cells (KCs) and liver ischemia-reperfusion injury (IRI) has not yet been evaluated. We investigated the effect of PPAR-γ activation on KC-polarization and IRI. Seventy percent (70%) liver ischemia was induced for 60mins. PPAR-γ-agonist or vehicle was administrated before reperfusion. PPAR-γ-antagonist was used to block PPAR-γ activation. Liver injury, necrosis, and apoptosis were assessed post-reperfusion. Flow-cytometry determined KC-phenotypes (pro-inflammatory Nitric Oxide +, anti-inflammatory CD206+ and anti-inflammatory IL-10+). Liver injury assessed by serum AST was significantly decreased in PPAR-γ-agonist versus control group at all time points post reperfusion (1hr: 3092±105 vs 4469±551; p = 0.042; 6hr: 7041±1160 vs 12193±1143; p = 0.015; 12hr: 5746±328 vs 8608±1259; p = 0.049). Furthermore, liver apoptosis measured by TUNEL-staining was significantly reduced in PPAR-γ-agonist versus control group post reperfusion (1hr:2.46±0.49 vs 6.90±0.85%;p = 0.001; 6hr:26.40±2.93 vs 50.13±8.29%; p = 0.048). H&E staining demonstrated less necrosis in PPAR-γ-agonist versus control group (24hr:26.66±4.78 vs 45.62±4.57%; p = 0.032). The percentage of pro-inflammatory NO+ KCs was significantly lower at all post reperfusion time points in the PPAR-γ-agonist versus control group (1hr:28.49±4.99 vs 53.54±9.15%; p = 0.040; 6hr:5.51±0.54 vs 31.12±9.58%; p = 0.009; 24hr:4.15±1.50 vs 17.10±4.77%; p = 0.043). In contrast, percentage of anti-inflammatory CD206+ KCs was significantly higher in PPAR-γ-agonist versus control group prior to IRI (8.62±0.96 vs 4.88 ±0.50%; p = 0.04). Administration of PPAR-γ-antagonist reversed the beneficial effects on AST, apoptosis, and pro-inflammatory NO+ KCs. PPAR-γ activation reduces IRI and decreases the pro-inflammatory NO+ Kupffer cells. PPAR-γ activation can become an

  7. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu; Kim, Do-Sung, E-mail: do-sung.kim@surgery.med.ufl.edu; Flores-Toro, Joseph A., E-mail: Joseph.Flores-Toro@surgery.ufl.edu; Vijayvargiya, Richa, E-mail: rvijayvargiya@ufl.edu; Zendejas, Ivan, E-mail: ivan.zendejas@surgery.ufl.edu; Behrns, Kevin E., E-mail: Kevin.Behrns@surgery.ufl.edu

    2013-12-15

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential

  8. S-Adenosylmethionine attenuates bile duct early warm ischemia reperfusion injury after rat liver transplantation.

    Science.gov (United States)

    Tang, Yong; Chu, Hongpeng; Cao, Guojun; Du, Xiaolong; Min, Xiaobo; Wan, Chidan

    2018-03-01

    Warm ischemia reperfusion injury (IRI) plays a key role in biliary complication, which is a substantial vulnerability of liver transplantation. The early pathophysiological changes of IRI are characterized by an excessive inflammatory response. S-Adenosylmethionine (SAM) is an important metabolic intermediate that modulates inflammatory reactions; however, its role in bile duct warm IRI is not known. In this study, male rats were treated with or without SAM (170 μmol/kg body weight) after orthotopic autologous liver transplantation. The histopathological observations showed that bile duct injury in the IRI group was more serious than in the SAM group. The alanine aminotransferase (ALT), alkaline phosphatase (ALP) and direct bilirubin (DBIL) levels in the serum of the IRI group were significantly increased compared to the SAM group (P liver and bile duct tissues, down-regulated TNF-α levels and up-regulated IL-10 expression in bile duct tissues compared to the IRI group (P livers were much higher compared to those in SAM-treated rats at 24 h after liver transplantation (P bile ducts against warm IRI by suppressing oxidative stress, inflammatory reactions and apoptosis of biliary epithelial cells after liver transplantation.α. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effects of N-Acetylcysteine Addition to University of Wisconsin Solution on the Rate of Ischemia-Reperfusion Injury in Adult Orthotopic Liver Transplant.

    Science.gov (United States)

    Aliakbarian, Mohsen; Nikeghbalian, Saman; Ghaffaripour, Sina; Bahreini, Amin; Shafiee, Mohammad; Rashidi, Mohammad; Rajabnejad, Yaser

    2017-08-01

    One of the main concerns in liver transplant is the prolonged ischemia time, which may lead to primary graft nonfunction or delayed function. N-acetylcysteine is known as a hepato-protective agent in different studies, which may improve human hepatocyte viability in steatotic donor livers. This study investigated whether N-acetylcysteine can decrease the rate of ischemia-reperfusion syndrome and improve short-term outcome in liver transplant recipients. This was a double-blind, randomized, control clinical trial of 115 patients. Between April 2012 and January 2013, patients with orthotopic liver transplant were randomly divided into 2 groups; in 49 cases N-acetylcysteine was added to University of Wisconsin solution as the preservative liquid (experimental group), and in 66 cases standard University of Wisconsin solution was used (control group). We compared postreperfusion hypotension, inotrope requirement before and after portal reperfusion, intermittent arterial blood gas analysis and potassium measurement, pathological review of transplanted liver, in-hospital complications, morbidity, and mortality. There was no significant difference between the groups regarding time to hepatic artery reperfusion, hospital stay, vascular complications, inotrope requirement before and after portal declamping, and blood gas analysis. Hypotension after portal reperfusion was significantly more common in experimental group compared with control group (P = .005). Retransplant and in-hospital mortality were comparable between the groups. Preservation of the liver inside Univer-sity of Wisconsin solution plus N-acetylcysteine did not change the rate of ischemia reperfusion injury and short-term outcome in liver transplant recipients.

  10. Multifactorial Biological Modulation of Warm Ischemia Reperfusion Injury in Liver Transplantation From Non-Heart-Beating Donors Eliminates Primary Nonfunction and Reduces Bile Salt Toxicity

    NARCIS (Netherlands)

    Monbaliu, Diethard; Vekemans, Katrien; Hoekstra, Harm; Vaahtera, Lauri; Libbrecht, Louis; Derveaux, Katelijne; Parkkinen, Jaakko; Liu, Qiang; Heedfeld, Veerle; Wylin, Tine; Deckx, Hugo; Zeegers, Marcel; Balligand, Erika; Buurman, Wim; van Pelt, Jos; Porte, Robert J.; Pirenne, Jacques

    Objective: To design a multifactorial biological modulation approach targeting ischemia reperfusion injury to augment viability of porcine liver grafts from non-heart-beating donors (NHBD). Background Data: Liver Transplantation (LTx) from NHBD is associated with an increased risk of primary

  11. Study on pretreatment of FPS-1 in rats with hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Lin, Shiqing; Liu, Kexuan; Wu, Weikang; Chen, Chao; Wang, Zhi; Zhang, Xuanhong

    2009-01-01

    This study was designed to determine whether FPS-1, the water-soluble polysaccharide isolated from fuzi, protected against hepatic damage in hepatic ischemia-reperfusion injury in rats, and its mechanism. SD rats were subjected to 60 min of hepatic ischemia, followed by 120 min reperfusion. FPS-1 (160 mg/kg/day) was administered orally for 5 days before ischemia-reperfusion injury in treatment group. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and albumin (ALB) were assayed to evaluate liver functions. Liver samples were taken for histological examination and determination of malondialdehyde (MDA), superoxide dismutase (SOD), that catalase (CAT) in liver. Na(+)-K(+)-ATPase and Ca(2+)-ATPase in mitochondria were measured with colorimetry method. Morphological changes were also investigated by using both light microscopy and electron microscopy (EM). In addition, apoptosis and oncosis were detected by Annexin V-FITC/PI immunofluorescent flow cytometry analysis. Serum AST and ALT levels were elevated in groups exposed to ischemia-reperfusion (p FPS-1 reversed all these biochemical parameters as well as histological alterations, evidently by increased SOD, CAT, reduced MDA and histological scores compared to the model group (p FPS-1 could attenuate the necrotic states by the detection of immunofluorescent flow cytometry analysis. Pretreatment with FPS-1 reduced hepatic ischemia-reperfusion injury through its potent antioxidative effects and attenuation of necrotic states.

  12. Effect of infliximab on acute hepatic ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Yucel, Ahmet Fikret; Pergel, Ahmet; Aydin, Ibrahim; Alacam, Hasan; Karabicak, Ilhan; Kesicioglu, Tugrul; Tumkaya, Levent; Kalkan, Yildiray; Ozer, Ender; Arslan, Zakir; Sehitoglu, Ibrahim; Sahin, Dursun Ali

    2015-01-01

    This study aimed to investigate the hepatoprotective and antioxidant effects of infliximab (IFX) against liver ischemia/reperfusion (I/R) injury in rats. A total of 30 male Wistar albino rats were divided into three groups: sham, I/R, and I/R+IFX. IFX was given at a dose of 3 mg/kg for three days before I/R. Rat livers were subjected to 60 min of ischemia followed by 90 h of reperfusion. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), TNF-α, malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were measured in the serum. The liver was removed to evaluate the histopathologic changes. The I/R group had a significant increase in AST, ALT, MDA, and TNF-α levels, and a decrease in GSH-Px activity compared with the sham group. The use of IFX significantly reduced the ALT, AST, MDA and TNF-α levels and significantly increased GSH-Px activity. IFX attenuated the histopathologic changes. IFX has a protective effect on liver I/R injury. This liver protective effect may be related to antioxidant and anti-TNF-α effects. We propose that, for the relief of liver injury subsequent to transplantation, liver resection, trauma, and shock, tentative treatments can be incorporated with IFX, which is already approved for clinical use.

  13. Remote ischemic preconditioning protects liver ischemia-reperfusion injury by regulating eNOS-NO pathway and liver microRNA expressions in fatty liver rats.

    Science.gov (United States)

    Duan, Yun-Fei; An, Yong; Zhu, Feng; Jiang, Yong

    2017-08-15

    Ischemic preconditioning (IPC) is a strategy to reduce ischemia-reperfusion (I/R) injury. The protective effect of remote ischemic preconditioning (RIPC) on liver I/R injury is not clear. This study aimed to investigate the roles of RIPC in liver I/R in fatty liver rats and the involvement of endothelial nitric oxide synthase-nitric oxide (eNOS-NO) pathway and microRNA expressions in this process. A total of 32 fatty rats were randomly divided into the sham group, I/R group, RIPC group and RIPC+I/R group. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and nitric oxide (NO) were measured. Hematoxylin-eosin staining was used to observe histological changes of liver tissues, TUNEL to detect hepatocyte apoptosis, and immunohistochemistry assay to detect heat shock protein 70 (HSP70) expression. Western blotting was used to detect liver inducible NOS (iNOS) and eNOS protein levels and real-time quantitative polymerase chain reaction to detect miR-34a, miR-122 and miR-27b expressions. Compared with the sham and RIPC groups, serum ALT, AST and iNOS in liver tissue were significantly higher in other two groups, while serum NO and eNOS in liver tissue were lower, and varying degrees of edema, degeneration and inflammatory cell infiltration were found. Cell apoptosis number was slightly lower in the RIPC+I/R group than that in I/R group. Compared with the sham group, HSP70 expressions were significantly increased in other three groups (all Pfatty liver I/R injury by affecting the eNOS-NO pathway and liver microRNA expressions. Copyright © 2017 The Editorial Board of Hepatobiliary & Pancreatic Diseases International. Published by Elsevier B.V. All rights reserved.

  14. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury.

    Science.gov (United States)

    Cursio, R; Filippa, N; Miele, C; Van Obberghen, E; Gugenheim, J

    2006-06-01

    This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs. Copyright (c) 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  15. Heat Shock Proteins and Mitogen-activated Protein Kinases in Steatotic Livers Undergoing Ischemia-Reperfusion: Some Answers

    Science.gov (United States)

    Massip-Salcedo, Marta; Casillas-Ramirez, Araní; Franco-Gou, Rosah; Bartrons, Ramón; Ben Mosbah, Ismail; Serafin, Anna; Roselló-Catafau, Joan; Peralta, Carmen

    2006-01-01

    Ischemic preconditioning protects steatotic livers against ischemia-reperfusion (I/R) injury, but just how this is achieved is poorly understood. Here, I/R or preconditioning plus I/R was induced in steatotic and nonsteatotic livers followed by investigating the effect of pharmacological treatments that modulate heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs). MAPKs, HSPs, protein kinase C, and transaminase levels were measured after reperfusion. We report that preconditioning increased HSP72 and heme-oxygenase-1 (HO-1) at 6 and 24 hours of reperfusion, respectively. Unlike nonsteatotic livers, steatotic livers benefited from HSP72 activators (geranylgeranylacetone) throughout reperfusion. This protection seemed attributable to HO-1 induction. In steatotic livers, preconditioning and geranylgeranylacetone treatment (which are responsible for HO-1 induction) increased protein kinase C activity. HO-1 activators (cobalt(III) protoporphyrin IX) protected both liver types. Preconditioning reduced p38 MAPK and c-Jun N-terminal kinase (JNK), resulting in HSP72 induction though HO-1 remained unmodified. Like HSP72, both p38 and JNK appeared not to be crucial in preconditioning, and inhibitors of p38 (SB203580) and JNK (SP600125) were less effective against hepatic injury than HO-1 activators. These results provide new data regarding the mechanisms of preconditioning and may pave the way to the development of new pharmacological strategies in liver surgery. PMID:16651615

  16. The Impact of Liver Graft Injury on Cancer Recurrence Posttransplantation.

    Science.gov (United States)

    Li, Chang-Xian; Man, Kwan; Lo, Chung-Mau

    2017-11-01

    Liver transplantation is the most effective treatment for selected patients with hepatocellular carcinoma. However, cancer recurrence, posttransplantation, remains to be the critical issue that affects the long-term outcome of hepatocellular carcinoma recipients. In addition to tumor biology itself, increasing evidence demonstrates that acute-phase liver graft injury is a result of hepatic ischemia reperfusion injury (which is an inevitable consequence during liver transplantation) and may promote cancer recurrence at late phase posttransplantation. The liver grafts from living donors, donors after cardiac death, and steatotic donors have been considered as promising sources of organs for liver transplantation and are associated with high incidence of liver graft injury. The acute-phase liver graft injury will trigger a series of inflammatory cascades, which may not only activate the cell signaling pathways regulating the tumor cell invasion and migration but also mobilize the circulating progenitor and immune cells to facilitate tumor recurrence and metastasis. The injured liver graft may also provide the favorable microenvironment for tumor cell growth, migration, and invasion through the disturbance of microcirculatory barrier function, induction of hypoxia and angiogenesis. This review aims to summarize the latest findings about the role and mechanisms of liver graft injury resulted from hepatic ischemia reperfusion injury on tumor recurrence posttransplantation, both in clinical and animal cohorts.

  17. The Impact of Ischemia/Reperfusion Injury on Liver Allografts from Deceased after Cardiac Death versus Deceased after Brain Death Donors.

    Directory of Open Access Journals (Sweden)

    Jin Xu

    Full Text Available The shortage of organs for transplantation has led to increased use of organs procured from donors after cardiac death (DCD. The effects of cardiac death on the liver remain poorly understood, however. Using livers obtained from DCD versus donors after brain death (DBD, we aimed to understand how ischemia/reperfusion (I/R injury alters expression of pro-inflammatory markers ceramides and influences graft leukocyte infiltration.Hepatocyte inflammation, as assessed by ceramide expression, was evaluated in DCD (n = 13 and DBD (n = 10 livers. Allograft expression of inflammatory and cell death markers, and allograft leukocyte infiltration were evaluated from a contemporaneous independent cohort of DCD (n = 22 and DBD (n = 13 livers.When examining the differences between transplant stages in each group, C18, C20, C24 ceramides showed significant difference in DBD (p<0.05 and C22 ceramide (p<0.05 were more pronounced for DCD. C18 ceramide is correlated to bilirubin, INR, and creatinine after transplant in DCD. Prior to transplantation, DCD livers have reduced leukocyte infiltration compared to DBD allografts. Following reperfusion, the neutrophil infiltration and platelet deposition was less prevalent in DCD grafts while cell death and recipients levels of serum aspartate aminotransferase (AST of DCD allografts had significantly increased.These data suggest that I/R injury generate necrosis in the absence of a strong inflammatory response in DCD livers with an appreciable effect on early graft function. The long-term consequences of increased inflammation in DBD and increased cell death in DCD allografts are unknown and warrant further investigation.

  18. Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury

    Science.gov (United States)

    Zaouali, Mohamed Amine; Bejaoui, Mohamed; Calvo, Maria; Folch-Puy, Emma; Pantazi, Eirini; Pasut, Gianfranco; Rimola, Antoni; Ben Abdennebi, Hassen; Adam, René; Roselló-Catafau, Joan

    2014-01-01

    AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts. METHODS: Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringer’s lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex vivo perfusion with Krebs-Heinseleit buffer solution. We assessed the following: liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity), liver function (bile output and vascular resistance), oxidative stress (malondialdehyde), nitric oxide, liver autophagy (Beclin-1 and LCB3) and cytoskeleton integrity (filament and globular actin fraction); as well as levels of metalloproteinases (MMP2 and MMP9), adenosine monophosphate-activated protein kinase (AMPK), heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1). RESULTS: When we used the PEG-35 rinse solution, reduced hepatic injury and improved liver function were noted after reperfusion. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. CONCLUSION: Using the rinse solution containing PEG-35 was effective for decreasing liver graft vulnerability to IRI. PMID:25473175

  19. Intestinal ischemia-reperfusion injury augments intestinal mucosal injury and bacterial translocation in jaundiced rats.

    Science.gov (United States)

    Yüksek, Yunus Nadi; Kologlu, Murat; Daglar, Gül; Doganay, Mutlu; Dolapci, Istar; Bilgihan, Ayse; Dolapçi, Mete; Kama, Nuri Aydin

    2004-01-01

    The aim of this study was to evaluate local effects and degree of bacterial translocation related with intestinal ischemia-reperfusion injury in a rat obstructive jaundice model. Thirty adult Sprague-Dawley rats (200-250 g) were divided into three groups; including Group 1 (jaundice group), Group 2 (jaundice-ischemia group) and Group 3 (ischemia group). All rats had 2 laparotomies. After experimental interventions, tissue samples for translocation; liver and ileum samples for histopathological examination, 25 cm of small intestine for mucosal myeloperoxidase and malondialdehyde levels and blood samples for biochemical analysis were obtained. Jaundiced rats had increased liver enzyme levels and total and direct bilirubin levels (p<0.05). Intestinal mucosal myeloperoxidase and malondialdehyde levels were found to be high in intestinal ischemia-reperfusion groups (p<0.05). Intestinal mucosal damage was more severe in rats with intestinal ischemia-reperfusion after bile duct ligation (p<0.05). Degree of bacterial translocation was also found to be significantly high in these rats (p<0.05). Intestinal mucosa is disturbed more severely in obstructive jaundice with the development of ischemia and reperfusion. Development of intestinal ischemia-reperfusion in obstructive jaundice increases bacterial translocation.

  20. CXC-chemokine regulation and neutrophil trafficking in hepatic ischemia-reperfusion injury in P-selectin/ICAM-1 deficient mice

    Directory of Open Access Journals (Sweden)

    Crockett Elahé T

    2007-05-01

    Full Text Available Abstract Background Neutrophil adhesion and migration are critical in hepatic ischemia and reperfusion injury (I/R. P-selectin and the intercellular adhesion molecule (ICAM-1 can mediate neutrophil-endothelial cell interactions, neutrophil migration, and the interactions of neutrophils with hepatocytes in the liver. Despite very strong preclinical data, recent clinical trials failed to show a protective effect of anti-adhesion therapy in reperfusion injury, indicating that the length of injury might be a critical factor in neutrophil infiltration. Therefore, the aim of this study was to assess the role of P-selectin and ICAM-1 in neutrophil infiltration and liver injury during early and late phases of liver I/R. Methods Adult male wild-type and P-selectin/ICAM-1-deficient (P/I null mice underwent 90 minutes of partial liver ischemia followed by various periods of reperfusion (6, 15 h, and a survival study. Liver injury was assessed by plasma level of alanine aminotransferase (ALT and histopathology. The plasma cytokines, TNF-α, IL-6, MIP-2 and KC, were measured by ELISA. Results Reperfusion caused significant hepatocellular injury in both wild-type and P/I null mice as was determined by plasma ALT levels and liver histopathology. The injury was associated with a marked neutrophil infiltration into the ischemic livers of both wild-type and P/I null mice. Although the levels of ALT and neutrophil infiltration were slightly lower in the P/I null mice compared with the wild-type mice the differences were not statistically significant. The plasma cytokine data of TNF-α and IL-6 followed a similar pattern to ALT data, and no significant difference was found between the wild-type and P/I null groups. In contrast, a significant difference in KC and MIP-2 chemokine levels was observed between the wild-type and P/I null mice. Additionally, the survival study showed a trend towards increased survival in the P/I null group. Conclusion While ICAM-1 and P

  1. Effects of hepatic ischemia-reperfusion injury on the P-glycoprotein activity at the liver canalicular membrane and blood-brain barrier determined by in vivo administration of rhodamine 123 in rats.

    Science.gov (United States)

    Miah, Mohammad K; Shaik, Imam H; Bickel, Ulrich; Mehvar, Reza

    2014-04-01

    To investigate the effects of normothermic hepatic ischemia-reperfusion (IR) injury on the activity of P-glycoprotein (P-gp) in the liver and at the blood-brain barrier (BBB) of rats using rhodamine 123 (RH-123) as an in vivo marker. Rats were subjected to 90 min of partial ischemia or sham surgery, followed by 12 or 24 h of reperfusion. Following intravenous injection, the concentrations of RH-123 in blood, bile, brain, and liver were used for pharmacokinetic calculations. The protein levels of P-gp and some other transporters in the liver and brain were also determined by Western blot analysis. P-gp protein levels at the liver canalicular membrane were increased by twofold after 24 h of reperfusion. However, the biliary excretion of RH-123 was reduced in these rats by 26%, presumably due to IR-induced reductions in the liver uptake of the marker and hepatic ATP concentrations. At the BBB, a 24% overexpression of P-gp in the 24-h IR animals was associated with a 30% decrease in the apparent brain uptake clearance of RH-123. The pharmacokinetics or brain distribution of RH-123 was not affected by the 12-h IR injury. Hepatic IR injury may alter the peripheral pharmacokinetics and brain distribution of drugs that are transported by P-gp and possibly other transporters.

  2. Comparative Study on the Cytoprotective Effects of Activated Protein C Treatment in Nonsteatotic and Steatotic Livers under Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Akitoshi Matsuda

    2015-01-01

    Full Text Available Activated protein C (APC has cytoprotective effects on liver ischemia-reperfusion injury (IRI. However, it is unclear whether APC is beneficial in steatotic liver IRI. We compared the cytoprotective effects of APC in nonsteatotic and steatotic liver IRI. Methods. Mice fed either normal diets (ND mice or high fat diets (HF mice, were treated with APC or saline (control and were performed 60 min partial IRI. Moreover, primary steatotic hepatocytes were either untreated or treated with APC and then incubated with H2O2. Results. APC significantly reduced serum transaminase levels and the inflammatory cells infiltration compared with control at 4 h in ND mice and at 24 h in HF mice. APC inhibited sinusoidal endothelial injury in ND mice, but not in HF mice. In contrast, APC activated adenosine monophosphate-activated protein kinase (AMPK phosphorylation in HF mice, but not in ND mice. In the in vitro study, APC significantly increased AMPK phosphorylation, ATP concentration, and survival rates of hepatocytes compared with control. Conclusion. During IRI in normal liver, APC attenuated initial damage by inhibiting inflammatory cell infiltration and sinusoidal endothelial injury, but not in steatotic liver. However, in steatotic liver, APC might attenuate late damage via activation of AMPK.

  3. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney.

    Science.gov (United States)

    Ebrahimkhani, Mohammad R; Daneshmand, Ali; Mazumder, Aprotim; Allocca, Mariacarmela; Calvo, Jennifer A; Abolhassani, Nona; Jhun, Iny; Muthupalani, Sureshkumar; Ayata, Cenk; Samson, Leona D

    2014-11-11

    Inflammation is accompanied by the release of highly reactive oxygen and nitrogen species (RONS) that damage DNA, among other cellular molecules. Base excision repair (BER) is initiated by DNA glycosylases and is crucial in repairing RONS-induced DNA damage; the alkyladenine DNA glycosylase (Aag/Mpg) excises several DNA base lesions induced by the inflammation-associated RONS release that accompanies ischemia reperfusion (I/R). Using mouse I/R models we demonstrate that Aag(-/-) mice are significantly protected against, rather than sensitized to, I/R injury, and that such protection is observed across three different organs. Following I/R in liver, kidney, and brain, Aag(-/-) mice display decreased hepatocyte death, cerebral infarction, and renal injury relative to wild-type. We infer that in wild-type mice, Aag excises damaged DNA bases to generate potentially toxic abasic sites that in turn generate highly toxic DNA strand breaks that trigger poly(ADP-ribose) polymerase (Parp) hyperactivation, cellular bioenergetics failure, and necrosis; indeed, steady-state levels of abasic sites and nuclear PAR polymers were significantly more elevated in wild-type vs. Aag(-/-) liver after I/R. This increase in PAR polymers was accompanied by depletion of intracellular NAD and ATP levels plus the translocation and extracellular release of the high-mobility group box 1 (Hmgb1) nuclear protein, activating the sterile inflammatory response. We thus demonstrate the detrimental effects of Aag-initiated BER during I/R and sterile inflammation, and present a novel target for controlling I/R-induced injury.

  4. Isoprostanes--markers of ischaemia reperfusion injury.

    LENUS (Irish Health Repository)

    Sakamoto, H

    2012-02-03

    Ischaemia reperfusion injury is a common and important phenomenon that occurs predictably in patients undergoing such procedures as cardiopulmonary bypass, thrombolysis, surgery under tourniquet, organ transplantation or embolectomy. Oxidative stress and the resulting lipid peroxidation play a major role in reperfusion injury. Membrane and cellular dysfunction result and, subsequently, organ injury or failure may ensue. Traditional methods of quantifying ischaemia reperfusion injury, including measurement of malondialdehyde, lack specificity and sensitivity. It was reported in 1990 that isoprostanes, a series of prostaglandin-like compounds, are produced by the free radical-catalyzed peroxidation of arachidonic acid. Measurement of the isoprostane concentration in urine or plasma provides the most reliable, non-invasive method currently available to assess oxidative stress in vivo. Serial measurement of isoprostanes in biological fluids has enhanced our understanding of the mechanisms underlying ischaemia reperfusion injury itself and its role in certain diseases. Furthermore, measurement of the isoprostane concentration provides a means to assess the effects of prophylactic and therapeutic interventions. In the future, the development of rapid, simple assays for isoprostanes offers the potential to assess prognosis during and after ischaemia reperfusion events.

  5. Anti-CD163-dexamethasone protects against apoptosis after ischemia/reperfusion injuries in the rat liver

    DEFF Research Database (Denmark)

    Møller, Lin Nanna Okholm; Knudsen, Anders Riegels; Andersen, Kasper Jarlhelt

    2015-01-01

    , high dose dexamethasone, low dose dexamethasone or placebo intravenously 18 h before laparotomy with subsequent 60 min of liver ischemia. After reperfusion for 24 h the animals had their liver removed. Bloods were drawn 30 min and 24 h post ischemia induction. Liver cell apoptosis and necrosis were...

  6. The effects of sulforaphane on the liver and remote organ damage in hepatic ischemia-reperfusion model formed with pringle maneuver in rats.

    Science.gov (United States)

    Oguz, Abdullah; Kapan, Murat; Kaplan, Ibrahim; Alabalik, Ulas; Ulger, Burak Veli; Uslukaya, Omer; Turkoglu, Ahmet; Polat, Yilmaz

    2015-06-01

    The purpose of this study was to investigate the effect of Sulforaphane on ischemia/ reperfusion (IR) injury of the liver and distant organs resulting from liver blood flow arrest. Fourty Wistar rats were assigned into four groups, each included 10 rats were used. Group I as only laparatomy, Group II laparatomy and Sulforaphane application, Group III hepatic IR; and Group IV as hepatic IR and Sulforaphane application group. Animals were subjected to liver ischemia for 30 min and then reperfusion is started. 5 mg/kg Sulforaphane was applied via oral lavage 15 minutes before initiating the experimental study. Blood samples were taken from the animals for biochemical analysis at 60th minutes of the experiment in the first and second groups; 30 minutes after beginning reperfusion in the third and forth groups. Simultaneously, liver, lung and kidney tissues were sampled for biochemical and histopathological examinations. The administration of sulforaphane significantly reduced the serum TOA and liver TOA levels, increased the serum TAC and liver TAC levels and also decreased The OSI and liver OSI levels. In the histopathologic examination, the injury was reduced by the administration of sulforaphane. Administration of sulforaphane did not lead to any significant changes in any parameter including histopathological parameters in both the kidney and the lung. Sulforaphane reduced the liver oxidative stress from I/R injury. A histological injury in liver was reduced by sulforaphane administration. However, there were no significant effects of sulforaphane on the remote organ injuries induced by IR. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  7. Growth Arrest-Specific Protein 6 is Hepatoprotective Against Ischemia/Reperfusion Injury

    Science.gov (United States)

    Llacuna, Laura; Bárcena, Cristina; Bellido-Martín, Lola; Fernández, Laura; Stefanovic, Milica; Marí, Montserrat; García-Ruiz, Carmen; Fernández-Checa, José C.; de Frutos, Pablo García; Morales, Albert

    2010-01-01

    Growth arrest-specific gene 6 (GAS6) promotes growth and cell survival during tissue repair and development in different organs, including the liver. However, the specific role of GAS6 in liver ischemia/reperfusion (I/R) injury has not been previously addressed. Here, we report an early increase in serum GAS6 levels following I/R exposure. Moreover, unlike wild type mice, Gas6-/- mice were highly sensitive to partial hepatic I/R, with 90% of mice dying within 12 hours of reperfusion due to massive hepatocellular injury. I/R induced early hepatic AKT phosphorylation in wild type but not in Gas6-/- mice, without significant changes in JNK phosphorylation or nuclear NF-κB translocation, whereas hepatic IL-1β and TNF mRNA levels were higher in Gas6-/- mice compared to wild type mice. In line with the in vivo data, in vitro studies indicated that GAS6 induced AKT phosphorylation in primary mouse hepatocytes protecting them from hypoxia-induced cell death, while GAS6 diminished lipopolysaccharide (LPS)-induced cytokine expression (IL-1β and TNF) in murine macrophages. Finally, in vivo recombinant GAS6 treatment not only rescued GAS6 knockout mice from I/R-induced severe liver damage, but also attenuated hepatic damage in wild type mice following I/R. In conclusion, our data uncover GAS6 as a new player in liver I/R injury, emerging as a potential therapeutic target to reduce post-ischemic hepatic damage. PMID:20730776

  8. Acute Liver Injury Is Independent of B Cells or Immunoglobulin M.

    Directory of Open Access Journals (Sweden)

    James A Richards

    Full Text Available Acute liver injury is a clinically important pathology and results in the release of Danger Associated Molecular Patterns, which initiate an immune response. Withdrawal of the injurious agent and curtailing any pathogenic secondary immune response may allow spontaneous resolution of injury. The role B cells and Immunoglobulin M (IgM play in acute liver injury is largely unknown and it was proposed that B cells and/or IgM would play a significant role in its pathogenesis.Tissue from 3 models of experimental liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury and patients transplanted following paracetamol overdose were stained for evidence of IgM deposition. Mice deficient in B cells (and IgM were used to dissect out the role B cells and/or IgM played in the development or resolution of injury. Serum transfer into mice lacking IgM was used to establish the role IgM plays in injury.Significant deposition of IgM was seen in the explanted livers of patients transplanted following paracetamol overdose as well as in 3 experimental models of acute liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury. Serum transfer into IgM-deficient mice failed to reconstitute injury (p = 0.66, despite successful engraftment of IgM. Mice deficient in both T and B cells (RAG1-/- mice (p<0.001, but not B cell deficient (μMT mice (p = 0.93, were significantly protected from injury. Further interrogation with T cell deficient (CD3εKO mice confirmed that the T cell component is a key mediator of sterile liver injury. Mice deficient in B cells and IgM mice did not have a significant delay in resolution following acute liver injury.IgM deposition appears to be common feature of both human and murine sterile liver injury. However, neither IgM nor B cells, play a significant role in the development of or resolution from acute liver injury. T cells appear to be key

  9. Evidence that estrogen receptors play a limited role in mediating enhanced recovery of bile flow in female rats in the acute phase of liver ischemia reperfusion injury

    NARCIS (Netherlands)

    de Vries, Heleen A. H.; Ponds, Fraukje A. M.; Nieuwenhuijs, Vincent B.; Morphett, Arthur; Padbury, Robert T. A.; Barritt, Greg J.

    2013-01-01

    Introduction. Female patients exhibit better survival and less hepatic damage from ischemia reperfusion (IR) injury following surgery. However, the effects of sex and estrogens on liver function in the acute phase of IR are not well understood. Objective. The aim was to investigate this question.

  10. Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model.

    Science.gov (United States)

    Aydin, Mehmet Salih; Kocarslan, Aydemir; Kocarslan, Sezen; Kucuk, Ahmet; Eser, İrfan; Sezen, Hatice; Buyukfirat, Evren; Hazar, Abdussemet

    2015-01-01

    Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham (n=10), control (n=10) and thymoquinone (TQ) treatment group (n=10). Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (POSI). Control group injury scores were statistically higher compared to sham and TQ-treatment groups (Pmodel.

  11. Milrinone-induced postconditioning reduces hepatic ischemia-reperfusion injury in rats: the roles of phosphatidylinositol 3-kinase and nitric oxide.

    Science.gov (United States)

    Toyoda, Tomomi; Tosaka, Shinya; Tosaka, Reiko; Maekawa, Takuji; Cho, Sungsam; Eguchi, Susumu; Nakashima, Masahiro; Sumikawa, Koji

    2014-01-01

    Ischemic postconditioning (PostC) protects the liver against ischemia-reperfusion (IR) injury. Milrinone, a phosphodiesterase 3 inhibitor, has been reported to exhibit preconditioning properties against hepatic IR injury; however, its PostC properties remain unknown. This study investigated whether milrinone has PostC properties against hepatic IR injury and the roles of phosphatidylinositol 3-kinase (PI3K) and nitric oxide synthase (NOS). Male Wistar rats were separated into six groups: (1) group S: animals that underwent sham operation without ischemia, (2) group C: ischemia followed by reperfusion with no other intervention, (3) group M: milrinone administered immediately after reperfusion, (4) group MW: wortmannin, a PI3K inhibitor, injected before milrinone administration, (5) group MN: l-NAME, a NOS inhibitor, injected before milrinone administration, and (6) group MD, milrinone administered 30 min after reperfusion. Except for group S, all groups underwent 1 h of warm ischemia of median and left lateral lobes, followed by 5 h of reperfusion. Biochemical liver function analysis and histologic examination were performed. Serum aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase levels, histologic damage scores, and apoptotic rate in group M were significantly lower than those in group C. The inhibition of PI3K or NOS prevented this protective effect. Milrinone administered 30 min after reperfusion did not show obvious protective effects. Milrinone-induced PostC protects against hepatic IR injury when it is administered immediately after reperfusion, and PI3K and NOS may play an important role in this protective effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Evaluation of the Effects of Atorvastatin and Ischemic Postconditioning Preventing on the Ischemia and Reperfusion Injury: Experimental Study in Rats

    Directory of Open Access Journals (Sweden)

    Henrique Budib Dorsa Pontes

    Full Text Available Abstract Introduction: Reperfusion injury leads to systemic morphological and functional pathological alterations. Some techniques are already estabilished to attenuate the damage induced by reperfusion. Ischemic preconditioning is one of the standard procedures. In the last 20 years, several experimental trials demonstrated that the ischemic postconditioning presents similar effectiveness. Recently experimental trials demonstrated that statins could be used as pharmacological preconditioning. Methods: 41 Wistar rats (Rattus norvegicus albinus were distributed in 5 groups: Ischemia and Reperfusion (A, Ischemic Postconditioning (B, Statin (C, Ischemic Postconditioning + Statins (D and SHAM (E. After euthanasia, lungs, liver, kidneys and ileum were resected and submitted to histopathological analysis. Results: The average of lung parenchymal injury was A=3.6, B=1.6, C=1.2, D=1.2, E=1 (P=0.0029. The average of liver parenchymal injury was A=3, B=1.5, C=1.2, D=1.2, E = 0 (P<0.0001. The average of renal parenchymal injury was A=4, B=2.44, C=1.22, D=1.11, E=1 (P<0.0001. The average of intestinal parenchymal injury was A=2, B=0.66, C=0, D=0, E=0 (P=0.0006. The results were submitted to statistics applying Kruskal-Wallis test, estabilishing level of significance P<0.05. Conclusion: Groups submitted to ischemic postconditioning, to pre-treatment with statins and both methods associated demonstrated less remote reperfusion injuries, compared to the group submitted to ischemia and reperfusion without protection.

  13. Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model

    Directory of Open Access Journals (Sweden)

    Mehmet Salih Aydin

    2015-02-01

    Full Text Available Introduction: Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. Objective: We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Methods: Thirty rats were divided into three groups as sham (n=10, control (n=10 and thymoquinone (TQ treatment group (n=10. Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS, and oxidative stress index (OSI in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Results: Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (P<0.001 for TOS and OSI. Control group injury scores were statistically higher compared to sham and TQ-treatment groups (P<0.001 for all comparisons. Conclusion: Thymoquinone administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta ischemia-reperfusion rat model.

  14. Phosphatase and tensin homolog-β-catenin signaling modulates regulatory T cells and inflammatory responses in mouse liver ischemia/reperfusion injury.

    Science.gov (United States)

    Zhu, Qiang; Li, Changyong; Wang, Kunpeng; Yue, Shi; Jiang, Longfeng; Ke, Michael; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhang, Feng; Lu, Ling; Ke, Bibo

    2017-06-01

    The phosphatase and tensin homolog (PTEN) deleted on chromosome 10 plays an important role in regulating T cell activation during inflammatory response. Activation of β-catenin is crucial for maintaining immune homeostasis. This study investigates the functional roles and molecular mechanisms by which PTEN-β-catenin signaling promotes regulatory T cell (Treg) induction in a mouse model of liver ischemia/reperfusion injury (IRI). We found that mice with myeloid-specific phosphatase and tensin homolog knockout (PTEN M-KO ) exhibited reduced liver damage as evidenced by decreased levels of serum alanine aminotransferase, intrahepatic macrophage trafficking, and proinflammatory mediators compared with the PTEN-proficient (floxed phosphatase and tensin homolog [PTEN FL/FL ]) controls. Disruption of myeloid PTEN-activated b-catenin promoted peroxisome proliferator-activated receptor gamma (PPARγ)-mediated Jagged-1/Notch signaling and induced forkhead box P3 (FOXP3)1 Tregs while inhibiting T helper 17 cells. However, blocking of Notch signaling by inhibiting γ-secretase reversed myeloid PTEN deficiency-mediated protection in ischemia/reperfusion-triggered liver inflammation with reduced FOXP3 + and increased retinoid A receptor-related orphan receptor gamma t-mediated interleukin 17A expression in ischemic livers. Moreover, knockdown of β-catenin or PPARγ in PTEN-deficient macrophages inhibited Jagged-1/Notch activation and reduced FOXP3 + Treg induction, leading to increased proinflammatory mediators in macrophage/T cell cocultures. In conclusion, our findings demonstrate that PTEN-β-catenin signaling is a novel regulator involved in modulating Treg development and provides a potential therapeutic target in liver IRI. Liver Transplantation 23 813-825 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  15. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury.

    Science.gov (United States)

    Pachori, Alok S; Melo, Luis G; Hart, Melanie L; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D; Stahl, Gregory L; Pratt, Richard E; Dzau, Victor J

    2004-08-17

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  16. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    Science.gov (United States)

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-08-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  17. 13-Methyltetradecanoic acid mitigates cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Juan Yu

    2016-01-01

    Full Text Available 13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inflammatory, antioxidant and anti-apoptotic effects. Previous studies mainly focused on peripheral nerve injury, but seldom on the central nervous system. We investigated whether these properties of 13-methyltetradecanoic acid have a neuroprotective effect on focal cerebral ischemia/reperfusion injury, and detected the expression of basic fibroblast growth factor and vascular endothelial growth factor. This study established rat models of middle cerebral artery occlusion/reperfusion injury by ischemia for 2 hours and reperfusion for 24 hours. At the beginning of reperfusion, 13-methyltetradecanoic acid 10, 40 or 80 mg/kg was injected into the tail vein. Results found that various doses of 13-methyltetradecanoic acid effectively reduced infarct volume, mitigate cerebral edema, and increased the mRNA and protein expression of basic fibroblast growth factor and vascular endothelial growth factor at 24 hours of reperfusion. The effect was most significant in the 13-methyltetradecanoic acid 40 and 80 mg/kg groups. The findings suggest that 13-methyltetradecanoic acid can relieve focal ischemia/reperfusion injury immediately after reperfusion, stimulate the upregulation of basic fibroblast growth factor and vascular endothelial growth factor to exert neuroprotective effects.

  18. Breath pentane as a potential biomarker for survival in hepatic ischemia and reperfusion injury--a pilot study.

    Directory of Open Access Journals (Sweden)

    Changsong Wang

    Full Text Available BACKGROUND: Exhaled pentane, which is produced as a consequence of reactive oxygen species-mediated lipid peroxidation, is a marker of oxidative stress. Propofol is widely used as a hypnotic agent in intensive care units and the operating room. Moreover, this agent has been reported to inhibit lipid peroxidation by directly scavenging reactive oxygen species. In this study, using a porcine liver ischemia-reperfusion injury model, we have evaluated the hypothesis that high concentrations of breath pentane are related to adverse outcome and that propofol could reduce breath pentane and improve liver injury and outcome in swine in this situation. METHODOLOGY/PRINCIPAL FINDINGS: Twenty male swine were assigned to two groups: propofol (n = 10 and chloral hydrate groups (n = 10. Hepatic ischemia was induced by occluding the portal inflow vessels. Ischemia lasted for 30 min, followed by reperfusion for 360 min. Exhaled and blood pentane concentrations in the chloral hydrate group markedly increased 1 min after reperfusion and then decreased to baseline. Breath and blood pentane concentrations in the propofol group increased 1 min after reperfusion but were significantly lower than in the chloral hydrate group. A negative correlation was found between breath pentane levels and survival in the chloral hydrate group. The median overall survival was 251 min after reperfusion (range 150-360 min in the chloral hydrate group. All of the swine were alive in the propofol group. CONCLUSIONS: Monitoring of exhaled pentane may be useful for evaluating the severity of hepatic ischemia-reperfusion injury and aid in predicting the outcome; propofol may improve the outcome in this situation.

  19. Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury.

    Science.gov (United States)

    Llacuna, Laura; Bárcena, Cristina; Bellido-Martín, Lola; Fernández, Laura; Stefanovic, Milica; Marí, Montserrat; García-Ruiz, Carmen; Fernández-Checa, José C; García de Frutos, Pablo; Morales, Albert

    2010-10-01

    Growth arrest-specific gene 6 (GAS6) promotes growth and cell survival during tissue repair and development in different organs, including the liver. However, the specific role of GAS6 in liver ischemia/reperfusion (I/R) injury has not been previously addressed. Here we report an early increase in serum GAS6 levels after I/R exposure. Moreover, unlike wild-type (WT) mice, Gas6(-/-) mice were highly sensitive to partial hepatic I/R, with 90% of the mice dying within 12 hours of reperfusion because of massive hepatocellular injury. I/R induced early hepatic protein kinase B (AKT) phosphorylation in WT mice but not in Gas6(-/-) mice without significant changes in c-Jun N-terminal kinase phosphorylation or nuclear factor kappa B translocation, whereas hepatic interleukin-1β (IL-1β) and tumor necrosis factor (TNF) messenger RNA levels were higher in Gas6(-/-) mice versus WT mice. In line with the in vivo data, in vitro studies indicated that GAS6 induced AKT phosphorylation in primary mouse hepatocytes and thus protected them from hypoxia-induced cell death, whereas GAS6 diminished lipopolysaccharide-induced cytokine expression (IL-1β and TNF) in murine macrophages. Finally, recombinant GAS6 treatment in vivo not only rescued GAS6 knockout mice from severe I/R-induced liver damage but also attenuated hepatic damage in WT mice after I/R. Our data have revealed GAS6 to be a new player in liver I/R injury that is emerging as a potential therapeutic target for reducing postischemic hepatic damage.

  20. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    Science.gov (United States)

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Differential Effects of Three Techniques for Hepatic Vascular Exclusion during Resection for Liver Cirrhosis on Hepatic Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Changjun Jia

    2018-01-01

    Full Text Available Background/Aims. Hepatic ischemia-reperfusion (I/R injury is a serious concern during hepatic vascular occlusion. The objectives of this study were to assess effects of three techniques for hepatic vascular occlusion on I/R injury and to explore the underlying mechanisms. Methods. Liver cirrhotic rats had undertaken Pringle maneuver (PR, hemihepatic vascular occlusion (HH, or hepatic blood inflow occlusion without hemihepatic artery control (WH. Levels of tumor necrosis factor alpha (TNF-α, nuclear factor kappa B (NF-κB, toll-like receptor 4 (TLR4, TIR-domain-containing adapter-inducing interferon-β (TRIF, and hemeoxygenase 1 (HMOX1 were assayed. Results. The histopathologic analysis displayed that liver harm was more prominent in the PR group, but similar in the HH and WH groups. The HH and WH groups responded to hepatic I/R inflammation similarly but better than the PR group. Mechanical studies suggested that TNF-α/NF-κB signaling and TLR4/TRIF transduction pathways were associated with the differential effects. In addition, the HH and WH groups had significantly higher levels of hepatic HMOX1 (P<0.05 than the PR group. Conclusions. HH and WH confer better preservation of liver function and protection than the Pringle maneuver in combating I/R injury. Upregulation of HMOX1 may lead to better protection and clinical outcomes after liver resection.

  2. Melatonin and mitochondrial function during ischemia/reperfusion injury.

    Science.gov (United States)

    Ma, Zhiqiang; Xin, Zhenlong; Di, Wencheng; Yan, Xiaolong; Li, Xiaofei; Reiter, Russel J; Yang, Yang

    2017-11-01

    Ischemia/reperfusion (IR) injury occurs in many organs and tissues, and contributes to morbidity and mortality worldwide. Melatonin, an endogenously produced indolamine, provides a strong defense against IR injury. Mitochondrion, an organelle for ATP production and a decider for cell fate, has been validated to be a crucial target for melatonin to exert its protection against IR injury. In this review, we first clarify the mechanisms underlying mitochondrial dysfunction during IR and melatonin's protection of mitochondria under this condition. Thereafter, special focus is placed on the protective actions of melatonin against IR injury in brain, heart, liver, and others. Finally, we explore several potential future directions of research in this area. Collectively, the information compiled here will serve as a comprehensive reference for the actions of melatonin in IR injury identified to date and will hopefully aid in the design of future research and increase the potential of melatonin as a therapeutic agent.

  3. Effects of Urtica dioica on hepatic ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Kandis, Hayati; Karapolat, Sami; Yildirim, Umran; Saritas, Ayhan; Gezer, Suat; Memisogullari, Ramazan

    2010-01-01

    To evaluate the effects of Urtica dioica on hepatic ischemia-reperfusion injury. Thirty adult male Wistar albino rats were divided into three groups: sham group (group 1), control group (group 2), and Urtica dioica group (group 3). All the rats were exposed to hepatic ischemia for 60 min, followed by 60 min of reperfusion. In group 2, a total of 2 ml/kg 0.9% saline solution was given intraperitoneally. In group 3, a total of 2 ml/kg Urtica dioica was given intraperitoneally. At the end of the procedure, liver tissue and blood samples were taken from all rats. Serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, ceruloplasmin, catalase, paraoxonase, arylesterase, and lipid hydroperoxide levels were measured. Liver tissue histopathologies were also evaluated by light microscopy. Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were significantly higher in group 2 than in group 1, and significantly lower in group 3 than in group 2. Also, group 2 had higher serum lipid hydroperoxides and ceruloplasmin levels but lower catalase, paraoxonase, and arylesterase levels than group 1. In group 3, serum lipid hydroperoxides and ceruloplasmin levels were significantly lower, and catalase, paraoxonase, and arylesterase levels were higher than those in group 2. Histopathological examination showed that liver tissue damage was significantly decreased in group 3 compared with group 2. Urtica dioica has a protective effect on the liver in hepatic ischemia-reperfusion-injured rats.

  4. Evaluation of Pulmonary Reperfusion Injury in Rats Undergoing Mesenteric Ischemia and Reperfusion and Protective Effect of Postconditioning on this Process

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Marques dos Santos

    2015-10-01

    Full Text Available ABSTRACT INTRODUCTION: Some publications have demonstrated the presence of lung reperfusion injury in mesenteric ischemia and reperfusion (I/R, but under to diverse methods. Postconditioning has been recognized as effective in preventing reperfusion injury in various organs and tissues. However, its effectiveness has not been evaluated in the prevention of lung reperfusion injury after mesenteric ischemia and reperfusion. OBJECTIVE: To evaluate the presence of pulmonary reperfusion injury and the protective effect of ischemic postconditioning on lung parenchyma in rats submitted to mesenteric ischemia and reperfusion. METHODS: Thirty Wistar rats were distributed into three groups: group A (10 rats, which was held mesenteric ischemia (30 minutes and reperfusion (60 minutes; group B (10 rats, ischemia and reperfusion, interspersed by postconditioning with two alternating cycles of reperfusion and reocclusion, for two minutes each; and group C (10 rats, ischemia and reperfusion interleaved by postconditioning with four alternating cycles of reperfusion and reocclusion of 30 seconds each. Finally, it was resected the upper lung lobe for histological analysis. RESULTS: There were mild lung lesions (grade 1 in all samples. There was no statistical difference between groups 1 and 2 (P >0.05. CONCLUSION: The mesenteric ischemia and reperfusion in rats for thirty and sixty minutes, respectively, caused mild reperfusion injury in lung. Postconditioning was not able to minimize the remote reperfusion injury and there was no difference comparing two cycles of two minutes with four cycles of 30 seconds.

  5. Change in iron metabolism in rats after renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Guang-Liang Xie

    Full Text Available Previous studies have indicated that hepcidin, which can regulate iron efflux by binding to ferroportin-1 (FPN1 and inducing its internalization and degradation, acts as the critical factor in the regulation of iron metabolism. However, it is unknown whether hepcidin is involved in acute renal ischemia/reperfusion injury (IRI. In this study, an IRI rat model was established via right renal excision and blood interruption for 45 min in the left kidney, and iron metabolism indexes were examined to investigate the change in iron metabolism and to analyze the role of hepcidin during IRI. From 1 to 24 h after renal reperfusion, serum creatinine and blood urea nitrogen were found to be time-dependently increased with different degrees of kidney injury. Regular variations in iron metabolism indexes in the blood and kidneys were observed in renal IRI. Renal iron content, serum iron and serum ferritin increased early after reperfusion and then declined. Hepcidin expression in the liver significantly increased early after reperfusion, and its serum concentration increased beginning at 8 h after reperfusion. The splenic iron content decreased significantly in the early stage after reperfusion and then increased time-dependently with increasing reperfusion time, and the hepatic iron content showed a decrease in the early stage after reperfusion. The early decrease of the splenic iron content and hepatic iron content might indicate their contribution to the increase in serum iron in renal IRI. In addition, the duodenal iron content showed time-dependently decreased since 12 h after reperfusion in the IRI groups compared to the control group. Along with the spleen, the duodenum might contribute to the decrease in serum iron in the later stage after reperfusion. The changes in iron metabolism indexes observed in our study demonstrate an iron metabolism disorder in renal IRI, and hepcidin might be involved in maintaining iron homeostasis in renal IRI. These

  6. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice.

    Science.gov (United States)

    Mitchell, James R; Verweij, Mariëlle; Brand, Karl; van de Ven, Marieke; Goemaere, Natascha; van den Engel, Sandra; Chu, Timothy; Forrer, Flavio; Müller, Cristina; de Jong, Marion; van IJcken, Wilfred; IJzermans, Jan N M; Hoeijmakers, Jan H J; de Bruin, Ron W F

    2010-02-01

    Dietary restriction (DR) extends lifespan and increases resistance to multiple forms of stress, including ischemia reperfusion injury to the brain and heart in rodents. While maximal effects on lifespan require long-term restriction, the kinetics of onset of benefits against acute stress is not known. Here, we show that 2-4 weeks of 30% DR improved survival and kidney function following renal ischemia reperfusion injury in mice. Brief periods of water-only fasting were similarly effective at protecting against ischemic damage. Significant protection occurred within 1 day, persisted for several days beyond the fasting period and extended to another organ, the liver. Protection by both short-term DR and fasting correlated with improved insulin sensitivity, increased expression of markers of antioxidant defense and reduced expression of markers of inflammation and insulin/insulin-like growth factor-1 signaling. Unbiased transcriptional profiling of kidneys from mice subject to short-term DR or fasting revealed a significant enrichment of signature genes of long-term DR. These data demonstrate that brief periods of reduced food intake, including short-term daily restriction and fasting, can increase resistance to ischemia reperfusion injury in rodents and suggest a rapid onset of benefits of DR in mammals.

  7. Effect of heme oxygenase-1 on the protection of ischemia reperfusion injury of bile duct in rats after liver transplantation.

    Science.gov (United States)

    Zhan, Xi; Zhang, Zhiqing; Huang, Hanfei; Zhang, Yujun; Zeng, Zhong

    2018-06-01

    To investigate the effect of heme oxygenase-1 (HO-1) on the ischemic reperfusion injury (IRI) of bile duct in rat models after liver transplantation. 320 SD rats were equally and randomly divided into 5 groups, which were group A receiving injection of 3×10 8 /pfu/ml adenovirus (adv), group B with donor receiving Adv-HO-1 and recipient receiving Adv-HO-1-siRNA, group C with donor and recipient both receiving Adv-HO-1, group D with donor receiving Adv-HO-1-siRNA and recipient receiving Adv-HO-1, and group E with donor and recipient both receiving Adv-HO-1-siRNA at 24h before liver transplantation. Donor liver was stored in UW liquid at 4°C followed by measuring HO-1 level by western blot before transplantation. On d1, d3, d7 and d14, serum and liver was isolated for analysis of liver function, inflammatory cell infiltration by H&E staining, ultrastructure of liver by transmission electron microscopy as well as the expression of HO-1, Bsep, Mrp2 and Ntcp by western blot. Compared with group D and E, group B and C displayed improved liver function as demonstrated by lower level of ALT, AST, LDH, TBIL, ALP and GGT, increased secretion of TBA and PL as well as expression of transporter proteins (Bsep, Mrp2 and Ntcp), reduced inflammatory cells infiltration and liver injury. Our study demonstrated that overexpression of HO-1 in donor liver can ameliorate the damage to bile duct and liver, and improved liver function, suggesting HO-1 might be a new therapeutic target in the treatment of IRI after liver transplantation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory responses in alcoholic fatty liver condition

    International Nuclear Information System (INIS)

    Kim, Seok-Joo; Lee, Sun-Mee

    2012-01-01

    Alcoholic fatty liver is susceptible to secondary stresses such as ischemia/reperfusion (I/R). Baicalin is an active component extracted from Scutellaria baicalensis, which is widely used in herbal preparations for treatment of hepatic diseases and inflammatory disorders. This study evaluated the potential beneficial effect of baicalin on I/R injury in alcoholic fatty liver. Rats were fed an alcohol liquid diet or a control isocaloric diet for 5 weeks, and then subjected to 60 min of hepatic ischemia and 5 h of reperfusion. Baicalin (200 mg/kg) was intraperitoneally administered 24 and 1 h before ischemia. After reperfusion, baicalin attenuated the increases in serum alanine aminotransferase activity, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels in alcoholic fatty liver. The increased levels of TNF-α and IL-6 mRNA expression and inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expressions increased after reperfusion, which were higher in ethanol-fed animals, were attenuated by baicalin. In ethanol-fed animals, baicalin attenuated the increases in toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 protein expressions and the nuclear translocation of NF-κB after reperfusion. In conclusion, our findings suggest that baicalin ameliorates I/R-induced hepatocellular damage by suppressing TLR4-mediated inflammatory responses in alcoholic fatty liver. -- Highlights: ► Baicalin attenuates hepatic I/R-induced inflammation in alcoholic fatty liver. ► Baicalin downregulates TLR4, MyD88 expression during I/R in alcoholic fatty liver. ► Baicalin attenuates NF-κB nuclear translocation during I/R in alcoholic fatty liver.

  9. As bases experimentais da lesão por isquemia e reperfusão do fígado: revisão The experimental basis of hepatic ischemia-reperfusion injury: review

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo C. Miranda

    2004-01-01

    Full Text Available O transplante hepático tornou-se o procedimento de escolha para o tratamento da doença hepática terminal. Não obstante o sucesso da cirurgia, a disfunção pós-operatória do fígado enxertado ainda representa importante causa de morbidade e mortalidade. O restabelecimento do fluxo sangüíneo ao fígado recém transplantado impõe a ele nova agressão, agravando a lesão causada pelo período de isquemia. Este fenômeno pouco compreendido é conhecido como lesão por isquemia e reperfusão e envolve disfunção endotelial, seqüestro de leucócitos e agregação de plaquetas, lesão por radicais livre de oxigênio, e distúrbios da microcirculação hepática. Essa revisão discute os vários aspectos fisiopatológicos que estão envolvidos na lesão por isquemia e reperfusão do fígado.Hepatic transplantation has become the main treatment for patients with terminal hepatic disease. Whatever the success of such surgery, the hepatic dysfunction associated with liver transplantation is an important cause of morbidity and mortality. Paradoxically, on restoring the blood supply, the liver is subjected to a further insult, aggravating the injury already caused by ischemia. This complex phenomenon is termed ischemia-reperfusion injury and involves endothelial cell dysfunction, leukocyte entrapment, platelet aggregation, oxidant stress and hepatic microcirculatory perfusion failure. This review discusses the physiopathlogicals mechanisms of liver ischemia-reperfusion injury.

  10. Hepatic ischemia and reperfusion injury in the absence of myeloid cell-derived COX-2 in mice.

    Directory of Open Access Journals (Sweden)

    Sergio Duarte

    Full Text Available Cyclooxygenase-2 (COX-2 is a mediator of hepatic ischemia and reperfusion injury (IRI. While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2-M/-M to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2-M/-M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2-M/-M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2-M/-M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2-M/-M and WT mice. COX-2-M/-M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9 expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2-M/-M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype.

  11. Impact of recombinant globular adiponectin on early warm ischemia-reperfusion injury in rat bile duct after liver transplantation.

    Science.gov (United States)

    Xia, Yang; Gong, Jian-Ping

    2014-09-19

    Adiponectin (APN) is an adipocyte protein with anti-diabetic properties, which has been recently revealed to have anti-inflammatory activity in organ ischemia- reperfusion injury (IRI). However, little is known about its function in bile duct IRI after liver transplantation. Therefore, we investigated whether APN affects early warm IRI in rat bile duct using a liver autologous transplantation model. In our study, rats were randomly divided into three experimental groups: a sham group, a IRI group, and a APN group. The serum enzyme levels and BDISS scores of bile duct histology associated with bile duct injury, decreased after administration of APN. Subsequently, the expression of proinflammatory cytokines, such as tumor necrosis factor(TNF-α),.interleukin-6(IL-6) and myeloperoxidase (MPO) decreased. Furthermore, pretreatment with APN suppressed the activation of nuclear factor-kappa B (NF-κB) (p65), a transcription factor involved in inflammatory reactions, compared to other two groups. Administration of APN also downregulated the expression of Fas protein and attenuated caspase-3 activity to decrease bile duct apoptosis. Our results illustrate that APN protects the rat bile duct against early warm IRI by suppressing the inflammatory response and hepatocyte apoptosis, and NF-κB (p65) plays an important role in this process.

  12. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Renata Salatti Ferrari

    2015-01-01

    Full Text Available Ischemia-reperfusion (IR injury is directly related to the formation of reactive oxygen species (ROS, endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.

  13. VENOUS AIR-EMBOLISM, PRESERVATION REPERFUSION INJURY, AND THE PRESENCE OF INTRAVASCULAR AIR COLLECTIONS IN HUMAN DONOR LIVERS - A RETROSPECTIVE CLINICAL-STUDY

    NARCIS (Netherlands)

    WOLF, RFE; SLUITER, WJ; BALLAST, A; VANDAM, RM; SLOOFF, MJH

    In human liver transplantation, air embolism is seldom encountered after graft reperfusion. Nevertheless, despite adequate flushing and clamping routines, air emboli have been reported in transesophageal echocardiography (TEE) studies performed during the reperfusion phase, We retrospectively

  14. Mathematical Modeling of Ischemia-Reperfusion Injury and Postconditioning Therapy.

    Science.gov (United States)

    Fong, D; Cummings, L J

    2017-11-01

    Reperfusion (restoration of blood flow) after a period of ischemia (interruption of blood flow) can paradoxically place tissues at risk of further injury: so-called ischemia-reperfusion injury or IR injury. Recent studies have shown that postconditioning (intermittent periods of further ischemia applied during reperfusion) can reduce IR injury. We develop a mathematical model to describe the reperfusion and postconditioning process following an ischemic insult, treating the blood vessel as a two-dimensional channel, lined with a monolayer of endothelial cells that interact (respiration and mechanotransduction) with the blood flow. We investigate how postconditioning affects the total cell density within the endothelial layer, by varying the frequency of the pulsatile flow and the oxygen concentration at the inflow boundary. We find that, in the scenarios we consider, the pulsatile flow should be of high frequency to minimize cellular damage, while oxygen concentration at the inflow boundary should be held constant, or subject to only low-frequency variations, to maximize cell proliferation.

  15. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    International Nuclear Information System (INIS)

    Cao Canxiang; Yang Qingwu; Lv Fenglin; Cui Jie; Fu Huabin; Wang Jingzhou

    2007-01-01

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-α and IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity

  16. Sodium 4-Phenylbutyrate Attenuates Myocardial Reperfusion Injury by Reducing the Unfolded Protein Response.

    Science.gov (United States)

    Takatori, Osamu; Usui, Soichiro; Okajima, Masaki; Kaneko, Shuichi; Ootsuji, Hiroshi; Takashima, Shin-Ichiro; Kobayashi, Daisuke; Murai, Hisayoshi; Furusho, Hiroshi; Takamura, Masayuki

    2017-05-01

    The unfolded protein response (UPR) plays a pivotal role in ischemia-reperfusion (I/R) injury in various organs such as heart, brain, and liver. Sodium 4-phenylbutyrate (PBA) reportedly acts as a chemical chaperone that reduces UPR. In the present study, we evaluated the effect of PBA on reducing the UPR and protecting against myocardial I/R injury in mice. Male C57BL/6 mice were subjected to 30-minute myocardial I/R, and were treated with phosphate-buffered saline (as a vehicle) or PBA. At 4 hours after reperfusion, mice treated with PBA had reduced serum cardiac troponin I levels and numbers of apoptotic cells in left ventricles (LVs) in myocardial I/R. Infarct size had also reduced in mice treated with PBA at 48 hours after reperfusion. At 2 hours after reperfusion, UPR markers, including eukaryotic initiation of the factor 2α-subunit, activating transcription factor-6, inositol-requiring enzyme-1, glucose-regulated protein 78, CCAAT/enhancer-binding protein (C/EBP) homologous protein, and caspase-12, were significantly increased in mice treated with vehicle compared to sham-operated mice. Administration of PBA significantly reduced the I/R-induced increases of these markers. Cardiac function and dimensions were assessed at 21 days after I/R. Sodium 4-phenylbutyrate dedicated to the improvement of cardiac parameters deterioration including LV end-diastolic diameter and LV fractional shortening. Consistently, PBA reduced messenger RNA expression levels of cardiac remodeling markers such as collagen type 1α1, brain natriuretic peptide, and α skeletal muscle actin in LV at 21 days after I/R. Unfolded protein response mediates myocardial I/R injury. Administration of PBA reduces the UPR, apoptosis, infarct size, and preserved cardiac function. Hence, PBA may be a therapeutic option to attenuate myocardial I/R injury in clinical practice.

  17. Lipopolysaccharide preconditioning protects hepatocytes from ischemia/reperfusion injury (IRI through inhibiting ATF4-CHOP pathway in mice.

    Directory of Open Access Journals (Sweden)

    Jianhua Rao

    Full Text Available BACKGROUND: Low-dose lipopolysaccharide (LPS preconditioning-induced liver protection has been demonstrated during ischemia-reperfusion injury (IRI in several organs but has not been sufficiently elucidated underlying causal mechanism. This study investigated the role of low-dose LPS preconditioning on ATF4-CHOP pathway as well as the effects of the pathway on tissue injury and inflammation in a mouse model of liver partial-warm IRI. METHODS: LPS (100 µg/kg/d was injected intraperitoneally two days before ischemia. Hepatic injury was evaluated based on serum alanine aminotransferase levels, histopathology, and caspase-3 activity. The ATF4-CHOP pathway and its related apoptotic molecules were investigated after reperfusion. The role of LPS preconditioning on apoptosis and ATF4-CHOP pathway was examined in vitro. Moreover, the effects of the ATF4-CHOP pathway on apoptosis, Caspase-12, and Caspase-3 were determined with ATF4 small interfering RNA (siRNA. Inflammatory cytokine expression was also checked after reperfusion. Inflammatory cytokines and related signaling pathways were analyzed in vitro in macrophages treated by LPS preconditioning or ATF4 siRNA. RESULTS: LPS preconditioning significantly attenuated liver injury after IRI. As demonstrated by in vitro experiments, LPS preconditioning significantly reduced the upregulation of the ATF4-CHOP pathway and inhibited Caspase-12 and Caspase-3 activation after IRI. Later experiments showed that ATF4 knockdown significantly suppressed CHOP, cleaved caspase-12 and caspase-3 expression, as well as inhibited hepatocellular apoptosis. In addition, in mice pretreated with LPS, TNF-α and IL-6 were inhibited after reperfusion, whereas IL-10 was upregulated. Similarly, low-dose LPS significantly inhibited TNF-α, IL-6, ATF4-CHOP pathway, NF-κB pathway, and ERK1/2 in high-dose LPS-stimulated macrophages, whereas IL-10 and cytokine signaling (SOCS-3 suppressor were induced. Importantly, ATF4 siRNA is

  18. Effect of Intervention in Mast Cell Function Before Reperfusion on Renal Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Fei Tong

    2016-06-01

    Full Text Available Background/Aims: Mast cells are sparsely distributed in the kidneys under normal conditions; however, the number of mast cells increases dramatically during renal ischemia/reperfusion injury (RI/RI. When mast cells are stimulated, numerous mediators are released, and under pathological conditions, they produce a wide range of biological effects. The aim of this study was to investigate the effect of intervention in mast cell function before reperfusion on RI/RI. Methods: Sprague-Dawley (SD rats (n=50 were randomized into five groups: sham group, ischemia/reperfusion (I/R group, cromolyn sodium treatment group (CS+I/R group, ketotifen treatment group (K+I/Rgroup, and compound 48/80 treatment group (C+I/R group. I/R injury was induced by bilateral renal artery and vein occlusion for 45 min followed by 24 h of reperfusion. The agents were intravenously administered 5 min before reperfusion through the tail vein. The serum levels of blood urea nitrogen(BUN, serum creatinine (Scr and histamine and the kidney levels of malondialdehyde (MDA, superoxide dismutase (SOD, tumor necrosis factor α (TNF-α and interleukin-6 (IL-6 were assessed. The expression of intracellular adhesion molecule-1 (ICAM-1 in renal tissue was also measured. Results: I/R injury resulted in severe renal injury, as demonstrated by a large increase in injury scores; serum levels of BUN, Scr and histamine; and kidney levels of MDA, TNF-α, and IL-6; this was accompanied by reduced SOD activity and upregulated ICAM-1 expression. Treatment with cromolyn sodium or ketotifen markedly alleviated I/R-mediated kidney injury, whereas compound 48/80 further aggravated kidney injury. Conclusion: Intervention in mast cell activity prior to reperfusionhas a strong effect on RI/RI.

  19. Effects of Urtica dioica on hepatic ischemia‐reperfusion injury in rats

    Science.gov (United States)

    Kandis, Hayati; Karapolat, Sami; Yildirim, Umran; Saritas, Ayhan; Gezer, Suat; Memisogullari, Ramazan

    2010-01-01

    OBJECTIVES: To evaluate the effects of Urtica dioica on hepatic ischemia‐reperfusion injury. METHODS: Thirty adult male Wistar albino rats were divided into three groups: sham group (group 1), control group (group 2), and Urtica dioica group (group 3). All the rats were exposed to hepatic ischemia for 60 min, followed by 60 min of reperfusion. In group 2, a total of 2 ml/kg 0.9% saline solution was given intraperitoneally. In group 3, a total of 2 ml/kg Urtica dioica was given intraperitoneally. At the end of the procedure, liver tissue and blood samples were taken from all rats. Serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, ceruloplasmin, catalase, paraoxonase, arylesterase, and lipid hydroperoxide levels were measured. Liver tissue histopathologies were also evaluated by light microscopy. RESULTS: Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were significantly higher in group 2 than in group 1, and significantly lower in group 3 than in group 2. Also, group 2 had higher serum lipid hydroperoxides and ceruloplasmin levels but lower catalase, paraoxonase, and arylesterase levels than group 1. In group 3, serum lipid hydroperoxides and ceruloplasmin levels were significantly lower, and catalase, paraoxonase, and arylesterase levels were higher than those in group 2. Histopathological examination showed that liver tissue damage was significantly decreased in group 3 compared with group 2. CONCLUSIONS: Urtica dioica has a protective effect on the liver in hepatic ischemia‐reperfusion‐injured rats. PMID:21340227

  20. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Kim, Jin Yong; Lee, Dong Yun; Kang, Sukmo; Miao, Wenjun; Kim, Hyungjun; Lee, Yonghyun; Jon, Sangyong

    2017-07-01

    Hepatic ischemia-reperfusion injury (IRI) remains a major concern in liver transplantation and resection, despite continuing efforts to prevent it. Accumulating evidence suggests that bilirubin possesses antioxidant, anti-inflammatory and anti-apoptotic properties. However, despite obvious potential health benefits of bilirubin, its clinical applications are limited by its poor solubility. We recently developed bilirubin nanoparticles (BRNPs) consisting of polyethylene glycol (PEG)-conjugated bilirubin. Here, we sought to investigate whether BRNPs protect against IRI in the liver by preventing oxidative stress. BRNPs exerted potent antioxidant and anti-apoptotic activity in primary hepatocytes exposed to hydrogen peroxide, a precursor of reactive oxygen species (ROS). In a model of hepatic IRI in mice, BRNP preconditioning exerted profound protective effects against hepatocellular injury by reducing oxidative stress, pro-inflammatory cytokine production, and recruitment of neutrophils. They also preferentially accumulated in IRI-induced inflammatory lesions. Collectively, our findings indicate that BRNP preconditioning provides a simple and safe approach that can be easily monitored in the blood like endogenous bilirubin, and could be a promising strategy to protect against IRI in a clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Pretreatment with soluble ST2 reduces warm hepatic ischemia/reperfusion injury

    International Nuclear Information System (INIS)

    Yin Hui; Huang Baojun; Yang Heng; Huang Yafei; Xiong Ping; Zheng Fang; Chen Xiaoping; Chen Yifa; Gong Feili

    2006-01-01

    The interleukin-1 receptor-like protein ST2 exists in both membrane-bound (ST2L) and soluble form (sST2). ST2L has been found to play an important regulatory role in Th2-type immune response, but the function of soluble form of ST2 remains to be elucidated. In this study, we report the protective effect of soluble ST2 on warm hepatic ischemia/reperfusion injury. We constructed a eukaryotic expression plasmid, psST2-Fc, which expresses functional murine soluble ST2-human IgG1 Fc (sST2-Fc) fusion protein. The liver damage after ischemia/reperfusion was significantly attenuated by the expression of this plasmid in vivo. sST2-Fc remarkably inhibited the activation of Kupffer cells and the production of proinflammatory mediators TNF-α and IL-6. Furthermore, the levels of TLR4 mRNA and the nuclear translocation of NF-κB were also suppressed by pretreatment with sST2-Fc. These results thus identified soluble ST2 as a negative regulator in hepatic I/R injury, possibly via ST2-TLR4 pathway

  2. Postconditioning attenuates acute intestinal ischemia–reperfusion injury

    Directory of Open Access Journals (Sweden)

    Ilker Sengul

    2013-03-01

    Full Text Available The aim of this study was to test the hypothesis that postconditioning (POC would reduce the detrimental effects of the acute intestinal ischemia–reperfusion (I/R compared to those of the abrupt onset of reperfusion. POC has a protective effect on intestinal I/R injury by inhibiting events in the early minutes of reperfusion in rats. Twenty-four Wistar–Albino rats were subjected to the occlusion of superior mesenteric artery for 30 minutes, then reperfused for 120 minutes, and randomized to the four different modalities of POC: (1 control (no intervention; (2 POC-3 (three cycles of 10 seconds of reperfusion–reocclusion, 1 minute total intervention; (3 POC-6 (six cycles of 10 seconds of reperfusion–reocclusion, 2 minutes total intervention; and (4 sham operation (laparotomy only. The arterial blood samples [0.3 mL total creatine kinase (CK and 0.6 mL malondialdehyde (MDA] and the intestinal mucosal MDA were collected from each after reperfusion. POC, especially POC-6, was effective in attenuating postischemic pathology by decreasing the intestinal tissue MDA levels, serum total CK activity, inflammation, and total histopathological injury scores. POC exerted a protective effect on the intestinal mucosa by reducing the mesenteric oxidant generation, lipid peroxidation, and neutrophil accumulation. The six-cycle algorithm demonstrated the best protection.

  3. Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Hailong Yu

    Full Text Available Carvacrol (CAR, a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. This neuroprotection was in a dose-dependent manner. Post-treatment with CAR still provided protection on infarct volume when it was administered intraperitoneally at 2 h after reperfusion; however, intracerebroventricular post-treatment reduced infarct volume even when the mice were treated with CAR at 6 h after reperfusion. These findings indicated that CAR has an extended therapeutic window, but delivery strategies may affect the protective effects of CAR. Further, we found that CAR significantly decreased the level of cleaved caspase-3, a marker of apoptosis, suggesting the anti-apoptotic activity of CAR. Finally, our data indicated that CAR treatment increased the level of phosphorylated Akt and the neuroprotection of CAR was reversed by a PI3K inhibitor LY-294002, demonstrating the involvement of the PI3K/Akt pathway in the anti-apoptotic mechanisms of CAR. Due to its safety and wide use in the food industry, CAR is a promising agent to be translated into clinical trials.

  4. Gradual reintroduction of oxygen reduces reperfusion injury in cat stomach

    International Nuclear Information System (INIS)

    Perry, M.A.; Wadhwa, S.S.

    1988-01-01

    Recent studies have shown that oxygen-derived free radicals are responsible for a major portion of ischemia-reperfusion injury in the stomach. The oxygen radicals are produced during perfusion when oxygen delivery to the tissue increases. In the present study the authors investigate the effect on mucosal injury of regulating the rate of reintroduction of oxygen to the stomach after ischemia. Local gastric ischemia was achieved by reducing celiac artery pressure to 30 mmHg for 1 h. Ischemic injury was assessed by measuring the loss of 51 Cr-labeled red blood cells across the gastric mucosa. Mucosal blood loss was negligible before and during the ischemia period but increased during reperfusion. When blood flow to the stomach was gradually returned to normal after ischemia, the mucosal blood loss was reduced. If the stomach was vascularly perfused with low Po 2 blood for 1 h after ischemia before being returned to normal arterial perfusion, the mucosal blood loss was also reduced. When the stomach was made hypoxemic for 1 h rather than ischemic by perfusing the vasculature with low Po 2 blood then reperfused with normoxic blood, there was very little mucosal bleeding. The data indicate that gastric mucosal bleeding after ischemia is reduced if the tissue is returned slowly to a normal Po 2 . These findings support the concept that reperfusion injury is due largely to the production of oxygen radicals. The low level of injury produced by hypoxemia indicates that hypoxia per se makes only a minor contribution to reperfusion injury in the stomach

  5. Hydrogen sulfide preconditioning protects rat liver against ischemia/reperfusion injury by activating Akt-GSK-3β signaling and inhibiting mitochondrial permeability transition.

    Directory of Open Access Journals (Sweden)

    Qingqing Zhang

    Full Text Available Hydrogen sulfide (H2S is the third most common endogenously produced gaseous signaling molecule, but its impact on hepatic ischemia/reperfusion (I/R injury, especially on mitochondrial function, remains unclear. In this study, rats were randomized into Sham, I/R, ischemia preconditioning (IPC or sodium hydrosulfide (NaHS, an H2S donor preconditioning groups. To establish a model of segmental (70% warm hepatic ischemia, the hepatic artery, left portal vein and median liver lobes were occluded for 60 min and then unclamped to allow reperfusion. Preconditioning with 12.5, 25 or 50 μmol/kg NaHS prior to the I/R insult significantly increased serum H2S levels, and, similar to IPC, NaHS preconditioning decreased alanine aminotransferase (ALT and aspartate aminotransferase (AST levels in the plasma and prevented hepatocytes from undergoing I/R-induced necrosis. Moreover, a sub-toxic dose of NaHS (25 μmol/kg did not disrupt the systemic hemodynamics but dramatically inhibited mitochondrial permeability transition pore (MPTP opening and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that NaHS preconditioning markedly increased the expression of phosphorylated protein kinase B (p-Akt, phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β and B-cell lymphoma-2 (Bcl-2 and decreased the release of mitochondrial cytochrome c and cleaved caspase-3/9 levels. Therefore, NaHS administration prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through the inhibition of MPTP opening and the activation of Akt-GSK-3β signaling. Furthermore, this study provides experimental evidence for the clinical use of H2S to reduce liver damage after perioperative I/R injury.

  6. Protective effect of Mangifera indica L. extract (Vimang) on the injury associated with hepatic ischaemia reperfusion.

    Science.gov (United States)

    Sánchez, Gregorio Martínez; Rodríguez H, María A; Giuliani, Attilia; Núñez Sellés, Alberto J; Rodríguez, Niurka Pons; León Fernández, Olga Sonia; Re, L

    2003-03-01

    The effect of Mangifera indica L. extract (Vimang) on treatment of injury associated with hepatic ischaemia/reperfusion was tested. Vimang protects from the oxidative damage induced by oxygen-based free radicals as shown in several in vitro test systems conducted. The ability of Vimang to reduce liver damage was investigated in rats undergoing right-lobe blood fl ow occlusion for 45 min followed by 45 min of reperfusion. The ischaemia/reperfusion model leads to an increase of transaminase (ALT and AST), membrane lipid peroxidation, tissue neutrophil in filtration, DNA fragmentation, loss of protein -SH groups, cytosolic Ca2+ overload and a decrease of catalase activity. Oral administration of Vimang (50, 110 and 250 mg/kg, b.w.) 7 days before reperfusion, reduced transaminase levels and DNA fragmentation in a dose dependent manner (p Vimang also restored the cytosolic Ca2+ levels and inhibited polymorphonuclear migration at a dose of 250 mg/kg b.w., improved the oxidation of total and non protein sulfhydryl groups and prevented modification in catalase activity, uric acid and lipid peroxidation markers (p Vimang could be a useful new natural drug for preventing oxidative damage during hepatic injury associated with free radical generation. Copyright 2003 John Wiley & Sons, Ltd.

  7. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    Science.gov (United States)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  8. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury.

    Science.gov (United States)

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-08

    Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.

  9. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    Science.gov (United States)

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits.

  10. The Protective Effect of Curcumin versus Sodium Nitroprusside on Intestinal Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Dalia M Saleh

    2014-04-01

    Full Text Available Objective: Intestinal ischemia/reperfusion (I/R injury is a signi and #64257;cant complication in abdominal vascular surgery. Various treatment modalities have been applied, however, the role of nitric oxide (NO in this type of injury is still controversial. Aim of the work: To compare the protective effect of curcumin vs sodium nitroprusside (SNP, NO donor on intestine and remote organs following intestinal I/R injury. Methods: Rats were divided into 4 groups (sham-control, I/R, curcumin+I/R, SNP+I/R. I/R was induced by 30 min clamping the superior mesenteric artery (SMA then 60 min reperfusion. Rats were pretreated with either curcumin (80 mg/kg/day with food for one week or SNP (5 mg/kg, i.p prior to I/R. Intestinal levels of malondialdehyde (MDA, Nitrite/nitrate, superoxide dismutase (SOD and reduced glutathione (GSH were measured. The sections from jejunum, lungs and liver were stained with hematoxylin and eosin (H and E for histopathological examination. Immunohistochemical stains for eNOS expression in the jejunum and cleaved caspase-3 for apoptosis in the lungs and liver were done. Results: I/R resulted in both local and remote organs in and #64258;ammation associated with signi and #64257;cant increase in MDA and nitrate/nitrite and significant decrease in SOD and GSH levels. These histological and biochemical changes were improved by pretreatment with curcumin and to less extent by SNP. Immunohistochemical examination showed significant decrease in eNOS activity in the I/R group which was improved by curcumin pretreatment not by SNP. Liver apoptosis was improved by curcumin while lung apoptosis was improved by SNP. Conclusion: Curcumin ameliorates I/R-induced local and remote organs damage through its anti-inflammatory and antiapoptotic effect. SNP may be beneficial in I/R injury but not as significant as curcumin. [J Interdiscipl Histopathol 2014; 2(2.000: 74-87

  11. Alveolar epithelial fluid transport capacity in reperfusion lung injury after lung transplantation.

    Science.gov (United States)

    Ware, L B; Golden, J A; Finkbeiner, W E; Matthay, M A

    1999-03-01

    Reperfusion lung injury is an important cause of morbidity and mortality after orthotopic lung transplantation. The purpose of this study was to investigate the function of the alveolar epithelium in the setting of reperfusion lung injury. Simultaneous samples of pulmonary edema fluid and plasma were collected from eight patients with severe post-transplantation reperfusion edema. The edema fluid to plasma protein ratio was measured, an indicator of alveolar-capillary barrier permeability. The initial edema fluid to plasma protein ratio was > 0.75 in six of eight patients, confirming the presence of increased permeability of the alveolar-capillary barrier. Graft ischemic time was positively correlated with the degree of permeability (r = 0.77, p mean +/- SD). Alveolar fluid clearance was calculated from serial samples in six patients. Intact alveolar fluid clearance correlated with less histologic injury, rapid resolution of hypoxemia, and more rapid resolution of radiographic infiltrates. The two patients with no net alveolar fluid clearance had persistent hypoxemia and more severe histologic injury. This study provides the first direct evidence that increased permeability to protein is the usual cause of reperfusion edema after lung transplantation, with longer ischemic times associated with greater permeability to protein in the transplanted lung. The high rates of alveolar fluid clearance indicate that the fluid transport capacity of the alveolar epithelium may be well preserved in the allograft despite reperfusion lung injury. The ability to reabsorb fluid from the alveolar space was a marker of less severe reperfusion injury, whereas the degree of alveolar-capillary barrier permeability to protein was not. Measurement of alveolar fluid clearance may be useful to assess the severity of reperfusion lung injury and to predict outcome when pulmonary edema develops after lung transplantation.

  12. Experimental study of pulmonary thromboembolism ischemia-reperfusion injury in canine model

    International Nuclear Information System (INIS)

    Li Jianjun; Zhai Renyou; Zhang Dongpo; Huang Qiang; Yu Ping; Dai Dingke; Bao Na

    2009-01-01

    Objective: To establish a canine model of pulmonary thromboembolism ischemia- reperfusion injury (PTE IRI) that may be used for imaging study. Methods: Ten male and 10 female healthy mongrel canines with (18.6±0.8) kg/body weight, were used. A Swan-Ganz catheter was introduced into the right internal jugular vein via a preset percutaneous sheath using the Seldinger technique, and then was with further insertion the pulmonary artery. Balloon occlusion of the right inferior lobe pulmonary artery for 4 hours was followed by removing the catheter and ending with 4 hours of reperfusion. CT was performed before ischemia, 4 h after ischemia and 4 h after reperfusion. At last, dogs were killed and the bilateral inferior lung tissues were prepared for the examination by light and electronic microscopy. Results: All canine models were successfully developed pulmonary thromboembolism ischemia-reperfusion injury. The examination of CT, light and electron microscopy consistently indicated the presence of permeability pulmonary edema after reperfusion. Conclusions: A closed-chest canine model in vivo of pulmonary thromboembolism ischemia-reperfusion injury can be established with virtual pathophysiological process in human and be as well as for imaging experimental study. (authors)

  13. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Chen, Xing-miao; Chen, Han-sen; Xu, Ming-jing; Shen, Jian-gang

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.

  14. Research progress of NLRP3 inflammasome in organ ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Pei-lei LI

    2017-04-01

    Full Text Available Ischemia-reperfusion injury is a common pathophysiological process in organ transplantation, ischemic stroke and organ resection surgery, and also an important factor causing organ dysfunction and severe postoperative complications. How to avoid or mitigate organ ischemia-reperfusion injury has always been a research hotspot. NLRP3 Inflammasome has been considered to be an important link in inflammatory response. It has an indispensable role in maturation process of IL -1βand IL -18. We reviewed the research in recent yeas about the role of NLRP3 Inflammasome in organ ischemia-reperfusion injury in this paper. DOI: 10.11855/j.issn.0577-7402.2017.02.17

  15. Isoflurane administration before ischemia and during reperfusion attenuates ischemia/reperfusion-induced injury of isolated rabbit lungs.

    Science.gov (United States)

    Liu, R; Ishibe, Y; Ueda, M; Hang, Y

    1999-09-01

    To investigate the effects of isoflurane on ischemia/ reperfusion (IR)-induced lung injury, we administered isoflurane before ischemia or during reperfusion. Isolated rabbit lungs were divided into the following groups: control (n = 6), perfused and ventilated for 120 min without ischemia; ISO-control (n = 6), 1 minimum alveolar anesthetic concentration (MAC) isoflurane was administered for 30 min before 120 min continuous perfusion; IR (n = 6), ischemia for 60 min, followed by 60 min reperfusion; IR-ISO1 and IR-ISO2, ischemia followed by reperfusion and 1 MAC (n = 6) or 2 MAC (n = 6) isoflurane for 60 min; ISO-IR (n = 6), 1 MAC isoflurane was administered for 30 min before ischemia, followed by IR. During these maneuvers, we measured total pulmonary vascular resistance (Rt), coefficient of filtration (Kfc), and lung wet to dry ratio (W/D). The results indicated that administration of isoflurane during reperfusion inhibited an IR-induced increase in Kfc and W/D ratio. Furthermore, isoflurane at 2 MAC, but not 1 MAC, significantly inhibited an IR-induced increase in Rt. The administration of isoflurane before ischemia significantly attenuated the increase in IR-induced Kfc, W/D, and Rt. Our results suggest that the administration of isoflurane before ischemia and during reperfusion protects against ischemia-reperfusion-induced injury in isolated rabbit lungs.

  16. Hepatic ischemia-reperfusion injury: roles of Ca2+ and other intracellular mediators of impaired bile flow and hepatocyte damage.

    Science.gov (United States)

    Nieuwenhuijs, Vincent B; De Bruijn, Menno T; Padbury, Robert T A; Barritt, Gregory J

    2006-06-01

    Liver resection and liver transplantation have been successful in the treatment of liver tumors and end-stage liver disease. This success has led to an expansion in the pool of patients potentially treatable by liver surgery and, in the case of transplantation, to a shortage of liver donors. At present, there are significant numbers of potential candidates for liver resection and liver donation who have fatty livers, are aged, or have livers damaged by chemotherapy. All of these are at high risk for ischemic reperfusion (IR) injury. The aims of this review are to assess current knowledge of the clinical effectiveness of ischemic preconditioning and intermittent ischemia in reducing IR damage in liver surgery; to evaluate the use of bile flow as a sensitive indicator of IR liver damage; and to analyze the molecular mechanisms, especially intracellular Ca2+, involved in IR injury and ischemic preconditioning. It is concluded that bile flow is a sensitive indicator of IR injury. Together with reactive oxygen species (ROS) and other extracellular and intracellular signaling molecules, intracellular Ca2+ in hepatocytes plays a key role in the normal regulation of bile flow and in IR-induced injury and cell death. Ischemic preconditioning is an effective strategy to reduce IR injury but there is considerable scope for improvement, especially in patients with fatty and aged livers. The development of effective new strategies to reduce IR injury will depend on improved understanding of the molecular mechanisms involved, especially by gaining a better perspective of the relative importance of the various intrahepatocyte signaling pathways involved.

  17. The effect of adhesion molecule blockade on pulmonary reperfusion injury.

    Science.gov (United States)

    Levine, Adrian J; Parkes, Karen; Rooney, Stephen J; Bonser, Robert S

    2002-04-01

    Selectins are the molecules involved in the initial adhesion of the activated neutrophil on pulmonary endothelium. We investigated the efficacy of selectin blockade in a selective (monoclonal antibody RMP-1) and nonselective (Fucoidin) manner in pulmonary reperfusion injury. Groups of six rat lungs were flushed with University of Wisconsin solution then stored at 4 degrees C for 4 hours. They then underwent sanguinous reperfusion for 30 minutes during which functional measures (gas exchange, pulmonary artery pressure, and airway pressure) of lung performance were made. After reperfusion we estimated their capillary filtration coefficient (Kfc units g/cm water/minute/g wet lung tissue) using a gravimetric technique. Four groups were studied: group I had no reperfusion, group II had 30 minutes of reperfusion, group III had infusion of 20 mg/kg Fucoidin before reperfusion, and group IV had infusion of 20 microg/mL RMP-1 before reperfusion. Reperfusion injury was found between groups I and II by an increase in capillary filtration coefficient (1.048 +/- 0.316 to 3.063 +/- 0.466, p Kfc than group II (0.967 +/- 0.134 and 1.205 +/- 0.164, respectively, p < 0.01). There was no significant functional difference between groups II, III, and IV. Reperfusion-induced hyperpermeability was ameliorated by selective (RMP-1) and nonselective (Fucoidin) selectin blockade.

  18. Role of eicosanoids and white blood cells in the beneficial effects of limited reperfusion after ischemia-reperfusion injury in skeletal muscle

    International Nuclear Information System (INIS)

    Anderson, R.J.; Cambria, R.A.; Dikdan, G.; Lysz, T.W.; Hobson, R.W. II

    1990-01-01

    Limiting the rate of reperfusion blood flow has been shown to be beneficial locally in models of ischemia-reperfusion injury. We investigated the effects of this on eicosanoids (thromboxane B2, 6-keto-PGF1 alpha, and leukotriene B4), white blood cell activation, and skeletal muscle injury as quantitated by triphenyltetrazolium chloride and technetium-99m pyrophosphate after ischemia-reperfusion injury in an isolated gracilis muscle model in 16 anesthetized dogs. One gracilis muscle in each dog was subjected to 6 hours of ischemia followed by 1 hour of limited reperfusion and then by a second hour of normal reperfusion. The other muscle was subjected to 6 hours of ischemia followed by 2 hours of normal reperfusion. Six dogs each were used as normal reperfusion controls (NR) and limited reperfusion controls (LR), with 5 dogs being treated with a thromboxane synthetase inhibitor (LR/TSI) and another five with a leukotriene inhibitor (LR/LI). LR in all three groups (LR, LR/TSI, and LR/LI) showed a benefit in skeletal muscle injury as measured by triphenyltetrazolim chloride and technetium-99m pyrophosphate when compared with NR. However, there was no significant difference between the groups with LR regarding eicosanoid levels and white blood cell activation when compared with NR. These results demonstrate that LR produces benefits by mechanisms other than those dependent upon thromboxane A2, prostacyclin, or white blood cell activation

  19. The pathways by which mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Chun Luo

    2015-01-01

    Full Text Available Several studies have demonstrated that mild hypothermia exhibits a neuroprotective role and it can inhibit endothelial cell apoptosis following ischemia/reperfusion injury by decreasing casp-ase-3 expression. It is hypothesized that mild hypothermia exhibits neuroprotective effects on neurons exposed to ischemia/reperfusion condition produced by oxygen-glucose deprivation. Mild hypothermia significantly reduced the number of apoptotic neurons, decreased the expression of pro-apoptotic protein Bax and increased mitochondrial membrane potential, with the peak of anti-apoptotic effect appearing between 6 and 12 hours after the injury. These findings indicate that mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury by protecting the mitochondria and that the effective time window is 6-12 hours after ischemia/reperfusion injury

  20. Isoproterenol reduces ischemia-reperfusion lung injury despite beta-blockade.

    Science.gov (United States)

    Takashima, Seiki; Schlidt, Scott A; Koukoulis, Giovanna; Sevala, Mayura; Egan, Thomas M

    2005-06-01

    If lungs could be retrieved from non-heart-beating donors (NHBDs), the shortage of lungs for transplantation could be alleviated. The use of lungs from NHBDs is associated with a mandatory warm ischemic interval, which results in ischemia-reperfusion injury upon reperfusion. In an earlier study, rat lungs retrieved 2-h postmortem from NHBDs had reduced capillary leak measured by filtration coefficient (Kfc) when reperfused with isoproterenol (iso), associated with an increase in lung tissue levels of cyclic AMP (cAMP). The objective was to determine if this decrease in Kfc was because of beta-stimulation, or would persist despite beta-blockade. Donor rats were treated intraperitoneally with beta-blockade (propranolol or pindolol) or carrier, sacrificed, and lungs were retrieved immediately or 2 h postmortem. The lungs were reperfused with or without iso and the beta-blockers in the reperfusate. Outcome measures were Kfc, wet:dry weight ratio (W/D), lung levels of adenine nucleotides and cAMP. Lungs retrieved immediately after death had normal Kfc and W/D. After 2 h of ischemia, Kfc and W/D were markedly elevated in controls (no drug) and lungs reperfused with beta-blockers alone. Isoproterenol-reperfusion decreased Kfc and W/D significantly (P < 0.01) even in the presence of beta-blockade. Lung cAMP levels were increased only with iso in the absence of beta-blockade. The attenuation of ischemia-reperfusion injury because of iso occurs even in the presence of beta-blockade, and may not be a result of beta-stimulated increased cAMP.

  1. Metabolic changes in the pig liver during warm ischemia and reperfusion measured by microdialysis

    DEFF Research Database (Denmark)

    Kannerup, Anne-Sofie; Funch-Jensen, Peter; Grønbaek, Henning

    2008-01-01

    AIM: Portal triad clamping can cause ischemia-reperfusion injury. The aim of the study was to monitor metabolic changes by microdialysis before, during, and after warm ischemia in the pigliver. MATERIAL AND METHODS: Eight pigs underwent laparotomy followed by ischemia by Pringle's maneuver. One...... in transaminase levels was observed. CONCLUSIONS: During and after warm ischemia, there were profound metabolic changes in the pigliver observed with an increase in lactate, glucose, glycerol, and the lactate-pyruvate ratio. There were no differences between the four liver lobes, indicating the piglivers...

  2. How to protect liver graft with nitric oxide

    Institute of Scientific and Technical Information of China (English)

    Hassen Ben Abdennebi; Mohamed Amine Zaoualí; Izabel Alfany-Fernandez; Donia Tabka; Joan Roselló-Catafau

    2011-01-01

    Organ preservation and ischemia reperfusion injury associated with liver transplantation play an important role in the induction of graft injury. One of the earliest events associated with the reperfusion injury is endothelial cell dysfunction. It is generally accepted that endothelial nitric oxide synthase (e-NOS) is cell-protective by mediating vasodilatation, whereas inducible nitric oxide synthase mediates liver graft injury after transplantation. We conducted a critical review of the literature evaluating the potential applications of regulating and promoting e-NOS activity in liver preservation and transplantation, showing the most current evidence to support the concept that enhanced bioavailability of NO derived from e-NOS is detrimental to ameliorate graft liver preservation, as well as preventing subsequent graft reperfusion injury. This review deals mainly with the beneficial effects of promoting "endogenous" pathways for NO generation, via e-NOS inducer drugs in cold preservation solution, surgical strategies such as ischemic preconditioning, and alternative "exogenous" pathways that focus on the enrichment of cold storage liquid with NO donors. Finally, we also provide a basic bench-to-bed side summary of the liver physiology and cell signalling mechanisms that account for explaining the e-NOS protective effects in liver preservation and transplantation.

  3. Decoy receptor 3 analogous supplement protects steatotic rat liver from ischemia–reperfusion injury

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Li

    2017-07-01

    Conclusion: Using multimodal in vivo and in vitro approaches, we found that DcR3a analogue was a potential agent to protect steatotic liver against IR injury by simultaneous blockade of the multiple IR injury-related pathogenic changes.

  4. Edaravone, A Free Radical Scavenger, Ameliorates Early-Phase Ischemia/Reperfusion Injury and Increases Hepatocyte Proliferation in A Pig Hepatectomy Model

    Directory of Open Access Journals (Sweden)

    Mitsugi Shimoda

    2012-06-01

    Full Text Available Background: The effects of Edaravone (Edr on hepatic ischemia-reperfusion (I/R injury and liver regeneration were examined in a pig hepatectomy model. Methods: One hour of ischemia was induced by occluding the vessels and the bile duct of the right and median lobes. About a 40% left hepatectomy was performed after reperfusion. Six animals received Edr (3 mg/kg/h intravenously and six control animals received saline just before reperfusion. Remnant liver volume, hemodynamics, and levels of AST, ALT, LDH, and LA were compared between the groups. Expression of TGF-beta1 and IL-6 mRNA in hepatic tissues was examined using RT-PCR. Apoptosis and cell proliferation were demonstrated by TUNEL and Ki-67 staining, respectively. Results: Serum AST, LDH, and LA levels were significantly lower at 3 hours and 1 week after perfusion in animals that had received Edr. In the Edr group, hepatic tissues showed a greater tendency for the expression of TGF-beta1 mRNA to be inhibited at 1 week, although the difference was not significant. Also at 1 week in the Edr group, TUNEL-positive cells in the hepatic sinusoidal endothelium were significantly fewer, and Ki-67-positive cells were significantly more numerous. Conclusion: We conclude that Edr reduces hepatic injury and supports tissue regeneration after I/R injury in this pig model. [Arch Clin Exp Surg 2012; 1(3.000: 142-150

  5. Passive targeting of lipid-based nanoparticles to mouse cardiac ischemia-reperfusion injury

    NARCIS (Netherlands)

    Geelen, T.; Paulis, L.E.M.; Coolen, B.F.; Nicolay, K.; Strijkers, G.J.

    2013-01-01

    Reperfusion therapy is commonly applied after a myocardial infarction. Reperfusion, however, causes secondary damage. An emerging approach for treatment of ischemia-reperfusion (IR) injury involves the delivery of therapeutic nanoparticles to the myocardium to promote cell survival and

  6. Effect of olive leaf alcoholic extract on renal ischemia/reperfusion injury in adult male rats

    Directory of Open Access Journals (Sweden)

    mohammadreza nasirzade

    2014-05-01

    Full Text Available Ischemia-reperfusion (I/R is present at various degrees in kidney transplants. Several studies suggest that renal ischemia reperfusion (RIR can induce acute kidney injuryLiver diseases and neurological disorders related to kidney injury is a common clinical problem. Olive leaf is a significant source of bioactive phenolic compounds. They have better antioxidant capacity, anti-inflammatory and radical scavenging. In this study 50 male rats were allocated randomly into 5 groups: control (intact animals, group-1(I/R 60min+olive leaf extract, group-2 (I/R 60min, group-3(I/R 120min+olive leaf extractand group-4(I/R 120min.The animals  received 100 mg/kg olive leaf extract in0.5 ml drinking water using gavage for 28 days. Other animals received 0.5 ml normal saline by gavages. At the end of the treatment, the level of antioxidant enzymes including TAC, MDA, SOD and GPX were determined in renal tissue. Administration of olive leaf extract can significantly increase activity of TAC, GPX and SOD in group1and 3compared with group2and4. Also, MDA level in renal tissue of treated groups was significantly lower than ischemia-reperfusion groups (p

  7. Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter

    International Nuclear Information System (INIS)

    Schwartz, Justin; Holmuhamedov, Ekhson; Zhang, Xun; Lovelace, Gregory L.; Smith, Charles D.; Lemasters, John J.

    2013-01-01

    Minocycline, a tetracycline-derived compound, mitigates damage caused by ischemia/reperfusion (I/R) injury. Here, 19 tetracycline-derived compounds were screened in comparison to minocycline for their ability to protect hepatocytes against damage from chemical hypoxia and I/R injury. Cultured rat hepatocytes were incubated with 50 μM of each tetracycline-derived compound 20 min prior to exposure to 500 μM iodoacetic acid plus 1 mM KCN (chemical hypoxia). In other experiments, hepatocytes were incubated in anoxic Krebs–Ringer–HEPES buffer at pH 6.2 for 4 h prior to reoxygenation at pH 7.4 (simulated I/R). Tetracycline-derived compounds were added 20 min prior to reperfusion. Ca 2+ uptake was measured in isolated rat liver mitochondria incubated with Fluo-5N. Cell killing after 120 min of chemical hypoxia measured by propidium iodide (PI) fluorometry was 87%, which decreased to 28% and 42% with minocycline and doxycycline, respectively. After I/R, cell killing at 120 min decreased from 79% with vehicle to 43% and 49% with minocycline and doxycycline. No other tested compound decreased killing. Minocycline and doxycycline also inhibited mitochondrial Ca 2+ uptake and suppressed the Ca 2+ -induced mitochondrial permeability transition (MPT), the penultimate cause of cell death in reperfusion injury. Ru360, a specific inhibitor of the mitochondrial calcium uniporter (MCU), also decreased cell killing after hypoxia and I/R and blocked mitochondrial Ca 2+ uptake and the MPT. Other proposed mechanisms, including mitochondrial depolarization and matrix metalloprotease inhibition, could not account for cytoprotection. Taken together, these results indicate that minocycline and doxycycline are cytoprotective by way of inhibition of MCU. - Highlights: • Minocycline and doxycycline are the only cytoprotective tetracyclines of those tested • Cytoprotective tetracyclines inhibit the MPT and mitochondrial calcium and iron uptake. • Cytoprotective tetracyclines protect

  8. Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Justin; Holmuhamedov, Ekhson; Zhang, Xun; Lovelace, Gregory L.; Smith, Charles D. [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC (United States); Lemasters, John J., E-mail: JJLemasters@musc.edu [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC (United States); Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (United States)

    2013-11-15

    Minocycline, a tetracycline-derived compound, mitigates damage caused by ischemia/reperfusion (I/R) injury. Here, 19 tetracycline-derived compounds were screened in comparison to minocycline for their ability to protect hepatocytes against damage from chemical hypoxia and I/R injury. Cultured rat hepatocytes were incubated with 50 μM of each tetracycline-derived compound 20 min prior to exposure to 500 μM iodoacetic acid plus 1 mM KCN (chemical hypoxia). In other experiments, hepatocytes were incubated in anoxic Krebs–Ringer–HEPES buffer at pH 6.2 for 4 h prior to reoxygenation at pH 7.4 (simulated I/R). Tetracycline-derived compounds were added 20 min prior to reperfusion. Ca{sup 2+} uptake was measured in isolated rat liver mitochondria incubated with Fluo-5N. Cell killing after 120 min of chemical hypoxia measured by propidium iodide (PI) fluorometry was 87%, which decreased to 28% and 42% with minocycline and doxycycline, respectively. After I/R, cell killing at 120 min decreased from 79% with vehicle to 43% and 49% with minocycline and doxycycline. No other tested compound decreased killing. Minocycline and doxycycline also inhibited mitochondrial Ca{sup 2+} uptake and suppressed the Ca{sup 2+}-induced mitochondrial permeability transition (MPT), the penultimate cause of cell death in reperfusion injury. Ru360, a specific inhibitor of the mitochondrial calcium uniporter (MCU), also decreased cell killing after hypoxia and I/R and blocked mitochondrial Ca{sup 2+} uptake and the MPT. Other proposed mechanisms, including mitochondrial depolarization and matrix metalloprotease inhibition, could not account for cytoprotection. Taken together, these results indicate that minocycline and doxycycline are cytoprotective by way of inhibition of MCU. - Highlights: • Minocycline and doxycycline are the only cytoprotective tetracyclines of those tested • Cytoprotective tetracyclines inhibit the MPT and mitochondrial calcium and iron uptake. • Cytoprotective

  9. Intestinal Ischaemia-Reperfusion Injury and Semen Characteristics ...

    African Journals Online (AJOL)

    olayemitoyin

    Nigeria. Summary: Increasing production of goats takes their reproductive ... of testicular damage and infertility and is a form of ischaemia-reperfusion injury. ... concentration, percentage of normal sperm cells, abnormal sperm cells and ...

  10. Is ursodeoxycholic acid crucial for ischemia/reperfusion-induced ovarian injury in rat ovary?

    Science.gov (United States)

    Akdemir, Ali; Sahin, Cagdas; Erbas, Oytun; Yeniel, Ahmet O; Sendag, Fatih

    2015-08-01

    Ursodeoxycholic acid is frequently used in cholestatic liver diseases. Also, it protects hepatocytes against oxidative stress induced by hydrophobic bile acids. We investigated the anti-oxidative effect of ursodeoxycholic acid on ischemia/reperfusion injury after ovarian de-torsion in rats. We designed five study groups. Group 1 (n = 6): Sham-operated group; group 2 (n = 6): torsion group; group 3 (n = 6): torsion and ursodeoxycholic acid, group 4 (n = 7): torsion/de-torsion group; and group 5 (n = 7): torsion/de-torsion and ursodeoxycholic acid. After that, ovarian samples were obtained and examined histologically and tissue levels of malondialdehyde were measured. Follicular degeneration, edema and inflammatory cells were significantly decreased in groups 3 and 5 in comparison with groups 2 and 4. Also, groups 4 and 5 were compared in terms of vascular congestion and hemorrhage and these were found to be significantly decreased in group 5. In addition, levels of malondialdehyde were significantly decreased in groups 3 and 5 in comparison with groups 2 and 4. We concluded that ursodeoxycholic acid might be useful to protect the ovary against ischemia and reperfusion injury.

  11. Endotoxin tolerance does not limit mild ischemia-reperfusion injury in humans in vivo.

    NARCIS (Netherlands)

    Draisma, A.; Goeij, M. de; Wouters, C.W.; Riksen, N.P.; Oyen, W.J.G.; Rongen, G.A.P.J.M.; Boerman, O.C.; Deuren, M. van; Hoeven, J.G. van der; Pickkers, P.

    2009-01-01

    Animal studies have shown that previous exposure to lipopolysaccharide (LPS) can limit ischemia-reperfusion injury. We tested whether pretreatment with LPS also protects against ischemia-reperfusion injury in humans in vivo. Fourteen volunteers received bolus injections of incremental dosages of LPS

  12. Receptor for advanced glycation end products involved in lung ischemia reperfusion injury in cardiopulmonary bypass attenuated by controlled oxygen reperfusion in a canine model.

    Science.gov (United States)

    Rong, Jian; Ye, Sheng; Liang, Meng-ya; Chen, Guang-xian; Liu, Hai; Zhang, Jin-Xin; Wu, Zhong-kai

    2013-01-01

    Controlled oxygen reperfusion could protect the lung against ischemia-reperfusion injury in cardiopulmonary bypass (CPB) by downregulating high mobility group box 1 (HMGB1), a high affinity receptor of HMGB1. This study investigated the effect of controlled oxygen reperfusion on receptor for advanced glycation end products (RAGE) expression and its downstream effects on lung ischemia-reperfusion injury. Fourteen canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest followed by 90 minutes of reperfusion. Animals were randomized to receive 80% FiO2 during the entire procedure (control group) or to a test group receiving a controlled oxygen reperfusion protocol. Pathologic changes in lung tissues, RAGE expression, serum interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were evaluated. The lung pathologic scores after 25 and 90 minutes of reperfusion were significantly lower in the test group compared with the control group (p RAGE expression, TNF-α, and IL-6 were downregulated by controlled oxygen treatment (p RAGE might be involved in the lung ischemia-reperfusion injury in canine model of CPB, which was downregulated by controlled oxygen reperfusion.

  13. Methimazole protects lungs during hepatic ischemia-reperfusion injury in rats: an effect not induced by hypothyroidism.

    Science.gov (United States)

    Tütüncü, Tanju; Demirci, Cagatay; Gözalan, Ugur; Yüksek, Yunus Nadi; Bilgihan, Ayse; Kama, Nuri Aydin

    2007-05-01

    Hepatic ischemia-reperfusion injury may lead to remote organ failure with mortal respiratory dysfunction. The aim of the present study was to analyze the possible protective effects of methimazole on lungs after hepatic ischemia-reperfusion injury. Forty male Wistar albino rats were randomized into five groups: a control group, in which bilateral pulmonary lobectomy was done; a hepatic ischemia-reperfusion group, in which bilateral pulmonary lobectomy was done after hepatic ischemia-reperfusion; a thyroidectomy-ischemia-reperfusion group (total thyroidectomy followed by, 7 days later, bilateral pulmonary lobectomy after hepatic ischemia-reperfusion); a methimazole-ischemia-reperfusion group (following methimazole administration for 7 days, bilateral pulmonary lobectomy was done after hepatic ischemia-reperfusion); and a methimazole +L-thyroxine-ischemia-reperfusion group (following methimazole and L-thyroxine administration for 7 days, bilateral pulmonary lobectomy was performed after hepatic ischemia-reperfusion). Pulmonary tissue specimens were evaluated histopathologically and for myeloperoxidase and malondialdehyde levels. All of the ischemia-reperfusion intervention groups had higher pulmonary injury scoring indices than the control group (P < 0.001). Pulmonary injury index of the ischemia-reperfusion group was higher than that of both the methimazole-supplemented hypothyroid and euthyroid groups (P = 0028; P = 0,038, respectively) and was similar to that of the thyroidectomized group. Pulmonary tissue myeloperoxidase and malondialdehyde levels in the ischemia-reperfusion group were similar with that in the thyroidectomized rats but were significantly higher than that in the control, and both the methimazole-supplemented hypothyroid and euthyroid groups. Methimazole exerts a protective role on lungs during hepatic ischemia-reperfusion injury, which can be attributed to its anti-inflammatory and anti-oxidant effects rather than hypothyroidism alone.

  14. Oxidized tissue proteins after intestinal reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Schanaider Alberto

    2005-01-01

    Full Text Available PURPOSE: To analyse if the carbonyl proteins measurement could be validated as a method that allows the identification of an intestinal oxidative stress after ischemia and reperfusion injury. METHODS: Twenty-five male Wistar rats (n =21 weighting 200 to 250g were divided into three groups. Group I - control (n = 10. Group II - sham (n = 5 and Group III (n = 10 subjected to 60 minutes of intestinal ischemia and equal period of reperfusion. For this purpose it was clamped the superior mesenteric artery in its distal third. Histological changes and carbonyl protein levels were determined in the samples of all groups. In group III, samples of both normal and reperfused ileal segment were studied. RESULTS: All the reperfused segments showed mucosal and submucosal swelling and inflammatory infiltrate of the lamina propria. Levels of carbonyl protein rose in group III, including in the non-ischemic segments. The sensitivity and specificity of the carbonyl protein tissue levels were respectively 94% and 88%. CONCLUSION: The carbonyl protein method is a useful biologic marker of oxidative stress after the phenomenon of intestinal ischemia and reperfusion in rats. It was also noteworthy that the effects of oxidative stress could be seen far from the locus of the primary injury.

  15. Intratracheal Administration of Small Interfering RNA Targeting Fas Reduces Lung Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Del Sorbo, Lorenzo; Costamagna, Andrea; Muraca, Giuseppe; Rotondo, Giuseppe; Civiletti, Federica; Vizio, Barbara; Bosco, Ornella; Martin Conte, Erica L; Frati, Giacomo; Delsedime, Luisa; Lupia, Enrico; Fanelli, Vito; Ranieri, V Marco

    2016-08-01

    Lung ischemia-reperfusion injury is the main cause of primary graft dysfunction after lung transplantation and results in increased morbidity and mortality. Fas-mediated apoptosis is one of the pathologic mechanisms involved in the development of ischemia-reperfusion injury. We hypothesized that the inhibition of Fas gene expression in lungs by intratracheal administration of small interfering RNA could reduce lung ischemia-reperfusion injury in an ex vivo model reproducing the procedural sequence of lung transplantation. Prospective, randomized, controlled experimental study. University research laboratory. C57/BL6 mice weighing 28-30 g. Ischemia-reperfusion injury was induced in lungs isolated from mice, 48 hours after treatment with intratracheal small interfering RNA targeting Fas, control small interfering RNA, or vehicle. Isolated lungs were exposed to 6 hours of cold ischemia (4°C), followed by 2 hours of warm (37°C) reperfusion with a solution containing 10% of fresh whole blood and mechanical ventilation with constant low driving pressure. Fas gene expression was significantly silenced at the level of messenger RNA and protein after ischemia-reperfusion in lungs treated with small interfering RNA targeting Fas compared with lungs treated with control small interfering RNA or vehicle. Silencing of Fas gene expression resulted in reduced edema formation (bronchoalveolar lavage protein concentration and lung histology) and improvement in lung compliance. These effects were associated with a significant reduction of pulmonary cell apoptosis of lungs treated with small interfering RNA targeting Fas, which did not affect cytokine release and neutrophil infiltration. Fas expression silencing in the lung by small interfering RNA is effective against ischemia-reperfusion injury. This approach represents a potential innovative strategy of organ preservation before lung transplantation.

  16. Gender difference and sex hormone production in rodent renal ischemia reperfusion injury and repair

    Directory of Open Access Journals (Sweden)

    Ghazali Daniel

    2011-06-01

    Full Text Available Abstract Background Several lines of evidence suggest a protective effect of female sex hormones in several organs subjected to ischemia-reperfusion injury. The aim of the study was to investigate sex hormone production in male rats after a renal ischemia-reperfusion sequence and analyze the influence of gender differences on tissue remodelling during the recovery process. Method Age-matched sexually mature male and female rats were subjected to 60 min of renal unilateral ischemia by pedicle clamping with contralateral nephrectomy and followed for 1 or 5 days after reperfusion. Plasma creatinine, systemic testosterone, progesterone and estradiol levels were determined. Tubular injury, cell proliferation and inflammation, were evaluated as well as proliferating cell nuclear antigen, vimentin and translocator protein (TSPO expressions by immunohistochemistry. Results After 1 and 5 days of reperfusion, plasma creatinine was significantly higher in males than in females, supporting the high mortality in this group. After reperfusion, plasma testosterone levels decreased whereas estradiol significantly increased in male rats. Alterations of renal function, associated with tubular injury and inflammation persisted during the 5 days post-ischemia-reperfusion, and a significant improvement was observed in females at 5 days of reperfusion. Proliferating cell nuclear antigen and vimentin expression were upregulated in kidneys from males and attenuated in females, in parallel to injury development. TSPO expression was transiently increased in proximal tubules in male rats. Conclusions After ischemia, renal function recovery and tissue injury is gender-dependent. These differences are associated with a modulation of sex hormone production and a modification of tissue remodeling and proliferative cell processes.

  17. Altering CO2 during reperfusion of ischemic cardiomyocytes modifies mitochondrial oxidant injury.

    Science.gov (United States)

    Lavani, Romeen; Chang, Wei-Tien; Anderson, Travis; Shao, Zuo-Hui; Wojcik, Kimberly R; Li, Chang-Qing; Pietrowski, Robert; Beiser, David G; Idris, Ahamed H; Hamann, Kimm J; Becker, Lance B; Vanden Hoek, Terry L

    2007-07-01

    Acute changes in tissue CO2 and pH during reperfusion of the ischemic heart may affect ischemia/reperfusion injury. We tested whether gradual vs. acute decreases in CO2 after cardiomyocyte ischemia affect reperfusion oxidants and injury. Comparative laboratory investigation. Institutional laboratory. Embryonic chick cardiomyocytes. Microscope fields of approximately 500 chick cardiomyocytes were monitored throughout 1 hr of simulated ischemia (PO2 of 3-5 torr, PCO2 of 144 torr, pH 6.8), followed by 3 hrs of reperfusion (PO2 of 149 torr, PCO2 of 36 torr, pH 7.4), and compared with cells reperfused with relative hypercarbia (PCO2 of 71 torr, pH 6.8) or hypocarbia (PCO2 of 7 torr, pH 7.9). The measured outcomes included cell viability (via propidium iodide) and oxidant generation (reactive oxygen species via 2',7'-dichlorofluorescin oxidation and nitric oxide [NO] via 4,5-diaminofluorescein diacetate oxidation). Compared with normocarbic reperfusion, hypercarbia significantly reduced cell death from 54.8% +/- 4.0% to 26.3% +/- 2.8% (p < .001), significantly decreased reperfusion reactive oxygen species (p < .05), and increased NO at a later phase of reperfusion (p < .01). The NO synthase inhibitor N-nitro-L-arginine methyl ester (200 microM) reversed this oxidant attenuation (p < .05), NO increase (p < .05), and the cardioprotection conferred by hypercarbic reperfusion (increasing death to 54.3% +/- 6.0% [p < .05]). Conversely, hypocarbic reperfusion increased cell death to 80.4% +/- 4.5% (p < .01). It also increased reactive oxygen species by almost two-fold (p = .052), without affecting the NO level thereafter. Increased reactive oxygen species was attenuated by the mitochondrial complex III inhibitor stigmatellin (20 nM) when given at reperfusion (p < .05). Cell death also decreased from 85.9% +/- 4.5% to 52.2% +/- 6.5% (p < .01). The nicotinamide adenine dinucleotide phosphate oxidase inhibitor apocynin (300 microM) had no effect on reperfusion reactive oxygen

  18. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  19. Effects of hepatic ischemia-reperfusion injury on the blood-brain barrier permeability to [14C] and [13C]sucrose.

    Science.gov (United States)

    Miah, Mohammad K; Bickel, Ulrich; Mehvar, Reza

    2017-12-01

    Hepatic encephalopathy that is associated with severe liver failure may compromise the blood-brain barrier (BBB) integrity. However, the effects of less severe liver diseases, in the absence of overt encephalopathy, on the BBB are not well understood. The goal of the current study was to investigate the effects of hepatic ischemia-reperfusion (IR) injury on the BBB tight junction permeability to small, hydrophilic molecules using the widely used [ 14 C]sucrose and recently-proposed alternative [ 13 C]sucrose as markers. Rats were subjected to 20 min of hepatic ischemia or sham surgery, followed by 8 h of reperfusion before administration of a single bolus dose of [ 14 C] or [ 13 C]sucrose and collection of serial (0-30 min) blood and plasma and terminal brain samples. The concentrations of [ 14 C] and [ 13 C]sucrose in the samples were determined by measurement of total radioactivity (nonspecific) and LC-MS/MS (specific), respectively. IR injury significantly increased the blood, plasma, and brain concentrations of both [ 14 C] and [ 13 C]sucrose. However, when the brain concentrations were corrected for their respective area under the blood concentration-time curve, only [ 14 C]sucrose showed significantly higher (30%) BBB permeability values in the IR animals. Because [ 13 C]sucrose is a more specific BBB permeability marker, these data indicate that our animal model of hepatic IR injury does not affect the BBB tight junction permeability to small, hydrophilic molecules. Methodological differences among studies of the effects of liver diseases on the BBB permeability may confound the conclusions of such studies.

  20. Renalase as a Novel Biomarker for Evaluating the Severity of Hepatic Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Huili Li

    2016-01-01

    Full Text Available Hepatic ischemia-reperfusion (I/R injury is a serious complication in clinical practice. However, no efficient biomarkers are available for the evaluation of the severity of I/R injury. Recently, renalase has been reported to be implicated in the I/R injury of various organs. This protein is secreted into the blood in response to increased oxidative stress. To investigate the responsiveness of renalase to oxidative stress, we examined the changes of renalase in cell and mouse models. We observed a significant increase of renalase expression in HepG2 cells in a time- and dose-dependent manner when treated with H2O2. Renalase expression also increased significantly in liver tissues that underwent the hepatic I/R process. The increased renalase levels could be efficiently suppressed by antioxidants in vitro and in vivo. Furthermore, serum renalase levels were significantly increased in the mouse models and also efficiently suppressed by antioxidants treatment. The variation trends are consistent between renalase and liver enzymes in the mouse models. In conclusion, renalase is highly sensitive and responsive to oxidative stress in vitro and in vivo. Moreover, renalase can be detected in the blood. These properties make renalase a highly promising biomarker for the evaluation of the severity of hepatic I/R injury.

  1. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    Science.gov (United States)

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways.

  2. Effects of reperfusion intervals on skeletal muscle injury beneath and distal to a pneumatic tourniquet.

    Science.gov (United States)

    Pedowitz, R A; Gershuni, D H; Fridén, J; Garfin, S R; Rydevik, B L; Hargens, A R

    1992-03-01

    To date there have been no experimental studies specifically directed at effects of reperfusion intervals on skeletal muscle injury beneath the tourniquet. 99mTechnetium pyrophosphate (Tc 99) incorporation and correlative histology were used to assess injury 2 days after tourniquet application in muscles beneath (thigh) and distal (leg) to the cuff. Tourniquets were applied to rabbit hindlimbs for a total of either 2 or 4 hours. In the 4-hour series, tourniquet compression (either 125 mm Hg or 350 mm Hg cuff inflation pressure) was either continuous or interrupted by 10-minute reperfusion intervals after 2 hours or after every hour of cuff inflation. In the 2-hour series, tourniquet compression (350 mm Hg) was either continuous or interrupted by 10-minute reperfusion intervals after 2 hours or after every hour of cuff inflation. In the 2-hour series, tourniquet compression (350 mm Hg) was either continuous or interrupted by a 10-minute reperfusion interval after 1 hour. Pyrophosphate incorporation (Tc 99 uptake) was significantly greater in the thigh region than in the leg region in all of the 4-hour tourniquet groups. Tc 99 uptake was significantly reduced by reperfusion after each hour of cuff inflation. With 350 mm Hg tourniquet pressure, a reperfusion interval after 2 hours of cuff inflation tended to exacerbate tourniquet compression injury. Reperfusion intervals did not significantly affect Tc 99 uptake in the leg region of these groups. With a 2-hour tourniquet time, Tc 99 uptake in the thigh was significantly decreased by reperfusion after 1 hour of cuff inflation. Previous clinical recommendations, based on serum creatine phosphokinase abnormalities after experimental tourniquet ischemia, probably reflected tourniquet compression injury. Hourly reperfusion limits skeletal muscle injury during extended periods of tourniquet use.

  3. Protective Effect of Ischemic Postconditioning against Ischemia Reperfusion-Induced Myocardium Oxidative Injury in IR Rats

    Directory of Open Access Journals (Sweden)

    Jiangwei Ma

    2012-03-01

    Full Text Available Brief episodes of myocardial ischemia-reperfusion (IR employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK, lactate dehydrogenase (LDH and aspartate transaminase (AST activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px and glutathione reductase (GR activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  4. Intralipid minimizes hepatocytes injury after anoxia-reoxygenation in an ex vivo rat liver model.

    Science.gov (United States)

    Stadler, Michaela; Nuyens, Vincent; Boogaerts, Jean G

    2007-01-01

    Ischemia-reperfusion injury is a determinant in liver injury occurring during surgical procedures, ischemic states, and multiple organ failure. The pre-existing nutritional status of the liver, i.e., fasting, might contribute to the extent of tissue injury. This study investigated whether Intralipid, a solution containing soybean oil, egg phospholipids, and glycerol, could protect ex vivo perfused livers of fasting rats from anoxia-reoxygenation injury. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Isolated livers were perfused with glucose 5.5 and 15 mM, and two different concentrations of Intralipid, i.e., 0.5:100 and 1:100 (v/v) Intralipid 10%:medium (n = 5 in each group). The experiment consisted of perfusion for 15 min, warm anoxia for 60 min, and reoxygenation during 60 min. Hepatic enzymes, potassium, glucose, lactate, bilirubin, dienes, trienes, and cytochrome-c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in biopsies. Intralipid attenuated transaminases, lactate dehydrogenase, potassium, diene, and triene release in the perfusate (dose-dependant) during the reoxygenation phase when compared with glucose-treated groups. The concentration of cytochrome-c in the medium was the highest in the 5.5-mM glucose group. The glycogen content was low in all livers at the start of the experiment. Intralipid presents, under the present experimental conditions, a better protective effect than glucose in anoxia-reoxygenation injury of the rat liver.

  5. Metabolomic profiling to characterize acute intestinal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Rachel G Khadaroo

    Full Text Available Sepsis and septic shock are the leading causes of death in critically ill patients. Acute intestinal ischemia/reperfusion (AII/R is an adaptive response to shock. The high mortality rate from AII/R is due to the severity of the disease and, more importantly, the failure of timely diagnosis. The objective of this investigation is to use nuclear magnetic resonance (NMR analysis to characterize urine metabolomic profile of AII/R injury in a mouse model. Animals were exposed to sham, early (30 min or late (60 min acute intestinal ischemia by complete occlusion of the superior mesenteric artery, followed by 2 hrs of reperfusion. Urine was collected and analyzed by NMR spectroscopy. Urinary metabolite concentrations demonstrated that different profiles could be delineated based on the duration of the intestinal ischemia. Metabolites such as allantoin, creatinine, proline, and methylamine could be predictive of AII/R injury. Lactate, currently used for clinical diagnosis, was found not to significantly contribute to the classification model for either early or late ischemia. This study demonstrates that patterns of changes in urinary metabolites are effective at distinguishing AII/R progression in an animal model. This is a proof-of-concept study to further support examination of metabolites in the clinical diagnosis of intestinal ischemia reperfusion injury in patients. The discovery of a fingerprint metabolite profile of AII/R will be a major advancement in the diagnosis, treatment, and prevention of systemic injury in critically ill patients.

  6. [Vasoprotective effect of adaptation to hypoxia in myocardial ischemia and reperfusion injury].

    Science.gov (United States)

    Manukhina, E B; Terekhina, O L; Belkina, L M; Abramochkin, D V; Budanova, O P; Mashina, S Yu; Smirin, B V; Yakunina, E B; Downey, H F

    2013-01-01

    Adaptation to hypoxia is known to be cardioprotective in ischemic and reperfusion (IR) injury of the myocardium. This study was focused on investigating a possibility for prevention of endothelial dysfunction in IR injury of the rat heart using adaptation to intermittent hypoxia, which was performed in a cyclic mode (5-10 min of hypoxia interspersed with 4 min of normoxia, 5-8 cycles daily) for 21 days. Endothelial function of coronary blood vessels was evaluated after the in vitro IR of isolated heart (15 min of ischemia and 10 min of reperfusion) by the increment of coronary flow rate in response to acetylcholine. Endothelium-dependent relaxation of isolated rat aorta was evaluated after the IR myocardial injury in situ (30 min of ischemia and 60 min of reperfusion) by a relaxation response of noradrenaline-precontracted vessel rings to acetylcholine. The following major results were obtained in this study: 1) IR myocardial injury induced endothelial dysfunction of coronary blood vessels and the aorta, a non-coronary blood vessel, remote from the IR injury area; and 2) adaptation to hypoxia prevented the endothelial dysfunction of both coronary and non-coronary blood vessels associated with the IR injury. Therefore, adaptation to hypoxia is not only cardioprotective but also vasoprotective in myocardial IR injury.

  7. Effect of Ischemic Postconditioning and Atorvastatin in the Prevention of Remote Lung Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Marques dos Santos

    Full Text Available Abstract Objective: The aim of the present study was to evaluate the ability of ischemic postconditioning, atorvastatin and both associated to prevent or minimize reperfusion injury in the lung of rats subjected to ischemia and reperfusion by abdominal aortic clamping. Methods: We used 41 Wistar norvegic rats, which were distributed into 5 groups: ischemia and reperfusion (I/R, ischemic postcondictioning (IPC, postconditioning + atorvastatin (IPC+A, atorvastatin (A and SHAM. It was performed a medium laparotomy, dissection and isolation of the infra-renal abdominal aorta; except for the SHAM group, all the others were submitted to the aortic clamping for 70 minutes (ischemia and posterior clamp removal (reperfusion, 70 minutes. In the IPC and IPC+A groups, postconditioning was performed between the ischemia and reperfusion phases by four cycles of reperfusion and ischemia lasting 30 seconds each. In the IPC+A and A groups, preceding the surgical procedure, administration of 3.4 mg/day of atorvastatin was performed for seven days by gavage. After the surgical procedure, the right caudal lobe was removed from the lung for histological study, using tissue injury score ranging from grade 1 (normal tissue to grade 4 (intense lesion. Results: The mean lung injury was 3.6 in the I/R group, 1.6 in the IPC group, 1.2 in the IPC+A group, 1.2 in the A group, and 1 in the SHAM group (P<0.01. Conclusion: Ischemic postconditioning and atorvastatin were able to minimize lung reperfusion injury, alone or in combination.

  8. Mesenteric lymph reperfusion exacerbates spleen injury caused by superior mesenteric artery occlusion shock

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.L.; Zhang, C.H.; Liu, J.C.; Yang, L.N.; Niu, C.Y.; Zhao, Z.G. [Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-04-15

    The intestinal lymph pathway plays an important role in the pathogenesis of organ injury following superior mesenteric artery occlusion (SMAO) shock. We hypothesized that mesenteric lymph reperfusion (MLR) is a major cause of spleen injury after SMAO shock. To test this hypothesis, SMAO shock was induced in Wistar rats by clamping the superior mesenteric artery (SMA) for 1 h, followed by reperfusion for 2 h. Similarly, MLR was performed by clamping the mesenteric lymph duct (MLD) for 1 h, followed by reperfusion for 2 h. In the MLR+SMAO group rats, both the SMA and MLD were clamped and then released for reperfusion for 2 h. SMAO shock alone elicited: 1) splenic structure injury, 2) increased levels of malondialdehyde, nitric oxide (NO), intercellular adhesion molecule-1, endotoxin, lipopolysaccharide receptor (CD14), lipopolysaccharide-binding protein, and tumor necrosis factor-α, 3) enhanced activities of NO synthase and myeloperoxidase, and 4) decreased activities of superoxide dismutase and ATPase. MLR following SMAO shock further aggravated these deleterious effects. We conclude that MLR exacerbates spleen injury caused by SMAO shock, which itself is associated with oxidative stress, excessive release of NO, recruitment of polymorphonuclear neutrophils, endotoxin translocation, and enhanced inflammatory responses.

  9. Short communication:Intestinal Ischaemia-Reperfusion Injury and ...

    African Journals Online (AJOL)

    This study investigates the effect of intestinal ischaemia-reperfusion (IIR) injury on semen characteristics in WAD bucks. Six healthy adult male ... Many of the abnormalities involved midpiece and tail abnormalities which are very vital to propulsion and may cause an inability of the sperm cells to fertilize. This hitherto silent ...

  10. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    Science.gov (United States)

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p OSI were found to be significantly increased in the control group compared to others groups (p model.

  11. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Tsutsumi, Yasuo M; Patel, Hemal H; Lai, N Chin; Takahashi, Toshiyuki; Head, Brian P; Roth, David M

    2006-03-01

    Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis. Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion. Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group. Cardiac protection induced by isoflurane against necrotic and apoptotic cell death is associated with an acute memory period that is sustained and functionally relevant 2 weeks after

  12. Tramadol Alleviates Myocardial Injury Induced by Acute Hindlimb Ischemia Reperfusion in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Takhtfooladi, Hamed Ashrafzadeh; Asl, Adel Haghighi Khiabanian [Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shahzamani, Mehran [Department of Cardiovascular Surgery, Isfahan University of Medical Sciences, Tehran (Iran, Islamic Republic of); Takhtfooladi, Mohammad Ashrafzadeh, E-mail: dr-ashrafzadeh@yahoo.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Allahverdi, Amin [Department of Surgery, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khansari, Mohammadreza [Department of Physiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries. This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR. Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination. The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II. From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.

  13. Protective effects of Rosmarinic acid against renal ischaemia/reperfusion injury in rats

    International Nuclear Information System (INIS)

    Ozturk, H.; Ozturk, H.; Terzi, E.H.

    2014-01-01

    Objective: To investigate the potential protective effects of Rosmarinic acid (RA) on rats exposed to ischaemia/reperfusion renal injury. Methods: The prospective study was conducted at Abant Izzet Baysal University, Turkey, and comprised 21 male Spraque Dawley rats weighing 250-270g each. They were divided into three equal groups. Unilaterally nephrectomised rats were subjected to 60 minutes of left renal ischaemia followed by 60 minutes of reperfusion. Group 1 had shamoperated animals; group 2 had ischaemia/reperfusion untreated animals; and group 3 had ischaemia/reperfusion animals treated with rosmarinic acid. Serum creatinine, blood urea nitrogen, tissue malondialdehyde, glutathione peroxidase, superoxide dismutase and myeloperoxidase (MPO) activities, and light microscopic findings were evaluated. SPSS 17 was used for statistical analysis. Results: Treatment of rats with rosmarinic acid produced a reduction in the serum levels of creatinine and blood urea nitrogen compared to the other groups. However, no statistically significant difference was found. The levels of malondialdehyde and myeloperoxidase were decreased in the renal tissue of group 3, while glutathione peroxidose and superoxide dismutase levels remained unchanged. The injury score decreased in the treatment group rats compared to the untreated group. Rosmarinic acid significantly decreased focal glomerular necrosis, dilatation of Bowman's capsule, degeneration of tubular epithelium, necrosis in tubular epithelium, and tubular dilatation. Conclusions: Rosmarinic acid prevented ischaemia/reperfusion injury in the kidneys by decreasing oxidative stress. (author)

  14. Antiarrhythmic effect of heat adaptation in ischemic and reperfusion injury to the heart.

    Science.gov (United States)

    Monastyrskaya, E A; Belkina, L M; Manukhina, E B; Malyshev, I Yu

    2007-01-01

    Study on a model of 6-day dosed adaptation to heat in rats showed that this adaptation decreased the severity of cardiac arrhythmias during ischemic and reperfusion injury. The duration of arrhythmias decreased not only in the ischemic period, but also under conditions of reperfusion. Adaptation delayed the development of arrhythmias during ischemia, decreased the number of animals with late reperfusion arrhythmias, and improved recovery of the heart after ischemia and reperfusion.

  15. The role of xanthine oxidase in ischemia/reperfusion damage of rat liver

    NARCIS (Netherlands)

    Frederiks, W. M.; Bosch, K. S.

    1995-01-01

    Oxygen radicals have been proposed to be involved in the induction of liver cell damage during reperfusion after ischemia. The role of xanthine oxidase in this process and the potential of the antioxidant system have been studied in a model of in vivo ischemia of rat liver followed by 1 h

  16. Histones activate the NLRP3 Inflammasome in Kupffer Cells during Sterile Inflammatory Liver Injury

    Science.gov (United States)

    Huang, Hai; Chen, Hui-Wei; Evankovich, John; Yan, Wei; Rosborough, Brian R.; Nace, Gary W.; Ding, Qing; Loughran, Patricia; Beer-Stolz, Donna; Billiar, Timothy R.; Esmon, Charles T.; Tsung, Allan

    2013-01-01

    Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests it also plays a role in inflammation driven by endogenous danger-associate molecular pattern (DAMP) molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. Here we report that both NLRP3 and its downstream target Caspase-1 are activated I/R and are essential for hepatic I/R injury as both NLRP3 and Caspase-1 KO mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on Caspase-1 expression in liver non-parenchymal cells. While upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through Toll-like Receptor-9 (TLR9). This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and activation of innate immunity during sterile inflammation. PMID:23904166

  17. Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Ekeløf, Sarah V; Halladin, Natalie L; Jensen, Svend E

    2016-01-01

    Acute coronary occlusion is effectively treated by primary percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury is at the moment an unavoidable consequence of the procedure. Oxidative stress is central in the development of ischemia-reperfusion injury. Melatonin......, an endogenous hormone, acts through antioxidant mechanisms and could potentially minimize the myocardial injury. The aim of the experimental study was to examine the cardioprotective effects of melatonin in a porcine closed-chest reperfused infarction model. A total of 20 landrace pigs were randomized...... to a dosage of 200 mg (0.4 mg/mL) melatonin or placebo (saline). The intervention was administered intracoronary and intravenous. Infarct size, area at risk and microvascular obstruction were determined ex vivo by cardiovascular magnetic resonance imaging. Myocardial salvage index was calculated. The plasma...

  18. Lower limb ischaemia and reperfusion injury in healthy volunteers measured by oxidative and inflammatory biomarkers

    DEFF Research Database (Denmark)

    Halladin, N. L.; Busch, Sarah Victoria Ekeløf; Alamili, M.

    2015-01-01

    OBJECTIVE: Ischaemia-reperfusion (IR) injury is partly caused by the release of reactive oxygen species and cytokines and may result in remote organ injury. Surgical patients are exposed to surgical stress and anaesthesia, both of which can influence the IR response. An IR model without these int......OBJECTIVE: Ischaemia-reperfusion (IR) injury is partly caused by the release of reactive oxygen species and cytokines and may result in remote organ injury. Surgical patients are exposed to surgical stress and anaesthesia, both of which can influence the IR response. An IR model without...... at any sampling time. CONCLUSION: Twenty minutes of lower limb ischaemia does not result in an ischaemia-reperfusion injury in healthy volunteers, measurable by oxidative and pro- and anti-inflammatory biomarkers in muscle biopsies and in the systemic circulation....

  19. Antithrombin III prevents deleterious effects of remote ischemia-reperfusion injury on healing of colonic anastomoses.

    Science.gov (United States)

    Tekin, Koray; Aytekin, Faruk; Ozden, Akin; Bilgihan, Ayşe; Erdem, Ergün; Sungurtekin, Ugur; Güney, Yildiz

    2002-08-01

    Antithrombin III is known as the most important natural inhibitor of thrombin activity and has been shown to attenuate local harmful effects of ischemia-reperfusion injury in many organs. In recent animal studies, delaying effect of remote organ ischemia-reperfusion injury on healing of intestinal anastomoses has been demonstrated. In this study, we investigated whether antithrombin III reduces deleterious systemic effects of ischemia-reperfusion injury on healing of colonic anastomoses in rats. Anastomosis of the left colon was performed in 24 rats that were divided into three groups: sham operated control (group I, n = 8), 30 minutes of intestinal ischemia-reperfusion by superior mesenteric artery occlusion (group II, n = 8), antithrombin III treated group (250 U/kg before and after the ischemia-reperfusion, group III, n = 8). On postoperative day 6, all animals were sacrificed, and bursting pressure and tissue hydroxyproline content of the anastomoses were assessed and compared. On postoperative day 6 the mean bursting pressures were 149.6 +/- 4.8, 69.8 +/- 13.5, and 121.8 +/- 8.7 mm Hg for groups I, II, and III, respectively (P = 0.000). Mean tissue hydroxyproline concentration values were 389.5 +/- 29.6, 263.1 +/- 10.0, and 376.0 +/- 33.8 microg/mg for groups I, II, III respectively (P = 0.005). This study showed that, antithrombin III treatment significantly prevented the delaying effect of remote organ ischemia-reperfusion injury on anastomotic healing in the colon. Further clinical studies are needed to clarify whether antithrombin may be a useful therapeutic agent to increase the safety of the anastomosis during particular operations where remote organ ischemia-reperfusion injury takes place.

  20. Normothermic machine perfusion reduces bile duct injury and improves biliary epithelial function in rat donor livers.

    Science.gov (United States)

    Op den Dries, Sanna; Karimian, Negin; Westerkamp, Andrie C; Sutton, Michael E; Kuipers, Michiel; Wiersema-Buist, Janneke; Ottens, Petra J; Kuipers, Jeroen; Giepmans, Ben N; Leuvenink, Henri G D; Lisman, Ton; Porte, Robert J

    2016-07-01

    Bile duct injury may occur during liver procurement and transplantation, especially in livers from donation after circulatory death (DCD) donors. Normothermic machine perfusion (NMP) has been shown to reduce hepatic injury compared to static cold storage (SCS). However, it is unknown whether NMP provides better preservation of bile ducts. The aim of this study was to determine the impact of NMP on bile duct preservation in both DCD and non-DCD livers. DCD and non-DCD livers obtained from Lewis rats were preserved for 3 hours using either SCS or NMP, followed by 2 hours ex vivo reperfusion. Biomarkers of bile duct injury (gamma-glutamyltransferase and lactate dehydrogenase in bile) were lower in NMP-preserved livers compared to SCS-preserved livers. Biliary bicarbonate concentration, reflecting biliary epithelial function, was 2-fold higher in NMP-preserved livers (P bile was significantly higher in NMP-preserved livers (7.63 ± 0.02 and 7.74 ± 0.05 for non-DCD and DCD livers, respectively) compared with SCS-preserved livers (7.46 ± 0.02 and 7.49 ± 0.04 for non-DCD and DCD livers, respectively). Scanning and transmission electron microscopy of donor extrahepatic bile ducts demonstrated significantly decreased injury of the biliary epithelium of NMP-preserved donor livers (including the loss of lateral interdigitations and mitochondrial injury). Differences between NMP and SCS were most prominent in DCD livers. Compared to conventional SCS, NMP provides superior preservation of bile duct epithelial cell function and morphology, especially in DCD donor livers. By reducing biliary injury, NMP could have an important impact on the utilization of DCD livers and outcome after transplantation. Liver Transplantation 22 994-1005 2016 AASLD. © 2016 American Association for the Study of Liver Diseases.

  1. Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice.

    Science.gov (United States)

    Yin, Lele; Ye, Shasha; Chen, Zhen; Zeng, Yaoying

    2012-12-01

    Rapamycin, an mTOR inhibitor and immunosuppressive agent in clinic, has protective effects on traumatic brain injury and neurodegenerative diseases. But, its effects on transient focal ischemia/reperfusion disease are not very clear. In this study, we examined the effects of rapamycin preconditioning on mice treated with middle cerebral artery occlusion/reperfusion operation (MCAO/R). We found that the rapamycin preconditioning by intrahippocampal injection 20 hr before MCAO/R significantly improved the survival rate and longevity of mice. It also decreased the neurological deficit score, infracted areas and brain edema. In addition, rapamycin preconditioning decreased the production of NF-κB, TNF-α, and Bax, but not Bcl-2, an antiapoptotic protein in the ischemic area. From these results, we may conclude that rapamycin preconditioning attenuate transient focal cerebral ischemia/reperfusion injury and inhibits apoptosis induced by MCAO/R in mice.

  2. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  3. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Xiao-ge Yan

    2015-01-01

    Full Text Available Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 µg/g was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  4. Ligustrazine monomer against cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Hai-jun Gao

    2015-01-01

    Full Text Available Ligustrazine (2,3,5,6-tetramethylpyrazine is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mechanism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administration, and the most effective mode of administration for clinical treatment of cerebral ischemia/reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine administration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyloxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC195 after cerebral ischemia were better than ligustrazine.

  5. Dynamic Contrast-Enhanced MR Imaging of Renal Ischemia-Reperfusion Injury

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Jun Hyun; Ahn, Myeong Im; Park, Young Ha; Chung, Soo Kyo [Catholic University, Seoul (Korea, Republic of)

    2010-02-15

    To evaluate the usefulness of magnetic resonance imaging (MRI) in a renal ischemia-reperfusion injury. Twenty-four rabbits were randomly divided into four groups, including a sham operated group (n=3). Renal ischemia was induced for 30 minutes (group 1), 60 minutes (group 2) and 120 minutes (group 3). MR imaging was performed before ischemia as well as one hour, 24 hours, and 72 hours after reperfusion. A 99mTc-dimercaptosuccinic acid (DMSA) scintigraphy was performed before ischemia, as well as 24 hours and 72 hours after reperfusion. The signal-to-noise ratio (SNR) on the T2WI, time-relative signal intensity (%RSI) curve on dynamic enhanced images, and relative left renal uptake (%) on DMSA scan were obtained and compared to the histologic findings. The SNR of the cortex on the T2WI changed significantly over the course of the reperfusion time (p<0.001), but was not significantly different among the ischemia groups. The area under the time-%RSI curve gradually decreased from cortex to inner medulla before ischemia, which was reversed and gradually increased after reperfusion. The areas under the time-%RSI curve of outer and inner medulla were significantly different among the ischemia groups (p=0.04, p=0.008). The relative renal uptake (%) of left kidney decreased significantly over the reperfusion time (p=0.03), and was also significantly different among the ischemia groups (p=0.005). Tubular cell necrosis was observed in 16 rabbits (76.2%). The histologic grades of group 3 were higher than those of group 1 and group 2 (p=0.002). Even in rabbits without tubular cell necrosis, the areas under the time-%RSI curves of the cortex, outer, and inner medulla after a 72 hour reperfusion time were significantly lower than those before ischemia (p=0.007, p=0.005, p=0.004). The results of this study suggest that dynamic enhanced MR imaging could be a useful tool for the evaluation of renal ischemia and reperfusion injury.

  6. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) Protect Liver against Hepatic Ischemia/ Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate Signaling Pathway.

    Science.gov (United States)

    Du, Yingdong; Li, Dawei; Han, Conghui; Wu, Haoyu; Xu, Longmei; Zhang, Ming; Zhang, Jianjun; Chen, Xiaosong

    2017-01-01

    This study aimed to evaluate the effects of exosomes produced by human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs-Exo) on hepatic ischemia-reperfusion (I/R) injury, as well as the underlying mechanisms. Exosomes derived from hiPSC-MSCs were isolated and characterized both biochemically and biophysically. hiPSC-MSCs-Exo were injected systemically into a murine ischemia/reperfusion injury model via the inferior vena cava, and then the therapeutic effects were evaluated. The serum levels of transaminases (aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as histological changes were examined. Primary hepatocytes and human hepatocyte cell line HL7702 were used to test whether exosomes could induce hepatocytes proliferation in vitro. In addition, the expression levels of proliferation markers (proliferation cell nuclear antigen, PCNA; Phosphohistone-H3, PHH3) were measured by immunohistochemistry and Western blot. Moreover, SK inhibitor (SKI-II) and S1P1 receptor antagonist (VPC23019) were used to investigate the role of sphingosine kinase and sphingosine-1-phosphate-dependent pathway in the effects of hiPSC-MSCs-Exo on hepatocytes. hiPSCs were efficiently induced into hiPSC-MSCs that had typical MSC characteristics. hiPSC-MSCs-Exo had diameters ranging from 100 to 200 nm and expressed exosome markers (Alix, CD63 and CD81). After hiPSC-MSCs-Exo administration, hepatocyte necrosis and sinusoidal congestion were markedly suppressed in the ischemia/reperfusion injury model, with lower histopathological scores. The levels of hepatocyte injury markers AST and ALT were significantly lower in the treatment group compared to control, and the expression levels of proliferation markers (PCNA and PHH3) were greatly induced after hiPSC-MSCs-Exo administration. Moreover, hiPSC-MSCs-Exo also induced primary hepatocytes and HL7702 cells proliferation in vitro in a dose-dependent manner. We found that hiPSC-MSCs-Exo could

  7. The possible protective effects of dipyridamole on ischemic reperfusion injury of priapism

    Directory of Open Access Journals (Sweden)

    Ersagun Karaguzel

    2016-02-01

    Full Text Available ABSTRACT Purpose To investigate the protective effects against ischemia reperfusion injury of dipyridamole in a model of induced priapism in rats. Materials and Methods Twenty-four male Sprague-Dawley rats were divided into four groups, control, P/R, P/R+DMSO and P/R+D. 3ml blood specimens were collected from vena cava inferior in order to determine serum MDA, IMA, TAS, TOS and OSI values, and penile tissue was taken for histopathological examination in control group. Priapism was induced in P/R group. After 1h, priapism was concluded and 30 min reperfusion was performed. In P/R+DMSO group 1ml/kg DMSO was administered intraperitoneally 30 min before reperfusion, while in P/R+D group 10mg/kg dipyridamole was administered intraperitoneally 30 min before reperfusion. Blood and penis specimens were collected after the end of 30 min reperfusion period. Sinusoidal area (µm2, tears in tunica albuginea and injury parameters in sinusoidal endothelium of penis were investigated. Results Histopathological examination revealed no significant changes in term of sinusoidal area. A decrease in tears was observed in P/R+D group compared to P/R group (p0.05. There were no significant differences in MDA and IMA values between groups. A significant increase in TOS and OSI values was observed in P/R+D group compared to P/R group. A significant decrease in TAS levels was observed in P/R+D group compared to the P/R group. Conclusions The administration of dipyridamole before reperfusion in ischemic priapism model has a potential protective effect against histopathological injury of the penis.

  8. Prevention of reperfusion lung injury by lidocaine in isolated rat lung ventilated with higher oxygen levels.

    Directory of Open Access Journals (Sweden)

    Das K

    2003-01-01

    Full Text Available BACKGROUND: Lidocaine, an antiarrhythmic drug has been shown to be effective against post-ischaemic reperfusion injury in heart. However, its effect on pulmonary reperfusion injury has not been investigated. AIMS: We investigated the effects of lidocaine on a postischaemic reperfused rat lung model. MATERIALS AND METHODS: Lungs were isolated and perfused at constant flow with Krebs-Henseilet buffer containing 4% bovine serum albumin, and ventilated with 95% oxygen mixed with 5% CO2. Lungs were subjected to ischaemia by stopping perfusion for 60 minutes followed by reperfusion for 10 minutes. Ischaemia was induced in normothermic conditions. RESULTS: Postischaemic reperfusion caused significant (p < 0.0001 higher wet-to-dry lung weight ratio, pulmonary arterial pressure and peak airway pressure compared to control lungs. Lidocaine, at a dose of 5mg/Kg b.w. was found to significantly (p < 0.0001 attenuate the increase in the wet-to-dry lung weight ratio, pulmonary arterial pressure and peak airway pressure observed in post-ischaemic lungs. CONCLUSION: Lidocaine is effective in preventing post-ischaemic reperfusion injury in isolated, perfused rat lung.

  9. Honey improves spermatogenesis and hormone secretion in testicular ischaemia-reperfusion-induced injury in rats.

    Science.gov (United States)

    Gholami, M; Abbaszadeh, A; Khanipour Khayat, Z; Anbari, K; Baharvand, P; Gharravi, A M

    2018-02-01

    This study was conducted to survey the protective effect of pre-treatment with Persian honey during post-ischaemia reperfusion on ischaemia-reperfusion (IR)-induced testis injury. Animals were divided into four groups of IR, honey + ischaemia- reperfusion (HIR), vitamin C + ischaemia- reperfusion (VIR) and carbohydrates + ischaemia- reperfusion (CIR). The testes were examined for spermatogenesis index. Detection of single- and double-stranded DNA breaks at the early stages of apoptosis was performed. Total serum concentration of FSH, LH and testosterone was measured using ELISA. All data were expressed as mean ± SD in each group, and significance was set at p ≤ .05. Spermatogenesis index was significant in the HIR group (p honey decreases the cellular damage and apoptosis during testicular I/R injury, with significant protective effects on reproductive hormone production. © 2017 Blackwell Verlag GmbH.

  10. Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury?

    Science.gov (United States)

    Yuan, Lijuan; Shen, Jianliang

    2016-01-01

    Post-transplant complications such as graft-versus-host disease and graft ischemia-reperfusion injury are crucial challenges in transplantation. Hydrogen can act as a potential antioxidant, playing a preventive role against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of hydrogen on graft ischemia-reperfusion injury and graft-versus-host disease. Existing data on the effects of hydrogen on ischemia-reperfusion injury related to organ transplantation are specifically reviewed and coupled with further suggestions for future work. The reviewed studies showed that hydrogen (inhaled or dissolved in saline) improved the outcomes of organ transplantation by decreasing oxidative stress and inflammation at both the transplanted organ and the systemic levels. In conclusion, a substantial body of experimental evidence suggests that hydrogen can significantly alleviate transplantation-related ischemia-reperfusion injury and have a therapeutic effect on graft-versus-host disease, mainly via inhibition of inflammatory cytokine secretion and reduction of oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for hydrogen use as a drug in the clinic. PMID:27652837

  11. The effect of aloe vera on ischemia--Reperfusion injury of sciatic nerve in rats.

    Science.gov (United States)

    Guven, Mustafa; Gölge, Umut Hatay; Aslan, Esra; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Cosar, Murat

    2016-04-01

    Aloe vera is compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of aloe vera treatment in rats with experimental sciatic nerve ischemia/reperfusion injury. Twenty-eight male Wistar Albino rats were divided equally into 4 groups. Groups; Control group (no surgical procedure or medication), sciatic nerve ischemia/reperfusion group, sciatic nerve ischemia/reperfusion+aloe vera group and sciatic nerve ischemia/reperfusion+methylprednisolone group. Ischemia was performed by clamping the infrarenal abdominal aorta. 24 hours after ischemia, all animals were sacrificed. Sciatic nerve tissues were also examined histopathologically and biochemically. Ischemic fiber degeneration significantly decreased in the pre-treated with aloe vera and treated with methylprednisolone groups, especially in the pre-treated with aloe vera group, compared to the sciatic nerve ischemia/reperfusion group (paloe vera group was not statistically different compared to the MP group (p>0.05). Aloe vera is effective neuroprotective against sciatic nerve ischemia/reperfusion injury via antioxidant and anti-inflammatory properties. Also aloe vera was found to be as effective as MP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available Intestinal ischemia-reperfusion (I/R plays an important role in critical illnesses. Gut flora participate in the pathogenesis of the injury. This study is aimed at unraveling colonic microbiota alteration pattern and identifying specific bacterial species that differ significantly as well as observing colonic epithelium change in the same injury model during the reperfusion time course.Denaturing gradient gel electrophoresis (DGGE was used to monitor the colonic microbiota of control rats and experimental rats that underwent 0.5 hour ischemia and 1, 3, 6, 12, 24, and 72 hours following reperfusion respectively. The microbiota similarity, bacterial diversity and species that characterized the dysbiosis were estimated based on the DGGE profiles using a combination of statistical approaches. The interested bacterial species in the gel were cut and sequenced and were subsequently quantified and confirmed with real-time PCR. Meanwhile, the epithelial barrier was checked by microscopy and D-lactate analysis. Colonic flora changed early and differed significantly at 6 hours after reperfusion and then started to recover. The shifts were characterized by the increase of Escherichia coli and Prevotella oralis, and Lactobacilli proliferation together with epithelia healing.This study shows for the first time that intestinal ischemia-reperfusion results in colonic flora dysbiosis that follows epithelia damage, and identifies the bacterial species that contribute most.

  13. Protective perioperative strategy using a third generation hydroxyethyl starch during surgery in a murine model of liver reperfusion injury Estratégia protetora perioperatória usando um hidroxietilamido de terceira geração para expansão volêmica durante a cirurgia em modelo murino de lesão de reperfusão hepática

    Directory of Open Access Journals (Sweden)

    Dora Catré

    2011-12-01

    Full Text Available PURPOSE: To investigate whether a third generation colloid, hydroxyethyl starch (HES 130/0.4, used for perioperative fluid therapy, protects the rat liver against the late-phase response of ischemia/reperfusion injury (IRI and if inhibition of neutrophil hepatic infiltration plays a part in this mechanism. METHODS: Wistar rats were used (8 in each group. Three groups had IRI induced by lobar vascular occlusion (60 minutes and reperfusion (24 hours and received HES (13 mL/kg iv, 7.5% saline (HS (13 mL/kg iv or no fluid. Three other groups were sham-operated and received the same fluid as the test groups. After 24 hours of reperfusion, blood was drawn for alanine aminotransferase (ALT quantification and ischemic liver samples were taken for histological study (hematoxylin and eosin and chloroacetate staining of neutrophils. RESULTS: HES treatment attenuated the elevation in serum ALT (P=0.001 and reduced the extent of hepatocellular necrosis (P0.05. CONCLUSION: Hydroxyethyl starch suppresses inflammatory response and ameliorates the late-phase response of hepatic ischemia/reperfusion injury.OBJETIVO: Investigar se um colóide de terceira geração (HES 130/0.4, utilizado para fluidoterapia perioperatória, protege o fígado de rato contra a resposta da fase tardia de isquemia/reperfusão e se a inibição da infiltração hepática de neutrófilos desempenha um papel neste mecanismo. MÉTODOS: Foram utilizados ratos Wistar (8 em cada grupo. Três grupos tiveram lesão de isquemia/reperfusão (IRI induzida por oclusão vascular lobar (60 minutos e reperfusão (24 horas e receberam HES (13 ml / kg iv, soro fisiológico a 7,5% (HS (13 ml / kg iv ou nenhum fluido. Três outros grupos foram sham-operados e receberam o mesmo tipo de fluido dos grupos de teste. Após 24 horas de reperfusão, o sangue foi retirado para quantificação da alanina aminotransferase (ALT e amostras de fígado isquêmico foram retiradas para estudo histológico (hematoxilina e

  14. Carbon monoxide-Releasing Molecule-2 (CORM-2 attenuates acute hepatic ischemia reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Zhang Weihui

    2010-05-01

    Full Text Available Abstract Background Hepatic ischemia-reperfusion injury (I/Ri is a serious complication occurring during liver surgery that may lead to liver failure. Hepatic I/Ri induces formation of reactive oxygen species, hepatocyte apoptosis, and release of pro-inflammatory cytokines, which together causes liver damage and organ dysfunction. A potential strategy to alleviate hepatic I/Ri is to exploit the potent anti-inflammatory and cytoprotective effects of carbon monoxide (CO by application of so-called CO-releasing molecules (CORMs. Here, we assessed whether CO released from CORM-2 protects against hepatic I/Ri in a rat model. Methods Forty male Wistar rats were randomly assigned into four groups (n = 10. Sham group underwent a sham operation and received saline. I/R group underwent hepatic I/R procedure by partial clamping of portal structures to the left and median lobes with a microvascular clip for 60 minutes, yielding ~70% hepatic ischemia and subsequently received saline. CORM-2 group underwent the same procedure and received 8 mg/kg of CORM-2 at time of reperfusion. iCORM-2 group underwent the same procedure and received iCORM-2 (8 mg/kg, which does not release CO. Therapeutic effects of CORM-2 on hepatic I/Ri was assessed by measuring serum damage markers AST and ALT, liver histology score, TUNEL-scoring of apoptotic cells, NFkB-activity in nuclear liver extracts, serum levels of pro-inflammatory cytokines TNF-α and IL-6, and hepatic neutrophil infiltration. Results A single systemic infusion with CORM-2 protected the liver from I/Ri as evidenced by a reduction in serum AST/ALT levels and an improved liver histology score. Treatment with CORM-2 also up-regulated expression of the anti-apoptotic protein Bcl-2, down-regulated caspase-3 activation, and significantly reduced the levels of apoptosis after I/Ri. Furthermore, treatment with CORM-2 significantly inhibited the activity of the pro-inflammatory transcription factor NF-κB as measured in

  15. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model.

    Science.gov (United States)

    Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato

    2018-05-01

    The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.

  16. Discussion on the treatment of cerebral ischemia-reperfusion injuries following intra-arterial thrombolysis

    International Nuclear Information System (INIS)

    Tian Hong; Song Chuan; Fan Ruxiong; Zhou Huchuan; Zhang Yubo; Zang Qiaoli; Zhang Yunquan; Liu Lei

    2011-01-01

    Objective: To investigate the therapeutic method of cerebral ischemia-reperfusion injuries occurred after arterial thrombolytic therapy for acute cerebral infarction. Methods: Thirty-five patients, encountered in authors' Department since Oct. 2005, with cerebral ischemia-reperfusion injuries, which occurred after thrombolytic therapy by using arterial perfusion of urokinase for acute cerebral infarction, were enrolled in this study. The clinical data were retrospectively analyzed. Results: After the thrombolytic therapy, completer or partial recanalization of the occluded cerebral arteries was obtained in 33 cases, while secondary cerebral hemorrhage occurred in 13 cases, of whom cerebral parenchyma bleeding was seen in 2 and hemorrhagic infarction in 11. Different degrees of cerebral edema were found in all 33 cases. Among them significant shift of the midline structures was detected in 18 (54.5%), which was manifested clinically as the worsening of disturbance of consciousness. Strict control of blood pressure, prompt adjustment of dehydration medication, strengthening the cerebral protection measures, cerebral decompression by fenestration, etc. were carried out. All the patients took a turn for the better and were out of danger with remarkable improvement of neurological functions except one patient who died from massive intracerebral hemorrhage. Conclusion: Usually, different degrees of reperfusion injuries will develop after thrombolytic therapy for cerebral arterial infarction. Strictly controlling blood pressure, promptly adjusting dehydration medication and strengthening cerebral protection are the keys to reduce the severity of cerebral reperfusion injuries. (authors)

  17. Prophylactic Treatment with Cerium Oxide Nanoparticles Attenuate Hepatic Ischemia Reperfusion Injury in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Nandini D.P.K. Manne

    2017-07-01

    Full Text Available Background: Hepatic ischemia reperfusion is one the main causes for graft failure following transplantation. Although, the molecular events that lead to hepatic failure following ischemia reperfusion (IR are diverse and complex, previous studies have shown that excessive formation of reactive oxygen species (ROS are responsible for hepatic IR injury. Cerium oxide (CeO2 nanoparticles have been previously shown to act as an anti-oxidant and anti-inflammatory agent. Here, we evaluated the protective effects of CeO2 nanoparticles on hepatic ischemia reperfusion injury. Methods: Male Sprague Dawley rats were randomly assigned to one of the four groups: Control, CeO2 nanoparticle only, hepatic ischemia reperfusion (IR group and hepatic ischemia reperfusion (IR plus CeO2 nanoparticle group (IR+ CeO2. Partial warm hepatic ischemia was induced in left lateral and median lobes for 1h, followed by 6h of reperfusion. Animals were sacrificed after 6h of reperfusion and blood and tissue samples were collected and processed for various biochemical experiments. Results: Prophylactic treatment with CeO2 nanoparticles (0.5mg/kg i.v (IR+CeO2 group 1 hour prior to hepatic ischemia and subsequent reperfusion injury lead to a decrease in serum levels of alanine aminotransaminase and lactate dehydrogenase at 6 hours after reperfusion. These changes were accompanied by significant decrease in hepatocyte necrosis along with reduction in several serum inflammatory markers such as macrophage derived chemokine, macrophage inflammatory protein-2, KC/GRO, myoglobin and plasminogen activator inhibitor-1. However, immunoblotting demonstrated no significant changes in the levels of apoptosis related protein markers such as bax, bcl2 and caspase 3 in IR and IR+ CeO2 groups at 6 hours suggesting necrosis as the main pathway for hepatocyte death. Conclusion: Taken together, these data suggest that CeO2 nanoparticles attenuate IR induced cell death and can be used as a prophylactic

  18. The Effect of Etoricoxib on Hepatic Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Celalettin Semih Kunak

    2015-01-01

    Full Text Available Ischemia-reperfusion (I/R damage is known to be a pathological process which continues with the increase of oxidants and expands with the inflammatory response. There is not any study about protective effect of etoricoxib on the liver I/R damage in literature. Objective. This study investigates the effect of etoricoxib on oxidative stress induced by I/R of the rat liver. Material and Methods. Experimental animals were divided into four groups as liver I/R control (LIRC, 50 mg/kg etoricoxib + liver I/R (ETO-50, 100 mg/kg etoricoxib + liver I/R (ETO-100, and healthy group (HG. ETO-50 and ETO-100 groups were administered etoricoxib, while LIRC and HG groups were orally given distilled water by gavage. Hepatic artery was clamped for one hour to provide ischemia, and then reperfusion was provided for 6 hours. Oxidant, antioxidant, and COX-2 gene expressions were studied in the liver tissues. ALT and AST were measured. Results. Etoricoxib in 50 and 100 mg/kg doses changed the levels of oxidant/antioxidant parameters such as MDA, MPO, tGSH, GSHRd, GST, SOD, NO, and 8-OH/Gua in favour of antioxidants. Furthermore, etoricoxib prevented increase of COX-2 gene expression and ALT and AST levels. This important protective effect of etoricoxib on the rat liver I/R can be tested in the clinical setting.

  19. Melatonin attenuates lung injury in a hind limb ischemia–reperfusion rat model

    Directory of Open Access Journals (Sweden)

    Hamed Takhtfooladi

    2015-01-01

    Full Text Available Objective: This study evaluated the protective antioxidant effect of melatonin on lung injury as a remote organ after skeletal muscle ischemia–reperfusion in rats. Methods: Thirty male Wistar rats were allocated randomly into three experimental groups: operated with no ischemia (Sham group, ischemia–reperfusion group and ischemia–reperfusion + melatonin group. Hind limb ischemia was induced by clamping the femoral artery. After 2 h ischemia, the clamp was removed and the animal underwent 24 h reperfusion. Rats in the ischemia–reperfusion + melatonin group received melatonin (10 mg/kg i.v., immediately before the clamp was removed. At the end of the trial, animals were euthanized and the lungs were removed for water content determination, histopathological and biochemical studies. Results: In the ischemia–reperfusion + melatonin group, tissues showed less intense histological abnormalities such as neutrophilic infiltration, intra-alveolar hemorrhage and edema compared with the ischemia–reperfusion group. Histopathologically, there was a significant difference (P < 0.05 between the two groups. The lung water content in the ischemia–reperfusion + melatonin group was significantly lower than the ischemia–reperfusion group (P < 0.05. Lung tissue myeloperoxidase (MPO activity and nitric oxide (NO level were significantly (P < 0.05 increased by ischemia–reperfusion. The increase in these parameters was reduced by melatonin.Comparing the ischemia–reperfusion + melatonin group with the sham group, no significant increase in all analyzed aspects of the research was observed. Conclusions: These findings suggest that melatonin has preventive effects in lung tissue injury after transient femoral artery occlusion. Keywords: Melatonin, Ischemia–reperfusion, Lung remote injury, Histopathology, Myeloperoxidase, Nitric oxide

  20. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Yihan Zhang

    2016-01-01

    Full Text Available Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R after high (25 mM or low (5.5 mM glucose culture. Cell viability, reactive oxygen species (ROS, and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2 and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.

  1. MCT1 and MCT4 Expression During Myocardial Ischemic-Reperfusion Injury in the Isolated Rat Heart

    Directory of Open Access Journals (Sweden)

    Yi Zhu

    2013-09-01

    Full Text Available Background/Aims: Myocardium ischemia-reperfusion (I/R injury can be caused by imbalances in cellular metabolism. Lactate, transported by monocarboxylate transporters (MCTs, has been implicated as a mechanism in this process. The present study was designed to investigate the expression and functional role of MCTs in rat hearts during ischemia and reperfusion. Methods: Langendorff-perfused rat hearts were subjected to 20 minutes stabilization, 30 minutes of global ischemia and 60 minutes reperfusion. Hearts were collected serially for detecting expression changes in MCT1, MCT4 during myocardial I/R injury and lactate concentration was measured. Post-ischemic left ventricular function and infract size were determined at end-point, followed by the pretreatment of D-lactate, a competitive inhibitor of MCTs. Results: MCT4 was significantly increased following global ischemia and MCT1 expression was increased during the early stages of reperfusion in isolated rat hearts, while the expression of the ancillary protein CD147 was increased during I/R injury. We determined increases in AMPK phosphorylation status, which was significantly elevated following ischemia and early reperfusion. Blocking monocarboxylate transport by competitive inhibition with D-lactate caused decreased left ventricular performance and increased infarct size. Conclusion: Increased MCT4 expression facilitates lactate extrusion during the ischemic period, while increased MCT1 may facilitate lactate transport into and out of cells simultaneously during early reperfusion, with increases in AMPK phosphorylation status during the myocardial I/R period. Lactate transport by MCTs has a profound protective effect during myocardial ischemia reperfusion injury.

  2. The effect of dexketoprofen on ischemia reperfusion injury.

    Science.gov (United States)

    Yildirim, Y; Karakaya, D; Kelsaka, E; Aksoy, A; Gülbahar, M Y; Bedir, A

    2014-01-01

    The purpose of this study was to demonstrate the effects of dexketoprofen on experimental ischemia/reperfusion injury induced in rat testicles. Twenty-four male Wistar albino-type rats were randomly separated into three groups. To develop testicular torsion, the right testicle was rotated 720° clockwise. After five hours of rotation, reperfusion was applied for 24 hours. The control group rats (Group C) had no procedures or treatments; basal numbers were used. Intraperitoneal 25 mg/kg dexketoprofen (1 cc) (Group D) or the same volume of serum physiologic (Group SP) were given to the Group D and Group SP rats 40 minutes before and 12 hours after detorsion. Twenty-four hours after detorsion, histopathological evaluation was performed by bilateral orchiectomy. Malondialdehyde (MDA) levels were detected in testicular tissue and in serum. Histopathologic changes in the spermatic cells of torsioned testicles in Group D were significantly less than those of Group SP (p dexketoprofen decreases I/R injury in both the torsion-formed testicle and the contralateral testicle. Thus, in patients who have urgent surgery for testicular detorsion, dexketoprofen can be preferred as an analgesic to reduce I/R injury. Further study is warranted to demonstrate this effect of dexketoprofen (Tab. 3, Fig. 1, Ref. 30).

  3. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats.

    Directory of Open Access Journals (Sweden)

    Laurens J Ceulemans

    Full Text Available The farnesoid X receptor (FXR is abundantly expressed in the ileum, where it exerts an enteroprotective role as a key regulator of intestinal innate immunity and homeostasis, as shown in pre-clinical models of inflammatory bowel disease. Since intestinal ischemia reperfusion injury (IRI is characterized by hyperpermeability, bacterial translocation and inflammation, we aimed to investigate, for the first time, if the FXR-agonist obeticholic acid (OCA could attenuate intestinal ischemia reperfusion injury.In a validated rat model of intestinal IRI (laparotomy + temporary mesenteric artery clamping, 3 conditions were tested (n = 16/group: laparotomy only (sham group; ischemia 60min+ reperfusion 60min + vehicle pretreatment (IR group; ischemia 60min + reperfusion 60min + OCA pretreatment (IR+OCA group. Vehicle or OCA (INT-747, 2*30mg/kg was administered by gavage 24h and 4h prior to IRI. The following end-points were analyzed: 7-day survival; biomarkers of enterocyte viability (L-lactate, I-FABP; histology (morphologic injury to villi/crypts and villus length; intestinal permeability (Ussing chamber; endotoxin translocation (Lipopolysaccharide assay; cytokines (IL-6, IL-1-β, TNFα, IFN-γ IL-10, IL-13; apoptosis (cleaved caspase-3; and autophagy (LC3, p62.It was found that intestinal IRI was associated with high mortality (90%; loss of intestinal integrity (structurally and functionally; increased endotoxin translocation and pro-inflammatory cytokine production; and inhibition of autophagy. Conversely, OCA-pretreatment improved 7-day survival up to 50% which was associated with prevention of epithelial injury, preserved intestinal architecture and permeability. Additionally, FXR-agonism led to decreased pro-inflammatory cytokine release and alleviated autophagy inhibition.Pretreatment with OCA, an FXR-agonist, improves survival in a rodent model of intestinal IRI, preserves the gut barrier function and suppresses inflammation. These results turn

  4. Protective effect of tetraethyl pyrazine against focal cerebral ischemia/reperfusion injury in rats: therapeutic time window and its mechanism.

    Science.gov (United States)

    Jia, Jie; Zhang, Xi; Hu, Yong-Shan; Wu, Yi; Wang, Qing-Zhi; Li, Na-Na; Wu, Cai-Qin; Yu, Hui-Xian; Guo, Qing-Chuan

    2009-03-01

    Tetramethyl pyrazine has been considered an effective agent in treating neurons ischemia/reperfusion injury, but the mechanism of its therapeutic effect remains unclear. This study was to explore the therapeutic time window and mechanism of tetramethyl pyrazine on temporary focal cerebral ischemia/reperfusion injury. Middle cerebral artery occlusion was conducted in male Sprague-Dawley rats and 20 mg/kg of tetramethyl pyrazine was intraperitoneally injected at different time points. At 72 h after reperfusion, all animals' neurologic deficit scores were evaluated. Cerebrums were removed and cerebral infarction volume was measured. The expression of thioredoxin and thioredoxin reductase mRNA was determined at 6 and 24 h after reperfusion. Cerebral infarction volume and neurological deficit scores were significantly decreased in the group with tetramethyl pyrazine treatment. The expression of thioredoxin-1/thioredoxin-2 and thioredoxin reductase-1/thioredoxin reductase-2 was significantly decreased in rats with ischemia/reperfusion injury, while it was increased by tetramethyl pyrazine administration. Treatment with tetramethyl pyrazine, within 4 h after reperfusion, protects the brain from ischemic reperfusion injury in rats. The neuroprotective mechanism of tetramethyl pyrazine treatment is, in part, mediated through the upregulation of thioredoxin transcription.

  5. Reducing mitochondrial bound hexokinase II mediates transition from non-injurious into injurious ischemia/reperfusion of the intact heart

    NARCIS (Netherlands)

    R. Nederlof (Rianne); Gürel-Gurevin, E. (Ebru); O. Eerbeek (Otto); C. Xie (Chaoqin); Deijs, G.S.; Konkel, M. (Moritz); Hu, J. (Jun); N.C. Weber (Nina); C. Schumacher (Cees); A. Baartscheer (Antonius); E.G. Mik (Egbert); M.W. Hollmann (Markus); F.G. Akar (Fadi); C.J. Zuurbier (Coert J.)

    2016-01-01

    textabstractIschemia/reperfusion (I/R) of the heart becomes injurious when duration of the ischemic insult exceeds a certain threshold (approximately ≥20 min). Mitochondrial bound hexokinase II (mtHKII) protects against I/R injury, with the amount of mtHKII correlating with injury. Here, we examine

  6. Erdosteine and ebselen as useful agents in intestinal ischemia/reperfusion injury.

    Science.gov (United States)

    Tunc, Turan; Uysal, Bulent; Atabek, Cuneyt; Kesik, Vural; Caliskan, Bahadir; Oztas, Emin; Ersoz, Nail; Oter, Sukru; Guven, Ahmet

    2009-08-01

    Reactive oxygen and nitrogen species generated during reperfusion of the tissue are characteristic of ischemia/reperfusion (I/R) injury. The purpose of the present study was to investigate whether erdosteine and ebselen, molecules with antioxidant properties and peroxynitrite scavenging capability, respectively, can reduce oxidative stress and histological damage in the rat small bowel subjected to mesenteric I/R injury. Forty Sprague-Dawley rats were divided into five groups equally: sham, I/R, I/R plus erdosteine, I/R plus ebselen, and I/R plus erdosteine and ebselen. Intestinal ischemia for 45 min and reperfusion for 3 d were carried out. Ileal specimens were obtained to determine the tissue levels of malondialdehide (MDA), protein carbonyl content (PCC), superoxide dismutase (SOD), glutathione peroxidase (GPx), nitrite/nitrate (NO(x)) level and histological changes. Intestinal I/R resulted in increased tissue MDA, PCC, and NO(x) levels and decreased SOD and GPx activities. Both erdosteine and ebselen alone significantly decreased MDA, PCC, and NO(x) levels and increased antioxidant enzymes activities, but all values were different from control. These changes almost returned to control values in the group treated with erdostein and ebselen. Histopathologically, the intestinal injury in rats treated with erdosteine and ebselen as well as combination were less than I/R group. Both erdosteine and ebselen were able to attenuate I/R injury of the intestine via inhibition of lipid peroxidation and protein oxidation, maintenance of antioxidant, and free radical scavenger properties. Nevertheless, combination treatment showed more promising results, suggesting that scavenging peroxynitrite nearby antioxidant activity is important in preventing intestinal I/R injury.

  7. The Effect of Lidocaine Enriched Cardioplegia on Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Emin Ata

    2016-07-01

    Full Text Available Aim: Most of the complications after open heart surgery is usually associated with ischemia reperfusion injury that develops during cardiopulmoner bypass. In ischemia and reperfusion periods lidocaine blocks intracelluler sodium and calcium channels and protect cell membrane against reactive oxygen metabolites. In this study, lidocaine added to cardioplegia solution and its effects on myocardial ischemia-reperfusion injury was examined. Material and Method: 36 patients who underwent elective coronary artery bypass surgery in our clinic between September 2005 and April 2006 was studied. Patients included into two groups. In study group patients (groupe I 2 mg/kg lidocaine was added into cardioplegia solution that is used during aortic cross clamp period; standart cardioplegia solution was used in control group patients (group II. Postoperative 6. and 24. hours cardiac enzyme levels, inotropic support requirement and atrial fibrilation incidence were compared in both groups. Results: In this study, 36 patients (13 women, 23 man whose average age was 63(±5,5, age range 50-70 years and ventriculer functions were not deformed (EF>40% were involved. There were no significantly differences in demographic datas between towo groups. There were no significantly differences in postoperative 6. and 24. hours troponin-I and CK-MB levels, inotropic support or defibrilation requirement and postoperative atrial fibrilation incidence between two groups. Discussion: Addition of 2 mg/kg dosage lidocaine into cardioplegia solution dont effect cardiac enzyme levels, inotropic support requirement and postoperative atrial fibrilation insidence and it doesnt prevent ischemia-reperfusion injury.

  8. Oxidative and ER stress-dependent ASK1 activation in steatotic hepatocytes and Kupffer cells sensitizes mice fatty liver to ischemia/reperfusion injury.

    Science.gov (United States)

    Imarisio, Chiara; Alchera, Elisa; Bangalore Revanna, Chandrashekar; Valente, Guido; Follenzi, Antonia; Trisolini, Elena; Boldorini, Renzo; Carini, Rita

    2017-11-01

    Steatosis intensifies hepatic ischemia/reperfusion (I/R) injury increasing hepatocyte damage and hepatic inflammation. This study evaluates if this process is associated to a differential response of steatotic hepatocytes (HP) and Kupffer cells (KC) to I/R injury and investigates the molecular mechanisms involved. Control or steatotic (treated with 50 μmol palmitic acid, PA) mouse HP or KC were exposed to hypoxia/reoxygenation (H/R). C57BL/6 mice fed 9 week with control or High Fat diet underwent to partial hepatic IR. PA increased H/R damage of HP and further activated the ASK1-JNK axis stimulated by ER stress during H/R. PA also induced the production of oxidant species (OS), and OS prevention nullified the capacity of PA to increase H/R damage and ASK1/JNK stimulation. ASK1 inhibition prevented JNK activation and entirely protected HP damage. In KC, PA directly activated ER stress, ASK1 and p38 MAPK and increased H/R damage. However, in contrast to HP, ASK1 inhibition further increased H/R damage by preventing p38 MAPK activation. In mice liver, steatosis induced the expression of activated ASK1 in only KC, whereas I/R exposure of steatotic liver activated ASK1 expression also in HP. "In vivo", ASK1 inhibition prevented ASK1, JNK and p38 MAPK activation and protected I/R damage and expression of inflammatory markers. Lipids-induced ASK1 stimulation differentially affects HP and KC by promoting cytotoxic or protective signals. ASK1 increases H/R damage of HP by stimulating JNK and protects KC activating p38MAPK. These data support the potentiality of the therapeutic employment of ASK1 inhibitors that can antagonize the damaging effects of I/R upon fatty liver surgery by the contextual reduction of HP death and of KC-mediated reactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  10. Borax partially prevents neurologic disability and oxidative stress in experimental spinal cord ischemia/reperfusion injury.

    Science.gov (United States)

    Koc, Emine Rabia; Gökce, Emre Cemal; Sönmez, Mehmet Akif; Namuslu, Mehmet; Gökce, Aysun; Bodur, A Said

    2015-01-01

    The aim of this study is to investigate the potential effects of borax on ischemia/reperfusion injury of the rat spinal cord. Twenty-one Wistar albino rats were divided into 3 groups: sham (no ischemia/reperfusion), ischemia/reperfusion, and borax (ischemia/reperfusion + borax); each group was consist of 7 animals. Infrarenal aortic cross clamp was applied for 30 minutes to generate spinal cord ischemia. Animals were evaluated functionally with the Basso, Beattie, and Bresnahan scoring system and inclined-plane test. The spinal cord tissue samples were harvested to analyze tissue concentrations of nitric oxide, nitric oxide synthase activity, xanthine oxidase activity, total antioxidant capacity, and total oxidant status and to perform histopathological examination. At the 72nd hour after ischemia, the borax group had significantly higher Basso, Beattie, and Bresnahan and inclined-plane scores than those of ischemia/reperfusion group. Histopathological examination of spinal cord tissues in borax group showed that treatment with borax significantly reduced the degree of spinal cord edema, inflammation, and tissue injury disclosed by light microscopy. Xanthine oxidase activity and total oxidant status levels of the ischemia/reperfusion group were significantly higher than those of the sham and borax groups (P borax group were significantly higher than those of the ischemia/reperfusion group (P borax groups in terms of total antioxidant capacity levels (P > .05). The nitric oxide levels and nitric oxide synthase activity of all groups were similar (P > .05). Borax treatment seems to protect the spinal cord against injury in a rat ischemia/reperfusion model and improve neurological outcome. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. Time-Dependent Gene Profiling Indicates the Presence of Different Phases for Ischemia/Reperfusion Injury in Retina

    Directory of Open Access Journals (Sweden)

    Kalina Andreeva

    2014-01-01

    Full Text Available Ischemia/reperfusion (IR injury has been associated with several retinal pathologies, and a few genes/gene products have been linked to IR injury. However, the big picture of temporal changes, regarding the affected gene networks, pathways, and processes remains to be determined. The purpose of the present study was to investigate initial, intermediate, and later stages to characterize the etiology of IR injury in terms of the pathways affected over time. Analyses indicated that at the initial stage, 0-hour reperfusion following the ischemic period, the ischemia-associated genes were related to changes in metabolism. In contrast, at the 24-hour time point, the signature events in reperfusion injury include enhanced inflammatory and immune responses as well as cell death indicating that this would be a critical period for the development of any interventional therapeutic strategies. Genes in the signal transduction pathways, particularly transmitter receptors, are downregulated at this time. Activation of the complement system pathway clearly plays an important role in the later stages of reperfusion injury. Together, these results demonstrate that the etiology of injury related to IR is characterized by the appearance of specific patterns of gene expression at any given time point during retinal IR injury. These results indicate that evaluation of treatment strategies with respect to time is very critical.

  12. Hypercholesterolemic myocardium is vulnerable to ischemia-reperfusion injury and refractory to sevoflurane-induced protection.

    Directory of Open Access Journals (Sweden)

    Yong Xu

    Full Text Available Recent studies have demonstrated that volatile anesthetic postconditioning confers myocardial protection against ischemia-reperfusion (IR injury through activation of the reperfusion injury salvage kinase (RISK pathway. As RISK has been shown to be impaired in hypercholesterolemia. Therefore, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. In the present study, normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane for 5 min or 3 cycles of 10-s ischemia/10-s reperfusion. The hemodynamic parameters, including left ventricular developed pressure, left ventricular end-diastolic pressure and heart rate, were continuously monitored. The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3β were determined. We found that both sevoflurane and ischemic postconditioning significantly improved heart pump function, reduced infarct size and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3β in the healthy rats. In the hypercholesterolemic rats, neither sevoflurane nor ischemic postconditioning improved left ventricular hemodynamics, reduced infarct size and increased the phosphorylated Akt, ERK1/2 and GSK3β. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. In conclusions, hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3β and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.

  13. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  14. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    International Nuclear Information System (INIS)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori; Tsuneyama, Koichi; Endo, Shinya; Tsukui, Tohru; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  15. Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats.

    Science.gov (United States)

    Turan, Inci; Ozacmak, Hale Sayan; Ozacmak, V Haktan; Barut, Figen; Araslı, Mehmet

    2017-11-15

    Oxidative stress and inflammatory response are major factors causing several tissue injuries in intestinal ischemia and reperfusion (I/R). Agmatine has been reported to attenuate I/R injury of various organs. The present study aims to analyze the possible protective effects of agmatine on intestinal I/R injury in rats. Four groups were designed: sham control, agmatine-treated control, I/R control, and agmatine-treated I/R groups. IR injury of small intestine was induced by the occlusion of the superior mesenteric artery for half an hour to be followed by a 3-hour-long reperfusion. Agmatine (10mg/kg) was administered intraperitoneally before reperfusion period. After 180min of reperfusion period, the contractile responses to both carbachol and potassium chloride (KCl) were subsequently examined in an isolated-organ bath. Malondialdehyde (MDA), reduced glutathione (GSH), and the activity of myeloperoxidase (MPO) were measured in intestinal tissue. Plasma cytokine levels were determined. The expression of the intestinal inducible nitric oxide synthase (iNOS) was also assessed by immunohistochemistry. The treatment with agmatine appeared to be significantly effective in reducing the MDA content and MPO activity besides restoring the content of GSH. The treatment also attenuated the histological injury. The increases in the I/R induced expressions of iNOS, IFN-γ, and IL-1α were brought back to the sham control levels by the treatment as well. Our findings indicate that the agmatine pretreatment may ameliorate reperfusion induced injury in small intestine mainly due to reducing inflammatory response and oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia–reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice

    Directory of Open Access Journals (Sweden)

    Feng J

    2017-07-01

    Full Text Available Jiao Feng,1,* Qinghui Zhang,2,* Wenhui Mo,3,* Liwei Wu,1 Sainan Li,1 Jingjing Li,1 Tong Liu,1 Shizan Xu,4 Xiaoming Fan,5 Chuanyong Guo1 1Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 2Department of Clinical Laboratory, Kunshan First People’s Hospital Affiliated to Jiangsu University, Kunshan, JiangSu, 3Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, 4Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 5Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, China *These authors contributed equally to this work Abstract: Ischemia–reperfusion injury (IRI contributes to liver damage in many clinical situations, such as liver resection and liver transplantation. In the present study, we investigated the effects of the antioxidant, anti-inflammatory, and anticancer agent salidroside (Sal on hepatic IRI in mice. The mice were randomly divided into six groups: normal control, Sham, Sal (20 mg/kg, IRI, IRI + Sal (10 mg/kg, and IRI + Sal (20 mg/kg. We measured liver enzymes, proinflammatory cytokines, TNF-α and interleukin-6, and apoptosis- and autophagy-related marker proteins at 2, 8, and 24 hours after reperfusion. Components of mitogen-activated protein kinase (MAPK signaling, including P-38, jun N-terminal kinase (JNK, and extracellular signal-regulated kinase (ERK, were also measured using an MAPK activator anisomycin to deduce their roles in hepatic IRI. Our results show that Sal safely protects hepatocytes from IRI by reducing levels of liver enzymes in the serum. These findings were confirmed by histopathology. We concluded that Sal protects hepatocytes from IRI partly by inhibiting the activation of MAPK signaling, including the phosphorylation of P38, JNK, and ERK. This ameliorates inflammatory reactions, apoptosis, and

  17. The Role of Tetrahydrobiopterin and Dihydrobiopterin in Ischemia/Reperfusion Injury When Given at Reperfusion

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2010-01-01

    Full Text Available Reduced nitric oxide (NO bioavailability and increased oxidative stress are major factors mediating ischemia/reperfusion (I/R injury. Tetrahydrobiopterin (BH4 is an essential cofactor of endothelial NO synthase (eNOS to produce NO, whereas dihydrobiopterin (BH2 can shift the eNOS product profile from NO to superoxide, which is further converted to hydrogen peroxide (H2O2 and cause I/R injury. The effects of BH4 and BH2 on oxidative stress and postreperfused cardiac functions were examined in ex vivo myocardial and in vivo femoral I (20 min/R (45 min models. In femoral I/R, BH4 increased NO and decreased H2O2 releases relative to saline control, and these effects correlated with improved postreperfused cardiac function. By contrast, BH2 decreased NO release relative to the saline control, but increased H2O2 release similar to the saline control, and these effects correlated with compromised postreperfused cardiac function. In conclusion, these results suggest that promoting eNOS coupling to produce NO and decrease H2O2 may be a key mechanism to restore postreperfused organ function during early reperfusion.

  18. Salutary Effects of Cepharanthine against Skeletal Muscle and Kidney Injuries following Limb Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Ming-Chang Kao

    2015-01-01

    Full Text Available Limb ischemia/reperfusion (I/R causes oxidation and inflammation and subsequently induces muscle and kidney injuries. Cepharanthine, a natural plant alkaloid, possesses anti-inflammatory and antioxidative properties. We elucidated the salutary effects of cepharanthine against muscle and kidney injuries following limb I/R. Adult male rats were randomized to receive I/R or I/R plus cepharanthine. I/R was achieved by applying tourniquet high around each thigh for 3 hours followed by reperfusion for 24 hours. Cepharanthine (10 mg/kg, intraperitoneal was injected immediately before reperfusion. After euthanization, degrees of tissue injury, inflammation, and oxidation were examined. Our data revealed that the I/R group had significant increases in injury biomarker concentrations of muscle (creatine kinase and lactate dehydrogenase and kidney (creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Histological assays revealed moderate muscle and kidney injury characteristics in the I/R group. The I/R group also had significant increases in concentrations of inflammatory molecules (interleukin-6, macrophage inflammatory protein-2, and prostaglandin E2 and reactive nitrogen species (nitric oxide as well as lipid peroxidation (malondialdehyde. Of note, these effects of limb I/R could be mitigated by cepharanthine. These data confirmed that cepharanthine attenuated muscle and kidney injuries induced by limb I/R. The mechanisms may involve its anti-inflammatory and antioxidative capacities.

  19. Effect of nutritional status on oxidative stress in an ex vivo perfused rat liver.

    Science.gov (United States)

    Stadler, Michaela; Nuyens, Vincent; Seidel, Laurence; Albert, Adelin; Boogaerts, Jean G

    2005-11-01

    Normothermic ischemia-reperfusion is a determinant in liver injury occurring during surgical procedures, ischemic state, and multiple organ failure. The preexisting nutritional status of the liver might contribute to the extent of tissue injury and primary nonfunction. The aim of this study was to determine the role of starvation on hepatic ischemia-reperfusion injury in normal rat livers. Rats were randomly divided into two groups: one had free access to food, the other was fasted for 16 h. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Two modes of perfusion were applied in each series of rats, fed and fasting. In the ischemia-reperfusion mode, the experiment consisted of perfusion for 15 min, warm ischemia for 60 min, and reperfusion during 60 min. In the nonischemia mode, perfusion was maintained during the 135-min study period. Five rats were included in each experimental condition, yielding a total of 20 rats. Liver enzymes, potassium, glucose, lactate, free radicals, i.e., dienes and trienes, and cytochrome c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in tissue biopsies. Transaminases, lactate dehydrogenase, potassium, and free radical concentrations were systematically higher in fasting rats in both conditions, with and without ischemia. Cytochrome c was higher after reperfusion in the fasting rats. Glucose and lactate concentrations were greater in the fed group. The glycogen content decreased in both groups during the experiment but was markedly lower in the fasting rats. In fed rats, liver injury was moderate, whereas hepatocytes integrity was notably impaired both after continuous perfusion and warm ischemia in fasting animals. Reduced glycogen store in hepatocytes may explain reduced tolerance.

  20. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor κB p65 activation

    International Nuclear Information System (INIS)

    Xue, Xia; Qu, Xian-Jun; Yang, Ying; Sheng, Xie-Huang; Cheng, Fang; Jiang, E-Nang; Wang, Jian-hua; Bu, Wen; Liu, Zhao-Ping

    2010-01-01

    Research highlights: → Permanent NF-κB p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. → Baicalin can markedly inhibit the nuclear NF-κB p65 expression and m RNA levels after ischemia-reperfusion injury in rats. → Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-κB p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at doses of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-κB p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 ± 0.7 to 1.2 ± 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-κB p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-κB p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-κB p65.

  1. The Effects of α-Lipoic Acid against Testicular Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Seda Ozbal

    2012-01-01

    Full Text Available Testicular torsion is one of the urologic emergencies occurring frequently in neonatal and adolescent period. Testis is sensitive to ischemia-reperfusion injury, and, therefore, ischemia and consecutive reperfusion cause an enhanced formation of reactive oxygen species that result in testicular cell damage and apoptosis. α-lipoic acid is a free radical scavenger and a biological antioxidant. It is widely used in the prevention of oxidative stress and cellular damage. We aimed to investigate the protective effect of α-lipoic acid on testicular damage in rats subjected to testicular ischemia-reperfusion injury. 35 rats were randomly divided into 5 groups: control, sham operated, ischemia, ischemia-reperfusion, and ischemia-reperfusion +lipoic acid groups, 2 h torsion and 2 h detorsion of the testis were performed. Testicular cell damage was examined by H-E staining. TUNEL and active caspase-3 immunostaining were used to detect germ cell apoptosis. GPx , SOD activity, and MDA levels were evaluated. Histological evaluation showed that α-lipoic acid pretreatment reduced testicular cell damage and decreased TUNEL and caspase-3-positive cells. Additionally, α-lipoic acid administration decreased the GPx and SOD activity and increased the MDA levels. The present results suggest that LA is a potentially beneficial agent in protecting testicular I/R in rats.

  2. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  3. Protective Effect of Extract of Folium Ginkgo on Repeated Cerebral Ischemia-Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the protective effect of extract of Folium Ginkgo (FGE) on repeated cerebral ischemia-reperfusion injury. Methods: The model in waking mice induced by repeated cerebral ischemia-reperfusion were used in the experiment to observe the effect of FGE on behavior, oxygen free radical metabolism and prostaglandin E2 (PGE2) content by step-through experiment, diving stand and colorimetric method. Results: FGE could obviously improve the learning ability and memory of model animals, and could lower obviously the content of malonyldialdehyde, nitric oxide and PGE2, restore the lowered activity of superoxide dismutase and catalase in cerebral tissue. Conclusion: FGE has highly protective effect against repeated ischemia-reperfusion injury, the mechanism might be related with its action on anti-lipid oxidatin, improve the activity of antioxidase and inhibit the producing of PGE2.

  4. Protective effects of Tribulus terrestris L extract against acute kidney injury induced by reperfusion injury in rats.

    Science.gov (United States)

    Najafi, Houshang; Firouzifar, Mohammad Reza; Shafaat, Omid; Changizi Ashtiyani, Saeed; Hosseini, Nasser

    2014-07-01

    This study aimed to investigate the protective effect of aerial parts of the Tribulus terrestris L extract on acute kidney injury (AKI) induced by ischemia for 30 minutes and reperfusion for 24 hours in rats. Ten male Sprague-Dawley rats in the AKI and 10 in the Tribulus terrestris groups received the extract solvent and extract of the plant (11 mg/kg), respectively, for 13 days (oral administration). On day 14, ischemia for 30 minutes and reperfusion for 24 hours were induced on the rats. In the last 6 hours of the reperfusion period (24 hours), urine samples were collected in metabolic cages. At the end of this period, blood samples were also taken to determine plasma urea nitrogen, creatinine, and electrolyte concentrations. The kidney tissues were collected for measuring the level of oxidative stress and histological studies. They were compared with the sham operation group and a control group with normal diet and no operation. In the Tribulus terrestris group, the increase in plasma creatinine and urea nitrogen concentrations was significantly less following reperfusion, and their values reached the same level as that in the sham group. Creatinine clearance and urine osmolarity in the Tribulus terrestris group was higher in comparison with the AKI group, whereas sodium absolute excretion, fractional excretion of potassium, oxidative stress, and cellular damages were less. Oral administration of Tribulus terrestris extract for 2 weeks can decrease kidney functional disturbance, oxidative stress, and cellular damages following reperfusion injury in rats.

  5. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury.

    Science.gov (United States)

    Wang, Yanzhe; He, Zhiyi; Deng, Shumin

    2016-01-01

    Activators of PPARs, particularly PPARγ, may be effective neuroprotective drugs against inflammatory responses in cerebral ischemia and reperfusion injury. Ursolic acid (UA) may act as a PPARγ agonist and serve as an anti-inflammatory agent. In this study, we used a rat middle cerebral artery occlusion and reperfusion model to examine how UA acts as a neuroprotective agent to modulate the metalloprotease/anti-metalloprotease balance. The middle cerebral artery occlusion and reperfusion model (occlusion for 2 hours followed by reperfusion for 48 hours) was induced in male Sprague Dawley rats. UA was administered intragastrically 0.5, 24, and 47 hours after reperfusion. Bisphenol A diglycidyl ether (a PPARγ antagonist) was intraperitoneally administered 1, 24.5, and 47.5 hours after reperfusion. Forty-eight hours after reperfusion, neurological deficits and infarct volume were estimated. The PPARγ level and the metalloprotease/anti-metalloprotease balance were examined by Western blotting and immunohistochemistry. The activation of MAPK signaling pathways was also assessed. UA-treated (5, 10, or 20 mg/kg) rats showed significant improvement in neurological deficit score, infarct volume, and the number of intact neurons compared with control rats (Pprotective effects in a dose-dependent manner. Co-treatment with UA and bisphenol A diglycidyl ether completely abolished the UA-induced changes in PPARγ expression; however UA continued to exert a significant but partial neuroprotective effect. UA can act as a PPARγ agonist to improve the metalloprotease/anti-metalloprotease balance, possibly by inhibiting the activation of the MAPK signaling pathway, thereby attenuating cerebral ischemia and reperfusion injury. Therefore, UA may serve as a novel neuroprotective therapeutic agent.

  6. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Directory of Open Access Journals (Sweden)

    Ozkan Onal

    2015-01-01

    Full Text Available Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF intraperitoneally (ip for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD, catalase (CAT, glutathioneperoxidase (GSH-Px, malondyaldehide (MDA, and protein carbonyl (PCO were analyzed in tissue samples. Total oxidant status (TOS, and total antioxidant capacity (TAC were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy

  7. Interrupted reperfusion reduces the activation of NADPH oxidase after cerebral I/R injury.

    Science.gov (United States)

    Shen, Jia; Bai, Xiao-Yin; Qin, Yuan; Jin, Wei-Wei; Zhou, Jing-Yin; Zhou, Ji-Ping; Yan, Ying-Gang; Wang, Qiong; Bruce, Iain C; Chen, Jiang-Hua; Xia, Qiang

    2011-06-15

    Interrupted reperfusion reduces ischemia/reperfusion (I/R) injury. This study was designed to determine whether NADPH oxidase participates in the neural protection against global I/R injury after interrupted reperfusion. Mice were randomly divided into five groups: sham (sham-operated), I/R (20-min global I/R), RR (I/R+interrupted reperfusion), Apo (I/R+apocynin administration), and RR+Apo. Behavioral tests (pole test, beam walking, and Morris water maze) and Nissl staining were undertaken in all five groups; superoxide levels, expression of gp91(phox) and p47(phox), p47(phox) translocation, and Rac1 activation were measured in the sham, I/R, and RR groups. The motor coordination, bradykinesia, and spatial learning and memory, as well as the neuron survival rates, were better in the RR, Apo, and RR+Apo groups than in the I/R group. The NADPH oxidase-dependent superoxide levels, p47(phox) and gp91(phox) expression, p47(phox) translocation, and Rac1 activation were lower in the RR group than in the I/R group. In conclusion, the neural protective effect of interrupted reperfusion is at least partly mediated by decreasing the expression and assembly of NADPH oxidase and the levels of NADPH oxidase-derived superoxide. The most striking reduction Rac1-GTP in the RR group suggests that interrupted reperfusion also acts on the activation of assembled NADPH oxidase by reducing the availability of Rac1-GTP. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Sulfatide-Reactive Natural Killer T Cells Abrogate Ischemia-Reperfusion Injury

    OpenAIRE

    Yang, Seung Hee; Lee, Jung Pyo; Jang, Hye Ryoun; Cha, Ran-hui; Han, Seung Seok; Jeon, Un Sil; Kim, Dong Ki; Song, Junghan; Lee, Dong-Sup; Kim, Yon Su

    2011-01-01

    There is a significant immune response to ischemia-reperfusion injury (IRI), but the role of immunomodulatory natural killer T (NKT) cell subtypes is not well understood. Here, we compared the severity of IRI in mice deficient in type I/II NKT cells (CD1d−/−) or type I NKT cells (Jα18−/−). The absence of NKT cells, especially type II NKT cells, accentuated the severity of renal injury, whereas repletion of NKT cells attenuated injury. Adoptively transferred NKT cells trafficked into the tubul...

  9. Low-energy shock wave preconditioning reduces renal ischemic reperfusion injury caused by renal artery occlusion.

    Science.gov (United States)

    Xue, Yuquan; Xu, Zhibin; Chen, Haiwen; Gan, Weimin; Chong, Tie

    2017-07-01

    To evaluate whether low energy shock wave preconditioning could reduce renal ischemic reperfusion injury caused by renal artery occlusion. The right kidneys of 64 male Sprague Dawley rats were removed to establish an isolated kidney model. The rats were then divided into four treatment groups: Group 1 was the sham treatment group; Group 2, received only low-energy (12 kv, 1 Hz, 200 times) shock wave preconditioning; Group 3 received the same low-energy shock wave preconditioning as Group 2, and then the left renal artery was occluded for 45 minutes; and Group 4 had the left renal artery occluded for 45 minutes. At 24 hours and one-week time points after reperfusion, serum inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), creatinine (Cr), and cystatin C (Cys C) levels were measured, malondialdehyde (MDA) in kidney tissue was detected, and changes in nephric morphology were evaluated by light and electron microscopy. Twenty-four hours after reperfusion, serum iNOS, NGAL, Cr, Cys C, and MDA levels in Group 3 were significantly lower than those in Group 4; light and electron microscopy showed that the renal tissue injury in Group 3 was significantly lighter than that in Group 4. One week after reperfusion, serum NGAL, KIM-1, and Cys C levels in Group 3 were significantly lower than those in Group 4. Low-energy shock wave preconditioning can reduce renal ischemic reperfusion injury caused by renal artery occlusion in an isolated kidney rat model.

  10. Protective effect of preconditioning and adenosine pretreatment in experimental skeletal muscle reperfusion injury.

    Science.gov (United States)

    Papanastasiou, S; Estdale, S E; Homer-Vanniasinkam, S; Mathie, R T

    1999-07-01

    Prolonged ischaemia followed by reperfusion (I/R) of skeletal muscle results in significant tissue injury. Ischaemic preconditioning (IPC), achieved by repeated brief periods of I/R before prolonged ischaemia or adenosine pretreatment, can prevent I/R injury in cardiac muscle. The aim of this study was to ascertain in a rodent model if damage to skeletal muscle due to global hindlimb tourniquet-induced I/R could be similarly attenuated. Anaesthetized rats were randomized (n = 6-10 per group) to five groups: sham-operated controls; I/R (4 h of ischaemia, 2 h of reperfusion); IPC (three cycles of 10 min of ischaemia/10 min of reperfusion) alone; IPC immediately preceding I/R; or adenosine 1000 microg/kg immediately before I/R. At the end of reperfusion, biopsies were taken from the left gastrocnemius muscle for measurement of myeloperoxidase (MPO) and reduced glutathione (GSH). Before ischaemia and at the end of reperfusion, blood samples were taken for measurement of nitric oxide metabolites, tumour necrosis factor (TNF) alpha and macrophage inflammatory protein (MIP) 2. IPC before I/R resulted in lower levels of MPO (P < 0.001) and TNF-alpha (P = 0.004), and higher levels of GSH (P < 0.001) and nitric oxide metabolites (P = 0.002) than I/R alone. Adenosine had effects comparable to IPC pretreatment (P < 0.001 for MPO, P = 0.002 for GSH, P = 0.02 for nitric oxide metabolites and P = 0.001 for TNF-alpha). There was no difference in the blood pressure or the MIP-2 concentration among the groups. IPC or pretreatment with adenosine ameliorates the I/R injury of skeletal muscle.

  11. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway.

    Science.gov (United States)

    Wang, Qin; Lin, Ping; Li, Peng; Feng, Li; Ren, Qian; Xie, Xiaofeng; Xu, Jing

    2017-10-01

    The aim of this study was to investigate the cardioprotective effects of ghrelin against myocardial ischemia/reperfusion (I/R) injury and the underlying mechanism. Sprague-Dawley rats were randomized into Sham, I/R and I/R+ghrelin groups. After 30 minutes ischemia, ghrelin (8nmol/kg) was injected intraperitoneally at the time of reperfusion in the I/R+ghrelin group. Then hemodynamic parameters were observed at 24h after reperfusion. Ghrelin exhibited dramatic improvement in cardiac functions, as manifested by increased LVSP and ±dP/dt max and decreased LVDP. At 24h after reperfusion, ghrelin significantly attenuated the myocardial infarction area and apoptosis, accompanied with a decrease in the levels of the myocyte injury marker enzymes. Oxidative stress injury and inflammatory response were also relieved by ghrelin. Western blot showed that the expression of TLR4, NLRP3, and caspase-1 were obviously increased in I/R group, while ghrelin significantly inhibited the I/R-induced TLR4, NLRP3, and caspase-1 expression. Ghrelin could inhibit the increased protein levels of NLRP3, caspase-1, and IL-1β induced by lipopolysacharide in primary cultured cardiomyocytes of neonatal rats. Ghrelin protected the heart against I/R injury by inhibiting oxidative stress and inflammation via TLR4/NLRP3 signaling pathway. Our results might provide new strategy and target for treatment of myocardial ischemia/reperfusion injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice.

    Science.gov (United States)

    Chen, Zong; Ding, Tao; Ma, Chuan-Gen

    2017-11-18

    Hepatic ischemia/reperfusion (I/R) injury could arise as a complication of liver surgery and transplantation. No specific therapeutic strategies are available to attenuate I/R injury. NOD-, LRR-and CARD-containing 5 (NLRC5), a member of the NOD-like protein family, has been suggested to negatively regulate nuclear factor kappa B (NF-κB) through interacting with IKKα and blocking their phosphorylation. Dexmedetomidine (DEX) has been shown to attenuate liver injury. In the current study, we investigated the pre-treatment of DEX on hepatic I/R injury in wild type (WT) and NLRC5 knockout (NLRC5 -/- ) mice. Our results indicated that NLRC5 -/- showed significantly stronger histologic damage, inflammatory response, oxidative stress and apoptosis after I/R compared to the WT group of mice, indicating the protective role of NLRC5 against liver I/R injury. Importantly, I/R-induced increase of NLRC5 was reduced by DEX pre-treatment. After hepatic I/R injury, WT and NLRC5 -/- mice pre-treated with DEX exhibited attenuated histological disruption, and reduced pro-inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and inducible nitric oxide synthase (iNOS), which was associated with the inactivated NF-κB pathway. Moreover, suppression of oxidative stress and apoptosis was observed in DEX-treated mice with I/R injury, probably through enhancing nuclear factor erythroid 2-related factor 2 (Nrf2), reducing mitogen-activated protein kinases (MAPKs) and Caspase-3/poly (ADP-ribose) polymerase (PARP) pathways. In vitro, the results were further confirmed in WT and NLRC5 -/- hepatocytes pre-treated with or without DEX. Together, the findings illustrated that lack of NLRC5 resulted in severer liver I/R injury, which could be alleviated by DEX pre-treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Sildenafil citrate protects skeletal muscle of ischemia-reperfusion injury: immunohistochemical study in rat model

    Directory of Open Access Journals (Sweden)

    Dinani Matoso Fialho de Oliveira Armstrong

    2013-04-01

    Full Text Available PURPOSE: To investigate the effect of sildenafil citrate (SC on skeletal muscle ischemia-reperfusion (IR injury in rats. METHODS: Adult male Wistar rats were randomized into three groups: vehicle-treated control (CTG, sildenafil citrate-treated (SCG, and sham group (SG. CTG and SCG had femoral artery occluded for 6 hours. Saline or 1 mg/kg of SC was given 5.5 hours after occlusion. SG had a similar procedure without artery occlusion. Soleus muscle samples were acquired 4 or 24h after the reperfusion. Immunohistochemistry caspase-3 analysis was used to estimate apoptosis using the apoptotic ratio (computed as positive/negative cells. Wilcoxon rank-sum or Kruskal-Wallis tests were used to assess differences among groups. RESULTS: Eighteen animals were included in the 4h reperfusion groups and 21 animals in the 24h reperfusion groups. The mean apoptotic ratio was 0.18±0.1 for the total cohort; 0.14±0.06 for the 4h reperfusion groups and 0.19±0.08 for the 24h groups (p<0.05. The SCG had lower caspase-3 ratio compared to the control groups at the 24h reperfusion time point (p<0.05. CONCLUSION: Sildenafil citrate administration after the onset of the ischemic injury reduces IR-induced cellular damage in skeletal muscle in this rat hindlimb ischemia model.

  14. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  15. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat.

    Science.gov (United States)

    Aydin, Mehmet Salih; Caliskan, Ahmet; Kocarslan, Aydemir; Kocarslan, Sezen; Yildiz, Ali; Günay, Samil; Savik, Emin; Hazar, Abdussemet; Yalcin, Funda

    2014-01-01

    Previous studies have demonstrated that curcumin (CUR) has protective effects against ischemia reperfusion injury to various organs. We aimed to determine whether CUR has favorable effects on tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham, control and treatment (CUR) group. Control and CUR groups underwent abdominal aorta ischemia for 60 min followed by a 120 min period of reperfusion. In the CUR group, CUR was given 5 min before reperfusion at a dose of 200 mg/kg via an intraperitoneal route. Total antioxidant capacity (TAC), total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured, and lung, renal and heart tissue histopathology were evaluated with light microscopy. TOS and OSI activity in blood samples were statistically decreased in sham and CUR groups compared to the control group (p OSI). Renal, lung, heart injury scores of sham and CUR groups were statistically decreased compared to control group (p model. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Effects of Chronic and Acute Zinc Supplementation on Myocardial Ischemia-Reperfusion Injury in Rats.

    Science.gov (United States)

    Ozyıldırım, Serhan; Baltaci, Abdulkerim Kasim; Sahna, Engin; Mogulkoc, Rasim

    2017-07-01

    The present study aims to explore the effects of chronic and acute zinc sulfate supplementation on myocardial ischemia-reperfusion injury in rats. The study registered 50 adult male rats which were divided into five groups in equal numbers as follows: group 1, normal control; group 2, sham; group 3, myocardial ischemia reperfusion (My/IR): the group which was fed on a normal diet and in which myocardial I/R was induced; group 4, myocardial ischemia reperfusion + chronic zinc: (5 mg/kg i.p. zinc sulfate for 15 days); and group 5, myocardial ischemia reperfusion + acute zinc: the group which was administered 15 mg/kg i.p. zinc sulfate an hour before the operation and in which myocardial I/R was induced. The collected blood and cardiac tissue samples were analyzed using spectrophotometric method to determine levels of MDA, as an indicator of tissue injury, and GSH, as an indicator of antioxidant activity. The highest plasma and heart tissue MDA levels were measured in group 3 (p zinc administration and markedly by chronic zinc supplementation.

  17. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors.

    Science.gov (United States)

    Yang, Yan-Wei; Wang, Yun-Lu; Lu, Jia-Kai; Tian, Lei; Jin, Mu; Cheng, Wei-Ping

    2018-03-01

    The neuroprotective effect against spinal cord ischemia/reperfusion injury in rats exerted by delayed xenon post-conditioning is stronger than that produced by immediate xenon post-conditioning. However, the mechanisms underlying this process remain unclear. Activated microglia are the main inflammatory cell type in the nervous system. The release of pro-inflammatory factors following microglial activation can lead to spinal cord damage, and inhibition of microglial activation can relieve spinal cord ischemia/reperfusion injury. To investigate how xenon regulates microglial activation and the release of inflammatory factors, a rabbit model of spinal cord ischemia/reperfusion injury was induced by balloon occlusion of the infrarenal aorta. After establishment of the model, two interventions were given: (1) immediate xenon post-conditioning-after reperfusion, inhalation of 50% xenon for 1 hour, 50% N 2 /50%O 2 for 2 hours; (2) delayed xenon post-conditioning-after reperfusion, inhalation of 50% N 2 /50%O 2 for 2 hours, 50% xenon for 1 hour. At 4, 8, 24, 48 and 72 hours after reperfusion, hindlimb locomotor function was scored using the Jacobs locomotor scale. At 72 hours after reperfusion, interleukin 6 and interleukin 10 levels in the spinal cord of each group were measured using western blot assays. Iba1 levels were determined using immunohistochemistry and a western blot assay. The number of normal neurons at the injury site was quantified using hematoxylin-eosin staining. At 72 hours after reperfusion, delayed xenon post-conditioning remarkably enhanced hindlimb motor function, increased the number of normal neurons at the injury site, decreased Iba1 levels, and inhibited interleukin-6 and interleukin-10 levels in the spinal cord. Immediate xenon post-conditioning did not noticeably affect the above-mentioned indexes. These findings indicate that delayed xenon post-conditioning after spinal cord injury improves the recovery of neurological function by reducing

  18. Reduced ischemia-reperfusion injury with isoproterenol in non-heart-beating donor lungs.

    Science.gov (United States)

    Jones, D R; Hoffmann, S C; Sellars, M; Egan, T M

    1997-05-01

    Transplantation of lungs retrieved from non-heart-beating donors could expand the donor pool. Recent studies suggest that the ischemia-reperfusion injury (IRI) to the lung can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, as measured by Kfc, in lungs retrieved from non-heart-beating donors and reperfused with or without isoproterenol (iso). Using an in situ isolated perfused lung model, lungs were retrieved from non-heart-beating donor rats ventilated with O2 or not at varying intervals after death. The lungs were reperfused with or without iso (10 microM). Kfc, lung viability, and pulmonary hemodynamics were measured, and tissue levels of adenine nucleotides and cAMP were measured by HPLC. Iso-reperfusion decreased Kfc significantly (P Kfc in non-iso-reperfused (r = 0.65) and iso-perfused (r = 0.84) lungs. cAMP levels increased significantly with iso-reperfusion. cAMP levels correlated with Kfc (r = 0.87) in iso-reperfused lungs. Iso-reperfusion of lungs retrieved from non-heart-beating donor rats results in decreased capillary permeability and increased lung tissue cAMP levels. Pharmacologic augmentation of tissue TAN and cAMP levels may further ameliorate the increased capillary permeability seen in lungs retrieved from non-heart-beating donors.

  19. Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    2015-01-01

    Full Text Available Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed.

  20. Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat

    Science.gov (United States)

    Hori, Tomohide; Gardner, Lindsay B.; Hata, Toshiyuki; Chen, Feng; Baine, Ann-Marie T.; Uemoto, Shinji; Nguyen, Justin H.

    2014-01-01

    Summary Background: Gamma-aminobutyric acid (GABA) is found throughout the body. The regulation of GABA receptor (GABAR) reduces oxidative stress (OS). Ischemia/reperfusion injury after orthotopic liver transplantation (OLT) causes OS-induced graft damage. The effects of GABAR regulation in donors in vivo were investigated. Material/Methods: Donor rats received saline, a GABAR agonist or GABAR antagonist 4 h before surgery. Recipient rats were divided into four groups according to the donor treatments: laparotomy, OLT with saline, OLT with GABAR agonist and OLT with GABAR antagonist. Histopathological, biochemical and immunohistological examinations were performed at 6, 12 and 24 h after OLT. Protein assays were performed at 6 h after OLT. The 4-hydroxynonenal (4-HNE), ataxia-telangiectasia mutated kinase (ATM), phosphorylated histone H2AX (γH2AX), phosphatidylinositol-3 kinase (PI3K), Akt and superoxide dismutase (SOD) were assessed by western blot analysis. Results: In the univariate analysis, histopathological and biochemical profiles verified that the GABAR agonist reduced graft damage. Immunohistology revealed that the GABAR agonist prevented the induction of apoptosis. Measurement of 4-4-HNE levels confirmed OS-induced damage after OLT, and the GABAR agonist improved this damage. In the γH2AX, PI3K, Akt and antioxidant enzymes (SODs), ATM and H2AX were greatly increased after OLT, and were reduced by the GABAR agonist. In the multivariate analyses between multiple groups, histopathological assessment, aspartate aminotransferase level, immunohistological examinations for apoptotic induction and γH2AX showed statistical differences. Conclusions: A specific agonist demonstrated regulation of GABAR in vivo in the liver. This activation in vivo reduced OS after OLT via the ATM/H2AX pathway. PMID:23792534

  1. Vagal modulation of high mobility group box-1 protein mediates electroacupuncture-induced cardioprotection in ischemia-reperfusion injury.

    Science.gov (United States)

    Zhang, Juan; Yong, Yue; Li, Xing; Hu, Yu; Wang, Jian; Wang, Yong-qiang; Song, Wei; Chen, Wen-ting; Xie, Jian; Chen, Xue-mei; Lv, Xin; Hou, Li-li; Wang, Ke; Zhou, Jia; Wang, Xiang-rui; Song, Jian-gang

    2015-10-26

    Excessive release of high mobility group box-1 (HMGB1) protein from ischemic cardiomyocytes activates inflammatory cascades and enhances myocardial injury after reperfusion. Here we report evidence that electroacupuncture of mice at Neiguan acupoints can inhibit the up-regulation of cardiac HMGB1 following myocardial ischemia and attenuate the associated inflammatory responses and myocardial injury during reperfusion. These benefits of electroacupuncture were partially reversed by administering recombinant HMGB1 to the mice, and further potentiated by administering anti-HMGB1 antibody. Electroacupuncture-induced inhibition of HMGB1 release was markedly reduced by unilateral vagotomy or administration of nicotinic receptor antagonist, but not by chemical sympathectomy. The cholinesterase inhibitor neostigmine mimicked the effects of electroacupuncture on HMGB1 release and myocardial ischemia reperfusion injury. Culture experiments with isolated neonatal cardiomyocytes showed that acetylcholine, but not noradrenaline, inhibited hypoxia-induced release of HMGB1 via a α7nAchR-dependent pathway. These results suggest that electroacupuncture acts via the vagal nerve and its nicotinic receptor-mediated signaling to inhibit HMGB1 release from ischemic cardiomyocytes. This helps attenuate pro-inflammatory responses and myocardial injury during reperfusion.

  2. [The influence of estradiol on histomorphology of skin flaps with ischemia reperfusion injury].

    Science.gov (United States)

    Jianlong, Wu; Ruixing, Hou; Guangliang, Zhou; Jihui, Ju

    2015-09-01

    To study the influence of estradiol on histomorphology of skin flaps with ischemia reperfusion injury. 48 adult male Wistar rats aged 12-14 weeks old, were randomly divided into control group (group I), ischemia-reperfusion group (group II), saline group (group III), estradiol group (group IV). Superficial epigastric artery axial flap, 3 cm x 6 cm in size, was made in the left lower quadrant abdominal of each rat. Flap model with ischemia-reperfusion injury was established by using the nondestructive micro vascular clamp to clamp the superficial epigastric artery. The general condition of the flap was observed after operation. At 7 days after operation, the survival rate of the flap was detected, the flaps were harvested to receive histology and ultrastructural observation. The neutrophils level of the superficial epigastric vein were tested. 7 days after operation, the survival rate of the flap in group IV was significantly higher than that in group II, III (P organization structure in flap.

  3. Treatment of Tourniquet-Induced Ischemia Reperfusion Injury with Muscle Progenitor Cells

    Science.gov (United States)

    2011-09-01

    of loss in muscle-specific force following IRI is unclear, studies in aging and sports injury models show that muscle-specific force can be reduced... antioxidant effects of carvedilol in a rat model of ischaemia-reperfusion injury. J Int Med Res 2005;33:528. 13. Asami A, Orii M, Shirasugi N, et al...Lowe DA, et al. What mechanisms con- tribute to the strength loss that occurs during and in the recov- ery from skeletal muscle injury? J Orthop Sports

  4. Sphingosine-1-Phosphate reduces ischemia/reperfusion injury by phosphorylating the gap junction protein Connexin43

    DEFF Research Database (Denmark)

    Morel, Sandrine; Christoffersen, Christina; Axelsen, Lene N

    2016-01-01

    recruitment seems only indirectly affected. Importantly, short-term S1P treatment at the onset of reperfusion was sufficient to reduce ischemia/reperfusion injury in isolated perfused hearts. Mechanistic in vitro and ex vivo studies revealed that 5 min of S1P treatment induced phosphorylation of the gap...

  5. Comparison of the Protective Effects of Erythropoietin and Melatonin on Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Banaei, Shokofeh; Ahmadiasl, Nasser; Alihemmati, Alireza

    2016-07-01

    Renal ischemia-reperfusion (IR) contributes to the development of acute renal failure (ARF). Oxygen free radicals are considered to be the principal components involved in the pathophysiological tissue alterations observed during renal IR. In this study, we compared the effects of melatonin (MEL) and erythropoietin (EPO), both known antioxidant and anti-inflammatory agents, on IR-induced renal injury in rats. Wistar albino rats were unilaterally nephrectomized and then subjected to 45 minutes of renal pedicle occlusion followed by 24 hours of reperfusion. MEL (10 mg/kg, i.p) and EPO (5000 U/kg, i.p) were administered prior to the onset of ischemia. After 24 hours of reperfusion and following decapitation, blood samples were collected for the determination of the hemoglobin (Hb) and hematocrit (Hct) levels. Additionally, renal samples were taken for histological evaluation. Ischemia-reperfusion significantly decreased the observed Hb and Hct values. The histopathological findings in the IR group confirmed that there was an increase in the hyaline cast and thickening of the Bowman capsule basement membrane. Treatment with EPO or MEL significantly increased the Hb and Hct values. In the MEL + IR group, the histopathological changes were lower than those found in the EPO + IR group. Treatment with EPO and MEL had a beneficial effect on renal IR injury. The results may also indicate that MEL protects against morphological damage better than EPO in renal IR injury.

  6. Cordyceps sinensis protects against renal ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Wang, Hua-Pin; Liu, Ching-Wen; Chang, Hsueh-Wen; Tsai, Jen-Wei; Sung, Ya-Zhu; Chang, Li-Ching

    2013-03-01

    Cordyceps sinensis (CS) is an entomogenous fungus used as a tonic food and Chinese medicine to replenish health. This study investigated the protective effects of CS in rats post-renal ischemia-reperfusion (I/R) sequence by analyzing the influence on stromal cell-derived factor-1α (SDF-1α and chemokine (C-X-C motif) receptor 4 (CXCR4) expressions and senescence during recovery. Chemokine SDF-1 [now called chemokine C-X-C motif ligand 12 (CXCL12)] and its receptor CXCR4 are crucial in kidney repair after ischemic acute renal failure. CS treatment significantly alleviated I/R-induced renal damage assessed by creatinine levels (p < 0.05) and abated renal tubular damages assessed by periodic acid-Schiff with diastase (PASD) staining. CS induced early SDF-1α expression and increased CXCR4 expression 1-6 h post-reperfusion. Histology studies have revealed that CS induced SDF-1α in squamous cells of Bowman's capsule, mesangial cells, distal convoluted tubules (DCT), and proximal convoluted tubules (PCT). CS also improved renal repair in I/R-induced injury by increasing Ki-67 staining. I/R induced renal senescence after 3 and 6 h of reperfusion. However, CS alleviated I/R-induced senescence at early stage (1 and 3 h). We conclude that CS protects against I/R injury via the SDF-1/CXCR4-signaling axis and alleviates senescence.

  7. Effect of pheniramine maleate on reperfusion injury in brain tissue.

    Science.gov (United States)

    Yürekli, Ismail; Gökalp, Orhan; Kiray, Müge; Gökalp, Gamze; Ergüneş, Kazım; Salman, Ebru; Yürekli, Banu Sarer; Satoğlu, Ismail Safa; Beşir, Yüksel; Cakır, Habib; Gürbüz, Ali

    2013-12-06

    The aim of this study was to investigate the protective effects of methylprednisolone (Pn), which is a potent anti-inflammatory agent, and pheniramine maleate (Ph), which is an antihistaminic with some anti-inflammatory effects, on reperfusion injury in brain developing after ischemia of the left lower extremity of rats. Twenty-eight randomly selected male Sprague-Dawley rats were divided into 4 groups: Group 1 was the control group, Group 2 was the sham group (I/R), Rats in Group 3 were subjected to I/R and given Ph, and rats in Group 4 were subjected to I/R and given Pn. A tourniquet was applied at the level of left groin region of subjects in the I/R group after induction of anesthesia. One h of ischemia was performed with no drug administration. In the Ph group, half of a total dose of 10 mg/kg Ph was administered intraperitoneally before ischemia and the remaining half before reperfusion. In the Pn group, subjects received a single dose of 50 mg/kg Pn intraperitoneally at the 30th min of ischemia. Brains of all subjects were removed after 24 h for examination. Malondialdehyde (MDA) levels of the prefrontal cortex were significantly lower in the Ph group than in the I/R group (p<0.05). Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were found to be significantly higher in the Ph group than in the I/R group (p<0.05). Histological examination demonstrated that Ph had protective effects against I/R injury developing in the brain tissue. Ph has a protective effect against ischemia/reperfusion injury created experimentally in rat brains.

  8. Roles for C-X-C chemokines and C5a in lung injury after hindlimb ischemia-reperfusion

    DEFF Research Database (Denmark)

    Bless, N M; Warner, R L; Padgaonkar, V A

    1999-01-01

    We evaluated the roles of the C-X-C chemokines cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) as well as the complement activation product C5a in development of lung injury after hindlimb ischemia-reperfusion in rats. During reperfusion, CD11b...... and CD18, but not CD11a, were upregulated on neutrophils [bronchoalveolar lavage (BAL) and blood] and lung macrophages. BAL levels of CINC and MIP-2 were increased during the ischemic and reperfusion periods. Treatment with either anti-CINC or anti-MIP-2 IgG significantly reduced lung vascular......, 58, and 23%, respectively (P MIP-2 as well as the complement activation product C5a are required for lung neutrophil recruitment and full induction of lung injury after hindlimb ischemia-reperfusion in rats....

  9. Liver injury from Herbals and Dietary Supplements in the US Drug Induced Liver Injury Network

    Science.gov (United States)

    Navarro, Victor J.; Barnhart, Huiman; Bonkovsky, Herbert L.; Davern, Timothy; Fontana, Robert J.; Grant, Lafaine; Reddy, K. Rajender; Seeff, Leonard B.; Serrano, Jose; Sherker, Averell H.; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-01-01

    Background The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity due to conventional medications as well as herbals and dietary supplements (HDS). Rationale To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight US referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury due to HDS. Hepatotoxicity due to HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments including death and liver transplantation were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury due to bodybuilding HDS, 85 due to non-bodybuilding HDS, and 709 due to medications. Main Results Liver injury due to HDS increased from 7% to 20% (p Bodybuilding HDS caused prolonged jaundice (median 91 days) in young men but did not result in any fatalities or liver transplantation. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women and more frequently led to death or transplantation compared to injury from medications (13% vs. 3%, p bodybuilding HDS is more severe than from bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes; death and transplantation. PMID:25043597

  10. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy

    Directory of Open Access Journals (Sweden)

    Ming-Shuo Sun

    2018-01-01

    Full Text Available Acute ischemic stroke is a common cause of morbidity and mortality worldwide. Thrombolysis with recombinant tissue plasminogen activator and endovascular thrombectomy are the main revascularization therapies for acute ischemic stroke. However, ischemia-reperfusion injury after revascularization therapy can result in worsening outcomes. Among all possible pathological mechanisms of ischemia-reperfusion injury, free radical damage (mainly oxidative/nitrosative stress injury has been found to play a key role in the process. Free radicals lead to protein dysfunction, DNA damage, and lipid peroxidation, resulting in cell death. Additionally, free radical damage has a strong connection with inducing hemorrhagic transformation and cerebral edema, which are the major complications of revascularization therapy, and mainly influencing neurological outcomes due to the disruption of the blood-brain barrier. In order to get a better clinical prognosis, more and more studies focus on the pharmaceutical and nonpharmaceutical neuroprotective therapies against free radical damage. This review discusses the pathological mechanisms of free radicals in ischemia-reperfusion injury and adjunctive neuroprotective therapies combined with revascularization therapy against free radical damage.

  11. Carbon Monoxide Protects against Hepatic Ischemia/Reperfusion Injury via ROS-Dependent Akt Signaling and Inhibition of Glycogen Synthase Kinase 3β

    Directory of Open Access Journals (Sweden)

    Hyo Jeong Kim

    2013-01-01

    Full Text Available Carbon monoxide (CO may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3 and phosphatidylinositol 3-kinase (PI3K-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  12. Carbon monoxide protects against hepatic ischemia/reperfusion injury via ROS-dependent Akt signaling and inhibition of glycogen synthase kinase 3β.

    Science.gov (United States)

    Kim, Hyo Jeong; Joe, Yeonsoo; Kong, Jin Sun; Jeong, Sun-Oh; Cho, Gyeong Jae; Ryter, Stefan W; Chung, Hun Taeg

    2013-01-01

    Carbon monoxide (CO) may exert important roles in physiological and pathophysiological states through the regulation of cellular signaling pathways. CO can protect organ tissues from ischemia/reperfusion (I/R) injury by modulating intracellular redox status and by inhibiting inflammatory, apoptotic, and proliferative responses. However, the cellular mechanisms underlying the protective effects of CO in organ I/R injury remain incompletely understood. In this study, a murine model of hepatic warm I/R injury was employed to assess the role of glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways in the protective effects of CO against inflammation and injury. Inhibition of GSK3 through the PI3K/Akt pathway played a crucial role in CO-mediated protection. CO treatment increased the phosphorylation of Akt and GSK3-beta (GSK3β) in the liver after I/R injury. Furthermore, administration of LY294002, an inhibitor of PI3K, compromised the protective effect of CO and decreased the level of phospho-GSK3β after I/R injury. These results suggest that CO protects against liver damage by maintaining GSK3β phosphorylation, which may be mediated by the PI3K/Akt signaling pathway. Our study provides additional support for the therapeutic potential of CO in organ injury and identifies GSK3β as a therapeutic target for CO in the amelioration of hepatic injury.

  13. Total flavonoid of Litsea coreana leve exerts anti-oxidative effects and alleviates focal cerebral ischemia/reperfusion injury

    OpenAIRE

    Dong, Shuying; Tong, Xuhui; Li, Jun; Huang, Cheng; Hu, Chengmu; Jiao, Hao; Gu, Yuchen

    2013-01-01

    In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered orally to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at differ...

  14. Nitrite enhances liver graft protection against cold ischemia ...

    African Journals Online (AJOL)

    Amani Cherif-Sayadi

    2017-03-30

    Mar 30, 2017 ... cold ischemia reperfusion injury through a NOS ... oxidation and lipid peroxidation remained at low levels in both nitrite-treated groups when ... liver graft preservation [15]. ... nitrite activity is dependent on NO production but .... LiversT rat (n = 6) were flushed and preserved in IGL-1 solution ..... The nitrate-.

  15. Knockout of the interleukin-36 receptor protects against renal ischemia-reperfusion injury by reduction of proinflammatory cytokines.

    Science.gov (United States)

    Nishikawa, Hirofumi; Taniguchi, Yoshinori; Matsumoto, Tatsuki; Arima, Naoki; Masaki, Mamoru; Shimamura, Yoshiko; Inoue, Kosuke; Horino, Taro; Fujimoto, Shimpei; Ohko, Kentaro; Komatsu, Toshihiro; Udaka, Keiko; Sano, Shigetoshi; Terada, Yoshio

    2018-03-01

    IL-36, a newly named member of the IL-1 cytokine family, includes 3 isoforms, IL-36α, IL-36β, and IL-36γ, all of which bind to a heterodimer containing the IL-36 receptor (IL-36R). Little is known about the role of the IL-36 axis in acute kidney injury (AKI) pathogenesis. Therefore, we evaluated IL-36 function in the bilateral renal ischemia-reperfusion injury model of AKI using IL-36R knockout and wild-type mice. IL-36R was found to be expressed in the kidney, mainly in proximal tubules. In IL-36R knockout mice, plasma creatinine, blood urea nitrogen, and IL-6 levels after ischemia-reperfusion injury were significantly lower than those in wild-type mice. Immunohistological analysis revealed mild tubular injury. IL-36α/β/γ levels were increased after ischemia-reperfusion injury, and IL-36α was expressed in lymphocytes and proximal tubular cells, but post-ischemia-reperfusion injury mRNA levels of IL-6 and TNF-α were low in IL-36R knockout mice. In primary cultures of renal tubular epithelial cells, IL-36α treatment upregulated NF-κB activity and Erk phosphorylation. Notably, in patients with AKI, urine IL-36α levels were increased, and IL-36α staining in renal biopsy samples was enhanced. Thus, IL-36α/IL-36R blockage could serve as a potential therapeutic target in AKI. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat.

    Science.gov (United States)

    Sayhan, Mustafa Burak; Kanter, Mehmet; Oguz, Serhat; Erboga, Mustafa

    2012-12-01

    Renal ischemia-reperfusion (I/R) injury may occur after renal transplantation, thoracoabdominal aortic surgery, and renal artery interventions. This study was designed to investigate the effect of Urtica dioica L. (UD), in I/R induced renal injury. A total of 32 male Sprague-Dawley rats were divided into four groups: control, UD alone, I/R and I/R + UD; each group contain 8 animals. A rat model of renal I/R injury was induced by 45-min occlusion of the bilateral renal pedicles and 24-h reperfusion. In the UD group, 3 days before I/R, UD (2 ml/kg/day intraperitoneal) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and kidney tissues samples were obtained for histopathological investigation in all groups. To date, no more histopathological changes on intestinal I/R injury in rats by UD treatment have been reported. Renal I/R caused severe histopathological injury including tubular damage, atrophy dilatation, loss of brush border and hydropic epithelial cell degenerations, renal corpuscle atrophy, glomerular shrinkage, markedly focal mononuclear cell infiltrations in the kidney. UD treatment significantly attenuated the severity of intestinal I/R injury and significantly lowered tubulointerstitial damage score than the I/R group. The number of PCNA and TUNEL positive cells in the control and UD alone groups was negligible. When kidney sections were PCNA and TUNEL stained, there was a clear increase in the number of positive cells in the I/R group rats in the renal cortical tissues. However, there is a significant reduction in the activity of PCNA and TUNEL in kidney tissue of renal injury induced by renal I/R with UD therapy. Our results suggest that administration of UD attenuates renal I/R injury. These results suggest that UD treatment has a protective effect against renal damage induced by renal I/R. This protective effect is possibly due to its ability to inhibit I/R induced renal damage, apoptosis and cell proliferation.

  17. CD4+ Foxp3+ T-cells contribute to myocardial ischemia-reperfusion injury.

    Science.gov (United States)

    Mathes, Denise; Weirather, Johannes; Nordbeck, Peter; Arias-Loza, Anahi-Paula; Burkard, Matthias; Pachel, Christina; Kerkau, Thomas; Beyersdorf, Niklas; Frantz, Stefan; Hofmann, Ulrich

    2016-12-01

    The present study analyzed the effect of CD4 + Forkhead box protein 3 negative (Foxp3 - ) T-cells and Foxp3 + CD4 + T-cells on infarct size in a mouse myocardial ischemia-reperfusion model. We examined the infarct size as a fraction of the area-at-risk as primary study endpoint in mice after 30minutes of coronary ligation followed by 24hours of reperfusion. CD4 + T-cell deficient MHC-II KO mice showed smaller histologically determined infarct size (34.5±4.7% in MHCII KO versus 59.4±4.9% in wildtype (WT)) and better preserved ejection fraction determined by magnetic resonance tomography (56.9±2.8% in MHC II KO versus 39.0±4.2% in WT). MHC-II KO mice also displayed better microvascular perfusion than WT mice after 24hours of reperfusion. Also CD4 + T-cell sufficient OT-II mice, which express an in this context irrelevant T-cell receptor, revealed smaller infarct sizes compared to WT mice. However, MHC-II blocking anti-I-A/I-E antibody treatment was not able to reduce infarct size indicating that autoantigen recognition is not required for the activation of CD4 + T-cells during reperfusion. Flow-cytometric analysis also did not detect CD4 + T-cell activation in heart draining lymph nodes in response to 24hours of ischemia-reperfusion. Adoptive transfer of CD4 + T-cells in CD4 KO mice increased the infarct size only when including the Foxp3 + CD25 + subset. Depletion of CD4 + Foxp3 + T-cells in DEREG mice enabling specific conditional ablation of this subset by treatment with diphtheria toxin attenuated infarct size as compared to diphtheria toxin treated WT mice. CD4 + Foxp3 + T-cells enhance myocardial ischemia-reperfusion injury. CD4 + T-cells exert injurious effects without the need for prior activation by MHC-II restricted autoantigen recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Suv39h1 Protects from Myocardial Ischemia-Reperfusion Injury in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2014-04-01

    Full Text Available Background: Patients with diabetes are at increased risk of ischemic events. Suv39h1 is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9, which is associated with the suppression of inflammatory genes in diabetes. However, the role of Suv39h1 in myocardial ischemia/reperfusion (I/R injury under diabetic condition has not been evaluated. Methods: To generate diabetic model, male SD rats were fed with 60% fat diet followed by intraperitoneal injection with 40mg/kg streptozotocin. Adenovirus encoding Suv39h1 gene was used for Suv39h1 overexpression. Each rat received injections of adenovirus at five myocardial sites. Three days after gene transfection, each rat was subjected to left main coronary artery occlusion and reperfusion. After 30 min ischemia and reperfusion for 4 h, the rats were euthanized for real-time PCR, Western blot, immunohistochemical staining, and morphometric analysis. Results: Delivery of Ad-Suv39h1 into the hearts of diabetic rats could markedly increase Suv39h1 expression. Up-regulation of Suv39h1 significantly reduced infarct size and tissue damage after I/R injury, which was associated with protection from apoptosis of cardiac myocytes and reduction of inflammatory response. In addition, compared with injury group, Ad-Suv39h1 led to a decreased activity of mitogen-activated protein kinase family and its down-steam transcriptional factor NF-κB. Conclusion: Overexpression of Suv39h1 results in the de-activation of proinflammatory pathways and reduced apoptosis and myocardial injury. Therefore, Suv39h1 might represent a novel therapeutic strategy to reduce I/R injury under diabetic condition.

  19. Dexamethasone Protects Against Tourniquet-Induced Acute Ischemia-Reperfusion Injury in Mouse Hindlimb

    Directory of Open Access Journals (Sweden)

    Ryan M. Corrick

    2018-03-01

    Full Text Available Extremity injuries with hemorrhage have been a significant cause of death in civilian medicine and on the battlefield. The use of a tourniquet as an intervention is necessary for treatment to an injured limb; however, the tourniquet and subsequent release results in serious acute ischemia-reperfusion (IR injury in the skeletal muscle and neuromuscular junction (NMJ. Much evidence demonstrates that inflammation is an important factor to cause acute IR injury. To find effective therapeutic interventions for tourniquet-induced acute IR injuries, our current study investigated effect of dexamethasone, an anti-inflammatory drug, on tourniquet-induced acute IR injury in mouse hindlimb. In C57/BL6 mice, a tourniquet was placed on unilateral hindlimb (left hindlimb at the hip joint for 3 h, and then released for 24 h to induce IR. Three hours of tourniquet and 24 h of release (24-h IR caused gastrocnemius muscle injuries including rupture of the muscle sarcolemma and necrosis (42.8 ± 2.3% for infarct size of the gastrocnemius muscle. In the NMJ, motor nerve terminals disappeared, and endplate potentials were undetectable in 24-h IR mice. There was no gastrocnemius muscle contraction in 24-h IR mice. Western blot data showed that inflammatory cytokines (TNFα and IL-1β were increased in the gastrocnemius muscle after 24-h IR. Treatment with dexamethasone at the beginning of reperfusion (1 mg/kg, i.p. significantly inhibited expression of TNFα and IL-1β, reduced rupture of the muscle sarcolemma and infarct size (24.8 ± 2.0%, and improved direct muscle stimulation-induced gastrocnemius muscle contraction in 24-h IR mice. However, this anti-inflammatory drug did not improve NMJ morphology and function, and sciatic nerve-stimulated skeletal muscle contraction in 24-h IR mice. The data suggest that one-time treatment with dexamethasone at the beginning of reperfusion only reduced structural and functional impairments of the skeletal muscle but not the

  20. Imaging of rat cerebral ischemia-reperfusion injury using99mTc-labeled duramycin

    International Nuclear Information System (INIS)

    Zhang Yuqing; Stevenson, Gail D.; Barber, Christy; Furenlid, Lars R.; Barrett, Harrison H.; Woolfenden, James M.; Zhao Ming; Liu Zhonglin

    2013-01-01

    Objectives: Prompt identification of necrosis and apoptosis in the infarct core and penumbra region is critical in acute stroke for delineating the underlying ischemic/reperfusion molecular pathologic events and defining therapeutic alternatives. The objective of this study was to investigate the capability of 99m Tc-labeled duramycin in detecting ischemia-reperfusion injury in rat brain after middle cerebral artery (MCA) occlusion. Methods: Ischemic cerebral injury was induced in ten rats by vascular insertion of a nylon suture in the left MCA for 3 hr followed by 21–24 hr reperfusion. After i.v. injection of 99m Tc-duramycin (1.0-3.5 mCi), dynamic cerebral images were acquired for 1 hr in six rats using a small-animal SPECT imager. Four other rats were imaged at 2 hr post-injection. Ex vivo images were obtained by autoradiography after sacrifice. Histologic analyses were performed to assess cerebral infarction and apoptosis. Results: SPECT images showed that 99m Tc-duramycin uptake in the left cerebral hemisphere was significantly higher than that in the right at 1 and 2 hr post-injection. The level of radioactive uptake in the ischemic brain varied based on ischemic severity. The average ratio of left cerebral hot-spot uptake to right hemisphere radioactivity, as determined by computerized ROI analysis, was 4.92 ± 0.79. Fractional washout at 1 hr was 38.2 ± 4.5% of peak activity for left cerebral hot-spot areas and 80.9 ± 2.0% for remote control areas (P 99m Tc-duramycin SPECT imaging may be useful for detecting and quantifying ongoing apoptotic neuronal cell loss induced by ischemia-reperfusion injury.

  1. Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network.

    Science.gov (United States)

    Navarro, Victor J; Barnhart, Huiman; Bonkovsky, Herbert L; Davern, Timothy; Fontana, Robert J; Grant, Lafaine; Reddy, K Rajender; Seeff, Leonard B; Serrano, Jose; Sherker, Averell H; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-10-01

    The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity caused by conventional medications as well as herbals and dietary supplements (HDS). To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight U.S. referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury caused by HDS. Hepatotoxicity caused by HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments, including death and liver transplantation (LT), were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury caused by bodybuilding HDS, 85 by nonbodybuilding HDS, and 709 by medications. Liver injury caused by HDS increased from 7% to 20% (P Bodybuilding HDS caused prolonged jaundice (median, 91 days) in young men, but did not result in any fatalities or LT. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women, and, more frequently, led to death or transplantation, compared to injury from medications (13% vs. 3%; P bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes (death and transplantation). (Hepatology 2014;60:1399-1408). © 2014 by the American Association for the Study of Liver Diseases.

  2. Drug-induced liver injury due to antibiotics.

    Science.gov (United States)

    Björnsson, Einar S

    Drug-induced liver injury (DILI) is an important differential diagnosis in patients with abnormal liver tests and normal hepatobiliary imaging. Of all known liver diseases, the diagnosis of DILI is probably one of the most difficult one to be established. In all major studies on DILI, antibiotics are the most common type of drugs that have been reported. The clinical phenotype of different types of antibiotics associated with liver injury is highly variable. Some widely used antibiotics such as amoxicillin-clavulanate have been shown to have a delayed onset on liver injury and recently cefazolin has been found to lead to liver injury 1-3 weeks after exposure of a single infusion. The other extreme is the nature of nitrofurantoin-induced liver injury, which can occur after a few years of treatment and lead to acute liver failure (ALF) or autoimmune-like reaction. Most patients with liver injury associated with use of antibiotics have a favorable prognosis. However, patients with jaundice have approximately 10% risk of death from liver failure and/or require liver transplantation. In rare instances, the hepatoxicity can lead to chronic injury and vanishing bile duct syndrome. Given, sometimes very severe consequences of the adverse liver reactions, it cannot be over emphasized that the indication for the different antibiotics should be evidence-based and symptoms and signs of liver injury from the drugs should lead to prompt cessation of therapy.

  3. Reno-Cerebral Reflex Activates the Renin-Angiotensin System, Promoting Oxidative Stress and Renal Damage After Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Cao, Wei; Li, Aiqing; Li, Jiawen; Wu, Chunyi; Cui, Shuang; Zhou, Zhanmei; Liu, Youhua; Wilcox, Christopher S; Hou, Fan Fan

    2017-09-01

    A kidney-brain interaction has been described in acute kidney injury, but the mechanisms are uncertain. Since we recently described a reno-cerebral reflex, we tested the hypothesis that renal ischemia-reperfusion injury (IRI) activates a sympathetic reflex that interlinks the renal and cerebral renin-angiotensin axis to promote oxidative stress and progression of the injury. Bilateral ischemia-reperfusion activated the intrarenal and cerebral, but not the circulating, renin-angiotensin system (RAS), increased sympathetic activity in the kidney and the cerebral sympathetic regulatory regions, and induced brain inflammation and kidney injury. Selective renal afferent denervation with capsaicin or renal denervation significantly attenuated IRI-induced activation of central RAS and brain inflammation. Central blockade of RAS or oxidative stress by intracerebroventricular (ICV) losartan or tempol reduced the renal ischemic injury score by 65% or 58%, respectively, and selective renal afferent denervation or reduction of sympathetic tone by ICV clonidine decreased the score by 42% or 52%, respectively (all p renal damage and dysfunction persisted after controlling blood pressure with hydralazine. This study uncovered a novel reflex pathway between ischemic kidney and the brain that sustains renal oxidative stress and local RAS activation to promote ongoing renal damage. These data suggest that the renal and cerebral renin-angiotensin axes are interlinked by a reno-cerebral sympathetic reflex that is activated by ischemia-reperfusion, which contributes to ischemia-reperfusion-induced brain inflammation and worsening of the acute renal injury. Antioxid. Redox Signal. 27, 415-432.

  4. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    Science.gov (United States)

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  5. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    OpenAIRE

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Ramsey, Frederick V.; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.; Feldman, Arthur M.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expre...

  6. Normothermic liver preservation : a new paradigm?

    NARCIS (Netherlands)

    Ravikumar, Reena; Leuvenink, Henri; Friend, Peter J.

    Despite increasing donor numbers, waiting lists and pre-transplant mortality continue to grow in many countries. The number of donor organs suitable for liver transplantation is restricted by cold preservation and ischemia-reperfusion injury (IRI). Transplantation of marginal donor organs has led to

  7. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.

    Science.gov (United States)

    Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-10-01

    Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.

  8. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    International Nuclear Information System (INIS)

    He, Haiyan; Huh, Jin; Wang, Huihua; Kang, Yi; Lou, Jianshi; Xu, Zhelong

    2016-01-01

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphine reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced

  9. Montelukast induced acute hepatocellular liver injury

    Directory of Open Access Journals (Sweden)

    Harugeri A

    2009-01-01

    Full Text Available A 46-year-old male with uncontrolled asthma on inhaled albuterol and formoterol with budesonide was commenced on montelukast. He developed abdominal pain and jaundice 48 days after initiating montelukast therapy. His liver tests showed an increase in serum total bilirubin, conjugated bilirubin, aspartate aminotranferase, alanine aminotranferase, and alkaline phosphatase. The patient was evaluated for possible non-drug related liver injury. Montelukast was discontinued suspecting montelukast induced hepatocellular liver injury. Liver tests began to improve and returned to normal 55 days after drug cessation. Causality of this adverse drug reaction by the Council for International Organizations of Medical Sciences or Roussel Uclaf Causality Assessment Method (CIOMS or RUCAM and Naranjo′s algorithm was ′probable′. Liver tests should be monitored in patients receiving montelukast and any early signs of liver injury should be investigated with a high index of suspicion for drug induced liver injury.

  10. Combination Anti-Apoptotic Effect of Erythropoietin and Melatonin on Ischemia Reperfusion-Induced Renal Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shokofeh Banaei

    2016-11-01

    Full Text Available Renal ischemia-reperfusion (IR contributes to the development of acute renal failure (ARF. Oxygen free radicals are considered to be principal components involved in the pathophysiological tissue alterations observed during renal IR. The purpose of this study was to investigate the combination effect of melatonin (MEL and erythropoietin (EPO, which are a potent antioxidant and anti-apoptotic agents, in IR-induced renal injury in rats. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10 mg/kg, i.p and EPO (5000 U/kg, i.p were administered prior to ischemia. After 24 h reperfusion, following decapitation, blood samples were collected for the determination of superoxide dismutase (SOD, glutathione peroxidase (GPx, and malondialdehyde (MDA levels. Also, renal samples were taken for histological evaluation and apoptosis assay. Ischemia-reperfusion increased SOD, GPx, MDA levels, and TUNEL positive cells. Histopathological findings of the IR group confirmed that there was renal impairment in the tubular epithelium. Treatment with EPO and MEL decreased SOD, GPx, and MDA levels, histopathological changes, and TUNEL positive cells. These results indicated that the combination of MEL and EPO could not exert more nephroprotective and anti-apoptotic effects than MEL treatment in renal ischemia-reperfusion injury.

  11. Neuroprotective effect of hydroxy safflor yellow A against cerebral ischemia-reperfusion injury in rats: putative role of mPTP.

    Science.gov (United States)

    Ramagiri, Sruthi; Taliyan, Rajeev

    2016-01-01

    Hydroxy safflor yellow A (HSYA) has been translated clinically for cardiovascular diseases. HSYA is also greatly acknowledged for its protective effects against cerebral ischemic-reperfusion (I/R) injury. Although the precise mechanism of cerebral I/R injury is not fully understood, oxygen-derived free radicals and mitochondrial permeability transition pore (mPTP) opening during I/R injury are widely recognized as an important contributor to neuronal injury. Thus, we speculated that the neuroprotective effects of HSYA against cerebral I/R injury may be associated with mPTP modulation. Induction of I/R injury was achieved by 60 min of middle cerebral artery occlusion, followed by reperfusion for 24 h. For behavior and cognitive assessment, neurological scoring (NSS), rotarod, and Y-maze task were performed. Oxidative damage was measured in terms of markers such as malondialdehyde, reduced glutathione, and catalase levels and cerebral infarct volumes were quantified using 2,3,5-triphenyl tetrazolinium chloride staining. I/R injury-induced inflammation was determined using tumor necrosis factor-α (TNF-α) levels. Animals exposed to I/R injury showed neurological severity, functional and cognitive disability, elevated oxidative markers, and TNF-α levels along with large infarct volumes. HSYA treatment during onset of reperfusion ameliorated performance in NSS, rotarod and Y-maze attenuated oxidative damage, TNF-α levels, and infarction rate. However, treatment with carboxyatractyloside, an mPTP opener, 20 min before HSYA, attenuated the protective effect of HSYA. Our study confirmed that protective effect of HSYA may be conferred through its free radical scavenger action followed by inhibiting the opening of mPTP during reperfusion and HSYA might act as a promising therapeutic agent against cerebral I/R injury.

  12. Effects of kefir on ischemia-reperfusion injury.

    Science.gov (United States)

    Yener, A U; Sehitoglu, M H; Ozkan, M T A; Bekler, A; Ekin, A; Cokkalender, O; Deniz, M; Sacar, M; Karaca, T; Ozcan, S; Kurt, T

    2015-01-01

    We aimed to investigate the effect of kefir on Ischemia-Reperfusion (I/R) injury on rats. 24 male Sprague-Dawley rats between 250-350 g were selected. Rats were divided into three groups, and there were eight rats in each group. Rats were fed for 60 days. All of the rats were fed with the same diet for the first 30 days. In the second thirty days, kefir [10 cc/kg/day body weight (2 x 109 cfu/kg/day)] was added to the diet of the study group by gavage method. In all groups, lung and kidney tissues were removed after the procedure and rats were sacrificed. The biochemical and histopathological changes were observed in the lung and kidney within the samples. Serum urea, creatinine and tumor necrosis factor (TNF-α) were determined. Kefir + I/R groups was compared with I/R groups, a significant decrease (p Kefir + I/R groups of renal tissues were significantly (p Kefir reduced the levels of serum urea, creatinine and TNF-α significantly.   This would be useful in this model against ischemia/reperfusion, and shows the protective effect of kefir in tissue and serum functions.

  13. The Cardioprotective Effects of Citric Acid and L-Malic Acid on Myocardial Ischemia/Reperfusion Injury

    Science.gov (United States)

    Tang, Xilan; Liu, Jianxun; Dong, Wei; Li, Peng; Li, Lei; Lin, Chengren; Zheng, Yongqiu; Hou, Jincai; Li, Dan

    2013-01-01

    Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components of Fructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. In in vivo rat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation. In vitro experiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient of Fructus Choerospondiatis responsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease. PMID:23737849

  14. Maintenance of cAMP in non-heart-beating donor lungs reduces ischemia-reperfusion injury.

    Science.gov (United States)

    Hoffmann, S C; Bleiweis, M S; Jones, D R; Paik, H C; Ciriaco, P; Egan, T M

    2001-06-01

    Studies suggest that pulmonary vascular ischemia-reperfusion injury (IRI) can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, assessed by capillary filtration coeficient (Kfc), in lungs retrieved from non-heart-beating donors (NHBDs) and reperfused with the addition of the beta(2)-adrenergic receptor agonist isoproterenol (iso), and rolipram (roli), a phosphodiesterase (type IV) inhibitor. Using an in situ isolated perfused lung model, lungs were retrieved from NHBD rats at varying intervals after death and either ventilated with O(2) or not ventilated. The lungs were reperfused with Earle's solution with or without a combination of iso (10 microM) and roli (2 microM). Kfc, lung viability, and pulmonary hemodynamics were measured. Lung tissue levels of adenine nucleotides and cAMP were measured by HPLC. Combined iso and roli (iso/roli) reperfusion decreased Kfc significantly (p Kfc in non-iso/roli-reperfused (r = 0.89) and iso/roli-reperfused (r = 0.97) lungs. cAMP levels correlated with Kfc (r = 0.93) in iso/roli-reperfused lungs. Pharmacologic augmentation of tissue TAN and cAMP levels might ameliorate the increased capillary permeability observed in lungs retrieved from NHBDs.

  15. Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury.

    Science.gov (United States)

    Jing, Jing; Teschke, Rolf

    2018-03-28

    Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded.

  16. The protective effects of tadalafil on renal damage following ischemia reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Bulent Erol

    2015-09-01

    Full Text Available Ischemia-reperfusion injury can cause renal damage, and phosphodiesterase inhibitors are reported to regulate antioxidant activity. We investigated the prevention of renal damage using tadalafil after renal ischemia reperfusion (I/R injury in rats. A total of 21 adult male Wistar albino rats were randomly divided into three groups of seven, including Group 1-control, Group 2-I/R, and Group 3-tadalafil + I/R group (I/R-T group received tadalafil intraperitoneally at 30 minutes before ischemia. Inducible nitric oxide synthase, endothelial nitric oxide synthase, malondialdehyde, and total antioxidant capacity levels were evaluated, and histopathological changes and apoptosis in the groups were examined. Tadalafil decreased malondialdehyde levels in the I/R group and increased the total antioxidant capacity level. Histopathological and immunohistochemical findings revealed that tadalafil decreased renal injury scores and the ratios of injured cells, as measured through apoptotic protease activating factor 1, inducible nitric oxide synthase, and endothelial nitric oxide synthase levels. We suggest that tadalafil has protective effects against I/R-related renal tissue injury.

  17. ASS and SULT2A1 are Novel and Sensitive Biomarkers of Acute Hepatic Injury-A Comparative Study in Animal Models.

    Science.gov (United States)

    Prima, Victor; Cao, Mengde; Svetlov, Stanislav I

    2013-01-10

    Liver and kidney damage associated with polytrauma, endotoxic shock/sepsis, and organ transplantation, are among the leading causes of the multiple organ failure. Development of novel sensitive biomarkers that detect early stages of liver and kidney injury is vital for the effective diagnostics and treatment of these life-threatening conditions. Previously, we identified several hepatic proteins, including Argininosuccinate Synthase (ASS) and sulfotransferases which were degraded in the liver and rapidly released into circulation during Ischemia/Reperfusion (I/R) injury. Here we compared sensitivity and specificity of the newly developed sandwich ELISA assays for ASS and the sulfotransferase isoform SULT2A1 with the standard clinical liver and kidney tests Alanine Aminotransferase (ALT) and Aspartate Transaminase (AST) in various pre-clinical models of acute injury. Our data suggest that ASS and SULT2A1 have superior characteristics for liver and kidney health assessment in endotoxemia, Ischemia/Reperfusion (I/R), chemical and drug-induced liver injury and may be of high potential value for clinical applications.

  18. Administration of FTY720 during Tourniquet-Induced Limb Ischemia Reperfusion Injury Attenuates Systemic Inflammation

    Directory of Open Access Journals (Sweden)

    Anthony D. Foster

    2017-01-01

    Full Text Available Acute ischemia-reperfusion injury (IRI of the extremities leads to local and systemic inflammatory changes which can hinder limb function and can be life threatening. This study examined whether the administration of the T-cell sequestration agent, FTY720, following hind limb tourniquet-induced skeletal muscle IRI in a rat model would attenuate systemic inflammation and multiple end organ injury. Sprague-Dawley rats were subjected to 1 hr of ischemia via application of a rubber band tourniquet. Animals were randomized to receive an intravenous bolus of either vehicle control or FTY720 15 min after band placement. Rats (n=10/time point were euthanized at 6, 24, and 72 hr post-IRI. Peripheral blood as well as lung, liver, kidney, and ischemic muscle tissue was analyzed and compared between groups. FTY720 treatment markedly decreased the number of peripheral blood T cells (p<0.05 resulting in a decreased systemic inflammatory response and lower serum creatinine levels and had a modest but significant effect in decreasing the transcription of injury-associated target genes in multiple end organs. These findings suggest that early intervention with FTY720 may benefit the treatment of IRI of the limb. Further preclinical studies are necessary to characterize the short-term and long-term beneficial effects of FTY720 following tourniquet-induced IRI.

  19. Isoflurane anesthesia initiated at the onset of reperfusion attenuates oxidative and hypoxic-ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    Sergey A Sosunov

    Full Text Available This study demonstrates that in mice subjected to hypoxia-ischemia (HI brain injury isoflurane anesthesia initiated upon reperfusion limits a release of mitochondrial oxidative radicals by inhibiting a recovery of complex-I dependent mitochondrial respiration. This significantly attenuates an oxidative stress and reduces the extent of HI brain injury. Neonatal mice were subjected to HI, and at the initiation of reperfusion were exposed to isoflurane with or without mechanical ventilation. At the end of HI and isoflurane exposure cerebral mitochondrial respiration, H2O2 emission rates were measured followed by an assessment of cerebral oxidative damage and infarct volumes. At 8 weeks after HI navigational memory and brain atrophy were assessed. In vitro, direct effect of isoflurane on mitochondrial H2O2 emission was compared to that of complex-I inhibitor, rotenone. Compared to controls, 15 minutes of isoflurane anesthesia inhibited recovery of the compex I-dependent mitochondrial respiration and decreased H2O2 production in mitochondria supported with succinate. This was associated with reduced oxidative brain injury, superior navigational memory and decreased cerebral atrophy compared to the vehicle-treated HI-mice. Extended isoflurane anesthesia was associated with sluggish recovery of cerebral blood flow (CBF and the neuroprotection was lost. However, when isoflurane anesthesia was supported with mechanical ventilation the CBF recovery improved, the event associated with further reduction of infarct volume compared to HI-mice exposed to isoflurane without respiratory support. Thus, in neonatal mice brief isoflurane anesthesia initiated at the onset of reperfusion limits mitochondrial release of oxidative radicals and attenuates an oxidative stress. This novel mechanism contributes to neuroprotective action of isoflurane. The use of mechanical ventilation during isoflurane anesthesia counterbalances negative effect of isoflurane anesthesia on

  20. Systemic Lidocaine Does Not Attenuate Hepatic Dysfunction After Liver Surgery in Rats

    NARCIS (Netherlands)

    de Graaf, Wilmar; Diepenhorst, Gwen M. P.; Herroeder, Susanne; Erdogan, Deha; Hollmann, Markus W.; van Gulik, Thomas M.

    2012-01-01

    BACKGROUND: Lidocaine has been shown to attenuate ischemia-reperfusion (I/R) injury in the heart, lung, and brain, potentially due to modulation of inflammatory responses and apoptotic signaling pathways. Because hepatic I/R injury after liver surgery still poses a significant risk for postoperative

  1. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury

    Directory of Open Access Journals (Sweden)

    Wang Y

    2016-05-01

    Full Text Available Yanzhe Wang, Zhiyi He, Shumin Deng Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China Background: Activators of PPARs, particularly PPARγ, may be effective neuroprotective drugs against inflammatory responses in cerebral ischemia and reperfusion injury. Ursolic acid (UA may act as a PPARγ agonist and serve as an anti-inflammatory agent. In this study, we used a rat middle cerebral artery occlusion and reperfusion model to examine how UA acts as a neuroprotective agent to modulate the metalloprotease/anti-metalloprotease balance. Methods: The middle cerebral artery occlusion and reperfusion model (occlusion for 2 hours followed by reperfusion for 48 hours was induced in male Sprague Dawley rats. UA was administered intragastrically 0.5, 24, and 47 hours after reperfusion. Bisphenol A diglycidyl ether (a PPARγ antagonist was intraperitoneally administered 1, 24.5, and 47.5 hours after reperfusion. Forty-eight hours after reperfusion, neurological deficits and infarct volume were estimated. The PPARγ level and the metalloprotease/anti-metalloprotease balance were examined by Western blotting and immunohistochemistry. The activation of MAPK signaling pathways was also assessed. Results: UA-treated (5, 10, or 20 mg/kg rats showed significant improvement in neurological deficit score, infarct volume, and the number of intact neurons compared with control rats (P<0.01. Both the PPARγ protein level and the percentage of PPARγ-positive cells were increased in the UA-treated groups (P<0.01. Compared with the control group, the UA-treated groups exhibited reduced protein levels of MMP2, MMP9, and activated MAPKs (P<0.01 but an increased level of TIMP1 (P<0.01. UA exerted its protective effects in a dose-dependent manner. Co-treatment with UA and bisphenol A diglycidyl ether completely abolished the UA-induced changes in PPARγ expression; however UA continued to exert a

  2. Mild episodes of tourniquet-induced forearm ischaemia-reperfusion injury results in leukocyte activation and changes in inflammatory and coagulation markers

    Directory of Open Access Journals (Sweden)

    Bastawrous Salah S

    2007-05-01

    Full Text Available Abstract Background Monocytes and neutrophils are examples of phagocytic leukocytes, with neutrophils being considered as the 'chief' phagocytic leukocyte. Both monocytes and neutrophils have been implicated to play a key role in the development of ischaemia-reperfusion injury, where they are intrinsically involved in leukocyte-endothelial cell interactions. In this pilot study we hypothesised that mild episodes of tourniquet induced forearm ischaemia-reperfusion injury results in leukocyte activation and changes in inflammatory and coagulation markers. Methods Ten healthy human volunteers were recruited after informed consent. None had any history of cardiovascular disease with each subject volunteer participating in the study for a 24 hour period. Six venous blood samples were collected from each subject volunteer at baseline, 10 minutes ischaemia, 5, 15, 30, 60 minutes and 24 hours reperfusion, by means of a cannula from the ante-cubital fossa. Monocyte and neutrophil leukocyte sub-populations were isolated by density gradient centrifugation techniques. Leukocyte trapping was investigated by measuring the concentration of leukocytes in venous blood leaving the arm. The cell surface expression of CD62L (L-selectin, CD11b and the intracellular production of hydrogen peroxide (H2O2 were measured via flow cytometry. C-reactive protein (CRP was measured using a clinical chemistry analyser. Plasma concentrations of D-dimer and von Willebrand factor (vWF were measured using enzyme-linked fluorescent assays (ELFA. Results During ischaemia-reperfusion injury, there was a decrease in CD62L and an increase in CD11b cell surface expression for both monocytes and neutrophils, with changes in the measured parameters reaching statistical significance (p =2O2 production by leukocyte sub-populations, which was measured as a marker of leukocyte activation. Intracellular production of H2O2 in monocytes during ischaemia-reperfusion injury reached statistical

  3. Cardiac-specific expression of the tetracycline transactivator confers increased heart function and survival following ischemia reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Laila Elsherif

    Full Text Available Mice expressing the tetracycline transactivator (tTA transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions. Protection against ischemia/reperfusion injury was assessed using isolated perfused hearts where α-MHC-tTA mice had robust protection against ischemia/reperfusion injury which was not blocked by pharmacological inhibition of PI3Ks with LY294002. Furthermore, α-MHC-tTA mice subjected to coronary artery ligation exhibited significantly reduced infarct size compared to control animals. Our findings reveal that α-MHC-tTA transgenic mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury similar to cardiac pre- and post-conditioning effects. However, in contrast to classical pre- and post-conditioning, the α-MHC-tTA phenotype is not inhibited by the classic preconditioning inhibitor LY294002 suggesting involvement of a non-PI3K-AKT signaling pathway in this phenotype. Thus, further study of the α-MHC-tTA model may reveal novel molecular targets for therapeutic intervention during ischemic injury.

  4. A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Atochin, Dmitriy N; Schepetkin, Igor A; Khlebnikov, Andrei I; Seledtsov, Victor I; Swanson, Helen; Quinn, Mark T; Huang, Paul L

    2016-04-08

    The c-Jun N-terminal kinase (JNK) has been shown to be an important regulator of neuronal cell death. Previously, we synthesized the sodium salt of 11H-indeno[1,2-b]quinoxalin-11-one (IQ-1S) and demonstrated that it was a high-affinity inhibitor of the JNK family. In the present work, we found that IQ-1S could release nitric oxide (NO) during its enzymatic metabolism by liver microsomes. Moreover, serum nitrite/nitrate concentration in mice increased after intraperitoneal injection of IQ-1S. Because of these dual actions as JNK inhibitor and NO-donor, the therapeutic potential of IQ-1S was evaluated in an animal stroke model. We subjected wild-type C57BL6 mice to focal ischemia (30min) with subsequent reperfusion (48h). Mice were treated with IQ-1S (25mg/kg) suspended in 10% solutol or with vehicle alone 30min before and 24h after middle cerebral artery (MCA) occlusion (MCAO). Using laser-Doppler flowmetry, we monitored cerebral blood flow (CBF) above the MCA during 30min of MCAO provoked by a filament and during the first 30min of subsequent reperfusion. In mice treated with IQ-1S, ischemic and reperfusion values of CBF were not different from vehicle-treated mice. However, IQ-1S treated mice demonstrated markedly reduced neurological deficit and infarct volumes as compared with vehicle-treated mice after 48h of reperfusion. Our results indicate that the novel JNK inhibitor releases NO during its oxidoreductive bioconversion and improves stroke outcome in a mouse model of cerebral reperfusion. We conclude that IQ-1S is a promising dual functional agent for the treatment of cerebral ischemia and reperfusion injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. A Novel Dual NO-donating Oxime and c-Jun N-terminal Kinase Inhibitor Protects Against Cerebral Ischemia–Reperfusion Injury in Mice

    Science.gov (United States)

    Atochin, Dmitriy N.; Schepetkin, Igor A.; Khlebnikov, Andrei I.; Seledtsov, Victor I.; Swanson, Helen; Quinn, Mark T.; Huang, Paul L.

    2017-01-01

    The c-Jun N-terminal kinase (JNK) has been shown to be an important regulator of neuronal cell death. Previously, we synthesized the sodium salt of 11H-indeno[1,2-b]quinoxalin-11-one (IQ-1S) and demonstrated that it was a high-affinity inhibitor of the JNK family. In the present work, we found that IQ-1S could release nitric oxide (NO) during its enzymatic metabolism by liver microsomes. Moreover, serum nitrite/nitrate concentration in mice increased after intraperitoneal injection of IQ-1S. Because of these dual actions as JNK inhibitor and NO-donor, the therapeutic potential of IQ-1S was evaluated in an animal stroke model. We subjected wild-type C57BL6 mice to focal ischemia (30 minutes) with subsequent reperfusion (48 hours). Mice were treated with IQ-1S (25 mg/kg) suspended in 10% solutol or with vehicle alone 30 minutes before and 24 hours after middle cerebral artery MCA) occlusion (MCAO). Using laser-Doppler flowmetry, we monitored cerebral blood flow (CBF) above the MCA during 30 minutes of MCAO provoked by a filament and during the first 30 minutes of subsequent reperfusion. In mice treated with IQ-1S, ischemic and reperfusion values of CBF were not different from vehicle-treated mice. However, IQ-1S treated mice demonstrated markedly reduced neurological deficit and infarct volumes as compared with vehicle-treated mice after 48 hours of reperfusion. Our results indicate that the novel JNK inhibitor releases NO during its oxidoreductive bioconversion and improves stroke outcome in a mouse model of cerebral reperfusion. We conclude that IQ-1S is a promising dual functional agent for the treatment of cerebral ischemia and reperfusion injury. PMID:26923672

  6. A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo.

    Science.gov (United States)

    Tang, Yao Liang; Qian, Keping; Zhang, Y Clare; Shen, Leping; Phillips, M Ian

    2005-12-01

    The effect of a cardiac specific, hypoxia-regulated, human heme oxygenase-1 (hHO-1) vector to provide cardioprotection from ischemia-reperfusion injury was assessed. When myocardial ischemia and reperfusion is asymptomatic, the damaging effects are cumulative and patients miss timely treatment. A gene therapy approach that expresses therapeutic genes only when ischemia is experienced is a desirable strategy. We have developed a cardiac-specific, hypoxia-regulated gene therapy "vigilant vector'' system that amplifies cardioprotective gene expression. Vigilant hHO-1 plasmids, LacZ plasmids, or saline (n = 40 per group) were injected into mouse heart 2 days in advance of ischemia-reperfusion injury. Animals were exposed to 60 minutes of ischemia followed by 24 hours of reperfusion. For that term (24 hours) effects, the protein levels of HO-1, inflammatory responses, apoptosis, and infarct size were determined. For long-term (3 week) effects, the left ventricular remodeling and recovery of cardiac function were assessed. Ischemia-reperfusion resulted in a timely overexpression of HO-1 protein. Infarct size at 24 hours after ischemia-reperfusion was significantly reduced in the HO-1-treated animals compared with the LacZ-treated group or saline-treated group (P < .001). The reduction of infarct size was accompanied by a decrease in lipid peroxidant activity, inflammatory cell infiltration, and proapoptotic protein level in ischemia-reperfusion-injured myocardium. The long-term study demonstrated that timely, hypoxia-induced HO-1 overexpression is beneficial in conserving cardiac function and attenuating left ventricle remodelling. The vigilant HO-1 vector provides a protective therapy in the heart for reducing cellular damage during ischemia-reperfusion injury and preserving heart function.

  7. Experimental study of a closed-chest pulmonary embolism-reperfusion injury canine model by means of Swan-Ganz catheter

    International Nuclear Information System (INIS)

    Bao Na; Zhai Renyou Jiang Tao; Wang Yajie; Zheng Juan; Wang Chen

    2007-01-01

    Objective: To establish a closed-chest pulmonary embolism-reperfusion animal model by Swan-Ganz catheter and to explore the mechanisms of pulmonary embolism (PE)-reperfusion injury (RI). Methods: Experiments were made on 14 mongrel dogs, ranging in weight from 15 to 18 kg, anesthetized with 3% pentobarbital sodium. The dogs were intubated with I. D. 7 endotracheal tubes. Under sterile conditions, a 7 F Swan-Ganz catheter via the external jugular vein was positioned in the unilateral pulmonary diaphragmatic lobe (DL) artery. Occlusion/reperfusion of the DL artery was controlled with 1.2 ml diluted contrast agent filled into/drawn from the balloon. After the 24 h PE, the balloon was deflated to result in 4 h reperfusion of the DL. Measurements of blood gases and tumor necrosis factor-α (TNF-α)were made at normal condition, at 24 h PE and at 4 h reperfusion. Thin-section CT scans were performed at normal condition, 24 h PE, 30 rain, 1, 2, 3 and 4 h reperfusion, respectively. At the end of each experiment, tissue specimens of bilateral diaphragmatic lobes were obtained for both wet/dry (W/D) weight ratio and for pathological study. Results: Reperfusion pulmonary edema (RPE) was an acute, mixed, noncardiogenic edema that was observed in all 14 dogs who had been successfully established as PE/RI animal models. RPE demonstrated heterogeneous ground-glass opacifications that predominated in the areas distal to the recanalized vessels. It manifested pathologically as an edematous lung infihrated by inflammatory cells. The mean of PaO 2 and TNF-α of 4 h reperfusion was (81 ± 4) mm Hg( 1 mm Hg =0.133 kPa) and (16.0 ± 2.5)pg/ml, which were significantly different (P<0.05) from normal value [(96 ± 6)mm Hg and (13.9 ± 2.0) pg/ml]. The W/D of the injured lung (6.3 ± 1.2) was significantly greater (P<0.01) than that of the contralateral lung (4.5 ± 1.2), suggesting that the increase in the lung water was due to reperfusion injury. Conclusion: The closed-chest canine model

  8. Effects of Ascorbic Acid, Alpha-Tocopherol and Allopurinol on Ischemia-Reperfusion Injury in Rabbit Skeletal Muscle: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Bilgehan Erkut

    2007-01-01

    Full Text Available Purpose Ischemia reperfusion injury to skeletal muscle, following an acute arterial occlusion is important cause of morbidity and mortality. The aim of the present study was to determine and evaluate the effects of ascorbic acide, alpha-tocopherol and allopurinol on ischemia reperfusion injury in rabbit skeletal muscle. Methods Forty-eight New Zealand white rabbits, all male, weighing between 2.5 to 3.0 (mean 2.8 kg, were used in the study. They were separated into four groups. Group I was the control group without any drugs. The other groups were treatment groups (groups II, III, and IV. Group II rabbits administrated 50 mg/kg ascorbic acide and 100 mg/kg alpha-tocopherol 3 days prior to ischemia, group III rabbits received 50 mg/kg allopurinol 2 days prior to ischemia, and group IV rabbits were administrated both 50 mg/kg ascorbic acide, 100 mg/kg alpha-tocopherol 3 days prior to ischemia and 50 mg/kg allopurinol 2 days prior to ischemia. Two hours ischemia and 2 hours reperfusion were underwent to the treatment groups. At the end of the reperfusion periods, muscle samples were taken from rectus femoris muscle for determination of superoxide dismutase, catalase and glutathione peroxidase activities as antioxidant enzymes, and malondialdehyde as an indicator of lipid peroxidation and xanthine oxidase levels as source hydroxyl radical. Besides, histopathological changes (edema, inflammation, ring formation and splitting formation were evaluated in the muscle specimens. Results In the treatment groups; superoxide dismutase (U/mgprotein, catalase (U/mgprotein, and glutathione peroxidase (U/mgprotein levels increased, malondialdehyde (nmol/mgprotein and xanthine oksidase (mU/mgprotein levels decreased compared to control I ( p < 0.05. Increase of superoxide dismutase, catalase, and glutathione peroxidase levels were the highest and decrease of malondialdehyde and xanthine oxidase levels were the highest in group IV compared to groups II and III

  9. Effects of Ascorbic Acid, Alpha-Tocopherol and Allopurinol on Ischemia-Reperfusion Injury in Rabbit Skeletal Muscle: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Bilgehan Erkut

    2007-01-01

    Full Text Available Purpose: Ischemia reperfusion injury to skeletal muscle, following an acute arterial occlusion is important cause of morbidity and mortality. The aim of the present study was to determine and evaluate the effects of ascorbic acide, alpha-tocopherol and allopurinol on ischemia reperfusion injury in rabbit skeletal muscle.Methods: Forty-eight New Zealand white rabbits, all male, weighing between 2.5 to 3.0 (mean 2.8 kg, were used in the study. They were separated into four groups. Group I was the control group without any drugs. The other groups were treatment groups (groups II, III, and IV. Group II rabbits administrated 50 mg/kg ascorbic acide and 100 mg/kg alpha-tocopherol 3 days prior to ischemia, group III rabbits received 50 mg/kg allopurinol 2 days prior to ischemia, and group IV rabbits were administrated both 50 mg/kg ascorbic acide, 100 mg/kg alpha-tocopherol 3 days prior to ischemia and 50 mg/kg allopurinol 2 days prior to ischemia. Two hours ischemia and 2 hours reperfusion were underwent to the treatment groups. At the end of the reperfusion periods, muscle samples were taken from rectus femoris muscle for determination of superoxide dismutase, catalase and glutathione peroxidase activities as antioxidant enzymes, and malondialdehyde as an indicator of lipid peroxidation and xanthine oxidase levels as source hydroxyl radical. Besides, histopathological changes (edema, inflammation, ring formation and splitting formation were evaluated in the muscle specimens. Results: In the treatment groups; superoxide dismutase (U/mgprotein, catalase (U/mgprotein, and glutathione peroxidise (U/mgprotein levels increased, malondialdehyde (nmol/mgprotein and xanthine oksidase (mU/mgprotein levels decreased compared to control I (p < 0.05. Increase of superoxide dismutase, catalase, and glutathione peroxidase levels were the highest and decrease of malondialdehyde and xanthine oxidase levels were the highest in group IV compared to groups II and III

  10. CXC chemokines function as a rheostat for hepatocyte proliferation and liver regeneration.

    Directory of Open Access Journals (Sweden)

    Gregory C Wilson

    Full Text Available Our previous in vitro studies have demonstrated dose-dependent effects of CXCR2 ligands on hepatocyte cell death and proliferation. In the current study, we sought to determine if CXCR2 ligand concentration is responsible for the divergent effects of these mediators on liver regeneration after ischemia/reperfusion injury and partial hepatectomy.Murine models of partial ischemia/reperfusion injury and hepatectomy were used to study the effect of CXCR2 ligands on liver regeneration.We found that hepatic expression of the CXCR2 ligands, macrophage inflammatory protein-2 (MIP-2 and keratinocyte-derived chemokine (KC, was significantly increased after both I/R injury and partial hepatectomy. However, expression of these ligands after I/R injury was 30-100-fold greater than after hepatectomy. Interestingly, the same pattern of expression was found in ischemic versus non-ischemic liver lobes following I/R injury with expression significantly greater in the ischemic liver lobes. In both systems, lower ligand expression was associated with increased hepatocyte proliferation and liver regeneration in a CXCR2-dependent fashion. To confirm that these effects were related to ligand concentration, we administered exogenous MIP-2 and KC to mice undergoing partial hepatectomy. Mice received a "high" dose that replicated serum levels found after I/R injury and a "low" dose that was similar to that found after hepatectomy. Mice receiving the "high" dose had reduced levels of hepatocyte proliferation and regeneration whereas the "low" dose promoted hepatocyte proliferation and regeneration.Together, these data demonstrate that concentrations of CXC chemokines regulate the hepatic proliferative response and subsequent liver regeneration.

  11. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.

  12. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury. PMID:26103523

  13. Carbonic anhydrase inhibitor attenuates ischemia-reperfusion induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Chou-Chin Lan

    Full Text Available Ischemia-reperfusion (IR-induced acute lung injury (ALI is implicated in several clinical conditions including lung transplantation, cardiopulmonary bypass surgery, re-expansion of collapsed lung from pneumothorax or pleural effusion and etc. IR-induced ALI remains a challenge in the current treatment. Carbonic anhydrase has important physiological function and influences on transport of CO2. Some investigators suggest that CO2 influences lung injury. Therefore, carbonic anhydrase should have the role in ALI. This study was undertaken to define the effect of a carbonic anhydrase inhibitor, acetazolamide (AZA, in IR-induced ALI, that was conducted in a rat model of isolated-perfused lung with 30 minutes of ischemia and 90 minutes of reperfusion. The animals were divided into six groups (n = 6 per group: sham, sham + AZA 200 mg/kg body weight (BW, IR, IR + AZA 100 mg/kg BW, IR + AZA 200 mg/kg BW and IR+ AZA 400 mg/kg BW. IR caused significant pulmonary micro-vascular hyper-permeability, pulmonary edema, pulmonary hypertension, neutrophilic sequestration, and an increase in the expression of pro-inflammatory cytokines. Increases in carbonic anhydrase expression and perfusate pCO2 levels were noted, while decreased Na-K-ATPase expression was noted after IR. Administration of 200mg/kg BW and 400mg/kg BW AZA significantly suppressed the expression of pro-inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-17 and attenuated IR-induced lung injury, represented by decreases in pulmonary hyper-permeability, pulmonary edema, pulmonary hypertension and neutrophilic sequestration. AZA attenuated IR-induced lung injury, associated with decreases in carbonic anhydrase expression and pCO2 levels, as well as restoration of Na-K-ATPase expression.

  14. Evaluation of myocardial preconditioning and adenosine effects in cardioprotection in rat hearts with ischemia-reperfusion injury using 99MTc-glucarate imaging

    International Nuclear Information System (INIS)

    Liu Zhonglin; Barrett, H.H.; Koon Yan Pak

    2004-01-01

    Significant tolerance to myocardial ischemia-reperfusion injury, as assessed by biochemical assay and noninvasive infarct-avid imaging, was induced with an IPC protocol in the rat model. The cardioprotection of IPC could be simulated by adenosine receptor A1 agonist CCPA, or blocked by antagonist SPT. Thus, adenosine mediates protection by ischemic preconditioning in this specific rat heart model. 99mTc-glucarate imaging is not only useful in detecting early ischemia-reperfusion injury, but also invaluable in evaluating the effects of cardioprotective treatments. uantitative anal ses on dynamic images with 99m Tc-glucarate would make it possible to identify myocardial ischemia-reperfusion injury more accurate, and provide a unique tool for evaluation of cardioprotection. The FASTSPECT imaging with the ischenuc-reperfused rat heart model provides a solution-specific approach with high-resolution and fast dynamic acquisition for kinetic studies of new myocardial imaging agents as the evidence of its major role in the present study. (authors)

  15. Rapamycin protects kidney against ischemia reperfusion injury through recruitment of NKT cells.

    Science.gov (United States)

    Zhang, Chao; Zheng, Long; Li, Long; Wang, Lingyan; Li, Liping; Huang, Shang; Gu, Chenli; Zhang, Lexi; Yang, Cheng; Zhu, Tongyu; Rong, Ruiming

    2014-08-19

    NKT cells play a protective role in ischemia reperfusion (IR) injury, of which the trafficking in the body and recruitment in injured organs can be influenced by immunosuppressive therapy. Therefore, we investigated the effects of rapamycin on kidneys exposed to IR injury in early stage and on trafficking of NKT cells in a murine model. Balb/c mice were subjected to kidney 30 min ischemia followed by 24 h reperfusion. Rapamycin (2.5 ml/kg) was administered by gavage daily, starting 1 day before the operation. Renal function and histological changes were assessed. The proportion of NKT cells in peripheral blood, spleen and kidney was detected by flow cytometry. The chemokines and corresponding receptor involved in NKT cell trafficking were determined by RT-PCR and flow cytometry respectively. Rapamycin significantly improved renal function and ameliorated histological injury. In rapamycin-treated group, the proportion of NKT cells in spleen was significantly decreased but increased in peripheral blood and kidney. In addition, the CXCR3+ NKT cell in the kidney increased remarkably in the rapamycin-treated group. The chemokines, CXCL9 and CXCL10, as the ligands of CXCR3, were also increased in the rapamycin-treated kidney. Rapamycin may recruit NKT cells from spleen to the IR-induced kidney to ameliorate renal IR injury in the early stage.

  16. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice

    NARCIS (Netherlands)

    J.R. Mitchell (James); M. Verweij (Marielle); K. Brand (Karl); H.W.M. van de Ven (Marieke); N.N.T. Goemaere (Natascha); S. van den Engel (Sandra); T. Chu (Timothy); F. Forrer (Flavio); C. Müller (Cristina); M. de Jong (Marion); W.F.J. van IJcken (Wilfred); J.N.M. IJzermans (Jan); J.H.J. Hoeijmakers (Jan); R.W.F. de Bruin (Ron)

    2010-01-01

    textabstractDietary restriction (DR) extends lifespan and increases resistance to multiple forms of stress, including ischemia reperfusion injury to the brain and heart in rodents. While maximal effects on lifespan require long-term restriction, the kinetics of onset of benefits against acute stress

  17. Conditioning techniques and ischemic reperfusion injury in relation to on-pump cardiac surgery

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Ottas, Konstantin Alex; Andreasen, Charlotte

    2014-01-01

    OBJECTIVES: The objective was to investigate the potential protective effects of two conditioning methods, on myocardial ischemic and reperfusion injury in relation to cardiac surgery. DESIGN: Totally 68 patients were randomly assigned to either a control group (n = 23), a remote ischemic...

  18. The effects of somatostatin and ursodeoxycholic acid in preventing the ischemic injury of the liver following Pringle maneuver in obstructive jaundice-rat model.

    Science.gov (United States)

    Pergel, Ahmet; Zengin, Kagan; Cercel, Ali; Aki, Hilal; Kaya, Safiye

    2007-01-01

    In our study, the effects of somatostatin (SS) and ursodeoxycholic acid (UDCA) on ischemic liver injury were studied in (obstructive) jaundice-rat model. For this purpose, jaundice was produced in the first four groups by binding of their choleducts. We performed just laparotomy to the other four groups of animals. To groups 1 and 5, SS was given 15 mcg/kg/day intraperitoneally, and to groups 2 and 6, UDCA was given 20 mg/kg/day enterally. No drugs were given to any other group. At the end of one week, a procedure with ischemia of the liver for 60 minutes followed by reperfusion for 2 hours, was performed to each rat except for groups 4 and 8. Following this procedure, they were sacrificed. The blood samples were taken to measure SGOT, SGPT, ALP, LDH, total and direct bilirubin levels, while liver biopsies were taken for histopathological evaluation. Under normothermic conditions, following 60-minute liver ischemia period, no irreversible histopathological changes were detected. However, increases in liver necrosis parameters were noted biochemically. SS and UDCA were thought to be effective in preventing the injury by decreasing the liver enzymes levels to a significant degree. The damage of the hepatic ischemic injury was found to be more meaningful and prominent in liver with jaundice. In this study, it was noted that SS and UDCA decrease the effects of cholestatic hepatic injury especially and improve the condition.

  19. Observation and nursing of complications due to high re-perfusion injury occurring after balloon angioplasty for diabetic vascular diseases of lower extremity

    International Nuclear Information System (INIS)

    Zhang Lingling; Zhu Yueqi; Mou Ling

    2011-01-01

    Objective: To evaluate the symptomatic nursing in treating the complications caused by high re-perfusion which develops after balloon angioplasty for the treatment of diabetic vascular diseases of lower extremity. Methods: Eighteen patients with lower limb ischemia caused by diabetes mellitus developed high re-perfusion injury complications after receiving balloon angioplasty. The patients were randomly and equally divided into study group and control group. The special nursing measures designed by the author's department, including raising the diseased lower limb, enforcing the flexion and extension movement of the leg, cold compress, wound exposure, etc. were carried out for patients of study group, while no special nursing measures were adopted for patients of control group. The clinical results, such as limb pain, swelling and subcutaneous petechia after re-perfusion injury, were evaluated and compared between two groups. Results: After the treatment, the limb pain, swelling and subcutaneous petechia due to high re-perfusion injury in study group were relieved more markedly than that in control group, the difference in evaluation score between two groups was statistically significant (P<0.01). Conclusion: The special symptomatic nursing measures are very effective in relieving the high re-perfusion injury after balloon angioplasty for the treatment of diabetic lower limb ischemia. (authors)

  20. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  1. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury.

    Science.gov (United States)

    Kalani, Anuradha; Chaturvedi, Pankaj; Kamat, Pradip K; Maldonado, Claudio; Bauer, Philip; Joshua, Irving G; Tyagi, Suresh C; Tyagi, Neetu

    2016-10-01

    We tested whether the combined nano-formulation, prepared with curcumin (anti-inflammatory and neuroprotective molecule) and embryonic stem cell exosomes (MESC-exo cur ), restored neurovascular loss following an ischemia reperfusion (IR) injury in mice. IR-injury was created in 8-10 weeks old mice and divided into two groups. Out of two IR-injured groups, one group received intranasal administration of MESC-exo cur for 7days. Similarly, two sham groups were made and one group received MESC-exo cur treatment. The study determined that MESC-exo cur treatment reduced neurological score, infarct volume and edema following IR-injury. As compared to untreated IR group, MESC-exo cur treated-IR group showed reduced inflammation and N-methyl-d-aspartate receptor expression. Treatment of MESC-exo cur also reduced astrocytic GFAP expression and alleviated the expression of NeuN positive neurons in IR-injured mice. In addition, MESC-exo cur treatment restored vascular endothelial tight (claudin-5 and occludin) and adherent (VE-cadherin) junction proteins in IR-injured mice as compared to untreated IR-injured mice. These results suggest that combining the potentials of embryonic stem cell exosomes and curcumin can help neurovascular restoration following ischemia-reperfusion injury in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Anti-inflammatory and antioxidant effects of infliximab in a rat model of intestinal ischemia/reperfusion injury.

    Science.gov (United States)

    Pergel, Ahmet; Kanter, Mehmet; Yucel, Ahmet Fikret; Aydin, Ibrahim; Erboga, Mustafa; Guzel, Ahmet

    2012-11-01

    The aim of this study was to investigate the possible protective effects of infliximab on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group comprised 10 animals. Sham group animals underwent laparotomy without I/R injury. I/R groups after undergoing laparotomy, 1 hour of superior mesenteric artery ligation occurred, which was followed by 1 hour of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered intravenously. All animals were killed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no biochemical and histopathological changes have been reported regarding intestinal I/R injury in rats due to infliximab treatment. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased reduced superoxide dismutase and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions, inflammatory cell infiltration, necrosis, hemorrhage, and villous congestion. Infliximab treatment significantly attenuated the severity of intestinal I/R injury, inhibiting I/R-induced apoptosis, and cell proliferation. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects on the experimental intestinal I/R model of rats.

  3. O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase

    International Nuclear Information System (INIS)

    Kim, M.S.; Akera, T.

    1987-01-01

    The role of O2 free radicals in the reduction of sarcolemmal Na+-K+-ATPase, which occurs during reperfusion of ischemic heart, was examined in isolated guinea pig heart using exogenous scavengers of O2 radicals and an inhibitor of xanthine oxidase. Ischemia and reperfusion reduced Na+-K+-ATPase activity and specific [3H]ouabain binding to the enzyme in ventricular muscle homogenates and also markedly lowered sodium pump activity estimated from ouabain-sensitive 86Rb+ uptake by ventricular muscle slices. These effects of ischemia and reperfusion were prevented to various degrees by O2-radical scavengers, such as superoxide dismutase, catalase, dimethyl-sulfoxide, histidine, or vitamin E or by the xanthine oxidase inhibitor, allopurinol. The degree of protection afforded by these agents paralleled that of reduction in enhanced lipid peroxidation of myocardial tissue as estimated from malondialdehyde production. These results strongly suggest that O2 radicals play a crucial role in the injury to sarcolemmal Na+-K+-ATPase during reperfusion of ischemic heart

  4. O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.S.; Akera, T.

    1987-02-01

    The role of O2 free radicals in the reduction of sarcolemmal Na+-K+-ATPase, which occurs during reperfusion of ischemic heart, was examined in isolated guinea pig heart using exogenous scavengers of O2 radicals and an inhibitor of xanthine oxidase. Ischemia and reperfusion reduced Na+-K+-ATPase activity and specific (3H)ouabain binding to the enzyme in ventricular muscle homogenates and also markedly lowered sodium pump activity estimated from ouabain-sensitive 86Rb+ uptake by ventricular muscle slices. These effects of ischemia and reperfusion were prevented to various degrees by O2-radical scavengers, such as superoxide dismutase, catalase, dimethyl-sulfoxide, histidine, or vitamin E or by the xanthine oxidase inhibitor, allopurinol. The degree of protection afforded by these agents paralleled that of reduction in enhanced lipid peroxidation of myocardial tissue as estimated from malondialdehyde production. These results strongly suggest that O2 radicals play a crucial role in the injury to sarcolemmal Na+-K+-ATPase during reperfusion of ischemic heart.

  5. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  6. The effect of melatonin on bacterial translocation following ischemia/reperfusion injury in a rat model of superior mesenteric artery occlusion.

    Science.gov (United States)

    Ozban, Murat; Aydin, Cagatay; Cevahir, Nural; Yenisey, Cigdem; Birsen, Onur; Gumrukcu, Gulistan; Aydin, Berrin; Berber, Ibrahim

    2015-03-08

    Acute mesenteric ischemia is a life-threatening vascular emergency resulting in tissue destruction due to ischemia-reperfusion injury. Melatonin, the primary hormone of the pineal gland, is a powerful scavenger of reactive oxygen species (ROS), including the hydroxyl and peroxyl radicals, as well as singlet oxygen, and nitric oxide. In this study, we aimed to investigate whether melatonin prevents harmful effects of superior mesenteric ischemia-reperfusion on intestinal tissues in rats. Rats were randomly divided into three groups, each having 10 animals. In group I, the superior mesenteric artery (SMA) was isolated but not occluded. In group II and group III, the SMA was occluded immediately distal to the aorta for 60 minutes. After that, the clamp was removed and the reperfusion period began. In group III, 30 minutes before the start of reperfusion, 10 mg/kg melatonin was administered intraperitonally. All animals were sacrified 24 hours after reperfusion. Tissue samples were collected to evaluate the I/R-induced intestinal injury and bacterial translocation (BT). There was a statistically significant increase in myeloperoxidase activity, malondialdehyde levels and in the incidence of bacterial translocation in group II, along with a decrease in glutathione levels. These investigated parameters were found to be normalized in melatonin treated animals (group III). We conclude that melatonin prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion.

  7. Pretreatment with Sodium Phenylbutyrate Alleviates Cerebral Ischemia/Reperfusion Injury by Upregulating DJ-1 Protein

    Directory of Open Access Journals (Sweden)

    Rui-Xin Yang

    2017-06-01

    Full Text Available Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB, against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro. SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke.

  8. Pretreatment with Sodium Phenylbutyrate Alleviates Cerebral Ischemia/Reperfusion Injury by Upregulating DJ-1 Protein.

    Science.gov (United States)

    Yang, Rui-Xin; Lei, Jie; Wang, Bo-Dong; Feng, Da-Yun; Huang, Lu; Li, Yu-Qian; Li, Tao; Zhu, Gang; Li, Chen; Lu, Fang-Fang; Nie, Tie-Jian; Gao, Guo-Dong; Gao, Li

    2017-01-01

    Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R) injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB), against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro . SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke.

  9. Mitofusin 2 Exerts a Protective Role in Ischemia Reperfusion Injury Through Increasing Autophagy

    Directory of Open Access Journals (Sweden)

    Cheng Peng

    2018-05-01

    Full Text Available Background/Aims: Autophagy is essential for maintaining cellular homeostasis and the survival of terminally differentiated cells as neurons. In this study, we aim to investigate whether mitofusin 2, a mitochondrial fusion protein, mediates autophagy in cerebral ischemia/reperfusion (I/R injury. Methods: Primary cultured neurons were treated with oxygen-glucose deprivation/reperfusion to mimic cerebral I/R injury in vitro. Autophagosomes were visualized upon TEM. Autophagy-markers were then detected to monitor autophagy by western-blot and real-time PCR, and the autophagic flux was tracked with a mRFP-GFP-LC3 construct by fluorescence as well as autophagy inhibitors and agonists. The up- and downregulation of Mfn2 were through transfecting a lentivirusexpression vector respectively. And neuronal injury was detected by cell counting kit and TUNEL assay. Results: Results showed I/R increased autophagosome formation and inhibited autolysosome degradation. Furthermore, use of autophagy related agents demonstrated that I/R injury was caused by insufficient autophagy and aggravated by impaired autophagic degradation. The results also indicated that mitofusin 2 could ameliorate I/R injury through increasing autophagosome formation and promoting the fusion of autophagosomes and lysosomes. In contrast, downregulation of mitofusin 2 aggravated the I/R injury by inhibiting autophagosome formation and the fusion of autophagosomes and lysosomes. Additionly, mitofusin 2 overexpression did not lead to autolysosome accumulation induced by I/R. Conclusions: In summary, this study explicitly demonstrated that mitofusin 2 could ameliorate I/R injury mainly through promoting autophagy, which represented a potential novel strategy for neuroprotection against cerebral I/R damage.

  10. The cardioprotective efficacy of TVP1022 against ischemia/reperfusion injury and cardiac remodeling in rats.

    Science.gov (United States)

    Malka, Assaf; Ertracht, Offir; Bachner-Hinenzon, Noa; Reiter, Irina; Binah, Ofer

    2016-12-01

    Following acute myocardial infarction (MI), early and successful reperfusion is the most effective strategy for reducing infarct size and improving the clinical outcome. However, immediate restoration of blood flow to the ischemic zone results in myocardial damage, defined as "reperfusion-injury". Whereas we previously reported that TVP1022 (the S-isomer of rasagiline, FDA-approved anti-Parkinson drug) decreased infarct size 24 h post ischemia reperfusion (I/R) in rats, in this study we investigated the chronic cardioprotective efficacy of TVP1022 14 days post-I/R. To simulate the clinical settings of acute MI followed by reperfusion therapy, we employed a rat model of left anterior descending artery occlusion for 30 min followed by reperfusion and a follow-up for 14 days. TVP1022 was initially administered postocclusion-prereperfusion, followed by chronic daily administrations. Cardiac performance and remodeling were evaluated using customary and advanced echocardiographic methods, hemodynamic measurements by Millar Mikro-Tip ® catheter, and histopathological techniques. TVP1022 administration markedly decreased the remodeling process as illustrated by attenuation of left ventricular enlargement and cardiac hypertrophy (both at the whole heart and the cellular level). Furthermore, TVP1022 inhibited cardiac fibrosis and reduced ventricular BNP levels. Functionally, TVP1022 treatment preserved cardiac wall motion. Specifically, the echocardiographic and most of the direct hemodynamic measures were pronouncedly improved by TVP1022. Collectively, these findings indicate that TVP1022 provides prominent cardioprotection against I/R injury and post-MI remodeling in this I/R model.

  11. Pharmacological prevention of reperfusion injury in acute myocardial infarction. A potential role for adenosine as a therapeutic agent.

    Science.gov (United States)

    Quintana, Miguel; Kahan, Thomas; Hjemdahl, Paul

    2004-01-01

    The concept of reperfusion injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur either spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. Although the pathophysiology of reperfusion injury is complex, the major role that neutrophils play in this process is well known. Neutrophils generate free radicals, degranulation products, arachidonic acid metabolites and platelet-activating factors that interact with endothelial cells, inducing endothelial injury and neutralization of nitrous oxide vasodilator capacity. Adenosine, through its multi-targeted pharmacological actions, is able to inhibit some of the above-mentioned detrimental effects. The net protective of adenosine in in vivo models of reperfusion injury is the reduction of the infarct size, the improvement of the regional myocardial blood flow and of the regional function of the ischemic area. Additionally, adenosine preserves the post-ischemic coronary flow reserve, coronary blood flow and the post-ischemic regional contractility. In small-scale studies in patients with acute MI, treatment with adenosine has been associated with smaller infarcts, less no-reflow phenomenon and improved LV function. During elective PCI adenosine reduced ST segment shifts, lactate production and ischemic symptoms. During the

  12. Flurbiprofen, a Cyclooxygenase Inhibitor, Protects Mice from Hepatic Ischemia/Reperfusion Injury by Inhibiting GSK-3β Signaling and Mitochondrial Permeability Transition

    Science.gov (United States)

    Fu, Hailong; Chen, Huan; Wang, Chengcai; Xu, Haitao; Liu, Fang; Guo, Meng; Wang, Quanxing; Shi, Xueyin

    2012-01-01

    Flurbiprofen acts as a nonselective inhibitor for cyclooxygenases (COX-1 and COX-2), but its impact on hepatic ischemia/reperfusion (I/R) injury remains unclear. Mice were randomized into sham, I/R and flurbiprofen (Flurb) groups. The hepatic artery and portal vein to the left and median liver lobes were occluded for 90 min and unclamped for reperfusion to establish a model of segmental (70%) warm hepatic ischemia. Pretreatment of animals with flurbiprofen prior to I/R insult significantly decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), and prevented hepatocytes from I/R-induced apoptosis/necrosis. Moreover, flurbiprofen dramatically inhibited mitochondrial permeability transition (MPT) pore opening, and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that flurbiprofen markedly inhibited glycogen synthase kinase (GSK)-3β activity and increased phosphorylation of GSK-3β at Ser9, which, consequently, could modulate the adenine nucleotide translocase (ANT)–cyclophilin D (CyP-D) complex and the susceptibility to MPT induction. Therefore, administration of flurbiprofen prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through inhibition of MPT and inactivation of GSK-3β, and provides experimental evidence for clinical use of flurbiprofen to protect liver function in surgical settings in addition to its conventional use for pain relief. PMID:22714712

  13. Cellular infiltrates and injury evaluation in a rat model of warm pulmonary ischemia-reperfusion

    NARCIS (Netherlands)

    Van Putte, BP; Kesecioglu, J; Hendriks, JMH; Persy, VP; van Marck, E; Van Schil, PEY; De Broe, ME

    Introduction Beside lung transplantation, cardiopulmonary bypass, isolated lung perfusion and sleeve resection result in serious pulmonary ischemia - reperfusion injury, clinically known as acute respiratory distress syndrome. Very little is known about cells infiltrating the lung during ischemia -

  14. Changes in electrical activity of heart during ischemic–reperfusion injury modified by the administration of antidepressants

    Directory of Open Access Journals (Sweden)

    Vicen M.

    2016-09-01

    Full Text Available The aim of our work was to investigate the effect of amitriptyline, citalopram and venlafaxine on the heart during ischemic- reperfusion (l-R injury. Amitriptyline prolonged both QRS complex and QTc interval duration; citalopram and venlafaxine prolonged only QTc interval duration. Amitriptyline worked most proarrhythmogenic, citalopram least; venlafaxine increased the heart rate during ischemia; however, prolonged QTc interval at the beginning of reperfusion was followed by serious dysrhythmias.

  15. Protective Effects and Mechanism of Puerarin on Learning-Memory Disorder after Global Cerebral Ischemia-Reperfusion Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    WU Hai-qin; GUO He-na; WANG Hu-qing; CHANG Ming-ze; ZHANG Gui-lian; ZHAO Ying-xian

    2009-01-01

    Objective: To observe the effect of puerarin on the learning-memory disorder after global cerebral ischemia-reperfusion injury in rats, and to explore its mechanism of action. Methods: The global cerebral ischemia-reperfusion injury model was established using the modified Pulsinelli four-vessel occlusion in Sprague-Dawley rats. Rats were intraperitoneally injected with puerarin (100 mg/kg) 1 h before ischemia and once every 6 h afterwards. The learning-memory ability was evaluated by the passive avoidance test. The dynamic changes of the cell counts of apoptosis and positive expression of Bcl-2 in the hippocampus CA1 region were determined by the TUNEL and immunohistochemical methods, respectively. Results: (1) Compared with the reperfusion group, the step through latency (STL) in the passive avoidance test in the puerarin group was prolonged significantly (P<0.01). (2) The apoptotic neurons were injured most severely on the 3rd day in the hippocampal CA1 region after global ischemia and reperfusion. In the pueradn group, the number of apoptotic cells decreased at respective time points after ischemia-reperfusion (P<0.01). (3) The level of positive expression of Bcl-2 varied according to the duration of reperfusion and the peak level occurred on day 1 in the hippocampal CA1 region after global cerebral ischemia. Compared with the reperfusion group, the expression of Bcl-2 in the pueradn group was up-regulated at the respective time points after ischemia raperfusion (P<0.01), reaching the peak on day 1. Conclusions: Puerarin could improve the learning-memory ability after global cerebral ischemia and reperfusion in rats. The protective mechanism might be related to the effect of inhibiting or delaying the cell apoptosis through up-regulating the expression of Bcl-2 after ischemia and reperfusion.

  16. Effect of arginase inhibition on ischemia-reperfusion injury in patients with coronary artery disease with and without diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Oskar Kövamees

    Full Text Available Arginase competes with nitric oxide synthase for their common substrate L-arginine. Up-regulation of arginase in coronary artery disease (CAD and diabetes mellitus may reduce nitric oxide bioavailability contributing to endothelial dysfunction and ischemia-reperfusion injury. Arginase inhibition reduces infarct size in animal models. Therefore the aim of the current study was to investigate if arginase inhibition protects from endothelial dysfunction induced by ischemia-reperfusion in patients with CAD with or without type 2 diabetes (NCT02009527.Male patients with CAD (n = 12 or CAD + type 2 diabetes (n = 12, were included in this cross-over study with blinded evaluation. Endothelium-dependent vasodilatation was assessed by flow-mediated dilatation (FMD of the radial artery before and after 20 min ischemia-reperfusion during intra-arterial infusion of the arginase inhibitor (Nω-hydroxy-nor-L-arginine, 0.1 mg/min or saline.The forearm ischemia-reperfusion was well tolerated. Endothelium-independent vasodilatation was assessed by sublingual nitroglycerin. Ischemia-reperfusion decreased FMD in patients with CAD from 12.7±5.2% to 7.9±4.0% during saline administration (P<0.05. Nω-hydroxy-nor-L-arginine administration prevented the decrease in FMD in the CAD group (10.3±4.3% at baseline vs. 11.5±3.6% at reperfusion. Ischemia-reperfusion did not significantly reduce FMD in patients with CAD + type 2 diabetes. However, FMD at reperfusion was higher following nor-NOHA than following saline administration in both groups (P<0.01. Endothelium-independent vasodilatation did not differ between the occasions.Inhibition of arginase protects against endothelial dysfunction caused by ischemia-reperfusion in patients with CAD. Arginase inhibition may thereby be a promising therapeutic strategy in the treatment of ischemia-reperfusion injury.

  17. Restoration of normal pH triggers ischemia-reperfusion injury in lung by Na+/H+ exchange activation.

    Science.gov (United States)

    Moore, T M; Khimenko, P L; Taylor, A E

    1995-10-01

    The effects of acidotic extracellular pH and Na+/H+ exchange inhibition on ischemia-reperfusion (I/R)-induced microvascular injury were studied in the isolated, buffer-perfused rat lung. When lungs were subjected to 45 min of ischemia followed by 30 min of reperfusion, the capillary filtration coefficient (Kfc) increased significantly, resulting in a change in Kfc (delta Kfc) of 0.360 +/- 0.09 ml.min-1.cmH2O-1.100 g-1. Addition of hydrochloric acid to the perfusate before ischemia at a concentration sufficient to reduce perfusate pH from 7.38 +/- 0.03 to 7.09 +/- 0.04 completely prevented the increase in Kfc associated with I/R (delta Kfc = 0.014 +/- 0.034 ml.min-1.cmH2O-1.100 g-1). Addition of a Na+/H+ exchange inhibitor, 5-(N,N-dimethyl)-amiloride, to the perfusate either before ischemia or at reperfusion also prevented the I/R-induced permeability increase (delta Kfc = 0.01 +/- 0.02 and -0.001 +/- 0.02 ml.min-1.cmH2O-1.100 g-1, respectively). We conclude that restoration of flow at physiological pH to the postischemic lung activates the Na+/H+ exchange system, which may represent the "triggering mechanism" responsible for initiating reperfusion-induced microvascular injury.

  18. TREATMENT OF BLUNT LIVER INJURIES IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Ana Kostić

    2003-04-01

    Full Text Available Liver is the largest parenchymatous organ, well vascularized, weighing approximately 1.8-3.0% of the whole body weight. Among all abdominal traumas liver injuries account for 25%. For more serious liver injuries the mortality is around 40% in children below 10 years of age. For lesions of the juxtahepatic veins (three major hepatic veins or the retrohepatic portion of v. cava or for complex, combined intraabdominal injuries, the mortality is even up to 70%.This work analyzed the period 1988-2000 during which there were 19 children admitted and treated for blunt liver injuries at the Clinic of Pediatric Surgery and Orthopedics in Nis; I, II and III scale injuries prevailed (17 cases; 89.4%. These injuries were surgically treated for the most part (17 cases; 89.4%. In 7 children (36.8% there were combined injuries. The lethality was 26.3%-5 cases, with three major complications: two intrahepatic hematomas and one biliary fistula associated with biliary peritonitis and biloma formation.

  19. Total Flavonoids from Rosa laevigata Michx Fruit Ameliorates Hepatic Ischemia/Reperfusion Injury through Inhibition of Oxidative Stress and Inflammation in Rats

    Directory of Open Access Journals (Sweden)

    Xufeng Tao

    2016-07-01

    Full Text Available The effects of total flavonoids (TFs from Rosa laevigata Michx fruit against liver damage and cerebral ischemia/reperfusion (I/R injury have been reported, but its action on hepatic I/R injury remains unknown. In this work, the effects and possible mechanisms of TFs against hepatic I/R injury were examined using a 70% partial hepatic warm ischemia rat model. The results demonstrated TFs decreased serum aspartate transaminase (AST, alanine aminotransferase (ALT, myeloperoxidase (MPO, and lactate dehydrogenase (LDH activities, improved liver histopathology and ultrastructure through hematoxylin-eosin (HE staining and electron microscope observation. In addition, TFs significantly decreased malondialdehyde (MDA and increased the levels of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px, which indicated that TFs alleviated oxidative stress caused by I/R injury. RT-PCR results proved that TFs downregulated the gene levels of inflammatory factors including interleukin-1 beta (IL-1β, interleukin-1 (IL-6, and tumor necrosis factor alpha (TNF-α. Further research indicated that TF-induced hepatoprotection was completed through inhibiting TLR4/MyD88 and activating Sirt1/Nrf2 signaling pathways. Blockade of the TLR4 pathway by TFs inhibited NF-κB and AP-1 transcriptional activities and inflammatory reaction. Activation of Sirt1/Nrf2 pathway by TFs increased the protein levels of HO-1 and GST to improve oxidative stress. Collectively, these findingsconfirmed the potent effects of TFs against hepatic I/R injury, which should be developed as a candidate for the prevention of this disease.

  20. CTGF/CCN2 Postconditioning Increases Tolerance of Murine Hearts towards Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Kaasbøll, Ole Jørgen; Moe, Ingvild Tronstad; Ahmed, Mohammad Shakil; Stang, Espen; Hagelin, Else Marie Valbjørn; Attramadal, Håvard

    2016-01-01

    Previous studies of ischemia-reperfusion injury (IRI) in hearts from mice with cardiac-restricted overexpression of CCN2 have shown that CCN2 increases tolerance towards IRI. The objectives of this study were to investigate to what extent post-ischemic administration of recombinant human CCN2 (rhCCN2) would limit infarct size and improve functional recovery and what signaling pathways are involved. Isolated mice hearts were perfused ad modum Langendorff, subjected to no-flow, global ischemia, and subsequently, exposed to mammalian cell derived, full-length (38-40kDa) rhCCN2 (250 nM) or vehicle during the first 15 min of a 60 min reperfusion period. Post-ischemic administration of rhCCN2 resulted in attenuation of infarct size from 58 ± 4% to 34 ± 2% (p concentration-dependent increase of cardiac phospho-GSK3β (serine-9) contents. We demonstrate that post-ischemic administration of rhCCN2 increases the tolerance of ex vivo-perfused murine hearts to IRI. Mechanistically, this postconditioning effect of rhCCN2 appeared to be mediated by activation of the reperfusion injury salvage kinase pathway as demonstrated by sensitivity to PI3 kinase inhibition and increased CCN2-induced phosphorylation of GSK3β (Ser-9). Thus, the rationale for testing rhCCN2-mediated post-ischemic conditioning of the heart in more complex models is established.

  1. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats.

    Science.gov (United States)

    Rakhunde, Purushottam B; Saher, Sana; Ali, Syed Ayaz

    2014-01-01

    Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation.

  2. [Protective effects of luteolin on neurons against oxygen-glucose deprivation/reperfusion injury via improving Na+/K+ -ATPase activity].

    Science.gov (United States)

    Fang, Lumei; Zhang, Mingming; Ding, Yuemin; Fang, Yuting; Yao, Chunlei; Zhang, Xiong

    2010-04-01

    Luteolin, a flavone, has considerable neuroprotective effects by its anti-oxidative mechanism. However, it is still unclear whether luteolin can protect neurons against oxygen-glucose deprivation/reperfusion (OGD/R) induced injury. After 2 hours oxygen-glucose deprivation and 24 hours reperfusion treatment in primary cultured hippocampal neurons, the neuron viability, survival rate and apoptosis rate were evaluated by MTT assay, lactate dehydrogenase (LDH) leakage assay and Hoechst staining, respectively. The activity of Na+/K+ -ATPase was examined in cultured neurons or in the hippocampus of SD rats treated by 10 minutes global cerebral ischemia and followed 24 hours reperfusion. Treatment by OGD/R markedly reduced neuronal viability, increased LDH leakage rate and increased apoptosis rate. Application of luteolin (10-100 micromol x L(-1)) during OGD inhibited OGD/R induced neuron injury and apoptosis in a dose-dependent manner. Compared to the control group or OGP/R-treated neurons, the activity of Na+/K+ -ATPase was significantly suppressed in global ischemia/reperfusion group or OGD/R-treated neurons. Application of luteolin during ischemia or OGD preserved the Na+/K+ -ATPase activity. Furthermore, inhibition of Na+/K+ -ATPase with ouabain attenuated the protective effect afforded by luteolin. The data provide the evidence that luteolin has neuroprotective effect against OGD/R induced injury and the protective effect may be associated with its ability to improve Na+/K+ -ATPase activity after OGD/R.

  3. Review of liver injury associated with dietary supplements.

    Science.gov (United States)

    Stickel, Felix; Kessebohm, Kerstin; Weimann, Rosemarie; Seitz, Helmut K

    2011-05-01

    Dietary supplements (DS) are easily available and increasingly used, and adverse hepatic reactions have been reported following their intake. To critically review the literature on liver injury because of DSs, delineating patterns and mechanisms of injury and to increase the awareness towards this cause of acute and chronic liver damage. Studies and case reports on liver injury specifically because of DSs published between 1990 and 2010 were searched in the PubMed and EMBASE data bases using the terms 'dietary/nutritional supplements', 'adverse hepatic reactions', 'liver injury'; 'hepatitis', 'liver failure', 'vitamin A' and 'retinoids', and reviewed for yet unidentified publications. Significant liver injury was reported after intake of Herbalife and Hydroxycut products, tea extracts from Camellia sinensis, products containing usnic acid and high contents of vitamin A, anabolic steroids and others. No uniform pattern of hepatotoxicity has been identified and severity may range from asymptomatic elevations of serum liver enzymes to hepatic failure and death. Exact estimates on how frequent adverse hepatic reactions occur as a result of DSs cannot be provided. Liver injury from DSs mimicking other liver diseases is increasingly recognized. Measures to reduce risk include tighter regulation of their production and distribution and increased awareness of users and professionals of the potential risks. © 2011 John Wiley & Sons A/S.

  4. Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock.

    Science.gov (United States)

    Duvigneau, Johanna Catharina; Kozlov, Andrey V; Zifko, Clara; Postl, Astrid; Hartl, Romana T; Miller, Ingrid; Gille, Lars; Staniek, Katrin; Moldzio, Rudolf; Gregor, Wolfgang; Haindl, Susanne; Behling, Tricia; Redl, Heinz; Bahrami, Soheyl

    2010-03-01

    Oxidative stress is believed to accompany reperfusion and to mediate dysfunction of the liver after traumatic-hemorrhagic shock (THS). Recently, endoplasmic reticulum (ER) stress has been suggested as an additional factor. This study investigated whether reperfusion after THS leads to increased oxidative and/or ER stress in the liver. In a rat model, including laparotomy, bleeding until decompensation, followed by inadequate or adequate reperfusion phase, three time points were investigated: 40 min, 3 h, and 18 h after shock. The reactive oxygen and nitrogen species and its scavenging capacity (superoxide dismutase 2), the nitrotyrosine formation in proteins, and the lipid peroxidation together with the status of endogenous antioxidants (alpha-tocopherylquinone-alpha-tocopherol ratio) were investigated as markers for oxidative or nitrosylative stress. Mitochondrial function and cytochrome P450 isoform 1A1 activity were analyzed as representatives for hepatocyte function. Activation of the inositol-requiring enzyme 1/X-box binding protein pathway and up-regulation of the 78-kDa glucose-regulated protein were recorded as ER stress markers. Plasma levels of alanine aminotransferase and Bax/Bcl-XL messenger RNA (mRNA) ratio were used as indicators for hepatocyte damage and apoptosis induction. Oxidative or nitrosylative stress markers or representatives of hepatocyte function were unchanged during and short after reperfusion (40 min, 3 h after shock). In contrast, ER stress markers were elevated and paralleled those of hepatocyte damage. Incidence for sustained ER stress and subsequent apoptosis induction were found at 18 h after shock. Thus, THS or reperfusion induces early and persistent ER stress of the liver, independent of oxidative or nitrosylative stress. Although ER stress was not associated with depressed hepatocyte function, it may act as an early trigger of protracted cell death, thereby contributing to delayed organ failure after THS.

  5. Liver ischemia and ischemia-reperfusion induces and trafficks the multi-specific metal transporter Atp7b to bile duct canaliculi: possible preferential transport of iron into bile.

    Science.gov (United States)

    Goss, John A; Barshes, Neal R; Karpen, Saul J; Gao, Feng-Qin; Wyllie, Samuel

    2008-04-01

    Both Atp7b (Wilson disease gene) and Atp7a (Menkes disease gene) have been reported to be trafficked by copper. Atp7b is trafficked to the bile duct canaliculi and Atp7a to the plasma membrane. Whether or not liver ischemia or ischemia-reperfusion modulates Atp7b expression and trafficking has not been reported. In this study, we report for the first time that the multi-specific metal transporter Atp7b is significantly induced and trafficked by both liver ischemia alone and liver ischemia-reperfusion, as judged by immunohistochemistry and Western blot analyses. Although hepatocytes also stained for Atp7b, localized intense staining of Atp7b was found on bile duct canaliculi. Inductive coupled plasma-mass spectrometry analysis of bile copper, iron, zinc, and manganese found a corresponding significant increase in biliary iron. In our attempt to determine if the increased biliary iron transport observed may be a result of altered bile flow, lysosomal trafficking, or glutathione biliary transport, we measured bile flow, bile acid phosphatase activity, and glutathione content. No significant difference was found in bile flow, bile acid phosphatase activity, and glutathione, between control livers and livers subjected to ischemia-reperfusion. Thus, we conclude that liver ischemia and ischemia-reperfusion induction and trafficking Atp7b to the bile duct canaliculi may contribute to preferential iron transport into bile.

  6. Cardioprotective Effects of Quercetin in Cardiomyocyte under Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Yi-Wen Chen

    2013-01-01

    Full Text Available Quercetin, a polyphenolic compound existing in many vegetables, fruits, has antiinflammatory, antiproliferation, and antioxidant effect on mammalian cells. Quercetin was evaluated for protecting cardiomyocytes from ischemia/reperfusion injury, but its protective mechanism remains unclear in the current study. The cardioprotective effects of quercetin are achieved by reducing the activity of Src kinase, signal transducer and activator of transcription 3 (STAT3, caspase 9, Bax, intracellular reactive oxygen species production, and inflammatory factor and inducible MnSOD expression. Fluorescence two-dimensional differential gel electrophoresis (2D-DIGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS can reveal the differentially expressed proteins of H9C2 cells treated with H2O2 or quercetin. Although 17 identified proteins were altered in H2O2-induced cells, these proteins such as alpha-soluble NSF attachment protein (α-SNAP, Ena/VASP-like protein (Evl, and isopentenyl-diphosphate delta-isomerase 1 (Idi-1 were reverted by pretreatment with quercetin, which correlates with kinase activation, DNA repair, lipid, and protein metabolism. Quercetin dephosphorylates Src kinase in H2O2-induced H9C2 cells and likely blocks the H2O2-induced inflammatory response through STAT3 kinase modulation. This probably contributes to prevent ischemia/reperfusion injury in cardiomyocytes.

  7. Protective agents used as additives in University of Wisconsin solution to promote protection against ischaemia-reperfusion injury in rat lung.

    Science.gov (United States)

    Chiang, C H; Wu, K; Yu, C P; Perng, W C; Yan, H C; Wu, C P; Chang, D M; Hsu, K

    1998-09-01

    1. An intervention to reduce ischaemia-reperfusion lung injury will be an important advance in transplant medicine. Although the mechanisms associated with producing ischaemia-reperfusion endothelial injury have not been completely elucidated, many of the injury mediators have been studied in detail. While no single pharmacological therapy is likely to be totally effective in eliminating this complex injury, we have developed a mixture of agents that are known to block pathways involved in producing ischaemia-reperfusion-associated lung vascular injury.2. The present study modified University of Wisconsin solution (UW) by adding one of the protective agents prostaglandin E1 (PGE1), dexamethasone (Dex) or dibutyryl cAMP (Bt2-cAMP), or a combination of these, to the perfusate of rat lungs exposed to 4 h of cold ischaemia followed by 1 h of reperfusion. Nine modified UW solutions were studied: (1) UW+Dex, (2) UW+PGE1, (3) UW+Bt2-cAMP, (4) UW+Dexx3, (5) UW+PGE1x3, (6) UW+Bt2-cAMPx3, (7) UW+Dex+PGE1, (8) UW+Dex+Bt2-cAMP, (9) UW+PGE1+Bt2-cAMP. These solutions were utilized in individual experiments to assess haemodynamic changes, lung weight gain, the capillary filtration coefficient (Kfc) and pathology in all lungs.3. The results indicate that lung weight gain and Kfc values were significantly lower than with UW alone in groups 1, 2 and 3, which contained only one additional protective agent. In groups 4, 5 and 6, which contain three times the concentration of each protective agent, both Kfc and lung weight gain were similar to those measured in groups 1, 2 and 3, i.e. lungs were protected but the protection was not dose dependent. In groups 7, 8 and 9, which contained two protective agents, lung weight gain and Kfc were greatly reduced compared with UW alone. Histopathological studies showed similar decreases in the injury profiles of lungs.4. Although UW contains several antioxidant protective agents such as allopurinol and glutathione, it did not provide effective

  8. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus

    Science.gov (United States)

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-01-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions. PMID:25317156

  9. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Leilei Wang

    Full Text Available Neuron loss, glial activation and vascular degeneration are common sequelae of ischemia-reperfusion (I/R injury in ocular diseases. The present study was conducted to explore the ability of curcumin to inhibit retinal I/R injury, and to investigate underlying mechanisms of the drug effects.Different dosages of curcumin were administered. I/R injury was induced by elevating the intraocular pressure for 60 min followed by reperfusion. Cell bodies, brn3a stained cells and TUNEL positive apoptotic cells in the ganglion cell layer (GCL were quantitated, and the number of degenerate capillaries was assessed. The activation of glial cells was measured by the expression level of GFAP. Signaling pathways including IKK-IκBα, JAK-STAT1/3, ERK/MAPK and the expression levels of β-tubulin III and MCP-1 were measured by western blot analysis. Pre-treatment using 0.01%-0.25% curcumin in diets significantly inhibited I/R-induced cell loss in GCL. 0.05% curcumin pre-treatment inhibited I/R-induced degeneration of retinal capillaries, TUNEL-positive apoptotic cell death in the GCL, brn3a stained cell loss, the I/R-induced up-regulation of MCP-1, IKKα, p-IκBα and p-STAT3 (Tyr, and down-regulation of β-tubulin III. This dose showed no effect on injury-induced GFAP overexpression. Moreover, 0.05% curcumin administered 2 days after the injury also showed a vaso-protective effect.Curcumin protects retinal neurons and microvessels against I/R injury. The beneficial effects of curcumin on neurovascular degeneration may occur through its inhibitory effects on injury-induced activation of NF-κB and STAT3, and on over-expression of MCP-1. Curcumin may therefore serve as a promising candidate for retinal ischemic diseases.

  10. Different dose-dependent effects of hydrogen sulfide on ischemia-reperfusion induced acute kidney injury in rats

    Directory of Open Access Journals (Sweden)

    Fateme Azizi

    2017-12-01

    Conclusion: Our study demonstrates that different doses of Sodium hydrosulfide (NaHS can play diverse role in renal ischemia reperfusion injury. However, NaHS in the low-doses could protect the kidney from the RIR injury, in a higher dose NaHS exaggerated the renal function by increases plasma creatinine and BUN. Therefore, determining of the therapeutic doses of NaHS may be important in the protection of kidney from the RIR injury.

  11. The Mechanism of Sevoflurane Preconditioning-Induced Protections against Small Intestinal Ischemia Reperfusion Injury Is Independent of Mast Cell in Rats

    Directory of Open Access Journals (Sweden)

    Xiaoliang Gan

    2013-01-01

    Full Text Available The study aimed to investigate whether sevoflurane preconditioning can protect against small intestinal ischemia reperfusion (IIR injury and to explore whether mast cell (MC is involved in the protections provided by sevoflurane preconditioning. Sprague-Dawley rats exposed to sevoflurane or treated with MC stabilizer cromolyn sodium (CS were subjected to 75-minute superior mesenteric artery occlusion followed by 2-hour reperfusion in the presence or absence of MC degranulator compound 48/80 (CP. Small intestinal ischemia reperfusion resulted in severe intestinal injury as demonstrated by significant elevations in intestinal injury scores and p47phox and gp91phox, ICAM-1 protein expressions and malondialdehyde and IL-6 contents, and MPO activities as well as significant reductions in SOD activities, accompanied with concomitant increases in mast cell degranulation evidenced by significant increases in MC counts, tryptase expression, and β-hexosaminidase concentrations, and those alterations were further upregulated in the presence of CP. Sevoflurane preconditioning dramatically attenuated the previous IIR-induced alterations except MC counts, tryptase, and β-hexosaminidase which were significantly reduced by CS treatment. Furthermore, CP exacerbated IIR injury was abrogated by CS but not by sevoflurane preconditioning. The data collectively indicate that sevoflurane preconditioning confers protections against IIR injury, and MC is not involved in the protective process.

  12. Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Hilary K Siddall

    Full Text Available Mutations in PTEN inducible kinase-1 (PINK1 induce mitochondrial dysfunction in dopaminergic neurons resulting in an inherited form of Parkinson's disease. Although PINK1 is present in the heart its exact role there is unclear. We hypothesized that PINK1 protects the heart against acute ischemia reperfusion injury (IRI by preventing mitochondrial dysfunction.Over-expressing PINK1 in HL-1 cardiac cells reduced cell death following simulated IRI (29.2±5.2% PINK1 versus 49.0±2.4% control; N = 320 cells/group P5 animals/group; P<0.05. Cardiomyocytes isolated from PINK1-/- hearts had a lower resting mitochondrial membrane potential, had inhibited mitochondrial respiration, generated more oxidative stress during simulated IRI, and underwent rigor contracture more rapidly in response to an uncoupler when compared to PINK1+/+ cells suggesting mitochondrial dysfunction in hearts deficient in PINK1.We show that the loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury. This may be due, in part, to increased mitochondrial dysfunction. These findings implicate PINK1 as a novel target for cardioprotection.

  13. Mannan-Binding Lectin Is Involved in the Protection against Renal Ischemia/Reperfusion Injury by Dietary Restriction.

    Directory of Open Access Journals (Sweden)

    Shushimita Shushimita

    Full Text Available Preoperative fasting and dietary restriction offer robust protection against renal ischemia/reperfusion injury (I/RI in mice. We recently showed that Mannan-binding lectin (MBL, the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake or three days of water only fasting on MBL in 10-12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different.

  14. Protectant activity of defibrotide in cardioplegia followed by ischemia/reperfusion injury in the isolated rat heart.

    Science.gov (United States)

    Rossoni, G; Pompilio, G; Biglioli, P; Alamanni, F; Tartara, P; Rona, P; Porqueddu, M; Berti, F

    1999-01-01

    Previous studies have shown that defibrotide, a polydeoxyribonucleotide obtained by depolymerization of DNA from porcine tissues, has important protective effects on myocardial ischemia, which may be associated with a prostacyclin-related mechanism. The purpose of this study was to investigate the direct effects of defibrotide (given in cardioplegia or after ischemia) on a model of rat heart recovery after cardioplegia followed by ischemia/reperfusion injury. Isolated rat hearts, undergoing 5 minutes of warm cardioplegic arrest followed by 20 minutes of global ischemia and 30 minutes of reperfusion, were studied using the modified Langendorff model. The cardioplegia consisted of St. Thomas' Hospital solution augmented with defibrotide (50, 100, and 200 microg/mL) or without defibrotide (controls). Left ventricular mechanical function and the levels of creatine kinase, lactate dehydrogenase, and 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha; the stable metabolite of prostacyclin) were measured during preischemic and reperfusion periods. After global ischemia, hearts receiving defibrotide in the cardioplegic solution (n = 8) manifested in a concentration-dependent fashion lower left ventricular end-diastolic pressure (p defibrotide in the cardioplegic solution also had, in a dose-dependent way, lower levels of creatine-kinase (p defibrotide was given alone to the hearts at the beginning of reperfusion (n = 7), the recovery of postischemic left ventricular function was inferior (p defibrotide was given in cardioplegia. Defibrotide confers to conventional crystalloid cardioplegia a potent concentration-dependent protective effect on the recovery of isolated rat heart undergoing ischemia/reperfusion injury. The low cost and the absence of contraindications (cardiac toxicity and hemodynamic effects) make defibrotide a promising augmentation to cardioplegia.

  15. The novel guanylhydrazone CPSI-2364 ameliorates ischemia reperfusion injury after experimental small bowel transplantation.

    Science.gov (United States)

    Websky, Martin von; Fujishiro, Jun; Ohsawa, Ichiro; Praktiknjo, Michael; Wehner, Sven; Abu-Elmagd, Kareem; Kitamura, Koji; Kalff, Joerg C; Schaefer, Nico; Pech, Thomas

    2013-06-15

    Resident macrophages within the tunica muscularis are known to play a crucial role in initiating severe inflammation in response to ischemia reperfusion injury after intestinal transplantation contributing to graft dysmotility, bacterial translocation, and possibly, acute rejection. The p38 mitogen-activated protein kinase is a key player in the signaling of proinflammatory cytokine synthesis in macrophages. Therefore, we investigated the effects of CPSI-2364, an apparent macrophage-specific inhibitor of the p38 mitogen-activated protein kinase pathway in an isogenic intestinal rat transplantation model. Recipient and donor animals were treated perioperatively with CPSI-2364 (1 mg/kg, intravenously) or vehicle solution. Nontransplanted animals served as control. Animals were killed 30 min, 3 hr, and 18 hr after reperfusion. CPSI-2364 treatment resulted in significantly less leukocyte infiltration and significantly improved graft motor function (18 hr). Messenger RNA expression of proinflammatory cytokines (interleukin 6) and kinetic active mediators (NO) was reduced by CPSI-2364 in the early phase after transplantation. Histologic evaluation revealed the protective effects of CPSI-2364 treatment by a significantly less destruction of mucosal integrity at all time points. Perioperative treatment with CPSI-2364 improves graft motor function through impaired inflammatory responses to ischemia reperfusion injury by inhibition of proinflammatory cytokines and suppression of nitric oxide production in macrophages. CPSI-2364 presents as a promising complementary pharmacological approach preventing postoperative dysmotility for clinical intestinal transplantation.

  16. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity

    Directory of Open Access Journals (Sweden)

    Karthi Shanmugam

    2018-01-01

    Full Text Available Acute myocardial infarction (AMI is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R injury (IRI using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3β (GSK3β, which was confirmed by a biochemical assay and molecular docking studies.

  17. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity.

    Science.gov (United States)

    Shanmugam, Karthi; Ravindran, Sriram; Kurian, Gino A; Rajesh, Mohanraj

    2018-01-01

    Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R) injury (IRI) using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3 β (GSK3 β ), which was confirmed by a biochemical assay and molecular docking studies.

  18. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis.

    Science.gov (United States)

    Zhai, Mengen; Li, Buying; Duan, Weixun; Jing, Lin; Zhang, Bin; Zhang, Meng; Yu, Liming; Liu, Zhenhua; Yu, Bo; Ren, Kai; Gao, Erhe; Yang, Yang; Liang, Hongliang; Jin, Zhenxiao; Yu, Shiqiang

    2017-09-01

    Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide-dependent histone deacetylases. Sirtuin-3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress-related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl-2 expression and decreased Bax, Caspase-3, and cleaved Caspase-3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3-targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons

  19. Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model

    Directory of Open Access Journals (Sweden)

    Fei-Fei Cui

    2016-02-01

    Full Text Available Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER stress and Akt/GSK3β signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3β were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3β signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion.

  20. NKT cells are important mediators of hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Richards, James A; Wigmore, Stephen J; Anderton, Stephen M; Howie, Sarah E M

    2017-12-01

    IRI results from the interruption then reinstatement of an organ's blood supply, and this poses a significant problem in liver transplantation and resectional surgery. In this paper, we explore the role T cells play in the pathogenesis of this injury. We used an in vivo murine model of warm partial hepatic IRI, genetically-modified mice, in vivo antibody depletion, adoptive cell transfer and flow cytometry to determine which lymphocyte subsets contribute to pathology. Injury was assessed by measuring serum alanine aminotransfersase (ALT) and by histological examination of liver tissue sections. The absence of T cells (CD3εKO) is associated with significant protection from injury (p=0.010). Through a strategy of antibody depletion it appears that NKT cells (p=0.0025), rather than conventional T (CD4+ or CD8+) (p=0.11) cells that are the key mediators of injury. Our results indicate that tissue-resident NKT cells, but not other lymphocyte populations are responsible for the injury in hepatic IRI. Targeting the activation of NKT cells and/or their effector apparatus would be a novel approach in protecting the liver during transplantation and resection surgery; this may allow us to expand our current criteria for surgery. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Oxidative stress in ischemia and reperfusion

    DEFF Research Database (Denmark)

    Sinning, Christoph; Westermann, Dirk; Clemmensen, Peter

    2017-01-01

    Oxidative stress remains a major contributor to myocardial injury after ischemia followed by reperfusion (I/R) as the reperfusion of the myocardial infarction (MI) area inevitably leads to a cascade of I/R injury. This review focused on concepts of the antioxidative defense system and elucidates......, the different mechanisms through which myocardial protection can be addressed, like ischemic postconditioning in myocardial infarction or adjunctive measures like targeted temperature management as well as new theories, including the role of iron in I/R injury, will be discussed....

  2. Cardioprotection against ischemia/reperfusion injury by QiShenYiQi Pill® via ameliorate of multiple mitochondrial dysfunctions

    Directory of Open Access Journals (Sweden)

    Chen JR

    2015-06-01

    Full Text Available Jing Rui Chen,1–3 Jing Wei,1–3 Ling Yan Wang,1–3 Yan Zhu,1–3 Lan Li,1–3 Mary Akinyi Olunga,1–3 Xiu Mei Gao,1–3 Guan Wei Fan1–31Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China; 2Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, 3Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of ChinaAim: To investigate the potential cardioprotective effects of QiShenYiQi Pill® (QSYQ on myocardial ischemia/reperfusion (I/R injury through antioxidative stress and mitochondrial protection.Methods and results: Sprague Dawley rats were pretreated with QSYQ or saline for 7 days and subjected to ischemia (30 minutes occlusion of the left anterior descending coronary artery and reperfusion (120 minutes. Cardiac functions were evaluated by echocardiogram and hemodynamics. Myocardial mitochondria were obtained to evaluate changes in mitochondrial structure and function, immediately after 120 minutes reperfusion. Pretreatment with QSYQ protected against I/R-induced myocardial structural injury and improved cardiac hemodynamics, as demonstrated by normalized serum creatine kinase and suppressed oxidative stress. Moreover, the impaired myocardial mitochondrial structure and function decreased level of ATP (accompanied by reduction of ATP5D and increase in the expression of cytochrome C. Myocardial fiber rupture, interstitial edema, and infiltrated leukocytes were all significantly ameliorated by pretreatment with QSYQ.Conclusion: Pretreatment of QSYQ in Sprague Dawley rats improves ventricular function and energy metabolism and reduces oxidative stress via ameliorating multiple mitochondrial dysfunctions during I/R injury.Keywords: QSYQ, ischemia/reperfusion injury, energy metabolism, mitochondria

  3. Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Guo, Chao; Zhu, Yanrong; Weng, Yan; Wang, Shiquan; Guan, Yue; Wei, Guo; Yin, Ying; Xi, Miaomaio; Wen, Aidong

    2014-01-01

    Breviscapine injection is a Chinese herbal medicine standardized product extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used for treating cardiovascular and cerebrovascular diseases. However, the therapeutic time window and the action mechanism of breviscapine are still unclear. The present study was designed to investigate the therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemic/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Experiment part 1 was used to investigate the therapeutic time window of breviscapine. Rats were injected intravenously with 50mg/kg breviscapine at different time-points of reperfusion. After 24h of reperfusion, neurologic score, infarct volume, brain water content and serum level of neuron specific enolase (NSE) were measured in a masked fashion. Part 2 was used to explore the therapeutic mechanism of breviscapine. 4-Hydroxy-2-nonenal (4-HNE), 8-hydroxyl-2'- deoxyguanosine (8-OHdG) and the antioxidant capacity of ischemia cortex were measured by ELISA and ferric-reducing antioxidant power (FRAP) assay, respectively. Immunofluorescence and western blot analysis were used to analyze the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Part 1: breviscapine injection significantly ameliorated neurologic deficit, reduced infarct volume and water content, and suppressed the levels of NSE in a time-dependent manner. Part 2: breviscapine inhibited the increased levels of 4-HNE and 8-OHdG, and enhanced the antioxidant capacity of cortex tissue. Moreover, breviscapine obviously raised the expression of Nrf2 and HO-1 proteins after 24h of reperfusion. The therapeutic time window of breviscapine injection for cerebral ischemia/reperfusion injury seemed to be within 5h after reperfusion. By up-regulating the expression of Nrf2/HO-1 pathway

  4. Comparative proteomic analysis of histone post-translational modifications upon ischemia/reperfusion-induced retinal injury

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Sidoli, Simone; Wang, Leilei

    2014-01-01

    We present a detailed quantitative map of single and coexisting histone post-translational modifications (PTMs) in rat retinas affected by ischemia and reperfusion (I/R) injury. Retinal I/R injury contributes to serious ocular diseases, which can lead to vision loss and blindness. We applied linear...... ion trap-orbitrap hybrid tandem mass spectrometry (MS/MS) to quantify 131 single histone marks and 143 combinations of multiple histone marks in noninjured and injured retinas. We observed 34 histone PTMs that exhibited significantly (p

  5. The protective effect of huperzine A against hepatic ischemia reperfusion injury in mice.

    Science.gov (United States)

    Yang, Y; Yang, J; Jiang, Q

    2014-06-01

    Nowadays, hepatic ischemia reperfusion (HI/R) injury is regarded as a serious concern in clinical practices. Huperzine A (HupA) is an alkaloid isolated from the Chinese folk medicine huperzia serrate, which has possessed diverse pharmacological actions. A mouse model of HI/R was caused by clamping the hepatic artery, the hepatoportal vein, and the bile duct with a vascular clamp for 30 minutes followed by reperfusion for 6 hours under anesthesia. The sham group experienced the identical procedure without hepatic ischemia. The HupA group received an injection into the tail vein 5 minutes prior to HI/R at the doses of 167 and 500 μg/kg. The vehicle group was injected with physiological saline instead of HupA. The liver function was assessed by determinations of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA), and glutathione (GSH) were also measured spectrophotometrically. In addition, the activities of hepatic inflammatory mediators such as nuclear factor kappa B (NF-κB) p65, tumor necrosis factors-α (TNF-α, interleukin-1β (IL-1β) and IL-6 were also measured. Furthermore, the apoptotic damage was evaluated by measuring caspase-3 activity in hepatic tissues. Treatment with HupA in mice at the doses of 167 and 500 μg/kg remarkably reduced serum ALT and AST activities in HupA-treated ischemic mice. Furthermore, HupA treatment could enhance the activities of hepatic tissue SOD, CAT, and GSH but decrease MDA tissue content. The activities of inflammatory cytokines including NF-κB p65, TNF-α, IL-1β and IL-6 were all decreased in ischemic mice treated with HupA. Colorimetric test results illustrated that a marked reduction of caspase-3 activity was found in the HupA-treated group compared with the vehicle group. Our present data suggest that HupA has a protective role against HI/R injury of mice and antioxidative, anti-inflammatory, and antiapoptotic

  6. Protective Effect Of Bosentan In Experimental Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Eser Ataş

    2013-02-01

    Full Text Available OBJECTIVE: In cerebral ischemia, there are many factors that start the events leading to cell death. These factors contain free radical production, excitotoxicity, sodium and calcium flow disruption, enzymatic changes, stimulation of the inflamatuar process, the activation of platelets and leukocytes, delayed coagulation, endothelial dysfunction and endothelin (ET release. Bosentan is the competitive antagonist of endothelin receptors; ETA and ETB. The aim of this study is to determine whether the protective effects of bosentan in experimental cerebral ischemia reperfusion injury. MATERIAL and METHODS: In this study, after ischemia-reperfusion procedure, bosentan molecule was regularly given to rats for 5 days. The brain tissues of decapitated rats were histopathologically examined. The levels of oxidant and antioxidant were determined in these brain tissues. RESULTS: It was observed that antioxidant levels and histopathological examinations were in rats given bosentan better than control group rats. CONCLUSION: In conclusion, this study has showed that bosentan may be an agent which could reduce negative effects resulting from neuronal death associated with ischemic stroke.

  7. Computed tomographic findings of liver injury in adults

    International Nuclear Information System (INIS)

    Ha, Deok Gi; Lee, Hyeon Kyeong; Lee, Won Jae; Oh, Yeon Hee; Lee, Sung Hee; Yun, Jee Yeong; Lee, Tae Woo; Lee, Sung Woo; Park, Soo Soung

    1994-01-01

    We studied to compare computed tomographic(CT) findings of liver injury with management method in adults and, moreover, to present the CT basis for the management. We retrospectively reviewed CT scans of 43 adults diagnosed as liver injury during a 66 month period. Thirty-eight patients were hemodynamically stable. Thirty-two of them were managed conservatively, whereas six managed operatively. Five unstable patients underwent emergency operation. We classified CT findings according to the severity of liver injuries(ie, hematoma, laceration, and periportal tracking) and hemoperitoneum, ranging from grade 1 to 5 and from 0 to 3 +. respectively. Thus, we compared the CT classifications with their management(ie, operation rate), especially hemodynamically stable patients. Operation rates of all patients and hemodynamically stable patients were 26% and 16%, respectively. Operation rate at each grade of liver injury was low, especially in hemodynamically stable, despite relatively high operation rate in grade 4. Operation rate of 3+ homoperitoneum was 100%, including hemodynamically stable patients, in contrast to otherwise low operation rate of others. Most liver injury in adults, including grade 4, were managed conservatively, especially hemodynamically stable. Though large amount of hemoperitoneum(ie, 3+) required operation, most hemooperitoeum were managed conservatively. Thus, CT findings of liver injury is helpful in the decision for the management method

  8. Protective effect of sauchinone against regional myocardial ischemia/reperfusion injury: inhibition of p38 MAPK and JNK death signaling pathways.

    Science.gov (United States)

    Kim, Seok Jai; Jeong, Cheol Won; Bae, Hong Beom; Kwak, Sang Hyun; Son, Jong-Keun; Seo, Chang-Seob; Lee, Hyun-Jung; Lee, JongUn; Yoo, Kyung Yeon

    2012-05-01

    Sauchinone has been known to have anti-inflammatory and antioxidant effects. We determined whether sauchinone is beneficial in regional myocardial ischemia/reperfusion (I/R) injury. Rats were subjected to 20 min occlusion of the left anterior descending coronary artery, followed by 2 hr reperfusion. Sauchinone (10 mg/kg) was administered intraperitoneally 30 min before the onset of ischemia. The infarct size was measured 2 hr after resuming the perfusion. The expression of cell death kinases (p38 and JNK) and reperfusion injury salvage kinases (phosphatidylinositol-3-OH kinases-Akt, extra-cellular signal-regulated kinases [ERK1/2])/glycogen synthase kinase (GSK)-3β was determined 5 min after resuming the perfusion. Sauchinone significantly reduced the infarct size (29.0% ± 5.3% in the sauchinone group vs 44.4% ± 6.1% in the control, P death signaling pathways.

  9. Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion.

    Science.gov (United States)

    Wei, Qingqing; Xiao, Xiao; Fogle, Paul; Dong, Zheng

    2014-01-01

    Changes of metabolism have been implicated in renal ischemia/reperfusion injury (IRI). However, a global analysis of the metabolic changes in renal IRI is lacking and the association of the changes with ischemic kidney injury and subsequent recovery are unclear. In this study, mice were subjected to 25 minutes of bilateral renal IRI followed by 2 hours to 7 days of reperfusion. Kidney injury and subsequent recovery was verified by serum creatinine and blood urea nitrogen measurements. The metabolome of plasma, kidney cortex, and medulla were profiled by the newly developed global metabolomics analysis. Renal IRI induced overall changes of the metabolome in plasma and kidney tissues. The changes started in renal cortex, followed by medulla and plasma. In addition, we identified specific metabolites that may contribute to early renal injury response, perturbed energy metabolism, impaired purine metabolism, impacted osmotic regulation and the induction of inflammation. Some metabolites, such as 3-indoxyl sulfate, were induced at the earliest time point of renal IRI, suggesting the potential of being used as diagnostic biomarkers. There was a notable switch of energy source from glucose to lipids, implicating the importance of appropriate nutrition supply during treatment. In addition, we detected the depressed polyols for osmotic regulation which may contribute to the loss of kidney function. Several pathways involved in inflammation regulation were also induced. Finally, there was a late induction of prostaglandins, suggesting their possible involvement in kidney recovery. In conclusion, this study demonstrates significant changes of metabolome kidney tissues and plasma in renal IRI. The changes in specific metabolites are associated with and may contribute to early injury, shift of energy source, inflammation, and late phase kidney recovery.

  10. Controlled reperfusion decreased reperfusion induced oxidative stress and evoked inflammatory response in experimental aortic-clamping animal model.

    Science.gov (United States)

    Jancsó, G; Arató, E; Hardi, P; Nagy, T; Pintér, Ö; Fazekas, G; Gasz, B; Takacs, I; Menyhei, G; Kollar, L; Sínay, L

    2016-09-12

    Revascularization after long term aortic ischaemia in vascular surgery induces reperfusion injury accompanied with oxidative stress and inflammatory responses. The hypothesis of this study was that the aortic occlusion followed by controlled reperfusion (CR) can reduce the ischaemia-reperfusion injury, the systemic and local inflammatory response induced by oxidative stress.Animal model was used. animals underwent a 4-hour infrarenal aortic occlusion followed by continuous reperfusion. Treated group: animals were treated with CR: after a 4-hour infrarenal aortic occlusion we made CR for 30 minutes with the crystalloid reperfusion solution (blood: crystalloid solution ratio 1:1) on pressure 60 Hgmm. Blood samples were collected different times. The developing oxidative stress was detected by the plasma levels of malondialdehyde, reduced glutathion, thiol groups and superoxide dismutase. The inflammatory response was measured by phorbol myristate acetate-induced leukocyte reactive oxygen species production and detection of change in myeloperoxidase levels. The animals were anaesthetized one week after terminating ligation and biopsy was taken from quadriceps muscle and large parenchymal organs.CR significantly reduced the postischaemic oxydative stress and inflammatory responses in early reperfusion period. Pathophysiological results: The rate of affected muscle fibers by degeneration was significantly higher in the untreated animal group. The infiltration of leukocytes in muscle and parenchymal tissues was significantly lower in the treatedgroup.CR can improve outcome after acute lower-limb ischaemia. The results confirm that CR might be also a potential therapeutic approach in vascular surgery against reperfusion injury in acute limb ischaemia. Supported by OTKA K108596.

  11. [The effect of portal blood stasis on lung and renal injury induced by hepatic ischemia reperfusion in a rabbit model].

    Science.gov (United States)

    Wang, Ye; Yang, Jia-mei; Hou, Yuan-kai; Li, Dian-qi; Hu, Ming-hua; Liu, Peng

    2008-04-15

    To investigate the effect and mechanism of portal blood stasis on lung and renal injury induced by hepatic ischemia reperfusion. A rabbit hepatic ischemia reperfusion injury model was established by hepatic portal occlusion and in situ hypothermic irrigation for 30 min. Twenty-four New Zealand white rabbits were employed and randomly divided into 3 groups equally by different dosage of portal blood stasis removal: group A5 (5 ml blood removal), group A10 (10 ml blood removal),and group B (no blood removal). Eight rabbits were served as controls with no hepatic portal occlusion and hypothermic irrigation. After reperfusion 4 h serum endotoxin content, tumor necrosis factor-alpha (TNF-alpha), urea nitrogen (BUN), and creatinine (Cr) were examined respectively, meantime lung and kidney tissues were sampled to determine the content of malondialdehyde (MDA), superoxide dismutase (SOD), the pathology, and wet to dry weight ratio, broncho-alveolar lavage fluid protein content in lung tissues. Removing portal blood stasis ameliorated lung and renal injury as shown by decreasing the level of serum endotoxin, TNF-alpha, BUN, Cr, wet to dry weight ratio, broncho-alveolar lavage fluid protein content, MDA, SOD. TNF-alpha, Cr, broncho-alveolar lavage fluid protein content in lung tissues and MDA in kidney tissue in group A5 were significantly reduced compared with those in group B (P portal blood stasis before the resume of splanchnic circulation may ameliorate the lung and renal injury induced by hepatic ischemia reperfusion. The possible mechanism may be that portal blood stasis removal reduces endotoxin absorption, and further decreases production of serum TNF-alpha.

  12. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    He, Haiyan [Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin 300070 (China); Department of Pharmacology, Tianjin Medical University, Tianjin 300070 (China); Huh, Jin [Department of Anesthesia and Pain Medicine, Medical College, Kangwon National University, Chuncheon City (Korea, Republic of); Wang, Huihua [Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province (China); Kang, Yi; Lou, Jianshi [Department of Pharmacology, Tianjin Medical University, Tianjin 300070 (China); Xu, Zhelong, E-mail: zxu@tmu.edu.cn [Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin 300070 (China)

    2016-01-01

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphine reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine

  13. Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2013-01-01

    Full Text Available Background. Hepatic ischemia-reperfusion (I/R injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. Methods. Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg were administered 1 h before a model of segmental (70% hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h. Results. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg. Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6. Conclusion. Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.

  14. Correlation of QRS complex after percutaneous coronary intervention with myocardial ischemia reperfusion injury and apoptosis molecule contents

    Directory of Open Access Journals (Sweden)

    Ming-Min Jiang

    2017-11-01

    Full Text Available Objective: To study the correlation of QRS complex after percutaneous coronary intervention (PCI with myocardial ischemia reperfusion injury and apoptosis molecule contents. Methods: Patients with non-ST-segment elevation myocardial infarction who were treated in Nanchong Central Hospital between June 2014 and August 2016 were selected and divided into the PCI group who received emergency PCI surgery and the control group who accepted selective PCI or refused emergency PCI after the medical data were retrospectively analyzed. The fQRS as well as the contents of ischemia reperfusion injury indexes and apoptosis molecules was determined after 1 week of treatment. Results: The incidence of fQRS in PCI group was significantly lower than that in control group; serum MDA, cTnI, H-FABP, sTWEAK, sFas, sTRAIL and Caspase-3 contents as well as peripheral blood Nrf-2 and HO-1 expression of PCI group were greatly lower than those of control group; serum MDA, cTnI, H-FABP, sTWEAK, sFas, sTRAIL and Caspase-3 contents as well as peripheral blood Nrf-2 and HO-1 expression of PCI group of patients with fQRS complex (+ were greatly higher than those of patients with fQRS complex (-. Conclusion: The occurrence of fQRS after PCI is closely related to myocardial ischemia reperfusion injury and apoptosis.

  15. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    Science.gov (United States)

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction. PMID:27882354

  16. Dual Gas Treatment With Hydrogen and Carbon Monoxide Attenuates Oxidative Stress and Protects From Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Nishida, T; Hayashi, T; Inamoto, T; Kato, R; Ibuki, N; Takahara, K; Takai, T; Yoshikawa, Y; Uchimoto, T; Saito, K; Tanda, N; Kouno, J; Minami, K; Uehara, H; Hirano, H; Nomi, H; Okada, Y; Azuma, H

    Hydrogen (H 2 ) and carbon monoxide (CO) gas are both reported to reduce reactive oxygen species and alleviate tissue ischemia-reperfusion (I-R) injury. The present study was conducted to evaluate the effects of a mixture of H 2 gas and CO gas (dual gas) in comparison with hydrogen gas (H 2 : 2%) alone on I-R renal injury (composition of dual gas; N 2 : 77.8%; O 2 : 20.9%; H 2 : 1.30%; CO: 250 parts per million). Adult male Sprague-Dawley rats (body weight 250-280 g) were divided into 5 groups: (1) sham operation control, (2) dual gas inhalation (dual treatment) without I-R treatment, (3) I-R renal injury, (4) H 2 gas alone inhalation (H 2 treatment) with I-R renal injury, and (5) dual treatment with I-R renal injury. I-R renal injury was induced by clamping the left renal artery and vein for 45 minutes followed by reperfusion, and then contralateral nephrectomy was performed 2 weeks later. Renal function was markedly decreased at 24 hours after reperfusion, and thereafter the effects of dual gas were assessed by histologic examination and determination of the superoxide radical, together with functional and molecular analyses. Pathologic examination of the kidney of I-R rats revealed severe renal damage. Importantly, cytoprotective effects of the dual treatment in comparison with H 2 treatment and I-R renal injury were observed in terms of superoxide radical scavenging activity and histochemical features. Rats given dual treatment and I-R renal injury showed significant decreases in blood urea nitrogen. Increased expression of several inflammatory cytokines (tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, nuclear factor-κB, hypoxia inducible factor-1α, and heme oxygenase-1) was attenuated by the dual treatment. Dual gas inhalation decreases oxidative stress and markedly improves I-R-induced renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart.

    Science.gov (United States)

    Mourouzis, I; Dimopoulos, A; Saranteas, T; Tsinarakis, N; Livadarou, E; Spanou, D; Kokkinos, A D; Xinaris, C; Pantos, C; Cokkinos, D V

    2009-01-01

    There is accumulating evidence showing that ischemic preconditioning (PC) may lose its cardioprotective effect in the diseased states. The present study investigated whether PC can be effective in hypothyroidism, a clinical condition which is common and often accompanies cardiac diseases such as heart failure and myocardial infarction. Hypothyroidism was induced in rats by 3-week administration of 6n-propyl-2-thiouracil in water (0.05 %). Normal and hypothyroid hearts (HYPO) were perfused in Langendorff mode and subjected to 20 min of zero-flow global ischemia and 45 min of reperfusion. A preconditioning protocol (PC) was also applied prior to ischemia. HYPO hearts had significantly improved post-ischemic recovery of left ventricular developed pressure, end-diastolic pressure and reduced lactate dehydrogenase release. Furthermore, phospho-JNK and p38 MAPK levels after ischemia and reperfusion were 4.0 and 3.0 fold lower in HYPO as compared to normal hearts (Phearts. PC improved the post-ischemic recovery of function and reduced the extent of injury in normal hearts but had no additional effect on the hypothyroid hearts. This response, in the preconditioned normal hearts, resulted in 2.5 and 1.8 fold smaller expression of the phospho-JNK and phospho-p38 MAPK levels at the end of reperfusion, as compared to non-PC hearts (Phearts, no additional reduction in the phosphorylation of these kinases was observed after PC. Hypothyroid hearts appear to be tolerant to ischemia-reperfusion injury. This response may be, at least in part, due to the down-regulation of ischemia-reperfusion induced activation of JNKs and p38 MAPK kinases. PC is not associated with further reduction in the activation of these kinases in the hypothyroid hearts and fails to confer added protection in those hearts.

  18. Cardioprotective Effect of the Aqueous Extract of Lavender Flower against Myocardial Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-01-01

    Full Text Available This study was conducted to evaluate the cardioprotective property of the aqueous extract of lavender flower (LFAE. The myocardial ischemia/reperfusion (I/R injury of rat was prepared by Langendorff retrograde perfusion technology. The heart was preperfused with K-H solution containing LFAE for 10 min before 20 minutes global ischemia, and then the reperfusion with K-H solution was conducted for 45 min. The left ventricular developed pressure (LVDP and the maximum up/downrate of left ventricular pressure (±dp/dtmax were recorded by physiological recorder as the myocardial function and the myocardial infarct size was detected by TTC staining. Lactate dehydrogenase (LDH and creatine kinase (CK activities in the effluent were measured to determine the myocardial injury degree. The superoxide anion dismutase (SOD and malondialdehyde (MDA in myocardial tissue were detected to determine the oxidative stress degree. The results showed that the pretreatment with LFAE significantly decreased the myocardial infarct size and also decreased the LDH, CK activities, and MDA level, while it increased the LVDP, ±dp/dtmax, SOD activities, and the coronary artery flow. Our findings indicated that LFAE could provide protection for heart against the I/R injury which may be related to the improvement of myocardial oxidative stress states.

  19. Anti-inflammatory and antioxidant effects of infliximab on acute lung injury in a rat model of intestinal ischemia/reperfusion.

    Science.gov (United States)

    Guzel, Ahmet; Kanter, Mehmet; Guzel, Aygul; Pergel, Ahmet; Erboga, Mustafa

    2012-06-01

    The purpose of this study was to investigate the role of infliximab on acute lung injury induced by intestinal ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered by intravenously. All animals were sacrificed at the end of reperfusion and lung tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no more biochemical and histopathological changes on intestinal I/R injury in rats by infliximab treatment have been reported. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in lung tissues samples. Intestinal I/R caused severe histopathological injury including edema, hemorrhage, increased thickness of the alveolar wall and a great number of inflammatory cells that infiltrated the interstitium and alveoli. Infliximab treatment significantly attenuated the severity of intestinal I/R injury. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase and arise in the expression of surfactant protein D in lung tissue of acute lung injury induced by intestinal I/R with infliximab therapy. It was concluded that infliximab treatment might be beneficial in acute lung injury, therefore, shows potential for clinical use. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects in acute lung injury induced by intestinal I/R.

  20. Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits

    Directory of Open Access Journals (Sweden)

    Shan Le-qun

    2010-08-01

    Full Text Available Abstract Background Hydroxysafflor Yellow A (HSYA, which is one of the most important active ingredients of the Chinese herb Carthamus tinctorius L, is widely used in the treatment of cerebrovascular and cardiovascular diseases. However, the potential protective effect of HSYA in spinal cord ischemia/reperfusion (I/R injury is still unknown. Methods Thirty-nine rabbits were randomly divided into three groups: sham group, I/R group and HSYA group. All animals were sacrificed after neurological evaluation with modified Tarlov criteria at the 48th hour after reperfusion, and the spinal cord segments (L4-6 were harvested for histopathological examination, biochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL staining. Results Neurological outcomes in HSYA group were slightly improved compared with those in I/R group. Histopathological analysis revealed that HSYA treatment attenuated I/R induced necrosis in spinal cords. Similarly, alleviated oxidative stress was indicated by decreased malondialdehyde (MDA level and increased superoxide dismutase (SOD activity after HSYA treatment. Moreover, as seen from TUNEL results, HSYA also protected neurons from I/R-induced apoptosis in rabbits. Conclusions These findings suggest that HSYA may protect spinal cords from I/R injury by alleviating oxidative stress and reducing neuronal apoptosis in rabbits.

  1. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Science.gov (United States)

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N.; Chaudhary, Uma; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2016-01-01

    Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway. PMID:27087891

  2. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  3. Reduction of myocardial ischemia-reperfusion injury by mechanical tissue resuscitation using sub-atmospheric pressure.

    Science.gov (United States)

    Argenta, Louis C; Morykwas, Michael J; Mays, Jennifer J; Thompson, Edreca A; Hammon, John W; Jordan, James E

    2010-03-01

    Reperfusion-induced injury after myocardial infarction is associated with a well-defined sequence of early and late cardiomyocyte death. Most present attempts to ameliorate this sequence focus on a single facet of the complex process in an attempt to salvage cardiomyocytes. We examined, as proof of concept, the effects of mechanical tissue resuscitation (MTR) with controlled negative pressure on myocardial injury following acute myocardial infarction. Anesthetized swine were subjected to 75 minutes of left coronary artery occlusion and three hours of reperfusion. Animals were assigned to one of three groups: (A) untreated control; treatment of involved myocardium for 180 minutes of MTR with (B) -50 mmHg, or (C) -125 mmHg. All three groups were subjected to equivalent ischemic stress. Treatment of the ischemic area with MTR for 180 minutes significantly (p control: 9.3 +/- 1.8% (-50 mmHg) and 11.9 +/- 1.2% (-125 mmHg) versus 26.4 +/- 2.1% (control). Total area of cell death was reduced by 65% with -50 mmHg treatment and 55% in the -125 mmHg group. Treatment of ischemic myocardium with MTR, for a controlled period of time during reperfusion, successfully reduced the extent of myocardial death after acute myocardial infarction. These data provide evidence that MTR using subatmospheric pressure may be a simple, efficacious, nonpharmacological, mechanical strategy for decreasing cardiomyocyte death following myocardial infarction, which can be delivered in the operating room.

  4. Different dose-dependent effects of ebselen in sciatic nerve ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Ozyigit, Filiz; Kucuk, Aysegul; Akcer, Sezer; Tosun, Murat; Kocak, Fatma Emel; Kocak, Cengiz; Kocak, Ahmet; Metineren, Hasan; Genc, Osman

    2015-08-26

    Ebselen is an organoselenium compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of ebselen pretreatment in rats with experimental sciatic nerve ischemia-reperfusion (I/R) injury. Adult male Sprague Dawley rats were divided into four groups (N = 7 in each group). Before sciatic nerve I/R was induced, ebselen was injected intraperitoneally at doses of 15 and 30 mg/kg. After a 2 h ischemia and a 3 h reperfusion period, sciatic nerve tissues were excised. Tissue levels of malondialdehyde (MDA) and nitric oxide (NO), and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured. Sciatic nerve tissues were also examined histopathologically. The 15 mg/kg dose of ebselen reduced sciatic nerve damage and apoptosis (pebselen. Conversely, the 30 mg/kg dose of ebselen increased sciatic nerve damage, apoptosis, iNOS positive cells (pebselen may cause different effects depending on the dose employed. Ebselen may be protective against sciatic nerve I/R injury via antioxidant and antiapoptotic activities at a 15 mg/kg dose, conversely higher doses may cause detrimental effects.

  5. Effect of liver ischemic preconditioning in cirrhotic rats submitted to hepatic ischemia/reperfusion injury Efeito do pré-condicionamento isquêmico hepático submetidos a lesão de isquemia/reperfusão do fígado

    Directory of Open Access Journals (Sweden)

    Eduardo Garcia Pacheco

    2006-01-01

    Full Text Available PURPOSE: The main aim of this study was to determine the influence of ischemic preconditioning (IPC on rat liver cirrhosis. METHODS: Cirrhosis was induced in Wistar rats by occlusion of the hepatic duct. The animals were divided into four groups of six animals each: non-cirrhotic group (simulated operation only, cirrhotic control group (simulated operation in cirrhotic rats, I/R group (40-minute ischemia without IPC, and IPC group (cirrhotic rats with ischemia, previously submitted to IPC. The IPC procedure consisted of partial hepatic ischemia for five minutes, followed by 10 minutes of reperfusion. In the case of the IPC group, the animals were submitted to liver ischemia for 40 minutes after the preconditioning procedure, followed by 2 hours of reperfusion. Blood samples were collected for measurement of serum aminotransferases (ALT and AST. The respiratory control ratio (RCR, the mitochondrial membrane potential (MMP, and malondialdehyde (MDA values in the hepatic tissue were analyzed. Nonparametric statistical analysis was used and a value of pOBJETIVO: O objetivo deste estudo foi determinar a influência do pré-condicionamento isquêmico (IPC em fígados de ratos cirróticos. MÉTODOS: A cirrose hepática foi induzida em ratos Wistar machos (250 a 300g por oclusão, durante 30 dias, do ducto hepático comum.A seguir, os animais cirróticos foram divididos em três grupos de seis; Grupo controle cirrótico (operação simulada para isquemia/reperfusão/pré-condicionamento, Grupo I/R, isquemia de 40 minutos sem pré-condicionamento (IPC e grupo IPC com isquemia precedida por IPC. O IPC consistiu de uma isquemia parcial por cinco minutos, seguida por 10 minutos de reperfusão. No grupo IPC, após o pré-condicionamento, os animais foram submetidos à isquemia hepática de 40 minutos seguida de 2 horas de reperfusão. Foram colhidas amostras de sangue para dosagem sérica de aminotransferases (ALT e AST. Razão de controle respiratório (RCR

  6. Relations between CT perfusion parameters and degree of hepatic ischemia reperfusion injury in a rabbit model

    International Nuclear Information System (INIS)

    Guo Chengwei; Shen Sandi; Yi Xianlin; Zhang Zhonglin; Liu Zaiyi; Liang Changhong

    2011-01-01

    Objective: To observe the changes of hepatic CT perfusion parameters and their correlation with serum aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) in a rabbit hepatic ischemia reperfusion injury (IRI) model. Methods: Hepatic IRI was produced in rabbits by inducing left liver lobe ischemia (60 min) followed by 6 h, 12 h and 24 h reperfusion (6 rabbits were used for each reperfusion interval). Additional 6 rabbits were served as sham-operated controls. All the rabbits were scanned with a dynamic iCT protocol. Blood samples were taken from the superior mesenteric vein to measure the levels of serum amylase (ALT, AST, and ALP) in various groups, and liver samples were taken for histological examinations after scanning. One-way analysis of variance (ANOVA) was used to determine differences between groups. The correlations of CT perfusion parameters with serum levels were analyzed using Pearson correlation coefficient. Results: Heterogeneity of CT perfusion patterns appeared in the 6 h groups, which presented as low enhanced area [(25.1±9.3) ml · min -1 · 100 mg -1 ]. In reduced perfusion regions of IRI group, HAP of 12 h IRI group [(19.5± 13.6) ml · min -1 · 100 mg -1 ], 24 h IRI group (8.0±2.7) ml · min -1 · 100 mg -1 ], HPP of 6 h IRI group [(10.8±5.5) ml · min -1 · 100 mg -1 ], 12 h IRI group [(14.4±5.2) ml · min -1 · 100 mg -1 ] , 24 h IRI group [(7.8±3.3) ml · min -1 · 100 mg -1 ] and TLP of 6 h IRI group [(35.9±14.0) ml · min -1 · 100 mg -1 ], 12 h IRI group [(33.9±16.1) ml · min -1 · 100 mg -1 ], 24 h IRI group [(16.0± 5.5) ml · min -1 · 100 mg -1 ] were lower than those of sham group [HAP (21.2±10.5) ml · min -1 · 100 mg -1 , HPP (63.5±24.0) ml · min -1 · 100 mg -1 , TLP (81.4±24.8) ml · min -1 · 100 mg -1 ] (F=8.376, 25.950, 16.925, P<0.01). However, HPI of 6 h IRI group [(65.9±3.9)%], 12 h IRI group [(54.2±16.7)%], and 24 h IRI group [(48.9±10.0)%] were higher compared to sham

  7. Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Liangrong Wang

    2016-06-01

    Full Text Available Objective(s: Neutrophils play an important role in ischemia/reperfusion (IR induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley rats were randomly allocated into three groups: IR group, colchicine treated-IR (CO group and sham operation (SM group. Rats of both the IR and CO groups were subjected to 3 hr of ischemia by clamping the right femoral artery followed by 2 hr of reperfusion. Colchicine (1 mg/kg was administrated intraperitoneally prior to hindlimb ischemia in the CO group. After 2 hr of reperfusion, we measured superoxide dismutase (SOD and myeloperoxidase (MPO activities, and malondialdehyde (MDA, tumor necrosis factor (TNF-α and interleukin (IL-1β levels in the muscle samples. Plasma creatinine kinase (CK and lactate dehydrogenase (LDH levels were measured. We also evaluated the histological damage score and wet/dry weight (W/D ratio. Results: The histological damage score, W/D ratio, MPO activity, MDA, TNF-α and IL-1β levels in muscle tissues were significantly increased, SOD activity was decreased, and plasma CK and LDH levels were remarkably elevated in both the IR and CO groups compared to the SM group (P

  8. Intracoronary Poloxamer 188 Prevents Reperfusion Injury in a Porcine Model of ST-Segment Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Jason A. Bartos, MD, PhD

    2016-06-01

    Full Text Available Poloxamer 188 (P188 is a nonionic triblock copolymer believed to prevent cellular injury after ischemia and reperfusion. This study compared intracoronary (IC infusion of P188 immediately after reperfusion with delayed infusion through a peripheral intravenous catheter in a porcine model of ST-segment elevation myocardial infarction (STEMI. STEMI was induced in 55 pigs using 45 min of endovascular coronary artery occlusion. Pigs were then randomized to 4 groups: control, immediate IC P188, delayed peripheral P188, and polyethylene glycol infusion. Heart tissue was collected after 4 h of reperfusion. Assessment of mitochondrial function or infarct size was performed. Mitochondrial yield improved significantly with IC P188 treatment compared with control animals (0.25% vs. 0.13%, suggesting improved mitochondrial morphology and survival. Mitochondrial respiration and calcium retention were also significantly improved with immediate IC P188 compared with control animals (complex I respiratory control index: 7.4 vs. 3.7; calcium retention: 1,152 nmol vs. 386 nmol. This benefit was only observed with activation of complex I of the mitochondrial respiratory chain, suggesting a specific effect from ischemia and reperfusion on this complex. Infarct size and serum troponin I were significantly reduced by immediate IC P188 infusion (infarct size: 13.9% vs. 41.1%; troponin I: 19.2 μg/l vs. 77.4 μg/l. Delayed P188 and polyethylene glycol infusion did not provide a significant benefit. These results demonstrate that intracoronary infusion of P188 immediately upon reperfusion significantly reduces cellular and mitochondrial injury after ischemia and reperfusion in this clinically relevant porcine model of STEMI. The timing and route of delivery were critical to achieve the benefit.

  9. Aging aggravates long-term renal ischemia-reperfusion injury in a rat model.

    Science.gov (United States)

    Xu, Xianlin; Fan, Min; He, Xiaozhou; Liu, Jipu; Qin, Jiandi; Ye, Jianan

    2014-03-01

    Ischemia-reperfusion injury (IRI) has been considered as the major cause of acute kidney injury and can result in poor long-term graft function. Functional recovery after IRI is impaired in the elderly. In the present study, we aimed to compare kidney morphology, function, oxidative stress, inflammation, and development of renal fibrosis in young and aged rats after renal IRI. Rat models of warm renal IRI were established by clamping left pedicles for 45 min after right nephrectomy, then the clamp was removed, and kidneys were reperfused for up to 12 wk. Biochemical and histologic renal damage were assessed at 12 wk after reperfusion. The immunohistochemical staining of monocyte macrophage antigen-1 (ED-1) and transforming growth factor beta 1 (TGF-β1) and messenger RNA level of TGF-β1 in the kidney were analyzed. Renal IRI caused significant increases of malondialdehyde and 8-hydroxydeoxyguanosine levels and a decrease of superoxide dismutase activity in young and aged IRI rats; however, these changes were more obvious in the aged rats. IRI resulted in severe inflammation and tubulointerstitial fibrosis with decreased creatinine (Cr) clearance and increased histologic damage in aged rats compared with young rats. Moreover, we measured the ratio of Cr clearance between young and aged IRI rats. It demonstrated that aged IRI rats did have poor Cr clearance compared with the young IRI rats. ED-1 and TGF-β1 expression levels in the kidney were significantly higher in aged rats than in young rats after IRI. Aged rats are more susceptible to IRI-induced renal failure, which may associate with the increased oxidative stress, increased histologic damage, and increased inflammation and tubulointerstitial fibrosis. Targeting oxidative stress and inflammatory response should improve the kidney recovery after IRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The effect of ozone and naringin on intestinal ischemia/reperfusion injury in an experimental model.

    Science.gov (United States)

    Isik, Arda; Peker, Kemal; Gursul, Cebrail; Sayar, Ilyas; Firat, Deniz; Yilmaz, Ismayil; Demiryilmaz, Ismail

    2015-09-01

    The aim of the study was to evaulate the effect of ozone and naringin on the intestine after intestinal ischemia-reperfusion(II/R) injury. Thirty five rats divided into 5 groups of 7 animals: control, II/R, ozone, naringin and naringin + ozone. Only laparotomy and exploration of the superior mesenteric artery (SMA) were done in control group. In the experimental groups, SAM was occluded for 1 h and reperfused for 1 h. 15 min after ischemia, ozone (25 μg/ml, 0.5 mg/kg), naringin (80 mg/kg) and naringin + ozone(80 mg/kg + 25 μg/ml, 0.5 mg/kg) were infused intraperitoneally to each groups. Ileum tissues were harvested to determine intestinal mucosal injury and oxidative stress markers. For SMA occlusion, different than literature, silk suture binding was used. Oxidative stress markers were significantly low in experimental groups compared with II/R group (p < 0.05). Histopathologically, the injury score was significantly low at experimental groups compared with II/R group (p < 0.05). The lowest injury score was encountered at naringine + ozone group. Ozone alone or combined with naringin has a protective effect for mesenteric ischemia. Instead of using instruments such as clamps in the II/R rat model, silk binding may be used safely. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  11. Effect of Mailuoning injection on 8-iso-prostaglandin F2 alpha and superoxide dismutase in rabbits with extremity ischemia-reperfusion injury.

    Science.gov (United States)

    Wang, Dai-Jun; Tian, Hua

    2014-12-01

    To date, there are no effective treatments for extremity ischemia-reperfusion (IR) injury. The objective of the present study was to explore the protective effect of Mailuoning on IR injury by investigating the plasma levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF2α) and the activity of superoxide dismutase (SOD) in rabbits. The experimental models of posterior limb IR injury were established in thirty rabbits that were divided into three groups: the sham, IR, and IR + Mailuoning groups. At the end of ischemia, Mailuoning was injected intravenously into the rabbits in the IR + Mailuoning group, and normal saline solution was administered to the rabbits in the sham and IR groups. Venous blood samples were collected to measure the levels of 8-iso-PGF2α and the activity of SOD in the plasma at the following time points: at the onset of ischemia, the end of ischemia, and 2, 4, 8, 12, and 24 h after reperfusion. The skeletal muscles were harvested to examine the ultrastructure. The levels of 8-iso-PGF2α increased significantly and SOD activity decreased in the IR group at every time point after reperfusion (P iso-PGF2α and SOD activity were not significantly different after reperfusion in the IR + Mailuoning group (P >0.05) but were significantly different compared with the IR group (P iso-PGF2α and protecting SOD activity, thereby exhibiting a protective effect on extremity IR injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    Science.gov (United States)

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation.

  13. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    International Nuclear Information System (INIS)

    Xian, Wenjing; Wu, Yan; Xiong, Wei; Li, Longyan; Li, Tong; Pan, Shangwen; Song, Limin; Hu, Lisha; Pei, Lei; Yao, Shanglong

    2016-01-01

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  14. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Wenjing [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wu, Yan [Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiong, Wei [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Longyan [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Tong [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pan, Shangwen [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Song, Limin [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Hu, Lisha [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pei, Lei [Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yao, Shanglong, E-mail: ysltian@163.com [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); and others

    2016-03-25

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  15. Mannan-binding lectin is involved in the protection against renal ischemia/ reperfusion injury by dietary restriction

    NARCIS (Netherlands)

    Shushimita; P. van der Pol (Pieter); R.W.F. de Bruin (Ron); J.N.M. IJzermans (Jan); C. van Kooten (Cees); F.J.M.F. Dor (Frank)

    2015-01-01

    textabstractPreoperative fasting and dietary restriction offer robust protection against renal ischemia/ reperfusion injury (I/RI) in mice.We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on

  16. The role of curcumin on intestinal oxidative stress, cell proliferation and apoptosis after ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Yucel, Ahmet Fikret; Kanter, Mehmet; Pergel, Ahmet; Erboga, Mustafa; Guzel, Ahmet

    2011-12-01

    The aim of this study was to demonstrate the role of curcumin on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ curcumin; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the curcumin group, 3 days before I/R, curcumin (100 mg/kg) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. Curcumin treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Curcumin treatment significantly attenuated the severity of intestinal I/R injury, with inhibiting of I/R-induced apoptosis and cell proliferation. These results suggest that curcumin treatment has a protective effect against intestinal damage induced by intestinal I/R. This protective effect is possibly due to its ability to inhibit I/R-induced oxidative stress, apoptosis and cell proliferation.

  17. Research progress of traditional Chinese medicine extract for retinal ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Qian-Yu Jia

    2015-05-01

    Full Text Available Retinal ischemia-reperfusion injury(RIRIis a common clinical disease, and the producing mechanism is still in research. Experimental and clinical research in recent years have showed that the mechanism of RIRI and oxygen free radicals, gene regulation, calcium overload, inflammatory cytokines and other factors are closely related. In this article, we summarized the current situation that the scholars at home and abroad study traditional Chinese medicine extract of prevention and treatment of RIRI.

  18. Drug-induced liver injury

    DEFF Research Database (Denmark)

    Nielsen, Mille Bækdal; Ytting, Henriette; Skalshøi Kjær, Mette

    2017-01-01

    OBJECTIVE: The idiosyncratic subtype of drug-induced liver injury (DILI) is a rare reaction to medical treatment that in severe cases can lead to acute liver failure and death. The aim of this study was to describe the presentation and outcome of DILI and to identify potential predictive factors...... that DILI may be severe and run a fatal course, and that bilirubin and INR levels may predict poor outcome....

  19. Acute liver injury induced by weight-loss herbal supplements.

    Science.gov (United States)

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-11-27

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss.

  20. Novel aspects of acute coronary syndromes, reperfusion injury and post-infarction myocardial fibrosis

    OpenAIRE

    Chan, William

    2017-01-01

    This thesis comprises 4 clinical studies aiming to explore the mechanisms related to coronary plaque destabilization, clinical outcomes of the no-reflow phenomenon, a novel treatment of ischaemia-reperfusion injury, and the pattern and temporal evolution of left ventricular myocardial fibrosis following myocardial infarction. Current risk prediction models for future cardiovascular events are derived from large scale population-based studies (such as that from the Framingham Heart Study),...

  1. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weixin [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Mingchai [Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzou, Zhejiang (China); Tang, Longguang; Pan, Yong; Liu, Zhiguo [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zeng, Chunlai [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Wang, Jingying [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wei, Tiemin, E-mail: lswtm@sina.com [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia/reperfusion

  2. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart

    NARCIS (Netherlands)

    Nederlof, Rianne; Eerbeek, Otto; Hollmann, Markus W.; Southworth, Richard; Zuurbier, Coert J.

    2014-01-01

    Mitochondrially bound hexokinase II (mtHKII) has long been known to confer cancer cells with their resilience against cell death. More recently, mtHKII has emerged as a powerful protector against cardiac cell death. mtHKII protects against ischaemia-reperfusion (IR) injury in skeletal muscle and

  3. Resistance to Reperfusion Injury Following Short Term Postischemic Administration of Natural Honey in Globally Ischemic Isolated Rat Heart

    Science.gov (United States)

    Vaez, Haleh; Samadzadeh, Mehrban; Zahednezhad, Fahimeh; Najafi, Moslem

    2012-01-01

    Purpose: Results of our previous study revealed that preischemic perfusion of honey before zero flow global ischemia had cardioprotective effects in rat. The present study investigated potential resistance to reperfusion injury following short term postischemic administration of natural honey in globally ischemic isolated rat heart. Methods: Male Wistar rats were divided into five groups (n=10-13). The rat hearts were isolated, mounted on a Langendorff apparatus, allowed to equilibrate for 30 min then subjected to 30 min global ischemia. In the control group, the hearts were reperfused with drug free normal Krebs-Henseleit (K/H) solution before ischemia and during 120 min reperfusion. In the treatment groups, reperfusion was initiated with K/H solution containing different concentration of honey (0.25, 0.5, 1 and 2%) for 15 min and was resumed until the end of 120 min with normal K/H solution. Results: In the control group, VEBs number was 784±199, while in honey concentration of 0.25, 0.5, 1 and 2%, it decreased to 83±23 (Phoney. In the control group, the infarct size was 54.1±7.8%, however; honey (0.25, 0.5, 1 and 2%) markedly lowered the value to 12.4±2.4, 12.7±3.3, 11.3±2.6 and 7.9±1.7 (Phoney in global ischemia showed protective effects against ischemia/reperfusion (I/R) injuries in isolated rat heart. Antioxidant and radical scavenging activity, lipoperoxidation inhibition, reduction of necrotized tissue, presence of rich energy sources, various type of vitamins, minerals and enzymes and formation of NO-contain metabolites may probably involve in those cardioprotective effects. PMID:24312792

  4. Anti-inflammatory and antioxidant effects of flavonoid-rich fraction of bergamot juice (BJe in a mouse model of intestinal ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Daniela Impellizzeri

    2016-07-01

    Full Text Available The flavonoid-rich fraction of bergamot juice (BJe has demonstrated anti-inflammatory and antioxidant activities. The aim of work was to test the beneficial effects of BJe on the modulation of the ileum inflammation caused by intestinal ischemia/reperfusion (I/R injury in mice. To understand the cellular mechanisms by which BJe may decrease the development of intestinal I/R injury, we have evaluated the activation of signaling transduction pathways that can be induced by reactive oxygen species (ROS production. Superior mesenteric artery and celiac trunk were occluded for 30 min and reperfused for 1 h. The animals were sacrificed after 1 h of reperfusion, for both histological and molecular examinations of the ileum tissue. The experimental results demonstrated that BJe was able to reduce histological damage, cytokines production, adhesion molecules expression, neutrophil infiltration and oxidative stress by a mechanism involved both NF-κB and MAP kinases pathways. This study indicates that BJe could represent a new treatment against inflammatory events of intestinal I/R injury.

  5. Role of IRAK-M in alcohol induced liver injury.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available Increasing evidence suggests that innate immunity plays an important role in alcohol-induced liver injury and most studies have focused on positive regulation of innate immunity. The main objective of this study was to investigate the negative regulator of innate immunity, IL-1/Toll-like receptor (TLR signaling pathways and interleukin receptor-associated kinase-M (IRAK-M in alcoholic liver injury. We established an alcohol-induced liver injury model using wild type and IRAK-M deficient B6 mice and investigated the possible mechanisms. We found that in the absence of IRAK-M, liver damage by alcohol was worse with higher alanine transaminase (ALT, more immune cell infiltration and increased numbers of IFNγ producing cells. We also found enhanced phagocytic activity in CD68(+ cells. Moreover, our results revealed altered gut bacteria after alcohol consumption and this was more striking in the absence of IRAK-M. Our study provides evidence that IRAK-M plays an important role in alcohol-induced liver injury and IRAK-M negatively regulates the innate and possibly the adaptive immune response in the liver reacting to acute insult by alcohol. In the absence of IRAK-M, the hosts developed worse liver injury, enhanced gut permeability and altered gut microbiota.

  6. Inhibition of coagulation and inflammation by activated protein C or antithrombin reduces intestinal ischemia/reperfusion injury in rats

    NARCIS (Netherlands)

    Schoots, Ivo G.; Levi, Marcel; van Vliet, Arlène K.; Maas, Adrie M.; Roossink, E. H. Paulina; van Gulik, Thomas M.

    2004-01-01

    Objective: To examine whether administration of activated protein C or antithrombin reduces local splanchnic derangement of coagulation and inflammation and attenuates intestinal dysfunction and injury following intestinal ischemia/reperfusion. Design: Randomized prospective animal study. Setting:

  7. Effect of picroside II on hind limb ischemia reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Kılıç Y

    2017-06-01

    Full Text Available Yiğit Kılıç,1 Abdullah Özer,1 Tolga Tatar,1 Mustafa Hakan Zor,1 Mehmet Kirişçi,2 Hakan Kartal,3 Ali Doğan Dursun,4 Deniz Billur,5 Mustafa Arslan,6 Ayşegül Küçük7 1Department of Cardiovascular Surgery, Gazi University Medical Faculty, Ankara, 2Department of Cardiovascular Surgery, Kahramanmaras Sutcu Imam Medical Faculty, Kahramanmaras, 3Department of Cardiovascular Surgery, Ardahan State Hospital, Ardahan, 4Department of Physiology, Ankara University Medical Faculty, 5Department of Histology and Embryology, Ankara University Medical Faculty, 6Department of Anaesthesiology and Reanimation, Gazi University Medical Faculty, Ankara, 7Department of Physiology, Dumlupinar University Medical Faculty, Kütahya, Turkey Introduction: Many structural and functional damages are observed in cells and tissues after reperfusion of previously viable ischemic tissues. Acute ischemia reperfusion (I/R injury of lower extremities occurs especially when a temporary cross-clamp is applied to the abdominal aorta during aortic surgery. Research regarding the treatment of I/R injury has been increasing day-by-day. In this study, we aimed to investigate the effect of picroside II on skeletal muscle of rats experiencing simulated I/R.Materials and methods: Twenty-four male Wistar albino rats weighing between 210 and 300 g were used in this study. Rats were randomly divided into 4 groups of 6 rats each (control, I/R, control + picroside II, and I/R + picroside II. The infrarenal section of the abdominal aorta was occluded with an atraumatic microvascular clamp in I/R group. The clamp was removed after 120 minutes and reperfusion was provided for a further 120 minutes. Picroside II (10 mg kg–1 was administered intraperitoneally to the animals in control + picroside II and I/R + picroside II groups. At the end of the study, skeletal muscle tissue was obtained for the determination of total oxidant status (TOS and total antioxidant status (TAS levels

  8. Hepatic regeneration and functional recovery following partial liver resection in an experimental model of hepatic steatosis treated with omega-3 fatty acids

    NARCIS (Netherlands)

    Marsman, H. A.; de Graaf, W.; Heger, M.; van Golen, R. F.; ten Kate, F. J. W.; Bennink, R.; van Gulik, T. M.

    2013-01-01

    Omega-3 fatty acids (FAs) have been shown to reduce experimental hepatic steatosis and protect the liver from ischaemia-reperfusion injury. The aim of this study was to examine the effects of omega-3 FAs on regeneration of steatotic liver. Steatosis was induced in rats by a 3-week

  9. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-01

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  10. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  11. Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose.

    Science.gov (United States)

    Frantz, Stefan; Calvillo, Laura; Tillmanns, Jochen; Elbing, Inka; Dienesch, Charlotte; Bischoff, Hilmar; Ertl, Georg; Bauersachs, Johann

    2005-04-01

    Protective effects of the alpha-glucosidase inhibitor acarbose have been reported for various diabetic complications. In the STOP-NIDDM study, even patients without overt diabetes, but with impaired glucose tolerance, had a reduction in cardiovascular events when treated with acarbose. Therefore, we investigated the effect of repetitive postprandial hyperglycemia on the cardiac ischemia/reperfusion injury in vivo. Mice were treated daily by single applications of placebo, sucrose (4 g/kg body weight), or sucrose + acarbose (10 mg/kg body weight) by gavage for 7 days. Acarbose treatment significantly reduced the sucrose-induced increase in plasma glucose concentration. Subsequently, animals underwent 30 min of ischemia by coronary artery ligation and 24 h of reperfusion in vivo. In the sucrose group, ischemia/reperfusion damage was significantly increased (infarct/area at risk, placebo vs. sucrose, 38.8+/-7.5% vs. 62.2+/-4.8%, P<0.05). This was prevented by acarbose treatment (infarct/area at risk 30.7+/-7.2%). While myocardial inflammation was similar in all groups, oxidative stress as indicated by a significant increase in lipid peroxides was enhanced in the sucrose, but not in the sucrose + acarbose group. In summary, repetitive postprandial hyperglycemia increases ischemia/reperfusion damage. This effect can be prevented by treatment with the alpha-glucosidase inhibitor acarbose.

  12. The alteration in intestinal secretory immunoglobulin A and its secreting cells during ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Li-qun SUN

    2012-04-01

    Full Text Available Objective To investigate the change in intestinal secretion immunoglobulin A (sIgA level and IgA-secreting cells during ischemia/reperfusion (I/R injury. Methods Forty-eight BALB/c mice were randomly divided into 6 experimental groups in accordance with different reperfusion times (R2h, R6h, R12h, R24h, and R72h group, and one sham group (n=8. Bacterial translocation to distant organs (lung, spleen, and mesenteric lymph nodes was observed. The sIgA level of the intestinal tract was measured by enzyme-linked immunosorbent assay (ELISA. The B cell subgroup in the lymphocytes related to the intestinal tract was measured by flow cytometry. Results The bacterial translocation occurred during I/R injury, and the intestinal sIgA level decreased, and they showed an obvious negative correlation (r2=0.729. With the increase in intestinal I/R injury, the ratio of IgM+B220+ cells in the gut-associated lymphoid tissue increased, whereas the proportion of IgA+B220+ cells decreased. The most significant change was found in R12h group (P < 0.01. Conclusions The proportion of IgM+ B cells in the gut-associated lymphoid tissue increased, whereas that of IgA+ B cells reduced during I/R injury. These phenomena may cause sIgA level to reduce and bacterial translocation of the distant organs to occur.

  13. RC-3095, a Selective Gastrin-Releasing Peptide Receptor Antagonist, Does Not Protect the Lungs in an Experimental Model of Lung Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Vera L. Oliveira-Freitas

    2015-01-01

    Full Text Available RC-3095, a selective GRPR antagonist, has been shown to have anti-inflammatory properties in different models of inflammation. However, its protective effect on lungs submitted to lung ischemia-reperfusion injury has not been addressed before. Then, we administrated RC-3095 intravenously before and after lung reperfusion using an animal model of lung ischemia-reperfusion injury (LIRI by clamping the pulmonary hilum. Twenty Wistar rats were subjected to an experimental model in four groups: SHAM, ischemia-reperfusion (IR, RC-Pre, and RC-Post. The final mean arterial pressure significantly decreased in IR and RC-Pre compared to their values before reperfusion (P<0.001. The RC-Post group showed significant decrease of partial pressure of arterial oxygen at the end of the observation when compared to baseline (P=0.005. Caspase-9 activity was significantly higher in the RC-Post as compared to the other groups (P<0.013. No significant differences were observed in eNOS activity among the groups. The groups RC-Pre and RC-Post did not show any significant decrease in IL-1β (P=0.159 and TNF-α (P=0.260, as compared to IR. The histological score showed no significant differences among the groups. In conclusion, RC-3095 does not demonstrate a protective effect in our LIRI model. Additionally, its use after reperfusion seems to potentiate cell damage, stimulating apoptosis.

  14. EFFECT OF CANNABINOIDS ON TESTICULAR ISCHEMIA-REPERFUSION INJURY IN RAT

    Directory of Open Access Journals (Sweden)

    H. Sepehri

    2006-11-01

    Full Text Available Anandamide is an endogenous ligand for cannabinoid receptors and has endothelial protective effect against ischemic preconditioning. The purpose of this study was to investigate the effects of cannabinoids on reperfusion injury due to testicular torsion-detorsion (T/D. A total of 36 adult male Sprague-Dawley rats were divided into 6 groups. Testicular ischemia was achieved by twisting the right testes 720◦ counters clockwise for 1 hour and reperfusion was allowed for 4 hours after detorsion. In baseline (normal group, bilateral orchiectomies performed after anesthesia. Sham operated group was served as a control group. Torsion/detorsion group underwent 1 hour testicular torsion and 4 hours of detorsion. Anandamide (cannabinoid agonist group received pretreatment with intraperitoneally anandamide 30 min before torsion. AM251 (CB1 antagonist group, received intraperitoneally injection of AM251 45 min before torsion. Anandamid/AM251 (An/AM group received administrations of AM251 45 min before torsion and anandamide 30 min before torsion. The ipsilateral malondialdehyde (MDA level in T/D group were significantly higher versus control and base line groups. Ipsilateral MDA values in anandamid group were significantly lower than T/D and An/AM groups. There were also significant decreases in catalase activity in T/D group compared with control and base line groups. These values were significantly higher in cannabinoid group versus T/D and An/AM groups. Anandamide increased ipsilateral intratesticular antioxidative markers and decreased free radicals formation during reperfusion phase after unilateral testicular torsion, which was reflected in lesser testicular MDA level. Furthermore, the effects of anandamide were mediated via cannabinoid receptors, since AM251 could abolish these effects.

  15. IMAGE ANALYSIS IN GOMORI´S TRICHROME STAIN OF SKELETAL MUSCLES SUBJECTED TO ISCHEMIA AND REPERFUSION INJURY

    Directory of Open Access Journals (Sweden)

    Doris Haydee Rosero Salazar

    2016-06-01

    Full Text Available Conditions that produce ischemia and reperfusion injury include orthopedic surgeries, vascular diseases and accidents in remote places in which use of a manual tourniquet is required. Tissues under such stress suffer the consequences of evidenced by changes in their normal microscopic organization that can be reversible or irreversible according to the time and severity of lesion. An experimental model of ischemia has been designed taking into account the characteristics similar to a surgical procedure, from preparation for anesthesia up to the postsurgical follow up of each animal until it finishes the established time of reperfusion. Two muscles, soleus and extensor carpi radialis longus, dissected from Wistar rats that were underwent to short periods of ischemia and short and prolonged periods of reperfusion up to 32 days. There were no significant changes in the macroscopic weight of muscles, but significant differences were found in the area occupied by intramuscular extracellular matrix. During reperfusion, a partial recovery was observed until the last day of study. If we pretend to extrapolate these results to clinical areas, its importance focuses in the recovering of function and the following up of patients after surgical procedures as studied in the present experiment.

  16. Studies on cerebral protection of digoxin against ischemia/reperfusion injury in mice.

    Science.gov (United States)

    Kaur, Shaminder; Rehni, Ashish K; Singh, Nirmal; Jaggi, Amteshwar S

    2009-04-01

    The present study was designed to investigate the possible neuroprotective effect of digoxin induced pharmacological preconditioning (PP) and its probable mechanism. Bilateral carotid artery occlusion (BCAO) of 17 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion (I/R) induced cerebral injury in male swiss albino mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using elevated plus maze test. Degree of motor incoordination was evaluated using inclined beam walking test, rota rod test and lateral push test. Digoxin (0.08 mg/kg, i.p.) was administered 24 h before surgery in a separate group of animals to induce PP. BCAO followed by reperfusion, produced significant rise in cerebral infarct size along with impairment of memory and motor coordination. Digoxin treatment produced a significant decrease in cerebral infarct size and reversal of I/R induced impairment of memory and motor incoordination. Digoxin induced neuroprotective effect was abolished significantly by verapamil (15 mg/kg, i.p.), a L-type calcium channel blocker, ruthenium red (3 mg/kg, s.c.), an intracellular ryanodine receptor blocker and 3,4-dichlorobenzamil (Na(+)/Ca(2+) exchanger inhibitor). These findings indicate that digoxin preconditioning exerts a marked neuroprotective effect on the ischemic brain, which is possibly linked to digitalis induced increase in intracellular calcium levels eventually leading to the activation of calcium sensitive signal transduction cascades.

  17. Effects of Remote Ischemic Conditioning Methods on Ischemia-Reperfusion Injury in Muscle Flaps: An Experimental Study in Rats

    Directory of Open Access Journals (Sweden)

    Durdane Keskin

    2017-09-01

    Full Text Available Background The aim of this study was to investigate the effects of remote ischemic conditioning on ischemia-reperfusion injury in rat muscle flaps histopathologically and biochemically. Methods Thirty albino rats were divided into 5 groups. No procedure was performed in the rats in group 1, and only blood samples were taken. A gracilis muscle flap was elevated in all the other groups. Microclamps were applied to the vascular pedicle for 4 hours in order to achieve tissue ischemia. In group 2, no additional procedure was performed. In groups 3, 4, and 5, the right hind limb was used and 3 cycles of ischemia-reperfusion for 5 minutes each (total, 30 minutes was applied with a latex tourniquet (remote ischemic conditioning. In group 3, this procedure was performed before flap elevation (remote ischemic preconditoning. In group 4, the procedure was performed 4 hours after flap ischemia (remote ischemic postconditioning. In group 5, the procedure was performed after the flap was elevated, during the muscle flap ischemia episode (remote ischemic perconditioning. Results The histopathological damage score in all remote conditioning ischemia groups was lower than in the ischemic-reperfusion group. The lowest histopathological damage score was observed in group 5 (remote ischemic perconditioning. Conclusions The nitric oxide levels were higher in the blood samples obtained from the remote ischemic perconditioning group. This study showed the effectiveness of remote ischemic conditioning procedures and compared their usefulness for preventing ischemia-reperfusion injury in muscle flaps.

  18. Effects of Remote Ischemic Conditioning Methods on Ischemia-Reperfusion Injury in Muscle Flaps: An Experimental Study in Rats.

    Science.gov (United States)

    Keskin, Durdane; Unlu, Ramazan Erkin; Orhan, Erkan; Erkilinç, Gamze; Bogdaycioglu, Nihal; Yilmaz, Fatma Meric

    2017-09-01

    The aim of this study was to investigate the effects of remote ischemic conditioning on ischemia-reperfusion injury in rat muscle flaps histopathologically and biochemically. Thirty albino rats were divided into 5 groups. No procedure was performed in the rats in group 1, and only blood samples were taken. A gracilis muscle flap was elevated in all the other groups. Microclamps were applied to the vascular pedicle for 4 hours in order to achieve tissue ischemia. In group 2, no additional procedure was performed. In groups 3, 4, and 5, the right hind limb was used and 3 cycles of ischemia-reperfusion for 5 minutes each (total, 30 minutes) was applied with a latex tourniquet (remote ischemic conditioning). In group 3, this procedure was performed before flap elevation (remote ischemic preconditoning). In group 4, the procedure was performed 4 hours after flap ischemia (remote ischemic postconditioning). In group 5, the procedure was performed after the flap was elevated, during the muscle flap ischemia episode (remote ischemic perconditioning). The histopathological damage score in all remote conditioning ischemia groups was lower than in the ischemic-reperfusion group. The lowest histopathological damage score was observed in group 5 (remote ischemic perconditioning). The nitric oxide levels were higher in the blood samples obtained from the remote ischemic perconditioning group. This study showed the effectiveness of remote ischemic conditioning procedures and compared their usefulness for preventing ischemia-reperfusion injury in muscle flaps.

  19. Multifocal electroretinogram for functional evaluation of retinal injury following ischemia-reperfusion in pigs

    DEFF Research Database (Denmark)

    Morén, Håkan; Gesslein, Bodil; Andreasson, Sten

    2010-01-01

    Multifocal electroretinogram (mfERG) has the power to discriminate between localized functional losses and overall retinal changes when evaluating retinal injury. So far, full-field ERG has been the gold standard for examining retinal ischemia and the effects of different neuroprotectants...... in experimental conditions. The aim of the present study was to establish mfERG, with simultaneous fundus monitoring, for analyzing the localized functional response in the retina after ischemia-reperfusion in the porcine eye....

  20. Gαi2- and Gαi3-Deficient Mice Display Opposite Severity of Myocardial Ischemia Reperfusion Injury

    Science.gov (United States)

    Köhler, David; Devanathan, Vasudharani; Bernardo de Oliveira Franz, Claudia; Eldh, Therese; Novakovic, Ana; Roth, Judith M.; Granja, Tiago; Birnbaumer, Lutz; Rosenberger, Peter; Beer-Hammer, Sandra; Nürnberg, Bernd

    2014-01-01

    G-protein-coupled receptors (GPCRs) are the most abundant receptors in the heart and therefore are common targets for cardiovascular therapeutics. The activated GPCRs transduce their signals via heterotrimeric G-proteins. The four major families of G-proteins identified so far are specified through their α-subunit: Gαi, Gαs, Gαq and G12/13. Gαi-proteins have been reported to protect hearts from ischemia reperfusion injury. However, determining the individual impact of Gαi2 or Gαi3 on myocardial ischemia injury has not been clarified yet. Here, we first investigated expression of Gαi2 and Gαi3 on transcriptional level by quantitative PCR and on protein level by immunoblot analysis as well as by immunofluorescence in cardiac tissues of wild-type, Gαi2-, and Gαi3-deficient mice. Gαi2 was expressed at higher levels than Gαi3 in murine hearts, and irrespective of the isoform being knocked out we observed an up regulation of the remaining Gαi-protein. Myocardial ischemia promptly regulated cardiac mRNA and with a slight delay protein levels of both Gαi2 and Gαi3, indicating important roles for both Gαi isoforms. Furthermore, ischemia reperfusion injury in Gαi2- and Gαi3-deficient mice exhibited opposite outcomes. Whereas the absence of Gαi2 significantly increased the infarct size in the heart, the absence of Gαi3 or the concomitant upregulation of Gαi2 dramatically reduced cardiac infarction. In conclusion, we demonstrate for the first time that the genetic ablation of Gαi proteins has protective or deleterious effects on cardiac ischemia reperfusion injury depending on the isoform being absent. PMID:24858945

  1. Gαi2- and Gαi3-deficient mice display opposite severity of myocardial ischemia reperfusion injury.

    Directory of Open Access Journals (Sweden)

    David Köhler

    Full Text Available G-protein-coupled receptors (GPCRs are the most abundant receptors in the heart and therefore are common targets for cardiovascular therapeutics. The activated GPCRs transduce their signals via heterotrimeric G-proteins. The four major families of G-proteins identified so far are specified through their α-subunit: Gαi, Gαs, Gαq and G12/13. Gαi-proteins have been reported to protect hearts from ischemia reperfusion injury. However, determining the individual impact of Gαi2 or Gαi3 on myocardial ischemia injury has not been clarified yet. Here, we first investigated expression of Gαi2 and Gαi3 on transcriptional level by quantitative PCR and on protein level by immunoblot analysis as well as by immunofluorescence in cardiac tissues of wild-type, Gαi2-, and Gαi3-deficient mice. Gαi2 was expressed at higher levels than Gαi3 in murine hearts, and irrespective of the isoform being knocked out we observed an up regulation of the remaining Gαi-protein. Myocardial ischemia promptly regulated cardiac mRNA and with a slight delay protein levels of both Gαi2 and Gαi3, indicating important roles for both Gαi isoforms. Furthermore, ischemia reperfusion injury in Gαi2- and Gαi3-deficient mice exhibited opposite outcomes. Whereas the absence of Gαi2 significantly increased the infarct size in the heart, the absence of Gαi3 or the concomitant upregulation of Gαi2 dramatically reduced cardiac infarction. In conclusion, we demonstrate for the first time that the genetic ablation of Gαi proteins has protective or deleterious effects on cardiac ischemia reperfusion injury depending on the isoform being absent.

  2. Ethyl pyruvate protects colonic anastomosis from ischemia-reperfusion injury.

    Science.gov (United States)

    Unal, B; Karabeyoglu, M; Huner, T; Canbay, E; Eroglu, A; Yildirim, O; Dolapci, M; Bilgihan, A; Cengiz, O

    2009-03-01

    Ethyl pyruvate is a simple derivative in Ca(+2)- and K(+)-containing balanced salt solution of pyruvate to avoid the problems associated with the instability of pyruvate in solution. It has been shown to ameliorate the effects of ischemia-reperfusion (I/R) injury in many organs. It has also been shown that I/R injury delays the healing of colonic anastomosis. In this study, the effect of ethyl pyruvate on the healing of colon anastomosis and anastomotic strength after I/R injury was investigated. Anastomosis of the colon was performed in 32 adult male Wistar albino rats divided into 4 groups of 8 individuals: (1) sham-operated control group (group 1); (2) 30 minutes of intestinal I/R by superior mesenteric artery occlusion (group 2); (3) I/R+ ethyl pyruvate (group 3), ethyl pyruvate was administered as a 50-mg/kg/d single dose; and (4) I/R+ ethyl pyruvate (group 4), ethyl pyruvate administration was repeatedly (every 6 hours) at the same dose (50 mg/kg). On the fifth postoperative day, animals were killed. Perianastomotic tissue hydroxyproline contents and anastomotic bursting pressures were measured in all groups. When the anastomotic bursting pressures and tissue hydroxyproline contents were compared, it was found that they were decreased in group 2 when compared with groups 1, 3, and 4 (P .05). Ethyl pyruvate significantly prevents the delaying effect of I/R injury on anastomotic strength and healing independent from doses of administration.

  3. Effects of ebselen on ischemia/reperfusion injury in rat brain.

    Science.gov (United States)

    Aras, M; Altaş, M; Meydan, S; Nacar, E; Karcıoğlu, M; Ulutaş, K T; Serarslan, Y

    2014-10-01

    Interruption of blood flow may result in considerable tissue damage via ischemia/reperfusion (I/R) injury-induced oxidative stress in brain tissues. The aim of the present study was to investigate the effects of Ebselen treatment in short-term global brain I/R injury in rats. The study was carried out on 27 Wistar-albino rats, divided into three groups including Sham group (n = 11), I/R group (n = 8) and I/R+Ebselen group (n = 8). Malondialdehyde (MDA) levels were significantly increased in I/R group in comparison with the Sham group and I/R+Ebselen group (p Ebselen (p Ebselen group when compared with Sham group (p Ebselen group when compared with Sham (p Ebselen showed morphological improvement. Ebselen has neuron-protective effects due to its antioxidant properties as shown by the decrease in MDA overproduction, increase in SOD activity and the histological improvement after administration of Ebselen to I/R in brain tissue.

  4. Allopurinol Protects against Ischemia/Reperfusion-Induced Injury in Rat Urinary Bladders

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Shin

    2015-01-01

    Full Text Available Bladder ischemia-reperfusion (I/R injury results in the generation of reactive oxygen species (ROS and markedly elevates the risk of lower urinary tract symptoms (LUTS. Allopurinol is an inhibitor of xanthine oxidase (XO and thus can serve as an antioxidant that reduces oxidative stress. Here, a rat model was used to assess the ability of allopurinol treatment to ameliorate the deleterious effects of urinary bladder I/R injury. I/R injury reduced the in vitro contractile responses of longitudinal bladder strips, elevated XO activity in the plasma and bladder tissue, increased the bladder levels of tumor necrosis factor-α (TNF-α, c-Jun N-terminal kinase (JNK, and p38 mitogen-activated protein kinase, reduced the bladder levels of extracellular regulated kinase (ERK, and decreased and increased the bladder levels of Bcl-2 and Bax, respectively. I/R injury also elevated lipid peroxidation in the bladder. Allopurinol treatment in the I/R injury was generated significantly ameliorating all I/R-induced changes. Moreover, an in situ fluorohistological approach also showed that allopurinol reduces the generation of intracellular superoxides enlarged by I/R injury. Together, the beneficial effects of allopurinol reducing ROS production may be mediated by normalizing the activity of the ERK, JNK, and Bax/Bcl-2 pathways and by controlling TNF-α expression.

  5. Assessment of protective effects of pheniramine maleate on reperfusion injury in lung after distant organ ischemia: a rat model.

    Science.gov (United States)

    Gokalp, Orhan; Yurekli, Ismail; Kiray, Muge; Bagriyanik, Alper; Yetkin, Ufuk; Yurekli, Banu Sarer; Gur, Serkan; Aksun, Murat; Satoglu, Ismail Safa; Gokalp, Gamze; Gurbuz, Ali

    2013-04-01

    The aim of this study is to investigate the protective effects of methylprednisolone (MP) and pheniramine maleate (PM) on reperfusion injury of lungs developing after ischemia of the left lower extremity of rats. A total of 28 randomly selected male rats were divided into 4 groups, each consisting of 7 rats. Group 1 was the control group. Group 2 was the sham group (ischemia/reperfusion [I/R]). Rats in group 3 were subjected to I/R and given PM (Ph group) and rats in group 4 were subjected to I/R and given MP (Pn group). Malondialdehyde levels were significantly lower in Ph group than in I/R group (P < .05). Superoxide dismutase and glutathione peroxidase enzyme activities were found to be significantly higher in Ph group than in the I/R group (P < .05). Histological examination demonstrated that PM had protective effects against I/R injury. The PM has a protective effect against I/R injury in rat lung.

  6. CTGF/CCN2 Postconditioning Increases Tolerance of Murine Hearts towards Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Ole Jørgen Kaasbøll

    Full Text Available Previous studies of ischemia-reperfusion injury (IRI in hearts from mice with cardiac-restricted overexpression of CCN2 have shown that CCN2 increases tolerance towards IRI. The objectives of this study were to investigate to what extent post-ischemic administration of recombinant human CCN2 (rhCCN2 would limit infarct size and improve functional recovery and what signaling pathways are involved.Isolated mice hearts were perfused ad modum Langendorff, subjected to no-flow, global ischemia, and subsequently, exposed to mammalian cell derived, full-length (38-40kDa rhCCN2 (250 nM or vehicle during the first 15 min of a 60 min reperfusion period.Post-ischemic administration of rhCCN2 resulted in attenuation of infarct size from 58 ± 4% to 34 ± 2% (p < 0.001 which was abrogated by concomitant administration of the PI3 kinase inhibitor LY294002 (45 ± 3% vs. 50 ± 3%, ns. In congruence with reduction of infarct size rhCCN2 also improved recovery of left ventricular developed pressure (p < 0.05. Western blot analyses of extracts of ex vivo-perfused murine hearts also revealed that rhCCN2 evoked concentration-dependent increase of cardiac phospho-GSK3β (serine-9 contents.We demonstrate that post-ischemic administration of rhCCN2 increases the tolerance of ex vivo-perfused murine hearts to IRI. Mechanistically, this postconditioning effect of rhCCN2 appeared to be mediated by activation of the reperfusion injury salvage kinase pathway as demonstrated by sensitivity to PI3 kinase inhibition and increased CCN2-induced phosphorylation of GSK3β (Ser-9. Thus, the rationale for testing rhCCN2-mediated post-ischemic conditioning of the heart in more complex models is established.

  7. Protective Effect of CXCR3+CD4+CD25+Foxp3+ Regulatory T Cells in Renal Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Cao Jun

    2015-01-01

    Full Text Available Regulatory T cells (Tregs suppress excessive immune responses and are potential therapeutic targets in autoimmune disease and organ transplantation rejection. However, their role in renal ischemia-reperfusion injury (IRI is unclear. Levels of Tregs and expression of CXCR3 in Tregs were analyzed to investigate their function in the early phase of renal IRI. Mice were randomly divided into Sham, IRI, and anti-CD25 (PC61 + IRI groups. The PC61 + IRI group was established by i.p. injection of PC61 monoclonal antibody (mAb to deplete Tregs before renal ischemia. CD4+CD25+Foxp3+ Tregs and CXCR3 on Tregs were analyzed by flow cytometry. Blood urea nitrogen (BUN, serum creatinine (Scr levels, and tubular necrosis scores, all measures of kidney injury, were greater in the IRI group than in the Sham group. Numbers of Tregs were increased at 72 h after reperfusion in kidney. PC61 mAb preconditioning decreased the numbers of Tregs and aggravated kidney injury. There was no expression of CXCR3 on Tregs in normal kidney, while it expanded at 72 h after reperfusion and inversely correlated with BUN, Scr, and kidney histology score. This indicated that recruitment of Tregs into the kidney was related to the recovery of renal function after IRI and CXCR3 might be involved in the migration of Tregs.

  8. The effect of levosimendan on myocardial ischemia–reperfusion injury in streptozotocin-induced diabetic rats

    Science.gov (United States)

    Kiraz, Hasan Ali; Poyraz, Fatih; Kip, Gülay; Erdem, Özlem; Alkan, Metin; Arslan, Mustafa; Özer, Abdullah; Şivgin, Volkan; Çomu, Faruk Metin

    2015-01-01

    Objective Ischemia/reperfusion (I/R) injury is an important cause of myocardial damage by means of oxidative, inflammatory, and apoptotic mechanisms. The aim of the present study was to examine the potential cardio protective effects of levosimendan in a diabetic rat model of myocardial I/R injury. Methods A total of 18 streptozotocin-induced diabetic Wistar Albino rats (55 mg/kg) were randomly divided into three equal groups as follows: the diabetic I/R group (DIR) in which myocardial I/R was induced following left thoracotomy, by ligating the left anterior descending coronary artery for 60 min, followed by 2 h of reperfusion; the diabetic I/R levosimendan group (DIRL), which underwent I/R by the same method while taking levosimendan intraperitoneal 12 µg kg−1; and the diabetic control group (DC) which underwent sham operations without tightening of the coronary sutures. As a control group (C), six healthy age-matched Wistar Albino rats underwent sham operations similar to the DC group. Two hours after the operation, the rats were sacrificed and the myocardial tissue samples were examined by light microscopy for evidence of myonecrosis and inflammatory cell infiltration. Results Myonecrosis findings were significantly different among groups (p=0.008). Myonecrosis was more pronounced in the DIR group compared with the C, DC, and DIRL groups (p=0.001, p=0.007 and p=0.037, respectively). Similarly, the degree of inflammatory cell infiltration showed significant difference among groups (p<0.0001). Compared with C, DC, and DIRL groups, the inflammatory cell infiltration was significantly higher among the DIR group (p<0.0001, p<0.0001, and p=0.020, respectively). Also, myocardial tissue edema was significantly different among groups (p=0.006). The light microscopic myocardial tissue edema levels were significantly higher in the DIR group than the C, DC, and DIRL groups (p=0.001, p=0.037, and p=0.014, respectively). Conclusion Taken together, our data indicate that

  9. Diphenhydramine as a Cause of Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Yunseok Namn

    2017-01-01

    Full Text Available Drug-induced liver injury (DILI is the most common cause of acute liver failure in the Unites States and accounts for 10% of acute hepatitis cases. We report the only known case of diphenhydramine-induced acute liver injury in the absence of concomitant medications. A 28-year-old man with history of 13/14-chromosomal translocation presented with fevers, vomiting, and jaundice. Aspartate-aminotransferase and alanine-aminotransferase levels peaked above 20,000 IU/L and 5,000 IU/L, respectively. He developed coagulopathy but without altered mental status. Patient reported taking up to 400 mg diphenhydramine nightly, without concomitant acetaminophen, for insomnia. He denied taking other medications, supplements, antibiotics, and herbals. A thorough workup of liver injury ruled out viral hepatitis (including A, B, C, and E, autoimmune, toxic, ischemic, and metabolic etiologies including Wilson’s disease. A liver biopsy was consistent with DILI without evidence of iron or copper deposition. Diphenhydramine was determined to be the likely culprit. This is the first reported case of diphenhydramine-induced liver injury without concomitant use of acetaminophen.

  10. Pretreatment with remifentanil protects against the reduced-intestinal contractility related to the ischemia and reperfusion injury in rat

    Directory of Open Access Journals (Sweden)

    Hale Sayan-Ozacmak

    2015-12-01

    Full Text Available BACKGROUND AND OBJECTIVES: Serious functional and structural alterations of gastrointestinal tract are observed in failure of blood supply, leading to gastrointestinal dismotility. Activation of opioid receptors provides cardioprotective effect against ischemia-reperfusion (I/R injury. The aim of the present study was to determine whether or not remifentanil could reduce I/R injury of small intestine. METHODS: Male Wistar Albino rats were subjected to mesenteric ischemia (30 min followed by reperfusion (3 h. Four groups were designed: sham control; remifentanil alone; I/R control; and remifentanil + I/R. Animals in remifentanil + I/R group were subjected to infusion of remifentanil (2 ug kg-1 min-1 for 60 min, half of which started before inducing ischemia. Collecting the ileum tissues, evaluation of damage was based on contractile responses to carbachol, levels of lipid peroxidation and neutrophil infiltration, and observation of histopathological features in intestinal tissue. RESULTS: Following reperfusion, a significant decrease in carbachol-induced contractile response, a remarkable increase in both lipid peroxidation and neutrophil infiltration, and a significant injury in mucosa were observed. An average contractile response of remifentanil + I/R group was significantly different from that of the I/R group. Lipid peroxidation and neutrophil infiltration were also significantly suppressed by the treatment. The tissue samples of the I/R group were grade 4 in histopathological evaluation. In remifentanil + I/R group, on the other hand, the mucosal damage was moderate, staging as grade 1. CONCLUSIONS: The pretreatment with remifentanil can attenuate the intestinal I/R injury at a remarkable degree possibly by lowering lipid peroxidation and leukocyte infiltration.

  11. Hemorheological changes in ischemia-reperfusion: an overview on our experimental surgical data.

    Science.gov (United States)

    Nemeth, Norbert; Furka, Istvan; Miko, Iren

    2014-01-01

    Blood vessel occlusions of various origin, depending on the duration and extension, result in tissue damage, causing ischemic or ischemia-reperfusion injuries. Necessary surgical clamping of vessels in vascular-, gastrointestinal or parenchymal organ surgery, flap preparation-transplantation in reconstructive surgery, as well as traumatological vascular occlusions, all present special aspects. Ischemia and reperfusion have effects on hemorheological state by numerous ways: besides the local metabolic and micro-environmental changes, by hemodynamic alterations, free-radical and inflammatory pathways, acute phase reactions and coagulation changes. These processes may be harmful for red blood cells, impairing their deformability and influencing their aggregation behavior. However, there are still many unsolved or non-completely answered questions on relation of hemorheology and ischemia-reperfusion. How do various organ (liver, kidney, small intestine) or limb ischemic-reperfusionic processes of different duration and temperature affect the hemorheological factors? What is the expected magnitude and dynamics of these alterations? Where is the border of irreversibility? How can hemorheological investigations be applied to experimental models using laboratory animals in respect of inter-species differences? This paper gives a summary on some of our research data on organ/tissue ischemia-reperfusion, hemorheology and microcirculation, related to surgical research and experimental microsurgery.

  12. Therapeutic metabolic inhibition: hydrogen sulfide significantly mitigates skeletal muscle ischemia reperfusion injury in vitro and in vivo

    NARCIS (Netherlands)

    Henderson, Peter W.; Singh, Sunil P.; Weinstein, Andrew L.; Nagineni, Vijay; Rafii, Daniel C.; Kadouch, Daniel; Krijgh, David D.; Spector, Jason A.

    2010-01-01

    BACKGROUND:: Recent evidence suggests that hydrogen sulfide is capable of mitigating the degree of cellular damage associated with ischemia-reperfusion injury. The purpose of this study was to determine whether it is protective in skeletal muscle. METHODS:: This study used both in vitro (cultured

  13. Preditores de injúria renal aguda em pacientes submetidos ao transplante ortotópico de fígado convencional sem desvio venovenoso Predictors of acute kidney injury in patients undergoing a conventional orthotopic liver transplant without veno-venous bypass

    Directory of Open Access Journals (Sweden)

    Olival Cirilo L. da Fonseca-Neto

    2011-06-01

    urinary debit <500 ml/24h within the first three days post-transplant. Univariate analysis and multivariate logistic regression were done. RESULTS: All transplants were performed with grafts from deceased donors. Sixty patients (39.2% had acute kidney injury. Age, body mass index, Child-Turcotte-Pugh, urea, hypertension, and preoperative serum creatinine were higher in the acute kidney injury group. During the intraoperative period, the group acute kidney injury had more reperfusion syndrome, transfusion of red blood cells, fresh frozen plasma and platelets. Postoperatively, the duration of mechanical ventilation and postoperative creatinine levels were also variable, with significant differences for the group of acute kidney injury. After logistic regression, the reperfusion syndrome, the class C of the Child-Turcotte-Pugh and postoperative serum creatinine showed differences. CONCLUSION: Acute kidney injury after orthotopic liver transplantation without conventional venovenous bypass is a common disorder, but with good prognosis. Reperfusion syndrome, serum creatinine postoperatively and Child C are factors associated with acute kidney injury after orthotopic liver transplantation without conventional venovenous bypass.

  14. Drug-induced liver injuries

    African Journals Online (AJOL)

    2011-06-02

    Jun 2, 2011 ... liver failure in the developed world and a prominent aetiological factor ... most drugs is not known and several epidemiological studies have had major ... eosinophilia, are also pointers towards the cause of the injury and are.

  15. Defining the optimal cut-off values for liver enzymes in diagnosing blunt liver injury.

    Science.gov (United States)

    Koyama, Tomohide; Hamada, Hirohisa; Nishida, Masamichi; Naess, Paal A; Gaarder, Christine; Sakamoto, Tetsuya

    2016-01-25

    Patients with blunt trauma to the liver have elevated levels of liver enzymes within a short time post injury, potentially useful in screening patients for computed tomography (CT). This study was performed to define the optimal cut-off values for serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in patients with blunt liver injury diagnosed with contrast enhanced multi detector-row CT (CE-MDCT). All patients admitted from May 2006 to July 2013 to Teikyo University Hospital Trauma and Critical Care Center, and who underwent abdominal CE-MDCT within 3 h after blunt trauma, were retrospectively enrolled. Using receiver operating characteristic (ROC) curve analysis, the optimal cut-off values for AST and ALT were defined, and sensitivity and specificity were calculated. Of a total of 676 blunt trauma patients 64 patients were diagnosed with liver injury (Group LI+) and 612 patients without liver injury (Group LI-). Group LI+ and LI- were comparable for age, Revised Trauma Score, and Probability of survival. The groups differed in Injury Severity Score [median 21 (interquartile range 9-33) vs. 17 (9-26) (p tool for CT scan in patients otherwise eligible for observation only or as a transfer criterion to a facility with CT scan capability.

  16. The effects of different anesthesia techniques on free radical production after tourniquet-induced ischemia-reperfusion injury at children's age

    Directory of Open Access Journals (Sweden)

    Budić Ivana

    2010-01-01

    Full Text Available Background/Aim. Reperfusion of previously ischemic tissue leads to injuries mediated by reactive oxygen species. The aim of the study was to investigate the effects of different anesthesia techniques on oxidative stress caused by tourniquetinduced ischemia-reperfusion (IR injury during extremity operations at children's age. Methods. The study included 45 patients American Society of Anesthesiologists (ASA classification I or II, 8 to 17 years of age, undergoing orthopedic procedures that required bloodless limb surgery. The children were randomized into three groups of 15 patients each: general inhalational anesthesia with sevoflurane (group S, total intravenous anesthesia with propofol (group T and regional anesthesia (group R. Venous blood samples were obtained at four time points: before peripheral nerve block and induction of general anesthesia (baseline, 1 min before tourniquet release (BTR, 5 and 20 min after tourniquet release (ATR. Postischemic reperfusion injury was estimated by measurement of concentration of malondialdehyde (MDA in plasma and erythrocytes as well as catalase (CAT activity. Results. Plasma MDA concentration in the group S was significantly higher at 20 min ATR in comparison with the groups T and R (6.78 ± 0.33 μmolL-1-1 vs 4.07 ± 1.53 and 3.22 ± 0.9. μmolL-1-1, respectively. There was a significant difference in MDA concentration in erytrocythes between the groups S and T after 5 min of reperfusion (5.88 ± 0.88 vs 4.27 ± 1.04 nmol/mlEr, p < 0.05. Although not statistically significant, CAT activity was slightly increased as compared to baseline in both groups S and R. In the group T, CAT activity decreased at all time points when compared with baseline, but the observed decrease was only statistically significant at BTR (34.70 ± 9.27 vs 39.69 ± 12.91 UL-1, p < 0.05. Conclusion. Continuous propofol infusion and regional anesthesia techniques attenuate lipid peroxidation and IR injury connected with tourniquet

  17. Assessment of emerging biomarkers of liver injury in human subjects.

    Science.gov (United States)

    Schomaker, Shelli; Warner, Roscoe; Bock, Jeff; Johnson, Kent; Potter, David; Van Winkle, Joyce; Aubrecht, Jiri

    2013-04-01

    Hepatotoxicity remains a major challenge in drug development. Although alanine aminotransferase (ALT) remains the gold standard biomarker of liver injury, alternative biomarker strategies to better predict the potential for severe drug-induced liver injury (DILI) are essential. In this study, we evaluated the utility of glutamate dehydrogenase (GLDH), purine nucleoside phosphorylase (PNP), malate dehydrogenase (MDH), and paraxonase 1 (PON1) as indicators of liver injury in cohorts of human subjects, including healthy subjects across age and gender, subjects with a variety of liver impairments, and several cases of acetaminophen poisoning. In the healthy subjects, levels of GLDH and MDH were not affected by age or gender. Reference ranges for GLDH and MDH in healthy subjects were 1-10 and 79-176U/L, respectively. In contrast, the levels of PON1 and PNP were not consistent across cohorts of healthy subjects. Furthermore, GLDH and MDH had a strong correlation with elevated ALT levels and possessed a high predictive power for liver injury, as determined by ROC analysis. In contrast, PON1 and PNP did not detect liver injury in our study. Finally, evaluation of patients with acetaminophen-induced liver injury provided evidence that both GLDH and MDH might have utility as biomarkers of DILI in humans. This study is the first to evaluate GLDH, MDH, PON1, and PNP in a large number of human subjects and, and it provides an impetus for prospective clinical studies to fully evaluate the diagnostic value of GLDH and MDH for detection of liver injury.

  18. Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury

    Directory of Open Access Journals (Sweden)

    Ravirajsinh N. Jadeja

    2016-01-01

    Full Text Available Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2, a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans.

  19. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  20. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ewa Soltysinska

    Full Text Available Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP, but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of

  1. Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Nobuhiro Nakamoto

    2017-10-01

    Full Text Available Summary: Gut-derived microbial antigens trigger the innate immune system during acute liver injury. During recovery, regulatory immunity plays a role in suppressing inflammation; however, the precise mechanism underlying this process remains obscure. Here, we find that recruitment of immune-regulatory classical dendritic cells (cDCs is crucial for liver tolerance in concanavalin A-induced acute liver injury. Acute liver injury resulted in enrichment of commensal Lactobacillus in the gut. Notably, Lactobacillus activated IL-22 production by gut innate lymphoid cells and raised systemic IL-22 levels. Gut-derived IL-22 enhanced mucosal barrier function and promoted the recruitment of regulatory cDCs to the liver. These cDCs produced IL-10 and TGF-β through TLR9 activation, preventing further liver inflammation. Collectively, our results indicate that beneficial gut microbes influence tolerogenic immune responses in the liver. Therefore, modulation of the gut microbiota might be a potential option to regulate liver tolerance. : Nakamoto et.al. find that Lactobacillus accumulates in the gut and activates IL-22 production by innate lymphoid cells during acute liver injury. Gut-derived IL-22 contributes to liver tolerance via induction of regulatory DCs. Keywords: immune tolerance, dendritic cell, innate lymphoid cell, acute liver injury, interleukin-10, interleukin-22, microbiota, dysbiosis

  2. Oxidative stress gene expression profile in inbred mouse after ischemia/reperfusion small bowel injury.

    Science.gov (United States)

    Bertoletto, Paulo Roberto; Ikejiri, Adauto Tsutomu; Somaio Neto, Frederico; Chaves, José Carlos; Teruya, Roberto; Bertoletto, Eduardo Rodrigues; Taha, Murched Omar; Fagundes, Djalma José

    2012-11-01

    To determine the profile of gene expressions associated with oxidative stress and thereby contribute to establish parameters about the role of enzyme clusters related to the ischemia/reperfusion intestinal injury. Twelve male inbred mice (C57BL/6) were randomly assigned: Control Group (CG) submitted to anesthesia, laparotomy and observed by 120 min; Ischemia/reperfusion Group (IRG) submitted to anesthesia, laparotomy, 60 min of small bowel ischemia and 60 min of reperfusion. A pool of six samples was submitted to the qPCR-RT protocol (six clusters) for mouse oxidative stress and antioxidant defense pathways. On the 84 genes investigated, 64 (76.2%) had statistic significant expression and 20 (23.8%) showed no statistical difference to the control group. From these 64 significantly expressed genes, 60 (93.7%) were up-regulated and 04 (6.3%) were down-regulated. From the group with no statistical significantly expression, 12 genes were up-regulated and 8 genes were down-regulated. Surprisingly, 37 (44.04%) showed a higher than threefold up-regulation and then arbitrarily the values was considered as a very significant. Thus, 37 genes (44.04%) were expressed very significantly up-regulated. The remained 47 (55.9%) genes were up-regulated less than three folds (35 genes - 41.6%) or down-regulated less than three folds (12 genes - 14.3%). The intestinal ischemia and reperfusion promote a global hyper-expression profile of six different clusters genes related to antioxidant defense and oxidative stress.

  3. Protective effect of edaravone for tourniquet-induced ischemia-reperfusion injury on skeletal muscle in murine hindlimb

    Science.gov (United States)

    2013-01-01

    Background Studies have shown that ischemia-reperfusion (I/R) produces free radicals leading to lipid peroxidation and damage to skeletal muscle. The purposes of this study were 1) to assess the histological findings of gastrocnemius muscle (GC) and tibialis anterior muscle (TA) in I/R injury model mice, 2) to histologically analyze whether a single pretreatment of edaravone inhibits I/R injury to skeletal muscle in murine models and 3) to evaluate the effect of oxidative stress on these muscles. Methods C57BL6 mice were divided in two groups, with one group receiving 3 mg/kg intraperitoneal injections of edaravone (I/R + Ed group) and the other group receiving an identical amount of saline (I/R group) 30 minutes before ischemia. Edaravone (3-methy-1-pheny1-2-pyrazolin-5-one) is a potent and novel synthetic scavenger of free radicals. This drug inhibits both nonenzymatic lipid peroxidation and the lipoxygenase pathway, in addition to having potent antioxidant effects against ischemia reperfusion. The duration of the ischemia was 1.5 hours, with reperfusion at either 24 or 72 hours (3 days). Specimens of gastrocnemius (GC) and anterior tibialis (TA) were removed for histological evaluation and biochemical analysis. Results This model of I/R injury was highly reproducible in histologic muscle damage. In the histologic damage score, the mean muscle fibers and inflammatory cell infiltration in the I/R + Ed group were significantly less than the corresponding values of observed in the I/R group. Thus, pretreatment with edaravone was observed to have a protective effect on muscle damage after a period of I/R in mice. In addition, the mean muscle injury score in the I/R + Ed group was also significantly less than the I/R group. In the I/R + Ed group, the mean malondialdehyde (MDA) level was lower than in the I/R group and western-blotting revealed that edaravone pretreatment decreased the level of inducible nitric oxide synthase (iNOS) expression. Conclusions Edaravone

  4. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells.

    Science.gov (United States)

    Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H

    2012-05-01

    Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  5. Real-time histology in liver disease using multiphoton microscopy with fluorescence lifetime imaging

    OpenAIRE

    Wang, Haolu; Liang, Xiaowen; Mohammed, Yousuf H.; Thomas, James A.; Bridle, Kim R.; Thorling, Camilla A.; Grice, Jeffrey E.; Xu, Zhi Ping; Liu, Xin; Crawford, Darrell H. G.; Roberts, Michael S.

    2015-01-01

    Conventional histology with light microscopy is essential in the diagnosis of most liver diseases. Recently, a concept of real-time histology with optical biopsy has been advocated. In this study, live mice livers (normal, with fibrosis, steatosis, hepatocellular carcinoma and ischemia-reperfusion injury) were imaged by MPM-FLIM for stain-free real-time histology. The acquired MPM-FLIM images were compared with conventional histological images. MPM-FLIM imaged subsurface cellular and subcellu...

  6. The protective effect of SCR(15-18) on cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Li, Shu; Xian, Jinhong; He, Li; Luo, Xue; Tan, Bing; Yang, Yongtao; Liu, Gaoke; Wang, Zhengqing

    2011-10-01

    Soluble complement receptor type 1 (sCR1), a potent inhibitor of complement activation, has been shown to protect brain cells against cerebral ischemic/reperfusion (CI/R) injury due to its decay-accelerating activity for C3/C5 convertase and co-factor activity for C3b/C4b degradation. However, the effect of short consensus repeats (SCRs) 15-18, one of active domains of sCR1 with high C3b/C4b degradability, has not been demonstrated. Here, we investigated the protective effect of recombinant SCR(15-18) protein in middle cerebral artery occlusion (MCAO)-induced focal CI/R injury. Recombinant SCR(15-18) protein was successfully expressed in Escherichia coli and refolded to its optimal bioactivity. Seventy-five Sprague-Dawley rats were randomly assigned into three groups: sham-operated group, CI/R group, and SCR(15-18)+CI/R group pretreated with 20 mg/kg SCR(15-18) protein. After 2 hours of MCAO and subsequent 24 hours of reperfusion, rats were evaluated for neurological deficits and cerebral infarction. Polymorphonuclear leukocyte accumulation, C3b deposition, and morphological changes in cerebral tissue were also estimated. SCR(15-18) pretreatment induced a 20% reduction of infarct size and an improvement of neurological function with 22·2% decrease of neurological deficit scores. Inhibition of cerebral neutrophils infiltration by SCR(15-18) was indicated from the reduction of myeloperoxidase activity in SCR(15-18)+CI/R rats. Decreased C3b deposition and improved morphological changes were also found in cerebral tissue of SCR(15-18)-treated rats. Our studies suggest a definitive moderately protective effect of SCR(15-18) against CI/R damage and provide preclinical experimental evidence supporting the possibility of using it as a small anti-complement therapeutic agent for CI/R injury therapy.

  7. Changing Interdigestive Migrating Motor Complex in Rats under Acute Liver Injury

    Directory of Open Access Journals (Sweden)

    Mei Liu

    2014-01-01

    Full Text Available Gastrointestinal motility disorder is a major clinical manifestation of acute liver injury, and interdigestive migrating motor complex (MMC is an important indicator. We investigated the changes and characteristics of MMC in rats with acute liver injury. Acute liver injury was created by D-galactosamine, and we recorded the interdigestive MMC using a multichannel physiological recorder and compared the indexes of interdigestive MMC. Compared with normal controls, antral MMC Phase I duration was significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The duodenal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The jejunal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury compared with normal controls. Compared with the normal controls, rats with acute liver injury had a significantly prolonged interdigestive MMC cycle, related mainly to longer MMC Phases I and IV, shortened MMC Phase III, and MMC Phase II characterized by increased migrating clustered contractions, which were probably major contributors to the gastrointestinal motility disorders.

  8. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Nathalie Le Clef

    Full Text Available Acute kidney injury (AKI is an underestimated, yet important risk factor for development of chronic kidney disease (CKD. Even after initial total recovery of renal function, some patients develop progressive and persistent deterioration of renal function and these patients are more likely to progress to end-stage renal disease (ESRD. Animal models are indispensable for unravelling the mechanisms underlying this progression towards CKD and ESRD and for the development of new therapeutic strategies in its prevention or treatment. Ischemia (i.e. hypoperfusion after surgery, bleeding, dehydration, shock, or sepsis is a major aetiology in human AKI, yet unilateral ischemia-reperfusion is a rarely used animal model for research on CKD and fibrosis. Here, we demonstrate in C57Bl/6J mice, by both histology and gene expression, that unilateral ischemia-reperfusion without contralateral nephrectomy is a very robust model to study the progression from acute renal injury to long-term tubulo-interstitial fibrosis, i.e. the histopathological hallmark of CKD. Furthermore, we report that the extent of renal fibrosis, in terms of Col I, TGFβ, CCN2 and CCN3 expression and collagen I immunostaining, increases with increasing body temperature during ischemia and ischemia-time. Thus, varying these two main determinants of ischemic injury allows tuning the extent of the long-term fibrotic outcome in this model. Finally, in order to cover the whole practical finesse of ischemia-reperfusion and allow model and data transfer, we provide a referenced overview on crucial technical issues (incl. anaesthesia, analgesia, and pre- and post-operative care with the specific aim of putting starters in the right direction of implementing ischemia in their research and stimulate them, as well as the community, to have a critical view on ischemic literature data.

  9. Increased carboxyhemoglobin level during liver resection with inflow occlusion.

    Science.gov (United States)

    Godai, Kohei; Hasegawa-Moriyama, Maiko; Kuniyoshi, Tamotsu; Matsunaga, Akira; Kanmura, Yuichi

    2013-04-01

    Controlling stress responses associated with ischemic changes due to bleeding and ischemia/reperfusion injury is essential for anesthetic management. Endogenous carboxyhemoglobin (COHb) is produced in the oxidative degradation of heme proteins by the stress-response enzyme heme oxygenase. Although the COHb level is elevated in critically ill patients, changes in endogenous COHb during anesthesia have not been well investigated. Therefore, we evaluated changes in endogenous COHb levels in patients undergoing liver resections with inflow occlusion. Levels of COHb were significantly increased after the Pringle maneuver. The inflow occlusion time in patients with increased COHb after the Pringle maneuver (∆COHb > 0.3 %) was significantly longer than in patients without increased COHb (∆COHb < 0.3 %) (P = 0.01). In addition, COHb changes were correlated with inflow occlusion time (P = 0.005, R(2) = 0.21). Neither total blood loss, transfusion volume of packed red blood cells, operation time, nor anesthetic time differed between patients with and without increased COHb. The results indicated that endogenous COHb levels were increased by inflow occlusion in patients undergoing liver resections, which suggests that changes in COHb may correlate with hepatic ischemia/reperfusion injury induced by inflow occlusion.

  10. Role and mechanisms of autophagy in acetaminophen-induced liver injury.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Hua; Jaeschke, Hartmut; Ding, Wen-Xing

    2018-04-23

    Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis.

    Science.gov (United States)

    Wu, Nan; Zhang, Xiaowen; Jia, Pengyu; Jia, Dalin

    2015-12-01

    The effect of hypercholesterolemia on myocardial ischemia reperfusion injury (MIRI) is in controversy and the underlying mechanism is still not well understood. In the present study, we firstly detected the effects of hypercholesterolemia on MIRI and the role of endoplasmic reticulum (ER) stress-mediated apoptosis pathway in this process. The infarct size was determined by TTC staining, and apoptosis was measured by the TUNEL method. The marker proteins of ER stress response and ER stress-mediated apoptosis pathway were detected by Western blot. The results showed that high cholesterol diet-induced hypercholesterolemia significantly increased the myocardial infarct size, the release of myocardium enzyme and the ratio of apoptosis, but did not affect the recovery of cardiac function. Moreover, hypercholesterolemia also remarkably up-regulated the expressions of ER stress markers (glucose-regulated protein 78 and calreticulin) and critical molecules in ER stress-mediated apoptosis pathway (CHOP, caspase 12, phospho-JNK). In conclusion, our study demonstrated that hypercholesterolemia enhanced myocardial vulnerability/sensitivity to ischemia reperfusion injury involved in aggravation the ER stress and activation of ER stress-mediated apoptosis pathway and it gave us a new insight into the underlying mechanisms associated with hypercholesterolemia-induced exaggerated MIRI and also provided a novel target for preventing MIRI in the presence of hypercholesterolemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Rosiglitazone Affects Nitric Oxide Synthases and Improves Renal Outcome in a Rat Model of Severe Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Boris Betz

    2012-01-01

    Full Text Available Background. Nitric oxide (NO-signal transduction plays an important role in renal ischemia/reperfusion (I/R injury. NO produced by endothelial NO-synthase (eNOS has protective functions whereas NO from inducible NO-synthase (iNOS induces impairment. Rosiglitazone (RGZ, a peroxisome proliferator-activated receptor (PPAR-γ agonist exerted beneficial effects after renal I/R injury, so we investigated whether this might be causally linked with NOS imbalance. Methods. RGZ (5 mg/kg was administered i.p. to SD-rats (f subjected to bilateral renal ischemia (60 min. Following 24 h of reperfusion, inulin- and PAH-clearance as well as PAH-net secretion were determined. Morphological alterations were graded by histopathological scoring. Plasma NOx-production was measured. eNOS and iNOS expression was analyzed by qPCR. Cleaved caspase 3 (CC3 was determined as an apoptosis indicator and ED1 as a marker of macrophage infiltration in renal tissue. Results. RGZ improves renal function after renal I/R injury (PAH-/inulin-clearance, PAH-net secretion and reduces histomorphological injury. Additionally, RGZ reduces NOx plasma levels, ED-1 positive cell infiltration and CC3 expression. iNOS-mRNA is reduced whereas eNOS-mRNA is increased by RGZ. Conclusion. RGZ has protective properties after severe renal I/R injury. Alterations of the NO pathway regarding eNOS and iNOS could be an explanation of the underlying mechanism of RGZ protection in renal I/R injury.

  13. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux.

    Science.gov (United States)

    Zhou, Tianen; Liang, Lian; Liang, Yanran; Yu, Tao; Zeng, Chaotao; Jiang, Longyuan

    2017-09-15

    Mild hypothermia has been proven to be useful to treat brain ischemia/reperfusion injury. However, the underlying mechanisms have not yet been fully elucidated. The present study was undertaken to determine whether mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion(OGD/R)-induced injury via improving lysosomal function and autophagic flux. The results showed that OGD/R induced the occurrence of autophagy, while the acidic environment inside the lysosomes was altered. The autophagic flux assay with RFP-GFP tf-LC3 was impeded in hippocampal neurons after OGD/R. Mild hypothermia recovered the lysosomal acidic fluorescence and the lysosomal marker protein expression of LAMP2, which decreased after OGD/R.Furthermore, we found that mild hypothermia up-regulated autophagic flux and promoted the fusion of autophagosomes and lysosomes in hippocampal neurons following OGD/R injury, but could be reversed by treatment with chloroquine, which acts as a lysosome inhibitor. We also found that mild hypothermia improved mitochondrial autophagy in hippocampal neurons following OGD/R injury. Finally,we found that chloroquine blocked the protective effects of mild hypothermia against OGD/R-induced cell death and injury. Taken together, the present study indicates that mild hypothermia protects hippocampal neurons against OGD/R-induced injury by improving lysosomal function and autophagic flux. Copyright © 2017. Published by Elsevier Inc.

  14. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Apoptosis and Necrosis in the Liver

    Science.gov (United States)

    Guicciardi, Maria Eugenia; Malhi, Harmeet; Mott, Justin L.; Gores, Gregory J.

    2013-01-01

    Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of “programmed” necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article. PMID:23720337

  16. Effects of Intestinal Ischaemia-Reperfusion Injury and Splenectomy ...

    African Journals Online (AJOL)

    The rats were splenectomized and then subjected to either 20minutes or one hour of superior mesenteric artery and collateral supply ischemia and one hour of reperfusion. Control rats were subjected to either 20minutes or one hour of ischemia and one hour of reperfusion only. Blood samples were collected before and ...

  17. Assessment of protective effects of methylprednisolone and pheniramine maleate on reperfusion injury in kidney after distant organ ischemia: a rat model.

    Science.gov (United States)

    Bayrak, Serdar; Yurekli, Ismail; Gokalp, Orhan; Kiray, Muge; Bademci, Mehmet Senel; Ozcem, Barcin; Besir, Yuksel; Yilik, Levent; Kestelli, Mert; Gurbuz, Ali

    2012-05-01

    Ischemia/reperfusion (I/R) injury of tissues is a common problem that cardiovascular surgeons are faced with. Suppression of inflammation, which plays an important role in the pathogenesis of I/R injury, may reduce this damage. The aim of this study is to investigate the protective effects of methylprednisolone (MP)--a potent anti-inflammatory agent--and pheniramine maleate (FM)--an antihistamine that also has some anti-inflammatory effects--on reperfusion injury of kidneys developing after ischemia of the left lower extremity of rats. Twenty-eight randomly selected male Sprague-Dawley rats weighing 320 to 370 g were divided into four groups, each consisting of seven rats. Group 1 was the control group. Group 2 was the sham group. Rats in group 3 were subjected to I/R and given FM, and rats in group 4 were subjected to I/R and given MP. A tourniquet was applied at the level of the left groin to subjects in group 2 after induction of anesthesia. One hour of ischemia was performed, and no drug was administered. In group 3, half of a total dose of 10 mg/kg FM was administered before ischemia, and the remaining half was given intraperitoneally before reperfusion. In group 4, subjects received a single dose of 50 mg/kg MP intraperitoneally in the 30th minute of ischemia. Kidneys of all subjects were removed after 24 hours. Extracted tissues were investigated regarding histological and biochemical parameters. Malondialdehyde--the end product of lipid peroxidation as an important indicator of I/R injury--levels were significantly lower in group 3 than in group 2 (P 0.05). Superoxide dismutase and glutathione peroxidase enzyme activities were found to be significantly higher in group 3 than in group 2 (P < 0.05). However, there was no difference between group 4 and group 2 in terms of these activities. Histological examination demonstrated that both MP and FM had protective effects against I/R injury, but this effect was more potent for FM than for MP. FM has a protective

  18. Sustained benefit of temporary limited reperfusion in skeletal muscle following ischemia

    International Nuclear Information System (INIS)

    Anderson, R.J.; Cambria, R.; Kerr, J.; Hobson, R.W. II

    1990-01-01

    Limiting the rate of reperfusion blood flow following prolonged ischemia in skeletal muscle has been shown beneficial. However, the persistence of this benefit with reinstitution of normal blood flow remains undefined. We investigated the role of temporary limited reperfusion on ischemia-reperfusion injury in an isolated gracilis muscle model in six anesthetized dogs. Both gracilis muscles were subjected to 6 hr of ischemia followed by 2 hr of reperfusion. Reperfusion blood flow was limited for the first hour in one gracilis muscle to its preischemic rate followed by a second hour of normal reperfusion (LR/NR). The contralateral muscle underwent 2 hr of normal reperfusion (NR/NR). Muscle injury was quantified by technetium-99m pyrophosphate (TcPyp) uptake and by histochemical staining using triphenyltetrazolium chloride (TTC) with planimetry of the infarct size. Capillary permeability was evaluated by muscle weight gain. Results are reported as the mean +/- SEM. These data demonstrate a sustained benefit from temporary limited reperfusion. This methodology should be considered in the surgical management of the acutely ischemic limb

  19. Overexpression of the muscle-specific protein, melusin, protects from cardiac ischemia/reperfusion injury.

    Science.gov (United States)

    Penna, Claudia; Brancaccio, Mara; Tullio, Francesca; Rubinetto, Cristina; Perrelli, Maria-Giulia; Angotti, Carmelina; Pagliaro, Pasquale; Tarone, Guido

    2014-07-01

    Melusin is a muscle-specific protein which interacts with β1 integrin cytoplasmic domain and acts as chaperone protein. Its overexpression induces improved resistance to cardiac overload delaying left ventricle dilation and reducing the occurrence of heart failure. Here, we investigated possible protective effect of melusin overexpression against acute ischemia/reperfusion (I/R) injury with or without Postconditioning cardioprotective maneuvers. Melusin transgenic (Mel-TG) mice hearts were subjected to 30-min global ischemia followed by 60-min reperfusion. Interestingly, infarct size was reduced in Mel-TG mice hearts compared to wild-type (WT) hearts (40.3 ± 3.5 % Mel-TG vs. 59.5 ± 3.8 % WT hearts; n = 11 animals/group; P level of AKT, ERK1/2 and GSK3β phosphorylation, and displayed increased phospho-kinases level after I/R compared to WT mice. Post-ischemic Mel-TG hearts displayed also increased levels of the anti-apoptotic factor phospho-BAD. Importantly, pharmacological inhibition of PI3K/AKT (Wortmannin) and ERK1/2 (U0126) pathways abrogated the melusin protective effect. Notably, HSP90, a chaperone known to protect heart from I/R injury, showed high levels of expression in the heart of Mel-TG mice suggesting a possible collaboration of this molecule with AKT/ERK/GSK3β pathways in the melusin-induced protection. Postconditioning, known to activate AKT/ERK/GSK3β pathways, significantly reduced IS and LDH release in WT hearts, but had no additive protective effects in Mel-TG hearts. These findings implicate melusin as an enhancer of AKT and ERK pathways and as a novel player in cardioprotection from I/R injury.

  20. Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway.

    Science.gov (United States)

    Wu, Guozhen; Zhu, Lili; Yuan, Xing; Chen, Hao; Xiong, Rui; Zhang, Shoude; Cheng, Hao; Shen, Yunheng; An, Huazhang; Li, Tiejun; Li, Honglin; Zhang, Weidong

    2017-10-10

    Oxidative stress is considered the major cause of tissue injury after cerebral ischemia. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important defensive mechanisms against oxidative stresses and has been confirmed as a target for stroke treatment. Thus, we desired to find new Nrf2 activators and test their neuronal protective activity both in vivo and in vitro. The herb-derived compound, Britanin, is a potent inducer of the Nrf2 system. Britanin can induce the expression of protective enzymes and reverse oxygen-glucose deprivation, followed by reperfusion (OGD-R)-induced neuronal injury in primary cortical neurons in vitro. Furthermore, the administration of Britanin significantly ameliorated middle cerebral artery occlusion-reperfusion (MCAO-R) insult in vivo. We report here the crystal structure of the complex of Britanin and the BTB domain of Keap1. Britanin selectively binds to a conserved cysteine residue, cysteine 151, of Keap1 and inhibits Keap1-mediated ubiquitination of Nrf2, leading to induction of the Nrf2 pathway. Britanin is a potent inducer of Nrf2. The complex crystal structure of Britanin and the BTB domain of Keap1 help clarify the mechanism of Nrf2 induction. Britanin was proven to protect primary cortical neurons against OGD-R-induced injury in an Nrf2-dependant way. Additionally, Britanin had excellent cerebroprotective effect in an MCAO-R model. Our results demonstrate that the natural product Britanin with potent Nrf2-activating and neural protective activities both in vitro and in vivo could be developed into a cerebroprotective therapeutic agent. Antioxid. Redox Signal. 27, 754-768.

  1. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog.

    Science.gov (United States)

    Zheng, Junying; Wei, Chih-Chang; Hase, Naoki; Shi, Ke; Killingsworth, Cheryl R; Litovsky, Silvio H; Powell, Pamela C; Kobayashi, Tsunefumi; Ferrario, Carlos M; Rab, Andras; Aban, Inmaculada; Collawn, James F; Dell'Italia, Louis J

    2014-01-01

    Cardiac ischemia and reperfusion (I/R) injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI). 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1) and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore-unrecognized chymase

  2. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog.

    Directory of Open Access Journals (Sweden)

    Junying Zheng

    Full Text Available Cardiac ischemia and reperfusion (I/R injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI. 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1 and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore

  3. A novel bioactivity of andrographolide from Andrographis paniculata on cerebral ischemia/reperfusion-induced brain injury through induction of cerebral endothelial cell apoptosis.

    Science.gov (United States)

    Yen, Ting-Lin; Hsu, Wen-Hsien; Huang, Steven Kuan-Hua; Lu, Wan-Jung; Chang, Chao-Chien; Lien, Li-Ming; Hsiao, George; Sheu, Joen-Rong; Lin, Kuan-Hung

    2013-09-01

    Andrographolide, extracted from the leaves of Andrographis paniculata (Burm. f.) Nees (Acanthaceae), is a labdane diterpene lactone. It is widely reported to possess anti-inflammatory and antitumorigenic activities. Cerebral endothelial cells (CECs) play a crucial role in supporting the integrity and the function of the blood-brain barrier (BBB). However, no data are available concerning the effects of andrographolide in CECs. The aim of this study was to examine the detailed mechanisms of andrographolide on CECs. This study investigated a novel bioactivity of andrographolide on cerebral ischemia/reperfusion-induced brain injury. CECs were treated with andrographolide (20-100 µΜ) for the indicated times (0-24 h). After the reactions, cell survival rate and cytotoxicity were tested by the MTT assay and the lactate dehydrogenase (LDH) test, respectively. Western blotting was used to detect caspase-3 expression. In addition, analysis of cell cycle and apoptosis using PI staining and annexin V-FITC/PI labeling, respectively, was performed by flow cytometry. We also investigated the effect of andrographolide on middle cerebral artery occlusion (MCAO)/reperfusion-induced brain injury in a rat model. In the present study, we found that andrographolide (50-100 µΜ) markedly inhibited CEC growth according to an MTT assay and caused CEC damage according to a LDH test. Our data also revealed that andrographolide (50 µM) induced CEC apoptosis and caspase-3 activation as respectively detected by PI/annexin-V double staining and western blotting. Moreover, andrographolide arrested the CEC cell cycle at the G0/G1 phase by PI staining. In addition, andrographolide (5 mg/kg) caused deterioration of MCAO/reperfusion-induced brain injury in a rat model. These data suggest that andrographolide may disrupt BBB integrity, thereby deteriorating MCAO/reperfusion-induced brain injury, which are, in part, associated with its capacity to arrest cell-cycle and induce CEC

  4. [The catalase inhibitor aminotriazole alleviates acute alcoholic liver injury].

    Science.gov (United States)

    Ai, Qing; Ge, Pu; Dai, Jie; Liang, Tian-Cai; Yang, Qing; Lin, Ling; Zhang, Li

    2015-02-25

    In this study, the effects of catalase (CAT) inhibitor aminotriazole (ATZ) on alcohol-induced acute liver injury were investigated to explore the potential roles of CAT in alcoholic liver injury. Acute liver injury was induced by intraperitoneal injection of alcohol in Sprague Dawley (SD) rats, and various doses of ATZ (100-400 mg/kg) or vehicle were administered intraperitoneally at 30 min before alcohol exposure. After 24 h of alcohol exposure, the levels of aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH) in plasma were determined. The degree of hepatic histopathological abnormality was observed by HE staining. The activity of hepatic CAT, hydrogen peroxide (H₂O₂) level and malondialdehyde (MDA) content in liver tissue were measured by corresponding kits. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in plasma were determined by ELISA method. The results showed that treatment with ATZ dose-dependently suppressed the elevation of ALT, AST and LDH levels induced by alcohol exposure, and that ATZ alleviated alcohol-induced histopathological alterations. Furthermore, ATZ inhibited the activity of CAT, reduced hepatic levels of H₂O₂and MDA in alcohol exposed rats. ATZ also decreased the levels of plasma TNF-α and IL-6 in rats with alcohol exposure. These results indicated that ATZ attenuated alcohol-induced acute liver injury in rats, suggesting that CAT might play important pathological roles in the pathogenesis of alcoholic liver injury.

  5. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

    Science.gov (United States)

    Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia

    2017-07-01

    MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.

  6. T cells infiltrate the liver and kill hepatocytes in HLA-B(∗)57:01-associated floxacillin-induced liver injury.

    Science.gov (United States)

    Wuillemin, Natascha; Terracciano, Luigi; Beltraminelli, Helmut; Schlapbach, Christoph; Fontana, Stefano; Krähenbühl, Stephan; Pichler, Werner J; Yerly, Daniel

    2014-06-01

    Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Protective effects of persian honey, Apis Mellifera Meda Skorikov on side effects of chemotherapy and ischemia/reperfusion induced testicular injury.

    Science.gov (United States)

    Gholami, Mohammadreza; Abbaszadeh, Abolfazl; Baharvand, Parastoo; Hasanvand, Afshin; Hasanvand, Amin; Gharravi, Anneh Mohammad

    2018-05-23

    Introduction The aim of the present study was to survey the protective effect of pretreatment with Persian honey on amelioration of side effects of chemotherapy and ischemia/reperfusion induced testicular injury. Materials and methods Forty adult's male wistar rats were divided into four groups of ischemia-reperfusion (IR), honey + ischemia-reperfusion (HIR), Busulfan (B) and Busulfan intraperitoneally+ honey (BH). The seminiferous tubules were rated for their modified spermatogenesis index (SI) by Johnsons score. Detection of single- and double-stranded DNA breaks at the early stages of apoptosis was performed using the in-situ cell death detection kit. Total serum concentration of Follicle-stimulating hormone (FSH) , Luteinizing hormone (LH) and testosterone was measured using ELISA. All data were expressed as mean ± SD and significance was set at p≤0.05. Results Honey improved SI in the HIR and BH groups and serum levels of FSH and LH in the BH and HIR groups (phoney protect testis against chemotherapy and testicular IR injury, increase FSH and LH and testosterone and decrease the cellular damage and apoptosis. Honey can decrease the side effects of chemotherapy on reproductive system and prevent sterility.

  8. Platelet aggregation but not activation and degranulation during the acute post-ischemic reperfusion phase in livers with no underlying disease

    NARCIS (Netherlands)

    van Golen, Rowan F.; Stevens, Katarzyna M.; Colarusso, Pina; Jaeschke, Hartmut; Heger, Michal

    2015-01-01

    Platelets and P-selectin (CD62P) play an unequivocal role in the pathology of hepatic ischemia/reperfusion (I/R) injury. Inhibition or knock-out of P-selectin or immunodepletion of platelets results in amelioration of post-ischemic inflammation, reduced hepatocellular damage, and improved survival.

  9. The effect of levosimendan on myocardial ischemia–reperfusion injury in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Hasan Ali Kiraz

    2015-12-01

    Full Text Available Objective: Ischemia/reperfusion (I/R injury is an important cause of myocardial damage by means of oxidative, inflammatory, and apoptotic mechanisms. The aim of the present study was to examine the potential cardio protective effects of levosimendan in a diabetic rat model of myocardial I/R injury. Methods: A total of 18 streptozotocin-induced diabetic Wistar Albino rats (55 mg/kg were randomly divided into three equal groups as follows: the diabetic I/R group (DIR in which myocardial I/R was induced following left thoracotomy, by ligating the left anterior descending coronary artery for 60 min, followed by 2 h of reperfusion; the diabetic I/R levosimendan group (DIRL, which underwent I/R by the same method while taking levosimendan intraperitoneal 12 µg kg−1; and the diabetic control group (DC which underwent sham operations without tightening of the coronary sutures. As a control group (C, six healthy age-matched Wistar Albino rats underwent sham operations similar to the DC group. Two hours after the operation, the rats were sacrificed and the myocardial tissue samples were examined by light microscopy for evidence of myonecrosis and inflammatory cell infiltration. Results: Myonecrosis findings were significantly different among groups (p=0.008. Myonecrosis was more pronounced in the DIR group compared with the C, DC, and DIRL groups (p=0.001, p=0.007 and p=0.037, respectively. Similarly, the degree of inflammatory cell infiltration showed significant difference among groups (p<0.0001. Compared with C, DC, and DIRL groups, the inflammatory cell infiltration was significantly higher among the DIR group (p<0.0001, p<0.0001, and p=0.020, respectively. Also, myocardial tissue edema was significantly different among groups (p=0.006. The light microscopic myocardial tissue edema levels were significantly higher in the DIR group than the C, DC, and DIRL groups (p=0.001, p=0.037, and p=0.014, respectively. Conclusion: Taken together, our data

  10. Peak Serum AST Is a Better Predictor of Acute Liver Graft Injury after Liver Transplantation When Adjusted for Donor/Recipient BSA Size Mismatch (ASTi

    Directory of Open Access Journals (Sweden)

    Kyota Fukazawa

    2014-01-01

    Full Text Available Background. Despite the marked advances in the perioperative management of the liver transplant recipient, an assessment of clinically significant graft injury following preservation and reperfusion remains difficult. In this study, we hypothesized that size-adjusted AST could better approximate real AST values and consequently provide a better reflection of the extent of graft damage, with better sensitivity and specificity than current criteria. Methods. We reviewed data on 930 orthotopic liver transplant recipients. Size-adjusted AST (ASTi was calculated by dividing peak AST by our previously reported index for donor-recipient size mismatch, the BSAi. The predictive value of ASTi of primary nonfunction (PNF and graft survival was assessed by receiver operating characteristic curve, logistic regression, Kaplan-Meier survival, and Cox proportional hazard model. Results. Size-adjusted peak AST (ASTi was significantly associated with subsequent occurrence of PNF and graft failure. In our study cohort, the prediction of PNF by the combination of ASTi and PT-INR had a higher sensitivity and specificity compared to current UNOS criteria. Conclusions. We conclude that size-adjusted AST (ASTi is a simple, reproducible, and sensitive marker of clinically significant graft damage.

  11. Manipulation of nitric oxide in an animal model of acute liver injury ...

    African Journals Online (AJOL)

    We evaluated the impact of altering nitric oxide release on acute liver injury, the associated gut injury and bacterial translocation, at different time intervals. Methods: An acute rat liver injury model induced by D-galactosamine was used. Sprague Dawley rats were divided into four main groups: normal control, acute liver ...

  12. [Gene transfer-induced human heme oxygenase-1 over-expression protects kidney from ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Lü, Jin-xing; Yan, Chun-yin; Pu, Jin-xian; Hou, Jian-quan; Yuan, He-xing; Ping, Ji-gen

    2010-12-14

    To study the protection of gene transfer-induced human heme oxygenase-1 over-expression against renal ischemia reperfusion injury in rats. The model of kidney ischemia-reperfusion injury was established with Sprague-Dawley rats. In the therapy group (n=18), the left kidney was perfused and preserved with Ad-hHO-1 at 2.5×10(9) pfu/1.0 ml after flushed with 0-4°C HC-A organ storage solution via donor renal aorta. The rats in control groups were perfused with 0.9% saline solution (n=12) or the vector carrying no interest gene Ad-EGFP 2.5×10(9) pfu/1.0 ml (n=18) instead of Ad-hHO-1. BUN and Cr in serum were measured by slide chemical methods. The kidney samples of rats were harvested for assay of histology, immunohistochemistry and quantification of HO enzymatic activity. Apoptosis cells in the kidney were measured by TUNEL. Ad-hHO-1 via donor renal aorta could transfect renal cells of rats effectively, enzymatic activity of HO in treated group [(1.62±0.07) nmol×mg(-1)×min(-1)] is higher than in control groups treated with saline solution team [(1.27±0.07) nmol×mg(-1)×min(-1)] and vector EGFP team [(1.22±0.06) nmol×mg(-1)×min(-1)] (PhHO-1 expressed hHO-1 in kidneys at a high level. Corresponding to this, the level of BUN and Cr, as well as the number of apoptosis cells, were decreased, and the damage in histology by HE staining was ameliorated. Over-expression of human HO-1 can protect the kidney from ischemia/reperfusion injury in rats.

  13. Resistance to Reperfusion Injury Following Short Term Postischemic Administration of Natural Honey in Globally Ischemic Isolated Rat Heart

    Directory of Open Access Journals (Sweden)

    Haleh Vaez

    2012-08-01

    Full Text Available Purpose: Results of our previous study revealed that preischemic perfusion of honey before zero flow global ischemia had cardioprotective effects in rat. The present study investigated potential resistance to reperfusion injury following short term postischemic administration of natural honey in globally ischemic isolated rat heart. Methods: Male Wistar rats were divided into five groups (n=10-13. The rat hearts were isolated, mounted on a Langendorff apparatus, allowed to equilibrate for 30 min then subjected to 30 min global ischemia. In the control group, the hearts were reperfused with drug free normal Krebs-Henseleit (K/H solution before ischemia and during 120 min reperfusion. In the treatment groups, reperfusion was initiated with K/H solution containing different concentration of honey (0.25, 0.5, 1 and 2% for 15 min and was resumed until the end of 120 min with normal K/H solution. Results: In the control group, VEBs number was 784±199, while in honey concentration of 0.25, 0.5, 1 and 2%, it decreased to 83±23 (P<0.001, 138±48 (P<0.01, 142±37 (P<0.001 and 157±40 (P<0.01, respectively. Number and duration of VT and time spent in reversible VF were also reduced by honey. In the control group, the infarct size was 54.1±7.8%, however; honey (0.25, 0.5, 1 and 2% markedly lowered the value to 12.4±2.4, 12.7±3.3, 11.3±2.6 and 7.9±1.7 (P<0.001, respectively. Conclusion: Postischemic administration of natural honey in global ischemia showed protective effects against ischemia/reperfusion (I/R injuries in isolated rat heart. Antioxidant and radical scavenging activity, lipoperoxidation inhibition, reduction of necrotized tissue, presence of rich energy sources, various type of vitamins, minerals and enzymes and formation of NO-contain metabolites may probably involve in those cardioprotective effects.

  14. Liver Transplantation in the Mouse: Insights Into Liver Immunobiology, Tissue Injury and Allograft Tolerance

    Science.gov (United States)

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A.; Thomson, Angus W.

    2016-01-01

    The surgically-demanding mouse orthotopic liver transplant model was first described in 1991. It has proved a powerful research tool for investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, since the mouse genome is well-characterized and there is much greater availability of both genetically-modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice has provided valuable mechanistic insights into the immuno- and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/ immune-mediated events in the hepatic environment and systemically. Conclusion: Orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology and allograft tolerance that may result in therapeutic innovation in liver and other diseases. PMID:26709949

  15. Activation of Endocannabinoid Receptor 2 as a Mechanism of Propofol Pretreatment-Induced Cardioprotection against Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Hai-Jing Sun

    2017-01-01

    Full Text Available Propofol pretreatment before reperfusion, or propofol conditioning, has been shown to be cardioprotective, while its mechanism is unclear. The current study investigated the roles of endocannabinoid signaling in propofol cardioprotection in an in vivo model of myocardial ischemia/reperfusion (I/R injury and in in vitro primary cardiomyocyte hypoxia/reoxygenation (H/R injury. The results showed that propofol conditioning increased both serum and cell culture media concentrations of endocannabinoids including anandamide (AEA and 2-arachidonoylglycerol (2-AG detected by LC-MS/MS. The reductions of myocardial infarct size in vivo and cardiomyocyte apoptosis and death in vitro were accompanied with attenuations of oxidative injuries manifested as decreased reactive oxygen species (ROS, malonaldehyde (MDA, and MPO (myeloperoxidase and increased superoxide dismutase (SOD production. These effects were mimicked by either URB597, a selective endocannabinoids degradation inhibitor, or VDM11, a selective endocannabinoids reuptake inhibitor. In vivo study further validated that the cardioprotective and antioxidative effects of propofol were reversed by selective CB2 receptor antagonist AM630 but not CB1 receptor antagonist AM251. We concluded that enhancing endogenous endocannabinoid release and subsequent activation of CB2 receptor signaling represent a major mechanism whereby propofol conditioning confers antioxidative and cardioprotective effects against myocardial I/R injury.

  16. Ursodeoxycholic Acid in Treatment of Non-cholestatic Liver Diseases: A Systematic Review.

    Science.gov (United States)

    Reardon, Jillian; Hussaini, Trana; Alsahafi, Majid; Azalgara, Vladimir Marquez; Erb, Siegfried R; Partovi, Nilufar; Yoshida, Eric M

    2016-09-28

    Aims: To systematically evaluate the literature for evidence to support the use of bile acids in non-cholestatic liver conditions. Methods: Searches were conducted on the databases of Medline (1948-March 31, 2015), Embase (1980-March 31, 2015) and the Cochrane Central Register of Controlled Trials, and on Google and Google Scholar to identify articles describing ursodeoxycholic acid (UDCA) and its derivatives for non-cholestatic hepatic indications. Combinations of the following search terms were used: ursodeoxycholic acid, ursodiol, bile acids and/or salts, non alcoholic fatty liver, non alcoholic steatohepatitis, fatty liver, alcoholic hepatitis, alcohol, liver disease, autoimmune, autoimmune hepatitis, liver transplant, liver graft, transplant rejection, graft rejection, ischemic reperfusion injury, reperfusion injury, hepatitis B, hepatitis C, viral hepatitis, chronic hepatitis, acute hepatitis, transaminases, alanine transaminase, liver enzymes, aspartate aminotransferase, gamma-glutamyl transferase, gamma-glutamyl transpeptidase, bilirubin, alkaline phosphatase. No search limits were applied. Additionally, references of the included studies were reviewed to identify additional articles. Results: The literature search yielded articles meeting inclusion criteria for the following indications: non-alcoholic fatty liver disease (n = 5); alcoholic liver disease (n = 2); autoimmune hepatitis (n = 6), liver transplant (n = 2) and viral hepatitis (n = 9). Bile acid use was associated with improved normalization of liver biochemistry in non-alcoholic fatty liver disease, autoimmune hepatitis and hepatitis B and C infections. In contrast, liver biochemistry normalization was inconsistent in alcoholic liver disease and liver transplantation. The majority of studies reviewed showed that normalization of liver biochemistry did not correlate to improvement in histologic disease. In the prospective trials reviewed, adverse effects associated with the bile acids were limited

  17. Induction of intestinal ischemia reperfusion injury by portal vein outflow occlusion in rats

    International Nuclear Information System (INIS)

    Vincenti, M.; Behrends, M.; Hirose, Ryutaro; Liu, T.; Niemann, C.U.; Dang, K.; Park, Y.H.; Blasi-Ibanez, A.; Serkova, N.J.

    2010-01-01

    Intestinal ischemia can occur from mesenteric artery (MA) occlusion and portal vein (PV) occlusion. The degree and mechanisms of ischemia/reperfusion (I/R) injury in these conditions may differ. Metabolic changes are seen early in I/R. This study compares tissue histology, inflammation, and metabolic response during small bowel I/R due to superior MA or PV occlusion. Anesthetized male Wistar rats (250-300 g) underwent laparotomy followed by MA or PV occlusion for 40 min. After 120 min of reperfusion, small bowel tissue was collected. The expression of heat shock protein (HSP)-32 and HSP70 was evaluated to compare physiological stress responses between groups. Metabolic profiles were obtained using 1 H-nuclear magnetic resonance spectroscopy (NMR)-based quantitative metabolomics. Histological injury of small bowel was graded from 0 (normal) to 4 (extensive ischemic damage). Protein expression of HSP32 and HSP70 increased when compared to sham but was not different in the MA I/R and PV I/R groups. Metabolic profiles demonstrated decreased glucose levels and highly elevated tissue lactate and amino acids and fatty acids following I/R, with more pronounced changes with PV occlusion. Lipid peroxidation was equally increased in both groups, while depletion of reduced glutathione (GSH) was more severe with MA occlusion. The epithelial necrosis score was higher with MA (3.5±0.6) than with PV occlusion (2.3±0.8). Histological injury of the intestine is less pronounced following PV occlusion, most likely due to higher oxygen and substrate availability during I/R by PV occlusion. This conclusion is supported by a more pronounced metabolic synthetic response (increased glycolysis and fatty acid and amino acid accumulation) with PV occlusion, while oxidative stress was higher with MA occlusion. The inflammatory response showed little difference between the groups. (author)

  18. Hearts from mice fed a non-obesogenic high-fat diet exhibit changes in their oxidative state, calcium and mitochondria in parallel with increased susceptibility to reperfusion injury.

    Science.gov (United States)

    Littlejohns, Ben; Pasdois, Philippe; Duggan, Simon; Bond, Andrew R; Heesom, Kate; Jackson, Christopher L; Angelini, Gianni D; Halestrap, Andrew P; Suleiman, M-Saadeh

    2014-01-01

    High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults.

  19. Protective effect and its mechanism of curcumin on ischemia-reperfusion injury of cerebral cortex in rats

    Directory of Open Access Journals (Sweden)

    Li LIU

    2013-03-01

    Full Text Available Objective  To investigate the effect of curcumin pretreatment on the expression of uncoupling protein 2 (UCP2 and mitochondrial transcription factor A (MTFA in rats' cerebral cortex against focal ischemia reperfusion injury. Methods  Eighty male SD rats weighed 220g–300g were randomly divided into 4 groups: sham-operated group, ischemia/reperfusion (I/R group, curcumine 50mg/kg+I/R (low dose group, and curcumine 100mg/kg+I/R (high dose group. The common carotid artery, external carotid artery and internal carotid artery on the right side were exposed in the sham-operated group. Animals of the other groups were subjected to a 2-hour period of right middle cerebral artery occlusion, followed by 24 hours of reperfusion, and then they were sacrificed. Curcumin was administered (ip in a dose of 50mg/kg (low dose group or 100mg/kg (high dose group for 5 days, respectively, prior to arterial occlusion. The pathological changes in neurons and their mitochondria in the cerebral cortex supplied by middle cerebral artery were observed with Nissl staining and electron microscope, respectively. The expressions of UCP2 and MTFA in corresponding cotex were assessed by immunohistochemistry and RT-PCR. Results  Compared with sham-operated group, animals in I/R group presented edema of neurons in the corresponding cortex, reduction in the number of Nissl bodies, and swelling of mitochondria with broken, even lysis of cristae. Low dose and high dose of curcumin pretreatment before brain ischemia significantly alleviated the loss of neurons and the damage of mitochondria, accompanied with an increase in the expression of UCP2 and TFAM (P<0.05, and the changes appeared a dose-dependent manner (P<0.05. Conclusions  Curcumin may prevent neurons from focal cerebral ischemia reperfusion injury by up-regulating UCP2 and MTFA. Regulation of mitochondrial biogenesis may probably be a potential target of curcumin as a neuroprotective drug.

  20. Heme oxygenase-1 mediates the protective effects of ischemic preconditioning on mitigating lung injury induced by lower limb ischemia-reperfusion in rats.

    Science.gov (United States)

    Peng, Tsui-Chin; Jan, Woan-Ching; Tsai, Pei-Shan; Huang, Chun-Jen

    2011-05-15

    Lower limb ischemia-reperfusion (I/R) imposes oxidative stress, elicits inflammatory response, and subsequently induces acute lung injury. Ischemic preconditioning (IP), a process of transient I/R, mitigates the acute lung injury induced by I/R. We sought to elucidate whether the protective effects of IP involve heme oxygenase-1 (HO-1). Adult male rats were randomized to receive I/R, I/R plus IP, I/R plus IP plus the HO-1 inhibitor tin protoporphyrin (SnPP) (n = 12 in each group). Control groups were run simultaneously. I/R was induced by applying rubber band tourniquet high around each thigh for 3 h followed by reperfusion for 3 h. To achieve IP, three cycles of bilateral lower limb I/R (i.e., ischemia for 10 min followed by reperfusion for 10 min) were performed. IP was performed immediately before I/R. After sacrifice, degree of lung injury was determined. Histologic findings, together with assays of leukocyte infiltration (polymorphonuclear leukocytes/alveoli ratio and myeloperoxidase activity) and lung water content (wet/dry weight ratio), confirmed that I/R induced acute lung injury. I/R also caused significant inflammatory response (increases in chemokine, cytokine, and prostaglandin E(2) concentrations), imposed significant oxidative stress (increases in nitric oxide and malondialdehyde concentrations), and up-regulated HO-1 expression in lung tissues. IP significantly enhanced HO-1 up-regulation and, in turn, mitigated oxidative stress, inflammatory response, and acute lung injury induced by I/R. In addition, the protective effects of IP were counteracted by SnPP. The protective effects of IP on mitigating acute lung injury induced by lower limb I/R are mediated by HO-1. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Study of the influence and molecular mechanism of ticagrelor on cerebral ischemia reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Gui-Fa Chen

    2017-06-01

    Full Text Available Objective: To study the influence and molecular mechanism of ticagrelor on cerebral ischemia reperfusion injury in rats. Methods: SD rats were selected as experimental animals and divided into control group, model group, ticagrelor group and clopidogrel group, cerebral ischemic reperfusion injury models were made, then ticagrelor group were given intragastric administration of 150 mg ticagrelor, clopidogrel group were given intragastric administration of 90 mg clopidogrel. 1 week after intervention, the brain water content as well as the contents of oxidative stress molecules and inflammatory factors were measured. Results: Water content in brain, MDA, Ox-LDL, NF-kB, TNF-α, IL-1β and IL-6 contents in brain tissue as well as TNF-α, IL-1β and IL-6 contents in serum of model group were significantly higher than those of control group while SOD, GSH-Px and Prdx6 contents in brain tissue were significantly lower than those of control group; water content in brain, MDA, Ox-LDL, NFkB, TNF-α, IL-1β and IL-6 contents in brain tissue as well as TNF-α, IL-1β and IL-6 contents in serum of ticagrelor group and clopidogrel group were significantly lower than those of model group while SOD, GSH-Px and Prdx6 contents in brain tissue were significantly higher than those of model group; water content in brain, MDA, Ox-LDL, NF-kB, TNF-α, IL-1β and IL-6 contents in brain tissue as well as TNF-α, IL-1β and IL-6 contents in serum of ticagrelor group were significantly lower than those of clopidogrel group while SOD, GSHPx and Prdx6 contents in brain tissue were significantly higher than those of clopidogrel group. Conclusion: Ticagrelor can be more effective in inhibiting oxidative stress response and inflammatory response, and reducing the cerebral ischemia reperfusion injury than clopidogrel.

  2. Comparison of the effects of dexmedetomidine administered at two different times on renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Edip Gonullu

    2014-05-01

    Full Text Available Background and objectives: We investigated the effect of dexmedetomidine on ischemic renal failure in rats. Methods: In the present study, 26 male adult Wistar albino rats weighting 230–300 g were randomly separated into four groups: sham-operated (n = 5, ischemia reperfusion (IR (IR group, n = 7, IR/reperfusion treatment with dexmedetomidine (Dex. R group, n = 7 and IR/pre-ischemic treatment with dexmedetomidine (Dex. I group, n = 7. In the first group, sham operation was achieved and renal clamps were not applied. For the IR group, renal ischemia was induced by occlusion of the bilateral renal arteries and veins for 60 min followed by reperfusion for 24 h. For the Dex. R and Dex. I groups, the same surgical procedure as in the IR group was performed, and dexmedetomidine (100 mcg/kg intraperitoneal was administrated at the 5th min after reperfusion and before ischemia. At the end of reperfusion, blood samples were drawn, the rats were sacrificed, and the left kidney was processed for histopathology. Results: The blood urea nitrogen (BUN levels in groups Dex. R and Dex. I were significantly lower than in the IR group (p = 0.015, p = 0.043, although urine flow was significantly higher in group Dex. R (p = 0.003. The renal histopathological score in the IR group was significantly higher than in the other groups. There was no significant difference between the Dex. R and Dex. I groups. Conclusions: The results were shown that administration of dexmedetomidine reduced the renal IR injury histomorphologically. Administration of dexmedetomidine in the reperfusion period was considered as more effective due to increase in urinary output and decrease in BUN levels. Keywords: Kidney, Ischemia/reperfusion, Dexmedetomidine, Acute renal failure

  3. LC-MS/MS profiling and neuroprotective effects of Mentat® against transient global ischemia and reperfusion-induced brain injury in rats.

    Science.gov (United States)

    Viswanatha, Gollapalle Lakshminarayanashastry; Kumar, Lakkavalli Mohan Sharath; Rafiq, Mohamed; Kavya, Kethaganahalli Jayaramaiah; Thippeswamy, Agadi Hiremath; Yuvaraj, Huvvinamadu Chandrashekarappa; Azeemuddin, Mohammed; Anturlikar, Suryakanth Dattatreya; Patki, Pralhad Sadashiv; Babu, Uddagiri Venkanna; Ramakrishnan, Shyam

    2015-01-01

    The aim of this study was to evaluate the possible beneficial effects of Mentat against transient global ischemia and reperfusion-induced brain injury in rats. The neuroprotective effects of Mentat were evaluated against transient global ischemia and reperfusion (I/R)-induced brain injury in rats. Various neurobehavioral and biochemical parameters were assessed, followed by morphologic and histopathologic evaluation of brain tissue to conclude the protective effect of Mentat. Additionally, in vitro antioxidant assays were performed to explore the antioxidant capacity of Mentat and detailed liquid chromatography-mass spectrometry (LC-MS/MS) profiling was carried out to identify the active phytoconstituents responsible for the protective effects of Mentat. Sixty minutes of transient global ischemia followed by 24 h reperfusion (I/R) caused significant alterations in the cognitive and neurologic functions in the ischemia control group (P cerebral infarct area (P protective effects. These findings suggest that Mentat is a neuroprotective agent that may be a useful adjunct in the management of ischemic stroke and its rehabilitation especially with respect to associated memory impairment and other related neurologic conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Selective Cannabinoid 2 Receptor Stimulation Reduces Tubular Epithelial Cell Damage after Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Pressly, Jeffrey D; Mustafa, Suni M; Adibi, Ammaar H; Alghamdi, Sahar; Pandey, Pankaj; Roy, Kuldeep K; Doerksen, Robert J; Moore, Bob M; Park, Frank

    2018-02-01

    Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI), which is an increasing problem in the clinic and has been associated with elevated rates of mortality. Therapies to treat AKI are currently not available, so identification of new targets that can be modulated to ameliorate renal damage upon diagnosis of AKI is essential. In this study, a novel cannabinoid receptor 2 (CB2) agonist, SMM-295 [3'-methyl-4-(2-(thiophen-2-yl)propan-2-yl)biphenyl-2,6-diol], was designed, synthesized, and tested in vitro and in silico. Molecular docking of SMM-295 into a CB2 active-state homology model showed that SMM-295 interacts well with key amino acids to stabilize the active state. In human embryonic kidney 293 cells, SMM-295 was capable of reducing cAMP production with 66-fold selectivity for CB2 versus cannabinoid receptor 1 and dose-dependently increased mitogen-activated protein kinase and Akt phosphorylation. In vivo testing of the CB2 agonist was performed using a mouse model of bilateral IRI, which is a common model to mimic human AKI, where SMM-295 was immediately administered upon reperfusion of the kidneys after the ischemia episode. Histologic damage assessment 48 hours after reperfusion demonstrated reduced tubular damage in the presence of SMM-295. This was consistent with reduced plasma markers of renal dysfunction (i.e., creatinine and neutrophil gelatinase-associated lipocalin) in SMM-295-treated mice. Mechanistically, kidneys treated with SMM-295 were shown to have elevated activation of Akt with reduced terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling (TUNEL)-positive cells compared with vehicle-treated kidneys after IRI. These data suggest that selective CB2 receptor activation could be a potential therapeutic target in the treatment of AKI. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    Science.gov (United States)

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  6. Normal versus sickle red blood cells: hemodynamic and permeability characteristics in reperfusion lung injury.

    Science.gov (United States)

    Haynes, J; Seibert, A; Shah, A; Taylor, A

    1990-01-01

    Decreased deformability and increased internal viscosity of the sickle red blood cell (SRBC) contribute to abnormal flow in the microcirculation. Since the lungs are commonly affected in sickle cell disease, we compared the hemodynamics of the normal human red blood cell (NRBC) with the SRBC in the pulmonary circulation. The SRBC has decreased antioxidant enzyme activities compared with the NRBC. Thus, using the capillary filtration coefficient (Kfc), we determined the ability of the NRBC and the SRBC to attenuate the increased permeability and resulting edema seen in the oxidant stress of reperfusion lung injury (RLI). We found that lungs perfused with a 5% SRBC perfusate had higher pulmonary arterial pressures (Ppa) and resistances than lungs perfused with a 5% NRBC perfusate. Lungs made ischemic and reperfused with a physiologic cell-free perfusate resulted in a significant increase (P less than .05) in Kfc compared with the preischemic Kfc (.45 +/- .06 to 1.4 +/- 22 mL.min-1.cm H2O.100 g-1). In lungs reperfused with 5% RBC-containing perfusates, the Kfc did not change from preischemic Kfc with NRBCs and decreased from the preischemic Kfc with SRBCs. These findings suggest that the SRBC causes physiologically significant increases in Ppa and resistances and the SRBC, like the NRBC, offers apparent protection in RLI.

  7. Toll-like receptor 2 mediates ischemia-reperfusion injury of the small intestine in adult mice.

    Directory of Open Access Journals (Sweden)

    Toshio Watanabe

    Full Text Available Toll-like receptor 2 (TLR2 recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO, a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α, intercellular adhesion molecule-1 (ICAM-1, and cyclooxygenase-2 (COX-2 in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory

  8. The effect of Aqueous Purslane (Portulaca Oleracea Extract on Renal Ischemia/Reperfusion Injury in Rat

    Directory of Open Access Journals (Sweden)

    syead Reza Fatemi Tabatabaei

    2015-07-01

    Full Text Available Background: According to the previous studies Portulaca oleracea (PO has antioxidative effects and several factors such as oxidative stress is involved in the renal injury caused by ischemia - reperfusion (I/R. Therefore, the goal of present study is to evaluate the renal I/R injury in rats received aqueous extracts of PO (AEPO. Material and Methods: First, the right nephrectomy was performed in adult male Wistar rats and after 20 days they were divided into 5 groups (6=n. Sham operated+vehicle (sham, sham operated+ AEPO300mg/kg (AEPO group, I/R, AEPO150+I/R and AEPO300+I/R. Each group was treated orally for 5 consecutive days by 150 or 300 mg/kg of either AEPO or saline. On the fifth day of treatment, I/R (45 min ischemia/24 hours reperfusion or sham operation was performed on the left kidney and amounts of urea and creatinine in serum and malondialdehyde (MDA, superoxide dismutase (SOD, glutathione (GSH and total antioxidant activity (TAA in the kidney tissue were measured. Comparisons between groups were analyzed by ANOVA and LSD test. P values of 0.05 or less were considered statistically significant. Results: Induction of I/R increased urea and creatinine levels. AEPO had no effect on serum urea and creatinine, of non-ischemic animals, but increased the levels of urea and creatinine in I/R and treatment groups. SOD activity was significantly higher in all groups (except AEPO300 group compared to the sham group. However the levels of MDA, GSH and TAA of I/R and treatment groups did not show any significant differences in comparison to sham group. Conclusion: According to the results of this study, the PO aqueous extract did not ameliorate the I/R injury and even possibly some ingredients in the extract aggravate the renal I/R injury.

  9. Role of Extracellular RNA and TLR3‐Trif Signaling in Myocardial Ischemia–Reperfusion Injury

    Science.gov (United States)

    Chen, Chan; Feng, Yan; Zou, Lin; Wang, Larry; Chen, Howard H.; Cai, Jia‐Yan; Xu, Jun‐Mei; Sosnovik, David E.; Chao, Wei

    2014-01-01

    Background Toll‐like receptor 3 (TLR3) was originally identified as the receptor for viral RNA and represents a major host antiviral defense mechanism. TLR3 may also recognize extracellular RNA (exRNA) released from injured tissues under certain stress conditions. However, a role for exRNA and TLR3 in the pathogenesis of myocardial ischemic injury has not been tested. This study examined the role of exRNA and TLR3 signaling in myocardial infarction (MI), apoptosis, inflammation, and cardiac dysfunction during ischemia‐reperfusion (I/R) injury. Methods and Results Wild‐type (WT), TLR3−/−, Trif−/−, and interferon (IFN) α/β receptor‐1 deficient (IFNAR1−/−) mice were subjected to 45 minutes of coronary artery occlusion and 24 hours of reperfusion. Compared with WT, TLR3−/− or Trif−/− mice had smaller MI and better preserved cardiac function. Surprisingly, unlike TLR(2/4)‐MyD88 signaling, lack of TLR3‐Trif signaling had no impact on myocardial cytokines or neutrophil recruitment after I/R, but myocardial apoptosis was significantly attenuated in Trif−/− mice. Deletion of the downstream IFNAR1 had no effect on infarct size. Importantly, hypoxia and I/R led to release of RNA including microRNA from injured cardiomyocytes and ischemic heart, respectively. Necrotic cardiomyocytes induced a robust and dose‐dependent cytokine response in cultured cardiomyocytes, which was markedly reduced by RNase but not DNase, and partially blocked in TLR3‐deficient cardiomyocytes. In vivo, RNase administration reduced serum RNA level, attenuated myocardial cytokine production, leukocytes infiltration and apoptosis, and conferred cardiac protection against I/R injury. Conclusion TLR3‐Trif signaling represents an injurious pathway during I/R. Extracellular RNA released during I/R may contribute to myocardial inflammation and infarction. PMID:24390148

  10. Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model.

    Directory of Open Access Journals (Sweden)

    Chung-Kan Peng

    Full Text Available Lung ischemia reperfusion injury (LIRI is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75% diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS, proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF. The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway.

  11. Real-time digital imaging of leukocyte-endothelial interaction in ischemia-reperfusion injury (IRI) of the rat cremaster muscle.

    Science.gov (United States)

    Thiele, Jan R; Goerendt, Kurt; Stark, G Bjoern; Eisenhardt, Steffen U

    2012-08-05

    Ischemia-reperfusion injury (IRI) has been implicated in a large array of pathological conditions such as cerebral stroke, myocardial infarction, intestinal ischemia as well as following transplant and cardiovascular surgery. Reperfusion of previously ischemic tissue, while essential for the prevention of irreversible tissue injury, elicits excessive inflammation of the affected tissue. Adjacent to the production of reactive oxygen species, activation of the complement system and increased microvascular permeability, the activation of leukocytes is one of the principle actors in the pathological cascade of inflammatory tissue damage during reperfusion. Leukocyte activation is a multistep process consisting of rolling, firm adhesion and transmigration and is mediated by a complex interaction between adhesion molecules in response to chemoattractants such as complement factors, chemokines, or platelet-activating factor. While leukocyte rolling in postcapillary venules is predominantly mediated by the interaction of selectins with their counter ligands, firm adhesion of leukocytes to the endothelium is selectin-controlled via binding to intercellular adhesion molecules (ICAM) and vascular cellular adhesion molecules (VCAM). Gold standard for the in vivo observation of leukocyte-endothelial interaction is the technique of intravital microscopy, first described in 1968. Though various models of IRI (ischemia-reperfusion injury) have been described for various organs, only few are suitable for direct visualization of leukocyte recruitment in the microvascular bed on a high level of image quality. We here promote the digital intravital epifluorescence microscopy of the postcapillary venule in the cremasteric microcirculation of the rat as a convenient method to qualitatively and quantitatively analyze leukocyte recruitment for IRI-research in striated muscle tissue and provide a detailed manual for accomplishing the technique. We further illustrate common pitfalls and

  12. Lineage fate of ductular reactions in liver injury and carcinogenesis.

    Science.gov (United States)

    Jörs, Simone; Jeliazkova, Petia; Ringelhan, Marc; Thalhammer, Julian; Dürl, Stephanie; Ferrer, Jorge; Sander, Maike; Heikenwalder, Mathias; Schmid, Roland M; Siveke, Jens T; Geisler, Fabian

    2015-06-01

    Ductular reactions (DRs) are observed in virtually all forms of human liver disease; however, the histogenesis and function of DRs in liver injury are not entirely understood. It is widely believed that DRs contain bipotential liver progenitor cells (LPCs) that serve as an emergency cell pool to regenerate both cholangiocytes and hepatocytes and may eventually give rise to hepatocellular carcinoma (HCC). Here, we used a murine model that allows highly efficient and specific lineage labeling of the biliary compartment to analyze the histogenesis of DRs and their potential contribution to liver regeneration and carcinogenesis. In multiple experimental and genetic liver injury models, biliary cells were the predominant precursors of DRs but lacked substantial capacity to produce new hepatocytes, even when liver injuries were prolonged up to 12 months. Genetic modulation of NOTCH and/or WNT/β-catenin signaling within lineage-tagged DRs impaired DR expansion but failed to redirect DRs from biliary differentiation toward the hepatocyte lineage. Further, lineage-labeled DRs did not produce tumors in genetic and chemical HCC mouse models. In summary, we found no evidence in our system to support mouse biliary-derived DRs as an LPC pool to replenish hepatocytes in a quantitatively relevant way in injury or evidence that DRs give rise to HCCs.

  13. Natural history of nonoperative management for grade 4 and 5 liver and spleen injuries in children.

    Science.gov (United States)

    Yang, Jeannie C; Sharp, Susan W; Ostlie, Daniel J; Holcomb, George W; St Peter, Shawn D

    2008-12-01

    Nonoperative management is standard treatment of blunt liver or spleen injuries. However, there are few reports outlining the natural history and outcomes of severe blunt hepatic and splenic trauma. Therefore, we reviewed our experience with nonoperative management of grade 4 or 5 liver and spleen injuries. A retrospective analysis was performed on patients with grade 4 or 5 (high-grade) blunt liver and/or spleen injuries from April 1997 to July 2007 at our children's hospital. Demographics, hospital course data, and follow-up data were analyzed. There were 74 high-grade injuries in 72 patients. There were 30 high-grade liver and 44 high-grade spleen injuries. Two patients had both a liver and splenic injury. High-grade liver injuries had a significantly longer length of intensive care and hospital stay compared to high-grade spleen injuries. There were also a significantly higher number of transfusions, radiographs, and total charges in the high-grade liver injuries when compared to the high-grade splenic injuries. The only mortality from solid organ injury was a grade 4 liver injury with portal vein disruption. In contrast, there was only one complication from a high-grade splenic injury-a pleural effusion treated with thoracentesis. There were 5 patients with complications from their liver injury requiring 18 therapeutic procedures. Three patients (10%) with liver injury required readmission as follows: one 5 times, one 3 times, and another one time. Patients with high-grade liver injuries have a longer recovery, more complications, and greater use of resources than in patients with similar injuries to the spleen.

  14. Liver Injury from Herbal, Dietary, and Weight Loss Supplements: a Review

    Science.gov (United States)

    Zheng, Elizabeth X.; Navarro, Victor J.

    2015-01-01

    Herbal and dietary supplement usage has increased steadily over the past several years in the United States. Among the non-bodybuilding herbal and dietary supplements, weight loss supplements were among the most common type of HDS implicated in liver injury. While drug induced liver injury is rare, its consequences are significant and on the rise. The purpose of this review is to highlight case reports of weight loss products such as Hydroxycut and OxyElite Pro as one form of HDS that have hepatotoxic potential and to characterize its clinical effects as well as pattern of liver injury. We also propose future strategies in the identification and study of potentially hepatotoxic compounds in an effort to outline a diagnostic approach for identifying any drug induced liver injury. PMID:26357638

  15. Chronic intermittent hypoxia predisposes to liver injury.

    Science.gov (United States)

    Savransky, Vladimir; Nanayakkara, Ashika; Vivero, Angelica; Li, Jianguo; Bevans, Shannon; Smith, Philip L; Torbenson, Michael S; Polotsky, Vsevolod Y

    2007-04-01

    Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH). OSA is associated with nonalcoholic steatohepatitis (NASH) in obese subjects. The aim of this study was to investigate the effects of CIH on the liver in the absence of obesity. Lean C57BL/6J mice (n = 15) on a regular chow diet were exposed to CIH for 12 weeks and compared with pair-fed mice exposed to intermittent air (IA, n = 15). CIH caused liver injury with an increase in serum ALT (224 +/- 39 U/l versus 118 +/- 22 U/l in the IA group, P fasting serum insulin levels, and mild elevation of fasting serum total cholesterol and triglycerides (TG). Liver TG content was unchanged, whereas cholesterol content was decreased. Histology showed swelling of hepatocytes, no evidence of hepatic steatosis, and marked accumulation of glycogen in hepatocytes. CIH led to lipid peroxidation of liver tissue with a malondialdehyde (MDA)/free fatty acids (FFA) ratio of 0.54 +/- 0.07 mmol/mol versus 0.30 +/- 0.01 mmol/mol in control animals (P obesity, CIH leads to mild liver injury via oxidative stress and excessive glycogen accumulation in hepatocytes and sensitizes the liver to a second insult, whereas NASH does not develop.

  16. The role of heme oxygenase-1 in drug metabolizing dysfunction in the alcoholic fatty liver exposed to ischemic injury

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Won [Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727 (Korea, Republic of); Kang, Jung-Woo [School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 (Korea, Republic of); Lee, Sun-Mee, E-mail: sunmee@skku.edu [School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 (Korea, Republic of)

    2016-02-01

    This study was designed to investigate the role of heme oxygenase-1 (HO-1) in hepatic drug metabolizing dysfunction after ischemia/reperfusion (IR) in alcoholic fatty liver (AFL). Rats were fed a Lieber–DeCarli diet for five weeks to allow for development of AFL and were then subjected to 90 min of hepatic ischemia and 5 h of reperfusion. Rats were pretreated with hemin (HO-1 inducer) or ZnPP (HO-1 inhibitor) for 16 h and 3 h before hepatic ischemia. After hepatic IR, ethanol diet (ED)-fed rats had higher serum aminotransferase activities and more severe hepatic necrosis compared to the control diet (CD)-fed rats. These changes were attenuated by hemin and exacerbated by ZnPP. The activity and gene expression of HO-1 and its transcription factor (Nrf2) level increased significantly after 5 h of reperfusion in CD-fed rats but not in ED-fed rats. After reperfusion, cytochrome P450 (CYP) 1A1, 1A2, and 2B1 activities were reduced to levels lower than those observed in sham group, whereas CYP2E1 activity increased. The decrease in CYP2B1 activity and the increase in CYP2E1 activity were augmented after hepatic IR in ED-fed animals. These changes were significantly attenuated by hemin but aggravated by ZnPP. Finally, CHOP expression and PERK phosphorylation, microsomal lipid peroxidation, and levels of proinflammatory mediators increased in ED-fed rats compared to CD-fed rats after reperfusion. These increases were attenuated by hemin. Our results suggest that AFL exacerbates hepatic drug metabolizing dysfunction during hepatic IR via endoplasmic reticulum stress and lipid peroxidation and this is associated with impaired HO-1 induction. - Highlights: • Endogenous HO-1 is generated in insufficient quantities in steatotic ischemic injury. • Impaired HO-1 induction leads to excessive ER stress response and lipid peroxidation. • Alcoholic steatosis exacerbates IR-induced hepatic drug-metabolizing dysfunction. • HO-1 induction is required for appropriate medication

  17. Effect of limb ischemic preconditioning on myocardial apoptosis-related proteins in ischemia-reperfusion injury

    OpenAIRE

    GAO, JIANZHI; ZHAO, LINJING; WANG, YONGLING; TENG, QINGLEI; LIANG, LIDONG; ZHANG, JINYING

    2013-01-01

    The aim of this study was to investigate the effect of limb ischemic preconditioning (LIPC) on myocardial apoptosis in myocardial ischemia-reperfusion injury (MIRI), as well as the regulation of caspase-3 and the B cell lymphoma 2 (Bcl-2) gene in LIPC. A total of 50 rats were divided randomly into 5 groups (n=10). Four rats in each group were drawn out for detection of apoptosis. The sham, MIRI and LIPC groups underwent surgery without additional treatment. In the LY294002 group, LY294002 pre...

  18. Effects of a Preconditioning Oral Nutritional Supplement on Pig Livers after Warm Ischemia

    Science.gov (United States)

    Nickkholgh, Arash; Li, Zhanqing; Yi, Xue; Mohr, Elvira; Liang, Rui; Mikalauskas, Saulius; Gross, Marie-Luise; Zorn, Markus; Benzing, Steffen; Schneider, Heinz; Büchler, Markus W.; Schemmer, Peter

    2012-01-01

    Background. Several approaches have been proposed to pharmacologically ameliorate hepatic ischemia/reperfusion injury (IRI). This study was designed to evaluate the effects of a preconditioning oral nutritional supplement (pONS) containing glutamine, antioxidants, and green tea extract on hepatic warm IRI in pigs. Methods. pONS (70 g per serving, Fresenius Kabi, Germany) was dissolved in 250 mL tap water and given to pigs 24, 12, and 2 hrs before warm ischemia of the liver. A fourth dose was given 3 hrs after reperfusion. Controls were given the same amount of cellulose with the same volume of water. Two hours after the third dose of pONS, both the portal vein and the hepatic artery were clamped for 40 min. 0.5, 3, 6, and 8 hrs after reperfusion, heart rate (HR), mean arterial pressure (MAP), central venous pressure (CVP), portal venous flow (PVF), hepatic arterial flow (HAF), bile flow, and transaminases were measured. Liver tissue was taken 8 hrs after reperfusion for histology and immunohistochemistry. Results. HR, MAP, CVP, HAF, and PVF were comparable between the two groups. pONS significantly increased bile flow 8 hrs after reperfusion. ALT and AST were significantly lower after pONS. Histology showed significantly more severe necrosis and neutrophil infiltration in controls. pONS significantly decreased the index of immunohistochemical expression for TNF-α, MPO, and cleaved caspase-3 (P < 0.001). Conclusion. Administration of pONS before and after tissue damage protects the liver from warm IRI via mechanisms including decreasing oxidative stress, lipid peroxidation, apoptosis, and necrosis. PMID:22791934

  19. Comparison of isolated and concomitant liver injuries: is hepatic trauma entirely responsible for the outcome?

    Science.gov (United States)

    Yazici, P; Aydin, U; Sozbilen, M

    2010-01-01

    This study was undertaken to examine both isolated and concomitant liver injuries to clarify the role of liver trauma on outcome. This retrospective study was a review of all abdominal trauma patients who presented with liver injuries, with or without concomitant injury at Ege University School of Medicine over a 3-year period. Presentation, injury grade, management, and outcomes were analyzed. Patients with isolated hepatic injury (Group A) were compared with patients who had concomitant hepatic injury (liver and spleen/small bowel) (Group B). Significance was set at 95% confidence intervals. Of 368 patients, 80 (21%) presented with liver injury. Of these, the aetiology was as follows: 53 (66.2%) blunt injury, 19 (23%) penetrating injury, and 8 (10%) gun shot trauma. There were 38 patients in Group A and 42 in Group B. Of these 42 patients, 19 were diagnosed with serious types of injury ; eight thoracic, three open long bone fracture, one intra-cardiac, one intracranial. Six additional patients were observed with injuries to large abdominal vessels. Eleven patients (28.9%) with isolated hepatic injury were managed non-operatively. Mortality, intensive care unit and hospital length of stay, and transfusion requirements were significantly higher in Group B. Only the number of transfused blood units and the grade of liver injury were found to be effective on outcome whereas stepwise regression analysis revealed that injury type (penetrating) and blood transfusion were predictive for mortality. This study highlighted that although isolated liver injury results in good outcome with non-operative management, concomitant injuries to the liver lead to a higher failure and mortality rate. However, liver injury itself is rarely responsible for death.

  20. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion

    Directory of Open Access Journals (Sweden)

    Morrison Helena W

    2013-01-01

    Full Text Available Abstract Background Microglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion. Methods Male C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h. The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function. Results Quantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to

  1. Effect of NADPH oxidase inhibitor-apocynin on the expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 exposed renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Zhiming Li

    2015-01-01

    Full Text Available This study was designed to evaluate whether NADPH oxidase inhibitor (apocynin preconditioning induces expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 to protect against renal ischemia/reperfusion (I/R injury (RI/RI in rats. Rats were pretreated with 50 mg/kg apocynin, then subjected to 45 min ischemia and 24 h reperfusion. The results indicated that apocynin preconditioning improved the recovery of renal function and nitroso-redox balance, reduced oxidative stress injury and inflammation damage, and upregulated expression of SHP-1 as compared to RI/RI group. Therefore our study demonstrated that apocynin preconditioning provided a protection to the kidney against I/R injury in rats partially through inducing expression of SHP-1.

  2. Blood rheology of angina pectoris patients with myocardial injury after ischemia reperfusion and its effect on thromboxane B2 levels.

    Science.gov (United States)

    Wang, Wenlong; Huang, Xiaohui; Sun, Yiyong; Zhang, Jinying

    2018-01-01

    This study investigated the changes in the blood rheology of patients with angina pectoris and ischemia reperfusion injury and their effect on thromboxane B 2 (TXB 2 ) levels to examine their relationship. Forty patients with unstable angina pectoris who underwent elective percutaneous coronary intervention (PCI) were selected for the unstable angina group (UA group) and forty patients deemed free of coronary heart disease by coronary angiography were selected for the control group. Venous blood samples were drawn from all participants; patients in the UA group had blood drawn 1 day before and 1 day after the PCI procedure. Blood samples were used to analyze blood rheology and examine hemodynamic parameters, at the same time radioimmunoassay was applied to measure the concentrations of serum endothelin-1 (ET-1) and TXB 2 , and an automatic biochemical analyzer was used to detect the content of superoxide dismutase (SOD) and malondialdehyde (MDA). Our results showed the patients in the UA group all presented hyperviscosity; however the levels were higher for the patients in the UA group (after surgery) than for those in the UA group (before surgery). Patients in the control group exhibited normal levels, and the differences among groups were significant in pairwise comparisons (Pangina pectoris and ischemia reperfusion injury. The higher than normal TXB 2 levels can be used as a marker of platelet activation and a reference for clinical risk stratification, thus having great significance for the prevention and treatment of ischemia reperfusion injury and assessment of disease progression.

  3. Comparison of the effects of dexmedetomidine administered at two different times on renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Edip Gonullu

    2014-06-01

    Full Text Available Background and objectives: We investigated the effect of dexmedetomidine on ischemic renal failure in rats. Methods: In the present study, 26 male adult Wistar albino rats weighting 230-300 g were randomly separated into four groups: sham-operated (n = 5, ischemia reperfusion (IR (IR group, n = 7, IR/reperfusion treatment with dexmedetomidine (Dex. R group, n = 7 and IR/pre-ischemic treatment with dexmedetomidine (Dex. I group, n = 7. In the first group, sham operation was achieved and renal clamps were not applied. For the IR group, renal ischemia was induced by occlusion of the bilateral renal arteries and veins for 60 min followed by reperfusion for 24 h. For the Dex. R and Dex. I groups, the same surgical procedure as in the IR group was performed, and dexmedetomidine (100 mcg/kg intraperitoneal was administrated at the 5th min after reperfusion and before ischemia. At the end of reperfusion, blood samples were drawn, the rats were sacrificed, and the left kidney was processed for histopathology. Results: The blood urea nitrogen (BUN levels in groups Dex. R and Dex. I were significantly lower than in the IR group (p = 0.015, p = 0.043, although urine flow was significantly higher in group Dex. R (p = 0.003. The renal histopathological score in the IR group was significantly higher than in the other groups. There was no significant difference between the Dex. R and Dex. I groups. Conclusions: The results were shown that administration of dexmedetomidine reduced the renal IR injury histomorphologically. Administration of dexmedetomidine in the reperfusion period was considered as more effective due to increase in urinary output and decrease in BUN levels.

  4. Tocilizumab-Induced Acute Liver Injury in Adult Onset Still’s Disease

    Directory of Open Access Journals (Sweden)

    Michael Drepper

    2013-01-01

    Full Text Available Background. Tocilizumab, a monoclonal humanized anti-IL-6 receptor antibody, is used in treatment of refractory adult onset Still’s disease (AOSD. Mild to moderate liver enzyme elevation is a well-known side effect, but severe liver injury has only been reported in 3 cases in the literature. Case. A young female suffering from corticoid and methotrexate refractory AOSD was treated by tocilizumab. After 19 months of consecutive treatment, she developed acute severe liver injury. Liver biopsy showed extensive hepatocellular necrosis with ballooned hepatocytes, highly suggestive of drug-induced liver injury. No other relevant drug exposure beside tocilizumab was recorded. She recovered totally after treatment discontinuation and an initial 3-day course of intravenous N-acetylcysteine with normalization of liver function tests after 6 weeks. Conclusion. Acute severe hepatitis can be associated with tocilizumab as documented in this case. Careful monitoring of liver function tests is warranted during tocilizumab treatment.

  5. Effect of systemic piracetam treatment on flap survival and vascular endothelial growth factor expression after ischemia-reperfusion injury.

    Science.gov (United States)

    Tuncer, Serhan; Ayhan, Suhan; Findikcioglu, Kemal; Ergun, Hakan; Tuncer, Ilhan

    2011-09-01

    The effects of piracetam on flap survival, ischemia-reperfusion (I/R) injury, and vascular endothelial growth factor (VEGF) expression were evaluated in this study. Unipedicled epigastric flap model was used in 36 rats and was evaluated within 4 groups. The flap was elevated and untreated in Group 1. Postoperative piracetam treatment was given for 7 days in Group 2. In Group 3, 4 hours of ischemia and 2 hours of reperfusion were applied. I/R was applied to Group 4 and piracetam was given 30 minutes before reperfusion and postoperatively for 7 days. Laser Doppler flowmetry was used to measure blood flow changes. VEGF expression was determined using immunohistochemical methods on tissue samples taken after the completion of 2 hours reperfusion in groups 3 and 4. Flap necrosis was measured on the day 7 in all groups. Blood flow rates did not show significant difference between piracetam treated and untreated I/R groups. Piracetam significantly reduced necrosis area both in ischemic and nonischemic flaps ( P piracetam-treated Group 4 compared with Group 3 ( P = 0.005). This experimental study demonstrates that systemic piracetam treatment improves survival of pedicled flaps, reduces necrosis amounts, and increases VEGF expression in I/R induced flaps. © Thieme Medical Publishers.

  6. High velocity missile injuries of the liver | Ogwang | East and Central ...

    African Journals Online (AJOL)

    Fourteen patients sustained gun shot wounds while one was injured by a bomb blast fragment. Ages ranged from 2 to 33 years (mean 24.4 years). Two patients sustained liver injury alone while the rest had other associated visceral injuries as well. Grade I, II and III liver injuries were seen in 7, 5 and 2 patients respectively.

  7. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    International Nuclear Information System (INIS)

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15 ml/kg). In CCl 4 + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl 4 -induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl 4 -induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  8. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da-Gang [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Wang, Jun-Xian [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Lu, Yan; Tao, Li; Wang, Jian-Qing [Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei 230032 (China)

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  9. Effects of silibinin and ethanol on skeletal muscle ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Yusuf Ergün

    2013-03-01

    Full Text Available PURPOSE: To investigate the potential beneficial effect of silibinin in ischemia-reperfusion injury (IRI of skeletal muscle. METHODS: Under urethane anesthesia, four experimental groups were established in Balb/c mice: I Sham-control, II IRI (Tourniquet-induced (2+1 h, III IRI+ethanol (10%, and IV IRI+silibinin (50 mg/kg/IP. The viability of muscle (left was evaluated by the triphenyltetrazolium chloride dye method and calculated as the percentage of the contralateral control muscle (right. Malondialdehyde, superoxide dismutase, and catalase were measured in the gastrocnemius muscle via a spectrophotometer. RESULTS:The viability of gastrocnemius muscle in group II was significantly lower in comparison with that seen in group I. The administration of either ethanol or silibinin rendered the tissues to recover nearly to the baseline level. Additionally, malondialdehyde levels were higher in group II than those in group I. The application of silibinin prior to the reperfusion attenuated these to the control levels. However, malondialdehyde levels in the ethanol administrated group were reduced as well. The enhanced superoxide dismutase activity seen in the IRI group was not diminished in the animals treated with either silibinin or ethanol. Similarly, there were no differences between groups regarding the catalase activities. CONCLUSION: Ethanol seems to be effective in attenuating IRI in skeletal muscle and no definite conclusion can be made on silibinin effect.

  10. Mouse Precision-Cut Liver Slices as an ex Vivo Model To Study Idiosyncratic Drug-Induced Liver Injury

    NARCIS (Netherlands)

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Groothuis, Geny M. M.; Merema, M.T.

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in

  11. Chronic Co-Administration of Sepiapterin and L-Citrulline Ameliorates Diabetic Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury in Obese Type 2 Diabetic Mice.

    Science.gov (United States)

    Baumgardt, Shelley L; Paterson, Mark; Leucker, Thorsten M; Fang, Juan; Zhang, David X; Bosnjak, Zeljko J; Warltier, David C; Kersten, Judy R; Ge, Zhi-Dong

    2016-01-01

    Diabetic heart disease is associated with tetrahydrobiopterin oxidation and high arginase activity, leading to endothelial nitric oxide synthase dysfunction. Sepiapterin (SEP) is a tetrahydrobiopterin precursor, and L-citrulline (L-Cit) is converted to endothelial nitric oxide synthase substrate, L-arginine. Whether SEP and L-Cit are effective at reducing diabetic heart disease is not known. The present study examined the effects of SEP and L-Cit on diabetic cardiomyopathy and ischemia/reperfusion injury in obese type 2 diabetic mice. Db/db and C57BLKS/J mice at 6 to 8 weeks of age received vehicle, SEP, or L-Cit orally alone or in combination for 8 weeks. Cardiac function was evaluated with echocardiography. Db/db mice displayed hyperglycemia, obesity, and normal blood pressure and cardiac function compared with C57BLKS/J mice at 6 to 8 weeks of age. After vehicle treatment for 8 weeks, db/db mice had reduced ejection fraction, mitral E/A ratio, endothelium-dependent relaxation of coronary arteries, tetrahydrobiopterin concentrations, ratio of endothelial nitric oxide synthase dimers/monomers, and nitric oxide levels compared with vehicle-treated C57BLKS/J mice. These detrimental effects of diabetes mellitus were abrogated by co-administration of SEP and L-Cit. Myocardial infarct size was increased, and coronary flow rate and ± dP/dt were decreased during reperfusion in vehicle-treated db/db mice subjected to ischemia/reperfusion injury compared with control mice. Co-administration of SEP and L-Cit decreased infarct size and improved coronary flow rate and cardiac function in both C57BLKS/J and db/db mice. Co-administration of SEP and L-Cit limits diabetic cardiomyopathy and ischemia/reperfusion injury in db/db mice through a tetrahydrobiopterin/endothelial nitric oxide synthase/nitric oxide pathway. © 2016 American Heart Association, Inc.

  12. Protective Effect of Hesperetin and Naringenin against Apoptosis in Ischemia/Reperfusion-Induced Retinal Injury in Rats

    Directory of Open Access Journals (Sweden)

    Selcuk Kara

    2014-01-01

    Full Text Available Purpose. Hesperetin and naringenin are naturally common flavonoids reported to have antioxidative effects. This study was performed to investigate whether either hesperetin or naringenin has a protective effect against apoptosis on retinal ischemia/reperfusion (I/R injury. Methods. Retinal I/R was induced by increasing the intraocular pressure to 150 mmHg for 60 minutes. Thirty-three male Wistar albino rats were randomised into 5 groups named control, I/R + sham, I/R + solvent (DMSO, I/R + hesperetin, and I/R + naringenin. Animals were given either hesperetin, naringenin, or the solvent intraperitoneally immediately following reperfusion. Thickness of retinal layers and retinal cell apoptosis were detected by histological analysis, tunel assay, and immunohistochemistry assay. Results. Hesperetin and naringenin attenuated the I/R-induced apoptosis of retinal cells in the inner and outer nuclear cells of the rat retina. Retinal layer thickness of the naringenin treatment group was significantly thicker than that of the hesperetin, sham, and solvent groups (P<0.05. Conclusions. Hesperetin and naringenin can prevent harmful effects induced by I/R injury in the rat retina by inhibiting apoptosis of retinal cells, which suggests that those flavanones have a therapeutic potential for the protection of ocular ischemic diseases.

  13. Ethanol extract from portulaca oleracea L. attenuated acetaminophen-induced mice liver injury

    Science.gov (United States)

    Liu, Xue-Feng; Zheng, Cheng-Gang; Shi, Hong-Guang; Tang, Gu-Sheng; Wang, Wan-Yin; Zhou, Juan; Dong, Li-Wei

    2015-01-01

    Acetaminophen-induced liver injury represents the most frequent cause of drug-induced liver failure in the world. Portulaca oleracea L., a widely distributed weed, has been used as a folk medicine in many countries. Previously, we reported that the ethanol extracts of Portulaca oleracea L. (PO) exhibited significant anti-hypoxic activity. In the present study, we investigated the role of PO on acetaminophen (APAP) induced hepatotoxicity. The results demonstrated that PO was an effective anti-oxidative agent, which could, to some extent, reverse APAP-induced hepatotoxicity by regulating the reactive oxygen species (ROS) in the liver of mice. At the same time, PO treatment significantly decreased mice serum levels of IL-6 and TNFα and their mRNA expression in liver tissue IL-α and TNFα play an important role during APAP-induced liver injury. Furthermore, PO inhibited APAP and TNFα-induced activation of JNK, whose activation play an important effect during APAP induced liver injury. These findings suggested that administration of PO may be an effective strategy to prevent or treat liver injury induced by APAP. PMID:25901199

  14. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Renal Ischaemia-reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Zhenyu Qiu

    2014-08-01

    Full Text Available Objective This study aims to observe the function of umbilical cord-mesenchymal stem cells (UC-MSCs labelled with enhanced green fluorescent protein (eGFP in the repair of renal ischaemia-reperfusion (I/R injury, to determine the effects on inflammatory cascade in an established rat model and to explore possible pathogenesis. Materials and Methods Sixty rats were randomly divided into three groups: the sham-operated, I/R and UC-MSC treatment groups. All rats underwent right nephrectomy. Ischaemia was induced in the left kidney by occlusion of the renal artery and vein for 1hour, followed by reperfusion for 24 hours or 48 hours. Kidney samples were collected to observe morphological changes. Immunohistochemistry was performed to assess the expression of intercellular adhesion molecule 1 (ICAM-1 in the renal tissue sample, as well as the number of infiltrating polymorphonuclear neutrophils (PMNLs and UC-MSCs with positive eGFP. Results Renal histopathological damages and the expression of ICAM-1 and PMNL increased significantly in the I/R group compared with those in the sham-operated group, whereas the damages were less conspicuous in the UC-MSC treatment group. Conclusions Renal ICAM-1, which mediated PMNL infiltration and contributed to renal damage, was significantly up-regulated in the I/R group. UC-MSCs were identified to inhibit these pathological processes and protect the kidney from I/R injury.

  15. Low-Level Tragus Stimulation for the Treatment of Ischemia and Reperfusion Injury in Patients With ST-Segment Elevation Myocardial Infarction: A Proof-of-Concept Study.

    Science.gov (United States)

    Yu, Lilei; Huang, Bing; Po, Sunny S; Tan, Tuantuan; Wang, Menglong; Zhou, Liping; Meng, Guannan; Yuan, Shenxu; Zhou, Xiaoya; Li, Xuefei; Wang, Zhuo; Wang, Songyun; Jiang, Hong

    2017-08-14

    The aim of this study was to investigate whether low-level tragus stimulation (LL-TS) treatment could reduce myocardial ischemia-reperfusion injury in patients with ST-segment elevation myocardial infarction (STEMI). The authors' previous studies suggested that LL-TS could reduce the size of myocardial injury induced by ischemia. Patients who presented with STEMI within 12 h of symptom onset, treated with primary percutaneous coronary intervention, were randomized to the LL-TS group (n = 47) or the control group (with sham stimulation [n = 48]). LL-TS, 50% lower than the electric current that slowed the sinus rate, was delivered to the right tragus once the patients arrived in the catheterization room and lasted for 2 h after balloon dilatation (reperfusion). All patients were followed for 7 days. The occurrence of reperfusion-related arrhythmia, blood levels of creatine kinase-MB, myoglobin, N-terminal pro-B-type natriuretic peptide and inflammatory markers, and echocardiographic characteristics were evaluated. The incidence of reperfusion-related ventricular arrhythmia during the first 24 h was significantly attenuated by LL-TS. In addition, the area under the curve for creatine kinase-MB and myoglobin over 72 h was smaller in the LL-TS group than the control group. Furthermore, blood levels of inflammatory markers were decreased by LL-TS. Cardiac function, as demonstrated by the level of N-terminal pro-B-type natriuretic peptide, the left ventricular ejection fraction, and the wall motion index, was markedly improved by LL-TS. LL-TS reduces myocardial ischemia-reperfusion injury in patients with STEMI. This proof-of-concept study raises the possibility that this noninvasive strategy may be used to treat patients with STEMI undergoing primary percutaneous coronary intervention. Copyright © 2017. Published by Elsevier Inc.

  16. Cardioprotection by minocycline in a rabbit model of ischemia/reperfusion injury : Detection of cell death by in vivo (111)In-GSAO SPECT

    NARCIS (Netherlands)

    Yamaki, Takayoshi; de Haas, Hans J; Tahara, Nobuhiro; Petrov, Artiom; Mohar, Dilbahar; Haider, Nezam; Zhou, Jun; Tahara, Atsuko; Takeishi, Yasuchika; Boersma, Hendrikus H; Scarabelli, Tiziano; Kini, Annapoorna; Strauss, H William; Narula, Jagat

    BACKGROUND: Preclinical studies indicate that minocycline protects against myocardial ischemia/reperfusion injury. In these studies, minocycline was administered before ischemia, which can rarely occur in clinical practice. The current study aimed to evaluate cardioprotection by minocycline

  17. Estudo da fração inspirada de oxigênio na isquemia-reperfusão pulmonar em ratos Study of ventilation with different inspired oxygen concentration on lung ischaemia-reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Rafael José Silveira

    2004-10-01

    Full Text Available OBJETIVO: Estudar o efeito das frações inspiradas de oxigênio (FiO2 a 0,21, 0,40 e 1,00 na isquemia-reperfusão pulmonar. MÉTODOS: Foram utilizados 40 ratos Wistar, distribuídos aleatoriamente em quatro grupos. O grupo I foi o controle e, nos grupos II, III e IV, os animais foram ventilados durante a isquemia-reperfusão com FiO2 a 0,21, 0,40 e 1,00 respectivamente. O modelo utilizado foi de isquemia-reperfusão normotérmica, in situ. O tempo de isquemia foi de 30 minutos e o de reperfusão, de 10 minutos. Como parâmetros de avaliação, utilizou-se a pressão arterial média sistêmica (PAM, a relação entre a pressão parcial de oxigênio e a fração inspirada de oxigênio (PO2/FiO2, a dosagem da glutationa reduzida (GSH e das substâncias reativas ao ácido tiobarbitúrico (TBARS no tecido pulmonar e a relação entre o peso pulmonar úmido e o peso pulmonar seco. RESULTADOS: Os resultados mostraram que a ventilação com FiO2 a 0,21, quando comparada à ventilação com FiO2 a 0,40 e 1,00, durante o período de isquemia-reperfusão, apresentou menor diminuição da PAM, melhor relação PO2/FiO2, maior valor na medida da GSH, menor produção das TBARS e menor formação de edema pulmonar. CONCLUSÃO: A ventilação com baixa FiO2 (0,21 mostrou melhores resultados quando comparada àquelas realizadas com FiO2 mais elevadas (0,40 e 1,00 na isquemia-reperfusão pulmonar.PURPOSE: To evaluate the FiO2 effect at 0,21, 0,40 and 1,00 on the lung ischaemia-reperfusion injury. METHODS: Forty Wistar rats were randomly allocated in 4 groups. The group I was the control one, and in groups II, III, IV rats were ventilated during the ischaemia-reperfusion at 0,21, 0,40 and 1.00 FiO2 respectively. The ischaemia time was 30 minutes and the reperfusion time was 10 minutes. The model used was normothermic ischaemia-reperfusion, in situ. As assessment parameters, the systemic average arterial pressure (PAM, the oxygen arterial partial pressure

  18. Cardiac Ischemia Reperfusion Injury Following Instillation of 20 nm Citrate-capped Nanosilver

    Energy Technology Data Exchange (ETDEWEB)

    Becak DP, Holland NA; Shannahan, Jonathan H.

    2015-01-01

    Background: Silver nanoparticles (AgNP) have garnered much interest due to their antimicrobial properties, becoming one of the most utilized nano scale materials. However, any potential evocable cardiovascular injury associated with exposure has not been previously reported. We have previously demonstrated expansion of myocardial infarction after intratracheal (IT) instillation of other nanomaterials. We hypothesized that pulmonary exposure to Ag core AgNP induces persistent increase in circulating cytokines, expansion of cardiac ischemia-reperfusion (I/R) injury and associated with altered coronary vessel reactivity. Methods: Male Sprague-Dawley rats were exposed to 200 µg of 20 nm citrate capped Ag core AgNP, or a citrate vehicle intratracheally (IT). One and 7 days following IT instillation lungs were evaluated for inflammation and silver presence, serum was analyzed for concentrations of selected cytokines, and cardiac I/R injury and coronary artery reactivity was assessed. Results: AgNP instillation resulted in modest pulmonary injury with detection of silver in lung tissue and infiltrating cells, elevation of serum cytokines: G-CSF, MIP-1α, IL-1β, IL-2, IL-6, IL-13, IL-10, IL-18, IL-17, TNFα, and RANTES, expansion of I/R injury and depression of the coronary vessel reactivity at 1 day post IT compared to vehicle treated rats. Seven days post IT instillation was associated with persistent detection of silver in lungs, elevation in cytokines: IL-2, IL-13, and TNFα and expansion of I/R injury. Conclusions: Based on these data, IT instillation of AgNP increases circulating levels of several cytokines, which may contribute to persistent expansion of I/R injury possibly through an impaired vascular responsiveness.

  19. Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Luqing [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Tao, Jianjian; Chen, Huaicheng; Bian, Yang; Yang, Xi [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Chen, Gaozhi; Zhang, Xin; Liang, Guang [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Wencan, E-mail: wuwencan118@163.com [The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Song, Zongming, E-mail: szmeyes@126.com [The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Yi, E-mail: yi.wang1122@wmu.edu.cn [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-02-15

    Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigment epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury. - Highlights: • MD2 inhibition reduced retinal damage after I/R induction in mice. • TBHP induced TLR4/MD2 binding via increasing HMGB-1 expression. • TLR4/MD2 initiated inflammatory response via activation of MAPKs and NF-κB. • MD2 could be the therapeutic target for the treatment of retinal I/R.

  20. Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury

    International Nuclear Information System (INIS)

    Ren, Luqing; Tao, Jianjian; Chen, Huaicheng; Bian, Yang; Yang, Xi; Chen, Gaozhi; Zhang, Xin; Liang, Guang; Wu, Wencan; Song, Zongming; Wang, Yi

    2017-01-01

    Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigment epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury. - Highlights: • MD2 inhibition reduced retinal damage after I/R induction in mice. • TBHP induced TLR4/MD2 binding via increasing HMGB-1 expression. • TLR4/MD2 initiated inflammatory response via activation of MAPKs and NF-κB. • MD2 could be the therapeutic target for the treatment of retinal I/R.

  1. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.

    Directory of Open Access Journals (Sweden)

    Takanobu Nagata

    Full Text Available Myocardial ischemia reperfusion injury (IRI adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS-3, an intrinsic negative feedback regulator of the Janus kinase (JAK-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO. The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1 was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.

  2. IMAGE ANALYSIS IN GOMORI´S TRICHROME STAIN OF SKELETAL MUSCLES SUBJECTED TO ISCHEMIA AND REPERFUSION INJURY

    OpenAIRE

    Doris Haydee Rosero Salazar; Liliana Janeth Flórez Elvira

    2016-01-01

    Conditions that produce ischemia and reperfusion injury include orthopedic surgeries, vascular diseases and accidents in remote places in which use of a manual tourniquet is required. Tissues under such stress suffer the consequences of evidenced by changes in their normal microscopic organization that can be reversible or irreversible according to the time and severity of lesion. An experimental model of ischemia has been designed taking into account the characteristics similar to a surgical...

  3. [Effects of combined use of total alkaloids of Uncaria rhynchophylla and Coryadlis ambailis migo on cerebral ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Hu, Xue-yong; Sun, An-sheng; Sui, Yu-xia

    2007-11-01

    To study the effects of combined use of total alkaloids (TA) of Uncaria rhynchophylla (UR) and Coryadlis ambailis migo (CAM) on cerebral ischemia/reperfusion injury in rats. Rat model of middle cerebral artery ischemia/reperfusion was established, the changes of neurological state was scored before and after treatment with the two kinds of TA, single or combined, and the changes of cerebral infarcted volume, cerebral water content, activities of NOS and SOD and content of MDA in rats' brain were estimated as well. After being treated with the combination of both TA, the average neurological score, cerebral infracted volume, cerebral water content, activity of NOS and content of MDA in the model rats significantly decreased, and the activity of SOD was significantly increased (all P < 0.05). The effect of combined use of the two TA was higher than that of use TA of UR or CAM alone (P <0.05). Moreover, the central nervous system inhibitory effect induced by combined TA was significantly weaker than that of UR. Combined use of TA of UR and CAM may facilitate the protection against cerebral ischemia/reperfusion damage, the action mechanism might be relevant to reducing the lipid peroxidation injury of brain cells through inhibiting the NOS activity and increasing the SOD activity.

  4. Tourniquet-induced ischaemia-reperfusion injury: the comparison of antioxidative effects of small-dose propofol and ketamine

    Directory of Open Access Journals (Sweden)

    Karaca Omer

    Full Text Available Abstract Objectives: The aim of the present study was to investigate the preventive effects of propofol and ketamine as small dose sedation during spinal anaesthesia on tourniquet-induced ischaemia-reperfusion injury. Methods: 30 patients were randomly assigned into two groups of 15 patients. In the propofol group, sedation was performed with propofol 0.2 mg·kg-1 followed by infusion at a rate of 2 mg·kg-1·h-1. In the ketamine group, a continuous infusion of ketamine 0.5 mg·kg-1·h-1 was used until the end of surgery. Intravenous administration of midazolam was not used in any patients. Ramsay sedation scale was used for assessing the sedation level. Venous blood samples were obtained before propofol and ketamine infusion (T1, at 30 minutes (min of tourniquet ischaemia (T2, and 5 min after tourniquet deflation (T3 for malondialdehyde (MDA measurements. Results: No differences were noted between the groups in haemodynamic (p > 0.05 and demographic data (p > 0.05. There was no statistically significant difference between the two groups in terms of T1, T2 and T3 periods (p > 0.05. There was a statistically increase observed in MDA values respectively both in Group P and Group K between the reperfusion period (1.95 ± 0.59, 2.31 ± 0.48 and pre-ischaemia (1.41 ± 0.38, 1.54 ± 0.45, and ischaemia (1.76 ± 0.70, 1.71 ± 0.38 (µmoL-1 periods (p < 0.05. Conclusions: Small-dose propofol and ketamine has similar potential to reduce the oxidative stress caused by tourniquet-induced ischaemia-reperfusion injury in patients undergoing arthroscopic knee surgery under spinal anaesthesia.

  5. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Jason A., E-mail: funkj@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Schnellmann, Rick G., E-mail: schnell@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Ralph H. Johnson VA Medical Center, Charleston, SC 29401 (United States)

    2013-12-01

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial function was

  6. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    Science.gov (United States)

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Effect Of Ischemia-Reperfusion On Healing In Intestinal Anastomosis ...

    African Journals Online (AJOL)

    The effect of reperfusion injury on the healing of intestinal anastomotic wound directly subjected to ischemia-reperfusion stress was investigated in dogs. Three groups of dogs were utilized for the study. In group A (Control) cranial mesenteric artery and collateral blood supply were isolated but not occluded. In groups B and ...

  8. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury

    DEFF Research Database (Denmark)

    Cordwell, Stuart; Edwards, Alistair; Liddy, Kiersten

    2012-01-01

    -rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile...... reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC–MS) and gel-free (LC–MS/MS) methods. A total of 192 tissue-specific proteins were identified...... release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans....

  9. H₂S protecting against lung injury following limb ischemia-reperfusion by alleviating inflammation and water transport abnormality in rats.

    Science.gov (United States)

    Qi, Qi Ying Chun; Chen, Wen; Li, Xiao Ling; Wang, Yu Wei; Xie, Xiao Hua

    2014-06-01

    To investigate the effect of H₂S on lower limb ischemia-reperfusion (LIR) induced lung injury and explore the underlying mechanism. Wistar rats were randomly divided into control group, IR group, IR+ Sodium Hydrosulphide (NaHS) group and IR+ DL-propargylglycine (PPG) group. IR group as lung injury model induced by LIR were given 4 h reperfusion following 4 h ischemia of bilateral hindlimbs with rubber bands. NaHS (0.78 mg/kg) as exogenous H₂S donor and PPG (60 mg/kg) which can suppress endogenous H₂S production were administrated before LIR, respectively. The lungs were removed for histologic analysis, the determination of wet-to-dry weight ratios and the measurement of mRNA and protein levels of aquaporin-1 (AQP₁), aquaporin-5 (AQP₅) as indexes of water transport abnormality, and mRNA and protein levels of Toll-like receptor 4 (TLR₄), myeloid differentiation primary-response gene 88 (MyD88) and p-NF-κB as indexes of inflammation. LIR induced lung injury was accompanied with upregulation of TLR₄-Myd88-NF-κB pathway and downregulation of AQP1/AQP₅. NaHS pre-treatment reduced lung injury with increasing AQP₁/AQP₅ expression and inhibition of TLR₄-Myd88-NF-κB pathway, but PPG adjusted AQP₁/AQP₅ and TLR4 pathway to the opposite side and exacerbated lung injury. Endogenous H₂S, TLR₄-Myd88-NF-κB pathway and AQP₁/AQP₅ were involved in LIR induced lung injury. Increased H₂S would alleviate lung injury and the effect is at least partially depend on the adjustment of TLR₄-Myd88-NF-κB pathway and AQP₁/AQP₅ expression to reduce inflammatory reaction and lessen pulmonary edema. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. The protective effect of Na+/Ca2+ exchange blocker kb-r7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rat.

    Science.gov (United States)

    Ren, Yongkui; Deng, Liju; Cai, Yunfei; Lv, Yan; Jia, Dalin

    2014-11-01

    KB-R7943 reduces lethal reperfusion injury under normal conditions, but its effectiveness under certain pathological states is in dispute. In the present study, we sought to determine the effect of KB-R7943 in hyperlipidemic animals and assess if the K ATP (+) are involved in the protective mechanisms. In group 1 (G1), isolated rat hearts underwent 25 min global ischemia (GI) and 120 min reperfusion (R). In group 2 (G2), G1 was repeated but the animals were subjected to a 1.5 % cholesterol-enriched diet during 6 weeks (hypercholesterolemic animals). In group 3 (G3), G2 was repeated but 1 μM KB-R7943 was added to the perfusate for 10 min from the start of reperfusion. In group 4 (G4), G3 was repeated, and glibenclamide (K ATP (+) , blocker, 0.3 μM) was administered. The infarct size was measured by triphenyltetrazolium. The infarct size was 35 ± 5.0 % in G1 and 46 ± 8.7 % in G2 (P KB-R7943 reduced the infarct size (28.6 ± 3.3 % in G3 vs. G2, P KB-R7943 attenuated apoptotic cell (G3 vs. G2, P KB-R7943. Thus, diet-induced hypercholesterolemia enhances myocardial injury; KB-R7943 reduces infarct size and apoptosis in hyperlipidemic animals through the activation of K(+)ATP channels.

  11. Cardioprotective Effect of Aloe vera Biomacromolecules Conjugated with Selenium Trace Element on Myocardial Ischemia-Reperfusion Injury in Rats.

    Science.gov (United States)

    Yang, Yang; Yang, Ming; Ai, Fen; Huang, Congxin

    2017-06-01

    The present study was undertaken to evaluate the cardioprotection potential and underlying molecular mechanism afforded by a selenium (Se) polysaccharide (Se-AVP) from Aloe vera in the ischemia-reperfusion (I/R) model of rats in vivo. Myocardial I/R injury was induced by occluding the left anterior descending coronary artery (LAD) for 30 min followed by 2-h continuous reperfusion. Pretreatment with Se-AVP (100, 200, and 400 mg/kg) attenuated myocardial damage, as evidenced by reduction of the infarct sizes, increase in serum and myocardial endogenous antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GSH), and catalase (CAT)), and decrease in the malondialdehyde (MDA) level in the rats suffering I/R injury. This cardioprotective activity afforded by Se-AVP is further supported by the decreased levels of cardiac marker enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as the rise of myocardial Na + -K + -ATPase and Ca 2+ -Mg 2+ -ATPase activities in I/R rats. Additionally, cardiomyocytic apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining and the result showed that the percent of TUNEL-positive cells in myocardium of Se-AVP-treated groups was lower than I/R rats. In conclusion, we clearly demonstrated that Se-AVP had a protective effect against myocardial I/R injury in rats by augmenting endogenous antioxidants and protecting rat hearts from oxidative stress-induced myocardial apoptosis.

  12. Real-time monitoring of nitric oxide (NO) and pO2 levels under ischemic conditions associated with small bowel ischemia/reperfusion injury using selective electrodes for NO and oxygen molecules.

    Science.gov (United States)

    Watanabe, T; Owada, S; Kobayashi, H; Ishiuchi, A; Nakano, H; Asakuta, T; Shimamura, T; Asano, T; Koizumi, S; Jinnouchi, Y; Katayama, M; Kamibayasi, M; Murakami, E; Otsubo, T

    2007-12-01

    The present study demonstrated the feasibility of monitoring nitric oxide (NO) and pO2 levels under ischemic conditions associated with small bowel ischemia/reperfusion (I/R) injury through the use of selective electrodes for NO and oxygen molecules. NO levels gradually increased during ischemia. When reperfusion was started, the NO level decreased suddenly and returned to pre-ischemia values within 10 minutes. After clamping, pO2 decreased rapidly. When reperfusion was started, pO2 increased suddenly, returning to pre-ischemia values within 10 minutes. We concluded that it is feasible to monitor NO and pO2 levels under ischemic conditions of small bowel I/R injury through the use of electrodes selective for NO and oxygen molecules.

  13. Critical role for complement receptor C5aR2 in the pathogenesis of renal ischemia-reperfusion injury

    NARCIS (Netherlands)

    Poppelaars, Felix; van Werkhoven, Maaike B; Kotimaa, Juha; Veldhuis, Zwanida J; Ausema, Albertina; Broeren, Stefan G M; Damman, Jeffrey; Hempel, Julia C.; Leuvenink, Henri G D; Daha, Mohamed R; van Son, Willem J; van Kooten, Cees; van Os, Ronald P; Hillebrands, Jan-Luuk; Seelen, Marc A

    The complement system, and specifically C5a, is involved in renal ischemia-reperfusion (IR) injury. The 2 receptors for complement anaphylatoxin C5a (C5aR1 and C5aR2) are expressed on leukocytes as well as on renal epithelium. Extensive evidence shows that C5aR1 inhibition protects kidneys from IR

  14. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury.

    Science.gov (United States)

    Bei, Yihua; Xu, Tianzhao; Lv, Dongchao; Yu, Pujiao; Xu, Jiahong; Che, Lin; Das, Avash; Tigges, John; Toxavidis, Vassilios; Ghiran, Ionita; Shah, Ravi; Li, Yongqin; Zhang, Yuhui; Das, Saumya; Xiao, Junjie

    2017-07-01

    Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.

  15. Protective effect of Na(+)/Ca (2+) exchange blocker KB-R7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rats.

    Science.gov (United States)

    Lv, Yan; Ren, Yongkui; Sun, Lufan; Wang, Shaojun; Wei, Minjie; Jia, Dalin

    2013-06-01

    Reverse-mode activation of the Na(+)/Ca(2+) exchanger (NCX) during reperfusion following ischemia contributes to Ca(2+) overload and cardiomyocyte injury. KB-R7943, a selective reverse-mode NCX inhibitor, reduces lethal reperfusion injury under non-ischemic conditions. However, the effectiveness of this compound under ischemic conditions is unclear. In the present study, we studied the effects of KB-R7943 in an animal model of hyperlipidemia. We further assessed whether the K ATP (+) channels are involved in potential protective mechanisms of KB-R7943. Twelve rats were fed normal chow, while 48 animals were fed a high cholesterol diet. The hearts from the control and hypercholesterolemic rats were subjected to 25 min of global ischemia followed by a 120-min reperfusion. Before this, hearts from hypercholesterolemic rats either received no intervention (cholesterol control group) or were pre-treated with 1 μM KB-R7943 and 0.3 μM of K ATP (+) blocker glibenclamide or glibenclamide alone. The infarction sizes (triphenyltetrazolium assay) were 35 ± 5.0 % in the control group, 46 ± 8.7 % in the cholesterol control group (p KB-R7943 group (p KB-R7943 and glibenclamide group, and 47 ± 8.5 % in the glibenclamide group (p KB-R7943 attenuated the magnitude of cell apoptosis (p KB-R7943 reduces the infarction size and apoptosis in hyperlipidemic animals through the activation of K ATP (+) channels.

  16. Ischaemia-reperfusion injury: a major protagonist in kidney transplantation.

    Science.gov (United States)

    Ponticelli, Claudio

    2014-06-01

    Ischaemia-reperfusion injury (IRI) is a frequent event in kidney transplantation, particularly when the kidney comes from a deceased donor. The brain death is usually associated with generalized ischaemia due to a hyperactivity of the sympathetic system. In spite of this, most donors have profound hypotension and require administration of vasoconstrictor agents. Warm ischaemia after kidney vessels clamping and the cold ischaemia after refrigeration also reduce oxygen and nutrients supply to tissues. The reperfusion further aggravates the state of oxidation and inflammation created by ischaemia. IRI first attacks endothelial cells and tubular epithelial cells. The lesions may be so severe that they lead to acute kidney injury (AKI) and delayed graft function (DGF), which can impair the graft survival. The unfavourable impact of DGF is worse when DGF is associated with acute rejection. Another consequence of IRI is the activation of the innate immunity. Danger signals released by dying cells alarm Toll-like receptors that, through adapter molecules and a chain of kinases, transmit the signal to transcription factors which encode the genes regulating inflammatory cells and mediators. In the inflammatory environment, dendritic cells (DCs) intercept the antigen, migrate to lymph nodes and present the antigen to immunocompetent cells, so activating the adaptive immunity and favouring rejection. Attempts to prevent IRI include optimal management of donor and recipient. Calcium-channel blockers, l-arginine and N-acetylcysteine could obtain a small reduction in the incidence of post-transplant DGF. Fenoldopam, Atrial Natriuretic Peptide, Brain Natriuretic Peptide and Dopamine proved to be helpful in reducing the risk of AKI in experimental models, but there is no controlled evidence that these agents may be of benefit in preventing DGF in kidney transplant recipients. Other antioxidants have been successfully used in experimental models of AKI but only a few studies of poor

  17. Limb Remote Ischemic Postconditioning Reduces Ischemia-Reperfusion Injury by Inhibiting NADPH Oxidase Activation and MyD88-TRAF6-P38MAP-Kinase Pathway of Neutrophils

    Directory of Open Access Journals (Sweden)

    Gangling Chen

    2016-11-01

    Full Text Available Limb remote ischemic postconditioning (LRIP has been confirmed to reduce the ischemia-reperfusion injury but its mechanisms are still not clear. This study clarified the mechanism of LRIP based on the nicotinamide-adenine dinucleotide phosphate (NADPH oxidase and Myeloid differentiation factor 88 (MyD88-Tumor necrosis factor (TNF receptor-associated factor 6 (TRAF6-P38 pathway of neutrophils. Rat middle cerebral artery occlusion (MCAO model was used in this study. Ischemia-reperfusion injury was carried out by MCAO 1.5 h followed by 24 h reperfusion. LRIP operation was performed to the left femoral artery at 0, 1 or 3 h after reperfusion. Behavioral testing, including postural reflex test, vibrissae-elicited forelimb placing test and tail hang test, showed that LRIP operated at 0 h of reperfusion could significantly ameliorate these behavioral scores. Pathological examinations, infarct size, Myeloperoxidase (MPO activity showed that LRIP operated at 0 h of reperfusion could significantly ameliorate the pathological scores, reduce the infarct size and MPO activity in the brain and increase the MPO activity in the left leg. By using Neutrophil counting, immunofluorescence and real-time PCR techniques, we found that LRIP operated at 0 h of reperfusion could reduce neutrophil counts in the peripheral blood and downregulate the activation of neutrophil in the peripheral blood and rat brain. Western blots revealed that MyD88, TRAF6, p38 mitogen-activated protein kinase (p38-MAPK in neutrophils and the phosphorylation of p47phox (Ser 304 and Ser 345 in neutrophil could be downregulated by LRIP. Our study suggests that LRIP inhibits the number and activation of neutrophils in the rat brain and peripheral blood linked to down-regulating the activation of NADPH oxidase in neutrophils by MyD88/TRAF6/p38-MAPK pathway.

  18. Protective effect of hydroalcoholic extract of Andrographis paniculata on ischaemia-reperfusion induced myocardial injury in rats.

    Science.gov (United States)

    Ojha, Shreesh Kumar; Bharti, Saurabh; Joshi, Sujata; Kumari, Santosh; Arya, Dharamvir Singh

    2012-03-01

    Protecting myocardium from ischaemia-reperfusion (I-R) injury is important to reduce the complication of myocardial infarction (MI) and interventional revascularization procedures. In the present study, the cardioprotective potential of hydroalcoholic extract of Andrographis paniculata was evaluated against left anterior descending coronary artery (LADCA) ligation-induced I-R injury of myocardium in rats. MI was induced in rats by LADCA ligation for 45 min followed by reperfusion for 60 min. The rats were divided into five experimental groups viz., sham (saline treated, but LADCA was not ligated), I-R control (saline treated + I-R), benazepril (30 mg/kg + I-R), A. paniculata (200 mg/kg per se) and A. paniculata (200 mg/kg + I-R). A. paniculata was administered orally for 31 days. On day 31, rats were subjected to the I-R and cardiac function parameters were recorded. Further, rats were sacrificed and heart was excised for biochemical and histopathological studies. In I-R control group, LADCA ligation resulted in significant cardiac dysfunction evidenced by reduced haemodynamic parameters; mean arterial pressure (MAP) and heart rate (HR). The left ventricular contractile function was also altered. In I-R control group, I-R caused decline in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) as well as leakage of myocytes injury marker enzymes, creatine phosphokinase-MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH), and enhanced lipid peroxidation product, malonaldialdehyde (MDA). However, rats pretreated with A. paniculata 200 mg/kg showed favourable modulation of haemodynamic and left ventricular contractile function parameters, restoration of the myocardial antioxidants and prevention of depletion of myocytes injury marker enzymes along with inhibition of lipid peroxidation. Histopathological observations confirmed the protective effects of A. paniculata. The cardioprotective effects of A. paniculata were

  19. Um novo modelo para estudos sobre lesão de isquemia e reperfusão hepáticas em cães A new canine model for studies on hepatic ischaemia and reperfusion injury

    Directory of Open Access Journals (Sweden)

    Renato Dornelas Câmara Neto

    2000-06-01

    been completely understood. Several experimental models have been proposed for studies on pathophysiology and modulation of such condition. Recently, in dogs, partial hepatic devascularization (30% with splancnic venous decompression using translobar venous route of intact lobes (70% has been proposed. Inthe present paper , a larger hepatic mass (70% has been devascularized in 10 dogs submitted to splancnic venous decompression through caudate and right lateral lobes (30%, during the ischaemic period( Test Group, followed by reperfusion. Ten others animals were submitted to a sham operation( Control Group. The results indicated, with a confidence level of 95% that: 1. During the period of ischaemia it was demonstrated maintenance of MAP and CVP levels, elevation of PP values similar to that seen with bypass, core temperature (CT decrease that never reached limits under the mean value of 36oC, absence of metabolic acidosis or elevation of enzyme levels (AST, ALT and DL, occurrence of hepatic necrosis (HN and fall in hepatic glycogen content (HGC; 2. After reperfusion, reduced values of MAP, absence of significant differences in CVP levels, persistent elevations of PP, progressive decreases in CT levels, presence of metabolic acidosis (¯ pH, ¯ DB, progressive elevations of aminotranspherases (AST, ALT , lactic dehidrogenase (LD and hepatic necrosis (HN, and progressive decline of hepatic glycogen content (HGC were verified. These results suggest that the proposed model may be useful for studies on pathophysiology and pharmacologic modulation of liver ischaemia and reperfusion injury , using a larger hepatic mass.

  20. Mesenteric ischemia-reperfusion injury: clearly improved hemodynamics but only minor protection of the rat small intestine by (sub)therapeutic heparin sodium and enoxaparin doses.

    Science.gov (United States)

    Walensi, Mikolaj; de Groot, Herbert; Schulz, Rainer; Hartmann, Matthias; Petrat, Frank

    2013-01-01

    Tissue protection against ischemia (I)/reperfusion (R) injury by heparins can be due to their anticoagulant and/or non-anticoagulant properties. Here we studied the protective potential of the anticoagulant and the non-anticoagulant features of heparin sodium (HepSo) and enoxaparin (Enox) against mesenteric I/R injury in a rat model. Mesenteric I/R was induced in rats (n = 6 per group) by superior mesenteric artery occlusion (SMAO; 90 min) and reopening (120 min). Therapeutic/clinical and subtherapeutic/non-anticoagulant doses of HepSo (0.25 mg/kg bolus + 0.25 mg/kg × h; 0.05 mg/kg bolus + 0.1 mg/kg × h) or Enox (0.5 mg/kg bolus + 0.5 mg/kg × h; 0.05 mg/kg bolus + 0.1 mg/kg × h) were administered intravenously starting 30 min before SMAO to the end of reperfusion. Systemic/vital and intestinal microcirculatory parameters were measured during the whole experimental procedure, those of small intestine injury at the end. During intestinal reperfusion, mean arterial blood pressure and heart rates were significantly increased by HepSo and, less effectively, by Enox, in a dose-dependent manner. Intestinal microcirculation was only affected by the therapeutic HepSo dose, which decreased the microvascular flow and S(O2) during reperfusion. The subtherapeutic Enox treatment, as opposed to any HepSo dose, most effectively diminished I/R-induced intestinal hemorrhages, myeloperoxidase activity (as a measure of neutrophil invasion), and histopathological changes. Therapeutic but, to a lesser extent, also the subtherapeutic doses of both HepSo and Enox clearly improve hemodynamics during mesenteric reperfusion, while intestinal protection is exclusively provided by Enox, especially at its subtherapeutic dose. Alterations in intestinal microcirculation are not responsible for these effects. Thus, non-anticoagulant Enox doses and, preferably, heparin(oid)s unable to affect coagulation, could diminish clinical risks of I/R-induced gastrointestinal complications. Copyright

  1. Intestinal Endotoxins as Co-Factors of Liver Injury in Obstructive Jaundice

    OpenAIRE

    Menteş, B. Bülent; Tatlicioğlu, Ertan; Akyol, Gülen; Uluoğlu, Ömer; Sultan, Nedim; Yilmaz, Erdal; Çelebi, Murat; Taneri, Ferit; Ferahköşe, Zafer

    1996-01-01

    The concept of endotoxin-mediated rather than direct liver injury in biliary obsruction was investigated using the experimental rat model of bile duct ligation (BDL) and small bowel bacterial overgrowth (SBBO). Small identical doses of intravenous endotoxin (bacterial LPS) caused a significantly more severe liver injury in rats with BDL, compared with sham-operated rats, suggesting the possible contribution of LPS in this type of liver damage. BDL was then combined with surgica...

  2. [Research progress of Chinese herbal medicine and traditional Chinese medicine resulting in liver injury].

    Science.gov (United States)

    Wang, Jingli; Zhou, Chaofan

    2011-12-01

    The adverse reactions caused by Chinese herbal medicine and traditional Chinese medicine are reported increased in recent years, among which the acute liver injury caused by Chinese herbal medicine accounts for 21.5% of total liver injuries. Despite the misuse of traditional Chinese medicine not in accordance with differentiation of symptoms and signs, the adverse reaction of Chinese herbal medicine itself can't be little to these adverse events. The paper summarizes the most common categories of traditional Chinese medicine resulting in liver injury, the mechanism, pathological characteristics, clinical symptom of liver injury, the reasons of the reaction and how to prevent. The research aims to enhance the clinical physician recognition of liver injury caused by Chinese herbal medicine, in order to ensure the safe and rational usage of traditional Chinese medicine.

  3. Effect of Panax notoginseng saponins on the content of IL-8 in serum after cerebral ischemia-reperfusion in rat

    International Nuclear Information System (INIS)

    He Wei; Zhu Zunping

    2002-01-01

    Objective: To investigate the effect of Panax notoginseng saponins (Pns) against cerebral ischemia-reperfusion injury. Methods: Focal cerebral ischemia-reperal ischemia-reperfusion model in rat was established by occlusion the middle cerebral artery for 2 h, after 3 h reperfusion. The serum concentration of IL-8 was detected with radioimmunoassay (RIA). Results: Png 50 mg·kg -1 ip, qd x 7d before MCAO decreased the serum content of IL-8 after ischemia-reperfusion. Conclusion: Pns has protective effect against cerebral ischemia-reperfusion injury by decreased the serum content of IL-8

  4. Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.

    Directory of Open Access Journals (Sweden)

    Ailan Zhang

    Full Text Available BACKGROUND: Acute lung injury (ALI is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. METHODS: Adult male Sprague-Dawley rats received orthotopic autologous liver transplantation (OALT and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α, interleukin (IL-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB p65 translocation was assessed by Western blot. RESULTS: The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. CONCLUSIONS: Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.

  5. Congenital biliary atresia: liver injury begins at birth

    DEFF Research Database (Denmark)

    Makin, Erica; Quaglia, Alberto; Kvist, Nina

    2009-01-01

    -note review for infants with definite BA who underwent laparotomy within first week of life. RESULTS: Three infants were identified who had occlusive BA evident on the first day of life. In all cases, their liver was grossly normal, and histologic changes were trivial. CONCLUSION: This suggests...... that the detrimental cholestatic liver injury, later characteristic of BA, only begins from the time of birth despite a prenatal occlusive biliary pathology. It may be that tissue injury only occurs with the onset of the perinatal bile surge initiating periductal bile leakage and the triggering of an inflammatory...

  6. An Update on Drug-induced Liver Injury.

    Science.gov (United States)

    Devarbhavi, Harshad

    2012-09-01

    Idiosyncratic drug-induced liver injury (DILI) is an important cause of morbidity and mortality following drugs taken in therapeutic doses. Hepatotoxicity is a leading cause of attrition in drug development, or withdrawal or restricted use after marketing. No age is exempt although adults and the elderly are at increased risk. DILI spans the entire spectrum ranging from asymptomatic elevation in transaminases to severe disease such as acute hepatitis leading to acute liver failure. The liver specific Roussel Uclaf Causality Assessment Method is the most validated and extensively used for determining the likelihood that an implicated drug caused DILI. Asymptomatic elevation in liver tests must be differentiated from adaptation. Drugs producing DILI have a signature pattern although no single pattern is characteristic. Antimicrobial and central nervous system agents including antiepileptic drugs are the leading causes of DILI worldwide. In the absence of a diagnostic test or a biomarker, the diagnosis rests on the evidence of absence of competing causes such as acute viral hepatitis, autoimmune hepatitis and others. Recent studies show that antituberculosis drugs given for active or latent disease are still a major cause of drug-induced liver injury in India and the West respectively. Presence of jaundice signifies a severe disease and entails a worse outcome. The pathogenesis is unclear and is due to a mix of host, drug metabolite and environmental factors. Research has evolved from incriminating candidate genes to genome wide analysis studies. Immediate cessation of the drug is key to prevent or minimize progressive damage. Treatment is largely supportive. N-acetylcysteine is the antidote for paracetamol toxicity. Carnitine has been tried in valproate injury whereas steroids and ursodeoxycholic acid may be used in DILI associated with hypersensitivity or cholestatic features respectively. This article provides an overview of the epidemiology, the patterns of

  7. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury.

    Science.gov (United States)

    Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu

    2018-05-11

    Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Effect of Γ-aminobutyric acid on kidney injury induced by renal ischemia-reperfusion in male and female rats: Gender-related difference.

    Science.gov (United States)

    Vafapour, Marzieh; Nematbakhsh, Mehdi; Monajemi, Ramesh; Mazaheri, Safoora; Talebi, Ardeshir; Talebi, Nahid; Shirdavani, Soheyla

    2015-01-01

    The most important cause of kidney injury is renal ischemia/reperfusion injury (IRI), which is gender-related. This study was designed to investigate the protective role of Γ-aminobutyric acid (GABA (against IRI in male and female rats. Thirty-six female and male wistar rats were assigned to six experimental groups. The IRI was induced by clamping renal vessels for 45 min then was performed reperfusion for 24 h. The group sex posed to IRI were pretreated with GABA and were compared with the control groups. Serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score increased in the IRI alone groups, (P GABA decreased these parameters in female significantly (P GABA. Testis weight did not alter in male rats. Serum level of nitrite and kidney level of malondialdehyde (MDA) had no significant change in both female and male rats. Kidney level of nitrite increased significantly in female rats experienced IRI and serum level of MDA increased significantly in males that were exposed to IRI (P GABA could ameliorate kidney injury induced by renal IRI in a gender dependent manner.

  9. Treadmill exercise promotes neuroprotection against cerebral ischemia–reperfusion injury via downregulation of pro-inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-12-01

    Full Text Available Ying Zhang,1,* Richard Y Cao,2,* Xinling Jia,3,* Qing Li,1 Lei Qiao,1 Guofeng Yan,4 Jian Yang1 1Department of Rehabilitation, 2Laboratory of Immunology, Shanghai Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 3School of Life sciences, Shanghai University, 4School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Stroke is one of the major causes of morbidity and mortality worldwide, which is associated with serious physical deficits that affect daily living and quality of life and produces immense public health and economic burdens. Both clinical and experimental data suggest that early physical training after ischemic brain injury may reduce the extent of motor dysfunction. However, the exact mechanisms have not been fully elucidated. The aim of this study was to investigate the effects of aerobic exercise on neuroprotection and understand the underlying mechanisms.Materials and methods: Middle cerebral artery occlusion (MCAO was conducted to establish a rat model of cerebral ischemia–reperfusion injury to mimic ischemic stroke. Experimental animals were divided into the following three groups: sham (n=34, MCAO (n=39, and MCAO plus treadmill exercise (n=28. The effects of aerobic exercise intervention on ischemic brain injury were evaluated using functional scoring, histological analysis, and Bio-Plex Protein Assays.Results: Early aerobic exercise intervention was found to improve motor function, prevent death of neuronal cells, and suppress the activation of microglial cells and astrocytes. Furthermore, it was observed that aerobic exercise downregulated the expression of the cytokine interleukin-1β and the chemokine monocyte chemotactic protein-1 after transient MCAO in experimental rats.Conclusion: This study demonstrates that treadmill exercise rehabilitation promotes neuroprotection against cerebral

  10. Intestinal endotoxins as co-factors of liver injury in obstructive jaundice.

    Science.gov (United States)

    Mentes, B B; Tatlicioglu, E; Akyol, G; Uluoglu, O; Sultan, N; Yilmaz, E; Celebi, M; Taneri, F; Ferahkose, Z

    1996-01-01

    The concept of endotoxin-mediated rather than direct liver injury in biliary obstruction was investigated using the experimental rat model of bile duct ligation (BDL) and small bowel bacterial overgrowth (SBBO). Small identical doses of intravenous endotoxin (bacterial LPS) caused a significantly more severe liver injury in rats with BDL, compared with sham-operated rats, suggesting the possible contribution of LPS in this type of liver damage. BDL was then combined with surgically created jejunal self-filling blind loops, which resulted in SBBO. Plasma LPS level increased significantly, and once again a more severe liver injury, determined by liver histology and serum gamma-glutamyl transpeptidase levels, was observed compared with the control group of rats with BDL+self-emptying blind loops. The data presented suggest that small amounts of exogenous LPS and/or the ordinarily innocous amounts of LPS constantly absorbed from the intestinal tract may be critical in the hepatic damage caused by obstruction of the biliary tract.

  11. Protective Effect of Creatine Elevation against Ischaemia Reperfusion Injury Is Retained in the Presence of Co-Morbidities and during Cardioplegia.

    Directory of Open Access Journals (Sweden)

    Hannah J Whittington

    Full Text Available Ischaemic heart disease is most prevalent in the ageing population and often exists with other comorbidities; however the majority of laboratory research uses young, healthy animal models. Several recent workshops and focus meetings have highlighted the importance of using clinically relevant models to help aid translation to realistic patient populations. We have previously shown that mice over-expressing the creatine transporter (CrT-OE have elevated intracellular creatine levels and are protected against ischaemia-reperfusion injury. Here we test whether elevating intracellular creatine levels retains a cardioprotective effect in the presence of common comorbidities and whether it is additive to protection afforded by hypothermic cardioplegia.CrT-OE mice and wild-type controls were subjected to transverse aortic constriction for two weeks to induce compensated left ventricular hypertrophy (LVH. Hearts were retrogradely perfused in Langendorff mode for 15 minutes, followed by 20 minutes ischaemia and 30 minutes reperfusion. CrT-OE hearts exhibited significantly improved functional recovery (Rate pressure product during reperfusion compared to WT littermates (76% of baseline vs. 59%, respectively, P = 0.02. Aged CrT-OE mouse hearts (78±5 weeks also had enhanced recovery following 15 minutes ischaemia (104% of baseline vs. 67%, P = 0.0007. The cardioprotective effect of hypothermic high K+ cardioplegic arrest, as used during cardiac surgery and donor heart transplant, was further enhanced in prolonged ischaemia (90 minutes in CrT-OE Langendorff perfused mouse hearts (76% of baseline vs. 55% of baseline as seen in WT hearts, P = 0.02.These observations in clinically relevant models further support the development of modulators of intracellular creatine content as a translatable strategy for cardiac protection against ischaemia-reperfusion injury.

  12. Hypoinsulinemic hypoglycemia triggered by liver injury in elderly subjects with low body weight: case reports.

    Science.gov (United States)

    Anno, Takatoshi; Kaneto, Hideaki; Shigemoto, Ryo; Kawasaki, Fumiko; Kawai, Yasuhiro; Urata, Noriyo; Kawamoto, Hirofumi; Kaku, Kohei; Okimoto, Niro

    2018-01-01

    Hypoglycemia is induced by many causes, especially over-dose of insulin or oral hypoglycemic agents in diabetic subjects. In such a case, hyperinsulinemic hypoglycemia is usually observed. On the other hand, it is important to classify secondary hypoglycemia and hypoinsulinemic hypoglycemia. Liver injury-induced hypoglycemia is one of the causes of hypoinsulinemic hypoglycemia but rarely observed in clinical practice. Herein, we experienced similar 2 cases of non-diabetic hypoinsulinemic hypoglycemia. Both of them were elderly subjects with low body weight. Furthermore, it is likely that hypoinsulinemic hypoglycemia in both subjects was triggered by severe liver injury, at least in part, due to possible limited liver glycogen store. In elderly subjects with low body weight and/or malnutrition, metabolism in the liver is reduced and glycogen accumulation is decreased. Such alteration brings out acute and marked liver injury, which finally leads to the onset of severe hypoglycemia. It is known that not only liver injury but also multiple organ failure could be induced due to extreme emaciation in subjects. It is likely that in elderly subjects with low body weight and/or malnutrition, multiple organ failure including liver failure could be induced due to the similar reason. Therefore, we should be very careful of such subjects in order to avoid the development of multiple organ failure which leads to life-threatening situations. In conclusion, we should keep in mind the possibility of hypoinsulinemic hypoglycemia when we examine severe liver injury, especially in elderly or starving subjects with low body weight and limited liver glycogen stores. It is important to classify secondary hypoglycemia and hypoinsulinemic hypoglycemia.Liver injury-induced hypoglycemia is one of the causes of hypoinsulinemic hypoglycemia but rarely observed in everyday clinical practice.Herein, we reported similar 2 cases of hypoinsulinemic hypoglycemia without diabetes presumably triggered

  13. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice

    International Nuclear Information System (INIS)

    Geest, Rick van der; Ouweneel, Amber B.; Sluis, Ronald J. van der; Groen, Albert K.; Van Eck, Miranda; Hoekstra, Menno

    2016-01-01

    Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18 ± 5 ng/ml vs 472 ± 58 ng/ml; P < 0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast, the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%–93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P < 0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P < 0.01) and 82% (P < 0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P < 0.05), which translated into a 73% lower plasma total cholesterol level (P < 0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. - Highlights: • Cholestasis is associated with increased plasma glucocorticoid levels in mice. • Adrenalectomy lowers cholestasis-associated liver

  14. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Geest, Rick van der, E-mail: r.van.der.geest@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Ouweneel, Amber B., E-mail: a.b.ouweneel@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Sluis, Ronald J. van der, E-mail: r.vandersluis@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Groen, Albert K., E-mail: a.k.groen@umcg.nl [University Medical Center Groningen (Netherlands); Van Eck, Miranda, E-mail: m.eck@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands); Hoekstra, Menno, E-mail: hoekstra@lacdr.leidenuniv.nl [Leiden Academic Centre for Drug Research (Netherlands)

    2016-09-01

    Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18 ± 5 ng/ml vs 472 ± 58 ng/ml; P < 0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast, the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%–93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P < 0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P < 0.01) and 82% (P < 0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P < 0.05), which translated into a 73% lower plasma total cholesterol level (P < 0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. - Highlights: • Cholestasis is associated with increased plasma glucocorticoid levels in mice. • Adrenalectomy lowers cholestasis-associated liver

  15. An Overview on the Proposed Mechanisms of Antithyroid Drugs-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2015-03-01

    Full Text Available Drug-induced liver injury (DILI is a major problem for pharmaceutical industry and drug development. Mechanisms of DILI are many and varied. Elucidating the mechanisms of DILI will allow clinicians to prevent liver failure, need for liver transplantation, and death induced by drugs. Methimazole and propylthiouracil (PTU are two convenient antithyroid agents which their administration is accompanied by hepatotoxicity as a deleterious side effect. Although several cases of antithyroid drugs-induced liver injury are reported, there is no clear idea about the mechanism(s of hepatotoxicity induced by these medications. Different mechanisms such as reactive metabolites formation, oxidative stress induction, intracellular targets dysfunction, and immune-mediated toxicity are postulated to be involved in antithyroid agents-induced hepatic damage. Due to the idiosyncratic nature of antithyroid drugs-induced hepatotoxicity, it is impossible to draw a specific conclusion about the mechanisms of liver injury. However, it seems that reactive metabolite formation and immune-mediated toxicity have a great role in antithyroids liver toxicity, especially those caused by methimazole. This review attempted to discuss different mechanisms proposed to be involved in the hepatic injury induced by antithyroid drugs.

  16. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - A possible new hydrogen resource for clinical use.

    Science.gov (United States)

    Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan

    2016-10-29

    Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically. Copyright © 2016. Published by Elsevier Ltd.

  17. 1-methylmalate from camu-camu (Myrciaria dubia) suppressed D-galactosamine-induced liver injury in rats.

    Science.gov (United States)

    Akachi, Toshiyuki; Shiina, Yasuyuki; Kawaguchi, Takumi; Kawagishi, Hirokazu; Morita, Tatsuya; Sugiyama, Kimio

    2010-01-01

    To evaluate the protective effects of fruit juices against D-galactosamine (GalN)-induced liver injury, lyophilized fruit juices (total 12 kinds) were fed to rats for 7 d, and then we evoked liver injury by injecting GalN. The juice of camu-camu (Myrciaria dubia) significantly suppressed GalN-induced liver injury when the magnitude of liver injury was assessed by plasma alanine aminotransferase and aspartate aminotransferase activities, although some other juices (acerola, dragon fruit, shekwasha, and star fruit) also tended to have suppressive effects. An active compound was isolated from camu-camu juice by solvent fractionation and silica gel column chromatography. The structure was determined to be 1-methylmalate. On the other hand, malate, 1,4-dimethylmalate, citrate, and tartrate had no significant effect on GalN-induced liver injury. It is suggested that 1-methylmalate might be a rather specific compound among organic acids and their derivatives in fruit juices in suppressing GalN-induced liver injury.

  18. Complications of high grade liver injuries: management and outcomewith focus on bile leaks

    Directory of Open Access Journals (Sweden)

    Bala Miklosh

    2012-03-01

    Full Text Available Abstract Background Although liver injury scale does not predict need for surgical intervention, a high-grade complex liver injury should alert the physician to expect an increased risk of hepatic complications following trauma. The aim of the current study was to define hepatic related morbidity in patients sustaining high-grade hepatic injuries that could be safely managed non-operatively. Patients and methods This is a retrospective study of patients with liver injury admitted to Hadassah-Hebrew University Medical Centre over a 10-year period. Grade 3-5 injuries were considered to be high grade. Collected data included the number and types of liver-related complications. Interventions which were required for these complications in patients who survived longer than 24 hours were analysed. Results Of 398 patients with liver trauma, 64 (16% were found to have high-grade liver injuries. Mechanism of injury was blunt trauma in 43 cases, and penetrating in 21. Forty patients (62% required operative treatment. Among survivors 22 patients (47.8% developed liver-related complications which required additional interventional treatment. Bilomas and bile leaks were diagnosed in 16 cases post-injury. The diagnosis of bile leaks was suspected with abdominal CT scan, which revealed intraabdominal collections (n = 6, and ascites (n = 2. Three patients had continuous biliary leak from intraabdominal drains left after laparotomy. Nine patients required ERCP with biliary stent placement, and 2 required percutaneous transhepatic biliary drainage. ERCP failed in one case. Four angioembolizations (AE were performed in 3 patients for rebleeding. Surgical treatment was found to be associated with higher complication rate. AE at admission was associated with a significantly higher rate of biliary complications. There were 24 deaths (37%, the majority from uncontrolled haemorrhage (18 patients. There were only 2 hepatic-related mortalities due to liver failure

  19. Complications of high grade liver injuries: management and outcomewith focus on bile leaks.

    Science.gov (United States)

    Bala, Miklosh; Gazalla, Samir Abu; Faroja, Mohammad; Bloom, Allan I; Zamir, Gideon; Rivkind, Avraham I; Almogy, Gidon

    2012-03-23

    Although liver injury scale does not predict need for surgical intervention, a high-grade complex liver injury should alert the physician to expect an increased risk of hepatic complications following trauma. The aim of the current study was to define hepatic related morbidity in patients sustaining high-grade hepatic injuries that could be safely managed non-operatively. This is a retrospective study of patients with liver injury admitted to Hadassah-Hebrew University Medical Centre over a 10-year period. Grade 3-5 injuries were considered to be high grade. Collected data included the number and types of liver-related complications. Interventions which were required for these complications in patients who survived longer than 24 hours were analysed. Of 398 patients with liver trauma, 64 (16%) were found to have high-grade liver injuries. Mechanism of injury was blunt trauma in 43 cases, and penetrating in 21. Forty patients (62%) required operative treatment. Among survivors 22 patients (47.8%) developed liver-related complications which required additional interventional treatment. Bilomas and bile leaks were diagnosed in 16 cases post-injury. The diagnosis of bile leaks was suspected with abdominal CT scan, which revealed intraabdominal collections (n = 6), and ascites (n = 2). Three patients had continuous biliary leak from intraabdominal drains left after laparotomy. Nine patients required ERCP with biliary stent placement, and 2 required percutaneous transhepatic biliary drainage. ERCP failed in one case. Four angioembolizations (AE) were performed in 3 patients for rebleeding. Surgical treatment was found to be associated with higher complication rate. AE at admission was associated with a significantly higher rate of biliary complications. There were 24 deaths (37%), the majority from uncontrolled haemorrhage (18 patients). There were only 2 hepatic-related mortalities due to liver failure. A high complication rate following high-grade liver injuries should

  20. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    Science.gov (United States)

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.