WorldWideScience

Sample records for reperfusion injury salvage

  1. Reduction of infarct size by gentle reperfusion without activation of reperfusion injury salvage kinases in pigs.

    Science.gov (United States)

    Musiolik, Judith; van Caster, Patrick; Skyschally, Andreas; Boengler, Kerstin; Gres, Petra; Schulz, Rainer; Heusch, Gerd

    2010-01-01

    Reperfusion is mandatory to salvage ischaemic myocardium from infarction, but also induces additional reperfusion injury and contributes to infarct size (IS). Gentle reperfusion (GR) has been proposed to attenuate reperfusion injury, but this remains contentious. We now investigated whether (i) GR reduces IS and (ii) GR is associated with the activation of reperfusion injury salvage kinases (RISK). Anaesthetized pigs were subjected to 90 min left anterior descending coronary artery hypoperfusion and 120 min reperfusion. GR was induced by slowly increasing coronary inflow back to baseline over 30 min, using an exponential algorithm [F(t) = F(i)+e(-(0.1)(t)((min)-3)).(F(b)-F(i)); F(b), coronary inflow at baseline; F(i), coronary inflow during ischaemia; n = 12]. Pigs subjected to immediate full reperfusion (IFR; n = 13) served as controls. IS was determined by triphenyl tetrazolium chloride staining. The expression level of phosphorylated RISK proteins was determined by western blot analysis in myocardial biopsies taken at baseline, after 80-85 min ischaemia and at 10, 30, and 120 min reperfusion. In additional experiments with IFR (n = 3) and GR (n = 3), the PI3-AKT and MEK1/2-ERK1/2 pathways were pharmacologically blocked (BL). IS was 37 +/- 2% (mean +/- SEM) of the area at risk with IFR and 29 +/- 1% (P < 0.05) with GR. RISK phosphorylation was similar between GR and IFR at baseline and 85 min ischaemia. At 10 min reperfusion, RISK phosphorylation was increased with IFR, but not with GR. At 30 and 120 min reperfusion, RISK phosphorylation was still greater with IFR than GR. RISK blockade did not abolish the IS reduction by GR (BL-IFR: 27 +/- 4% of the area at risk; BL-GR: 42 +/- 5%; P < 0.05). Gentle reperfusion reduces infarct size in pigs, but RISK activation is not causally involved in this infarct size reduction.

  2. 再灌注抢救激酶在肥厚心肌缺血后适应中的作用%Ischemic postconditioning protects hypertrophic myocardium by reperfusion injury salvage kinase in mice

    Institute of Scientific and Technical Information of China (English)

    李晓梅; 杨毅宁; 马依形; 陈邦党; 刘芬; 韩伟; 高晓明

    2011-01-01

    目的 探讨再灌注抢救激酶细胞外信号调节激酶1/2(ERK1/2 )和磷脂酸肌醇3激酶-蛋白激酶B(PI3 K-Akt)信号通路在缺血后适应(Most )对减轻肥厚心肌缺血再灌注(I/R)损伤中的作用.方法 12周龄C57/BI刁、鼠通过主动脉弓缩窄4周建立心肌肥厚模型,利用Langendor"灌流装置建立小鼠肥厚心肌I/R模型,30 min全心缺血随后再灌注15、120 min.分为缺血再灌注组(I/R组)、后适应组(Most组,采取缺血10 s及再灌注10s的3次Most周期),I/R+抑制剂组[分别加人ERK1/2特异性抑制剂PD98058,Akt特异性抑制剂握曼青霉素(wortmannin)],IPost+抑制剂组,进行心脏血流动力学检测,采用三苯基氯化四氮哇染色的方法确定心肌梗死范围,免疫印迹方法检测ERK1/2,p70s6k,Akt、糖原合成酶3阿GSK-3团总蛋白及磷酸化蛋白表达水平.结果 与I/R组比较,Most组小鼠心脏血流动力学指标左心室收缩压、左室压力上升最大速度显著改善[(67±5)比(86±6),(2720±210)比(3678±330)mm Hg,均P0.05);Most+PD98058组显示在再灌注的最初15 min使用PD98059能消除Most对肥厚心肌的上述保护作用.与I/R组比较,IPost组再灌注15、120 min心肌的Akt,GSK-3β蛋白磷酸化水平表达差异无统计学意义(均P>O.05);I/R+wortmannin组、IPost+wortmannin组上述指标差异亦无统计学意义(均P>O.05).结论 IPost能有效地减轻离体小鼠肥厚心肌缺血再灌注损伤,ERK1 /2细胞信号途径是IPost对缺血再灌注肥厚心肌保护作用的重要信号通路;而PI3K-Akt信号通路未参与IPost上述保护作用.%Objective To determine the effect of ischemic postconditioning (IPost) protection in hypertrophic myocardium subjected to ischemic-reperfusion (I/R) injury and to study the role of reperfusion injury salvage kinase (RISK) in mediating such protection. Methods Transversing aortic constriction (TAC) was induced for 4 weeks in 12 weeks old C57/BL mice to establish left ventricular hypertrophy

  3. Effects of ischemia postconditioning on isehemia-reperfusion injury and reperfusion injury salvage kinase signal transduction pathways in isolated mouse hearts%再灌注损伤抢救激酶对小鼠缺血后适应心肌再灌注损伤中的减轻作用

    Institute of Scientific and Technical Information of China (English)

    张健发; 马依彤; 杨毅宁; 高晓明; 刘芬; 陈邦党; 李晓梅; 向阳

    2008-01-01

    目的 研究缺血后适应(IPC)对离体小鼠心肌缺血再灌注(I/R)损伤的作用及其影响因素,探讨再灌注损伤抢救激酶在IPC心肌保护中的作用.方法 建立Langendofff小鼠心肌I/R模型,全心缺血30 min后分为6组[(1)对照组,(2)3次IPC组(采取缺血10 s及再灌注10 s的3次IPC周期),(3)6次IPC组(采取缺血10 s及再灌注10 s的6次IPC周期),(4)延迟IPC组(恢复再灌注1 min后进行IPC),(5)IPC+PD98059组,(6)I/R+PD98059组],随后再灌注2 h;观察IPC对心脏血流动力学、心肌酶的释放、心肌超氧化物歧化酶活性和丙二醛的含量、梗死心肌范围的影响以及与细胞外信号调节激酶(ERK1/2)、磷脂酰肌醇3激酶-蛋白激酶B表达水平的关系.结果 与对照组比较,3次IPC组和6次IPC组小鼠心脏血流动力学显著改善,心肌酶释放减少,心肌丙二醛减少、超氧化物歧化酶活性增加,心肌梗死范围减小.6次与3次IPC周期的保护作用相似.而IPC作用在恢复再灌注1 min后消失.3次IPC组和6次iPC组心肌的ERK1/2磷酸化水平显著增高,蛋白激酶B磷酸化水平无明显变化.PD98059显著抑制IPC所致的ERK1/2的磷酸化,并能消除IPC对心肌的保护作用.结论 IPC能有效地减轻离体小鼠心肌缺血再灌注损伤,增加IPC的周期数并没有扩大保护作用,延迟IPC没有产生类似的保护作用.ERK1/2细胞信号途径参与介导IPC对离体心脏缺血再灌注心肌的保护作用.%Objeetive To explore the effects of ischemia postconditioning(IPC)on ischemia-reperfusion(I/R)injury and associated reperfusion injury salvage kinase(RISK)signal transduction palthways changes in isolated mouse hearts.Methods Langendofff perfused C57/BL mouse hearts were divided to 6 groups:(1)control:30 min global ischemia and 2 h reperfusion(I/R);(2)IPC with 3 episodes,IPC with 3 episodes of 10 s of ischemia and 10 s reperfusion after 30 rain ischemia and before 2 h reperfusion:(3)IPC with 6 episodes,IPC with six

  4. Time course of metabolic findings in coronary occlusion and reperfusion and their role for assessing myocardial salvage

    Energy Technology Data Exchange (ETDEWEB)

    Schwaiger, M.

    1986-08-01

    The techniques currently used to assess myocardial infarction are limited in their ability to determine the amount of viable myocardium after a temporary ischemic event. Blood flow and segmental function may not necessarily demonstrate salvage, whereas metabolic parameters will determine cell survival. In a dog open chest model, short occlusion times of 20 min and subsequent reperfusion using C-11 palmitate as an index of fatty acid metabolism showed depresssion of fatty acid oxidation, which recovered after 3 hours of reperfusion, indicating the partial reversibility of the ischemic condition. In more extensive studies, using positron emission tomography (PET) and, as an indicator of glucose metabolism, fluoro-F-18-deoxyglucose (FDG); N-13 ammonia in addition to C-11 palmitate for the determination of blood flow; and ultrasonic crystals to measure shortening in the reperfused and control territories, the duration of occlusion was 3h. Metabolic studies were repeated 24 h, 1 week, and 4 weeks after the ischemic injury. Reperfused viable myocardium exhibited residual glucose metabolism with FDG, whereas fatty acid oxidation remained impaired for a longer period. Gradual metabolic recovery during a 4-week period was associated with the prolonged recovery of regional function, whereas a lack of residual metabolic activity indicated that little change in function was likely to occur. Increased FDG uptake and impaired C-11 palmitate turnover are characteristic of reversibly injured tissue. Therefore, PET studies may offer a unique potential for the evaluation of therapeutic measures such as thrombolysis and early revascularization.

  5. Isoprostanes--markers of ischaemia reperfusion injury.

    LENUS (Irish Health Repository)

    Sakamoto, H

    2012-02-03

    Ischaemia reperfusion injury is a common and important phenomenon that occurs predictably in patients undergoing such procedures as cardiopulmonary bypass, thrombolysis, surgery under tourniquet, organ transplantation or embolectomy. Oxidative stress and the resulting lipid peroxidation play a major role in reperfusion injury. Membrane and cellular dysfunction result and, subsequently, organ injury or failure may ensue. Traditional methods of quantifying ischaemia reperfusion injury, including measurement of malondialdehyde, lack specificity and sensitivity. It was reported in 1990 that isoprostanes, a series of prostaglandin-like compounds, are produced by the free radical-catalyzed peroxidation of arachidonic acid. Measurement of the isoprostane concentration in urine or plasma provides the most reliable, non-invasive method currently available to assess oxidative stress in vivo. Serial measurement of isoprostanes in biological fluids has enhanced our understanding of the mechanisms underlying ischaemia reperfusion injury itself and its role in certain diseases. Furthermore, measurement of the isoprostane concentration provides a means to assess the effects of prophylactic and therapeutic interventions. In the future, the development of rapid, simple assays for isoprostanes offers the potential to assess prognosis during and after ischaemia reperfusion events.

  6. Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Ekeløf, Sarah V; Halladin, Natalie L; Jensen, Svend E

    2016-01-01

    Acute coronary occlusion is effectively treated by primary percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury is at the moment an unavoidable consequence of the procedure. Oxidative stress is central in the development of ischemia-reperfusion injury. Melatonin......, an endogenous hormone, acts through antioxidant mechanisms and could potentially minimize the myocardial injury. The aim of the experimental study was to examine the cardioprotective effects of melatonin in a porcine closed-chest reperfused infarction model. A total of 20 landrace pigs were randomized...... to a dosage of 200 mg (0.4 mg/mL) melatonin or placebo (saline). The intervention was administered intracoronary and intravenous. Infarct size, area at risk and microvascular obstruction were determined ex vivo by cardiovascular magnetic resonance imaging. Myocardial salvage index was calculated. The plasma...

  7. Prevention of grafted liver from reperfusive injury

    Institute of Scientific and Technical Information of China (English)

    Kai Ma; Yang yu; Xian-Min Bu; Yan-Jun Li; Xian-Wei Dai; Liang Wang; Yang Dai; Hai-Ying Zhao; Xiang-Hong Yang

    2001-01-01

    @@ INTRODUCTIONThe incidence of primary non-function(PNF)of grafted liver in the early postoperative stage is 2%-23%[1-4],its main cause is the ischemic-rechemic injure[5,6].In this experiment,anisodamine was added into the preserving fluid and the grafted liver was rewarmed at different temperatures to protect the cell membranc and prevent ischemic-reperfusive injury.

  8. [The role of free radicals in the myocardial reperfusion injuries and in the development of endogenous adaptation].

    Science.gov (United States)

    Rőth, Erzsébet

    2015-11-22

    The reperfusion of acute ischaemic myocardium is essential for myocardial salvage, so-called "gold standard" therapy, however it can result in serious damage to the myocardium. Functional alterations occur, including depressed contractile function and decreased coronary flow as well as altered vascular reactivity. Over several decades it has been demonstrated that oxygen radical formation is greatly increased in the post-ischaemic heart and serves as a critical central mechanism of ischaemic-reperfusion injury. However it has been demonstrated that free radicals play an important role in the endogenous adaptation phenomenon of the heart, too. Ischaemic preconditioning is a cellular adaptive response of the heart to stress, which provides the most potent endogenous protection against reperfusion arrhytmias, stunning and infarction. Post-conditioning defined as brief periods of ischaemia and reperfusion during the very early minutes of reperfusion stimulates endogenous adaptation. Post-conditioning may also attenuate the damage to endothelial cells and cardiomyocytes from oxidants, cytokines, proteases and inflammatory cells.

  9. Autophagy and Liver Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Raffaele Cursio

    2015-01-01

    Full Text Available Liver ischemia-reperfusion (I-R injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS, leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.

  10. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice

    Science.gov (United States)

    Dong, Qian; Li, Jing; Wu, Qiong-feng; Zhao, Ning; Qian, Cheng; Ding, Dan; Wang, Bin-bin; Chen, Lei; Guo, Ke-Fang; Fu, Dehao; Han, Bing; Liao, Yu-Hua; Du, Yi-Mei

    2017-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable nonselective cation channel and can be activated during ischemia/reperfusion (I/R). This study tested whether blockade of TRPV4 can alleviate myocardial I/R injury in mice. TRPV4 expression began to increase at 1 h, reached statistically at 4 h, and peaked at 24–72 h. Treatment with the selective TRPV4 antagonist HC-067047 or TRPV4 knockout markedly ameliorated myocardial I/R injury as demonstrated by reduced infarct size, decreased troponin T levels and improved cardiac function at 24 h after reperfusion. Importantly, the therapeutic window for HC-067047 lasts for at least 12 h following reperfusion. Furthermore, treatment with HC-067047 reduced apoptosis, as evidenced by the decrease in TUNEL-positive myocytes, Bax/Bcl-2 ratio, and caspase-3 activation. Meanwhile, treatment with HC-067047 attenuated the decrease in the activation of reperfusion injury salvage kinase (RISK) pathway (phosphorylation of Akt, ERK1/2, and GSK-3β), while the activation of survival activating factor enhancement (SAFE) pathway (phosphorylation of STAT3) remained unchanged. In addition, the anti-apoptotic effects of HC-067047 were abolished by the RISK pathway inhibitors. We conclude that blockade of TRPV4 reduces apoptosis via the activation of RISK pathway, and therefore might be a promising strategy to prevent myocardial I/R injury. PMID:28205608

  11. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Liu, Y H; Yang, X P; Sharov, V G; Sigmon, D H; Sabbath, H N; Carretero, O A

    1996-01-01

    After transient episodes of ischemia, benefits of thrombolytic or angioplastic therapy may be limited by reperfusion injury. Angiotensin-converting enzyme inhibitors protect the heart against ischemia/reperfusion injury, an effect mediated by kinins. We examined whether the protective effect of the angiotensin-converting enzyme inhibitor ramiprilat on myocardial ischemia/reperfusion is due to kinin stimulation of prostaglandin and/or nitric oxide release. The left anterior descending coronary artery of Lewis inbred rats was occluded for 30 minutes, followed by 120 minutes of reperfusion. Immediately before reperfusion rats were treated with vehicle, ramiprilat, or the angiotensin II type 1 receptor antagonist losartan. We tested whether pretreatment with the kinin receptor antagonist Hoe 140, the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester, or the cyclooxygenase inhibitor indomethacin blocked the effect of ramiprilat on infarct size and reperfusion arrhythmias. In controls, infarct size as a percentage of the area at risk was 79 +/- 3%; ramiprilat reduced this to 49 +/- 4% (P < .001), but losartan had little effect (74 +/- 6%, P = NS). Pretreatment with Hoe 140, NG-nitro-L-arginine methyl ester, or indomethacin abolished the beneficial effect of ramiprilat. Compared with the 30-minute ischemia/120-minute reperfusion group, nonreperfused hearts with 30 minutes of ischemia had significantly smaller infarct size as a percentage of the area at risk, whereas in the 150-minute ischemia group it was significantly larger. This suggests that reperfusion caused a significant part of the myocardial injury, but it also suggests that compared with prolonged ischemia, reperfusion salvaged some of the myocardium. Ventricular arrhythmias mirrored the changes in infarct size. Thus, angiotensin-converting enzyme inhibitors protect the myocardium against ischemia/reperfusion injury and arrhythmias; these beneficial effects are mediated primarily by a kinin

  12. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus.

    Science.gov (United States)

    Lejay, Anne; Fang, Fei; John, Rohan; Van, Julie A D; Barr, Meredith; Thaveau, Fabien; Chakfe, Nabil; Geny, Bernard; Scholey, James W

    2016-02-01

    Ischemia/reperfusion, which is characterized by deficient oxygen supply and subsequent restoration of blood flow, can cause irreversible damages to tissue. Mechanisms contributing to the pathogenesis of ischemia reperfusion injury are complex, multifactorial and highly integrated. Extensive research has focused on increasing organ tolerance to ischemia reperfusion injury, especially through the use of ischemic conditioning strategies. Of morbidities that potentially compromise the protective mechanisms of the heart, diabetes mellitus appears primarily important to study. Diabetes mellitus increases myocardial susceptibility to ischemia reperfusion injury and also modifies myocardial responses to ischemic conditioning strategies by disruption of intracellular signaling responsible for enhancement of resistance to cell death. The purpose of this review is twofold: first, to summarize mechanisms underlying ischemia reperfusion injury and the signal transduction pathways underlying ischemic conditioning cardioprotection; and second, to focus on diabetes mellitus and mechanisms that may be responsible for the lack of effect of ischemic conditioning strategies in diabetes.

  13. Does machine perfusion decrease ischemia reperfusion injury?

    Science.gov (United States)

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. New perspectives on the role of cardiac magnetic resonance imaging to evaluate myocardial salvage and myocardial hemorrhage after acute reperfused ST-elevation myocardial infarction.

    Science.gov (United States)

    Mangion, Kenneth; Corcoran, David; Carrick, David; Berry, Colin

    2016-07-01

    Cardiac magnetic resonance (CMR) imaging enables the assessment of left ventricular function and pathology. In addition to established contrast-enhanced methods for the assessment of infarct size and microvascular obstruction, other infarct pathologies, such as myocardial edema and myocardial hemorrhage, can be identified using innovative CMR techniques. The initial extent of myocardial edema revealed by T2-weighted CMR has to be stable for edema to be taken as a retrospective marker of the area-at-risk, which is used to calculate myocardial salvage. The timing of edema assessment is important and should be focused within 2 - 7 days post-reperfusion. Some recent investigations have called into question the diagnostic validity of edema imaging after acute STEMI. Considering the results of these studies, as well as results from our own laboratory, we conclude that the time-course of edema post-STEMI is unimodal, not bimodal. Myocardial hemorrhage is the final consequence of severe vascular injury and a progressive and prognostically important complication early post-MI. Myocardial hemorrhage is a therapeutic target to limit reperfusion injury and infarct size post-STEMI.

  15. Transient Acidosis during Early Reperfusion Attenuates Myocardium Ischemia Reperfusion Injury via PI3k-Akt-eNOS Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xin Qiao

    2013-01-01

    Full Text Available In this paper, we concluded that transient acidosis reperfusion conferred cardioprotection against myocardial ischemia reperfusion injury in isolated rat hearts through activating PI3K-Akt-eNOS pathway.

  16. Genistein attenuates ischemia/reperfusion injury in rat kidneys via ...

    African Journals Online (AJOL)

    by oral gavage for 7 consecutive days and then subjected to 45 min of renal bilateral ... Keywords: Oxidative stress, Genistein, Ischemic reperfusion injury, Renal ... radical production ultimately leading to cellular ... serum biomarker analysis.

  17. Passive targeting of lipid-based nanoparticles to mouse cardiac ischemia-reperfusion injury

    NARCIS (Netherlands)

    Geelen, T.; Paulis, L.E.M.; Coolen, B.F.; Nicolay, K.; Strijkers, G.J.

    2013-01-01

    Reperfusion therapy is commonly applied after a myocardial infarction. Reperfusion, however, causes secondary damage. An emerging approach for treatment of ischemia-reperfusion (IR) injury involves the delivery of therapeutic nanoparticles to the myocardium to promote cell survival and constructivel

  18. Glycine preconditioning to ameliorate pulmonary ischemia reperfusion injury in rats

    NARCIS (Netherlands)

    Sommer, Sebastian-Patrick; Sommer, Stefanie; Sinha, Bhanu; Leyh, Rainer G.

    2012-01-01

    This study examines the impact of glycine (Gly) preconditioning on ischemia reperfusion (IR)-induced pulmonary mitochondrial injury to research the previously, in pig lungs, demonstrated Gly-dependent amelioration of pulmonary IR injury. IR injury was induced in rat lungs by 30 min pulmonary hilum c

  19. Gadolinium decreases inflammation related to myocardial ischemia and reperfusion injury

    Directory of Open Access Journals (Sweden)

    Nicolosi Alfred C

    2009-12-01

    Full Text Available Abstract Background The lanthanide cation, gadolinium (GdCl3 protects the myocardium against infarction following ischemia and reperfusion. Neutrophils and macrophages are the main leukocytes responsible for infarct expansion after reperfusion. GdCl3 interferes with macrophage and neutrophil function in the liver by decreasing macrophage secretion of inflammatory cytokines and neutrophil infiltration. We hypothesized that GdCl3 protects against ischemia and reperfusion injury by decreasing inflammation. We determined the impact of GdCl3 treatment for reperfusion injury on 1 circulating monoctye and neutrophil counts, 2 secretion of inflammatory cytokines, and 3 influx of monocytes and neutrophils into the myocardium. Methods Rats (n = 3-6/gp were treated with saline or GdCl3 (20 μmol/kg 15 min prior to a 30 min period of regional ischemia and 120 min reperfusion. Sham rats were not subject to ischemia. Blood was collected either after 30 min ischemia or 120 min reperfusion and hearts were harvested at 120 min reperfusion for tissue analysis. Blood was analyzed for leukocytes counts and cytokines. Tissue was analyzed for cytokines and markers of neutrophil and monocyte infiltration by measuring myeloperoxidase (MPO and α-naphthyl acetate esterase (ANAE. Results GdCl3 did not affect the number of circulating neutrophils prior to ischemia. Two hours reperfusion resulted in a 2- and 3- fold increase in circulating monocytes and neutrophils, respectively. GdCl3 decreased the number of circulating monocytes and neutrophils during reperfusion to levels below those present prior to ischemia. Furthermore, after 120 min of reperfusion, GdCl3 decreased ANAE and MPO activity in the myocardium by 1.9-fold and 6.5-fold respectively. GdCl3 decreased MPO activity to levels below those measured in the Sham group. Serum levels of the major neutrophil chemoattractant cytokine, IL-8 were increased from pre-ischemic levels during ischemia and reperfusion in both

  20. The complement system in ischemia-reperfusion injuries.

    Science.gov (United States)

    Gorsuch, William B; Chrysanthou, Elvina; Schwaeble, Wilhelm J; Stahl, Gregory L

    2012-11-01

    Tissue injury and inflammation following ischemia and reperfusion of various organs have been recognized for many years. Many reviews have been written over the last several decades outlining the role of complement in ischemia/reperfusion injury. This short review provides a current state of the art knowledge on the complement pathways activated, complement components involved and a review of the clinical biologics/inhibitors used in the clinical setting of ischemia/reperfusion. This is not a complete review of the complement system in ischemia and reperfusion injury but will give the reader an updated view point of the field, potential clinical use of complement inhibitors, and the future studies needed to advance the field.

  1. Does Dexpantenol Protect the Kidney from Ischemia-Reperfusion Injury?

    Directory of Open Access Journals (Sweden)

    Sezen ÖZKISACIK

    2011-05-01

    Full Text Available OBJECTIVES: Tissue injury occurs following reperfusion after creation of ischemia. Plenty of chemical agents have been shown to protect from such an injury. We planned to evaluate the protective effect of dexpanthenol (dxp in ischemia-reperfusion injury. MATERIAL and METHODS: 24 adult rats were used and divided into 3 groups. A right nephrectomy was performed through a median laparotomy incision in all groups. Additionally, in group 1 (sham group, left nephrectomy was made 6 hours later without creation of ischemia. In group 2 (Saline group, the left kidney was left ischemic for 1 hour and reperfusion was established for 6 hours. Saline was administered intraperitoneally thirty minutes before creation of ischemia and just before reperfusion. In group 3 (Dexpanthenol group, the left kidney was left ischemic for 1 hour and reperfusion was established for 6 hours. Dxp (500 mg/kg was administered intraperitoneally thirty minutes before creation of ischemia and just before reperfusion. A left nephrectomy was performed at the end of the 6 hours of reperfusion. Nephrectomy specimens were histopathologically analysed for congestion, inflammation and necrosis. Tissue NO, glutathione reductase, catalase and MDA levels were measured. RESULTS: There was no significant differences between the groups histopathologically or biochemically. CONCLUSION: Dexpanthenol is the biologically active form of pantothenic acid and has an antioxidant effect. Our study was not in correlation with the literature regarding a protective effect of dxp on various organs via its antioxidant effect.

  2. Neuroprotective effects of rutaecarpine on cerebral ischemia reperfusion injury**

    Institute of Scientific and Technical Information of China (English)

    Chunlin Yan; Ji Zhang; Shu Wang; Guiping Xue; Yong Hou

    2013-01-01

    Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia reperfusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 µg/kg carpine were given to mice via intraperitoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutae-carpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neu-rological function fol owing injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice.

  3. Quercetin protects rat skeletal muscle from ischemia reperfusion injury.

    Science.gov (United States)

    Ekinci Akdemir, Fazile Nur; Gülçin, İlhami; Karagöz, Berna; Soslu, Recep

    2016-01-01

    In this study, we investigated the potential beneficial effects of quercetin on skeletal muscle ischemia reperfusion injury. Twenty-four Sprague-Dawley type rats were randomly divided into four groups. In the sham group, only gastrocnemius muscle were removed and given no quercetin. In ischemia group, all the femoral artery, vein and collaterals were occluded in the left hindlimb by applying tourniquate under general anaesthesia for three hours but reperfusion was not done. In the Quercetin + Ischemia reperfusion group, quercetin (200 mg kg(-1) dose orally) was given during one-week reoperation and later ischemia reperfusion model was done. Finally, gastrocnemius muscle samples were removed to measure biochemical parameters. The biomarkers, MDA levels, SOD, CAT and GPx activities, were evaluated related to skeletal muscle ischemia reperfusion injury. MDA levels reduced and SOD, CAT and GPx activities increased significantly in Quercetin + Ischemia reperfusion group. Results clearly showed that Quercetin have a protective role against oxidative damage induced by ischemia reperfusion in rats.

  4. Mangafodipir protects against hepatic ischemia-reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Romain Coriat

    Full Text Available INTRODUCTION AND AIM: Mangafodipir is a contrast agent used in magnetic resonance imaging that concentrates in the liver and displays pleiotropic antioxidant properties. Since reactive oxygen species are involved in ischemia-reperfusion damages, we hypothesized that the use of mangafodipir could prevent liver lesions in a mouse model of hepatic ischemia reperfusion injury. Mangafodipir (MnDPDP was compared to ischemic preconditioning and intermittent inflow occlusion for the prevention of hepatic ischemia-reperfusion injury in the mouse. METHODS: Mice were subjected to 70% hepatic ischemia (continuous ischemia for 90 min. Thirty minutes before the ischemic period, either mangafodipir (10 mg/kg or saline was injected intraperitoneally. Those experimental groups were compared with one group of mice preconditioned by 10 minutes' ischemia followed by 15 minutes' reperfusion, and one group with intermittent inflow occlusion. Hepatic ischemia-reperfusion injury was evaluated by measurement of serum levels of aspartate aminotransferase (ASAT activity, histologic analysis of the livers, and determination of hepatocyte apoptosis (cytochrome c release, caspase 3 activity. The effect of mangafodipir on the survival rate of mice was studied in a model of total hepatic ischemia. RESULTS: Mangafodipir prevented experimental hepatic ischemia-reperfusion injuries in the mouse as indicated by a reduction in serum ASAT activity (P<0.01, in liver tissue damages, in markers of apoptosis (P<0.01, and by higher rates of survival in treated than in untreated animals (P<0.001. The level of protection by mangafodipir was similar to that observed following intermittent inflow occlusion and higher than after ischemic preconditioning. CONCLUSIONS: Mangafodipir is a potential new preventive treatment for hepatic ischemia-reperfusion injury.

  5. Evaluation of hemolysis in microcatheter directed blood infusion at different flow rates for transarterial salvage reperfusion: In-vitro study.

    Science.gov (United States)

    Froelich, Jens J; Ray, Udayan; Monkhorst, Jessica; Marwick, Thomas H; Hardikar, Ashutosh; Harle, Robin; Carr, Michael W

    2015-01-01

    Microcatheter directed blood reperfusion is an endovascular salvage option for acute cerebral artery occlusions. It has not been investigated whether this technique may be associated with hemolysis. Analysis of hemolysis during blood infusion through different microcatheters and infusion rates to assess related risks. Four microcatheters with different inner diameters were perfused with blood samples at three infusion rates. Hemolytic markers including lactate-dehydrogenase (LDH) and haptoglobin were analyzed. Samples before and after blood infusion were compared using Student's t-test. Flow-related degree of hemolysis was analyzed with regression analysis. Resulting shear stress was calculated and correlated with LDH and haptoglobin. Significant increase of LDH and decrease of haptoglobin was found after blood reperfusion through small microcatheters at progressive flow rates (phemolysis was found with larger diameter microcatheters at all flow rates (p>0.05). Correlation between shear stress, LDH and haptoglobin was r=0.86 and r=0.75, respectively. Progressive hemolysis occurs during blood perfusion of small lumen microcatheters at increasing flow rates. This phenomenon may be related to turbulent flow, exposure time and increased shear stress. Larger microcatheters did not induce hemolysis and may be the preferred choice for stroke reperfusion.

  6. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Renata Salatti Ferrari

    2015-01-01

    Full Text Available Ischemia-reperfusion (IR injury is directly related to the formation of reactive oxygen species (ROS, endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.

  7. Protective effects of curcumin supplementation on intestinal ischemia reperfusion injury.

    Science.gov (United States)

    Okudan, N; Belviranlı, M; Gökbel, H; Oz, M; Kumak, A

    2013-07-15

    The aim of this study was to investigate the effects curcumin on inflammation and oxidative stress markers in the intestinal ischemia reperfusion (IIR) injury induced rats. Rats were divided into four groups: sham (S), intestinal IR (IIR), curcumin plus sham (CS), and curcumin plus intestinal IR (CIIR). Curcumin was given 200 mg kg⁻¹ for 20 days. IIR was produced by 45 min of intestinal ischemia followed by a 120 min of reperfusion. Although interleukin-6 levels tended to increase in IIR group tumor necrosis factor-α levels were not different. Intestinal myeloperoxidase activity in CS group was lower than IIR group. In intestine and heart tissues, malondialdehyde levels in CS and CIIR groups were lower than S and IIR groups. Superoxide dismutase activity in CIIR group was higher than IIR group in intestine and lung tissues. Curcumin has a protective role against ischemia reperfusion injury.

  8. Postconditioning attenuates acute intestinal ischemia–reperfusion injury

    Directory of Open Access Journals (Sweden)

    Ilker Sengul

    2013-03-01

    Full Text Available The aim of this study was to test the hypothesis that postconditioning (POC would reduce the detrimental effects of the acute intestinal ischemia–reperfusion (I/R compared to those of the abrupt onset of reperfusion. POC has a protective effect on intestinal I/R injury by inhibiting events in the early minutes of reperfusion in rats. Twenty-four Wistar–Albino rats were subjected to the occlusion of superior mesenteric artery for 30 minutes, then reperfused for 120 minutes, and randomized to the four different modalities of POC: (1 control (no intervention; (2 POC-3 (three cycles of 10 seconds of reperfusion–reocclusion, 1 minute total intervention; (3 POC-6 (six cycles of 10 seconds of reperfusion–reocclusion, 2 minutes total intervention; and (4 sham operation (laparotomy only. The arterial blood samples [0.3 mL total creatine kinase (CK and 0.6 mL malondialdehyde (MDA] and the intestinal mucosal MDA were collected from each after reperfusion. POC, especially POC-6, was effective in attenuating postischemic pathology by decreasing the intestinal tissue MDA levels, serum total CK activity, inflammation, and total histopathological injury scores. POC exerted a protective effect on the intestinal mucosa by reducing the mesenteric oxidant generation, lipid peroxidation, and neutrophil accumulation. The six-cycle algorithm demonstrated the best protection.

  9. Characterization of microparticles after hepatic ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Christopher M Freeman

    Full Text Available BACKGROUND: Hepatic ischemia-reperfusion (I/R is a well-studied model of liver injury and has demonstrated a biphasic injury followed by recovery and regeneration. Microparticles (MPs are a developing field of study and these small membrane bound vesicles have been shown to have effector function in other physiologic and pathologic states. This study was designed to quantify the levels of MPs from various cell origins-platelets, neutrophils, and endolethial cells-following hepatic ischemia-reperfusion injury. METHODS: A murine model was used with mice undergoing 90 minutes of partial hepatic ischemia followed by various times of reperfusion. Following reperfusion, plasma samples were taken and MPs of various cell origins were labeled and levels were measured using flow cytometry. Additionally, cell specific MPs were further assessed by Annexin V, which stains for the presence of phosphatidylserine, a cell surface marker linked to apoptosis. Statistical analysis was performed using one-way analysis of variance with subsequent Student-Newman-Keuls test with data presented as the mean and standard error of the mean. RESULTS: MPs from varying sources show an increase in circulating levels following hepatic I/R injury. However, the timing of the appearance of different MP subtypes differs for each cell type. Platelet and neutrophil-derived MP levels demonstrated an acute elevation following injury whereas endothelial-derived MP levels demonstrated a delayed elevation. CONCLUSION: This is the first study to characterize circulating levels of cell-specific MPs after hepatic I/R injury and suggests that MPs derived from platelets and neutrophils serve as markers of inflammatory injury and may be active participants in this process. In contrast, MPs derived from endothelial cells increase after the injury response during the reparative phase and may be important in angiogenesis that occurs in the regenerating liver.

  10. Ketamine anesthesia reduces intestinal ischemia/reperfusion injury in rats

    Science.gov (United States)

    Cámara, Carlos Rodrigo; Guzmán, Francisco Javier; Barrera, Ernesto Alexis; Cabello, Andrés Jesús; Garcia, Armando; Fernández, Nancy Esthela; Caballero, Eloy; Ancer, Jesus

    2008-01-01

    AIM: To investigate the effects of ketamine anesthesia on the motility alterations and tissue injury caused by ischemia/reperfusion in rats. METHODS: Thirty male Wistar rats weighing 200-250 g were used. Ischemia was induced by obstructing blood flow in 25% of the total small intestinal length (ileum) with a vascular clamp for 45 min, after which either 60 min or 24 h of reperfusion was allowed. Rats were either anesthetized with pentobarbital sodium (50 mg/kg) or ketamine (100 mg/kg). Control groups received sham surgery. After 60 min of reperfusion, the intestine was examined for morphological alterations, and after 24 h intestinal basic electrical rhythm (BER) frequency was calculated, and intestinal transit determined in all groups. RESULTS: The intestinal mucosa in rats that were anesthetized with ketamine showed moderate alterations such as epithelial lifting, while ulceration and hemorrhage was observed in rats that received pentobarbital sodium after 60 min of reperfusion. Quantitative analysis of structural damage using the Chiu scale showed significantly less injury in rats that received ketamine than in rats that did not (2.35 ± 1.14 vs 4.58 ± 0.50, P < 0.0001). The distance traveled by a marker, expressed as percentage of total intestinal length, in rats that received pentobarbital sodium was 20% ± 2% in comparison with 25.9% ± 1.64% in rats that received ketamine (P = 0.017). BER was not statistically different between groups. CONCLUSION: Our results show that ketamine anesthesia is associated with diminished intestinal injury and abolishes the intestinal transit delay induced by ischemia/reperfusion. PMID:18777596

  11. Effect of minocycline on cerebral ischemia- reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Zhichao Zhong; Hongling Fan; Xi Li; Quanzhong Chang

    2013-01-01

    Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-reperfusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression.

  12. Remote postconditioning induced by brief pulmonary ischemia and reperfusion attenuates myocardial reperfusion injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    TANG Yan-hua; XU Jian-jun; LI Ju-xiang; CHENG Xiao-shu

    2011-01-01

    Background The lung is one of the most important organs that are sensitive to ischemia. We hypothesized that remote postconditioning (RPostC) induced by brief occlusion and reperfusion of the pulmonary artery could attenuate myocardial reperfusion injury.Methods Thirty rabbits were randomized into three groups. Group ischemia-reperfusion (IR) (n=10) were anesthetized rabbits subjected to 30-minute occlusion of the left anterior descending coronary artery followed by 180-minute reperfusion. Group RPostC (n=10) had the left pulmonary artery blocked for five minutes followed by a 5-minute reperfusion, and the left anterior descending coronary artery (LAD) occluded for 30 minutes with a 180-minute reperfusion. Group L-Nw-nitro-L-arginine methylester (L-NAME) + RPostC (n=10) had the left pulmonary artery blocked for five minutes followed by a 5-minute reperfusion and intravenous infusion of L-NAME (10 mg/kg), and the LAD occluded for 30 minutes with a 180-minute reperfusion. Blood samples were taken for levels of creatine kinase (CK),superoxide dismutase (SOD) and malondialdehyde (MDA) at three different time points. At the end of the experiment,tissue samples of the infarcted region were harvested to calculate the cardiomyocyte apoptosis index (Al) by TUNEL. A piece of left and right lung tissue was harvested to evaluate the damage to the lung.Results After reperfusion for 180 minutes, the concentration of CK was lower in group RPostC, (4.79±0.27) U/ml, than that in group IR, (6.23±0.55) U/ml (P <0.01), and group L-NAME + RPsotC, (5.86±0.42) U/ml (P <0.01). The concentration of MDA was lower in group RPostC, (6.06±0.36) nmol/ml, than that in group IR, (11.41±0.91) nmol/ml (P <0.01), and group L-NAME + RPostC, (11.06±0.62) nmol/ml (P<0.01). The activity of SOD was higher in group RPostC,(242.34±25.02) U/ml, than that in group IR, (148.05±18.24) U/ml (P<0.01), and group L-NAME + RPostC, (160.66±9.55) U/ml (P<0.01). The apoptosis index was lower in

  13. Ketamine anesthesia reduces intestinal ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Carlos Roddgo Cámara; Francisco Javier Guzmán; Ernesto Alexis Barrera; Andrés Jesús Cabello; Armando Garcia; Nancy Esthela Fernández; Eloy Caballero; Jesus Ancer

    2008-01-01

    AIM:To investigate the effects of ketamine anesthesia on the motility alterations and tissue injury caused by ischemia/reperfusion in rats.METHODS:Thirty maIe Wistar rats weighing 200-250 g were used.Ischemia was induced by obstructing blood flow in 25% of the total small intestinal length(ileum)with a vascular clamp for 45 min,after which either 60 min or 24 h of reperfusion was allowed.Rats were either anesthetized with pento-barbital sodium(50 mg/kg)or ketamine(100 mg/kg).Control groups received sham surgery,After 60 min of reperfusion,the intestine was examined for mor-phological alterations,and after 24 h intestinal basic electrical rhythm(BER)frequency was calculated,and intestinal transit determined in all groups.RESULTS:The intestinal mucosa in rats that were anesthetized with ketamine showed moderate alterations such as epithelial lifting,while ulceration and hemorrhage was observed in rats that received pento-barbital sodium after 60 min of reperfusion.Quantitative analysis of structural damage using the Chiu scale showed significantly Iess injury in rats that received ketamine than in rats that did not(2.35±1.14 vs 4.58 ±0.50,P<0.0001).The distance traveled by a marker,expressed as percentage of total intestinal length,in rats that received pentobarbital sodium was 20% ± 2% in comparison with 25.9% ±1.64% in rats that received ketamine(P=0.017).BER was not statistically different between groups.CONCLUSION:Our results show that ketamine anesthesia is associated with diminished intestinal iniury and abolishes the intestinal transit delay induced by ischemia/reperfusion.(C)2008 The WJG Press.All rights reserved.

  14. Moxonidine prevents ischemia/reperfusion-induced renal injury in rats.

    Science.gov (United States)

    Tsutsui, Hidenobu; Sugiura, Takahiro; Hayashi, Kentaro; Ohkita, Mamoru; Takaoka, Masanori; Yukimura, Tokihito; Matsumura, Yasuo

    2009-01-28

    Enhancement of renal sympathetic nerve activity during renal ischemia and its consequent effect on norepinephrine overflow from nerve endings after reperfusion play important roles in the development of ischemic acute kidney injury. In the present study, we evaluated whether moxonidine, an alpha(2)-adrenaline/I(1)-imidazoline receptor agonist which is known to elicit sympathoinhibitory action, would prevent the post-ischemic renal injury. Ischemic acute kidney injury was induced by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Intravenous (i.v.) injection of moxonidine at a dose of 360 nmol/kg to ischemic acute kidney injury rats suppressed the enhanced renal sympathetic nerve activity during the ischemic period, to a degree similar to findings with intracerebroventricular (i.c.v.) injection of moxonidine at a dose of 36 nmol/kg. On the other hand, suppressive effects of the i.v. treatment on renal venous norepinephrine overflow, renal dysfunction and tissue injury in the post-ischemic kidney were significantly greater than those elicited by the i.c.v. treatment. These results suggest that renoprotective effects of moxonidine on ischemic acute kidney injury probably result from its suppressive action on the ischemia-enhanced renal sympathetic nerve activity followed by norepinephrine spillover from the nerve endings of the post-ischemic kidney.

  15. Role of Hydrogen Sulfide in Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Dongdong Wu

    2015-01-01

    Full Text Available Ischemia-reperfusion (I/R injury is one of the major causes of high morbidity, disability, and mortality in the world. I/R injury remains a complicated and unresolved situation in clinical practice, especially in the field of solid organ transplantation. Hydrogen sulfide (H2S is the third gaseous signaling molecule and plays a broad range of physiological and pathophysiological roles in mammals. H2S could protect against I/R injury in many organs and tissues, such as heart, liver, kidney, brain, intestine, stomach, hind-limb, lung, and retina. The goal of this review is to highlight recent findings regarding the role of H2S in I/R injury. In this review, we present the production and metabolism of H2S and further discuss the effect and mechanism of H2S in I/R injury.

  16. Effects of liraglutide and ischemic postconditioning on myocardial salvage after I/R injury in pigs

    DEFF Research Database (Denmark)

    Ekström, Kathrine; Dalsgaard, Morten; Iversen, Kasper

    2017-01-01

    OBJECTIVES: Acute STEMI is routinely treated by acute PCI. This treatment may itself damage the tissue (reperfusion injury). Conditioning with GLP-1 analogs has been shown to reduce reperfusion injury. Likewise, ischemic postconditioning provides cardioprotection following STEMI. We tested...... assigned to four groups. Myocardial infarction (MI) was induced by occluding the LAD for 45 min. Group 1 (n = 14) was treated with i.v. liraglutide after 15 min of ischemia. Group 2 (n = 17) received liraglutide treatment concomitant with ischemic postconditioning, after 45 min of ischemia. Group 3 (n = 15...

  17. Red propolis ameliorates ischemic-reperfusion acute kidney injury.

    Science.gov (United States)

    da Costa, Marcus Felipe Bezerra; Libório, Alexandre Braga; Teles, Flávio; Martins, Conceição da Silva; Soares, Pedro Marcos Gomes; Meneses, Gdayllon C; Rodrigues, Francisco Adelvane de Paulo; Leal, Luzia Kalyne Almeida Moreira; Miron, Diogo; Silva, Aline Holanda; Martins, Alice Maria Costa

    2015-08-15

    Acute kidney injury (AKI) remains a great problem in clinical practice. Renal ischemia/reperfusion (I/R) injury is a complex pathophysiological process. Propolis is a natural polyphenol-rich resinous substance collected by honeybees from a variety of plant sources that has anti-inflammatory and anti-oxidative properties. Red propolis (RP) protection in renal I/R injury was investigated. Male Wistar rats underwent unilateral nephrectomy and contralateral renal I/R (60 min). Rats were divided into four groups: (1) sham group, (2) RP group (sham-operated rats treated with RP), 3) IR group (rats submitted to ischemia) and (4) IR-RP (rats treated with RP before ischemia). At 48 h after reperfusion, renal function was assessed and kidneys were removed for analysis. I/R increased plasma levels of creatinine and reduced creatinine clearance (CrCl), and RP provided protection against this renal injury. Red propolis significantly improves oxidative stress parameters when compared with the IR group. Semiquantitative assessment of the histological lesions showed marked structural damage in I/R rats compared with the IR-RP rats. RP attenuates I/R-induced endothelial nitric oxide-synthase down regulation and increased heme-oxygenase expression in renal tissue. Red propolis protects kidney against acute ischemic renal failure and this protection is associated with reduced oxidative stress and eNOS and heme-oxygenase up regulation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Successful salvage of the upper limb after crush injury requiring nine operations: a case report.

    Science.gov (United States)

    Zeng, Qingmin; Cai, Guoping; Liu, Dechang; Wang, Kun; Zhang, Xinchao

    2015-03-01

    Emergency treatment of amputation is one of the most frequently used therapeutic methods for patients with severe upper limb crush injury with a mangled extremity severity score (MESS) of more than 7. With the development of advanced surgical repair techniques and reconstructive technology, cases that once required amputation can now be salvaged with appropriate management, and some limb functions may also be reserved. A patient with a severe upper limb crush injury with a MESS score of 10 was treated in our hospital. The limb was salvaged after 9 surgeries over 10 months. The follow-up visits over the next 18 months post-injury showed that the shoulder joint functions were rated as "excellent" (90) according to the Neer score, the Harris hip evaluation (HHS) for elbow joint functions was "good" (80), and the patient was very satisfied with the overall therapeutic outcome. We conclude from the successful outcome of this extreme injury that salvage attempts should be the first management choice for upper limbs with complex injuries to save as much function as possible. Amputation should only be adopted when the injury is life-threatening or no more function can be saved. The level of evidence was V.

  19. The protective activity of noscapine on renal ischemia–reperfusion injury in male Wistar rat

    OpenAIRE

    Mehrangiz Khanmoradi; Seyyed Ali Mard; Nahid Aboutaleb; Malihe Nobakht; Masoud Mahmoudian

    2014-01-01

    Objective(s): Bradykinin is a part of the kinin-kallikrein system which is involved in ischemia-reperfusion injury via B1 and B2 receptors. Noscapine is a non-competitive antagonist of bradykinin receptors. Noscapine has been reported to to be able to protect some organs against ischemia-reperfusion injury but its effect on renal ischemia-reperfusion injury (RIR) in rats is unknown. Therefore, the present study was designed to evaluate the effect of noscapine on renal ischemia-reperfusion inj...

  20. The Role of Tetrahydrobiopterin and Dihydrobiopterin in Ischemia/Reperfusion Injury When Given at Reperfusion

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2010-01-01

    Full Text Available Reduced nitric oxide (NO bioavailability and increased oxidative stress are major factors mediating ischemia/reperfusion (I/R injury. Tetrahydrobiopterin (BH4 is an essential cofactor of endothelial NO synthase (eNOS to produce NO, whereas dihydrobiopterin (BH2 can shift the eNOS product profile from NO to superoxide, which is further converted to hydrogen peroxide (H2O2 and cause I/R injury. The effects of BH4 and BH2 on oxidative stress and postreperfused cardiac functions were examined in ex vivo myocardial and in vivo femoral I (20 min/R (45 min models. In femoral I/R, BH4 increased NO and decreased H2O2 releases relative to saline control, and these effects correlated with improved postreperfused cardiac function. By contrast, BH2 decreased NO release relative to the saline control, but increased H2O2 release similar to the saline control, and these effects correlated with compromised postreperfused cardiac function. In conclusion, these results suggest that promoting eNOS coupling to produce NO and decrease H2O2 may be a key mechanism to restore postreperfused organ function during early reperfusion.

  1. Rosmarinic acid attenuates hepatic ischemia and reperfusion injury in rats.

    Science.gov (United States)

    Ramalho, Leandra Naira Z; Pasta, Ângelo Augusto C; Terra, Vânia Aparecida; Augusto, Marlei Josiele; Sanches, Sheila Cristina; Souza-Neto, Fernando P; Cecchini, Rubens; Gulin, Francine; Ramalho, Fernando Silva

    2014-12-01

    Rosmarinic acid (RosmA) demonstrates antioxidant and anti-inflammatory properties. We investigated the effect of RosmA on liver ischemia/reperfusion injury. Rats were submitted to 60 min of ischemia plus saline or RosmA treatment (150 mg/kg BW intraperitoneally) followed by 6 h of reperfusion. Hepatocellular injury was evaluated according to aminotransferase activity and histological damage. Hepatic neutrophil accumulation was also evaluated. Oxidative/nitrosative stress was estimated by measuring the reduced glutathione, lipid hydroperoxide and nitrotyrosine levels. Endothelial and inducible nitric oxide synthase (eNOS/iNOS) and nitric oxide (NO) were assessed with immunoblotting and chemiluminescence assays. Hepatic tumor necrosis factor-alpha (TNF-α) and interleukin-1beta mRNA were assessed using real-time PCR, and nuclear factor-kappaB (NF-κB) activation was estimated by immunostaining. RosmA treatment reduced hepatocellular damage, neutrophil infiltration and all oxidative/nitrosative stress parameters. RosmA decreased the liver content of eNOS/iNOS and NO, attenuated NF-κB activation, and down-regulated TNF-α and interleukin-1beta gene expression. These data indicate that RosmA exerts anti-inflammatory and antioxidant effects in the ischemic liver, thereby protecting hepatocytes against ischemia/reperfusion injury. The mechanisms underlying these effects may be related to the inhibitory potential of RosmA on the NF-κB signaling pathway and the reduction of iNOS and eNOS expressions and NO levels, in addition to its natural antioxidant capability.

  2. Ascorbic acid against reperfusion injury in human renal transplantation.

    Science.gov (United States)

    Norio, Karri; Wikström, Mårten; Salmela, Kaija; Kyllönen, Lauri; Lindgren, Leena

    2003-08-01

    The cadaveric renal graft is exposed to ischaemic injury during preservation and to oxidative damage during reperfusion. Both these mechanisms are known to cause cell damage, which may impair graft function. Reperfusion injury (RPI) is mediated by reactive oxygen species (ROS). Ascorbic acid (AA) is a potent physiological extracellular scavenger of ROS. We perfused 31 renal grafts immediately before implantation with a solution of Euro-Collins containing 0.5 mg/ml of AA to diminish RPI. From every donor, the contralateral kidney served as a control. The control grafts were perfused with the same perfusion as those of the AA group, only without the AA substitution. We assessed the effect of AA by recording serum creatinine, creatinine clearance, initial graft function and early rejections. The incidence of delayed graft function (DGF) was 32% in the AA group, and 29% in the control group. Other parameters were also similar in both groups, except for the length of DGF, which showed a trend towards a shorter duration in the AA group. The pre-operative systemic AA concentration was significantly ( P=0.01) lower in the haemodialysis patients than in those on peritoneal dialysis. In conclusion, this clinical study could not demonstrate significant benefits of AA in renal transplantation.

  3. Ligustrazine monomer against cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Hai-jun Gao

    2015-01-01

    Full Text Available Ligustrazine (2,3,5,6-tetramethylpyrazine is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mechanism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administration, and the most effective mode of administration for clinical treatment of cerebral ischemia/reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine administration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyloxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC195 after cerebral ischemia were better than ligustrazine.

  4. Ablation of cereblon attenuates myocardial ischemia-reperfusion injury.

    Science.gov (United States)

    Kim, Jooyeon; Lee, Kwang Min; Park, Chul-Seung; Park, Woo Jin

    2014-05-16

    Cereblon (CRBN) was originally identified as a target protein for a mild type of mental retardation in humans. However, recent studies showed that CRBN acts as a negative regulator of AMP-activated protein kinase (AMPK) by binding directly to the AMPK catalytic subunit. Because AMPK is implicated in myocardial ischemia-reperfusion (I-R) injury, we reasoned that CRBN might play a role in the pathology of myocardial I-R through regulation of AMPK activity. To test this hypothesis, wild-type (WT) and crbn knockout (KO) mice were subjected to I-R (complete ligation of the coronary artery for 30 min followed by 24h of reperfusion). We found significantly smaller infarct sizes and less fibrosis in the hearts of KO mice than in those of WT mice. Apoptosis was also significantly reduced in the KO mice compared with that in WT mice, as shown by the reduced numbers of TUNEL-positive cells. In parallel, AMPK activity remained at normal levels in KO mice undergoing I-R, whereas it was significantly reduced in WT mice under the same conditions. In rat neonatal cardiomyocytes, overexpression of CRBN significantly reduced AMPK activity, as demonstrated by reductions in both phosphorylation levels of AMPK and the expression of its downstream target genes. Collectively, these data demonstrate that CRBN plays an important role in myocardial I-R injury through modulation of AMPK activity.

  5. Protective Effects of HDL Against Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Gomaraschi, Monica; Calabresi, Laura; Franceschini, Guido

    2016-01-01

    Several lines of evidence suggest that, besides being a strong independent predictor of the occurrence of primary coronary events, a low plasma high density lipoprotein (HDL) cholesterol level is also associated with short- and long-term unfavorable prognosis in patients, who have recovered from a myocardial infarction, suggesting a direct detrimental effect of low HDL on post-ischemic myocardial function. Experiments performed in ex vivo and in vivo models of myocardial ischemia/reperfusion (I/R) injury have clearly shown that HDL are able to preserve cardiac function when given before ischemia or at reperfusion; the protective effects of HDL against I/R injury have been also confirmed in other tissues and organs, as brain and hind limb. HDL were shown to act on coronary endothelial cells, by limiting the increase of endothelium permeability and promoting vasodilation and neoangiogenesis, on white blood cells, by reducing their infiltration into the ischemic tissue and the release of pro-inflammatory and matrix-degrading molecules, and on cardiomyocytes, by preventing the activation of the apoptotic cascade. Synthetic HDL retains the cardioprotective activity of plasma-derived HDL and may become a useful adjunctive therapy to improve clinical outcomes in patients with acute coronary syndromes or undergoing coronary procedures.

  6. Humanized cobra venom factor decreases myocardial ischemia-reperfusion injury.

    Science.gov (United States)

    Gorsuch, W Brian; Guikema, Benjamin J; Fritzinger, David C; Vogel, Carl-Wilhelm; Stahl, Gregory L

    2009-12-01

    Cobra venom factor (CVF) is a complement activating protein in cobra venom, which functionally resembles C3b, and has been used for decades for decomplementation of serum to investigate the role of complement in many model systems of disease. The use of CVF for clinical practice is considered impractical because of immunogenicity issues. Humanization of CVF was recently demonstrated to yield a potent CVF-like molecule. In the present study, we demonstrate that mice treated with recombinant humanized CVF (HC3-1496) are protected from myocardial ischemia-reperfusion (MI/R) injuries with resultant preservation of cardiac function. Also, C3 deposition in the myocardium following MI/R was not observed following treatment with HC3-1496. HC3-1496 led to complement activation and depletion of C3, but preserved C5 titers. These data suggest, unlike CVF, HC3-1496 does not form a C5 convertase in the mouse, similar to recent studies in human sera/plasma. These results suggest that humanized CVF (HC3-1496) protects the ischemic myocardium from reperfusion injuries induced by complement activation and represents a novel anti-complement therapy for potential clinical use.

  7. Intestinal microflora in rats with ischemia/reperfusion liver injury

    Institute of Scientific and Technical Information of China (English)

    XING Hui-chun; LI Lan-juan; XU Kai-jin; SHEN Tian; CHEN Yun-bo; SHENG Ji-fang; YU Yun-song; CHEN Ya-gang

    2005-01-01

    Objectives: To investigate the intestinal microflora status related to ischemia/reperfusion (I/R) liver injury and explore the possible mechanism. Methods: Specific pathogen free grade Sprague-Dawley rats were randomized into three groups: Control group (n=8), sham group (n=6) and I/R group (n=10). Rats in the control group did not receive any treatment, rats in the I/R group were subjected to 20 min of liver ischemia, and rats in the sham group were only subjected to sham operation. Twenty-two hours later, the rats were sacrificed and liver enzymes and malondialdehyde (MDA), superoxide dismutase (SOD), serum endotoxin,intestinal bacterial counts, intestinal mucosal histology, bacterial translocation to mesenteric lymph nodes, liver, spleen, and kidney were studied. Results: Ischemia/reperfusion increased liver enzymes, MDA, decreased SOD, and was associated with plasma endotoxin elevation in the I/R group campared to those in the sham group. Intestinal Bifidobacteria and Lactobacilli decreased and intestinal Enterobacterium and Enterococcus, bacterial translocation to kidney increased in the I/R group compared to the sham group. Intestinal microvilli were lost, disrupted and the interspace between cells became wider in the I/R group.Conclusion: I/R liver injury may lead to disturbance of intestinal microflora and impairment of intestinal mucosal barrier function,which contributes to endotoxemia and bacterial translocation to kidney.

  8. Hypoxia-inducible factor plays a gut-injurious role in intestinal ischemia reperfusion injury.

    Science.gov (United States)

    Kannan, Kolenkode B; Colorado, Iriana; Reino, Diego; Palange, David; Lu, Qi; Qin, Xiaofa; Abungu, Billy; Watkins, Anthony; Caputo, Francis J; Xu, Da-Zhong; Semenza, Gregg L; Deitch, Edwin A; Feinman, Rena

    2011-05-01

    Gut injury and loss of normal intestinal barrier function are key elements in the paradigm of gut-origin systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome (MODS). As hypoxia-inducible factor (HIF-1) is a critical determinant of the physiological and pathophysiological response to hypoxia and ischemia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Using partially HIF-1α-deficient mice in an isolated superior mesenteric artery occlusion (SMAO) intestinal ischemia reperfusion (I/R) injury model (45 min SMAO followed by 3 h of reperfusion), we showed a direct relationship between HIF-1 activation and intestinal I/R injury. Specifically, partial HIF-1α deficiency attenuated SMAO-induced increases in intestinal permeability, lipid peroxidation, mucosal caspase-3 activity, and IL-1β mRNA levels. Furthermore, partial HIF-1α deficiency prevented the induction of ileal mucosal inducible nitric oxide synthase (iNOS) protein levels after SMAO and iNOS deficiency ameliorated SMAO-induced villus injury. Resistance to SMAO-induced gut injury was also associated with resistance to lung injury, as reflected by decreased levels of myeloperoxidase, IL-6 and IL-10 in the lungs of HIF-1α(+/-) mice. In contrast, a short duration of SMAO (15 min) followed by 3 h of reperfusion neither induced mucosal HIF-1α protein levels nor caused significant gut and lung injury in wild-type or HIF-1α(+/-) mice. This study indicates that intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. However, the duration and severity of the gut I/R insult dictate whether HIF-1 plays a gut-protective or deleterious role.

  9. Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Alexa Thibodeau

    2016-01-01

    Full Text Available Pyruvate dehydrogenase (PDH complex is a mitochondrial matrix enzyme that serves a critical role in the conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia-reperfusion injury. Here, we evaluate proposed mechanisms of PDH-mediated neurodysfunction in stroke, including oxidative stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective influence of antioxidants, dichloroacetate, acetyl-L-carnitine, and combined therapy with ethanol and normobaric oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of neuroprotective strategies available to limit its impairment.

  10. Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jie; Konstas, Angelos-Aristeidis; Bateman, Brian; Pile-Spellman, John [Columbia University, Department of Radiology, New York, NY (United States); Ortolano, Girolamo A. [Pall Corporation, East Hills, NY (United States)

    2007-02-15

    Restoration of blood flow following ischemic stroke can be achieved by means of thrombolysis or mechanical recanalization. However, for some patients, reperfusion may exacerbate the injury initially caused by ischemia, producing a so-called ''cerebral reperfusion injury''. Multiple pathological processes are involved in this injury, including leukocyte infiltration, platelet and complement activation, postischemic hyperperfusion, and breakdown of the blood-brain barrier. Magnetic resonance imaging (MRI) can provide extensive information on this process of injury, and may have a role in the future in stratifying patients' risk for reperfusion injury following recanalization. Moreover, different MRI modalities can be used to investigate the various mechanisms of reperfusion injury. Antileukocyte antibodies, brain cooling and conditioned blood reperfusion are potential therapeutic strategies for lessening or eliminating reperfusion injury, and interventionalists may play a role in the future in using some of these therapies in combination with thrombolysis or embolectomy. The present review summarizes the mechanisms of reperfusion injury and focuses on the way each of those mechanisms can be evaluated by different MRI modalities. The potential therapeutic strategies are also discussed. (orig.)

  11. Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Aleksandra Kezic

    2016-01-01

    Full Text Available Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS peptides (Bendavia, SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury.

  12. Simvastatin inhibits inflammation in ischemia-reperfusion injury.

    Science.gov (United States)

    Zhao, Yilin; Feng, Qingzhao; Huang, Zhengjie; Li, Wenpeng; Chen, Baisheng; Jiang, Long; Wu, Binglin; Ding, Weiji; Xu, Gang; Pan, Heng; Wei, Wei; Luo, Weiyuan; Luo, Qi

    2014-10-01

    Ischemia/reperfusion (I/R) is associated with leukocyte accumulation and tissue injury. The aim of this research was to investigate the protective effect of simvastatin on hind limb I/R inflammation and tissue damage. Mice were subjected to hind limb ischemic insult for 2 h and were simultaneously administered an intraperitoneal injection of simvastatin (5 mg/kg); this was followed by 36 h of reperfusion. Myeloperoxidase (MPO) levels in the muscles of the hind limb were determined. CXC chemokines and pro-inflammatory cytokines, such as macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant (KC), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and P-selectin, were assessed using enzyme-linked immunosorbent assay (ELISA). Leukocyte rolling and adhesion in vitro was assessed to indicate leukocyte recruitment at the site of inflammation. Quantitative measurement of skeletal muscle tissue injury was performed. The fluorescent dye level in tissue and serum was used to determine hind limb vascular leakage and tissue edema after I/R. Systemic and differentiated leukocytes were also counted. Simvastatin significantly reduced MIP-2, KC, TNF-α, MPO, IL-6, and P-selectin levels compared to the sham group and I/R plus pretreatment with phosphate-buffered saline (PBS) group (Pinflammation, vascular leakage, and muscular damage (P<0.05). Simvastatin also significantly inhibited leukocyte rolling and adhesion compared to PBS (P<0.05). Our results suggest that simvastatin may be an effective protectant against tissue injury associated with I/R.

  13. Effects of kefir on ischemia-reperfusion injury.

    Science.gov (United States)

    Yener, A U; Sehitoglu, M H; Ozkan, M T A; Bekler, A; Ekin, A; Cokkalender, O; Deniz, M; Sacar, M; Karaca, T; Ozcan, S; Kurt, T

    2015-01-01

    We aimed to investigate the effect of kefir on Ischemia-Reperfusion (I/R) injury on rats. 24 male Sprague-Dawley rats between 250-350 g were selected. Rats were divided into three groups, and there were eight rats in each group. Rats were fed for 60 days. All of the rats were fed with the same diet for the first 30 days. In the second thirty days, kefir [10 cc/kg/day body weight (2 x 109 cfu/kg/day)] was added to the diet of the study group by gavage method. In all groups, lung and kidney tissues were removed after the procedure and rats were sacrificed. The biochemical and histopathological changes were observed in the lung and kidney within the samples. Serum urea, creatinine and tumor necrosis factor (TNF-α) were determined. Kefir + I/R groups was compared with I/R groups, a significant decrease (p Kefir + I/R groups of renal tissues were significantly (p Kefir reduced the levels of serum urea, creatinine and TNF-α significantly.   This would be useful in this model against ischemia/reperfusion, and shows the protective effect of kefir in tissue and serum functions.

  14. Stress protein expression in early phase spinal cord ischemia/reperfusion injury*

    Institute of Scientific and Technical Information of China (English)

    Shanyong Zhang; Dankai Wu; Jincheng Wang; Yongming Wang; Guoxiang Wang; Maoguang Yang; Xiaoyu Yang

    2013-01-01

    Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differential y expressed proteins (n > 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initial y improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradual y decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6–12 hours, showing a characterization of induction-inhibition-induc-tion. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons.

  15. Adipose Tissue Drives Response to Ischemia-Reperfusion Injury in a Murine Pressure Sore Model.

    Science.gov (United States)

    Gust, Madeleine J; Hong, Seok Jong; Fang, Robert C; Lanier, Steven T; Buck, Donald W; Nuñez, Jennifer M; Jia, Shengxian; Park, Eugene D; Galiano, Robert D; Mustoe, Thomas A

    2017-05-01

    Ischemia-reperfusion injury contributes significantly to the pathogenesis of chronic wounds such as pressure sores and diabetic foot ulcers. The authors' laboratory has previously developed a cyclical murine ischemia-reperfusion injury model. The authors here use this model to determine factors underlying tissue response to ischemia-reperfusion injury. C57BL/6 mice were subjected to cycles of ischemia-reperfusion that varied in number (one to four cycles) and duration of ischemia (1 to 2 hours). For each ischemia-reperfusion condition, the following variables were analyzed: (1) digital photographs for area of necrosis; (2) hematoxylin and eosin staining and immunohistochemistry for inflammatory infiltrate; and (3) expression of inflammatory markers by quantitative polymerase chain reaction. In addition, human adipocytes and fibroblasts were cultured in vitro under conditions of hypoxia and reoxygenation, and expression of inflammatory markers was analyzed by quantitative polymerase chain reaction. Increases in both ischemia-reperfusion cycle number and ischemia duration correlated with increased areas of epithelial necrosis both grossly and histologically, and with an increase in cellularity and neutrophil density. This increased inflammatory infiltrate and a significant increase in the expression of proinflammatory markers (Hmox1, interleukin-6, interleukin-1, and monocyte chemoattractant protein-1) was observed in adipose tissue subjected to ischemia-reperfusion injury, but not in dermis. These results were mirrored in human adipose tissue. The authors further characterize a novel, reproducible murine model of ischemia-reperfusion injury. The results of their study indicate that adipose tissue is less tolerant of ischemia-reperfusion than dermal tissue. Rather than being an "innocent bystander," adipose tissue plays an active role in driving the inflammatory response to ischemia-reperfusion injury.

  16. Effect of olive oil on the cerebral reperfusion following ischemia injuries in rat

    Directory of Open Access Journals (Sweden)

    Javad Raouf Sarshoori

    2014-05-01

    Conclusion: The findings of the current study indicated that olive oil effectively reduced ischemia, helped to the reperfusion of injuries, and improved neurological outcome. Olive oil is also a potent neuroprotective factor that is able to prevent neurodegeneration of transient focal ischemia in the beginning of reperfusion at ischemic areas.

  17. NADPH oxidase inhibitor apocynin attenuates ischemia/reperfusion induced myocardial injury in rats

    Institute of Scientific and Technical Information of China (English)

    罗秀菊

    2013-01-01

    Objective To explore the role of NADPH oxidase inhibitor apocynin on ischemia/reperfusion(I/R)-induced myocardial injury. Methods Male SD rat hearts were divided into the normal control group; sham group;I/R group(1 h ischemia followed by 3 h reperfusion); I/R+ apocynin group(50 mg/kg,administrated at 30 min

  18. Protective effects of amifostine on ischemia-reperfusion injury of rat kidneys

    Directory of Open Access Journals (Sweden)

    Ayse Arducoglu Merter

    2015-01-01

    Conclusion: Amifostine could decrease the degree and severity of necrosis after reperfusion. Amifostine could not prevent membrane lipid peroxidation caused by superoxide anion radicals in kidney but they could protect tissues from the harmful effects of ischemia/reperfusion injury by increasing the level of reduced GSH which is a well-known oxygen radical eliminator.

  19. Complement Depletion Protects Lupus-prone Mice from Ischemia-reperfusion-initiated Organ Injury

    Science.gov (United States)

    2012-10-25

    Complement depletion protects lupus-prone mice from ischemia-reperfusion- initiated organ injury Antonis Ioannou,1,3 Linda A. Lieberman,1 Jurandir J...Thiel S, Nielsen S, Taka- hashi K, Shi L, Ezekowitz A, Jensenius JC, Gadjeva M. Mannan- binding lectin recognizes structures on ischemic reperfused mouse

  20. Functionally Selective AT(1) Receptor Activation Reduces Ischemia Reperfusion Injury

    DEFF Research Database (Denmark)

    Hostrup, Anders; Christensen, Gitte Lund; Bentzen, Bo Hjort;

    2012-01-01

    of the physiological functions of AngII. The AT(1)R mediates its effects through both G protein-dependent and independent signaling, which can be separated by functionally selective agonists. In the present study we investigate the effect of AngII and the ß-arrestin biased agonist [SII]AngII on ischemia......-reperfusion injury in rat hearts. Isolated hearts mounted in a Langendorff perfused rat heart preparations showed that preconditioning with [SII]AngII reduced the infarct size induced by global ischemia from 46±8.4% to 22±3.4%. In contrast, neither preconditioning with AngII nor postconditioning with AngII or [SII...

  1. Cellular recruitment in myocardial ischaemia/reperfusion injury.

    Science.gov (United States)

    Bonaventura, Aldo; Montecucco, Fabrizio; Dallegri, Franco

    2016-06-01

    Myocardial infarction (MI) is strictly linked to atherosclerosis. Beyond the mechanical narrowing of coronary vessels lumen, during MI a great burden of inflammation is carried out. One of the crucial events is represented by the ischaemia/reperfusion injury, a complex event involving inflammatory cells (such as neutrophils, platelets, monocytes/macrophages, lymphocytes and mast cells) and key activating signals (such as cytokines, chemokines and growth factors). Cardiac repair following myocardial infarction is dependent on a finely regulated response involving a sequential recruitment and the clearance of different subsets of inflammatory cells. This narrative review was based on the works detected on PubMed and MEDLINE up to November 2015. Infarct healing classically follows three overlapping phases: the inflammatory phase, in which the innate immune pathways are activated and inflammatory leucocytes are recruited in order to clear the wound from dead cells; the proliferative phase, characterized by the suppression of pro-inflammatory signalling and infiltration of 'repairing' cells secreting matrix proteins in the injured area; and the maturation phase, which is associated with the quiescence and the elimination of the reparative cells together with cross-linking of the matrix. All these phases are timely regulated by the production of soluble mediators, such as cytokines, chemokines and growth factors. Targeting inflammatory cell recruitment early during reperfusion and healing might be promising to selectively inhibit injury and favour repair. This approach might substantially improve adverse postischaemic left ventricle remodelling, characterized by dilation, hypertrophy of viable segments and progressive dysfunction. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  2. Melatonin protects liver from intestine ischemia reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Jian-Yi Li; Hong-Zhuan Yin; Xi Gu; Yong Zhou; Wen-Hai Zhang; Yi-Min Qin

    2008-01-01

    AIM:To investigate the protective effect of melatonin on liver after intestinal ischemia-reperfusion injury in rats.METHODS:One hundred and fifty male Wistar rats,weighing 190-210 g,aged 7 wk,were randomly divided into melatonin exposure group,alcohol solvent control group and normal saline control group.Rats in the melatonin exposure group received intraperitoneal (IP) melatonin (20 mg/kg) 30 min before intestinal ischemia-reperfusion (IR),rats in the alcohol solvent control group received the same concentration and volume of alcohol,and rats in the normal saline control group received the same volume of normal saline.Serum samples were collected from each group 0.5,1,6,12,and 24 h after intestinal IR.Levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured with an auto-biochemical analyzer.Serum TNF-a was tested by enzyme-linked immunosorbent assay (ELISA).Malondialdehyde (MDA) in liver was detected by colorimetric assay.Pathological changes in liver and immunohistochemical straining of ICAM-1 were observed under an optical microscope.RESULTS:The levels of ALT measured at various time points after intestinal IR in the melatonin exposure group were significantly lower than those in the other two control groups (P<0.05).The serum AST levels 12 and 24 h after intestinal IR and the ICAM-1 levels (%) 6,12 and 24 h after intestinal IR in the melatonin exposure group were also significantly lower than those in the other two control groups (P<0.05).CONCLUSION:Exotic melatonin can inhibit the activity of ALT,AST and TNF-a decrease the accumulation of MDA,and depress the expression of ICAM-1 in liver after intestinal IR injury,thus improving the liver function.

  3. Tadalafil significantly reduces ischemia reperfusion injury in skin island flaps

    Directory of Open Access Journals (Sweden)

    Oguz Kayiran

    2013-01-01

    Full Text Available Introduction: Numerous pharmacological agents have been used to enhance the viability of flaps. Ischemia reperfusion (I/R injury is an unwanted, sometimes devastating complication in reconstructive microsurgery. Tadalafil, a specific inhibitor of phosphodiesterase type 5 is mainly used for erectile dysfunction, and acts on vascular smooth muscles, platelets and leukocytes. Herein, the protective and therapeutical effect of tadalafil in I/R injury in rat skin flap model is evaluated. Materials and Methods: Sixty epigastric island flaps were used to create I/R model in 60 Wistar rats (non-ischemic group, ischemic group, medication group. Biochemical markers including total nitrite, malondialdehyde (MDA and myeloperoxidase (MPO were analysed. Necrosis rates were calculated and histopathologic evaluation was carried out. Results: MDA, MPO and total nitrite values were found elevated in the ischemic group, however there was an evident drop in the medication group. Histological results revealed that early inflammatory findings (oedema, neutrophil infiltration, necrosis rate were observed lower with tadalafil administration. Moreover, statistical significance (P < 0.05 was recorded. Conclusions: We conclude that tadalafil has beneficial effects on epigastric island flaps against I/R injury.

  4. FTY720 impairs necrosis development after ischemia-reperfusion injury.

    Science.gov (United States)

    Oliveira, C M S; Borra, R C; Franco, M; Schor, N; Silva, H T; Pestana, J O M; Bueno, V

    2004-05-01

    Ischemia-reperfusion (IR) injury is a common early feature that contributes to graft damage by impairing resident cell function. Our previous results showed that IR injury impaired renal function, by causing extensive tubular necrosis and increasing MHC class II and ICAM-1 molecule expression by mesangial cells (MC). MCs are likely candidates to come into close contact with immune cells such as monocytes or lymphocytes. It has been suggested that under inflammatory circumstances, there is increased MC expression of MHC class II, of adhesion molecules (such as ICAM-1), of cytokines receptors, and of molecules associated with cellular death (apoptosis). The immunosuppressive properties of FTY720 have been shown in clinical and experimental situations. It has also been shown to be protective against IR injury in rats. We sought to evaluate the role of FTY720 in a murine IR model by measuring renal function, tubular necrosis, and surface molecule expression by cultured mesangial cells. Intravenous administration of FTY720 (1 mg/kg) immediately before IR induction did not improve the short-term (24 hours) outcome of renal function or reduced MHC class II and ICAM-1 surface molecule expression. However, there was a decreased percentage of tubular necrosis in mice treated with FTY720 (51.3% +/- 1.6%) compared with vehicle-treated mice (66% +/- 5.5%). These results suggest a protective role of FTY720 in an IR injury model. More studies are required to identify the mechanisms involved in the protective activity of FTY720 in the IR injury model.

  5. Arterial reconstruction after mangled extremity: injury severity scoring systems are not predictive of limb salvage.

    Science.gov (United States)

    Elsharawy, Mohamed Amin

    2005-01-01

    The Vascular Unit at Suez Canal University Hospital in Egypt covers a wide area with high rates of severe injuries. This is a prospective study of mangled extremities to identify risk factors associated with limb loss in these patients. Between December 2000 and August 2003, a prospective study on all patients with arterial injuries in mangled extremities was undertaken. All patients were scored using the Mangled Extremity Severity Score (MESS) and the Mangled Extremity Severity Index (MESI). During this period, arterial reconstruction was performed in 62 patients. Primary patency, secondary patency, and limb salvage rates were 81%, 85.5%, and 93.5%, respectively. The only factor affecting limb salvage (statistical trend) was the site of trauma (upper limb 100% vs lower limb 89%; p = .08%). There was no significant effect related to the mechanism of trauma (blunt 90% vs stab 100%; p = .125), MESS ( 7, 91%; p = .22), and MESI ( 20, 90.5%; p = .154). Upper limb injuries were the least likely to lead to amputation. We recommend that all injuries, whatever their score, should be surgically explored before treatment decisions are made.

  6. The pathways by which mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Chun Luo

    2015-01-01

    Full Text Available Several studies have demonstrated that mild hypothermia exhibits a neuroprotective role and it can inhibit endothelial cell apoptosis following ischemia/reperfusion injury by decreasing casp-ase-3 expression. It is hypothesized that mild hypothermia exhibits neuroprotective effects on neurons exposed to ischemia/reperfusion condition produced by oxygen-glucose deprivation. Mild hypothermia significantly reduced the number of apoptotic neurons, decreased the expression of pro-apoptotic protein Bax and increased mitochondrial membrane potential, with the peak of anti-apoptotic effect appearing between 6 and 12 hours after the injury. These findings indicate that mild hypothermia inhibits neuronal apoptosis following ischemia/reperfusion injury by protecting the mitochondria and that the effective time window is 6-12 hours after ischemia/reperfusion injury

  7. Attenuation of antioxidative capacity enhances reperfusion injury in aged rat myocardium after MI/R

    National Research Council Canada - National Science Library

    Peitan Liu; Baohuan Xu; Thomas A. Cavalieri; Carl E. Hock

    2004-01-01

    .... We hypothesized that increased vulnerability of aged myocardium to reperfusion injury could be caused by decreased antioxidative capacity, rather than increased oxidant production, after MI/R. Aged (20-mo-old) and young (4-mo-old...

  8. Large myocardial infarction with myocardium calcium deposits associated with reperfusion injury.

    Science.gov (United States)

    Rios, Elisabete; Mancio, Jennifer; Rodrigues-Pereira, Pedro; Magalhães, Domingos; Bartosch, Carla

    2014-01-01

    The clinical and autopsy findings of a 66-year-old man with myocardial infarction complicated by reperfusion injury are described, highlighting the presence of large myocardium calcium deposits. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Pharmacological Attenuation of Myocardial Reperfusion Injury in a Closed-Chest Porcine Model

    DEFF Research Database (Denmark)

    Ekeløf, Sarah; Rosenberg, Jacob; Jensen, Jan Skov;

    2014-01-01

    Myocardial ischemia-reperfusion injury is a clinical challenge in interventional cardiology, and at the moment, no pharmacological agent is universally accepted in the prevention. In order to prevent inappropriate clinical trials, a potential pharmacological agent should be proved reproducibly...... effective in clinically relevant experimental studies before initiation of human studies. The closed-chest porcine model is a promising experimental model of ischemia-reperfusion injury. The purpose of this systematic review was to describe the pharmacological treatments evaluated in the closed...

  10. Electroacupuncture regulates the stress-injury-repair chain of events after cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2017-01-01

    Full Text Available Inflammation after stroke is the main cause of cerebral ischemia/reperfusion injury. Cascading events after injury can lead to cell death. Heat shock protein 70 and other endogenous injury-signaling molecules are released by damaged cells, which can lead to systemic stress reactions. Protecting the brain through repair begins with the stress-injury-repair signaling chain. This study aimed to verify whether acupuncture acts through this chain to facilitate effective treatment of ischemic stroke. Rat models of cerebral ischemia/reperfusion injury were established by Zea Longa's method, and injury sites were identified by assessing neurological function, 2,3,5-triphenyltetrazolium chloride staining, and hematoxylin-eosin staining. Electroacupuncture at acupoints Baihui (DU20 and Zusanli (ST36 was performed in the model rats with dilatational waves, delivered for 20 minutes a day at 2–100 Hz and an amplitude of 2 mA. We analyzed the blood serum from the rats and found that inflammatory cytokines affected the levels of adrenotrophin and heat shock protein 70, each of which followed a similar bimodal curve. Specifically, electroacupuncture lowered the peak levels of adrenocorticotrophic hormone and heat shock protein 70. Thus, electroacupuncture was able to inhibit excessive stress, reduce inflammation, and promote the repair of neurons, which facilitated healing of ischemic stroke.

  11. Addition of tanshinone ⅡA to UW solution decreases skeletal muscle ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hong-gang WANG; Zhi-yong LI; Xiao-lin LIU

    2006-01-01

    Aim: To investigate whether tanshinone ⅡA could improve the effect of UW solution for skeletal muscle preservation and to determine the dose range of tanshinone ⅡA providing optimal protection during ischemia and reperfusion. Methods: Ischemic rat limbs were perfused with UW solution or UW plus tanshinone ⅡA (UW+T, 0.05, 0.1, or 0.2 mg/mL) for 0.5 h before reperfusion; controls (I/R) received no perfusion. Serum creatine phosphokinase (CPK), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were measured pre-ischemia and after reperfusion (2-h, 4-h, and 6-h). Muscle water content, superoxide dismutase (SOD), malondialdehyde (MDA), adenosine triphosphatase (ATPase) were assessed pre-reperfusion and after 6-h reperfusion. Intercellular adhesion molecule-1 (ICAM-1) and apoptosis were detected after 6-h reperfusion. Reperfusion blood flow was monitored during reperfusion period. Results: UW and UW+T prevented luxury perfusion during reperfusion and inhibited ICAM-1 expression and apoptosis after 6-h reperfusion. Serum CPK, AST, and LDH levels in UW rats were significantly less than those in controls after 2-h reperfusion (no difference, 4-h or 6-h reperfusion). After 4-h ischemia, there were significant differences in water content, MDA, SOD, and ATPase between UW and controls, but no difference after 6-h reperfusion. All tests with UW+T rats were significantly different from control results at corresponding durations. Higher tanshinone doses improved results. Conclusion: UW plus tanshinone ⅡA increased protection against I/R injury, suggesting that tanshinone ⅡA has clinical value.

  12. Curcumin reduces inflammatory reactions following transient cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Shanshan Yu; Lan Li; Xuemei Lin; Yong Zhao

    2011-01-01

    Inflammatory reactions are important pathophysiological mechanisms of ischemic brain injury. The present study analyzed the anti-inflammatory characteristics of curcumin via myeloperoxidase activity and nitric oxide content after 2-hour ischemia/24-hour reperfusion in Sprague Dawley rats. In addition, expressions of nuclear factor kappa B, tumor necrosis factor-α and interleukin-1β protein were measured. Curcumin significantly reduced myeloperoxidase and nitric oxide synthase activities and suppressed expressions of nuclear factor kappa B, tumor necrosis factor-a, and interleukin-1β in ischemia/reperfusion brain tissue. Results suggested that the neuroprotective effect of curcumin following cerebral ischemia/reperfusion injury could be associated with inhibition of inflammatory reactions.

  13. Aldehyde dehydrogenase 2 overexpression inhibits neuronal apoptosis after spinal cord ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Xing-zhen Liu

    2017-01-01

    Full Text Available Aldehyde dehydrogenase 2 (ALDH2 is an important factor in inhibiting oxidative stress and has been shown to protect against renal ischemia/reperfusion injury. Therefore, we hypothesized that ALDH2 could reduce spinal cord ischemia/reperfusion injury. Spinal cord ischemia/reperfusion injury was induced in rats using the modified Zivin's method of clamping the abdominal aorta. After successful model establishment, the agonist group was administered a daily consumption of 2.5% alcohol. At 7 days post-surgery, the Basso, Beattie, and Bresnahan score significantly increased in the agonist group compared with the spinal cord ischemia/reperfusion injury group. ALDH2 expression also significantly increased and the number of apoptotic cells significantly decreased in the agonist group than in the spinal cord ischemia/reperfusion injury group. Correlation analysis revealed that ALDH2 expression negatively correlated with the percentage of TUNEL-positive cells (r = −0.485, P < 0.01. In summary, increased ALDH2 expression protected the rat spinal cord against ischemia/reperfusion injury by inhibiting apoptosis.

  14. Reducing mitochondrial bound hexokinase II mediates transition from non-injurious into injurious ischemia/reperfusion of the intact heart

    NARCIS (Netherlands)

    R. Nederlof (Rianne); Gürel-Gurevin, E. (Ebru); O. Eerbeek (Otto); C. Xie (Chaoqin); Deijs, G.S.; Konkel, M. (Moritz); Hu, J. (Jun); N.C. Weber (Nina); C. Schumacher (Cees); A. Baartscheer (Antonius); E.G. Mik (Egbert); M.W. Hollmann (Markus); F.G. Akar (Fadi); C.J. Zuurbier (Coert J.)

    2016-01-01

    textabstractIschemia/reperfusion (I/R) of the heart becomes injurious when duration of the ischemic insult exceeds a certain threshold (approximately ≥20 min). Mitochondrial bound hexokinase II (mtHKII) protects against I/R injury, with the amount of mtHKII correlating with injury. Here, we examine

  15. Emergent role of gasotransmitters in ischemia-reperfusion injury.

    Science.gov (United States)

    Moody, Bridgette F; Calvert, John W

    2011-04-27

    Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are lipid-soluble, endogenously produced gaseous messenger molecules collectively known as gasotransmitters. Over the last several decades, gasotransmitters have emerged as potent cytoprotective mediators in various models of tissue and cellular injury. Specifically, when used at physiological levels, the exogenous and endogenous manipulation of these three gases has been shown to modulate ischemia/reperfusion injury by inducing a number of cytoprotective mechanisms including: induction of vasodilatation, inhibition of apoptosis, modulation of mitochondrial respiration, induction of antioxidants, and inhibition of inflammation. However, while the actions are similar, there are some differences in the mechanisms by which these gasotransmitters induce these effects and the regulatory actions of the enzyme systems can vary depending upon the gas being investigated. Furthermore, there does appear to be some crosstalk between the gases, which can provide synergistic effects and additional regulatory effects. This review article will discuss several models and mechanisms of gas-mediated cytoprotection, as well as provide a brief discussion on the complex interactions between the gasotransmitter systems.

  16. Emergent role of gasotransmitters in ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Moody Bridgette F

    2011-04-01

    Full Text Available Abstract Nitric oxide (NO, carbon monoxide (CO and hydrogen sulfide (H2S are lipid-soluble, endogenously produced gaseous messenger molecules collectively known as gasotransmitters. Over the last several decades, gasotransmitters have emerged as potent cytoprotective mediators in various models of tissue and cellular injury. Specifically, when used at physiological levels, the exogenous and endogenous manipulation of these three gases has been shown to modulate ischemia/reperfusion injury by inducing a number of cytoprotective mechanisms including: induction of vasodilatation, inhibition of apoptosis, modulation of mitochondrial respiration, induction of antioxidants, and inhibition of inflammation. However, while the actions are similar, there are some differences in the mechanisms by which these gasotransmitters induce these effects and the regulatory actions of the enzyme systems can vary depending upon the gas being investigated. Furthermore, there does appear to be some crosstalk between the gases, which can provide synergistic effects and additional regulatory effects. This review article will discuss several models and mechanisms of gas-mediated cytoprotection, as well as provide a brief discussion on the complex interactions between the gasotransmitter systems.

  17. The effect of Allium sativum on ischemic preconditioning and ischemia reperfusion induced cardiac injury

    Directory of Open Access Journals (Sweden)

    Bhatti Rajbir

    2008-01-01

    Full Text Available In the present study, the effect of garlic (Allium sativum extract on ischemic preconditioning and ischemia-reperfusion induced cardiac injury has been studied. Hearts from adult albino rats of Wistar strain were isolated and immediately mounted on Langendorff′s apparatus for retrograde perfusion. After 15 minutes of stabilization, the hearts were subjected to four episodes of 5 min ischemia, interspersed with 5 min reperfusion (to complete the protocol of ischemic preconditioning, 30 min global ischemia, followed by 120 min of reperfusion. In the control and treated groups, respective interventions were given instead of ischemic preconditioning. The magnitude of cardiac injury was quantified by measuring Lactate Dehydrogenase and creatine kinase concentration in the coronary effluent and myocardial infarct size by macroscopic volume method. Our study demonstrates that garlic extract exaggerates the cardio protection offered by ischemic preconditioning and per se treatment with garlic extract also protects the myocardium against ischemia reperfusion induced cardiac injury.

  18. MicroRNAs regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury.

    Science.gov (United States)

    Makhdoumi, Pouran; Roohbakhsh, Ali; Karimi, Gholamreza

    2016-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional gene regulators. They are involved in the pathogenesis of different disorders including heart diseases. MiRNAs contribute to ischemia/reperfusion injury (I/RI) by altering numerous key signaling elements. Together with alterations in the various potential signaling pathways, modification in miRNA expression has been suggested as a part of the response network following ischemia/reperfusion (I/R). In addition, cardiac mitochondrial homeostasis is closely associated with cardiac function and impairment of mitochondrial activity occurred after ischemia/reperfusion injury. MiRNAs play a key role in the regulation of mitochondrial apoptotic pathway and signaling proteins. In this review, we summarize the knowledge currently available regarding the molecular mechanisms of miRNA-regulated mitochondrial functions during ischemia/reperfusion injury. This regulation occurs in different stages of mitochondrial apoptosis pathway.

  19. MG132 Inhibits Myocardial Ischemia-reperfusion Injury by Regulating Apoptotic Pathway

    Institute of Scientific and Technical Information of China (English)

    Dai Cuilian; Luo Kailiang; Chen Zhangrong

    2007-01-01

    Objectives To administrated proteasome inhibitor-MG-132 prior to reperfusion in rat myocardial ischemia-reperfusion model to determine whether MG-132 could reduce myocytic apoptosis. Methods and results MG-132 (0.75 mg/kg in 2 ml DMSO) injection 5 min prior to reperfusion resulted significant reduction of myocardial reperfusion injury. This effect was accompanied by reduced polymorphonuclear neutrophils(PMN) infiltration in myocardial region surrounding the myocardial infarct, reduced apoptosis in cardiac myocytes, reduced NF-κB activation, as determined by electron microscopy, histology, immunohistochemistry, the terminal deoxynucleotidyl transferase-mediated nick endlabeling (TUNEL) method, reverse transcription-polymerase chain reaction. Functional effects of MG-132 on PMN accumulation, activation of nuclear factor kappa B(p65 mRNA and protein levels ), and apoptosis were characterized in rat myocardial tissue. MG132 time-dependently inhibited myocardial p65 mRNA expression and reduced myocardial apoptotic index (AI) after reperfusion for 2 h, 6 h and 24 h ( P<0.01 ). Moreover, MG-132 time-dependently decreased Bax protein levels, while increased Bcl-2 protein levels in ischemic and reperfused myocardium ( P<0.05 ), its effect peaked after reperfusion for 24 h. Conclusions Our results demonstrate that MG-132 reduced myocardial reperfusion injury by inhibiting myosytic apoptotic cell death and blocking activation of NF-κB, down-regulating Bax expression and up-regulating Bcl-2 expression as well as elevating Bcl-2/Bax ratio.

  20. Role of Nuclear Factor kappaB in Intestine Injury Induced by Hepatic Ischemia Reperfusion

    Institute of Scientific and Technical Information of China (English)

    陈俊华; 王国斌

    2004-01-01

    Summary: The role of nuclear factor kappaB in intestine injury induced by hepatic ischemia reperfusion was investigated. Eighteen male Wistar rats were divided into 3 groups randomly: sham operation group (group A), hepatic ischemia reperfusion group (group B) and hepatic ischemia reperfusion plus pyrrolidine dithiocarbamate (PDTC) group (group C). The rats in group A were only subjected to laparotomy, those in group B underwent partial hepatic ischemia reperfusion (ischemia for 1 h and reperfusion for 2 h) and those in group C underwent the same procedure as that of group B but received PDTC 200 mg/kg i.v. before and after ischemia. After reperfusion, tissues of jejunum and venous blood were obtained for measurement of TNF-α, MDA and MPO. The levels of TNF-α in jejunum and venous blood, the levels of MPO in jejunum in group B were significantly higher than those in group A and group C (P<0.05). There was no significant different in the levels of MDA between group B and group C. The severity of histological intestinal injury in group B and group C was similar. Hepatic ischemia reperfusion caused intestine injury, NF-kappaB may play an important role in this course and the targeting of upstream components of the inflammatory response, such as NF-kappaB, may have important therapeutic applications.

  1. Effects of ulinastatin on renal ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Cong-cong CHEN; Zi-ming LIU; Hui-hua WANG; Wei HE; Yi WANG; Wei-dong WU

    2004-01-01

    AIM: To investigate the effect and possible mechanism of ulinastatin on renal ischemia-reperfusion injury in rats.METHODS: Male Sprague-Dawley rats were subjected to 45-min bilateral renal ischemia, treated with intravenously 12 500 U ulinastatin at 30 min prior to ischemia and at the beginning of reperfusion, compared with a nontreated group without ulinastatin and a sham-operation group without bilateral renal ischemia. After 0 h, 2 h, 6 h, 12 h, and 24 h of reperfusion, serum creatinine and blood urea nitrogen were measured for the assessment of renal function, renal sections were used for histologic grading of renal injury, for immunohistochemical localization of Bcl-2 and heat shock protein 70. Renal ultrastructure was observed through a transmission electron microscope.RESULTS: Ulinastatin significantly reduced the increase in blood urea nitrogen and creatinine produced by renal ischemia-reperfusion, suggesting an improvement in renal function. Ulinastatin reduced the histologic evidence of renal damage associated with ischemia-reperfusion and accompanied with an up-regulation in the expression of Bcl-2 protein, but it had no significent effect on the expression of HSP 70. Ulinastatin also significantly reduced kidney ultrastructure damage caused by renal ischemia-reperfusion. CONCLUSION: The protease inhibitor, ulinastatin,reduced the renal dysfunction and injury associated with ischemia-reperfusion of the kidney. The protective effect of ulinastatin might be associated with the up-regulation of Bcl-2 expression and the effect on membrane fragility.

  2. Seabuckthorn Pulp Oil Protects against Myocardial Ischemia–Reperfusion Injury in Rats through Activation of Akt/eNOS

    Science.gov (United States)

    Suchal, Kapil; Bhatia, Jagriti; Malik, Salma; Malhotra, Rajiv Kumar; Gamad, Nanda; Goyal, Sameer; Nag, Tapas C.; Arya, Dharamvir S.; Ojha, Shreesh

    2016-01-01

    Seabuckthorn (SBT) pulp oil obtained from the fruits of seabuckthorn [Hippophae rhamnoides L. (Elaeagnaceae)] has been used traditionally for its medicinal and nutritional properties. However, its role in ischemia–reperfusion (IR) injury of myocardium in rats has not been elucidated so far. The present study reports the cardioprotective effect of SBT pulp oil in IR-induced model of myocardial infarction in rats and underlying mechanism mediating activation of Akt/eNOS signaling pathway. Male albino Wistar rats were orally administered SBT pulp oil (5, 10, and 20 ml/kg/day) or saline for 30 days. On the day 31, ischemia was induced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. SBT pulp oil pretreatment at the dose of 20 ml/kg observed to stabilize cardiac function and myocardial antioxidants such as glutathione, superoxide dismutase, catalase, and inhibited lipid peroxidation evidenced by reduced malondialdehyde levels as compared to IR-control group. SBT pulp oil also improved hemodynamic and contractile function and decreased tumor necrosis factor and activities of myocyte injury marker enzymes; lactate dehydrogenase and creatine kinase-MB. Additionally, a remarkable rise in expression of pAkt–eNOS, Bcl-2 and decline in expression of IKKβ/NF-κB and Bax was observed in the myocardium. The histopathological and ultrastructural salvage of cardiomyocytes further supports the cardioprotective effect of SBT pulp oil. Based on findings, it can be concluded that SBT pulp oil protects against myocardial IR injury mediating favorable modulation of Akt-eNOS and IKKβ/NF-κB expression. PMID:27445803

  3. Role of eicosanoids and white blood cells in the beneficial effects of limited reperfusion after ischemia-reperfusion injury in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.J.; Cambria, R.A.; Dikdan, G.; Lysz, T.W.; Hobson, R.W. II (UMDNJ-New Jersey Medical School, Newark (USA))

    1990-08-01

    Limiting the rate of reperfusion blood flow has been shown to be beneficial locally in models of ischemia-reperfusion injury. We investigated the effects of this on eicosanoids (thromboxane B2, 6-keto-PGF1 alpha, and leukotriene B4), white blood cell activation, and skeletal muscle injury as quantitated by triphenyltetrazolium chloride and technetium-99m pyrophosphate after ischemia-reperfusion injury in an isolated gracilis muscle model in 16 anesthetized dogs. One gracilis muscle in each dog was subjected to 6 hours of ischemia followed by 1 hour of limited reperfusion and then by a second hour of normal reperfusion. The other muscle was subjected to 6 hours of ischemia followed by 2 hours of normal reperfusion. Six dogs each were used as normal reperfusion controls (NR) and limited reperfusion controls (LR), with 5 dogs being treated with a thromboxane synthetase inhibitor (LR/TSI) and another five with a leukotriene inhibitor (LR/LI). LR in all three groups (LR, LR/TSI, and LR/LI) showed a benefit in skeletal muscle injury as measured by triphenyltetrazolim chloride and technetium-99m pyrophosphate when compared with NR. However, there was no significant difference between the groups with LR regarding eicosanoid levels and white blood cell activation when compared with NR. These results demonstrate that LR produces benefits by mechanisms other than those dependent upon thromboxane A2, prostacyclin, or white blood cell activation.

  4. How effective are alprostadil and hydrocortisone on reperfusion injury in kidney after distant organ ischemia?

    Directory of Open Access Journals (Sweden)

    Ali Ebrahimi

    2013-01-01

    Full Text Available Background: After reestablishment of blood flow to ischemic limb recirculation of free radicals may cause ischemia-reperfusion injury in many organs. This study designed to investigate effects of hydrocortisone and alprostadil distant injury to kidneys by both measuring biochemical markers of oxidative stress and histopathologic examination in an experimental rat model of hind limb ischemia-reperfusion. Materials and Methods: This study conducted in Isfahan University of Medical Sciences during 2011-2012. Ischemia was established by infra renal aortic clamping for 60 min in 32 male Wistar rats. Animals were divided into those receiving alprostadil (group ischemia-reperfusion plus alprostadil (IR/A, n = 8, those receiving hydrocortisone (group ischemia-reperfusion plus hydrocortisone (IR/H, n = 8, control group (group ischemia-reperfusion (IR, n = 8, and sham group (n = 8. After 120 min of reperfusion both kidneys were removed. Levels of superoxide dismutase (SOD, malondialdehyde (MDA, and glutathione (GSH as indirect markers of oxidative injury was measured. Finally all data in different groups were compared using the analysis of variance (ANOVA test by Statistical Package for Social Sciences (SPSS version 16. Results: Administration of alprostadil or hydrocortisone does not improve the biochemical parameters of oxidative injury including MDA and SOD. However, statistically significant difference was seen in GSH level among sham and IR groups. Mean (΁ standard deviation (SD concentration of GSH in IR, IR/A, IR/H, and sham groups were 1028.77 (72.65, 924.82 (70.66, 1000.28 (108.77, and 846.69 (163.52, respectively (P = 0.015. Histopathological study of specimens did not show any significant changes between groups. Conclusion: Alprostadil and hydrocortisone do not improve the kidney GSH, SOD, and MDA level and kidney releases its GSH reserve during ischemia-reperfusion event, and another point is that, 3 h of ischemia-reperfusion does not develop

  5. Reperfusion injury and reactive oxygen species: The evolution of a concept☆

    Science.gov (United States)

    Granger, D. Neil; Kvietys, Peter R.

    2015-01-01

    Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. PMID:26484802

  6. Protection Against Hepatic Ischemia-reperfusion Injury in Rats by Oral Pretreatment With Quercetin

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To investigate the possible protection provided by oral quercetin pretreatment against hepatic ischemia-reperfusion injury in rats. Methods The quercetin (0.13 mmol/kg) was orally administrated in 50 min prior to hepatic ischemia-reperfusion injury. Ascorbic acid was also similarly administered. The hepatic content of quercetin was assayed by high performance liquid chromatography (HPLC). Plasma glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT) activities and malondialdehyde (MDA) concentration were measured as markers of hepatic ischemia-reperfusion injury. Meanwhile, hepatic content of glutathione (GSH), activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and xanthine oxidase (XO), total antioxidant capacity (TAOC), contents of reactive oxygen species (ROS) and MDA, DNA fragmentation were also determined. Results Hepatic content of quercetin after intragastric administration of quercetin was increased significantly. The increases in plasma GPT, GOT activities and MDA concentration after hepatic ischemia-reperfusion injury were reduced significantly by pretreatment with quercetin. Hepatic content of GSH and activities of SOD, GSH-Px and TAOC were restored remarkably while the ROS and MDA contents were significantly diminished by quercetin pretreatment after ischemia-reperfusion injury. However, quercetin pretreatment did not reduce significantly hepatic XO activity and DNA fragmentation. Ascorbic acid pretreatment had also protective effects against hepatic ischemia-reperfusion injury by restoring hepatic content of GSH, TAOC and diminishing ROS and MDA formation and DNA fragmentation. Conclusion It is indicated that quercetin can protect the liver against ischemia-reperfusion injury after oral pretreatment and the underlying mechanism is associated with improved hepatic antioxidant capacity.

  7. Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury*****

    Institute of Scientific and Technical Information of China (English)

    Bo Song; Qiang Ao; Ying Niu; Qin Shen; Huancong Zuo; Xiufang Zhang; Yandao Gong

    2013-01-01

    Amyloid β-peptide, a major component of senile plaques in Alzheimer’s disease, has been impli-cated in neuronal cel death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer’s disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries;meanwhile, fibril ar amyloid β-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid β-peptide could further aggravate impairments to learning and memory and neuronal cel death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 3β were significantly stronger in cerebral is-chemia-reperfusion injury rats subjected to amyloidβ-peptide administration than those undergoing cerebral ischemia-reperfusion or amyloidβ-peptide administration alone. Conversely, the activity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury fol owing amyloidβ-peptide administration. These findings suggest that amyloidβ-peptide can po-tentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cog-nitive impairment.

  8. Cholinergic anti-inflammatory pathway: a possible approach to protect against myocardial ischemia reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    XIONG Jun; XUE Fu-shan; YUAN Yu-jing; WANG Qiang; LIAO Xu; WANG Wei-li

    2010-01-01

    Objective A general review was made of studies involving: (1) the concept and mechanism of the cholinergic anti-inflammatory pathway (CAP), (2) the important role of inflammatory response in myocardial ischemia reperfusion (I/R)injury and (3) the evidence and mechanisms by which CAP may provide protection against myocardial I/R injury.Data sources The data used in this review were mainly from manuscripts listed in PubMed that were published in English from 1987 to 2009. The search terms were "vagal nerve stimulation", "myocardial ischemia reperfusion injury","nicotine acetylcholine receptor" and "inflammation".Study selection (1) Clinical and experimental evidence that the inflammatory response induced by reperfusion enhances myocardial I/R injury. (2) Clinical and laboratory evidence that the CAP inhibits the inflammation and provides protection against myocardial I/R injury.Results The myocardial I/R injury is really an inflammatory process characterized by recruitment of neutrophils into the ischemic myocardium and excessive production of pro-inflammatory cytokines. Because the CAP can modulate the inflammatory response by decreasing the production and release of pro-inflammatory cytokines, it can provide protection against myocardial I/R injury.Conclusions The CAP can inhibit the inflammatory response induced by reperfusion and protect against myocardial I/R injury. It represents an exciting opportunity to develop new and novel therapeutics to attenuate the myocardial I/R injury.

  9. Pretreatment with erythropoietin reduces hepatic ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Yu-Hong Luo; Zheng-Dong Li; Li-Xin Liu; Gao-Hong Dong

    2009-01-01

    BACKGROUND: During hepatectomy, a period of ischemia and restoration of the blood supply can result in hepatic ischemia-reperfusion injury (IRI). Current research indicates that erythropoietin (EPO) has a protective effect in animal models of cerebral ischemia, myocardial infarction, and renal IRI. However there is lack of research into the role of EPO in hepatic IRI. This study aimed to explore the role of EPO in hepatic IRI and its possible mechanism of action. METHODS: Thirty male Sprague-Dawley rats were divided into three groups: (1) ten rats in the experimental group were given 1000 IU/kg EPO one day before the operation; (2) ten rats in a control group were given normal saline preoperatively as a placebo; and (3) ten rats served as a sham-operated group. Hepatic IRI was induced by occluding the hepatic arteries of the three cephalad hepatic segments and the portal vein for about 45 minutes, while in the sham-operated group only laparotomy was performed. The levels of ALT and AST were tested 24 hours pre- and post-operation. All rats were sacriifced 24 hours after the operation to assess the pathologic changes in the liver and measure the expression of heme oxygenase-1 (HO-1) through Western blotting and RT-PCR. RESULTS: Hepatic IRI was markedly mitigated in the experimental group as compared with the control group. Moreover, the expression of HO-1 at the level of both transcription and protein increased prominently (P<0.05) in the experimental group. CONCLUSION: These results demonstrate that EPO can up-regulate HO-1 in liver tissues and accordingly decrease hepatic injury through its anti-inlfammatory property.

  10. Effect of tramadol on lung injury induced by skeletal muscle ischemia-reperfusion: an experimental study

    Directory of Open Access Journals (Sweden)

    Mohammad Ashrafzadeh Takhtfooladi

    2013-06-01

    Full Text Available OBJECTIVE: To determine whether tramadol has a protective effect against lung injury induced by skeletal muscle ischemia-reperfusion. METHODS: Twenty Wistar male rats were allocated to one of two groups: ischemia-reperfusion (IR and ischemia-reperfusion + tramadol (IR+T. The animals were anesthetized with intramuscular injections of ketamine and xylazine (50 mg/kg and 10 mg/kg, respectively. All of the animals underwent 2-h ischemia by occlusion of the femoral artery and 24-h reperfusion. Prior to the occlusion of the femoral artery, 250 IU heparin were administered via the jugular vein in order to prevent clotting. The rats in the IR+T group were treated with tramadol (20 mg/kg i.v. immediately before reperfusion. After the reperfusion period, the animals were euthanized with pentobarbital (300 mg/kg i.p., the lungs were carefully removed, and specimens were properly prepared for histopathological and biochemical studies. RESULTS: Myeloperoxidase activity and nitric oxide levels were significantly higher in the IR group than in the IR+T group (p = 0.001 for both. Histological abnormalities, such as intra-alveolar edema, intra-alveolar hemorrhage, and neutrophil infiltration, were significantly more common in the IR group than in the IR+T group. CONCLUSIONS: On the basis of our histological and biochemical findings, we conclude that tramadol prevents lung tissue injury after skeletal muscle ischemia-reperfusion.

  11. Effect of morphine preconditioning on neuronal apoptosis following cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    He Dong; Xiangyu Ji; Dong Wang; Yueyi Ren; Shiduan Wang; Jianfang Song

    2010-01-01

    Apoptosis,a form of neuronal damage,takes place following cerebral ischemia/reperfusion injury,and caspase-3 plays an important role in apoptosis.Studies have shown that morphine preconditioning influences neuronal apoptosis and related protein expression following cerebral ischemia/reperfusion injury.In the present study,neuronal degeneration was attenuated,and the number of apoptotic cells and caspase-3 expression decreased following morphine preconditioning in a rat model of cerebral ischemia/reperfusion injury.Moreover,pathological changes were attenuated with increasing morphine doses,as well as the number of apoptotic cells and caspase-3 expression.Results from the present study revealed that morphine preconditioning reduced ischemic brain injury and improved cerebral ischemic tolerance in a dose-dependent manner.The anti-apoptotic mechanism of morphine is closely related to Caspase-3.

  12. Effects of lazaroids on intestinal ischemia and reperfusion injury in experimental models.

    Science.gov (United States)

    Flessas, Ioannis I; Papalois, Apostolos E; Toutouzas, Konstantinos; Zagouri, Flora; Zografos, George C

    2011-04-01

    Mesenteric ischemia occurs in a number of clinically relevant pathophysiologic processes, including sepsis, hemorrhage, intestinal transplantation, severe burns, and mesenteric thrombosis. The readmission of molecular oxygen into an ischemic tissue promotes the oxidation of resuscitated tissue with certain pathophysiologic mechanisms. Depending on the duration and the intensity of ischemia, reoxygenation of the intestine that has been reperfused may further induce tissue injury. Intestinal ischemia and reperfusion injury can accelerate complex processes between the endothelium and different cell types leading to microvascular injury, cellular necrosis, and apoptosis. The injury due to reperfusion is found predominantly in the intestinal mucosa and submucosa, causing endothelial detachment. The 21-aminosteroids (lazaroids) are a family of compounds that inhibit lipid membrane peroxidation. Many of the performed studies show conflicting results, which reflect differences in experimental design, evolving time that (I/R) is induced, total or partial vascular occlusion, dosage of the lazaroid, and the exact period of time that the lazaroid is administered.

  13. Transcription factor changes following long term cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hongbo Zhang; Weijuan Gao; Tao Qian; Jinglong Tang; Jun Li

    2013-01-01

    The present study established a rat model of cerebral ischemia/reperfusion injury using four-vessel occlusion and found that hippocampal CA1 neuronal morphology was damaged, and that there were reductions in hippocampal neuron number and DNA-binding activity of cAMP response element binding protein and CCAAT/enhancer binding protein, accompanied by decreased learning and memory ability. These findings indicate that decline of hippocampal cAMP response element binding protein and CCAAT/enhancer binding protein DNA-binding activities may contribute to neuronal injury and learning and memory ability reduction induced by cerebral ischemia/reperfusion injury.

  14. Treatment of Tourniquet-Induced Ischemia Reperfusion Injury with Muscle Progenitor Cells

    Science.gov (United States)

    2011-09-01

    Weinstein AL, et al. Therapeutic met- abolic inhibition: Hydrogen sulfide significantly mitigates skele- tal muscle ischemia reperfusion injury in vitro...muscle function in animal models of muscular diseases, dener- vation, toxins , cryo-injuries, and volumetricmuscle loss [21–24], and have been used to

  15. MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury

    NARCIS (Netherlands)

    Oostendorp, M. van; Vries, E.E. de; Slenter, J.M.; Peutz-Kootstra, C.J.; Snoeijs, M.G.; Post, M.J.; Heurn, L.W. van; Backes, W.H.

    2011-01-01

    The in vivo assessment of renal damage after ischemia-reperfusion injury, such as in sepsis, hypovolemic shock or after transplantation, is a major challenge. This injury often results in temporary or permanent nonfunction. In order to improve the clinical outcome of the kidneys, novel therapies are

  16. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model

    NARCIS (Netherlands)

    B.H.M. Heijnen; I.H. Straatsburg; N.D. Padilla; G.J. Mierlo; C.E. Hack; T.M. van Gulik

    2006-01-01

    Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 10

  17. Comparative proteomic analysis of histone post-translational modifications upon ischemia/reperfusion-induced retinal injury

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Sidoli, Simone; Wang, Leilei;

    2014-01-01

    We present a detailed quantitative map of single and coexisting histone post-translational modifications (PTMs) in rat retinas affected by ischemia and reperfusion (I/R) injury. Retinal I/R injury contributes to serious ocular diseases, which can lead to vision loss and blindness. We applied linear...

  18. MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury

    NARCIS (Netherlands)

    Oostendorp, M. van; Vries, E.E. de; Slenter, J.M.; Peutz-Kootstra, C.J.; Snoeijs, M.G.; Post, M.J.; Heurn, L.W. van; Backes, W.H.

    2011-01-01

    The in vivo assessment of renal damage after ischemia-reperfusion injury, such as in sepsis, hypovolemic shock or after transplantation, is a major challenge. This injury often results in temporary or permanent nonfunction. In order to improve the clinical outcome of the kidneys, novel therapies are

  19. Direct relationship between levels of TNF-α expression and endothelial dysfunction in reperfusion injury

    OpenAIRE

    Zhang, Cuihua; Wu, Junxi; Xu, Xiangbin; Potter, Barry J.; Gao, Xue

    2010-01-01

    We previously found that myocardial ischemia/reperfusion (I/R) initiates expression of tumor necrosis factor-α (TNF) leading to coronary endothelial dysfunction. However, it is not clear whether there is a direct relationship between levels of TNF expression and endothelial dysfunction in reperfusion injury. We studied levels of TNF expression by using different transgenic animals expressing varying amounts of TNF in I/R. We crossed TNF overexpression (TNF++/++) with TNF knockout (TNF−/−) mic...

  20. Melatonin Protects N2a against Ischemia/Reperfusion Injury through Autophagy Enhancement

    Institute of Scientific and Technical Information of China (English)

    国艳春; 王剑飞; 王忠强; 杨易; 王西明; 段秋红

    2010-01-01

    Researches have shown that melatonin is neuroprotectant in ischemia/reperfusion-mediated injury.Although melatonin is known as an effective antioxidant,the mechanism of the protection cannot be explained merely by antioxidation.This study was devoted to explore other existing mechanisms by investigating whether melatonin protects ischemia/reperfusion-injured neurons through elevating autophagy,since autophagy has been frequently suggested to play a crucial role in neuron survival.To find it out,an ischemia/...

  1. Global MicroRNA Expression Profiling of Mouse Livers following Ischemia-Reperfusion Injury at Different Stages.

    Directory of Open Access Journals (Sweden)

    Weisheng Zheng

    Full Text Available Hepatic ischemia-reperfusion injury is a dynamic process consisting of two stages: ischemia and reperfusion, and triggers a cascade of physiological and biochemical events. Given the important role of microRNAs in regulating gene expression, we analyzed gene expression changes in mouse livers at sham control, ischemia stage, and reperfusion stage. We generated global expression profiles of microRNA and mRNA genes in mouse livers subjected to ischemia-reperfusion injury at the three stages, respectively. Comparison analysis showed that reperfusion injury had a distinct expression profile whereas the ischemia sample and the sham control were clustered together. Consistently, there are 69 differentially expressed microRNAs between the reperfusion sample and the sham control whereas 28 differentially expressed microRNAs between the ischemia sample and the sham control. We further identified two modes of microRNA expression changes in ischemia-reperfusion injury. Functional analysis of both the differentially expressed microRNAs in the two modes and their target mRNAs revealed that ischemia injury impaired mitochondrial function, nutrient consumption, and metabolism process. In contrast, reperfusion injury led to severe tissue inflammation that is predominantly an innate-immune response in the ischemia-reperfusion process. Our staged analysis of gene expression profiles provides new insights into regulatory mechanisms of microRNAs in mouse hepatic IR injury.

  2. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Yiming Ji; Bin Meng; Chenxi Yuan; Huilin Yang; Jun Zou

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30-180 minutes, the amplitude and latency began to gradual y recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury.

  3. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Xing-miao CHEN; Han-sen CHEN; Ming-jing XU; Jian-gang SHEN

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases.Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply,but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury,which are mediated by free radicals.As an important component of free radicals,reactive nitrogen species (RNS),including nitric oxide (NO) and peroxynitrite (ONO0ˉ),play important roles in the process of cerebral ischemia-reperfusion injury.Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOOˉ) in ischemic brain,which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage.There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage.Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury.Herein,we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONO0ˉ to treat ischemic stroke.We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemiareperfusion injury.

  4. Prevention of reperfusion lung injury by lidocaine in isolated rat lung ventilated with higher oxygen levels.

    Directory of Open Access Journals (Sweden)

    Das K

    2003-01-01

    Full Text Available BACKGROUND: Lidocaine, an antiarrhythmic drug has been shown to be effective against post-ischaemic reperfusion injury in heart. However, its effect on pulmonary reperfusion injury has not been investigated. AIMS: We investigated the effects of lidocaine on a postischaemic reperfused rat lung model. MATERIALS AND METHODS: Lungs were isolated and perfused at constant flow with Krebs-Henseilet buffer containing 4% bovine serum albumin, and ventilated with 95% oxygen mixed with 5% CO2. Lungs were subjected to ischaemia by stopping perfusion for 60 minutes followed by reperfusion for 10 minutes. Ischaemia was induced in normothermic conditions. RESULTS: Postischaemic reperfusion caused significant (p < 0.0001 higher wet-to-dry lung weight ratio, pulmonary arterial pressure and peak airway pressure compared to control lungs. Lidocaine, at a dose of 5mg/Kg b.w. was found to significantly (p < 0.0001 attenuate the increase in the wet-to-dry lung weight ratio, pulmonary arterial pressure and peak airway pressure observed in post-ischaemic lungs. CONCLUSION: Lidocaine is effective in preventing post-ischaemic reperfusion injury in isolated, perfused rat lung.

  5. Tyrosol attenuates ischemia-reperfusion-induced kidney injury via inhibition of inducible nitric oxide synthase.

    Science.gov (United States)

    Wang, Pengqi; Zhu, Qingjun; Wu, Nan; Siow, Yaw L; Aukema, Harold; O, Karmin

    2013-04-17

    Tyrosol is a natural phenolic antioxidant compound. Oxidative stress represents one of the important mechanisms underlying ischemia-reperfusion-induced kidney injury. The aim of this study was to investigate the effect of tyrosol against ischemia-reperfusion-induced acute kidney injury. The left kidney of Sprague-Dawley rats was subjected to 45 min of ischemia followed by reperfusion for 6 h. Ischemia-reperfusion caused an increase in peroxynitrite formation and lipid peroxidation. The level of nitric oxide (NO) metabolites and the mRNA of inducible nitric oxide synthase (iNOS) were elevated in ischemia-reperfused kidneys. Administration of tyrosol (100 mg/kg body weight) to rats prior to the induction of ischemia significantly reduced peroxynitrite formation, lipid peroxidation, and the level of NO metabolites. Tyrosol administration also attenuated ischemia-reperfusion-induced NF-κB activation and iNOS expression. Such a treatment improved kidney function. Results suggest that tyrosol may have a protective effect against acute kidney injury through inhibition of iNOS-mediated oxidative stress.

  6. Pretreatment of cromolyn sodium prior to reperfusion attenuates early reperfusion injury after the small intestine ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effects of Cromolyn Sodium (CS) pretreated prior to reperfusion on the activity of intestinal mucosal mast cells (IMMC) and mucous membrane of the small intestine in ischemia-reperfusion (IR) injury of rats.METHODS: Thirty-two Sprague-Dawley (SD) rats were randomly divided into four groups: sham group (group S), model group (group M), high and low dosage of CS groups, (treated with CS 50 mg/kg or 25 mg/kg,group C1 and C2). Intestinal IR damage was induced by clamping the superior mesenteric artery for 45 min followed by reperfusion for 60 min. CS was intravenouly administrated 15 min before reperfusion. Ultrastructure and counts of IMMC, intestinal structure, the expression of tryptase, levels of malondisldehyde (MDA), TNF-α,histamine and superoxide dismutase (SOD) activity of the small intestine were detected at the end of experiment.RESULTS: The degranulation of IMMC was seen in group M and was attenuated by CS treatment. Chiu's score of group M was higher than the other groups. CS could attenuate the up-regulation of the Chiu's score,the levels of MDA, TNF-α, and expression of tryptase and the down-regulation of SOD activity and histamine concentration. The Chiu's score and MDA content were negatively correlated, while SOD activity was positively correlated to the histamine concentration respectively in the IR groups.CONCLUSION: Pretreated of CS prior to reperfusion protects the small intestine mucous from ischemiareperfusion damage, the mechanism is inhibited IMMC from degranulation.

  7. The protective activity of noscapine on renal ischemia–reperfusion injury in male Wistar rat

    Science.gov (United States)

    Khanmoradi, Mehrangiz; Ali Mard, Seyyed; Aboutaleb, Nahid; Nobakht, Malihe; Mahmoudian, Masoud

    2014-01-01

    Objective(s): Bradykinin is a part of the kinin-kallikrein system which is involved in ischemia-reperfusion injury via B1 and B2 receptors. Noscapine is a non-competitive antagonist of bradykinin receptors. Noscapine has been reported to to be able to protect some organs against ischemia-reperfusion injury but its effect on renal ischemia-reperfusion injury (RIR) in rats is unknown. Therefore, the present study was designed to evaluate the effect of noscapine on renal ischemia-reperfusion injury in rats. Materials and Methods: Twenty four rats were randomly assigned to four groups; sham, RIR control, pre-and post-treatment with noscapine. To induce RIR injury, 20 days after right nephrectomy, animals underwent a midline laparotomy and the renal artery was clamped for 40 min to induce ischemia, and the clamp was then removed to allow reperfusion for 48 hr. Animals received noscapine or vehicle 1 hr before RIR or just prior to reperfusion. At the end of the experiment, animals were killed by cardiac exsanguination. Blood samples were collected to assess blood urea nitrogen (BUN) and creatinine. The kidneys were also removed for histopathlogical and western-blot analysis. Results: Noscapine treatment 1 hr before RIR or just prior to reperfusion protects the renal tissue structure as compared with the control. The expression levels of the studied inflammatory mediators, TNF-α and MCP-1in pretreated-, and treated-noscapine groups decreased as compared with the control group. The levels of BUN and creatinine in pre-, and post-treated noscapine groups were significantly lower than in control animals. Conclusion: Noscapine protects renal tissue structure and function against RIR through down-regulation of the inflammatory mediators. PMID:24904716

  8. Gender difference and sex hormone production in rodent renal ischemia reperfusion injury and repair

    Directory of Open Access Journals (Sweden)

    Ghazali Daniel

    2011-06-01

    Full Text Available Abstract Background Several lines of evidence suggest a protective effect of female sex hormones in several organs subjected to ischemia-reperfusion injury. The aim of the study was to investigate sex hormone production in male rats after a renal ischemia-reperfusion sequence and analyze the influence of gender differences on tissue remodelling during the recovery process. Method Age-matched sexually mature male and female rats were subjected to 60 min of renal unilateral ischemia by pedicle clamping with contralateral nephrectomy and followed for 1 or 5 days after reperfusion. Plasma creatinine, systemic testosterone, progesterone and estradiol levels were determined. Tubular injury, cell proliferation and inflammation, were evaluated as well as proliferating cell nuclear antigen, vimentin and translocator protein (TSPO expressions by immunohistochemistry. Results After 1 and 5 days of reperfusion, plasma creatinine was significantly higher in males than in females, supporting the high mortality in this group. After reperfusion, plasma testosterone levels decreased whereas estradiol significantly increased in male rats. Alterations of renal function, associated with tubular injury and inflammation persisted during the 5 days post-ischemia-reperfusion, and a significant improvement was observed in females at 5 days of reperfusion. Proliferating cell nuclear antigen and vimentin expression were upregulated in kidneys from males and attenuated in females, in parallel to injury development. TSPO expression was transiently increased in proximal tubules in male rats. Conclusions After ischemia, renal function recovery and tissue injury is gender-dependent. These differences are associated with a modulation of sex hormone production and a modification of tissue remodeling and proliferative cell processes.

  9. Protection of early phase hepatic ischemia-reperfusion injury by cholinergic agonists

    Directory of Open Access Journals (Sweden)

    Roth Robert

    2006-02-01

    Full Text Available Abstract Background Cytokine production is critical in ischemia/reperfusion (IR injury. Acetylcholine binds to macrophages and inhibits cytokine synthesis, through the cholinergic anti-inflammatory pathway. This study examined the role of the cholinergic pathway in cytokine production and hepatic IR- injury. Methods Adult male mice underwent 90-min of partial liver ischemia followed by reperfusion. The AChR agonists (1,1-dimethyl-4-phenyl-L-pioperazinium-iodide [DMPP], and nicotine or saline-vehicle were administered i.p. before ischemia. Plasma cytokine tumor necrosis factor (TNF-α, macrophage inflammatory protein-2, and Interleukin-6 were measured. Liver injury was assessed by plasma alanine transaminase (ALT and liver histopathology. Results A reperfusion time-dependent hepatocellular injury occurred as was indicated by increased plasma-ALT and histopathology. The injury was associated with marked elevation of plasma cytokines/chemokines. Pre-ischemic treatment of mice with DMPP or nicotine significantly decreased plasma-ALT and cytokines after 3 h of reperfusion. After 6 h of reperfusion, the protective effect of DMPP decreased and reached a negligible level by 24 h of reperfusion, despite significantly low levels of plasma cytokines. Histopathology showed markedly diminished hepatocellular injury in DMPP- and nicotine-pretreated mice during the early-phase of hepatic-IR, which reached a level comparable to saline-treated mice at late-phase of IR. Conclusion Pharmacological modulation of the cholinergic pathway provides a means to modulate cytokine production and to delay IR-induced heaptocellular injury.

  10. Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus.

    Science.gov (United States)

    Fadillioglu, Ersin; Kurcer, Zehra; Parlakpinar, Hakan; Iraz, Mustafa; Gursul, Cebrail

    2008-06-01

    Oxidative stress may have a role in liver damage after acute renal injury due to various reasons such as ischemia reperfusion (IR). Diabetes mellitus (DM) is an important disease for kidneys and may cause nephropathy as a long term complication. The aim of this study was to investigate protective effect of melatonin, a potent antioxidant, against distant organ injury on liver induced by renal IR in rats with or without DM. The rats were divided into six groups: control (n=7), DM (n=5), IR (n=7), DM+IR (n=7), melatonin+IR (Mel+IR) (melatonin, 4 mg/ kg during 15 days) (n=7), and Mel+DM+IR groups (n=7). Diabetes developed 3 days after single i.p. dose of 45 mg/kg streptozotocin. After 15 day, the left renal artery was occluded for 30 min followed 24 h of reperfusion in IR performed groups. DM did not alter oxidative parameters alone in liver tissue. The levels of malondialdehyde, protein carbonyl and nitric oxide with activities of xanthine oxidase and myeloperoxidase were increased in liver tissues of diabetic and non-diabetic IR groups. Nitric oxide level in DM was higher than control. The activities of catalase and superoxide dismutase were increased in IR groups in comparison with control and DM. ALT and AST levels were higher in IR and DM+IR groups than control and DM. Melatonin treatment reversed all these oxidant and antioxidant parameters to control values as well as serum liver enzymes. We concluded that renal IR may affect distant organs such as liver and oxidative stress may play role on this injury, but DM has not an effect on kidney induced distant organ injury via oxidant stress. Also, it was concluded that melatonin treatment may prevent liver oxidant stress induced by distant injury of kidney IR.

  11. Glaucocalyxin A Ameliorates Myocardial Ischemia-Reperfusion Injury in Mice by Suppression of Microvascular Thrombosis

    Science.gov (United States)

    Liu, Xiaohui; Xu, Dongzhou; Wang, Yuxin; Chen, Ting; Wang, Qi; Zhang, Jian; You, Tao; Zhu, Li

    2016-01-01

    Background The aim of this study was to evaluate the cardio-protective roles of glaucocalyxin A (GLA) in myocardial ischemia-reperfusion injury and to explore the underlying mechanism. Material/Methods Myocardial ischemia-reperfusion in wild-type C57BL/6J mice was induced by transient ligation of the left anterior descending artery. GLA or vehicle (solvent) was administrated intraperitoneally to the mice before reperfusion started. After 24 h of myocardial reperfusion, ischemic size was revealed by Evans blue/TTC staining. Cardiac function was evaluated by echocardiography and microvascular thrombosis was assessed by immunofluorescence staining of affected heart tissue. We also measured the phosphorylation of AKT, ERK, P-GSK-3β, and cleaved caspase 3 in the myocardium. Results Compared to the solvent-treated control group, GLA administration significantly reduced infarct size (GLA 13.85±2.08% vs. Control 18.95±0.97%, p<0.05) and improved left ventricular ejection fraction (LVEF) (GLA 53.13±1.11% vs. Control 49.99±1.25%, p<0.05) and left ventricular fractional shortening (LVFS) (28.34±0.71% vs. Control 25.11±0.74%, p<0.05) in mice subjected to myocardial ischemia-reperfusion. GLA also attenuated microvascular thrombosis (P<0.05) and increased the phosphorylation of pro-survival kinase AKT (P<0.05) and GSK-3β (P<0.05) in the myocardium upon reperfusion injury. Conclusions Administration of GLA before reperfusion ameliorates myocardial ischemia-reperfusion injury in mice. The cardio-protective roles of GLA may be mediated through the attenuation of microvascular thrombosis. PMID:27716735

  12. Effect of U-74500A, a 21-aminosteroid on renal ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Kaur, Hitchintan; Satyanarayana, Padi S V; Chopra, Kanwaljit

    2003-03-01

    Renal ischemia-reperfusion injury constitutes the most common pathogenic factor for acute renal failure and is the main contributor to renal dysfunction in allograft recipients and revascularization surgeries. Many studies have demonstrated that reactive oxygen species play an important role in ischemic acute renal failure. The aim of the present study was to investigate the effects of the synthetic antioxidant U-74500A, a 21-aminosteroid in a rat model of renal ischemia-reperfusion injury. Renal ischemia-reperfusion was induced by clamping unilateral renal artery for 45 min followed by 24 h of reperfusion. Two doses of U-74500A (4.0 mg/kg, i.v.) were administered 45 min prior to renal artery occlusion and then 15 min prior to reperfusion. Tissue lipid peroxidation was measured as thiobarbituric acid reacting substances (TBARS) in kidney homogenates. Renal function was assessed by estimating serum creatinine, blood urea nitrogen (BUN), creatinine and urea clearance. Renal morphological alterations were assessed by histopathological examination of hematoxylin-eosin stained sections of the kidneys. Ischemia-reperfusion produced elevated levels of TBARS and deteriorated the renal function as assessed by increased serum creatinine, BUN and decreased creatinine and urea clearance as compared to sham operated rats. The ischemic kidneys of rats showed severe hyaline casts, epithelial swelling, proteinaceous debris, tubular necrosis, medullary congestion and hemorrhage. U-74500A markedly attenuated elevated levels of TBARS as well as morphological changes, but did not improve renal dysfunction in rats subjected to renal ischemia-reperfusion. These results clearly demonstrate the in vivo antioxidant effect of U-74500A, a 21-aminosteroid in attenuating renal ischemia-reperfusion injury.

  13. Cardioprotection in ischaemia–reperfusion injury: novel mechanisms and clinical translation

    Science.gov (United States)

    Altamirano, Francisco; Wang, Zhao V; Hill, Joseph A

    2015-01-01

    Abstract In recent decades, robust successes have been achieved in conquering the acutely lethal manifestations of heart disease. Nevertheless, the prevalence of heart disease, especially heart failure, continues to rise. Among the precipitating aetiologies, ischaemic disease is a leading cause of heart failure. In the context of ischaemia, the myocardium is deprived of oxygen and nutrients, which elicits a cascade of events that provokes cell death. This ischaemic insult is typically coupled with reperfusion, either spontaneous or therapeutically imposed, wherein blood supply is restored to the previously ischaemic tissue. While this intervention limits ischaemic injury, it triggers a new cascade of events that is also harmful, viz. reperfusion injury. In recent years, novel insights have emerged regarding mechanisms of ischaemia–reperfusion injury, and some hold promise as targets of therapeutic relevance. Here, we review a select number of these pathways, focusing on recent discoveries and highlighting prospects for therapeutic manipulation for clinical benefit. PMID:26173176

  14. Cardioprotection in ischaemia-reperfusion injury: novel mechanisms and clinical translation.

    Science.gov (United States)

    Altamirano, Francisco; Wang, Zhao V; Hill, Joseph A

    2015-09-01

    In recent decades, robust successes have been achieved in conquering the acutely lethal manifestations of heart disease. Nevertheless, the prevalence of heart disease, especially heart failure, continues to rise. Among the precipitating aetiologies, ischaemic disease is a leading cause of heart failure. In the context of ischaemia, the myocardium is deprived of oxygen and nutrients, which elicits a cascade of events that provokes cell death. This ischaemic insult is typically coupled with reperfusion, either spontaneous or therapeutically imposed, wherein blood supply is restored to the previously ischaemic tissue. While this intervention limits ischaemic injury, it triggers a new cascade of events that is also harmful, viz. reperfusion injury. In recent years, novel insights have emerged regarding mechanisms of ischaemia-reperfusion injury, and some hold promise as targets of therapeutic relevance. Here, we review a select number of these pathways, focusing on recent discoveries and highlighting prospects for therapeutic manipulation for clinical benefit.

  15. Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model

    Directory of Open Access Journals (Sweden)

    Mehmet Salih Aydin

    2015-02-01

    Full Text Available Introduction: Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. Objective: We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Methods: Thirty rats were divided into three groups as sham (n=10, control (n=10 and thymoquinone (TQ treatment group (n=10. Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS, and oxidative stress index (OSI in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Results: Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (P<0.001 for TOS and OSI. Control group injury scores were statistically higher compared to sham and TQ-treatment groups (P<0.001 for all comparisons. Conclusion: Thymoquinone administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta ischemia-reperfusion rat model.

  16. Protective function of tocilizumab in human cardiac myocytes ischemia reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hai-Feng Cheng; Yan Feng; Da-Ming Jiang; Kai-Yu Tao; Min-Jian Kong

    2015-01-01

    Objective:To investigate the protective function of tocilizumab in human cardiac myocytes ischemia-reperfusion injury.Methods:The human cardiac myocytes were treated by tocilizumab with different concentrations(1.0 mg/mL, 3.0 mg/mL, 5.0 mg/mL) for 24 h,then cells were cultured in ischemia environment for 24 h and reperfusion environment for 1 h. The MTT and flow cytometry were used to detect the proliferation and apoptosis of human cardiac myocytes, respectively. The mRNA and protein expressions of Bcl-2 and Bax were measured by qRT-PCR and western blot, respectively.Results:Compared to the negative group, pretreated by tocilizumab could significantly enhance the proliferation viability and suppress apoptosis of human cardiac myocytes after suffering ischemia reperfusion injury(P<0.05).The expression of Bcl-2 in tocilizumab treated group were higher thanNC group(P<0.05), while theBax expression were lower(P<0.05).Conclusions:Tocilizumab could significantly inhibit apoptosis and keep the proliferation viability of human cardiac myocytes after suffering ischemia reperfusion injury. Tocilizumab may obtain a widely application in the protection of ischemia reperfusion injury.

  17. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid prevents cerebral ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shumin Zhao; Wei Kong; Shufeng Zhang; Meng Chen; Xiaoying Zheng; Xiangyu Kong

    2013-01-01

    Pretreatment with scutel aria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scu-tel aria baicalensis stem-leaf total flavonoid intragastrical y at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutel aria baicalensis stem-leaf total flavo-noid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutel aria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutel a-ria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological func-tions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury.

  18. Propofol attenuation of renal ischemia/reperfusion injury involves heme oxygenase-1

    Institute of Scientific and Technical Information of China (English)

    Hui-hua WANG; Hai-yan ZHOU; Cong-cong CHEN; Xiu-lai ZHANG; Gang CHENG

    2007-01-01

    Aim: To examine the protective effect of propofol in renal ischemia/reperfusion (I/R) injury and the role of heme oxygenase-1 (HO-1) in this process. Methods:-Sprague-Dawley rats were randomly divided into 3 groups: (i) sham-operated group; (ii) I/R group; and (iii) propofol group. Bilateral renal warm ischemia for 45 rain was performed. After 2, 6, and 24 h reperfusion, blood samples and kidneys were collected for assessment of renal injury, and HO-1 expressions were ana-lyzed by immunohistochemical analysis, RT-PCR and Western blotting. Results: Blood urea nitrogen and serum creatinine levels in the propofol group were sig-nificantly lower than that in the UR group at 24 h after reperfusion. The mean histological score by Paller's standard showed that propofol significantly attenu-ated renal I/R injury after 6 h reperfusion. Propofol increased HO-1 mRNA and protein levels 2 h after repeffusion, whereas HO-1 expressions were present at exceedingly low levels in the I/R group and the sham-operated group at same time point. Propofol also markedly increased HO- 1 mRNA and protein levels than I/R at 6 and 24 h after reperfusion. Conclusion: These results suggest that propofol mitigates renal I/R injury in rats. This protection may be partly through the induc-tion of the HO- 1 expression.

  19. Hydrogen Gas Ameliorates Hepatic Reperfusion Injury After Prolonged Cold Preservation in Isolated Perfused Rat Liver.

    Science.gov (United States)

    Shimada, Shingo; Wakayama, Kenji; Fukai, Moto; Shimamura, Tsuyoshi; Ishikawa, Takahisa; Fukumori, Daisuke; Shibata, Maki; Yamashita, Kenichiro; Kimura, Taichi; Todo, Satoru; Ohsawa, Ikuroh; Taketomi, Akinobu

    2016-12-01

    Hydrogen gas reduces ischemia and reperfusion injury (IRI) in the liver and other organs. However, the precise mechanism remains elusive. We investigated whether hydrogen gas ameliorated hepatic I/R injury after cold preservation. Rat liver was subjected to 48-h cold storage in University of Wisconsin solution. The graft was reperfused with oxygenated buffer with or without hydrogen at 37° for 90 min on an isolated perfusion apparatus, comprising the H2 (+) and H2 (-) groups, respectively. In the control group (CT), grafts were reperfused immediately without preservation. Graft function, injury, and circulatory status were assessed throughout the perfusion. Tissue samples at the end of perfusion were collected to determine histopathology, oxidative stress, and apoptosis. In the H2 (-) group, IRI was indicated by a higher aspartate aminotransferase (AST), alanine aminotransferase (ALT) leakage, portal resistance, 8-hydroxy-2-deoxyguanosine-positive cell rate, apoptotic index, and endothelial endothelin-1 expression, together with reduced bile production, oxygen consumption, and GSH/GSSG ratio (vs. CT). In the H2 (+) group, these harmful changes were significantly suppressed [vs. H2 (-)]. Hydrogen gas reduced hepatic reperfusion injury after prolonged cold preservation via the maintenance of portal flow, by protecting mitochondrial function during the early phase of reperfusion, and via the suppression of oxidative stress and inflammatory cascades thereafter. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Salidroside attenuates myocardial ischemia-reperfusion injury via PI3K/Akt signaling pathway.

    Science.gov (United States)

    Xu, Mao-Chun; Shi, Hai-Ming; Gao, Xiu-Fang; Wang, Hao

    2013-01-01

    To investigate the cardioprotective effects of salidroside on myocardial ischemia-reperfusion injury (IRI) in rabbits and the underlying action mechanisms in PI3K/Akt signaling pathway, a rabbit ischemia/reperfusion model was created by ligating the left anterior descending coronary arterial branch for 30 min and by releasing the ligature to allow reperfusion for 120 min. Salidroside or salidroside+PI3K inhibitor (LY294002) was administered via intracoronary injections at the onset of reperfusion. Apoptosis of cardiomyocytes was assessed by terminal dUTP nick-end labeling assay, and the expression of apoptosis-related proteins was observed by immunohistochemistry. The expressions of total Akt and phosphorylated Akt (p-Akt) were detected by western blot analysis. The results showed that intracoronary injection of salidroside at the onset of reperfusion markedly reduced the apoptosis of cardiomyocytes, significantly increasing Bcl-2 and p-Akt proteins expressions and decreasing Bax and caspase-3 expressions in the hearts subjected to ischemia followed by 120-min reperfusion. However, the anti-apoptotic effect induced by salidroside was inhibited by LY294002, which blocked the activation of Akt. These results suggested that intracoronary administration of salidroside at the onset of reperfusion could significantly reduce the IRI-induced apoptosis of cardiomyocytes, and this protective mechanism seemed to be mediated by the PI3K-Akt signaling pathway.

  1. Sildenafil citrate protects skeletal muscle of ischemia-reperfusion injury: immunohistochemical study in rat model

    Directory of Open Access Journals (Sweden)

    Dinani Matoso Fialho de Oliveira Armstrong

    2013-04-01

    Full Text Available PURPOSE: To investigate the effect of sildenafil citrate (SC on skeletal muscle ischemia-reperfusion (IR injury in rats. METHODS: Adult male Wistar rats were randomized into three groups: vehicle-treated control (CTG, sildenafil citrate-treated (SCG, and sham group (SG. CTG and SCG had femoral artery occluded for 6 hours. Saline or 1 mg/kg of SC was given 5.5 hours after occlusion. SG had a similar procedure without artery occlusion. Soleus muscle samples were acquired 4 or 24h after the reperfusion. Immunohistochemistry caspase-3 analysis was used to estimate apoptosis using the apoptotic ratio (computed as positive/negative cells. Wilcoxon rank-sum or Kruskal-Wallis tests were used to assess differences among groups. RESULTS: Eighteen animals were included in the 4h reperfusion groups and 21 animals in the 24h reperfusion groups. The mean apoptotic ratio was 0.18±0.1 for the total cohort; 0.14±0.06 for the 4h reperfusion groups and 0.19±0.08 for the 24h groups (p<0.05. The SCG had lower caspase-3 ratio compared to the control groups at the 24h reperfusion time point (p<0.05. CONCLUSION: Sildenafil citrate administration after the onset of the ischemic injury reduces IR-induced cellular damage in skeletal muscle in this rat hindlimb ischemia model.

  2. The effect of aloe vera on ischemia--Reperfusion injury of sciatic nerve in rats.

    Science.gov (United States)

    Guven, Mustafa; Gölge, Umut Hatay; Aslan, Esra; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Cosar, Murat

    2016-04-01

    Aloe vera is compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of aloe vera treatment in rats with experimental sciatic nerve ischemia/reperfusion injury. Twenty-eight male Wistar Albino rats were divided equally into 4 groups. Groups; Control group (no surgical procedure or medication), sciatic nerve ischemia/reperfusion group, sciatic nerve ischemia/reperfusion+aloe vera group and sciatic nerve ischemia/reperfusion+methylprednisolone group. Ischemia was performed by clamping the infrarenal abdominal aorta. 24 hours after ischemia, all animals were sacrificed. Sciatic nerve tissues were also examined histopathologically and biochemically. Ischemic fiber degeneration significantly decreased in the pre-treated with aloe vera and treated with methylprednisolone groups, especially in the pre-treated with aloe vera group, compared to the sciatic nerve ischemia/reperfusion group (paloe vera group was not statistically different compared to the MP group (p>0.05). Aloe vera is effective neuroprotective against sciatic nerve ischemia/reperfusion injury via antioxidant and anti-inflammatory properties. Also aloe vera was found to be as effective as MP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Lower limb ischaemia and reperfusion injury in healthy volunteers measured by oxidative and inflammatory biomarkers

    DEFF Research Database (Denmark)

    Halladin, N. L.; Busch, Sarah Victoria Ekeløf; Alamili, M.;

    2015-01-01

    antagonist (IL-1Ra), IL-6, IL-10, TNF-receptor (TNF-R)I, TNF-RII and YKL-40. RESULTS: We found no significant increase in MDA in the muscle biopsies after reperfusion. Plasma levels of oxidative and pro- and anti-inflammatory parameters showed no significant differences between baseline and after reperfusion...... at any sampling time. CONCLUSION: Twenty minutes of lower limb ischaemia does not result in an ischaemia-reperfusion injury in healthy volunteers, measurable by oxidative and pro- and anti-inflammatory biomarkers in muscle biopsies and in the systemic circulation....... these interfering factors of surgery is, therefore, useful to test the potential of antioxidant and cytokine-modulatory treatments.The aim of this study was to characterize a human ischaemia-reperfusion model with respect to oxidative and inflammatory biomarkers. MATERIALS AND METHODS: Ten male volunteers were...

  4. Digital image analysis of striated skeletal muscle tissue injury during reperfusion after induced ischemia

    Science.gov (United States)

    Rosero Salazar, Doris Haydee; Salazar Monsalve, Liliana

    2015-01-01

    Conditions such as surgical procedures or vascular diseases produce arterial ischemia and reperfusion injuries, which generate changes in peripheral tissues and organs, for instance, in striated skeletal muscle. To determine such changes, we conducted an experimental method in which 42 male Wistar rat were selected, to be undergone to tourniquet application on the right forelimb and left hind limb, to induce ischemia during one and three hours, followed by reperfusion periods starting at one hour and it was prolonged up to 32 days. Extensor carpi radialis longus and soleus respectively, were obtained to be processed for histochemical and morphometric analysis. By means of image processing and detection of regions of interest, variations of areas occupied by muscle fibers and intramuscular extracellular matrix (IM-ECM) throughout reperfusion were observed. In extensor carpi radialis longus, results shown reduction in the area occupied by muscle fibers; this change is significant between one hour and three hours ischemia followed by 16 hours, 48 hours and 32 days reperfusión (p˂0.005). To compare only periods of reperfusión that continued to three hours ischemia, were found significant differences, as well. For area occupied by IM-ECM, were identified increments in extensor carpi radialis longus by three hours ischemia and eight to 16 days reperfusion; in soleus, was observed difference by one hour ischemia with 42 hours reperfusion, and three hours ischemia followed by four days reperfusion (p˂0.005). Skeletal muscle develops adaptive changes in longer reperfusion, to deal with induced injury. Descriptions beyond 32 days reperfusion, can determine recovering normal pattern.

  5. Tramadol Alleviates Myocardial Injury Induced by Acute Hindlimb Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Hamed Ashrafzadeh Takhtfooladi

    2015-01-01

    Full Text Available Background: Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR causes both remote organ and local injuries. Objective: This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR. Methods: Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham, Group II (IR, and Group III (IR + tramadol. Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination. Results: The levels of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx were higher in Groups I and III than those in Group II (p < 0.05. In comparison with other groups, tissue malondialdehyde (MDA levels in Group II were significantly increased (p < 0.05, and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05 compared with Group II. Conclusion: From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.

  6. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  7. Tramadol Alleviates Myocardial Injury Induced by Acute Hindlimb Ischemia Reperfusion in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Takhtfooladi, Hamed Ashrafzadeh; Asl, Adel Haghighi Khiabanian [Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shahzamani, Mehran [Department of Cardiovascular Surgery, Isfahan University of Medical Sciences, Tehran (Iran, Islamic Republic of); Takhtfooladi, Mohammad Ashrafzadeh, E-mail: dr-ashrafzadeh@yahoo.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Allahverdi, Amin [Department of Surgery, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khansari, Mohammadreza [Department of Physiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries. This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR. Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination. The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II. From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.

  8. Contribution of calpains to myocardial ischaemia/reperfusion injury.

    Science.gov (United States)

    Inserte, Javier; Hernando, Victor; Garcia-Dorado, David

    2012-10-01

    Loss of calcium (Ca(2+)) homeostasis contributes through different mechanisms to cell death occurring during the first minutes of reperfusion. One of them is an unregulated activation of a variety of Ca(2+)-dependent enzymes, including the non-lysosomal cysteine proteases known as calpains. This review analyses the involvement of the calpain family in reperfusion-induced cardiomyocyte death. Calpains remain inactive before reperfusion due to the acidic pHi and increased ionic strength in the ischaemic myocardium. However, inappropriate calpain activation occurs during myocardial reperfusion, and subsequent proteolysis of a wide variety of proteins contributes to the development of contractile dysfunction and necrotic cell death by different mechanisms, including increased membrane fragility, further impairment of Na(+) and Ca(2+) handling, and mitochondrial dysfunction. Recent studies demonstrating that calpain inhibition contributes to the cardioprotective effects of preconditioning and postconditioning, and the beneficial effects obtained with new and more selective calpain inhibitors added at the onset of reperfusion, point to the potential cardioprotective value of therapeutic strategies designed to prevent calpain activation.

  9. Human thioredoxin exerts cardioprotective effect and attenuates reperfusion injury in rats partially via inhibiting apoptosis

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-wei; TENG Zong-yan; JIANG Li-hong; FAN Ying; ZHANG Yu-hua; LI Xiu-rong; ZHANG Yi-na

    2008-01-01

    Background Thioredoxin is one of the most important redox regulating proteins. Although thioredoxin has been shown to protect cells against different kinds of oxidative stress, the role of thioredoxin in myocardial ischemia and reperfusion injury has not been fully understood. This study was conducted to explore the protective role of human thioredoxin on myocardial ischemia and reperfusion injury and its potential mechanisms.Methods Purified human thioredoxin was injected into adult Wister rats, which were subjected to 30 minutes of myocardial ischemia followed by 2 or 24 hours of reperfusion. We detected 1) the infarct size; 2) the level of malondisldehyde (MDA) in serum; 3) the expression of caspase-9, and cytochrome c in/out of mitochondia by Western blotting; 4) apoptosis by terminal-deoxynucleotidyl transferase mediated nick end labeling ('rUNEL) assay and caspase-3 and its protein by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting; 5) the expression of bcl-2 and bax in cardium by immunohistochemical (IHC) assay.Results Human thioredoxin reduced myocardial ischemia/reperfusion injury as evidenced by significant decrease of myocardial infarct size (P<0.01), notable reduction of myocyte apoptosis (P <0.01), lower systemic oxidative stress level (P <0.01) after reperfusion for 2 hours, and few inflammatory cell infiltration after reperfusion for 24 hours in rats. Furthermore, treatment with human thioredoxin significantly reduced the release of mitochondrial cytochrome C (P<0.05),and inhibited the activity of caspase-9 (P <0.05) and caspase-3 (P <0.01 in mRNA and P <0.05 at protein level).Meanwhile, human thioredoxin markedly increased bcl-2 expression (P <0.05).Conclusions These results strongly suggest that human thioredoxin has cardioprotective effects on myocardial ischemia/reperfusion and its anti-apoptotic role may be mediated by modulating bcl-2 and the mitochondria-dependent apoptotic signaling pathway.

  10. Protective effects of acupuncture on brain tissue following ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Mingshan Wang; Fuguo Ma; Huailong Chen

    2008-01-01

    BACKGROUND: In patients with cerebrovascular disease, by means of the neuroendocrine system, acupuncture supports the transformation of a local pathological status into a physiological status. Recently, great progress has been made in studying the protective effects of acupuncture on brain ischemia/reperfusion injury. OBJECTIVE: To summarize research advances in the protective effects of acupuncture on brain ischemia/reperfusion injury. RETRIEVAL STRATEGY: Using the terms "acupuncture, transcutaneous electrical acupoint stimulation, cerebral ischemia/reperfusion injury, and cerebral protection", we retrieved articles from the PubMed database published between January 1991 and June 1994. Meanwhile, we searched the China National Knowledge Infrastructure with the same terms. Altogether, 114 articles and their results were analyzed. Inclusive criteria: studies that were closely related to the protective effects of acupuncture on brain ischemia/reperfusion injury, or studies, whose contents were in the same study field and were published recently, or in the authorized journals. Exclusive criteria: repetitive studies. LITERATURE EVALUATION: Thirty articles that related to the protective effects of acupuncture on brain ischemia/reperfusion injury were included. Among them, 7 were clinical studies, and the remaining 23 articles were animal experimental studies. DATA SYNTHESIS: ① Animal experimental studies have demonstrated that acupuncture improves brain blood perfusion and brain electrical activity, influences pathomorphological and ultramicrostructural changes in ischemic brain tissue, is beneficial in maintaining the stability of intracellular and extracellular ions, resists free radical injury and lipid peroxidation, and influences cytokine, neurotransmitter, brain cell signal transduction, and apoptosis-regulating genes. ② Clinical studies have demonstrated that acupuncture not only promotes nutritional supply to local brain tissue in patients with cerebral

  11. Anti-inlfammatory properties of lipoxin A4 protect against diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Jiang-quan Han; Cheng-ling Liu; Zheng-yuan Wang; Ling Liu; Ling Cheng; Ya-dan Fan

    2016-01-01

    Lipoxin A4 can alleviate cerebral ischemia/reperfusion injury by reducing the inlfammatory reaction, but it is currently unclear whether it has a protective effect on diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury. In this study, we established rat models of diabetes mellitus using an intraperitoneal injection of streptozotocin. We then induced focal cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours. After administration of lipoxin A4via the lateral ventricle, infarction volume was reduced, the expression levels of pro-inlfammatory factors tumor necrosis factor alpha and nuclear fac-tor-kappa B in the cerebral cortex were decreased, and neurological functioning was improved. These ifndings suggest that lipoxin A4 has strong neuroprotective effects in diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury and that the underlying mech-anism is related to the anti-inlfammatory action of lipoxin A4.

  12. Inhibition of rat gut reperfusion injury with an agent developed for the mouse. Evidence that amplification of injury by innate immunity is conserved between two animal species.

    Science.gov (United States)

    Afnan, Jalil; Ahmadi-Yazdi, Cyrus; Sheu, Eric G; Oakes, Sean M; Moore, Francis D

    2010-06-01

    Murine reperfusion injury follows binding of specific IgM natural antibodies to neo-antigens exposed in ischemic tissue. Peptides that mimic the site of antibody binding in the injury prevent IgM binding when administered intravenously before reperfusion. To determine whether this pathogenic sequence is restricted to mice, we have tested the ability of the peptide to prevent reperfusion injury in a dissimilar species, the rat. Sprague-Dawley rats were subjected to 40 min of mesenteric ischemia followed by 180 min of reperfusion. The peptide mimic was administered intravenously prior to reperfusion. Gut injury was quantified using a scoring system based on the hematoxylin-and-eosin section. (125)I-labeled albumin was used to assess local (gut) and remote (lung) injury. The macroscopic appearance of bowel from peptide-treated animals was less edematous and hemorrhagic. Microscopic analysis showed a significantly reduced injury score in peptide-treated animals. Permeability data indicated a significant reduction in local and remote injury in peptide-treated animals. The data demonstrate attenuation of rat gut microvillus injury, of gut edema, and of remote injury following mesenteric ischemia-reperfusion due to administration of an intravenous peptide mimic of a murine ischemia neo-antigen, indicating a second species uses a similar ischemia neo-antigen and corresponding natural antibody specificity to amplify reperfusion injury to the point of necrosis. This mechanism of inflammation is potentially applicable to higher species.

  13. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Li, Xin-Juan; Li, Chao-Kun; Wei, Lin-Yu; Lu, Na; Wang, Guo-Hong; Zhao, Hong-Gang; Li, Dong-Liang

    2015-06-01

    The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.

  14. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Xiao-ge Yan

    2015-01-01

    Full Text Available Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 µg/g was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  15. Protective effect of ginkgo proanthocyanidins against cerebral ischemia/reperfusion injury associated with its antioxidant effects

    Science.gov (United States)

    Cao, Wang-li; Huang, Hai-bo; Fang, Ling; Hu, Jiang-ning; Jin, Zhu-ming; Wang, Ru-wei

    2016-01-01

    Proanthocyanidins have been shown to effectively protect ischemic neurons, but its mechanism remains poorly understood. Ginkgo proanthocyanidins (20, 40, 80 mg/kg) were intraperitoneally administered 1, 24, 48 and 72 hours before reperfusion. Results showed that ginkgo proanthocyanidins could effectively mitigate neurological disorders, shorten infarct volume, increase superoxide dismutase activity, and decrease malondialdehyde and nitric oxide contents. Simultaneously, the study on grape seed proanthocyanidins (40 mg/kg) confirmed that different sources of proanthocyanidins have a similar effect. The neurological outcomes of ginkgo proanthocyanidins were similar to that of nimodipine in the treatment of cerebral ischemia/reperfusion injury. Our results suggest that ginkgo proanthocyanidins can effectively lessen cerebral ischemia/reperfusion injury and protect ischemic brain tissue and these effects are associated with antioxidant properties. PMID:28123420

  16. Protective Effect of Extract of Folium Ginkgo on Repeated Cerebral Ischemia-Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the protective effect of extract of Folium Ginkgo (FGE) on repeated cerebral ischemia-reperfusion injury. Methods: The model in waking mice induced by repeated cerebral ischemia-reperfusion were used in the experiment to observe the effect of FGE on behavior, oxygen free radical metabolism and prostaglandin E2 (PGE2) content by step-through experiment, diving stand and colorimetric method. Results: FGE could obviously improve the learning ability and memory of model animals, and could lower obviously the content of malonyldialdehyde, nitric oxide and PGE2, restore the lowered activity of superoxide dismutase and catalase in cerebral tissue. Conclusion: FGE has highly protective effect against repeated ischemia-reperfusion injury, the mechanism might be related with its action on anti-lipid oxidatin, improve the activity of antioxidase and inhibit the producing of PGE2.

  17. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  18. Calpain system and its involvement in myocardial ischemia and reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Christiane; Neuhof; Heinz; Neuhof

    2014-01-01

    Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria.Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia,reperfusion and postischemic structural remodelling.The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains.Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria.Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria.Calpain inhibition can prevent or attenuate myocardial injury during ischemia,reperfusion,and in later stages of myocardial infarction.

  19. Mitochondria: mitochondrial participation in ischemia-reperfusion injury in skeletal muscle.

    Science.gov (United States)

    Lejay, Anne; Meyer, Alain; Schlagowski, Anna-Isabel; Charles, Anne-Laure; Singh, François; Bouitbir, Jamal; Pottecher, Julien; Chakfé, Nabil; Zoll, Joffrey; Geny, Bernard

    2014-05-01

    Irrespective of the organ involved, restoration of blood flow to ischemic tissue is vital, although reperfusion per se is deleterious. In the setting of vascular surgery, even subtle skeletal muscle ischemia contributes to remote organ injuries and perioperative and long-term morbidities. Reperfusion-induced injury is thought to participate in up to 40% of muscle damage. Recently, the pathophysiology of lower limb ischemia-reperfusion (IR) has been largely improved, acknowledging a key role for mitochondrial dysfunction mainly characterized by impaired mitochondrial oxidative capacity and premature mitochondrial permeability transition pore opening. Increased oxidative stress triggered by an imbalance between reactive oxygen species (ROS) production and clearance, and facilitated by enhanced inflammation, appears to be both followed and instigated by mitochondrial dysfunction. Mitochondria are both actors and target of IR and therapeutic strategies modulating degree of ROS production could enhance protective signals and allow for mitochondrial protection through a mitohormesis mechanism. Copyright © 2014. Published by Elsevier Ltd.

  20. The Efficacy of Noble Gases in the Attenuation of Ischemia Reperfusion Injury: A Systematic Review and Meta-Analyses.

    Science.gov (United States)

    De Deken, Julie; Rex, Steffen; Monbaliu, Diethard; Pirenne, Jacques; Jochmans, Ina

    2016-09-01

    Noble gases have been attributed to organ protective effects in ischemia reperfusion injury in a variety of medical conditions, including cerebral and cardiac ischemia, acute kidney injury, and transplantation. The aim of this study was to appraise the available evidence by systematically reviewing the literature and performing meta-analyses. PubMed, EMBASE, and the Cochrane Library. Inclusion criteria specified any articles on noble gases and either ischemia reperfusion injury or transplantation. In vitro studies, publications without full text, review articles, and letters were excluded. Information on noble gas, organ, species, model, length of ischemia, conditioning and noble gas dose, duration of administration of the gas, endpoints, and effects was extracted from 79 eligible articles. Study quality was evaluated using the Jadad scale. Effect sizes were extracted from the articles or retrieved from the authors to allow meta-analyses using the random-effects approach. Argon has been investigated in cerebral, myocardial, and renal ischemia reperfusion injury; helium and xenon have additionally been tested in hepatic ischemia reperfusion injury, whereas neon was only explored in myocardial ischemia reperfusion injury. The majority of studies show a protective effect of these noble gases on ischemia reperfusion injury across a broad range of experimental conditions, organs, and species. Overall study quality was low. Meta-analysis for argon was only possible in cerebral ischemia reperfusion injury and did not show neuroprotective effects. Helium proved neuroprotective in rodents and cardioprotective in rabbits, and there were too few data on renal ischemia reperfusion injury. Xenon had the most consistent effects, being neuroprotective in rodents, cardioprotective in rodents and pigs, and renoprotective in rodents. Helium and xenon show organ protective effects mostly in small animal ischemia reperfusion injury models. Additional information on timing, dosing, and

  1. [Effect of electroacupuncture on inflammatory injury induced by intestinal ischemia/reperfusion in rats].

    Science.gov (United States)

    Yao, Jia-Rui; Shi, Xian; Hu, Sen; Zhong, Yu-Xian; Liu, Wei-Wei; Zhao, Ying

    2012-07-01

    To observe the protective effect of electroacupuncture (EA) at "Zusanli" (ST 36) on inflammatory injury induced by intestinal ischemia/reperfusion (I/R) in rats. Forty-eight Wistar rats were randomly divided into a sham injury group, a model group, an EA group and a sham EA group, 12 rats in each group. Intestinal I/R rat models were established by method of clamping with occlusion of superior mesenteric artery (SMA) for 45 min followed by reperfusion. The EA group was treated with EA (2.5 mA, 2 Hz/100 Hz, 0.5 h) at "Zusanli" (ST 36) 30 min before reperfusion, and at the same time, the sham EA group was treated with fast insertion at two non-meridian acupoints on skin surface (2 cm horizontally away from linea alba abdominis and about 5 cm paralleled to cartilago ensiformis downward). No interventions were added on the sham injury group and the model group. The degree of pathological injury in intestines, water rate of intestines, diamine oxidase (DAO) activity and intestinal mucosal blood flow (IMBF) were examined at 1 h and 3 h after reperfusion. At 1 h and 3 h after reperfusion, the intestinal pathological injury in EA group was significantly attenuated compared with that in model group, and the intestinal water rate of (74.00 +/- 2.11)% and (78.78 +/- 0.80)% in EA group were significantly lower than (80.69 +/- 1.66)% and (83.17 +/- 2.08)% in model group (both P 0.05). Electroacupuncture can not only reduce the inflammatory injury induced by intestinal IR but also increase intestinal blood supply so as to protect the intestine function.

  2. TLR9 Mediates Remote Liver Injury following Severe Renal Ischemia Reperfusion.

    Directory of Open Access Journals (Sweden)

    Pieter J Bakker

    Full Text Available Ischemia reperfusion injury is a common cause of acute kidney injury and is characterized by tubular damage. Mitochondrial DNA is released upon severe tissue injury and can act as a damage-associated molecular pattern via the innate immune receptor TLR9. Here, we investigated the role of TLR9 in the context of moderate or severe renal ischemia reperfusion injury using wild-type C57BL/6 mice or TLR9KO mice. Moderate renal ischemia induced renal dysfunction but did not decrease animal well-being and was not regulated by TLR9. In contrast, severe renal ischemia decreased animal well-being and survival in wild-type mice after respectively one or five days of reperfusion. TLR9 deficiency improved animal well-being and survival. TLR9 deficiency did not reduce renal inflammation or tubular necrosis. Rather, severe renal ischemia induced hepatic injury as seen by increased plasma ALAT and ASAT levels and focal hepatic necrosis which was prevented by TLR9 deficiency and correlated with reduced circulating mitochondrial DNA levels and plasma LDH. We conclude that TLR9 does not mediate renal dysfunction following either moderate or severe renal ischemia. In contrast, our data indicates that TLR9 is an important mediator of hepatic injury secondary to ischemic acute kidney injury.

  3. Systemic gene therapy with interleukin-13 attenuates renal ischemia-reperfusion injury

    NARCIS (Netherlands)

    Sandovici, M.; Henning, R. H.; van Goor, H.; Helfrich, W.; de Zeeuw, D.; Deelman, L. E.

    2008-01-01

    Ischemia-reperfusion injury is a leading cause of acute renal failure and a major determinant in the outcome of kidney transplantation. Here we explored systemic gene therapy with a modified adenovirus expressing Interleukin (IL)-13, a cytokine with strong anti-inflammatory and cytoprotective proper

  4. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  5. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice

    NARCIS (Netherlands)

    Jongbloed, Franny; De Bruin, Ron W F; Pennings, Jeroen L A; Payán-Gómez, César; Van Den Engel, Sandra; Van Oostrom, Conny T.; De Bruin, Alain; Hoeijmakers, Jan H J; Van Steeg, Harry; IJzermans, Jan N M; Dollé, Martijn E T

    2014-01-01

    Ischemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly leading to a

  6. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice

    NARCIS (Netherlands)

    F. Jongbloed (Franny); R.W.F. de Bruin (Ron); J.L.A. Pennings (Jeroen); C. Payan-Gomez; S. van den Engel (Sandra); C.T.M. van Oostrom (Conny); A. de Bruin (Alain); J.H.J. Hoeijmakers (Jan); H. van Steeg (Harry); J.N.M. IJzermans (Jan); M.E.T. Dollé (Martijn)

    2014-01-01

    textabstractIschemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly

  7. MEMBRANE-OXYGENATOR PREVENTS LUNG REPERFUSION INJURY IN CANINE CARDIOPULMONARY BYPASS

    NARCIS (Netherlands)

    GU, YJ; WANG, YS; CHIANG, BY; GAO, XD; YE, CX; WILDEVUUR, CRH

    The effect of blood activation on lung reperfusion injury during cardiopulmonary bypass was investigated in 20 dogs with the use of a bubble oxygenator (n = 10) or a membrane oxygenator (n = 10). In the bubble oxygenator group, significant leukocyte and platelet right to left atrium gradients were

  8. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice

    NARCIS (Netherlands)

    Jongbloed, Franny; De Bruin, Ron W F; Pennings, Jeroen L A; Payán-Gómez, César; Van Den Engel, Sandra; Van Oostrom, Conny T.; De Bruin, Alain; Hoeijmakers, Jan H J; Van Steeg, Harry; IJzermans, Jan N M; Dollé, Martijn E T

    2014-01-01

    Ischemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly leading to a

  9. Beneficial effects of gaseous hydrogen sulfide in hepatic ischemia/reperfusion injury

    NARCIS (Netherlands)

    Bos, Eelke M.; Snijder, Pauline M.; Jekel, Henrike; Weij, Michel; Leemans, Jaklien C.; van Dijk, Marcory C. F.; Hillebrands, Jan-Luuk; Lisman, Ton; van Goor, Harry; Leuvenink, Henri G. D.

    Hydrogen sulfide (H2S) can induce a reversible hypometabolic state, which could protect against hypoxia. In this study we investigated whether H2S could protect livers from ischemia/reperfusion injury (IRI). Male C57BL/6 mice were subjected to partial hepatic IRI for 60 min. Animals received 0 (IRI)

  10. Beneficial effects of gaseous hydrogen sulfide in hepatic ischemia/reperfusion injury.

    NARCIS (Netherlands)

    Bos, E.M.; Snijder, P.M.; Jekel, H.; Weij, M.; Leemans, J.C.; Dijk, M.C.R.F. van; Hillebrands, J.L.; Lisman, T.; Goor, H. van; Leuvenink, H.G.

    2012-01-01

    Hydrogen sulfide (H(2) S) can induce a reversible hypometabolic state, which could protect against hypoxia. In this study we investigated whether H(2) S could protect livers from ischemia/reperfusion injury (IRI). Male C57BL/6 mice were subjected to partial hepatic IRI for 60 min. Animals received 0

  11. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice

    NARCIS (Netherlands)

    F. Jongbloed (Franny); R.W.F. de Bruin (Ron); J.L.A. Pennings (Jeroen); C. Payan-Gomez; S. van den Engel (Sandra); C.T.M. van Oostrom (Conny); A. de Bruin (Alain); J.H.J. Hoeijmakers (Jan); H. van Steeg (Harry); J.N.M. IJzermans (Jan); M.E.T. Dollé (Martijn)

    2014-01-01

    textabstractIschemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly l

  12. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury.

    Science.gov (United States)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei; Yu, Ning; Liu, Jia

    2015-06-01

    The mitochondrial calcium uniporter (MCU) transports free Ca(2+) into the mitochondrial matrix, maintaining Ca(2+) homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca(2+) concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca(2+) transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury.

  13. Does Hypoxia-Reperfusion Injury Occur in Osteoarthritis of the Temporomandibular Joint?

    NARCIS (Netherlands)

    Vos, Lukas M.; Slater, James J. R. Huddleston; Leijsma, Martha K.; Stegenga, Boudewijn

    2012-01-01

    Aims: To determine the available evidence in the literature for whether hypoxia-reperfusion injury plays a role in the pathogenesis of joint diseases in general and of osteoarthritis (OA) of the temporomandibular joint (TMJ) in particular. Methods: The electronic databases CENTRAL, PubMed, and EMBAS

  14. Reperfusion Strategies in the Management of Extremity Vascular Injury with Ischaemia

    Science.gov (United States)

    2012-01-01

    Spencer JR, Rasmussen TE. A large animal survival model (Sus scrofa ) of extremity ischemia/reperfusion and neuromuscular outcomes assessment: a pilot...on neuromuscular recovery in a porcine (Sus scrofa ) survival model of extremity vascular injury. J Vasc Surg 2011; 53: 165–173. 32 Rasmussen TE

  15. σ1-Receptor Agonism Protects against Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Hosszu, Adam; Antal, Zsuzsanna; Lenart, Lilla; Hodrea, Judit; Koszegi, Sandor; Balogh, Dora B; Banki, Nora F; Wagner, Laszlo; Denes, Adam; Hamar, Peter; Degrell, Peter; Vannay, Adam; Szabo, Attila J; Fekete, Andrea

    2017-01-01

    Mechanisms of renal ischemia-reperfusion injury remain unresolved, and effective therapies are lacking. We previously showed that dehydroepiandrosterone protects against renal ischemia-reperfusion injury in male rats. Here, we investigated the potential role of σ1-receptor activation in mediating this protection. In rats, pretreatment with either dehydroepiandrosterone or fluvoxamine, a high-affinity σ1-receptor agonist, improved survival, renal function and structure, and the inflammatory response after sublethal renal ischemia-reperfusion injury. In human proximal tubular epithelial cells, stimulation by fluvoxamine or oxidative stress caused the σ1-receptor to translocate from the endoplasmic reticulum to the cytosol and nucleus. Fluvoxamine stimulation in these cells also activated nitric oxide production that was blocked by σ1-receptor knockdown or Akt inhibition. Similarly, in the postischemic rat kidney, σ1-receptor activation by fluvoxamine triggered the Akt-nitric oxide synthase signaling pathway, resulting in time- and isoform-specific endothelial and neuronal nitric oxide synthase activation and nitric oxide production. Concurrently, intravital two-photon imaging revealed prompt peritubular vasodilation after fluvoxamine treatment, which was blocked by the σ1-receptor antagonist or various nitric oxide synthase blockers. In conclusion, in this rat model of ischemia-reperfusion injury, σ1-receptor agonists improved postischemic survival and renal function via activation of Akt-mediated nitric oxide signaling in the kidney. Thus, σ1-receptor activation might provide a therapeutic option for renoprotective therapy.

  16. Mesenteric lymph reperfusion exacerbates spleen injury caused by superior mesenteric artery occlusion shock

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.L.; Zhang, C.H.; Liu, J.C.; Yang, L.N.; Niu, C.Y.; Zhao, Z.G. [Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-04-15

    The intestinal lymph pathway plays an important role in the pathogenesis of organ injury following superior mesenteric artery occlusion (SMAO) shock. We hypothesized that mesenteric lymph reperfusion (MLR) is a major cause of spleen injury after SMAO shock. To test this hypothesis, SMAO shock was induced in Wistar rats by clamping the superior mesenteric artery (SMA) for 1 h, followed by reperfusion for 2 h. Similarly, MLR was performed by clamping the mesenteric lymph duct (MLD) for 1 h, followed by reperfusion for 2 h. In the MLR+SMAO group rats, both the SMA and MLD were clamped and then released for reperfusion for 2 h. SMAO shock alone elicited: 1) splenic structure injury, 2) increased levels of malondialdehyde, nitric oxide (NO), intercellular adhesion molecule-1, endotoxin, lipopolysaccharide receptor (CD14), lipopolysaccharide-binding protein, and tumor necrosis factor-α, 3) enhanced activities of NO synthase and myeloperoxidase, and 4) decreased activities of superoxide dismutase and ATPase. MLR following SMAO shock further aggravated these deleterious effects. We conclude that MLR exacerbates spleen injury caused by SMAO shock, which itself is associated with oxidative stress, excessive release of NO, recruitment of polymorphonuclear neutrophils, endotoxin translocation, and enhanced inflammatory responses.

  17. Protection effects of Sigmart for no-reflow or myocardial reperfusion injury after undergoing PCI surgery

    Institute of Scientific and Technical Information of China (English)

    Xiao-Peng Wu; Xuan-Qi Wang; Lei-Sen Han; Chong-Zhen Wang; Yin-Juan Mao; Wei-Jie Li

    2015-01-01

    Objective:To study the protection effects of Sigmart for lack of reflow or myocardial myocardial reperfusion injury after undergoing PCI surgery.Methods: A total of 150 patients undergoing PCI surgery were selected and divided into control group and observation group with 75 cases in each group. After undergoing the surgery, both groups were given low molecular heparin 4 100 IU for 3 d, 100 mg + aspirin + atorvastatin 20 mg + clopidogrel 75 mg. 5 mL of blood specimen were collected for detection of troponin I (TnI), myocardial enzyme spectrum (CK, CK-MB) level to evaluate myocardial myocardial reperfusion injury after undergoing PCI surgery. Also electrocardiogram (ECG) were detected. Six months after the surgery, effects of Sigmart for lack of reflow or myocardial myocardial reperfusion injury after undergoing PCI surgery were evaluated.Results: 1, 6, 12, 24 h after the surgery, TnI, Mb, CK-Mb levels of were significant different from those before undergoing the surgery, and these levels of the observation group were significant higher than that of the control group. ST segment elevation at 2, 12, and 24 h after undergoing the surgery were significant obvious than that of the control group. According to the follow up, incidence of comprehensive end point event was significant higher than that of the control group. SAQ and SF-36 scores of the two groups were significant different. Conclusion: Sigmart shows good protection effects for lack of reflow or myocardial myocardial reperfusion injury after undergoing PCI surgery.

  18. 76 FR 42716 - Effects of Ischemia Reperfusion Injury on Outcomes in Kidney Transplantation; Public Workshop

    Science.gov (United States)

    2011-07-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Effects of Ischemia Reperfusion Injury on Outcomes in Kidney... Food and Drug Administration (FDA) is announcing a public workshop to discuss the effects of...

  19. Ischemia-Reperfusion Injury : Maintaining skeletal muscle function and vasomotor control

    NARCIS (Netherlands)

    With, M.C.J. de

    2009-01-01

    In reconstructive surgery, ischemia-reperfusion (I-R) injury of skeletal muscle tissue occurs during replantations, free vascularized transfers of muscle flaps and following composite tissue allograft (CTA) transplantations. The latter is a newly emerging field and involves the allotransplantation o

  20. Etanercept protects myocutaneous flaps from ischaemia reperfusion injury: An experimental study in a rat tram flap model.

    Science.gov (United States)

    Ersoy, Burak; Çevik, Özge; Çilingir, Özlem Tuğçe

    2016-08-01

    Background Being an inevitable component of free tissue transfer, ischemia-reperfusion injury tends to contribute to flap failure. TNF-α is an important proinflammatory cytokine and a prominent mediator of the ischemia-reperfusion injury. Etanercept, a soluble TNF-α binding protein, has shown anti-inflammatory and anti-apoptotic effects in animal models of renal and myocardial ischemia-reperfusion injury. We have designed an experimental study to investigate the effect of etanercept on myocutaneous ischemia-reperfusion injury on transverse rectus abdominis myocutaneous flap model in rats. Methods Twenty-four male Sprague-Dawley rats were divided into 3 groups: In group 1 (sham), the TRAM flap was raised and sutured back without further intervention. In group 2 (control), the flap was raised and the ischemia-reperfusion protocol was followed. In group 3, etanercept (10 mg/kg, i.v.) was administered 10 minutes before reperfusion. At the end of the reperfusion period, biochemical and histolopathological evaluations were performed on serum and tissue samples. Results In the etanercept group the IMA and 8-OHdG levels (p = 0.005 and p = 0.004, respectively) were found significantly lower, and the GSH and SOD levels (p = 0.01 and p ischemia-reperfusion injury in skeletal muscle tissue, enhancing the TRAM flap viability. The ability of etanercept to induce ischemic tolerance suggests that it may be applicable in free-flap surgery.

  1. Neutrophil accumulation in experimental myocardial infarcts: relation with extent of injury and effect of reperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelain, P.; Latour, J.G.; Tran, D.; de Lorgeril, M.; Dupras, G.; Bourassa, M.

    1987-05-01

    The effects of reperfusion on the myocardial accumulation of neutrophils and their role in the extent of injury were investigated in a canine preparation with a 3 hr coronary occlusion followed by 21 hr of reperfusion. The left anterior descending coronary artery (LAD) was permanently occluded in group 1 and reperfused after 3 hr in four others (groups 2 to 5). All but group 5 received lidocaine (1 mg/min over 8 hr). A critical stenosis was produced and left in place at reperfusion only in group 2. In groups 1 and 2, /sup 111/In-labeled autologous neutrophils were injected at the time of coronary occlusion. Group 4 animals were rendered leukopenic 2 hr before the coronary ligature and throughout the experiment by injection of an antineutrophil rabbit serum. Quantification of the radioactivity by digitized scintigraphy of the heart slices revealed an 80% increase in neutrophil accumulation in the infarct region after reperfusion (group 2) as compared with permanent occlusion (group 1). Gamma counting of myocardial tissue samples showed that the neutrophil accumulation ratio in the subendocardial central zone of the infarct was increased five times by reperfusion, whereas no difference was evident in the subepicardium. Infarct size and myocardial area at risk were not statistically different among the five groups. However LAD flow in the leukopenic group (group 4) was significantly higher 30 min after reperfusion (40.0 +/- 5 ml/min) when compared with the preocclusion value (21.7 +/- 4 ml/min). In contrast, in a parallel experiment without leukopenia (group 3), LAD flow after reperfusion did not differ from the preocclusion value.

  2. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available BACKGROUND: Intestinal ischemia-reperfusion (I/R plays an important role in critical illnesses. Gut flora participate in the pathogenesis of the injury. This study is aimed at unraveling colonic microbiota alteration pattern and identifying specific bacterial species that differ significantly as well as observing colonic epithelium change in the same injury model during the reperfusion time course. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing gradient gel electrophoresis (DGGE was used to monitor the colonic microbiota of control rats and experimental rats that underwent 0.5 hour ischemia and 1, 3, 6, 12, 24, and 72 hours following reperfusion respectively. The microbiota similarity, bacterial diversity and species that characterized the dysbiosis were estimated based on the DGGE profiles using a combination of statistical approaches. The interested bacterial species in the gel were cut and sequenced and were subsequently quantified and confirmed with real-time PCR. Meanwhile, the epithelial barrier was checked by microscopy and D-lactate analysis. Colonic flora changed early and differed significantly at 6 hours after reperfusion and then started to recover. The shifts were characterized by the increase of Escherichia coli and Prevotella oralis, and Lactobacilli proliferation together with epithelia healing. CONCLUSION/SIGNIFICANCE: This study shows for the first time that intestinal ischemia-reperfusion results in colonic flora dysbiosis that follows epithelia damage, and identifies the bacterial species that contribute most.

  3. Therapeutic potential of cannabidiol against ischemia/reperfusion liver injury in rats.

    Science.gov (United States)

    Fouad, Amr A; Jresat, Iyad

    2011-11-16

    The therapeutic potential of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated in rats exposed to ischemia/reperfusion liver injury. Ischemia was induced by clamping the pedicle of the left hepatic lobe for 30 min, and cannabidiol (5mg/kg, i.v.) was given 1h following the procedure and every 24h thereafter for 2 days. Ischemia/reperfusion caused significant elevations of serum alanine aminotransferase and hepatic malondialdehyde, tumor necrosis factor-α and nitric oxide levels, associated with significant decrease in hepatic reduced glutathione. Cannabidiol significantly attenuated the deterioration in the measured biochemical parameters mediated by ischemia/reperfusion. Histopathological examination showed that cannabidiol ameliorated ischemia/reperfusion-induced liver damage. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin protein in ischemic/reperfused liver tissue. These results emphasize that cannabidiol represents a potential therapeutic option to protect the liver against hypoxia-reoxygenation injury.

  4. Ischemia and reperfusion injury of the rat liver: the role of nimodipine.

    Science.gov (United States)

    Chávez-Cartaya, R E; Pino DeSola, G; Ramirez-Romero, P; Calne, R Y; Jamieson, N V

    1996-01-01

    The protective effect of the calcium channel blocker nimodipine on liver ischemia and reperfusion was studied in the rat. The homeostasis of intracellular calcium ions seems to be a determinant factor in the cell injury that appears after ischemia and reperfusion. Nimodipine was used to downregulate the calcium levels in the cytosol of the ischemic cell, the hypothetical role of Ca2+ in the pathogenesis of ischemia and reperfusion injury. The experimental procedure consisted of the temporary interruption of blood flow to the left lateral and medial lobes of the rat liver and subsequent reperfusion after a period of 45 min of ischemia. Nimodipine (10 micrograms/kg body wt) was administered either before or after the onset of ischemia. The postischemic liver blood flow and liver oxyhemoglobin saturation were recorded using a He-Ne laser Doppler flowmeter and photometer, which showed, in the pretreated group, a recovery of reperfusion blood flow (58.1%) and liver reflectance (85.5%) significantly better (P flow (32.8%) and reflectance (70.5%). In the group that received nimodipine after ischemia, the recovery of the blood flow and the postreperfusion liver reflectance were not significantly better than those in the untreated control group. ALT levels (P < 0.05), galactose elimination capacity (P < 0.001), and histological studies also showed a protective effect of calcium antagonist nimodipine when administered before ischemia.

  5. miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models.

    Directory of Open Access Journals (Sweden)

    Zhenwei Pan

    Full Text Available Recent studies have revealed the critical role of microRNAs (miRNAs in regulating cardiac injury. Among them, the cardiac enriched microRNA-1(miR-1 has been extensively investigated and proven to be detrimental to cardiac myocytes. However, solid in vivo evidence for the role of miR-1 in cardiac injury is still missing and the potential therapeutic advantages of systemic knockdown of miR-1 expression remained unexplored. In this study, miR-1 transgenic (miR-1 Tg mice and locked nucleic acid modified oligonucleotide against miR-1 (LNA-antimiR-1 were used to explore the effects of miR-1 on cardiac ischemia/reperfusion injury (30 min ischemia followed by 24 h reperfusion. The cardiac miR-1 level was significantly increased in miR-1 Tg mice, and suppressed in LNA-antimiR-1 treated mice. When subjected to ischemia/reperfusion injury, miR-1 overexpression exacerbated cardiac injury, manifested by increased LDH, CK levels, caspase-3 expression, apoptosis and cardiac infarct area. On the contrary, LNA-antimiR-1 treatment significantly attenuated cardiac ischemia/reperfusion injury. The expression of PKCε and HSP60 was significantly repressed by miR-1 and enhanced by miR-1 knockdown, which may be a molecular mechanism for the role miR-1 in cardiac injury. Moreover, luciferase assay confirmed the direct regulation of miR-1 on protein kinase C epsilon (PKCε and heat shock protein 60 (HSP60. In summary, this study demonstrated that miR-1 is a causal factor for cardiac injury and systemic LNA-antimiR-1 therapy is effective in ameliorating the problem.

  6. The Impact of Prophylactic Fasciotomy Following Porcine (Sus scrofa) Hind Limb Ischemia/Reperfusion Injury

    Science.gov (United States)

    2012-03-23

    ANSI Std. Z39.18 The Impact of Prophylactic Fasciotomy Following Porcine (Sus scrofa ) Hind Limb Ischemia/reperfusion Injury CAPT Thomas J...porcine model of hind limb ischemia. Method: Swine (Sus Scrofa ; 76 +/-6kg) were randomly assigned to no fasciotomy or prophylactic fasciotomy after...of ischemic intervals on neuromuscular recovery in a porcine (Sus scrofa ) survival model of extremity vascular injury. J Vasc Surg. 2011 Jan;53(1):165

  7. Riluzole improves outcome following ischemia-reperfusion injury to the spinal cord by preventing delayed paraplegia.

    Science.gov (United States)

    Wu, Y; Satkunendrarajah, K; Fehlings, M G

    2014-04-18

    The spinal cord is vulnerable to ischemic injury due to trauma, vascular malformations and correction of thoracic aortic lesions. Riluzole, a sodium channel blocker and anti-glutamate drug has been shown to be neuroprotective in a model of ischemic spinal cord injury, although the effects in clinically relevant ischemia/reperfusion models are unknown. Here, we examine the effect of riluzole following ischemia-reperfusion injury to the spinal cord. Female rats underwent high thoracic aortic balloon occlusion to produce an ischemia/reperfusion injury. Tolerance to ischemia was evaluated by varying the duration of occlusion. Riluzole (8mg/kg) was injected intraperitoneally 4h after injury. Locomotor function (Basso, Beattie and Bresnahan (BBB) scale) was assessed at 4h, 1day, and 5days post-ischemia. Spinal cords were extracted and evaluated for neuronal loss using immunohistology (choline acetyltransferase (ChAT) and neuronal nuclei (NeuN)), inflammation (CD11b), astrogliosis (glial fibrillary acidic protein - GFAP) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). Ischemic injury lasting between 5.5 and 6.75min resulted in delayed paraplegia, whereas longer ischemia induced immediate paraplegia. When riluzole was administered to rats that underwent 6min of occlusion, delayed paraplegia was prevented. The BBB score of riluzole-treated rats was 11.14±4.85 compared with 1.86±1.07 in control animals. Riluzole also reduced neuronal loss, infiltration of microglia/macrophages and astrogliosis in the ventral horn and intermediate zone of the gray matter. In addition, riluzole reduced apoptosis of neurons in the dorsal horn of the gray matter. Riluzole has a neuroprotective effect in a rat model of spinal cord injury/reperfusion when administered up to 4h post-injury, a clinically relevant therapeutic time window.

  8. Pentoxifylline enhances the protective effects of hypertonic saline solution on liver ischemia reperfusion injury through inhibition of oxidative stress Pentoxifylline enhances the protective effects of hypertonic saline solution on liver ischemia reperfusion injury through inhibition of oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Vinicius Rocha-Santos; Estela RR Figueira; Joel A Rocha-Filho; Ana MM Coelho; Rafael Soraes Pinheiro; Telesforo Bacchella; Marcel CC Machado; Luiz AC D'Albuquerque

    2015-01-01

    BACKGROUND:Liver ischemia reperfusion (IR) injury trig-gers a systemic inlfammatory response and is the main cause of organ dysfunction and adverse postoperative outcomes after liver surgery. Pentoxifylline (PTX) and hypertonic saline solution (HTS) have been identiifed to have beneifcial effects against IR injury. This study aimed to investigate if the addi-tion of PTX to HTS is superior to HTS alone for the preven-tion of liver IR injury. METHODS:Male Wistar rats were allocated into three groups. Control rats underwent 60 minutes of partial liver ischemia, HTS rats were treated with 0.4 mL/kg of intravenous 7.5%NaCl 15 minutes before reperfusion, and HPTX group were treated with 7.5% NaCl plus 25 mg/kg of PTX 15 minutes be-fore reperfusion. Samples were collected after reperfusion for determination of ALT, AST, TNF-α, IL-6, IL-10, mitochondrial respiration, lipid peroxidation, pulmonary permeability and myeloperoxidase. RESULTS:HPTX signiifcantly decreased TNF-α 30 minutes after reperfusion. HPTX and HTS signiifcantly decreased ALT, AST, IL-6, mitochondrial dysfunction and pulmonary myelo-peroxidase 4 hours after reperfusion. Compared with HTS only, HPTX signiifcantly decreased hepatic oxidative stress 4 hours after reperfusion and pulmonary permeability 4 and 12 hours after reperfusion. CONCLUSION:This study showed that PTX added the beneifcial effects of HTS on liver IR injury through decreases of hepatic oxidative stress and pulmonary permeability.

  9. Dexamethasone pretreatment attenuates lung and kidney injury in cholestatic rats induced by hepatic ischemia/reperfusion.

    Science.gov (United States)

    Zhou, Liangyi; Yao, Xiangqing; Chen, Yanling

    2012-02-01

    Hepatic ischemia followed by reperfusion (IR) results in mild to severe organ injury, in which tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) seem to be involved. Thus, we aim to assess the influence of hepatic ischemia/reperfusion injury on remote organs in addition to cholestasis and consider the possible efficacy of steroid pretreatment in reducing the injury. A common bile duct ligation model was done on 24 male Sprague-Dawley rats. After 7 days, the rats were divided randomly into control group, IR group, and dexamethasone (DEX) group. The IR group showed significant increases in serum alanine aminotransferase, aspartate aminotransferase, and creatinine levels compared with the control and DEX groups. By ELISA techniques, higher levels of TNF-α and IL-1β in lung and kidney tissues were measured in the IR group than in the control and DEX groups, these were verified by immunohistochemistry. The lung histology of the IR group rats showed neutrophil infiltration, interstitial edema, and alveolar wall thickening. Kidney histology of the IR group rats showed vacuolization of the proximal tubular epithelial cells and tubular dilatation with granular eosinophilic casts. Better morphological aspects were observed in the DEX-pretreated animals. Minimal lesions were observed in the control. The results suggest that hepatic ischemia/reperfusion injury in cholestatic rats induced lung and kidney injuries. Pretreatment with dexamethasone reduced the IR-induced injury in addition to cholestasis.

  10. Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms.

    Science.gov (United States)

    Yang, Zhang; Weian, Chen; Susu, Huang; Hanmin, Wang

    2016-01-15

    The aim of our study was to investigate the protective properties of mangiferin, a natural glucosyl xanthone found in both mango and papaya on the cerebral ischemia-reperfusion injury and the underlying mechanism. Wistar male rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Mangiferin (25, 50, and 100mg/kg, ig) or 0.5% carboxymethyl cellulose sodium was administered three times before ischemia and once at 2h after the onset of ischemia. Neurological score, infarct volume, and brain water content, some oxidative stress markers and inflammatory cytokines were evaluated after 24h of reperfusion. Treatment with mangiferin significantly ameliorated neurologic deficit, infarct volume and brain water content after cerebral ischemia reperfusion. Mangiferin also reduced the content of malondialdehyde (MDA), IL-1β and TNF-α, and up-regulated the activities of superoxide dismutase (SOD), glutathione (GSH) and IL-10 levels in the brain tissue of rats with the cerebral ischemia-reperfusion injury. Moreover, mangiferin up-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream anti-oxidant protein heme oxygenase-1 (HO-1). The results indicate that mangiferin can play a certain protective role in the cerebral ischemia-reperfusion injury, and the protective effect of mangiferin may be related to the improvement on the antioxidant capacity of brain tissue and the inhibition of overproduction of inflammatory cytokines. The mechanisms are associated with enhancing the oxidant defense systems via the activation of Nrf2/HO-1 pathway.

  11. Role of mucus in ischemia/reperfusion-induced gastric mucosal injury in rats.

    Science.gov (United States)

    Mojzis, J; Hegedüsová, R; Mirossay, L

    2000-01-01

    Gastric mucus plays an important role in gastric mucosal protection. Apart from its "barrier" function, it has been demonstrated that mucus protects gastric epithelial cells against toxic oxygen metabolites derived from the xanthine/ xanthine oxidase system. In this study, we investigated the effect of malotilate and sucralfate (mucus production stimulators) and N-acetylcysteine (mucolytic agent) on ischemia/reperfusion-induced gastric mucosal injury. Gastric ischemia was induced by 30 min clamping of the coeliac artery followed by 30 min of reperfusion. The mucus content was determined by the Alcian blue method. Sucralfate (100 mg/kg), malotilate (100 mg/kg), and N-acetylcysteine (100 mg/kg) were given orally 30 min before surgery. Both sucralfate and malotilate increased the mucus production in control rats. On the other hand, N-acetyloysteine significantly decreased mucus content in control (sham) group. A significant decrease of mucus content was found in the control and the N-acetylcysteine pretreated group during the period of ischemia. On the other hand, sucralfate and malotilate prevented the decrease the content of mucus during ischemia. A similar result can be seen after ischemia/reperfusion. In the control group and N-acetylcysteine pretreated group a significant decrease of adherent mucus content was found. However, sucralfate and malotilate increased mucus production (sucralfate significantly). Sucralfate and malotilate also significantly protected the gastric mucosa against ischemia/reperfusion-induced injury. However, N-acetylcysteine significantly increased gastric mucosal injury after ischemia/reperfusion. These results suggest that gastric mucus may be involved in the protection of gastric mucosa after ischemia/reperfusion.

  12. IMPACT OF SEVOFLURANE AND ACETYLCYSTEINE ON ISCHEMIA-REPERFUSION INJURY OF THE LIVER FROM BRAIN-DEAD DONOR

    Directory of Open Access Journals (Sweden)

    A. E. Shcherba

    2013-01-01

    Full Text Available Aim. The purpose of our work was to estimate the impact of preconditioning with acetylcysteine and sevoflurane on ischemia-reperfusion injury of cadaveric donor liver with marginal features. Methods and results. In this prospective randomized controlled trial we recruited 21 heart beating donors with brain death. We assigned 11 donors to the study group, and 10 donors to the control group. Morphological characteristics of ischemia- reperfusion injury in both groups were analyzed. Conclusion. Use of pharmacological preconditioning with acetylcysteine and sevoflurane resulted in necrosis and hepatocyte apoptosis reduction as compared to the control group, thereby had a protective effect against ischemia-reperfusion injury

  13. Kidney Injury Molecule-1 Protects against Gα12 Activation and Tissue Damage in Renal Ischemia-Reperfusion Injury

    Science.gov (United States)

    Ismail, Ola Z.; Zhang, Xizhong; Wei, Junjun; Haig, Aaron; Denker, Bradley M.; Suri, Rita S.; Sener, Alp; Gunaratnam, Lakshman

    2016-01-01

    Ischemic acute kidney injury is a serious untreatable condition. Activation of the G protein α12 (Gα12) subunit by reactive oxygen species is a major cause of tissue damage during renal ischemia-reperfusion injury. Kidney injury molecule-1 (KIM-1) is a transmembrane glycoprotein that is highly up-regulated during acute kidney injury, but the physiologic significance of this up-regulation is unclear. Here, we report for the first time that Kim-1 inhibits Gα12 activation and protects mice against renal ischemia-reperfusion injury. We reveal that Kim-1 physically interacts with and inhibits cellular Gα12 activation after inflammatory stimuli, including reactive oxygen species, by blocking GTP binding to Gα12. Compared with Kim-1+/+ mice, Kim-1−/− mice exhibited greater Gα12 and downstream Src activation both in primary tubular epithelial cells after in vitro stimulation with H2O2 and in whole kidneys after unilateral renal artery clamping. Finally, we show that Kim-1–deficient mice had more severe kidney dysfunction and tissue damage after bilateral renal artery clamping, compared with wild-type mice. Our results suggest that KIM-1 is an endogenous protective mechanism against renal ischemia-reperfusion injury through inhibition of Gα12. PMID:25759266

  14. Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antiox-idant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS: Rats were divided randomly into four ex-perimental groups: control, SFN control, intestinal I/R and SFN pretreatment groups (n = 8 in each group). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h and 2 h reperfu-sion. In the SFN pretreatment group, s...

  15. New insights in intestinal ischemia-reperfusion injury: implications for intestinal transplantation.

    Science.gov (United States)

    Lenaerts, Kaatje; Ceulemans, Laurens J; Hundscheid, Inca H R; Grootjans, Joep; Dejong, Cornelis H C; Olde Damink, Steven W M

    2013-06-01

    Ischemia-reperfusion injury is inevitable during intestinal transplantation and can negatively affect the transplant outcome. Here, an overview is provided of the recent advances in the pathophysiological mechanisms of intestinal ischemia-reperfusion injury and how this may impact graft survival. The intestine hosts a wide range of microorganisms and its mucosa is heavily populated by immune cells. Intestinal ischemia-reperfusion results in the disruption of the epithelial lining, affecting also protective Paneth cells (antimicrobials) and goblet cells (mucus), and creates a more hostile intraluminal microenvironment. Consequently, both damage-associated molecular patterns as well as pathogen-associated molecular patterns are released from injured tissue and exogenous microorganisms, respectively. These 'danger' signals may synergistically activate the innate immune system. Exaggerated innate immune responses, involving neutrophils, mast cells, platelets, dendritic cells, as well as Toll-like receptors and complement proteins, may shape the adaptive T-cell response, thereby triggering the destructive alloimmune response toward the graft and resulting in transplant rejection. Innate immune activation as a consequence of ischemia-reperfusion injury may compromise engraftment of the intestine. More dedicated research is required to further establish this concept in man and to design more effective therapeutic strategies to better tolerize intestinal grafts.

  16. The Hepatoprotective Effect of Sodium Nitrite on Cold Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Wei Li

    2012-01-01

    Full Text Available Liver ischemia-reperfusion injury is a major cause of primary graft non-function or initial function failure post-transplantation. In this study, we examined the effects of sodium nitrite supplementation on liver IRI in either Lactated Ringer's (LR solution or University of Wisconsin (UW solution. The syngeneic recipients of liver grafts were also treated with or without nitrite by intra-peritoneal injection. Liver AST and LDH release were significantly reduced in both nitrite-supplemented LR and UW preservation solutions compared to their controls. The protective effect of nitrite was more efficacious with longer cold preservation times. Liver histological examination demonstrated better preserved morphology and architecture with nitrite treatment. Hepatocellular apoptosis was significantly reduced in the nitrite-treated livers compared their controls. Moreover, liver grafts with extended cold preservation time of 12 to 24 hours demonstrated improved liver tissue histology and function post-reperfusion with either the nitrite-supplemented preservation solution or in nitrite-treated recipients. Interestingly, combined treatment of both the liver graft and recipient did not confer protection. Thus, nitrite treatment affords significant protection from cold ischemic and reperfusion injury to donor livers and improves liver graft acute function post-transplantation. The results from this study further support the potential for nitrite therapy to mitigate ischemia-reperfusion injury in solid organ transplantation.

  17. Effect of pre- and posttreatment of losartan in feline model of myocardial ischemic-reperfusion injury.

    Science.gov (United States)

    Kumari, R; Manchanda, S C; Maulik, S K

    2004-01-01

    This study investigated the differential effect of losartan, an AT1 receptor blocker, when administered in pre- and postischemic phases, on the biochemical, hemodynamic and oxidative stress associated with regional ischemic-reperfusion injury in cat. Losartan (5 microg/kg/min) or normal saline was administered intravenously in open chest barbiturate anesthetized cats, 15 min before and 10 min after the occlusion of the left anterior descending (LAD) coronary artery. The LAD was occluded for 15 min followed by 60 min reperfusion. In the saline treated group, there was significant depression of hemodynamic functions, i.e., mean arterial pressure (MAP), heart rate (HR), left ventricular end diastolic pressure (LVEDP) and left ventricular (LV) peak (+/-) dP/dt, along with depletion of adenosine triphosphate (ATP) of the affected myocardium. Oxidative stress during reperfusion injury was evidenced by significant increase in plasma thiobarbituric acid reactive substances (TBARS) accompanied by significant reduction in myocardial superoxide dismutase (SOD) activities. In both treatment groups, losartan caused recovery of all the hemodynamic parameters and repletion of ATP along with no significant change in plasma TBARS and myocardial SOD activity. There was no effect on catalase activity. Results from the study suggest that the effects of pre- and posttreatment of losartan are comparable in functional recovery of the heart from ischemic-reperfusion injury. (c) 2004 Prous Science. All rights reserved.

  18. Neuroprotective Effect of Ulinastatin on Spinal Cord Ischemia-Reperfusion Injury in Rabbits

    Directory of Open Access Journals (Sweden)

    Bingbing Liu

    2015-01-01

    Full Text Available Ulinastatin (UTI, a trypsin inhibitor, is isolated and purified from human urine and has been shown to exert protective effect on myocardial ischemia reperfusion injury in patients. The present study was aimed at investigating the effect of ulinastatin on neurologic functions after spinal cord ischemia reperfusion injury and the underlying mechanism. The spinal cord IR model was achieved by occluding the aorta just caudal to the left renal artery with a bulldog clamp. The drugs were administered immediately after the clamp was removed. The animals were terminated 48 hours after reperfusion. Neuronal function was evaluated with the Tarlov Scoring System. Spinal cord segments between L2 and L5 were harvested for pathological and biochemical analysis. Ulinastatin administration significantly improved postischemic neurologic function with concomitant reduction of apoptotic cell death. In addition, ulinastatin treatment increased SOD activity and decreased MDA content in the spinal cord tissue. Also, ulinastatin treatment suppressed the protein expressions of Bax and caspase-3 but enhanced Bcl-2 protein expression. These results suggest that ulinastatin significantly attenuates spinal cord ischemia-reperfusion injury and improves postischemic neuronal function and that this protection might be attributable to its antioxidant and antiapoptotic properties.

  19. Luoyutong Treatment Promotes Functional Recovery and Neuronal Plasticity after Cerebral Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ning-qun Wang

    2015-01-01

    Full Text Available Luoyutong (LYT capsule has been used to treat cerebrovascular diseases clinically in China and is now patented and approved by the State Food and Drug Administration. In this retrospective validation study we investigated the ability of LYT to protect against cerebral ischemia-reperfusion injury in rats. Cerebral ischemia-reperfusion injury was induced by middle cerebral artery occlusion followed by reperfusion. Capsule containing LYT (high dose and medium dose as treatment group and Citicoline Sodium as positive control treatment group were administered daily to rats 30 min after reperfusion. Treatment was continued for either 3 days or 14 days. A saline solution was administered to control animals. Behavior tests were performed after 3 and 14 days of treatment. Our findings revealed that LYT treatment improved the neurological outcome, decreased cerebral infarction volume, and reduced apoptosis. Additionally, LYT improved neural plasticity, as the expression of synaptophysin, microtubule associated protein, and myelin basic protein was upregulated by LYT treatment, while neurofilament 200 expression was reduced. Moreover, levels of brain derived neurotrophic factor and basic fibroblast growth factor were increased. Our results suggest that LYT treatment may protect against ischemic injury and improve neural plasticity.

  20. Dapagliflozin, SGLT2 Inhibitor, Attenuates Renal Ischemia-Reperfusion Injury

    OpenAIRE

    Yoon-Kyung Chang; Hyunsu Choi; Jin Young Jeong; Ki-Ryang Na; Kang Wook Lee; Beom Jin Lim; Dae Eun Choi

    2016-01-01

    Dapagliflozin, a new type of drug used to treat diabetes mellitus (DM), is a sodium/glucose cotransporter 2 (SGLT2) inhibitor. Although some studies showed that SGLT2 inhibition attenuated reactive oxygen generation in diabetic kidney the role of SGLT2 inhibition is unknown. We evaluated whether SLT2 inhibition has renoprotective effects in ischemia-reperfusion (IR) models. We evaluated whether dapagliflozin reduces renal damage in IR mice model. In addition, hypoxic HK2 cells were treated wi...

  1. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  2. Therapeutic effect of bFGF on retina ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    牛膺筠; 赵岩松; 高云霞; 周占宇; 王红云; 袁春燕

    2004-01-01

    Background Basic fibroblast growth factor (bFGF) plays important roles in retina degeneration, light injury, mechanical injury, especially in retina ischemia-reperfusion injury (RIRI). This study was to investigate the therapeutical effect of bFGF on RIRI and its mechanisms. Methods Experimental RIRI was induced by increasing intraocular pressure (lOP) in the eyes of 48 rats. These rats were divided into normal control, ischemia-reperfusion and bFGF-treated groups. Histological and ultrastructural changes of in the retina of different groups were observed, and the number of retinal ganglion cells (RGCs) was quantitatively analyzed under microscopy. Apoptotic cells were detected using the TdT-dUTP terminal nick-end labeling (TUNEL) method. The expression of caspase-3 was determined by streptavidin peroxidase (SP) immunohistochemistry. Atomic absorption spectrum method was used to evaluate the intracellular calcium changes. Results At the early stage of retinal ischemia-reperfusion injury, retina edema in the treated group was significantly eliminated compared with the untreated ischemic animals. RGCs in the bFGF-treated group was more than those in the untreated ischemic group during the post-reperfusion stages. In ischemic group, apoptotic cells could be found at 6th hours after reperfusion and reached the peak at 24th hours. At 72th hours no apoptotic cells could be found. The changes in caspase-3 expression had a similar manner. The intracellular calcium of rat retina began to increase at l th hour, reached the peak at 24 hours, and began to decease at 72th hours. The change of the three markers in the treatment group showed a similar pattern, but they were all relatively less obvious. Conclusion Apoptosis may play a vital role in RIRI. bFGF may has therapeutical effects on RIRI by inhibiting the increase of intracellular calciums and caspase-3 expression.

  3. Early delayed amputation: a paradigm shift in the limb-salvage time line for patients with major upper-limb injury.

    Science.gov (United States)

    Burdette, Todd E; Long, Sarah A; Ho, Oscar; Demas, Chris; Bell, John-Erik; Rosen, Joseph M

    2009-01-01

    Patients with major injuries to the upper limbs sometimes fail to achieve successful limb salvage. During the attempt to fashion a functional limb, multiple painful procedures may be ventured. Despite the best efforts of surgeons and therapists, a nonfunctioning or painful upper limb may remain in place for many months or years before late delayed amputation and progression to productive rehabilitation occur. We present three patient cases that illustrate failed upper-limb salvage. In each case, patients expressed a desire for amputation at 6 months after their injury. To reduce the pain and suffering that patients with failed limb salvage endure, we propose a paradigm shift in the limb-salvage time line. We suggest that patients be evaluated for early delayed amputation 6 months after their injury.

  4. The anti-coagulants asis or apc do not protect against renal ischemia/ reperfusion injury

    Directory of Open Access Journals (Sweden)

    Sarah T.B.G. Loubele

    2014-06-01

    Full Text Available Renal ischemia/reperfusion (I/R injury is the main cause of acute renal failure. The severity of injury is determined by endothelial damage as well as inflammatory and apoptotic processes. The anticoagulants active site inhibited factor VIIa (ASIS and activated protein C (APC are besides their anticoagulant function also known for their cytoprotective properties. In this study the effect of ASIS and APC was assessed on renal I/R injury and this in relation to inflammation and apoptosis. Our results showed no effect of ASIS or APC on renal injury as determined by histopathological scoring as well as by blood urea nitrogen (BUN and creatinine levels. Furthermore, no effect on fibrin staining was detected but ASIS did reduce tissue factor activity levels after a 2-hr reperfusion period. Neither ASIS nor APC administration influenced overall inflammation markers, although some inflammatory effects of ASIS on interleukin (IL-1β and tumor necrosis factor (TNF-α were detectable after 2 hr of reperfusion. Finally, neither APC nor ASIS had an influence on cell signaling pathways or on the number of apoptotic cells within the kidneys. From this study we can conclude that the anticoagulants ASIS and APC do not have protective effects in renal I/R injury in the experimental setup as used in this study which is in contrast to the protective effects of these anticoagulants in other models of I/R.

  5. Protective effects of remote ischemic preconditioning in rat hindlimb on ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Xiangrong Liu; Feng Yan; Lianqiu Min; Xunming Ji; Yumin Luo

    2012-01-01

    Three cycles of remote ischemic pre-conditioning induced by temporarily occluding the bilateral femoral arteries (10 minutes) prior to 10 minutes of reperfusion were given once a day for 3 days before the animal received middle artery occlusion and reperfusion surgery. The results showed that brain infarct volume was significantly reduced after remote ischemic pre-conditioning. Scores in the forelimb placing test and the postural reflex test were significantly lower in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. Thus, neurological function was better in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. These results indicate that remote ischemic pre-conditioning in rat hindlimb exerts protective effects in ischemia-reperfusion injury.

  6. Ischemia-Reperfusion Injury and Ischemic-Type Biliary Lesions following Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Raffaele Cursio

    2012-01-01

    Full Text Available Ischemia-reperfusion (I-R injury after liver transplantation (LT induces intra- and/or extrahepatic nonanastomotic ischemic-type biliary lesions (ITBLs. Subsequent bile duct stricture is a significant cause of morbidity and even mortality in patients who underwent LT. Although the pathogenesis of ITBLs is multifactorial, there are three main interconnected mechanisms responsible for their formation: cold and warm I-R injury, injury induced by cytotoxic bile salts, and immunological-mediated injury. Cold and warm ischemic insult can induce direct injury to the cholangiocytes and/or damage to the arterioles of the peribiliary vascular plexus, which in turn leads to apoptosis and necrosis of the cholangiocytes. Liver grafts from suboptimal or extended-criteria donors are more susceptible to cold and warm I-R injury and develop more easily ITBLs than normal livers. This paper, focusing on liver I-R injury, reviews the risk factors and mechanisms leading to ITBLs following LT.

  7. Ozone protects rat heart against ischemia-reperfusion injury: A role for oxidative preconditioning in attenuating mitochondrial injury.

    Science.gov (United States)

    Meng, Weixin; Xu, Ying; Li, Dandan; Zhu, Erjun; Deng, Li; Liu, Zonghong; Zhang, Guowei; Liu, Hongyu

    2017-04-01

    Ischemia-reperfusion injury (IRI) is a major cause of cardiac dysfunction during cardiovascular surgery, heart transplantation and cardiopulmonary bypass procedures. The purpose of the present study was to explore, firstly, whether ozone induces oxidative preconditioning by activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and, secondly, whether ozone oxidative preconditioning (OzoneOP) can protect the heart against IRI by attenuating mitochondrial damage. Rats were subjected to 30min of cardiac ischemia followed by 2h of reperfusion, with or without prior OzoneOP (100μg/kg/day) for 5 days. Antioxidant capacity, myocardial apoptosis and mitochondrial damage were evaluated and compared at the end of reperfusion. OzoneOP was found to increase antioxidant capacity and to protect the myocardium against IRI by attenuating mitochondrial damage and myocardial apoptosis. The study suggests a potential role for OzoneOP in protecting the heart against IRI during cardiovascular surgery, cardiopulmonary bypass procedures or transplantation.

  8. Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia.

    Science.gov (United States)

    Brown, David A; Hale, Sharon L; Baines, Christopher P; del Rio, Carlos L; Hamlin, Robert L; Yueyama, Yukie; Kijtawornrat, Anusak; Yeh, Steve T; Frasier, Chad R; Stewart, Luke M; Moukdar, Fatiha; Shaikh, Saame Raza; Fisher-Wellman, Kelsey H; Neufer, P Darrell; Kloner, Robert A

    2014-01-01

    We recently showed that Bendavia, a novel mitochondria-targeting peptide, reduced infarction and no-reflow across several experimental models. The purpose of this study was to determine the therapeutic timing and mechanism of action that underlie Bendavia's cytoprotective property. In rabbits exposed to in vivo ischemia/reperfusion (30/180 min), Bendavia administered 20 minutes prior to reperfusion (0.05 mg/kg/h, intravenously) reduced myocardial infarct size by ∼50% when administered for either 1 or 3 hours of reperfusion. However, when Bendavia perfusion began just 10 minutes after the onset of reperfusion, the protection against infarction and no-reflow was completely lost, indicating that the mechanism of protection is occurring early in reperfusion. Experiments in isolated mouse liver mitochondria found no discernible effect of Bendavia on blocking the permeability transition pore, and studies in isolated heart mitochondria showed no effect of Bendavia on respiratory rates. As Bendavia significantly lowered reactive oxygen species (ROS) levels in isolated heart mitochondria, the ROS-scavenging capacity of Bendavia was compared to well-known ROS scavengers using in vitro (cell-free) systems that enzymatically generate ROS. Across doses ranging from 1 nmol/L to 1 mmol/L, Bendavia showed no discernible ROS-scavenging properties, clearly differentiating itself from prototypical scavengers. In conclusion, Bendavia is a promising candidate to reduce cardiac injury when present at the onset of reperfusion but not after reperfusion has already commenced. Given that both infarction and no-reflow are related to increased cellular ROS, Bendavia's protective mechanism of action likely involves reduced ROS generation (as opposed to augmented scavenging) by endothelial and myocyte mitochondria.

  9. Ischemia/reperfusion-induced Kidney Injury in Heterozygous PACAP-deficient Mice.

    Science.gov (United States)

    Laszlo, E; Varga, A; Kovacs, K; Jancso, G; Kiss, P; Tamas, A; Szakaly, P; Fulop, B; Reglodi, D

    2015-09-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with very diverse distribution and functions. Among others, PACAP is a potent cytoprotective peptide due to its antiapoptotic, anti-inflammatory, and antioxidant actions. This also has been shown in different kidney pathologies, including ischemia/reperfusion-induced kidney injury. Similar protective effects of the endogenous PACAP are confirmed by the increased vulnerability of PACAP-deficient mice to different harmful stimuli. Kidneys of homozygous PACAP-deficient mice have more severe damages in renal ischemia/reperfusion and kidney cell cultures isolated from these mice show increased sensitivity to renal oxidative stress. In our present study we raised the question of whether the partial lack of the PACAP gene is also deleterious, i.e. whether heterozygous PACAP-deficient mice also display more severe damage after renal ischemia/reperfusion. Mice underwent 45 or 60 minutes of ischemia followed by 2 weeks reperfusion. Histological evaluation of the kidneys was performed and individual histopathological parameters were graded. Furthermore, we investigated apoptotic markers, cytokine expression, and the activity of superoxide dismutase (SOD) enzyme 24 hours after 60 minutes of renal ischemia/reperfusion. We found no difference between the intact kidneys of wild-type and heterozygous mice, but marked differences could be observed following ischemia/reperfusion. Heterozygous PACAP-deficient mice had more severe histological alterations, with significantly higher histopathological scores for most of the tested parameters. Higher level of the proapoptotic pp38 MAPK and of some proinflammatory cytokines, as well as lower activity of the antioxidant SOD could be found in these mice. In conclusion, the partial lack of the PACAP gene results in worse outcomes in cases of renal ischemia/reperfusion, confirming that PACAP functions as an endogenous protective factor in the kidney.

  10. PROTECTIVE EFFECTS OF ERYTHROPOIETIN ON MYO-CARDIUM AGAINST ISCHEMIA-REPERFUSION INJURY

    Institute of Scientific and Technical Information of China (English)

    YANG Di-cheng; XIAO Ming-di; LU Cheng-bao; LV Zhi-qian; DUAN Liang

    2008-01-01

    Objective To explore the protective effects of erythropoietin (EPO) on myocardium against ischemia-reperfusion injury (IRI). Methods The Langendorff model of isolated rat heart was set up and a 3-stage protocol was performed: 20 min stabilization, 30 min global ischemia, and 120 min reperfusion. Sixty SD rats were randomly divided into sham group, ischemia-reperfusion group (I/R group ) and EPO treated group (EPO group). Heart rate (HR), left ventricular developed pressure (LVDP), the first derivative (△dp/dt max) and coronary flow (CF) were recorded at the 20th minute of stabilization and the 120th minute of reperfusion. Lactate dehydrogenase (LDH) and creatine phosphokinase (CK) in the coronary effluent at the 60th minute of reperfusion, the levels of myocardial nuclear factor-kappa B (NF-KB) and the myocardial content of tumor necrosis factor-α (TNF-α) ,interleukin-1β (IL-1β) were measured at the end of reperfusion. Results No statistically significant differences were observed on the aspect of hemodynamic parameters among the groups at the 20th minute of stabilization, but at the 120th minute of reperfusion, the recovery ratio of EPO group was higher than I/R group (P<0.05). LDH and CK in the coronary effluent, the levels of myocardial NF-κB and TNF-α,IL-1β expression in EPO group were significantly lower than those in I/R group, but higher than sham group (P<0.05). Conclusion EPO has protective effects on myocardium against IRI possibly through the mechanism of relieving the myocardial inflammatory reaction by regulating the activation of NF-κB and then decreasing the expression of proinflammatory factors TNF-α and IL-1β.

  11. Heparins with reduced anti-coagulant activity reduce myocardial reperfusion injury.

    Science.gov (United States)

    Barry, William H; Kennedy, Thomas P

    2011-05-01

    Heparin which is desulfated at the 2-O and 3-O positions (ODSH) has reduced anti-coagulant properties, and reduced interaction with heparin antibodies. Because of the reduced anti-coagulant effect, ODSH can be safely administered to animals and humans intravenously at doses up to 20 mg/kg, resulting in a serum concentration of up to 250µg/ml. Administration of ODSH causes a 35% reduction in infarct size in dogs and pigs subjected to coronary artery occlusion and reperfusion when given 5 min before reperfusion. ODSH has anti-inflamatory effects, manifest as a decrease in neutrophil infiltration into ischemic tissue at high doses, but this effect does not entirely account for the reduction in infarct size. ODSH decreases Na(+) and Ca(2+) loading in isolated cardiac myocytes subjected to simulated ischemia. This effect appears due to an ODSH-induced reduction in an enhanced Na(+) influx via the Na channel in the membrane of cardiac myocyes caused by oxygen radicals generated during ischemia and reperfusion. Reduction in Na(+) influx decreases Ca(2+) loading by reducing Ca2(+) influx via Na/Ca exchange, thus reducing Ca(2+) - dependent reperfusion injury. ODSH does not appear to interact with antibodies to the heparin/platelet factor 4 complex, and does not cause heparin-induced thrombocytopenia. Because of these therapeutic and safety considerations, ODSH would appear to be a promising heparin derivative for prevention of reperfusion injury in humans undergoing thrombolytic or catheter-based reperfusion for acute myocardial infarction. The review article discussed the use of heparin and the discussion of some of the important patents, including: US6489311; US7478358; PCTUS2008070836 and PCTUS2009037836.

  12. Ischemic post-conditioning attenuates the intestinal injury induced by limb ischemia/reperfusion in rats

    Directory of Open Access Journals (Sweden)

    Y.F. Leng

    2011-05-01

    Full Text Available The purpose of this study was to investigate the protective effects of ischemic post-conditioning on damage to the barrier function of the small intestine caused by limb ischemia-reperfusion injury. Male Wistar rats were randomly divided into 3 groups (N = 36 each: sham operated (group S, lower limb ischemia-reperfusion (group LIR, and post-conditioning (group PC. Each group was divided into subgroups (N = 6 according to reperfusion time: immediate (0 h; T1, 1 h (T2, 3 h (T3, 6 h (T4, 12 h (T5, and 24 h (T6. In the PC group, 3 cycles of reperfusion followed by ischemia (each lasting 30 s were applied immediately. At all reperfusion times (T1-T6, diamine oxidase (DAO, superoxide dismutase (SOD, and myeloperoxidase (MPO activity, malondialdehyde (MDA intestinal tissue concentrations, plasma endotoxin concentrations, and serum DAO, tumor necrosis factor-α (TNF-α, and interleukin-10 (IL-10 concentrations were measured in sacrificed rats. Chiu’s pathology scores for small intestinal mucosa were determined under a light microscope and showed that damage to the small intestinal mucosa was lower in group PC than in group LIR. In group PC, tissue DAO and SOD concentrations at T2 to T6, and IL-10 concentrations at T2 to T5 were higher than in group LIR (P < 0.05; however, tissue MPO and MDA concentrations, and serum DAO and plasma endotoxin concentrations at T2 to T6, as well as TNF-α at T2 and T4 decreased significantly (P < 0.05. These results show that ischemic post-conditioning attenuated the permeability of the small intestines after limb ischemia-reperfusion injury. The protective mechanism of ischemic post-conditioning may be related to inhibition of oxygen free radicals and inflammatory cytokines that cause organ damage.

  13. Hemoperfusion with polymyxin B-immobilized fiber column improves liver function after ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hiroaki Sato; Kiyohiro Oshima; Katsumi Kobayashi; Hodaka Yamazaki; Yujin Suto; Izumi Takeyoshi

    2009-01-01

    AIM: To investigate the usefulness of direct hemoperfusion with a polymyxin B-immobilized fiber column (DHP-PMX therapy) for warm hepatic ischemia-reperfusion (I/R) injury after total hepatic vascular exclusion (THVE) using a porcine model.METHODS: Eleven Mexican hairless pigs weighing 22-38 kg were subjected to THVE for 120 min and then observed for 360 min. The animals were divided into two groups randomly: the DHP-PMX group (n = 5) underwent DHP-PMX at a flow rate of 80 mL/min for 120 min (beginning 10 min before reperfusion), while the control group did not (n = 6). The rate pressure product (RPP): heart rate × end-systolic arterial blood pressure,hepatic tissue blood flow (HTBF), portal vein blood flow (PVBF), and serum aspartate aminotransferase (AST) levels were compared between the two groups. RESULTS: RPP and HTBF were significantly (P < 0.05) higher in the DHP-PMX group than in the control group 240 and 360 min after reperfusion. PVBF in the DHP-PMX group was maintained at about 70% of the flow before ischemia and differed significantly (P < 0.05) compared to the control group 360 min after reperfusion. The serum AST increased gradually after reperfusion in both groups, but the AST was significantly (P < 0.05) lower in the DHP-PMX group 360 min after reperfusion. CONCLUSION: DHP-PMX therapy reduced the hepatic warm I/R injury caused by THVE in a porcine model.

  14. Protective effect of salvianolate on lung injury induced by ischemia reperfusion injury of liver in mice

    Directory of Open Access Journals (Sweden)

    Zheng-xin WANG

    2011-11-01

    Full Text Available Objective To evaluate the protective effect of salvianolate on lung injury induced by hepatic ischemia reperfusion(IR injury in mice and its underlying mechanisms.Methods A hepatic IR model of mice was reproduced,and 24 animals were assigned into 3 groups(8 each: sham operation(SO group,control group and salvianolate(SV group.Just before ischemia induction,animals in SV group received salvianolate injection at a dose of 60 mg/kg via tail vein,while in control group the mice received normal saline with an equal volume,and in SO group the mice received the same operation as in SV group but without producing liver ischemia.Four hours after reperfusion,the serum,liver and lung tissue were collected.The alanine aminotransferase(ALT and aspartate aminotransferase(AST levels in serum were detected and the histological changes in liver and lung were examined.The wet-to-dry weight ratio of pulmonary tissue was measured.The contents of tumor necrosis factor α(TNF-α,interleukin(IL-6,IL-1β and IL-10 in bronchoalveolar lavage fluid(BALF were detected by enzyme linked immunosorbent assay(ELISA,and the relative mRNA levels of TNF-α,IL-6,IL-1β and IL-10 in pulmonary tissue were analyzed by real-time reverse transcription PCR(RT-PCR.The activaty of transcription factor NF-κB was measured with Western blotting analysis.Results No significant pathologic change was found in mice of SO group.Compared with the mice in control group,those in SV group exhibited lower levels of ALT and AST(P < 0.01,lighter histological changes in liver and lung(P < 0.05,lower levels of wet-to-dry weight ratio of lung tissue(P < 0.05,lower expression levels of TNF-α,IL-6,IL-1β and IL-10 in BALF and lung tissue(P < 0.05 or P < 0.01.Further examination demonstrated that the activity of NF-κB in SV group was significantly down-regulated as compared with that in control group.Conclusion Salvianolate can attenuate lung injury induced by hepatic IR in mice,the mechanism may inclade

  15. Characteristics of mRNA dynamic expression related to spinal cord ischemia/reperfusion injury: a transcriptomics study

    Directory of Open Access Journals (Sweden)

    Zhi-ping Qi

    2016-01-01

    Full Text Available Following spinal cord ischemia/reperfusion injury, an endogenous damage system is immediately activated and participates in a cascade reaction. It is difficult to interpret dynamic changes in these pathways, but the examination of the transcriptome may provide some information. The transcriptome reflects highly dynamic genomic and genetic information and can be seen as a precursor for the proteome. We used DNA microarrays to measure the expression levels of dynamic evolution-related mRNA after spinal cord ischemia/reperfusion injury in rats. The abdominal aorta was blocked with a vascular clamp for 90 minutes and underwent reperfusion for 24 and 48 hours. The simple ischemia group and sham group served as controls. After rats had regained consciousness, hindlimbs showed varying degrees of functional impairment, and gradually improved with prolonged reperfusion in spinal cord ischemia/reperfusion injury groups. Hematoxylin-eosin staining demonstrated that neuronal injury and tissue edema were most severe in the 24-hour reperfusion group, and mitigated in the 48-hour reperfusion group. There were 8,242 differentially expressed mRNAs obtained by Multi-Class Dif in the simple ischemia group, 24-hour and 48-hour reperfusion groups. Sixteen mRNA dynamic expression patterns were obtained by Serial Test Cluster. Of them, five patterns were significant. In the No. 28 pattern, all differential genes were detected in the 24-hour reperfusion group, and their expressions showed a trend in up-regulation. No. 11 pattern showed a decreasing trend in mRNA whereas No. 40 pattern showed an increasing trend in mRNA from ischemia to 48 hours of reperfusion, and peaked at 48 hours. In the No. 25 and No. 27 patterns, differential expression appeared only in the 24-hour and 48-hour reperfusion groups. Among the five mRNA dynamic expression patterns, No. 11 and No. 40 patterns could distinguish normal spinal cord from pathological tissue. No. 25 and No. 27 patterns

  16. Classical and remote post-conditioning effects on ischemia/reperfusion-induced acute oxidant kidney injury.

    Science.gov (United States)

    Kadkhodaee, Mehri; Najafi, Atefeh; Seifi, Behjat

    2014-11-01

    The present study aimed to analyze and compare the effects of classical and remote ischemic postconditioning (POC) on rat renal ischemia/reperfusion (IR)-induced acute kidney injury. After right nephrectomy, male rats were randomly assigned into four groups (n = 8). In the IR group, 45 min of left renal artery occlusion was induced followed by 24 h of reperfusion. In the classical POC group, after induction of 45 min ischemia, 4 cycles of 10 s of intermittent ischemia and reperfusion were applied to the kidney before complete restoring of renal blood. In the remote POC group, 4 cycles of 5 min ischemia and reperfusion of left femoral artery were applied after 45 min renal ischemia and right at the time of renal reperfusion. There was a reduction in renal function (increase in blood urea and creatinine) in the IR group. Application of both forms of POC prevented the IR-induced reduction in renal function and histology. There were also significant improvements in kidney oxidative stress status in both POC groups demonstrated by a reduction in malondialdehyde (MDA) formation and preservation of antioxidant levels comparing to the IR group. We concluded that both methods of POC have protective effects on renal function and histology possibly by a reduction in IR-induced oxidative stress.

  17. Protective effects of hypovolemic hypotension preconditioning on cardiopulmonary function after myocardium ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    陈雪君; 王昕; 夏中元; 罗涛; 涂仲凡

    2004-01-01

    Objective: To identify the protective effects of hypovolemic hypotension preconditioning on cardiopulmonary function after myocardial ischemia/reperfusion injury and to explore the possible mechanism.Methods: Twenty-four male white rabbits were randomly assigned to two groups. In the control group, ischemia/reperfusion animals(Group I/R, n=10) were subjected to thirty-minute occlusion of left anterior descending coronary artery and two-hour reperfusion. Animals in hypovolemic hypotension preconditioning group (Group HHP, n=14) experienced brief systemic ischemia preconditioning through blood withdrawl to lower blood pressure to 40%-50% of the baseline before myocardial ischemia/reperfusion. Hemodynamic parameters were recorded. Blood sample was taken to measure superoxide dismutase (SOD), malondialdehyde (MDA) and nitrogen monoxide (NO) changes with blood gas analysis. Myocardium specimens were sampled to examine apoptosis-related gene interleukin-1 beta converting enzyme (ICE) mRNA. Results: Cardiac mechanical function and lung gas exchange remained stable in Group HHP with a significant increase in NO level; while in Group I/R without preconditioning, cardiopulmonary dysfunction was present after 2 h reperfusion associated with a significant reduction in NO formation and an increase in MDA (P<0.001). There was negative expression of ICE mRNA in the two groups.Conclusions: Hypovolemic hypotension preconditioning significantly improves cardiopulmonary function and increases NO formation and the protective benefit associated with hypovolemic hypotension preconditioning of the heart may be regulated through NO mediated mechanism.

  18. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm.

    Science.gov (United States)

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M; Farley, Michelle; Roy, Nilay; Chin, Matthew S; von Andrian, Ulrich H; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J; Bonventre, Joseph V; Siedlecki, Andrew M

    2015-04-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 min injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 min unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury, blood flow was decreased in the inner cortex of wild-type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild-type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 h after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMCs) to secrete the macrophage chemoattractant RANTES, a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared with transgenic and non-transgenic mice after the 10 min injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation.

  19. Does closure of acid-sensing ion channels reduce ischemia/reperfusion injury in the rat brain?

    Institute of Scientific and Technical Information of China (English)

    Jie Wang; Yinghui Xu; Zhigang Lian; Jian Zhang; Tingzhun Zhu; Mengkao Li; Yi Wei; Bin Dong

    2013-01-01

    Acidosis is a common characteristic of brain damage. Because studies have shown that permeable Ca2+-acid-sensing ion channels can mediate the toxic effects of calcium ions, they have become new targets against pain and various intracranial diseases. However, the mechanism associated with expression of these channels remains unclear. This study sought to observe the expression characteristics of permeable Ca2+-acid-sensing ion channels during different reperfusion inflows in rats after cerebral ischemia. The rat models were randomly divided into three groups: adaptive ischemia/reperfusion group, one-time ischemia/reperfusion group, and severe cerebral ischemic injury group. Western blot assays and immunofluorescence staining results exhibited that when compared with the one-time ischemia/reperfusion group, acid-sensing ion channel 3 and Bcl-x/l expression decreased in the adaptive ischemia/reperfusion group. Calmodulin expression was lowest in the adaptive ischemia/reperfusion group. Following adaptive reperfusion, common carotid artery flow was close to normal, and the pH value improved. Results verified that adaptive reperfusion following cerebral ischemia can suppress acid-sensing ion channel 3 expression, significantly reduce Ca2+ influx, inhibit calcium overload, and diminish Ca2+ toxicity. The effects of adaptive ischemia/reperfusion on suppressing cell apoptosis and relieving brain damage were better than that of one-time ischemia/reperfusion.

  20. Effect of tetramethylpyrazine on P-selectin and hepatic/renal ischemia and reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Jin-Lian Chen; Tong Zhou; Wei-Xiong Chen; Jin-Shui Zhu; Ni-Wei Chen; Ming-Jun Zhang; Yun-Lin Wu

    2003-01-01

    AIM: To investigate the effect of tetramethylpyrazine on hepatic/renal ischemia and reperfusion injury in rats.METHODS: Hepatic/renal function, histopathological changes,and hepatic/renal P-selectin expression were studied with biochemical measurement and immunohistochemistry in hepatic/renal ischemia and reperfusion injury in rat models.RESULTS: Hepatic/renal insufficiency and histopathological damage were much less in the tetramethylpyrazine-treated group than those in the saline-treated groups. Hepatic/ renal P-selectin expression was down regulated in the tetramethylpyrazine-treated group.CONCLUSION: P-selectin might mediate neutrophil infiltration and contribute to hepatic/renal ischemia and reperfusion injury. Tetramethylpyrazine might prevent hepatic/renal damage induced by ischemia and reperfusion injury through inhibition of P-selectin.

  1. Poloxamer-188 Reduces Muscular Edema After Tourniquet-Induced Ischemia-Reperfusion Injury in Rats

    Science.gov (United States)

    2011-05-01

    Trauma. 2011;70: 1192–1197) Muscle injury, such as ischemia-reperfusion injury (I-R),1blunt trauma injury, electrocution ,2 burn, crush,3 and laceration, is...188 solution (SythRx, Bellaire, TX) contained 150 mg/mL highly purified P-188, 3.08 mg/mL sodium chlo- ride, 2.38 mg/mL sodium citrate, and 0.366 mg...mL citric acid. The placebo solution contained the same ingredients with the exception of P-188. Doses consisted of 1.0 mL/kg body weight of P-188

  2. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Lønborg, Jacob; Vejlstrup, Niels; Kelbæk, Henning

    2011-01-01

    (STEMI) treated with primary percutaneous coronary intervention (pPCI). Methods and results A total of 172 patients with STEMI and Thrombolysis in Myocardial Infarction flow 0/1 were randomly assigned to exenatide or placebo (saline) intravenously. Study treatment was commenced 15 min before intervention...... the infarct size and the AAR for both treatment groups and an analysis of covariance showed that datapoints in the exenatide group lay significantly lower than for the placebo group (P= 0.011). There was a trend towards smaller absolute infarct size in the exenatide group (13 ± 9 vs. 17 ± 14 g; P= 0.......11). No difference was observed in left ventricular function or 30-day clinical events. No adverse effects of exenatide were observed. Conclusion In patients with STEMI undergoing pPCI, administration of exenatide at the time of reperfusion increases myocardial salvage....

  3. Ischemia/reperfusion injury in the rat colon.

    Science.gov (United States)

    Murthy, S; Hui-Qi, Q; Sakai, T; Depace, D E; Fondacaro, J D

    1997-04-01

    This study investigated metabolic and biochemical consequences of colonic ischemia/reperfusion (I/R) in the rat and evaluated whether antioxidants prevent I/R-induced functional damage in the rat colon. The surgical preparation involved a 10 cm segment of the colon and occlusion of the superior mesenteric artery (SMA) to induce I/R. Arterial blood from the aorta and venous blood from the superior mesenteric vein (SMV) was collected to measure blood gases, lactic acid (LA) and arachidonic acid (AA) metabolites. Tissue xanthine oxidase (XO) and thiobarbituric acid (TBA) derivatives were measured before and after reperfusion. In addition, vascular and mucosal permeability, and the effect of MDL 73404 (a water soluble vitamin E analog) and 5-aminosalicylic acid on LA, AA, XO and TBA was measured. After ischemia, the colon displayed a metabolic shift from aerobic to anaerobic course by increasing lactic acid production in the colon (183% increase in SMV lactate level compared 87% in the SMA; p < 0.03). After 10 minutes of reperfusion, circulating 6-keto-prostaglandin F1 alpha increased by 3.85 fold (p < 0.001) and thromboxane B2 increased by 2 to 3 fold. An Ischemia time longer than 60 minutes was required to cause changes in tissue XO levels. Tissue TBA levels showed a good dose response corresponding with I/R time. I/R (60 minutes) caused a three and 16 fold increase (p < 0.01) in vascular and mucosal permeability, respectively. MDL 73404 and 5-aminosalicylic acid significantly inhibited the vascular permeability and decreased LA, AA, XO and TBA. These observations provide the first direct experimental evidence for I/R-induced damage in the colon and some of its effects can be reversed by conventional and novel antioxidants.

  4. Effects of Rosa Canina L. on Ischemia/ Reperfusion Injury in Anesthetized Rats

    Directory of Open Access Journals (Sweden)

    S Karimi

    2012-04-01

    Full Text Available Background: Ischemia/reperfusion induced acute renal failure causes excretory functional disorders of nephrons. Ischemia/reperfusion injury is accompanied by generation of reactive oxygen species that leads to dysfunction, injury, and death of renal cells. Antioxidants of plant origin minimize the harmful effects of reactive oxygen species. The aim of this study was to determine the possible therapeutic potentials of Rosa canina L. in preventing renal functional disturbances during the post-ischemic reperfusion period. Methods: In this experimental study undertaken for evaluating renal excretory function in 30 male Wistar rats, renal ischemia was induced by occluding both renal arteries for 45 min, followed by 24 h of reperfusion. The rats received 2 ml of tap water or a hydroalcoholic extract of Rosa canina (500 mg/kg orally for 7 days before induction of ischemia. In plasma samples, creatinine and urea nitrogen levels were measured, and in renal tissue samples, red blood cells were counted. The data were analyzed using ANOVA and Duncan tests.Results: Renal ischemia for 45 minutes increased plasma levels of creatinine (P<0.001 and nitrogen urea (P<0.01 while reducing red blood cell counts in renal glomeruli (P<0.001. Rosa canina administration diminished the increase in creatinine (P<0.001 and nitrogen urea concentrations (P<0.01, and prevented reductions in red blood cell counts in renal glomeruli (P<0.001. Conclusion: Rosa canina seems to be useful as a preventive agent against renal damages induced by ischemia/reperfusion injuries in rats.

  5. Effects Of Ischemic Preconditioning On The Renal Ischemia- Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Anyamanesh S

    2003-07-01

    Full Text Available  During kidney and other organ transplantation, the organ to be transplanted, must inevitably remain out of the body with little or no blood perfusion at all for a long period of time (ischemia. These events have been suggested to cause the formation of oxygen- derived free radicals (OFR. Reperfusion (reintroduction of blood flow will further exacerbate the initial damage caused by the ischemic insult and may result in the production of free radicals. The aim of this study was to investigate whether induction of brief periods of renal artery occlusion (ischemic pre¬conditioning, IPC can provide protection from the effects of a subsequent period of ischemia and reperfusion (IR in the rat kidney."nMaterials and Methods: In this regard, 28 white, male rats were randomly and equally divided into four groups: Control (sham- operated, IPC alone, IR alone (30 min ischemia followed by 10 min reperfusion, and IPC- IR. Preconditioning involved the sequential clamping of the right renal artery for 5 min and declamping for 5 min for a total of 3 cycles. To demonstrate the effectiveness of IPC regimen, vitamin E as an endogenous antioxidant and an index of lipid peroxidation was measured by HPLC after its extraction from right renal venous plasma and right renal tissue."nResults: Results of this study showed that the amount of vitamin E of renal tissue and venous plasma in the IR group had a significant decrease when compared to the control group (P< 0.0001. Whereas the amount of this vitamin in both renal tissue and venous plasma of the IPC- IR group was significantly higher than that in the IR group (P< 0.0001, but did not show any significant difference with the control group."nConclusion: In this study, preconditioning method prevented the reduction of the endogenous antioxidant (Vit. E in encountering the following sustained ischemic insult. Therefore, we suggest that ischemic preconditioning can be used to protect the Vit. E level of kidney from its

  6. Cardioprotective properties of Crataegus oxycantha extract against ischemia-reperfusion injury

    Science.gov (United States)

    Swaminathan, Jayachandran Kesavan; Khan, Mahmood; Mohan, Iyappu K; Selvendiran, Karuppaiyah; Devaraj, S. Niranjali; Rivera, Brian K.; Kuppusamy, Periannan

    2010-01-01

    The aim of the study was to investigate the cardioprotective effect and mechanism of Crataegus oxycantha (COC) extract, a well-known natural antioxidant-based cardiotonic, against ischemia/reperfusion (I/R) injury. Electron paramagnetic resonance studies showed that COC extract was capable of scavenging superoxide, hydroxyl, and peroxyl radicals, in vitro. The cardioprotective efficacy of the extract was studied in a crystalloid perfused heart model of I/R injury. Hearts were subjected to 30 min of global ischemia followed by 45 min of reperfusion. During reperfusion, COC extract was infused at a dose rate of 1 mg/ml/min for 10 min. Hearts treated with COC extract showed a significant recovery in cardiac contractile function, reduction in infarct size, and decrease in creatine kinase and lactate dehydrogenase activities. The expressions of xanthine oxidase and NADPH oxidase were significantly reduced in the treated group. A significant upregulation of the anti-apoptotic proteins Bcl-2 and Hsp70 with simultaneous downregulation of the pro-apoptotic proteins cytochrome c and cleaved caspase-3 was observed. The molecular signaling cascade including phospho-Akt (ser-473) and HIF-1α that lead to the activation or suppression of apoptotic pathway also showed a significant protective role in the treatment group. No significant change in phospho-p38 levels was observed. The results suggested that the COC extract may reduce the oxidative stress in the reperfused myocardium, and play a significant role in the inhibition of apoptotic pathways leading to cardioprotection. PMID:20171068

  7. Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model

    Institute of Scientific and Technical Information of China (English)

    Jinnan Zhang; Wei Lu; Qiang Lei; Xi Tao; Hong You; Pinghui Xie

    2013-01-01

    Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi-crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly focused on the myocardium, whereas little research has been carried out in brain tissue fol owing ischemia-reperfusion. We assessed the neuroprotective effects of salvianolate in a rat model of cerebral ischemia-reperfusion injury induced using the suture method. At onset and 24 and 48 hours after reperfusion, rats were intraperitoneal y injected with salvianolate (18 mg/kg) or saline. Neurological deficit scores at 72 hours showed that the neurological functions of rats that had received salvianolate were significantly better than those of the rats that had received saline. 2,3,5-Triphenyltetrazolium chloride was used to stain cerebral tissue to determine the extent of the infarct area. A significantly smal er infarct area and a significantly lower number of apoptotic cel s were observed after treatment with salvianolate compared with the saline treatment. Expression of heat shock protein 22 and phosphorylated protein kinase B in ischemic brain tissue was significantly greater in rats treated with salvianolate compared with rats treated with saline. Our findings suggest that salvianolate provides neuroprotective effects against cerebral ischemia-reperfusion injury by upregulating heat shock protein 22 and phosphorylated protein kinase B expression.

  8. Effects of Lipoteichoic Acid induced Delayed Preconditioning on Ischemia-reperfusion Injury in Isolated Rat Hearts

    Institute of Scientific and Technical Information of China (English)

    马世玉; 向继洲; 吴基良; 胡本容

    2003-01-01

    To explore the potential of lipoteichoic acid (LTA) induced cardioprotection against is-chemia-reperfusion (I/R) injury in isolated rat hearts and whether endogenous nitric oxide (NO)participates-in the protection, the rats were pretreated with LTA (1 mg/kg, i. p. ) 24 h before theexperiment, and the isolated hearts were subjected to 30 min no-flow normothermic global ischemiaand 60 min reperfusion after a 20-min stabilization period by the langendorff method. Cardiac func-tions were evaluated at the end of stabilization, and at 30 min, 60 min of reperfusion. The amountsof MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase(LDH) and total NO oxidationproducts in the coronary effluent were measured spectrophotometrically at the end of reperfusion. Itwas revealed that pretreatment with LTA could significantly improve the recovery of cardiac func-tion, reduce the release of CK-MB and LDH, and increase the concentrations of NO in coronary ef-fluent. The protective effects were abrogated by pretreatment of the rats with L-NAME. It wasconcluded that LTA could induce the delayed cardioprotection against I/R injury, and endogenousNO may be involved in the mechanisms.

  9. Effect and mechanism of salvianolic acid B on the myocardial ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Ling Xue; Zhen Wu; Xiao-Ping Ji; Xia-Qing Gao; Yan-Hua Guo

    2014-01-01

    Objective: To investigate the effect of salvianolic acid B on rats with myocardial ischemia-reperfusion injury. Methods: SD rats were randomly divided into five groups (n=10 in each group): A sham operation group, B ischemic reperfusion group model group, C low dose salvianolic acid B group, D median dose salvianolic acid B group, E high dose salvianolic acid B group. One hour after establishment of the myocardial ischemia-reperfusion model, the concentration and the apoptotic index of the plasma level of myocardial enzymes (CTnⅠ, CK-MB), SOD, MDA, NO, ET were measured. Heart tissues were obtained and micro-structural changes were observed. Results: Compared the model group, the plasma CTnⅠ, CK-MB, MDA and ET contents were significantly increased, NO, T-SOD contents were decreased in the treatment group (group C, D, and E) (P<0.05); compared with group E, the plasma CTnⅠ, CK-MB, MDA and ET levels were increased, the NO, T-SOD levels were decreased in groups C and D (P<0.05). Infarct size was significantly reduced, and the myocardial ultrastructural changes were improved significantly in treatment group. Conclusions: Salvianolic acid B has a significant protective effect on myocardial ischemia-reperfusion injury. It can alleviate oxidative stress, reduce calcium overload, improve endothelial function and so on.

  10. Oleanolic acid attenuates liver ischemia reper-fusion injury by HO-1/Sesn2 signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Bao-Bin Hao; Xiong-Xiong Pan; Ye Fan; Ling Lu; Xiao-Feng Qian; Xue-Hao Wang; Feng Zhang; Jian-Hua Rao

    2016-01-01

    BACKGROUND: Ischemia reperfusion injury (IRI) is unavoid-able in liver transplantation and hepatectomy. The present study aimed to explore the possible mechanism and the effect of oleanolic acid (OA) in hepatic IRI. METHODS: Mice were randomly divided into 6 groups based on different treatment. IRI model: The hepatic artery, portal vein, and bile duct to the left and median liver lobes (70% of the liver) were occluded with an atraumatic bulldog clamp for 90 minutes and then the clamp was removed for reperfusion. The mice were sacriifced 6 hours after reperfusion, and blood and liver tissues were collected. Liver injury was evaluated by biochemical and histopathologic examinations. The expressions of Sesn2, PI3K, Akt and heme oxygenase-1 (HO-1) were mea-sured with quantitative real-time RT-PCR and Western blotting. RESULTS: The serum aminotransferases level and scores of he-patic histology were increased after reperfusion. The increase was attenuated by pretreatment with OA (P CONCLUSIONS: Our results demonstrate that OA can attenu-ate hepatic IRI. The protective mechanism may be related to the OA-induced HO-1/Sesn2 signaling pathway.

  11. Lipid peroxidation and renal injury in renal ischemia/reperfusion: Effect of Benincasa cerifera

    Directory of Open Access Journals (Sweden)

    Bhalodia Y

    2009-01-01

    Full Text Available To investigate the role of the methanolic fruit extract of Benincasa cerifera on lipid peroxidation (LPO and renal pathology in ischemia/reperfusion (I/R.In experimental methodology, both renal pedicles were occluded for 60 min followed by 24 h of reperfusion. B. cerifera (500 mg/kg/day was administered orally for 5 days prior to induction of renal ischemia and was continued for 1 day after ischemia. At the end of the reperfusion period, rats were sacrificed. Sham-operated rats followed same procedure except renal arteries occlusion. LPO and histopathological analysis were done in renal tissue. Serum creatinine and urea levels were measured for the evaluation of renal function. In ischemia/reperfusion (I/R rats, malondialdehyde (MDA levels were increased significantly when compared with sham-control rats. Histological changes showed tubular cell swelling, interstitial oedema, tubular dilation and moderate-to-severe necrosis in epithelium of I/R rat as compared to sham control. The methanolic fruit extract of B. cerifera could attenuate the heightened MDA levels. I/R-induced renal injury was markedly diminished by administration of B. cerifera These results indicate that the methanolic fruit extract of B. cerifera attenuate renal damage after I/R injury of the kidney by potent antioxidant or free radical scavenging activity.

  12. Inhibitory effect of zileuton on inflammatory injury to myocardium following ischemia/reperfusion in rats

    Directory of Open Access Journals (Sweden)

    Hua-di QIN

    2014-03-01

    Full Text Available Objective  To investigate the protective effect of zileuton, an inhibitor of 5-lipoxygenase (5-LO, on ischemia/ reperfusion (I/R injury of rat myocardium, and its probable mechanisms. Methods  Thirty female SD rats were randomly divided into 3 groups (10 each: sham group (S group, ischemic/reperfusion group (I/R group, and zileuton group (Z group. The I/ R model was reproduced by left anterior descending (LAD artery occlusion for 45min followed by 120-min reperfusion. To rats of Z group 3mg/kg zileuton was given 15min before ischemia. Animals were sacrificed after reperfusion. The degree of myocardial damage was determined by means of pathological examination. Myocardial apoptosis was identified by TUNEL assay. The levels of leukotriene B4 (LTB4, interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α in plasma were determined by ELISA; the distribution of 5-LO in neutrophils was determined by immunofluorescence and Western blotting. Results  Compared with I/ R group, zileuton attenuated the I/R-induced myocardial damage significantly. TUNEL assay demonstrated a significant decrease in myocardial apoptosis by zileuton (P0.05. Conclusion  Zileuton may protect myocardium from I/R injury in rats through suppressing myocardial apoptosis and inflammation by inhibiting the 5-LO activation and redistribution. DOI: 10.11855/j.issn.0577-7402.2014.03.05

  13. Protective effects of apocynin and allopurinol on ischemia/reperfusion-induced liver injury in mice

    Institute of Scientific and Technical Information of China (English)

    Ping-Guo Liu; Song-Qing He; Yan-Hong Zhang; Jian Wu

    2008-01-01

    AIM: To determine the effects of allopurinol, an inhibitor of xanthine oxidase, and apocynin, an inhibitor of NADPH oxidase, on oxidant stress and liver injury caused by hepatic ischemia/reperfusion (I/R) procedure in mice. METHODS: Nice were pretreated with a xanthine oxidase inhibitor, allopurinol, or NADPH oxidase (NOX)inhibitor, apocynin before the hepatic I/R procedure. Then treated or untreated mice underwent the hepatic I/R procedure. The effects on hepatic injury and superoxide anions were determined after starting reperfusion. RESULTS: A standard warm hepatic I/R procedure led to a marked increase in superoxide anion production as indicated by a superoxide anion tracer, MCLA. At the same time, the procedure caused profound acute liver injury, as indicated by elevated serum alanine aminotransferase and tumor necrosis factor-αlevels, reduced liver glutathione levels and elevated malondialdehyde contents, as well as a high apoptotic cell count. All these changes were reversed by the use of apocynin or allopurinol prior to the hepatic I/R procedure. CONCLUSION: AIIopurinol and apocynin exerted protective effects on hepatic ischemia/reperfusion injury. The protection is associated with blocking the generation of superoxide anions during the hepatic I/R procedure by inhibiting xanthine oxidase and NADPH oxidase activity.

  14. Cardioprotection by a novel recombinant serine protease inhibitor in myocardial ischemia and reperfusion injury.

    Science.gov (United States)

    Murohara, T; Guo, J P; Lefer, A M

    1995-09-01

    Polymorphonuclear neutrophils (PMN) play an important role in myocardial ischemia/reperfusion (MI/R) injury; however, the role of neutrophilic proteases is less understood. The effects of a novel serine protease inhibitor (serpin), LEX032, were investigated in a murine model of MI (20 min) and R (24 hr) injury in vivo. LEX032 is a recombinant human alpha 1-antichymotrypsin in which six amino acid residues were replaced around the active center with those of alpha-1 protease inhibitor. LEX032 has the ability to inhibit both neutrophil elastase and cathepsin G, two major neutral serine proteases in neutrophils, as well as superoxide generation. LEX032 (25 or 50 mg/kg) administered i.v. 1 min before reperfusion significantly attenuated myocardial necrotic injury evaluated by cardiac creatine kinase loss compared to MI/R rats receiving only vehicle (P LEX032 as compared with rats receiving vehicle (P LEX032 also moderately attenuated leukotriene B4-stimulated PMN adherence to rat superior mesenteric artery endothelium and markedly diminished superoxide radical release from LTB4-stimulated PMN in vitro. In a glycogen-induced rat peritonitis model, LEX032 (50 mg/kg) significantly attenuated PMN transmigration into the peritoneal cavity in vivo. In conclusion, the recombinant serine protease inhibitor, LEX032, appears to be an effective agent for attenuating MI/R injury by inhibiting neutrophil-accumulation into the ischemic-reperfused myocardium and by inactivating cytotoxic metabolites (proteases and superoxide radical) released from neutrophils.

  15. The protective effect of niacinamide on ischemia-reperfusion-induced liver injury.

    Science.gov (United States)

    Chen, C F; Wang, D; Hwang, C P; Liu, H W; Wei, J; Lee, R P; Chen, H I

    2001-01-01

    Reperfusion of ischemic liver results in the generation of oxygen radicals, nitric oxide (NO) and their reaction product peroxynitrite, all of which may cause strand breaks in DNA, which activate the nuclear enzyme poly(ADP ribose)synthase (PARS). This results in rapid depletion of intracellular nicotinamide adenine dinucleotide and adenosine 5'-triphosphate (ATP) and eventually induces irreversible cytotoxicity. In this study, we demonstrated that niacinamide, a PARS inhibitor, attenuated ischemia/reperfusion (I/R)-induced liver injury. Ischemia was induced by clamping the common hepatic artery and portal vein of rats for 40 min. Thereafter, flow was restored and the liver was reperfused for 90 min. Blood samples collected prior to I and after R were analyzed for methyl guanidine (MG), NO, tumor necrosis factor (TNF-alpha) and ATP. Blood levels of aspartate transferase (AST), alanine transferase (ALT) and lactate dehydrogenase (LDH) which served as indexes of liver injury were measured. This protocol resulted in elevation of the blood NO level (p niacinamide (10 mM), liver injury was significantly attenuated, while blood ATP content was reversed. In addition, MG, TNF-alpha and NO release was attenuated. These results indicate that niacinamide, presumably by acting with multiple functions, exerts potent anti-inflammatory effects in I/R-induced liver injury.

  16. Deficiency of Senescence Marker Protein 30 Exacerbates Cardiac Injury after Ischemia/Reperfusion

    Directory of Open Access Journals (Sweden)

    Shinpei Kadowaki

    2016-04-01

    Full Text Available Early myocardial reperfusion is an effective therapy but ischemia/reperfusion (I/R causes lethal myocardial injury. The aging heart was reported to show greater cardiac damage after I/R injury than that observed in young hearts. Senescence marker protein 30 (SMP30, whose expression decreases with age, plays a role in reducing oxidative stress and apoptosis. However, the impact of SMP30 on myocardial I/R injury remains to be determined. In this study, the left anterior descending coronary artery was occluded for 30 min, followed by reperfusion in wild-type (WT and SMP30 knockout (KO mice. After I/R, cardiomyocyte apoptosis and the ratio of infarct area/area at risk were higher, left ventricular fractional shortening was lower, and reactive oxygen species (ROS generation was enhanced in SMP30 KO mice. Moreover, the previously increased phosphorylation of GSK-3β and Akt was lower in SMP30 KO mice than in WT mice. In cardiomyocytes, silencing of SMP30 expression attenuated Akt and GSK-3β phosphorylation, and increased Bax to Bcl-2 ratio and cardiomyocyte apoptosis induced by hydrogen peroxide. These results suggested that SMP30 deficiency augments myocardial I/R injury through ROS generation and attenuation of Akt activation.

  17. Donor pretreatment with carbon monoxide prevents ischemia/reperfusion injury following heart transplantation in rats

    Directory of Open Access Journals (Sweden)

    Noritomo Fujisaki

    2016-01-01

    Full Text Available Because inhaled carbon monoxide (CO provides potent anti-inflammatory and antioxidant effects against ischemia reperfusion injury, we hypothesized that treatment of organ donors with inhaled CO would decrease graft injury after heart transplantation. Hearts were heterotopically transplanted into syngeneic Lewis rats after 8 hours of cold preservation in University of Wisconsin solution. Donor rats were exposed to CO at a concentration of 250 parts per million for 24 hours via a gas-exposure chamber. Severity of myocardial injury was determined by total serum creatine phosphokinase and troponin I levels at three hours after reperfusion. In addition, Affymetrix gene array analysis of mRNA transcripts was performed on the heart graft tissue prior to implantation. Recipients of grafts from CO-exposed donors had lower levels of serum troponin I and creatine phosphokinase; less upregulation of mRNA for interleukin-6, intercellular adhesion molecule-1, and tumor necrosis factor-α; and fewer infiltrating cells. Although donor pretreatment with CO altered the expression of 49 genes expressly represented on the array, we could not obtain meaningful data to explain the mechanisms by which CO potentiated the protective effects.Pretreatment with CO gas before organ procurement effectively protected cardiac grafts from ischemia reperfusion-induced injury in a rat heterotopic cardiac transplant model. A clinical report review indicated that CO-poisoned organ donors may be comparable to non-poisoned donors.

  18. Evaluation of stem cell administration in a model of kidney ischemia-reperfusion injury.

    Science.gov (United States)

    da Silva, Léa Bueno Lucas; Palma, Patrícia Viana Bonini; Cury, Patrícia Maluf; Bueno, Valquiria

    2007-12-15

    Ischemia-reperfusion injury is a common early event in kidney transplantation and contributes to a delay in organ function. Acute tubular necrosis, impaired kidney function and organ leukocyte infiltration are the major findings. The therapeutic potential of stem cells has been the focus of recent research as these cells possess capabilities such as self-renewal, multipotent differentiation and aid in regeneration after organ injury. FTY720 is a new synthetic compound that has been associated with preferential migration of blood lymphocytes to peripheral lymph nodes instead of inflammatory sites. Bone marrow stem cells (BMSC) and/or FTY720 were used as therapy to promote recovery of tubule cells and avoid inflammation at the renal site, respectively. Mice were submitted to renal ischemia-reperfusion injury and were either treated with two doses of FTY720, 10x10(6) BMSC, or both in order to compare the therapeutic effect with non-treated and control animals. Renal function and structure were investigated as were cell numbers in peripheral blood and spleen. Activation and apoptosis markers were also evaluated in splenocytes using flow cytometry. We found that the combined therapy (FTY720+BMSC) was associated with more significant changes in renal function and structure after ischemia-reperfusion injury when compared with the other groups. Also a decrease at cell numbers and prevention of spleen cells activation and apoptosis was observed. In conclusion, in our model it was not possible to demonstrate the potential of stem cells alone or in combination with FTY720 to promote early kidney recovery after ischemia-reperfusion injury.

  19. Effects of dexmedetomidine in conjunction with remote ischemic preconditioning on renal ischemia–reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Emine Bagcik

    2014-12-01

    Full Text Available Background and objectives: The aim of this study was to evaluate the effects of remote ischemic preconditioning by brief ischemia of unilateral hind limb when combined with dexmedetomidine on renal ischemia-reperfusion injury by histopathology and active caspase-3 immunoreactivity in rats. Methods: 28 Wistar albino male rats were divided into 4 groups. Group I (Sham, n = 7: Laparotomy and renal pedicle dissection were performed at 65th minute of anesthesia and the rats were observed under anesthesia for 130min. Group II (ischemia-reperfusion, n = 7: At 65th minute of anesthesia bilateral renal pedicles were clamped. After 60 min ischemia 24 h of reperfusion was performed. Group III (ischemia-reperfusion + dexmedetomidine, n = 7: At the fifth minute of reperfusion (100 μg/kg intra-peritoneal dexmedetomidine was administered with ischemia-reperfusion group. Reperfusion lasted 24 h. Group IV (ischemia-reperfusion + remote ischemic preconditioning + dexmedetomidine, n = 7: After laparotomy, three cycles of ischemic preconditioning (10 min ischemia and 10 min reperfusion were applied to the left hind limb and after 5 min with group III. Results: Histopathological injury scores and active caspase-3 immunoreactivity were significantly lower in the Sham group compared to the other groups. Histopathological injury scores in groups III and IV were significantly lower than group II (p = 0.03 and p = 0.05. Active caspase-3 immunoreactivity was significantly lower in the group IV than group II (p = 0.01 and there was no significant difference between group II and group III (p = 0.06. Conclusions: Pharmacologic conditioning with dexmedetomidine and remote ischemic preconditioning when combined with dexmedetomidine significantly decreases renal ischemia- reperfusion injury histomorphologically. Combined use of two methods prevents apoptosis via active caspase-3.

  20. The Effect of Nitric Oxide/Endothelins System on the Hepatic Ischemia/Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    吕平; 陈道达; 田源; 张景辉; 吴毅华

    2002-01-01

    Summary: The relationship between the hepatic ischemia/reperfusion (I/R) injury and the balance of nitric oxide/endothelins (NO/ET) was studied. The changes of the ratio of NO/ET and the hepatic injury were observed in a rat hepatic I/R model pretreated with several tool drugs. In the acute phase of hepatic I/R injury, the ratio of plasma NO/ET was reduced from 1.58 ± 0. 20 to 0. 29 ± 0. 05 (P < 0. 01) and the hepatic damage deteriorated. NO donor L-Arg and ET receptor antagonist TAK-044 could alleviate the hepatic I/R injury to some degree, whereas NO synthase inhibitor L-NAME aggravated the damage. It was concluded that the hepatic I/R injury might be related with the disturbance of the NO/ET balance. Regulation of this balance might have an effect on the I/R injury.

  1. Effects of alprostadil and iloprost on renal, lung, and skeletal muscle injury following hindlimb ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Erer, Dilek; Özer, Abdullah; Demirtaş, Hüseyin; Gönül, İpek Işık; Kara, Halil; Arpacı, Hande; Çomu, Faruk Metin; Oktar, Gürsel Levent; Arslan, Mustafa; Küçük, Ayşegül

    2016-01-01

    To evaluate the effects of alprostadil (prostaglandin [PGE1] analog) and iloprost (prostacyclin [PGI2] analog) on renal, lung, and skeletal muscle tissues after ischemia reperfusion (I/R) injury in an experimental rat model. Wistar albino rats underwent 2 hours of ischemia via infrarenal aorta clamping with subsequent 2 hours of reperfusion. Alprostadil and iloprost were given starting simultaneously with the reperfusion period. Effects of agents on renal, lung, and skeletal muscle (gastrocnemius) tissue specimens were examined. Renal medullary congestion, cytoplasmic swelling, and mean tubular dilatation scores were significantly lower in the alprostadil-treated group than those found in the I/R-only group (Piloprost-treated groups (P=0.017 and P=0.001; Piloprost-treated group than the scores found in the nontreated I/R group (Piloprost significantly reduce lung tissue I/R injury. Alprostadil has more prominent protective effects against renal I/R injury, while iloprost is superior in terms of protecting the skeletal muscle tissue against I/R injury.

  2. Effects of alprostadil and iloprost on renal, lung, and skeletal muscle injury following hindlimb ischemia–reperfusion injury in rats

    Science.gov (United States)

    Erer, Dilek; Özer, Abdullah; Demirtaş, Hüseyin; Gönül, İpek Işık; Kara, Halil; Arpacı, Hande; Çomu, Faruk Metin; Oktar, Gürsel Levent; Arslan, Mustafa; Küçük, Ayşegül

    2016-01-01

    Objectives To evaluate the effects of alprostadil (prostaglandin [PGE1] analog) and iloprost (prostacyclin [PGI2] analog) on renal, lung, and skeletal muscle tissues after ischemia reperfusion (I/R) injury in an experimental rat model. Materials and methods Wistar albino rats underwent 2 hours of ischemia via infrarenal aorta clamping with subsequent 2 hours of reperfusion. Alprostadil and iloprost were given starting simultaneously with the reperfusion period. Effects of agents on renal, lung, and skeletal muscle (gastrocnemius) tissue specimens were examined. Results Renal medullary congestion, cytoplasmic swelling, and mean tubular dilatation scores were significantly lower in the alprostadil-treated group than those found in the I/R-only group (Palprostadil- and iloprost-treated groups (P=0.017 and P=0.001; PAlprostadil and iloprost significantly reduce lung tissue I/R injury. Alprostadil has more prominent protective effects against renal I/R injury, while iloprost is superior in terms of protecting the skeletal muscle tissue against I/R injury. PMID:27601882

  3. Dynamic Contrast-Enhanced MR Imaging of Renal Ischemia-Reperfusion Injury

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Jun Hyun; Ahn, Myeong Im; Park, Young Ha; Chung, Soo Kyo [Catholic University, Seoul (Korea, Republic of)

    2010-02-15

    To evaluate the usefulness of magnetic resonance imaging (MRI) in a renal ischemia-reperfusion injury. Twenty-four rabbits were randomly divided into four groups, including a sham operated group (n=3). Renal ischemia was induced for 30 minutes (group 1), 60 minutes (group 2) and 120 minutes (group 3). MR imaging was performed before ischemia as well as one hour, 24 hours, and 72 hours after reperfusion. A 99mTc-dimercaptosuccinic acid (DMSA) scintigraphy was performed before ischemia, as well as 24 hours and 72 hours after reperfusion. The signal-to-noise ratio (SNR) on the T2WI, time-relative signal intensity (%RSI) curve on dynamic enhanced images, and relative left renal uptake (%) on DMSA scan were obtained and compared to the histologic findings. The SNR of the cortex on the T2WI changed significantly over the course of the reperfusion time (p<0.001), but was not significantly different among the ischemia groups. The area under the time-%RSI curve gradually decreased from cortex to inner medulla before ischemia, which was reversed and gradually increased after reperfusion. The areas under the time-%RSI curve of outer and inner medulla were significantly different among the ischemia groups (p=0.04, p=0.008). The relative renal uptake (%) of left kidney decreased significantly over the reperfusion time (p=0.03), and was also significantly different among the ischemia groups (p=0.005). Tubular cell necrosis was observed in 16 rabbits (76.2%). The histologic grades of group 3 were higher than those of group 1 and group 2 (p=0.002). Even in rabbits without tubular cell necrosis, the areas under the time-%RSI curves of the cortex, outer, and inner medulla after a 72 hour reperfusion time were significantly lower than those before ischemia (p=0.007, p=0.005, p=0.004). The results of this study suggest that dynamic enhanced MR imaging could be a useful tool for the evaluation of renal ischemia and reperfusion injury.

  4. Isorhamnetin protects rat ventricular myocytes from ischemia and reperfusion injury.

    Science.gov (United States)

    Zhang, Najuan; Pei, Fei; Wei, Huaying; Zhang, Tongtong; Yang, Chao; Ma, Gang; Yang, Chunlei

    2011-01-01

    Ischemia/reperfusion (I/R) has been known to cause damages to ventricular myocytes. Isorhamnetin, one member of flavonoid compounds, has cardioprotective effect, the effect that suggests a possible treatment for I/R damages. In the present investigation, we found that isorhamnetin could significantly promote the viability of neonatal rat ventricular myocytes that were exposed to ischemia/reperfusion (I/R) in vitro. Ventricular myocytes were obtained from neonatal SD rats, and then were divided randomly into three groups, namely I/R-/isor-, I/R+/isor- and I/R+/isor+ group. Before the whole experiment, the most appropriate concentration of isorhamnetin (4 μM) was determined by MTT assay. Our results showed that isorhamnetin could alleviate the damages of I/R to ventricular myocytes through inhibiting lactate dehydrogenase (LDH) activity, and repressing apoptosis. Compared with the counterpart of the I/R+/isor- group, LDH activity in the isorhamnetin-treated group weakened, halving from 24.1 ± 2.3 to 11.4 ± 1.2U/L. Additionally, flow cytometry showed the apparently increased apoptosis rate induced by I/R, the result that was further confirmed by transmission electron microscope. Administration of isorhamnetin, however, assuaged the apoptosis induced by I/R. Corresponding to the reduced apoptosis rate in the I/R+/isor+ group, western blotting assay showed increased amount of Bcl-2 and p53, decreased amount of Bax, and nuclear accumulation of NF-κB/p65.

  5. Phellinus linteus Mycelium Alleviates Myocardial Ischemia-Reperfusion Injury through Autophagic Regulation

    Science.gov (United States)

    Su, Hsing-Hui; Chu, Ya-Chun; Liao, Jiuan-Miaw; Wang, Yi-Hsin; Jan, Ming-Shiou; Lin, Chia-Wei; Wu, Chiu-Yeh; Tseng, Chin-Yin; Yen, Jiin-Cherng; Huang, Shiang-Suo

    2017-01-01

    The incidence of myocardial ischemia-reperfusion (IR) injury is rapidly increasing around the world and this disease is a major contributor to global morbidity and mortality. It is known that regulation of programmed cell death including apoptosis and autophagy reduces the impact of myocardial IR injury. In this study, the cardioprotective effects and underlying mechanisms of Phellinus linteus (Berk. and Curt.) Teng, Hymenochaetaceae (PL), a type of medicinal mushroom, were examined in rats subjected to myocardial IR injury. The left main coronary artery of rats was ligated for 1 h and reperfused for 3 h. The arrhythmia levels were monitored during the entire process and the infarct size was evaluated after myocardial IR injury. Furthermore, the expression levels of proteins in apoptotic and autophagic pathways were observed. Pretreatment with PL mycelium (PLM) significantly reduced ventricular arrhythmia and mortality due to myocardial IR injury. PLM also significantly decreased myocardial infarct size and plasma lactate dehydrogenase level after myocardial IR injury. Moreover, PLM administration resulted in decreased caspase 3 and caspase 9 activation and increased Bcl-2/Bax ratio. Phosphorylation level of AMPK was elevated while mTOR level was reduced. Becline-1 and p62 levels decreased. These findings suggest that PLM is effective in protecting the myocardium against IR injury. The mechanism involves mediation through suppressed pro-apoptotic signaling and regulation of autophagic signaling, including stimulation of AMPK-dependent pathway and inhibition of beclin-1-dependent pathway, resulting in enhancement of protective autophagy and inhibition of excessive autophagy. PMID:28420993

  6. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    Directory of Open Access Journals (Sweden)

    Ozkan Onal

    2015-01-01

    Full Text Available Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF intraperitoneally (ip for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD, catalase (CAT, glutathioneperoxidase (GSH-Px, malondyaldehide (MDA, and protein carbonyl (PCO were analyzed in tissue samples. Total oxidant status (TOS, and total antioxidant capacity (TAC were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy

  7. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus.

    Science.gov (United States)

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-08-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions.

  8. The role of mast cells and fibre type in ischaemia reperfusion injury of murine skeletal muscles

    Directory of Open Access Journals (Sweden)

    Bortolotto Susan K

    2004-09-01

    Full Text Available Abstract Background Ischaemia reperfusion (IR injury of skeletal muscle, is a significant cause of morbidity following trauma and surgical procedures, in which muscle fibre types exhibit different susceptibilities. The relative degree of mast cell mediated injury, within different muscle types, is not known. Methods In this study we compared susceptibility of the fast-twitch, extensor digitorum longus (EDL, mixed fast/slow-twitch gastrocnemius and the predominately slow-twitch soleus, muscles to ischemia reperfusion (IR injury in four groups of mice that harbour different mast cell densities; C57/DBA mast cell depleted (Wf/Wf, their heterozygous (Wf/+ and normal littermates (+/+ and control C57BL/6 mice. We determined whether susceptibility to IR injury is associated with mast cell content and/or fibre type and/or mouse strain. In experimental groups, the hind limbs of mice were subjected to 70 minutes warm tourniquet ischemia, followed by 24 h reperfusion, and the muscle viability was assessed on fresh whole-mount slices by the nitroblue tetrazolium (NBT histochemical assay. Results Viability was remarkably higher in the Wf/Wf strain irrespective of muscle type. With respect to muscle type, the predominately slow-twitch soleus muscle was significantly more resistant to IR injury than gastrocnemius and the EDL muscles in all groups. Mast cell density was inversely correlated to muscle viability in all types of muscle. Conclusion These results show that in skeletal muscle, IR injury is dependent upon both the presence of mast cells and on fibre type and suggest that a combination of preventative therapies may need to be implemented to optimally protect muscles from IR injury.

  9. Ultra Low Dose Delta 9-Tetrahydrocannabinol Protects Mouse Liver from Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Edith Hochhauser

    2015-07-01

    Full Text Available Background/Aims: Ischemia/reperfusion (I/R injury is the main cause of both primary graft dysfunction and primary non-function of liver allografts. Cannabinoids has been reported to attenuate myocardial, cerebral and hepatic I/R oxidative injury. Delta-9-tetrahydrocannabinol (THC, a cannabinoid agonist, is the active components of marijuana. In this study we examined the role of ultralow dose THC (0.002mg/kg in the protection of livers from I/R injury. This extremely low dose of THC was previously found by us to protect the mice brain and heart from a variety of insults. Methods: C57Bl Mice were studied in in vivo model of hepatic segmental (70% ischemia for 60min followed by reperfusion for 6 hours. Results: THC administration 2h prior to the induction of hepatic I/R was associated with significant attenuated elevations of: serum liver transaminases ALT and AST, the hepatic oxidative stress (activation of the intracellular signaling CREB pathway, the acute proinflammatory response (TNF-α, IL-1α, IL-10 and c-FOS hepatic mRNA levels, and ERK signaling pathway activation. This was followed by cell death (the cleavage of the pro-apoptotic caspase 3, DNA fragmentation and TUNEL after 6 hours of reperfusion. Significantly less hepatic injury was detected in the THC treated I/R mice and fewer apoptotic hepatocytes cells were identified by morphological criteria compared with untreated mice. Conclusion: A single ultralow dose THC can reduce the apoptotic, oxidative and inflammatory injury induced by hepatic I/R injury. THC may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation, liver resection and trauma.

  10. The protecting effects and mechanism of betaine hydrochloride on hepatic ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    XIN Xiao-ming; MA Lian-long; GAO Yong-feng; WANG Hao; WANG Xiao-dan; ZHU Yu-yun; GAO Yun-sheng

    2008-01-01

    Objective To study the protecting effects and mechanism of betaine hydrochloride on hepatic ischemia-reperfusion injury in rats. Methods Fourty SD rats were randomly divided into 5 groups (8 animals in each group) : sham-operated control group (A), hepatic ischemia-reperfusion group (B), 200 mg·kg-1 400 mg·kg-1 800 mg·kg-1 betaine hydrochloride + hepatic ischemia-reperfusion group (C、D、E). betaine hydrochloride was administered to animals byoral route in group C、D、E for 7 days before ischemia. A、B group was administered with NS. Made the animal model of part hepatic ischemia-reperfusion. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels in the blood and themalondialdehyde (MDA), superoxide dismutase (SOD), protein content in hepatic tissue were determined after the liver had been reperfused for 24 hours; the hepatic tissue was examined under lightmieroscope and the cell apoptosis was demonstrated with flow cytometry. Results ALT, AST, MDA increased and SOD decreased significantly in B group when compared those in the A group (P<0.05), Hepatic apoptosis was significantly increased; ALT, AST, MDA decreased and SOD increased significantly in betaine hydrochloride 200 mg·kg-1(C) group when compared those in the B group(P<0.05). Hepatic apoptosis was significantly lower, The histologic changes of the liver tissue under lightmicroscope in the C group was more easer than in the I/R group (B). Conclusions Betaine hydrochloride has the ability to scavenge oxygen free radical (OFR), reduce lipid peroxidation and inhibition of apoptosis. So it can protect the rats liver damaged by ischemia-reperfusion.

  11. Apoptosis of motor neurons in the spinal cord after ischemia reperfusion injury delayed paraplegia in rabbits

    Institute of Scientific and Technical Information of China (English)

    Liu Bibo; Liu Miao; Ma Wei; Wang Duoning

    2007-01-01

    Objective To clarify the pathologic change of the motor neuron on spinal cord ischemia reperfusion injury delayed paraplegia. Methods The infrarenal aorta of White New Zealand rabbits (n=24) was occluded for 26 minutes using two bulldog clamps. Rabbits were killed after 8, 24, 72, or 168 hours (n=6 per group), respectively. The clamps was placed but never clamped in sham-operated rabbits (n=24). The lumbar segment of the spinal cord (L5 to L7) was used for morphological studies, including hematoxylin and eosin staining, the expression of bcl-2 and bax proteins in spinal cord was detected with immunohistochemistry. The apoptotic neurons in spinal cord were measured with terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end-labeling of DNA fragments (TUNEL) staining. Results Delayed paraplegia occurred in all rabbits of ischemia reperfusion group at 16-24 hours, but not in sham groups. Motor neurons were selectively lost at 7 days after transient ischemia. After ischemia, the positive expression of bcl-2 protein were in the sham controls but decreased significantly as compared with that of the IR group (P<0.01), especially in 72 hours reperfusion. The positive expression of bax protein were also in the sham controls, but increased in the IR group, especially in 72 hours reperfusion; In addition, TUNEL study demonstrated that no cells were positively labeled until 24 hours after ischemia, but nuclei of some motor neurons were positively labeled at peak after ischemia reperfusion at 72 hours. Conclusion Spinal cord ischemia in rabbits induces morphological and biochemical changes suggestive of apoptosis. These data raise the possibility that apoptosis contributes to neuronal cell death after spinal cord ischemia reperfusion.

  12. Inhibition of Sevoflurane Postconditioning Against Cerebral Ischemia Reperfusion-Induced Oxidative Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shi-Dong Zhang

    2011-12-01

    Full Text Available The volatile anesthetic sevoflurane is capable of inducing preconditioning and postconditioning effects in the brain. In this study, we investigated the effects of sevoflurane postconditioning on antioxidant and immunity indexes in cerebral ischemia reperfusion (CIR rats. Rats were randomly assigned to five separate experimental groups I–V. In the sham group (I, rats were subjected to the same surgery procedures except for occlusion of the middle cerebral artery and exposed to 1.0 MAC sevoflurane 90 min after surgery for 30 min. IR control rats (group II were subjected to middle cerebral artery occlusion (MCAO for 90 min and exposed to O2 for 30 min at the beginning of reperfusion. Sevoflurane 0.5, 1.0 and 1.5 groups (III, IV, V were all subjected to MCAO for 90 min, but at the beginning of reperfusion exposed to 0.5 MAC, 1.0 MAC or 1.5 MAC sevoflurane for 30 min, respectively. Results showed that sevoflurane postconditioning can decrease serum tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β, nitric oxide (NO, nitric oxide synthase (NOS and increase serum interleukin-10 (IL-10 levels in cerebral ischemia reperfusion rats. In addition, sevoflurane postconditioning can still decrease blood lipid, malondialdehyde (MDA levels, infarct volume and increase antioxidant enzymes activities, normal pyramidal neurons density in cerebral ischemia reperfusion rats. It can be concluded that sevoflurane postconditioning may decrease blood and brain oxidative injury and enhance immunity indexes in cerebral ischemia reperfusion rats.

  13. Isoflurane anesthesia initiated at the onset of reperfusion attenuates oxidative and hypoxic-ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    Sergey A Sosunov

    Full Text Available This study demonstrates that in mice subjected to hypoxia-ischemia (HI brain injury isoflurane anesthesia initiated upon reperfusion limits a release of mitochondrial oxidative radicals by inhibiting a recovery of complex-I dependent mitochondrial respiration. This significantly attenuates an oxidative stress and reduces the extent of HI brain injury. Neonatal mice were subjected to HI, and at the initiation of reperfusion were exposed to isoflurane with or without mechanical ventilation. At the end of HI and isoflurane exposure cerebral mitochondrial respiration, H2O2 emission rates were measured followed by an assessment of cerebral oxidative damage and infarct volumes. At 8 weeks after HI navigational memory and brain atrophy were assessed. In vitro, direct effect of isoflurane on mitochondrial H2O2 emission was compared to that of complex-I inhibitor, rotenone. Compared to controls, 15 minutes of isoflurane anesthesia inhibited recovery of the compex I-dependent mitochondrial respiration and decreased H2O2 production in mitochondria supported with succinate. This was associated with reduced oxidative brain injury, superior navigational memory and decreased cerebral atrophy compared to the vehicle-treated HI-mice. Extended isoflurane anesthesia was associated with sluggish recovery of cerebral blood flow (CBF and the neuroprotection was lost. However, when isoflurane anesthesia was supported with mechanical ventilation the CBF recovery improved, the event associated with further reduction of infarct volume compared to HI-mice exposed to isoflurane without respiratory support. Thus, in neonatal mice brief isoflurane anesthesia initiated at the onset of reperfusion limits mitochondrial release of oxidative radicals and attenuates an oxidative stress. This novel mechanism contributes to neuroprotective action of isoflurane. The use of mechanical ventilation during isoflurane anesthesia counterbalances negative effect of isoflurane anesthesia on

  14. Activation of SHH signaling pathway promotes vasculogenesis in post-myocardial ischemic-reperfusion injury

    OpenAIRE

    Guo, Wei; YI, XIN; Ren, Faxin; Liu, Liwen; WU, SUNING; Yang, Jun

    2015-01-01

    This study aimed to investigate the potential roles of sonic Hedgehog (SHH) expression in vasculogenesis in post-myocardial ischemic-reperfusion injury (MIRI) and its underlying mechanism. Cardiac microvascular endothelial cells (CMECs) isolated from the SD rat hearts tissues were used to construct the MIRI model. mRNA level of SHH in control cells and MIRI cells was detected using RT-PCR analysis. Furthermore, effects of SHH expression on CMECs viability and apoptosis were analyzed using MTT...

  15. Endurance exercise accelerates myocardial tissue oxygenation recovery and reduces ischemia reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Yuanjing Li

    Full Text Available Exercise training offers cardioprotection against ischemia and reperfusion (I/R injury. However, few essential signals have been identified to underscore the protection from injury. In the present study, we hypothesized that exercise-induced acceleration of myocardial tissue oxygenation recovery contributes to this protection. C57BL/6 mice (4 weeks old were trained on treadmills for 45 min/day at a treading rate of 15 m/min for 8 weeks. At the end of 8-week exercise training, mice underwent 30-min left anterior descending coronary artery occlusion followed by 60-min or 24-h reperfusion. Electron paramagnetic resonance oximetry was performed to measure myocardial tissue oxygenation. Western immunoblotting analyses, gene transfection, and myography were examined. The oximetry study demonstrated that exercise markedly shortened myocardial tissue oxygenation recovery time following reperfusion. Exercise training up-regulated Kir6.1 protein expression (a subunit of ATP-sensitive K(+channel on vascular smooth muscle cells, VSMC sarc-K(ATP and protected the heart from I/R injury. In vivo gene transfer of dominant negative Kir6.1AAA prolonged the recovery time and enlarged infarct size. In addition, transfection of Kir6.1AAA increased the stiffness and reduced the relaxation capacity in the vasculature. Together, our study demonstrated that exercise training up-regulated Kir6.1, improved tissue oxygenation recovery, and protected the heart against I/R injury. This exercise-induced cardioprotective mechanism may provide a potential therapeutic intervention targeting VSMC sarc-K(ATP channels and reperfusion recovery.

  16. Research progress of traditional Chinese medicine extract for retinal ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Qian-Yu Jia

    2015-05-01

    Full Text Available Retinal ischemia-reperfusion injury(RIRIis a common clinical disease, and the producing mechanism is still in research. Experimental and clinical research in recent years have showed that the mechanism of RIRI and oxygen free radicals, gene regulation, calcium overload, inflammatory cytokines and other factors are closely related. In this article, we summarized the current situation that the scholars at home and abroad study traditional Chinese medicine extract of prevention and treatment of RIRI.

  17. EFFECTS OF NITRIC OXIDE ON REPERFUSION INJURY FOLLOWING PANCREATICODUODENAL TRANSPLANTATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    Chun-hui Yuan; Yong-feng Liu; Jian Liang; Ning Zhao; San-guang He

    2005-01-01

    Objective To investigate the effects of nitric oxide (NO) on reperfusion injury following pancreaticoduodenal transplantation in rats.Methods The homologous male Wistar rat model of heterotopic total pancreaticoduodenal transplantation was used. The L-arginine (L-Arg) group received intravenous injection of L-Arg 5 minutes before and after reperfusion at a dose of 200 mg/kg while the N-Nitro-L-Arginine methyl ester (L-NAME) group received intravenous injection of L-NAME at a dose of 10mg/kg, and control group received saline. The amount of NO in the pancreas graft was measured. Serum concentration of cytokine-induced neutrophil chemoattractant (CINC) determined by enzyme-linked immunosorbant assay,expression of CINC mRNA detected by Northern blot assay, and myeloperoxidase (MPO) activity in the pancreas graft were measured. Histological observation was performed.Results The amount of NO in the L-Arg group was higher than in the control group, while in the L-NAME group was lower than in the control group (P < 0.05). The peak of serum CINC concentration occurred 3 hours after reperfusion with significant difference among groups. Expression peak of CINC mRNA in the pancreas graft occurred 3 hours after reperfusion.The expression level in the L-Arg group was lower than in the control group, the L-NAME group was higher than control group (P < 0.05). MPO activity in the L-Arg group obviously decreasd compared with other groups. The pancreas inflammation was ameliorated in L-Arg group, and pancreas damage was aggravated in L-NAME group.Conclusions L-Arg can increase the amount of NO and inhibit the elevation of CINC, CINC mRNA expression, and early neutrophil accumulation in the transplanted pancreas. NO has protective effects on the ischemia/reperfusion injury of pancreaticoduodenal transplantation.

  18. The protective effects of dexmedetomidine on liver injury-induced myocardial ischemia reperfusion.

    Science.gov (United States)

    Erer, D; Ozer, A; Arslan, M; Oktar, G L; Iriz, E; Elmas, C; Zor, M H; Tatar, T; Goktas, G

    2014-01-01

    The aim of this study was to evaluate the effect of dexmedetomidine (100 µg/kg-ip) on liver injury-induced myocardial ischemia and reperfusion (IR) in rats. Twenty-four Wistar Albino rats were separated into four groups. There were four experimental groups (Group C (Control; n = 6), Group IR (ischemia-reperfusion, n = 6), Group D (Dexmedetomidine; n = 6) that underwent left thoracotomy and received ip dexmedetomidine without IR administered via 100 µg/kg ip route 30 minutes before ligating the left coronary artery, and Group IR-D (IR-Dexmedetomidine; n = 6). A small plastic snare was threaded through the ligature and placed in contact with the heart. To produce IR, a branch of the left coronary artery was occluded for 30 min followed by two hours of reperfusion. However, after the above procedure, the coronary artery was not occluded or reperfused in the control rats. At the end of the study, liver tissue was obtained for histochemical and immunohistochemical determination.Some part of tissue samples were stained with Masson-trichrome for the evaluation of ultrastructural changes and inducible nitric oxide synthase (iNOS) expression was evaluated in other part of samples for immunohistochemical examination. Histopathological changes were detected in Group IR when compared with Group C. iNOS expression was found to be increased and stronger particularly in the vascular wall, perisinusoidal space and hepatocytes around vena centralis in this group compared to the control group. Perivascular oedema was detected to be decreased in Group IR-D compared to Group IR. It was also observed that the impairment in the radial arrangement of hepatocytes significantly recovered in Group IR-D. The immunoreactivity was found to be significantly decreased in the assessment of iNOS expression in the same group when compared with Group IR. Administration of dexmedetomidine ameliorates liver injury induced by myocardial ischemia and reperfusion (Fig. 8, Ref. 33).

  19. The protective effect of diosmin on hepatic ischemia reperfusion injury: an experimental study

    Science.gov (United States)

    Tanrikulu, Yusuf; Şahin, Mefaret; Kismet, Kemal; Kilicoglu, Sibel Serin; Devrim, Erdinc; Tanrikulu, Ceren Sen; Erdemli, Esra; Erel, Serap; Bayraktar, Kenan; Akkus, Mehmet Ali

    2013-01-01

    Liver ischemia reperfusion injury (IRI) is an important pathologic process leading to bodily systemic effects and liver injury. Our study aimed to investigate the protective effects of diosmin, a phlebotrophic drug with antioxidant and anti-inflammatory effects, in a liver IRI model. Forty rats were divided into 4 groups. Sham group, control group (ischemia-reperfusion), intraoperative treatment group, and preoperative treatment group. Ischemia reperfusion model was formed by clamping hepatic pedicle for a 60 minute of ischemia followed by liver reperfusion for another 90 minutes. Superoxide dismutase (SOD) and catalase (CAT) were measured as antioaxidant enzymes in the liver tissues, and malondialdehyde (MDA) as oxidative stress marker, xanthine oxidase (XO) as an oxidant enzyme and glutathione peroxidase (GSH-Px) as antioaxidant enzyme were measured in the liver tissues and the plasma samples. Hepatic function tests were lower in treatment groups than control group (p<0.001 for ALT and AST). Plasma XO and MDA levels were lower in treatment groups than control group, but plasma GSH-Px levels were higher (p<0.05 for all). Tissue MDA levels were lower in treatment groups than control group, but tissue GSH-Px, SOD, CAT and XO levels were higher (p<0.05 for MDA and p<0.001 for others). Samples in control group histopathologically showed morphologic abnormalities specific to ischemia reperfusion. It has been found that both preoperative and intraoperative diosmin treatment decreases cellular damage and protects cells from toxic effects in liver IRI. As a conclusion, diosmin may be used as a protective agent against IRI in elective and emergent liver surgical operations. PMID:24289756

  20. Is adalimumab protective in ischemia-reperfusion injury in lung?

    Directory of Open Access Journals (Sweden)

    Aysel Kurt

    2015-11-01

    Materials and Methods:Twenty seven Wistar albino male rats were divided into three groups (each group had 9 rats. To the control group, only laparotomy procedure was carried out. For I-R group, first infrarenal abdominal aorta was cross-clamped during 2 hr, and then reperfusion was performed for 2 hr. To I-R+Ada group, first a single dose of 50 mg/kg Ada was given intraperitoneally and 5 days later, same I-R procedure was carried out. Results:Levels of TNF-α, malondialdehyde (MDA, myeloperoxidase (MPO, endothelin-1 (ET-1 and caspase-3 enzyme activity of I-R group were higher than that of both I-R+ Ada [TNF-α (P=0.021, MDA (P=0.029, MPO (P=0.012, ET-1 (P=0.036, caspase-3 (P=0.007, respectively] and control group [TNF- α (P=0.008, MDA (P

  1. The Effects of Two Anesthetics, Propofol and Sevoflurane, on Liver Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Zhijie Xu

    2016-04-01

    Full Text Available Background: Propofol and sevoflurane are widely used in clinical anesthesia, and both have been reported to exert a protective effect in organ ischemia/reperfusion (IR. This study aims to investigate and compare the effects of propofol and sevoflurane on liver ischemia/reperfusion and the precise molecular mechanism. Methods and Materials: Rats were randomized into four groups: the sham group, I/R group, propofol treatment group (infused with 1% propofol at 500 µg· kg-1· min-1, and sevoflurane treatment group (infused with 3% (2 L/min sevoflurane. The liver ischemia/reperfusion model was used to evaluate the hepatoprotective effect on ischemic injury. Liver enzyme leakage, liver cytokines and histopathological examination were used to evaluate the extent of hepatic ischemia/reperfusion injury. Oxidative stress was investigated by evaluating the levels of Malondialdehyde(MDA, Superoxide Dismutase(SOD and NO. The terminal dexynucleotidyl transferase(TdT-mediated dUTP nick end labeling (TUNEL assay and western blot were applied to detect apoptosis in the ischemic liver tissue and its mechanism. Results: Both propofol and sevoflurane attenuated the extent of hepatic ischemia/reperfusion injury which is evident from the hisopathological studies and alterations in liver enzymes such as AST and LDH by inhibiting Nuclear factor kappa B (NFκB activation and subsequent alterations in inflammatory cytokines interleukin-1(IL-1, interleukin-6(IL-6, tumor necrosis factor-alpha (TNF-a and increased IL10 release. Propofol exhibited a similar protective effect and a lower IL-1 release, while sevoflurane decreased TNF-a leakage more significantly. Meanwhile, oxidative stress was attenuated by reduced MDA and NO and elevated SOD release. The expression of antiapoptotic protein Bcl-2 and Bcl-xl were enhanced while that of apoptotic protein Bax and Bak were reduced by both propofol and sevoflurane to regulate hepatic apoptosis. In addition, propofol

  2. MRI Dynamically Evaluates the Therapeutic Effect of Recombinant Human MANF on Ischemia/Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Xian-Yun Wang

    2016-09-01

    Full Text Available As an endoplasmic reticulum (ER stress-inducible protein, mesencephalic astrocyte-derived neurotrophic factor (MANF has been proven to protect dopaminergic neurons and nondopaminergic cells. Our previous studies had shown that MANF protected against ischemia/reperfusion injury. Here, we developed a magnetic resonance imaging (MRI technology to dynamically evaluate the therapeutic effects of MANF on ischemia/reperfusion injury. We established a rat focal ischemic model by using middle cerebral artery occlusion (MCAO. MRI was performed to investigate the dynamics of lesion formation. MANF protein was injected into the right lateral ventricle at 3 h after reperfusion following MCAO for 90 min, when the obvious lesion firstly appeared according to MRI investigation. T2-weighted imaging for evaluating the therapeutic effects of MANF protein was performed in ischemia/reperfusion injury rats on Days 1, 2, 3, 5, and 7 post-reperfusion combined with histology methods. The results indicated that the administration of MANF protein at the early stage after ischemia/reperfusion injury decreased the mortality, improved the neurological function, reduced the cerebral infarct volume, and alleviated the brain tissue injury. The findings collected from MRI are consistent with the morphological and pathological changes, which suggest that MRI is a useful technology for evaluating the therapeutic effects of drugs.

  3. Inflammation and innate immunity in renal ischemia/reperfusion injury

    NARCIS (Netherlands)

    Vries, Dorottya Katalin de

    2013-01-01

    The studies in this thesis describe the systematical search for factors involved in the pathophysiology of human renal I/R injury. Many of the processes assumed to be involved in renal I/R injury based on animal studies could not be confirmed in our clinical study in humans. However, we found new ev

  4. Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    2015-01-01

    Full Text Available Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed.

  5. Edaravone inhibits apoptosis caused by ischemia/reperfusion injury in a porcine hepatectomy model

    Institute of Scientific and Technical Information of China (English)

    Mitsugi Shimoda; Yoshimi Iwasaki; Toshie Okada; Keiichi Kubota

    2012-01-01

    AIM:To investigate the effect of E3-methyl-1-phenyl-2-pyrazolin-5-one (Edr) on hepatic ischemia-reperfusion (I/R) injury and liver regeneration in a porcine hepatectomy model.METHODS:One hour ischemia was induced by occluding the vessels and the bile duct of the right and median lobes.A 40% left hepatectomy was performed after reperfusion.Six animals received Edr (3 mg/kg per hour)intravenously and six control animals received saline just before reperfusion.Remnant liver volume,hemodynamics,aspartate aminotransferase (AST),alanine aminotransferase,lactate dehydrogenase and lactic acid,were compared between the groups.The expression of transforming growth factor-β (TGF-β1) and toll-like receptor (TRL) mRNA in hepatic tissues was examined using reverse transcription polymerase chain reaction.Apoptosis was demonstrated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining,respectively.RESULTS:Serum AST (P =0.029),and toll like receptor 4 level (P =0.043) were significantly lower after 3 hin animals receiving Edr.In addition,TUNEL staining in Edr-treated pigs showed significantly fewer hepatocytes undergoing apoptosis compared with control pigs.After mo,all factors were non-significantly different between the two groups.CONCLUSION:Edr is considered to reduce hepatic injury in the early stage of I/R injury in a porcine model.

  6. Early activation of caspase-1 after retinal ischemia and reperfusion injury in mice

    Institute of Scientific and Technical Information of China (English)

    郑广瑛; 张成; 李志刚

    2004-01-01

    Background Caspases are important in the signaling pathway of cellular apoptosis. Caspase-3 protein expression has been shown to increase and parallel to neuronal apoptosis in retinal ischemia injury. This study was to determine whether caspase-1 is involved in neuronal cell death or in retinal ischemia and reperfusion injury. Methods In twenty-one adult mice, ischemia was induced by increasing the intraocular pressure. The animals were sacrificed at 1 hour, 3 hours, 6 hours, 1 day, 3 days and 7 days after reperfusion. Frozen sections were used for caspase-1 immunostaining and TUNEL labeling. Results In normal retina, no caspase-1 positive cells were seen. One hour after ischemia, numerous positive cells were noted in the ganglion cell layer (GCL) and inner side of inner nuclear layer (INL). At 3 hours, caspase-1 positive cells continued to increase and peaked at 6 hours, then decreased significantly at 1 day. TUNEL positive cells were detected at 3 hours and peaked at 1 day after ischemia. Double labeling of caspase-1 and TUNEL only showed few cells with co-localization after ischemia. Conclusion Caspase-1 immunoreactivity preceds to the TUNEL labeling in the GCL and INL after retinal ischemia and reperfusion injury and its early activation may play an important role in the initiation of neuronal apoptosis.

  7. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    Science.gov (United States)

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-08-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  8. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model.

    Science.gov (United States)

    Heijnen, B H M; Straatsburg, I H; Padilla, N D; Van Mierlo, G J; Hack, C E; Van Gulik, T M

    2006-01-01

    Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 100, 200 or 400 IU/kg bodyweight, 5 min before 60 min ischaemia (pre-I) or 5 min before 24 h reperfusion (end-I). One hundred IU/kg bodyweight significantly reduced the increase of plasma levels of activated C4 as compared to albumin-treated control rats and attenuated the increase of alanine aminotransferase (ALT). These effects were not better with higher doses of C1-inh. Administration of C1-inh pre-I resulted in lower ALT levels and higher bile secretion after 24 h of reperfusion than administration at end-I. Immunohistochemical assessment indicated that activated C3, the membrane attack complex C5b9 and C-reactive protein (CRP) colocalized in hepatocytes within midzonal areas, suggesting CRP is a mediator of I/R-induced, classical complement activation in rats. Pre-ischaemic administration of C1-inh is an effective pharmacological intervention to protect against liver I/R injury.

  9. Effectiveness of sugammadex for cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Sule Ozbilgin

    2016-06-01

    Full Text Available Cerebral ischemia may cause permanent brain damage and behavioral dysfunction. The efficacy and mechanisms of pharmacological treatments administered immediately after cerebral damage are not fully known. Sugammadex is a licensed medication. As other cyclodextrins have not passed the necessary phase tests, trade preparations are not available, whereas sugammadex is frequently used in clinical anesthetic practice. Previous studies have not clearly described the effects of the cyclodextrin family on cerebral ischemia/reperfusion (I/R damage. The aim of this study was to determine whether sugammadex had a neuroprotective effect against transient global cerebral ischemia. Animals were assigned to control, sham-operated, S 16 and S 100 groups. Transient global cerebral ischemia was induced by 10-minute occlusion of the bilateral common carotid artery, followed by 24-hour reperfusion. At the end of the experiment, neurological behavior scoring was performed on the rats, followed by evaluation of histomorphological and biochemical measurements. Sugammadex 16 mg/kg and 100 mg/kg improved neurological outcome, which was associated with reductions in both histological and neurological scores. The hippocampus TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase results in the S 16 and S 100 treatment groups were significantly lower than those of the I/R group. Neurological scores in the treated groups were significantly higher than those of the I/R group. The study showed that treatment with 16 mg/kg and 100 mg/kg sugammadex had a neuroprotective effect in a transient global cerebral I/R rat model. However, 100 mg/kg sugammadex was more neuroprotective in rats.

  10. Effectiveness of sugammadex for cerebral ischemia/reperfusion injury.

    Science.gov (United States)

    Ozbilgin, Sule; Yılmaz, Osman; Ergur, Bekir Ugur; Hancı, Volkan; Ozbal, Seda; Yurtlu, Serhan; Gunenc, Sakize Ferim; Kuvaki, Bahar; Kucuk, Burcu Ataseven; Sisman, Ali Rıza

    2016-06-01

    Cerebral ischemia may cause permanent brain damage and behavioral dysfunction. The efficacy and mechanisms of pharmacological treatments administered immediately after cerebral damage are not fully known. Sugammadex is a licensed medication. As other cyclodextrins have not passed the necessary phase tests, trade preparations are not available, whereas sugammadex is frequently used in clinical anesthetic practice. Previous studies have not clearly described the effects of the cyclodextrin family on cerebral ischemia/reperfusion (I/R) damage. The aim of this study was to determine whether sugammadex had a neuroprotective effect against transient global cerebral ischemia. Animals were assigned to control, sham-operated, S 16 and S 100 groups. Transient global cerebral ischemia was induced by 10-minute occlusion of the bilateral common carotid artery, followed by 24-hour reperfusion. At the end of the experiment, neurological behavior scoring was performed on the rats, followed by evaluation of histomorphological and biochemical measurements. Sugammadex 16 mg/kg and 100 mg/kg improved neurological outcome, which was associated with reductions in both histological and neurological scores. The hippocampus TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and caspase results in the S 16 and S 100 treatment groups were significantly lower than those of the I/R group. Neurological scores in the treated groups were significantly higher than those of the I/R group. The study showed that treatment with 16 mg/kg and 100 mg/kg sugammadex had a neuroprotective effect in a transient global cerebral I/R rat model. However, 100 mg/kg sugammadex was more neuroprotective in rats. Copyright © 2016. Published by Elsevier Taiwan.

  11. Protective Effects of Hydrocortisone, Vitamin C and E Alone or in Combination against Renal Ischemia-Reperfusion Injury in Rat

    Science.gov (United States)

    Azari, Omid; Kheirandish, Reza; Azizi, Shahrzad; Farajli Abbasi, Mohammad; Ghahramani Gareh Chaman, Shahin; Bidi, Masoud

    2015-01-01

    Background: Renal ischemia reperfusion injury may occur in a variety of clinical situations, following a transient drop in total or regional blood flow to the kidney. This study was performed to investigate the protective effects of different antioxidants such as vitamin C, vitamin E, hydrocortisone and combination of these agents against experimental renal ischemia-reperfusion injury. Method: Thirty male rats were divided into six groups. Group Sham, Group I/R: (45 min of ischemia followed by 1h of reperfusion), Group I/R+Vit C: (50 mg/kg Vit C, IV, immediately after reperfusion), Group I/R+Vit E: (20 mg/kg Vit E, IM, 15 min before reperfusion), Group I/R+Hydrocortisone: (50 mg/kg, IV, immediately after reperfusion), and Group Combination: Ischemia-reperfusion plus combination of Vit C, E and hydrocortisone. After the experiments, the left kidney was removed and the tissues were processed for histopathological examination. Result: Severe injuries such as necrosis of tubules, atrophy of glomerulus, and hemorrhage were observed in group I/R. Histological scores indicating tissue injury significantly decreased in all treatment groups compared to the group I/R. The renal tissue in group treatment was preserved in comparison with the group I/R. Comparison between the treatment groups showed that group combination was more effective and group vit E was less effective in protecting of renal tissue against I/R injuries. Conclusion: The results demonstrated simultaneous administration of combination of Vit C, E and hydrocortisone before reperfusion of blood flow to the ischemic tissue could show a synergy against deleterious effects of I/R injuries in kidney. PMID:26351497

  12. Role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning

    Institute of Scientific and Technical Information of China (English)

    Kai Sun; Zhi-Su Liu; Quan Sun

    2004-01-01

    AIM: To investigate the role of mitochondria in cell apoptosis during hepatic ischemia-reperfusion injury and protective effect of ischemic postconditioning (IPC).METHODS: A rat model of acute hepatic ischemia-reperfusion was established, 24 healthy male Wistar rats were randomly divided into sham-operated group, ischemia-reperfusion group (IR) and IPC group. IPC was achieved by several brief pre-reperfusions followed by a persistent reperfusion.Concentration of malondialdehyde (MDA) and activity of several antioxidant enzymes in hepatic tissue were measured respectively. Apoptotic cells were detected by TdT-mediated dUTP-biotin nick end labeling (TUNEL) and expression of Bcl-2 protein was measured by immunohistochemical techniques. Moreover, mitochondrial ultrastructure and parameters of morphology of the above groups were observed by electron microscope.RESULTS: Compared with IR group, the concentration of MDA and the hepatocellular apoptotic index in IPC group was significantly reduced (P<0.05), while the activity of antioxidant enzymes and OD value of Bcl-2 protein were markedly enhanced (P<0.05). Moreover, the injury of mitochondrial ultrastructure in IPC group was also obviously relieved.CONCLUSION: IPC can depress the synthesis of oxygen free radicals to protect the mitochondrial ultrastructure and increase the expression of Bcl-2 protein that lies across the mitochondrial membrane. Consequently, IPC can reduce hepatocellular apoptosis after reperfusion and has a protective effect on hepatic ischemia-reperfusion injury.

  13. Breath pentane: an indicator for early and continuous monitoring of lipid peroxidation in hepatic ischaemia-reperfusion injury.

    Science.gov (United States)

    Li, Peng; Xu, Guowang; Wang, Changsong; Gong, Yulei; He, Ying

    2009-06-01

    Lipid peroxidation plays an important role during liver ischaemia-reperfusion injury. Pentane in breath is often used as an index of lipid peroxidation. We observed the changes in levels of breath pentane during the lipid peroxidation process caused by liver ischaemia-reperfusion injury. Ten male swine were anaesthetized with chloral hydrate 0.3-0.5 g kg(-1) min(-1). Total hepatic ischaemia was induced by occluding the portal inflow vessels. Ischaemia lasted 30 min followed by reperfusion for 180 min. Breath samples were sampled from the anaesthesia circuit and blood samples were collected from the inferior vena cava. Pentane concentrations in breath and blood were quantified by means of solid phase microextraction and gas chromatography-mass spectrography technique. Exhaled pentane concentrations (means +/- SE) increased markedly after reperfusion for 1 min (244.13 +/- 33.3 pmol l(-1)) and decreased gradually to initial levels after reperfusion for 60 min. Blood pentane concentrations (means +/- SE) increased significantly after reperfusion for 1 min (333.46 +/- 63.05 pmol l(-1)) and then decreased to basal level. Breath pentane concentrations showed a correlation with blood (r = 0.709, P pentane analysis could provide early, rapid, noninvasive and continuous assessment of lipid peroxidation during hepatic ischaemia-reperfusion injury.

  14. Physiologically tolerable insulin reduces myocardial injury and improves cardiac functional recovery in myocardial ischemic/reperfused dogs.

    Science.gov (United States)

    Zhang, Hang-Xiang; Zang, Yi-Min; Huo, Jian-Hua; Liang, Shao-Jun; Zhang, Hai-Feng; Wang, Yue-Min; Fan, Qian; Guo, Wen-Yi; Wang, Hai-Chang; Gao, Feng

    2006-12-01

    This study was designed to examine whether physiologically tolerable insulin, which maintains lower blood glucose, can protect the myocardium against ischemia/reperfusion (I/R) injury in a preclinical large animal model. Adult dogs were subjected to 50 minutes of myocardial ischemia (80% reduction in coronary blood flow) followed by 4 hours of reperfusion and treated with vehicle, glucose-insulin-potassium (GIK; glucose, 250 g/L; insulin, 60 U/L; potassium, 80 mmol/L), GK, or low-dose insulin (30 U/L) 10 minutes before reperfusion. Treatment with GIK exerted significant cardioprotective effects as evidenced by improved cardiac function, improved coronary blood flow, reduced infarct size, and myocardial apoptosis. In contrast, treatment with GK increased blood glucose level and aggravated myocardial I/R injury. It is interesting that treatment with insulin alone at the dose that reduced blood glucose to a clinically tolerable level exerted significant cardioprotective effects that were comparable to that seen in the GIK-treated group. This low-dose insulin had no effect on coronary blood flow after reperfusion but markedly reduced coronary reactive hyperemia and switched myocardial substrate uptake from fat to carbohydrate. Our results suggest that lower glucose supply to the ischemic myocardium at early reperfusion may create a "metabolic postconditioning" and thus reduce myocardial ischemia/reperfusion injury after prolonged reperfusion.

  15. Antioxidant effects of xanthohumol and functional impact on hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Hartkorn, Andreas; Hoffmann, Florian; Ajamieh, Hussam; Vogel, Susanne; Heilmann, Jörg; Gerbes, Alexander L; Vollmar, Angelika M; Zahler, Stefan

    2009-10-01

    Therapeutic effects of dietary flavonoids have been attributed mainly to their antioxidant capacity. Xanthohumol (1), a prominent flavonoid of the hop plant, Humulus lupulus, was investigated for its antioxidant potential and for its effect on NF-kappaB activation. To examine the biological relevance of 1, a hepatic ischemia/reperfusion model was chosen as a widely accepted model of oxidative stress generation. The impact of 1 on endogenous antioxidant systems, on the NF-kappaB signal transduction pathway as well as on apoptotic parameters, and on hepatic tissue damage was evaluated. Compound 1 markedly decreased the level of reactive oxygen species in vitro. Furthermore, levels of enzymatic and nonenzymatic antioxidants were restored after pretreatment in postischemic hepatic tissue, and lipid peroxidation was attenuated. NF-kappaB activity was reduced in vitro as well as in hepatic tissue after ischemia/reperfusion upon pretreatment with 1. In addition, the phosphorylation of Akt was markedly inhibited. Surprisingly, 1 decreased the expression of the antiapoptotic protein Bcl-X and increased caspase-3 like-activity, a proapoptotic parameter. Moreover, hepatic tissue damage as well as TNF-alpha levels increased in xanthohumol-pretreated liver tissue after ischemia/reperfusion. In summary, xanthohumol did not protect against ischemia/reperfusion injury in rat liver, despite its antioxidant and NF-kappaB inhibitory properties.

  16. Effect of N-desulfated heparin on hepatic/renal ischemia reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Tong Zhou; Jin-Lian Chen; Wei Song; Feng Wang; Ming-Jun Zhang; Pei-Hua Ni; Jian-Guo Geng

    2002-01-01

    AIM: To investigate the effect of N-desulfated heparin onhepatic/renal ischemia and reperfusion injury in rats.METHODS: Using rat models of 60 minutes hepatic or renalischemia followed by 1 h,3 h,6 h and 24 h reperfusion,animalswere randomly divided into following groups,the shamoperated controls,ischemic group receiving only normalsaline,and treated group receiving N-desulfated heparin ata dose of 12 mg/kg at 5 minutes before reperfusion. P-selectin expression was detected in bepatic/renal tissueswith immunohistochemistry methodRESULTS: P-selectin expression, serum ALT, AST, BUN andCr levels were significantly increased during 60 minuteischemia and 1 h, 3 h, 6 h and 24 h reperfusion,while theincrement was significantly inhibited,and hepatic/renalpathology observed by light microscopy was remarkablyimproved by treatment with the N-desulfated heparin.Furthermore,the heparin was found no effects on PT and KPTT.CONCLUSION: P-selectin might mediate neutrophilinfiltration and contribute to hepatic/renal ischemia andreperfusion. The N-desulfated heparin might preventhepatic/renal damage induced by ischemia and reperfusioninjury without significant anticoagulant activity.

  17. O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.S.; Akera, T.

    1987-02-01

    The role of O2 free radicals in the reduction of sarcolemmal Na+-K+-ATPase, which occurs during reperfusion of ischemic heart, was examined in isolated guinea pig heart using exogenous scavengers of O2 radicals and an inhibitor of xanthine oxidase. Ischemia and reperfusion reduced Na+-K+-ATPase activity and specific (3H)ouabain binding to the enzyme in ventricular muscle homogenates and also markedly lowered sodium pump activity estimated from ouabain-sensitive 86Rb+ uptake by ventricular muscle slices. These effects of ischemia and reperfusion were prevented to various degrees by O2-radical scavengers, such as superoxide dismutase, catalase, dimethyl-sulfoxide, histidine, or vitamin E or by the xanthine oxidase inhibitor, allopurinol. The degree of protection afforded by these agents paralleled that of reduction in enhanced lipid peroxidation of myocardial tissue as estimated from malondialdehyde production. These results strongly suggest that O2 radicals play a crucial role in the injury to sarcolemmal Na+-K+-ATPase during reperfusion of ischemic heart.

  18. Mucosal injury induced by ischemia and reperfusion in the piglet intestine: Influences of age and feeding

    Energy Technology Data Exchange (ETDEWEB)

    Crissinger, K.D.; Granger, D.N. (Louisiana State Univ. Medical Center, Shreveport (USA))

    1989-10-01

    The pathogenesis of neonatal necrotizing enterocolitis is unknown, but enteral alimentation, infectious agents, and mesenteric ischemia have been frequently invoked as primary initiators of the disease. To define the vulnerability of the intestinal mucosa to ischemia and reperfusion in the developing piglet, we evaluated changes in mucosal permeability using plasma-to-lumen clearance of chromium 51-labeled ethylenediaminetetraacetic acid in the ileum of anesthetized 1-day-, 3-day-, 2-wk-, and 1-mo-old piglets as a function of (a) duration of intestinal ischemia (20, 40, or 60 min of total superior mesenteric artery occlusion), (b) feeding status (fasted or nursed), and (c) composition of luminal perfusate (balanced salt solution vs. predigested cow milk-based formula). Baseline chromium 51-labeled ethylenediaminetetraacetic acid clearance was not significantly altered by ischemia, irrespective of duration, or feeding in all age groups. However, clearances were significantly elevated during reperfusion after 1 h of total intestinal ischemia in all age groups, whether fasted or fed. Reperfusion-induced increases in clearance did not differ among age groups when the bowel lumen was perfused with a balanced salt solution. However, luminal perfusion with formula resulted in higher clearances in 1-day-old piglets compared with all older animals. Thus, the neonatal intestine appears to be more vulnerable to mucosal injury induced by ischemia and reperfusion in the presence of formula than the intestine of older animals.

  19. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury

    Science.gov (United States)

    Masuzawa, Akihiro; Black, Kendra M.; Pacak, Christina A.; Ericsson, Maria; Barnett, Reanne J.; Drumm, Ciara; Seth, Pankaj; Bloch, Donald B.; Levitsky, Sidney; Cowan, Douglas B.

    2013-01-01

    Mitochondrial damage and dysfunction occur during ischemia and modulate cardiac function and cell survival significantly during reperfusion. We hypothesized that transplantation of autologously derived mitochondria immediately prior to reperfusion would ameliorate these effects. New Zealand White rabbits were used for regional ischemia (RI), which was achieved by temporarily snaring the left anterior descending artery for 30 min. Following 29 min of RI, autologously derived mitochondria (RI-mitochondria; 9.7 ± 1.7 × 106/ml) or vehicle alone (RI-vehicle) were injected directly into the RI zone, and the hearts were allowed to recover for 4 wk. Mitochondrial transplantation decreased (P mitochondria (7.9 ± 2.9%) compared with RI-vehicle (34.2 ± 3.3%, P mitochondria hearts returned to normal contraction within 10 min after reperfusion was started; however, RI-vehicle hearts showed persistent hypokinesia in the RI zone at 4 wk of recovery. Electrocardiogram and optical mapping studies showed that no arrhythmia was associated with autologously derived mitochondrial transplantation. In vivo and in vitro studies show that the transplanted mitochondria are evident in the interstitial spaces and are internalized by cardiomyocytes 2–8 h after transplantation. The transplanted mitochondria enhanced oxygen consumption, high-energy phosphate synthesis, and the induction of cytokine mediators and proteomic pathways that are important in preserving myocardial energetics, cell viability, and enhanced post-infarct cardiac function. Transplantation of autologously derived mitochondria provides a novel technique to protect the heart from ischemia-reperfusion injury. PMID:23355340

  20. Muscle transposition and skin grafting for salvage of below-knee amputation level after bilateral lower extremity thermal injury.

    Science.gov (United States)

    Açikel, C; Peker, F; Akmaz, I; Ulkür, E

    2001-12-01

    Thermal injury to the lower extremity sometimes necessitates amputation around the knee joint. Knee function is so critical to prosthetic rehabilitation that every attempt should be made to salvage the knee joint. This report presents an unusual case of bilateral lower extremity flame burn requiring amputations. While the distal two-thirds of the legs and both feet were totally necrotic, the thermal damage was limited to skin and subcutaneous tissue sparing muscle and bone in the proximal one-third of the legs and posterior thighs. The below-knee amputation level was salvaged by muscle transposition over the anterior tibia and resurfacing of muscle cuffs with thick split-thickness skin grafts. The post-operative period was uneventful. Amputation stumps tolerated the below-knee prosthesis well and the patient attained independent functional prosthetic ambulation at the post-operative fourth month. It is known from the reconstruction of the plantar foot that skin-grafted muscle tissue tolerates weight bearing and shearing forces well. This principle can also be used for salvage aspects of the below-knee amputation level.

  1. Insulin Reduces Cerebral Ischemia/Reperfusion Injury in the Hippocampus of Diabetic Rats

    OpenAIRE

    Collino, Massimo; Aragno, Manuela; Castiglia, Sara; Tomasinelli, Chiara; Thiemermann, Christoph; Boccuzzi, Giuseppe; Fantozzi, Roberto

    2009-01-01

    OBJECTIVE—There is evidence that insulin reduces brain injury evoked by ischemia/reperfusion (I/R). However, the molecular mechanisms underlying the protective effects of insulin remain unknown. Insulin is a well-known inhibitor of glycogen synthase kinase-3β (GSK-3β). Here, we investigate the role of GSK-3β inhibition on I/R-induced cerebral injury in a rat model of insulinopenic diabetes. RESEARCH DESIGN AND METHODS—Rats with streptozotocin-induced diabetes were subjected to 30-min occlusio...

  2. Poly-IC preconditioning protects against cerebral and renal ischemia-reperfusion injury.

    Science.gov (United States)

    Packard, Amy E B; Hedges, Jason C; Bahjat, Frances R; Stevens, Susan L; Conlin, Michael J; Salazar, Andres M; Stenzel-Poore, Mary P

    2012-02-01

    Preconditioning induces ischemic tolerance, which confers robust protection against ischemic damage. We show marked protection with polyinosinic polycytidylic acid (poly-IC) preconditioning in three models of murine ischemia-reperfusion injury. Poly-IC preconditioning induced protection against ischemia modeled in vitro in brain cortical cells and in vivo in models of brain ischemia and renal ischemia. Further, unlike other Toll-like receptor (TLR) ligands, which generally induce significant inflammatory responses, poly-IC elicits only modest systemic inflammation. Results show that poly-IC is a new powerful prophylactic treatment that offers promise as a clinical therapeutic strategy to minimize damage in patient populations at risk of ischemic injury.

  3. Protective effects of emulsified isoflurane after myocardial ischemia-reperfusion injury and its mechanism in rabbits

    Institute of Scientific and Technical Information of China (English)

    RAO Yan; WANG Yan-lin; CHEN Yong-quan; ZHANG Wen-sheng; LIU Jin

    2009-01-01

    Objective: To evaluate the protective effects of 8% emulsified isoflurane after myocardial ischemia-reperfusion injury and its mechanism in rabbits.Methods: Twenty-four male adult New Zealand white rabbits were anesthetized with intravenous injection of 30 mg/kg pentobarbital followed by 5 mg·kg-1·h-1 infusion. All rabbits were subjected to 30 minutes of left anterior de-scending coronary artery (LAD) occlusion and 3 hours of subsequent reperfusion. Before LAD occlusion, the rabbits were randomly allocated into three groups for precondi-tioning treatment (eight for each group). The control group (C group) received intravenously 0.9% NaCl for 30 minutes. The emulsified isoflurane group (EI group) received 8% emulsified isoflurane intravenously till 0.64% end-tidal con-centration for 30 minutes that was followed by a 15-minute washout period. The Intralipid group (IN group) received 30% Intralipid for 30 minutes. The infarcted area, plasma malondialdehyde (MDA) content, superoxide dismutase activity (SOD) and nitrite concentration after 3-hour myo-cardial perfusion were recorded simultaneously.Results: For the myocardial ischemia-reperfusion in-jury animals, the infarcted size in the EI group was signifi-cantly reduced (91.9%±8%) as compared with control group (39%±6%,t=5.19, P<0.01). The plasma SOD activity and nitrite concentration in EI group were significantly higher than those in control group (t=2.82, t=8.46, P<0.05), but MDA content was lower in EI group than that in control group (t=2.56, P<0.05).Conclusions: The results indicate that emulsified isoflurane has a cardioprotection effect against ischemia-reperfusion injury. This beneficial effect of emulsified isoflurane is probably through NO release and consequently by increase in autioxidation of myocardium.

  4. Pyrrolidine dithiocarbamate reduces ischemia-reperfusion injury of the small intestine

    Institute of Scientific and Technical Information of China (English)

    Ismail H Mallick; Wen-Xuan Yang; Marc C Winslet; Alexander M Seifalian

    2005-01-01

    AIM: To evaluate whether pyrrolidine dithiocarbamate (PDTC), an enhancer of HO production, attenuates intestinal IR injury.METHODS: Eighteen male rats were randomly allocated into three groups: (a) sham; (b) IR, consisting of 30 min of intestinal ischemia, followed by 2-h period of reperfusion; and (c) PDTC treatment before IR. Intestinal microvascular perfusion (IMP) was monitored continuously by laser Doppler fiowmetry. At the end of the reperfusion, serum samples for lactate dehydrogenase (LDH) levels and biopsies of ileum were obtained. HO activity in the ileum was assessed at the end of the reperfusion period.RESULTS: At the end of the reperfusion in the IR group,IMP recovered partially to 42.5% of baseline (P<0.05vs sham), whereas PDTC improved IMP to 67.3% of baseline (P<0.01 vs IR). There was a twofold increase in HO activity in PDTC group (2 062.66±106.11) as compared to IR (842.3±85.12) (P<0.001). LDH was significantly reduced (P<0.001) in PDTC group (585.6±102.4)as compared to IR group (1 973.8±306.5). Histological examination showed that the ileal mucosa was significantly less injured in PDTC group as compared with IR group.CONCLUSION: Our study demonstrates that PDTC improves the IMP and attenuates IR injury of the intestine possibly via HO production. Additional studies are warranted to evaluate the clinical efficacy of PDTC in the prevention of IR injury of the small intestine.

  5. Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Tingyang Zhou

    2015-01-01

    Full Text Available Myocardial ischemia-reperfusion (I/R injury is experienced by individuals suffering from cardiovascular diseases such as coronary heart diseases and subsequently undergoing reperfusion treatments in order to manage the conditions. The occlusion of blood flow to the tissue, termed ischemia, can be especially detrimental to the heart due to its high energy demand. Several cellular alterations have been observed upon the onset of ischemia. The danger created by cardiac ischemia is somewhat paradoxical in that a return of blood to the tissue can result in further damage. Reactive oxygen species (ROS have been studied intensively to reveal their role in myocardial I/R injury. Under normal conditions, ROS function as a mediator in many cell signaling pathways. However, stressful environments significantly induce the generation of ROS which causes the level to exceed body’s antioxidant defense system. Such altered redox homeostasis is implicated in myocardial I/R injury. Despite the detrimental effects from ROS, low levels of ROS have been shown to exert a protective effect in the ischemic preconditioning. In this review, we will summarize the detrimental role of ROS in myocardial I/R injury, the protective mechanism induced by ROS, and potential treatments for ROS-related myocardial injury.

  6. Dephosphorylation of cardiomyocyte Cx43 is associated with myocardial ischemia and reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zhijuan Cao; Xuan Xu; Linli Que; Qi Chen; Yuehua Li

    2009-01-01

    Objective:Myocardial ischemia/reperfusion(I/R) injury is the leading cause of death in the world. However, the details of the mechanism of its pathophysioiogy are still unknown. The present study was designed to investigate the role of connexin 43(Cx63) in acute models of myocardial I/R injury. Methods: Male C57BL/6 mice were subjected to myocardial ischemia(45 rain) followed by reperfusion(4 hrs) in vivo. The whole operation was monitored using a two-lead ECG. Hearts were harvested and the level of protein was assessed by western blot analysis. Haematoxylin and Eosin(HE) staining was used to detect the extent of neutrophil infiltration. The expression level of IL-6 was detected by ELISA. Results: A murine myocardial I/R injury model was constructed successfully. Phosphorylated Cx43 decreased 83.45% while non-phosphorylated Cx43 increased 1.62- fold in the myocardium after I/R injury. Neutrophil infiltration and the expression of the inflammatory cytokine IL-6 increased in the myocardium following I/R. Conclusion: During myocardial I/R injury, cardiomyocyte Cx43 is dephosphorylated, and this may be associated with an inflammatory response.

  7. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  8. Suv39h1 Protects from Myocardial Ischemia-Reperfusion Injury in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2014-04-01

    Full Text Available Background: Patients with diabetes are at increased risk of ischemic events. Suv39h1 is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9, which is associated with the suppression of inflammatory genes in diabetes. However, the role of Suv39h1 in myocardial ischemia/reperfusion (I/R injury under diabetic condition has not been evaluated. Methods: To generate diabetic model, male SD rats were fed with 60% fat diet followed by intraperitoneal injection with 40mg/kg streptozotocin. Adenovirus encoding Suv39h1 gene was used for Suv39h1 overexpression. Each rat received injections of adenovirus at five myocardial sites. Three days after gene transfection, each rat was subjected to left main coronary artery occlusion and reperfusion. After 30 min ischemia and reperfusion for 4 h, the rats were euthanized for real-time PCR, Western blot, immunohistochemical staining, and morphometric analysis. Results: Delivery of Ad-Suv39h1 into the hearts of diabetic rats could markedly increase Suv39h1 expression. Up-regulation of Suv39h1 significantly reduced infarct size and tissue damage after I/R injury, which was associated with protection from apoptosis of cardiac myocytes and reduction of inflammatory response. In addition, compared with injury group, Ad-Suv39h1 led to a decreased activity of mitogen-activated protein kinase family and its down-steam transcriptional factor NF-κB. Conclusion: Overexpression of Suv39h1 results in the de-activation of proinflammatory pathways and reduced apoptosis and myocardial injury. Therefore, Suv39h1 might represent a novel therapeutic strategy to reduce I/R injury under diabetic condition.

  9. Protective effect of nitric oxide induced by ischemic preconditioning on reperfusion injury of rat liver graft

    Institute of Scientific and Technical Information of China (English)

    Jian-Ping Gong; Bing Tu; Wei Wang; Yong Peng; Shou-Bai Li; Lu-Nan Yan

    2004-01-01

    AIM: Ischemic preconditioning (IP) is a brief ischemic episode,which confers a state of protection against the subsequent long-term ischemia-reperfusion injuries. However, little is known regarding the use of IP before the sustained cold storage and liver transplantation. The present study was designed to evaluate the protective effect of IP on the long-term preservation of liver graft and the prolonged anhepatic-phase injury.METHODS: Male Sprague-Dawley rats were used as donors and recipients of orthotopic liver transplantation. All livers underwent 10 min of ischemia followed by 10 min of reperfusion before harvest. Rat liver transplantation was performed with the portal vein clamped for 25 min. Tolerance of transplanted liver to the reperfusion injury and liverdamage were investigated. The changes in adenosineconcentration in hepatic tissue and those of nitric oxide (NO)and tumor necrosis factor (TNF) in serum were also assessed.RESULTS: Recipients with IP significantly improved theirone-week survival rate and liver function, they had increasedlevels of circulating NO and hepatic adenosine, and a reducedlevel of serum TNF, as compared to controls. Histologicalchanges indicating hepatic injuries appeared improved in theIP group compared with those in control group. The protectiveeffect of IP was also obtained by administration of adenosine,while blockage of the NO pathway using Nω-nitro-L-argininemethyl ester abolished the protective effect of IRCONCLUSION: IP appears to have a protective effect onthe long-term preservation of liver graft and the prolongedanhepatic-phase injuries. NO may be involved in this process.

  10. Amelioration of myocardial ischemic reperfusion injury with Calendula officinalis.

    Science.gov (United States)

    Ray, Diptarka; Mukherjee, Subhendu; Falchi, Mario; Bertelli, Aldo; Das, Dipak K

    2010-12-01

    Calendula officinalis of family Asteraceae, also known as marigold, has been widely used from time immemorial in Indian and Arabic cultures as an anti-inflammatory agent to treat minor skin wound and infections, burns, bee stings, sunburn and cancer. At a relatively high dose, calendula can lower blood pressure and cholesterol. Since inflammatory responses are behind many cardiac diseases, we sought to evaluate if calendula could be cardioprotective against ischemic heart disease Two groups of hearts were used: the treated rat hearts were perfused with calendula solution at 50 mM in KHB buffer (in mM: sodium chloride 118, potassium chloride 4.7, calcium chloride 1.7, sodium bicarbonate 25, potassium biphosphate 0.36, magnesium sulfate 1.2, and glucose 10) for 15 min prior to subjecting the heart to ischemia, while the control group was perfused with the buffer only. Calendula achieved cardioprotection by stimulating left ventricular developed pressure and aortic flow as well as by reducing myocardial infarct size and cardiomyocyte apoptosis. Cardioprotection appears to be achieved by changing ischemia reperfusion-mediated death signal into a survival signal by modulating antioxidant and anti-inflammatory pathways as evidenced by the activation of Akt and Bcl2 and depression of TNFα. The results further strengthen the concept of using natural products in degeneration diseases like ischemic heart disease.

  11. Lower limb salvage surgery using Ilizarov circular external frame for a landmine injury about the knee.

    Science.gov (United States)

    Demiralp, Bahtiyar; Yıldırım, Cengiz; Yurttaş, Yüksel; Çiçek, Engin Ilker; Başbozkurt, Mustafa

    2013-01-01

    Limb salvage for severe trauma has been replaced amputation as the primary treatment in many trauma centers. However, the long-term outcomes after limb reconstruction or amputation have not been fully evaluated. In this report, we present the treatment results of limb salvage surgery using Ilizarov external circular frame in a male case who had a-22-cm bone loss on the left distal femur and left proximal tibia and large soft tissue defect around the knee due to stepping on a landmine with his knee. The decision to amputate a severely injured limb, being irreversible, is challenging and significantly affects the body image and the patient. Extremity salvage surgery should be considered initially when evaluating patients with high-energy injured limbs at high risk for amputation.

  12. Neuroprotective effect of Cerebralcare Granule after cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Xiao-xiao Zhang; Fen-fen He; Gui-lin Yan; Ha-ni Li; Dan Li; Yan-ling Ma; Fang Wang; Nan Xu; Fei Cao

    2016-01-01

    Cerebralcare Granule (CG) improves cerebral microcirculation and relieves vasospasm, but studies investigating its therapeutic effect on cerebral ischemia/reperfusion injury are lacking. In the present study, we administered CG (0.3, 0.1 and 0.03 g/mL intragastrically) to rats for 7 consecutive days. We then performed transient occlusion of the middle cerebral artery, followed by reperfusion, and administered CG daily for a further 3 or 7 days. Compared with no treatment, high-dose CG markedly improved neurological function assessed using the Bederson and Garcia scales. At 3 days, animals in the high-dose CG group had smaller infarct volumes, greater interleukin-10 expression, and fewer interleukin-1β-immunoreactive cells than those in the untreated model group. Furthermore, at 7 days, high-dose CG-treated rats had more vascular endothelial growth factor-immunoreactive cells, elevated angiopoietin-1 and vascular endothelial growth factor ex-pression, and improved blood coagulation and lfow indices compared with untreated model animals. These results suggest that CG exerts speciifc neuroprotective effects against cerebral ischemia/reperfusion injury.

  13. Protective effects of captopril in diabetic rats exposed to ischemia/reperfusion renal injury.

    Science.gov (United States)

    Fouad, Amr A; Al-Mulhim, Abdulruhman S; Jresat, Iyad; Morsy, Mohamed A

    2013-02-01

    To investigate the potential protective effects of captopril, the angiotensin-converting enzyme inhibitor, in diabetic rats exposed to ischaemia/reperfusion (I/R) renal injury. Following successful induction of diabetes, captopril treatment (50 mg/kg/day, p.o.) was applied for 4 weeks, after which bilateral renal ischaemia was induced for 30 min followed by reperfusion for 24 h. Captopril significantly attenuated hyperglycaemia and hypoinsulinaemia in diabetic rats, and significantly reduced the elevations of serum creatinine and aldosterone levels, and renal malondialdehyde, tumour necrosis factor-α and nitric oxide (NO), and prevented the depletion of reduced glutathione caused by I/R in diabetic rats. Histopathological renal tissue damage induced by I/R in diabetic rats was ameliorated by captopril treatment. Immunohistochemical analysis revealed that captopril significantly attenuated the reduction of insulin content in pancreatic islet β-cells, and decreased the I/R-induced expression of inducible NO synthase, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin and heme oxygenase-1 in the kidney tissue of diabetic rats. Captopril represents a potential candidate to reduce the risk of renal injury induced by ischaemia/reperfusion in type 2 diabetes. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.

  14. Effect of matrine on Kupffer cell activation in cold ischemia reperfusion injury of rat liver

    Institute of Scientific and Technical Information of China (English)

    Xin-Hua Zhu; Yu-Dong Qiu; Hao Shen; Ming-Ke Shi; Yi-Tao Ding

    2002-01-01

    AIM: To study the effect of matrine on activation of Kupffer cell during cold ischemia and reperfusion injury in rat orthotopic liver transplantation (OLT).METHODS: 168 syngeneic SD rats were randomly divided into four groups: untreated group, small-dose treated group, large-dose treated group and sham operation group. After 5 hours of preservation in Ringer's (LR) solution, orthotopic implantation of the donor liver was performed. At 1 h, 2 h, 4 h and 24 h after reperfusion of the portal vein, 6 rats were killed in each group to collect the serum and the liver for assay and pathology.RESULTS: Matrine markedly inhibited the activation of Kupffer cells and their release of tumor necrosis factor (TNF). TNF cytotoxicity level at 2 h decreased significantly by matrine treatment (7.94±0.42, 2.39±0.19 and 2.01±0.13 U/ml,respectively; P<0.01), so did the other three time points. The level of hylluronic acid (HA) and alanine transaminase (ALT) decreased significantly in both treated groups, and matrine treatment markedly ameliorated focal necrosis of hepatocytes, inflammatory cells aggregating, rounding and detachment of sinusoidal endothelial cells (SEC). And no significant difference was observed between the treated groups.CONCLUSION: Matrine can inhibit the activation of Kupffer cell and prevent the donor liver from cold preservation and reperfusion injury in rat orthotopic liver transplantation.

  15. The protective role of montelukast against intestinal ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Wu, Shenbao; Zhu, Xuxing; Jin, Zhonghai; Tong, Xiuping; Zhu, Liqin; Hong, Xiaofei; Zhu, Xianfei; Liu, Pengfei; Shen, Weidong

    2015-10-26

    Several drugs are effective in attenuating intestinal ischemia-reperfusion injury (IRI); however little is known about the effect of montelukast. Fifty rats were randomly assigned to 3 groups: model group (operation with clamping), sham group (operation without clamping), and study group (operation with clamping and 0.2, 2 and 20 mg/kg montelukast pretreatment). Intestinal ischemia-reperfusion was performed by occlusion (clamping) of the arteria mesenterica anterior for 45 min, followed by 24 h reperfusion. Intestinal IRI in the model group led to severe damage of the intestinal mucosa, liver and kidney. The Chiu scores of the intestines from the study group (2 and 20 mg/kg) were lower than that of the model group. Intestinal IRI induced a marked increase in CysLTR1, Caspase-8 and -9 expression in intestine, liver and kidney, which were markedly reduced by preconditioning with 2 mg/kg montelukast. Preconditioning with 2 g/kg montelukast significantly attenuated hepatic tissue injury and kidney damage, and decreased plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in plasma after intestinal IRI. In conclusion, preconditioning with montelukast could attenuate intestinal IRI and the subsequent systemic inflammatory response in rats.

  16. Effects of phycocyanin on apoptosis and expression of superoxide dismutase in cerebral ischemia reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Meizeng Zhang; Lihua Wang; Yunliang Guo

    2006-01-01

    BACKGROUND: The application of exogenous antioxidant is always the focus in the prevention and treatment of cerebral ischemia. Phycocyanin has the effects against oxidation and inflammation, but its role in the pathophysiological process of cerebral ischemia reperfusion injury still needs further investigation.OBJECTIVE: To observe the effects of phycocyanin on the expression of superoxide dismutase (SOD),apoptosis and form of the nerve cells in rats after cerebral ischemia reperfusion injury.DESIGN: A randomized control animal experiment.SETTING: Institute of Cerebrovascular Disease, Medical School Hospital of Qingdao University.MATERIALS: Fifty-two healthy adult male Wistar rats of clean degree, weighing 220-260 g, were used. Phycocyanin was provided by the Institute of Oceanology, Chinese Academy of Sciences.METHODS: The experiments were carried out in Shangdong Key Laboratory for Prevention and Treatment of Brain Diseases from May to December 2005. ① All the rats were divided into three groups according to the method of random number table: sham-operated group (n=4), control group (n=24) and treatment group (n=24). Models of middle cerebral artery occlusion/reperfusion (MCAO/R) were established by the introduction of thread through external and internal carotid arteries in the control group and treatment group. After 1-hour ischemia and 2-hour reperfusion, rats in the treatment group were administrated with gastric perfusion of phycocyanin suspension (0.1 mg/g), and those in the control group were given saline of the same volume, and no treatment was given to the rats in the sham-operated group. ②The samples were removed and observed at ischemia for 1 hour and reperfusion for 6 and 12 hours and 1, 3, 7 and 14 days respectively in the control group and treatment group, 4 rats for each time point, and those were removed at 1 day postoperatively in the sham-operated group. Forms of the nerve cells were observed with toluidine blue staining. Apoptosis after

  17. Roles for C-X-C chemokines and C5a in lung injury after hindlimb ischemia-reperfusion

    DEFF Research Database (Denmark)

    Bless, N M; Warner, R L; Padgaonkar, V A;

    1999-01-01

    We evaluated the roles of the C-X-C chemokines cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) as well as the complement activation product C5a in development of lung injury after hindlimb ischemia-reperfusion in rats. During reperfusion, CD11b...... and CD18, but not CD11a, were upregulated on neutrophils [bronchoalveolar lavage (BAL) and blood] and lung macrophages. BAL levels of CINC and MIP-2 were increased during the ischemic and reperfusion periods. Treatment with either anti-CINC or anti-MIP-2 IgG significantly reduced lung vascular......, 58, and 23%, respectively (P MIP-2 as well as the complement activation product C5a are required for lung neutrophil recruitment and full induction of lung injury after hindlimb ischemia-reperfusion in rats....

  18. Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zhuo Liang; Li-Feng Liu; Tian-Ming Yao; Yu Huo; Ya-Ling Han

    2012-01-01

    Background The protective effects against reperfusion injury of cardioprotective drugs have recently been evaluated and found to be inadequate. Guanxinshutong (GXST), a combination of the traditional herb and Mongolian medicine, is effective and safe in treating angina pectoris in clinical trials. We assess the cardioprotective effects of GXST against myocardial ischemia and reperfusion (MI/R) injury in rats and explore its possible mechanism. Methods Forty-five male Sprague Dawley rats were randomized into three groups: non-MI/R group (Sham, n = 15), MI/R group treated with vehicle (Control, n = 15) and MI/R group treated with GXST (Drug, n = 15). MI/R was induced by ligation of the left anterior descending coronary artery (LAD) for 30 minutes, followed by 2/24 hour reperfusion in the Control and Drug groups. In the Sham group, the LAD was exposed without occlusion. GXST powder (in the Drug group) or saline (in the Control and Sham groups) were administered via direct gastric gavage from 7 day prior to surgery. Blood samples were collected from the carotid artery (10 rats each group) after 2 hours of reperfusion, to determine the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and intercellular adhesion molecule-1 (ICAM-1) using enzyme-linked immunosorbent assays. The animals were then sacrificed and the hearts were harvested for histopathology and western blot analysis. Infarct size was measured in the remaining five rats in each group after 24 hours reperfusion. Results GXST significantly decreased levels of TNF-α, IL-1β, IL-6, ICAM-1, apoptosis index (AI) and infarct size. GXST also obviously inhibited nuclear factor kappa B (NF-κB) activity when compared with the Control group (all P < 0.05). Conclusions GXST is effective in protecting the myocardium against MI/R injury in rats. Its possible cardioprotective mechanism involves inhibition of the inflammatory response and apoptosis following MI/R injury.

  19. The protective effect of erdosteine on short-term global brain ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Ozerol, Elif; Bilgic, Sedat; Iraz, Mustafa; Cigli, Ahmet; Ilhan, Atilla; Akyol, Omer

    2009-02-01

    Experimental studies have demonstrated that free radicals play a major role on neuronal injury during ischemia/reperfusion (I/R) in rats. Erdosteine is a thioderivative endowed with mucokinetic, mucolytic and free-radical-scavenging properties. The aim of the present study was to investigate the effect of erdosteine treatment against short-term global brain ischemia/reperfusion injury in rats. The study was carried out on Wistar rats divided into four groups. (i) Control group, (ii) ischemia/reperfusion group, (iii) ischemia/reperfusion+erdosteine group, and (iv) erdosteine group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities as well as thiobarbituric acid reactive substances (TBARSs) and nitric oxide (NO) levels were analysed in erythrocyte and plasma of rats. Plasma NO levels were significantly higher in the ischemia/reperfusion group than the other groups. The activities of SOD and GSH-Px were decreased, while TBARS levels increased in the ischemia/reperfusion group compared to other groups in both plasma and erythrocyte. The erythrocyte CAT activity was higher in erdosteine group and there was a statistically significant increase, when compared with the erdosteine plus ischemia/reperfusion group. By treating the rats with erdosteine, the depletion of endogenous antioxidant enzymes (SOD, CAT, GSH-Px) and increase of TBARS and NO levels were prevented. This study, therefore, suggests that erdosteine reduces parameters of oxidative stress is well supported by the data.

  20. Restoration of skeletal muscle ischemia-reperfusion injury in humanized immunodeficient mice.

    Science.gov (United States)

    Sheu, Eric G; Oakes, Sean M; Ahmadi-Yazdi, Cyrus; Afnan, Jalil; Carroll, Michael C; Moore, Francis D

    2009-08-01

    Ischemia and reperfusion (I/R) of tissue provokes an inflammatory process that is highly dependent on circulating natural immunoglobulin M (IgM) and the complement cascade. In mice, a single IgM specificity produced by peritoneal B cells can initiate reperfusion injury. It is unknown whether humans express natural IgM with a similar specificity. It is also unknown whether pathogenic IgM is produced solely from peritoneal B cells or can also be made by circulating B cells. Immunodeficient mice lacking endogenous immunoglobulin were used. Mice were reconstituted with 0.9% normal saline, human serum, or xenografted human peripheral blood lymphocytes (PBLs) and then subjected to tourniquet-induced hindlimb I/R. Serum human IgM and immunoglobulin G (IgG) were measured by enzyme-linked immunosorbent (ELISA) assay. Skeletal muscle was harvested for injury assessment by histology and for immunohistochemistry. Immunodeficient mice were protected from skeletal muscle injury after hindlimb I/R. Transfer of human serum restored skeletal muscle damage. Rag2/gammaR-/- mice that were engrafted with human PBL (huPBL-SCID) had high levels of human IgM. huPBL-SCID mice developed significantly more skeletal muscle injury than control saline-treated mice (P < or = .01) and human serum-reconstituted Rag2/gammaR-/- mice (P < or = 0.01). Sham-treated huPBL-SCID mice had no muscle injury, demonstrating that human lymphocyte engraftment did not cause injury in the absence of ischemia. Deposition of human IgM was observed on injured but not sham-injured muscle. Human serum can initiate murine skeletal muscle I/R injury. Circulating human PBL may be a source of pathogenic IgM. The huPBL-SCID mouse may be a useful model to define the specificity of pathogenic human IgM and to test therapeutics for I/R injury.

  1. Sex differences in ischemia/reperfusion-induced acute kidney injury are dependent on the renal sympathetic nervous system.

    Science.gov (United States)

    Tanaka, Ryosuke; Tsutsui, Hidenobu; Ohkita, Mamoru; Takaoka, Masanori; Yukimura, Tokihito; Matsumura, Yasuo

    2013-08-15

    Resistance to ischemic acute kidney injury has been shown to be higher in female rats than in male rats. We found that renal venous norepinephrine overflow after reperfusion played important roles in the development of ischemic acute kidney injury. In the present study, we investigated whether sex differences in the pathogenesis of ischemic acute kidney injury were derived from the renal sympathetic nervous system using male and female Sprague-Dawley rats. Ischemia/reperfusion-induced acute kidney injury was achieved by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Renal function was impaired after reperfusion in both male and female rats; however, renal dysfunction and histological damage were more severe in male rats than in female rats. Renal venous plasma norepinephrine levels after reperfusion were markedly elevated in male rats, but were not in female rats. These sex differences were eliminated by ovariectomy or treatment with tamoxifen, an estrogen receptor antagonist, in female rats. Furthermore, an intravenous injection of hexamethonium (25mg/kg), a ganglionic blocker, 5 min before ischemia suppressed the elevation in renal venous plasma norepinephrine levels after reperfusion, and attenuated renal dysfunction and histological damage in male rats, and ovariectomized and tamoxifen-treated female rats, but not in intact females. Thus, the present findings confirmed sex differences in the pathogenesis of ischemic acute kidney injury, and showed that the attenuation of ischemia/reperfusion-induced acute kidney injury observed in intact female rats may be dependent on depressing the renal sympathetic nervous system with endogenous estrogen.

  2. Ischemic postconditioning enhances glycogen synthase kinase-3β expression and alleviates cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Bo Zhao; Wenwei Gao; Jiabao Hou; Yang Wu; Zhongyuan Xia

    2012-01-01

    The present study established global brain ischemia using the four-vessel occlusion method.Following three rounds of reperfusion for 30 seconds,and occlusion for 10 seconds,followed by reperfusion for 48 hours,infarct area,the number of TUNEL-positive cells and Bcl-2 expression were significantly reduced.However,glycogen synthase kinase-3β activity,cortical Bax and caspase-3 expression significantly increased,similar to results following ischemic postconditioning.Our results indicated that ischemic postconditioning may enhance glycogen synthase kinase-3β activity,a downstream molecule of the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/protein kinase B signaling pathway,which reduces caspase-3 expression to protect the brain against ischemic injury.

  3. Effect of ONO-4057 and tacrolimus on ischemia-reperfusion injury of the liver

    Institute of Scientific and Technical Information of China (English)

    Takayuki Takeichi; Shinji Uemoto; Sachiko Minamiguchi; Izumi Takeyoshi; Yukihiro Inomata; Koichi Tanaka; Eiji Kobayashi

    2009-01-01

    AIM: To investigate the effects of a novel Leukotriene B4 receptor antagonist and/or tacrolimus on ischemiareperfusion in a rat liver model.METHODS: Male Lewis rats were pretreated with ONO-4057 (100 mg/kg) and/or tacrolimus (1 mg/kg) orally, and divided into four experimental groups; group 1 (control), group 2 (ONO-4057), group 3 (tacrolimus),group 4 (ONO-4057 + tacrolimus).RESULTS: There was a tendency for long survival in the groups treated with tacrolimus alone and ONO-4057 plus tacrolimus. Post-reperfusion serum aspartate aminotransferase levels decreased more significantly in ONO-4057 plus tacrolimus group ( P < 0.01), than in the tacrolimus alone group ( P < 0.05), compared to controls. CONCLUSION: This study demonstrated that pretreatment with ONO-4057 in combination with tacrolimus produced additive effects in a rat model of liver ischemia- reperfusion injury.

  4. Inhibition of KV7 channels protects against myocardial ischemia and reperfusion injury

    DEFF Research Database (Denmark)

    Hedegaard, Elise Røge; Johnsen, Jacob; Povlsen, Jonas Agerlund;

    2015-01-01

    Aims: KV7 channel are activated by ischemia and mediate hypoxic vasodilatation. We investigated the effect of KV7 channel modulation on cardiac ischemia and reperfusion (IR) injury and the interaction with cardioprotection by ischemic preconditioning (IPC). Methods and Results: We investigated......-flow, global ischemia and reperfusion with and without IPC. Infarct size (IS) was quantified by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Hemodynamics were measured using a catheter inserted in the left ventricle. Functional studies on isolated coronary arteries were performed in a wire myograph. KV7.......1, KV7.4 and KV7.5 were expressed in rat coronary arteries and all KV7 subtypes (KV7.1-5) in the left and right ventricles of the heart. KV7 channel blockade by XE991 and linopirdine reduced infarct size additive to infarct reduction by IPC. Flupirtine abolished infarct size reduction by IPC...

  5. Magnetic Resonance Imaging (MRI) Analysis of Ischemia/Reperfusion in Experimental Acute Renal Injury.

    Science.gov (United States)

    Pohlmann, Andreas; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf

    2016-01-01

    Imbalance between renal oxygen delivery and demand in the first hours after reperfusion is suggested to be decisive in the pathophysiological chain of events leading to ischemia-induced acute kidney injury. Here we describe blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) for continuous monitoring of the deoxyhemoglobin-sensitive MR parameter T 2* in the renal cortex, outer medulla, and inner medulla of rats throughout renal ischemia/reperfusion (I/R). Changes during I/R are benchmarked against the effects of variations in the fraction of inspired oxygen (hypoxia, hyperoxia). This method may be useful for investigating renal blood oxygenation of rats in vivo under various experimental (patho)physiological conditions.

  6. Exogenous alpha-1-acid glycoprotein protects against renal ischemia-reperfusion injury by inhibition of inflammation and apoptosis

    NARCIS (Netherlands)

    de Vries, B; Walter, SJ; Wolfs, TGAM; Hochepied, T; Rabina, J; Heeringa, P; Parkkinen, J; Libert, C; Buurman, WA

    2004-01-01

    Background. Although ischemia-reperfusion (I/R) injury represents a major problem in posttransplant organ failure, effective treatment is not available. The acute phase protein a-l-acid glycoprotein (AGP) has been shown to be protective against experimental I/R injury. The effects of AGP are thought

  7. Omega-3 fatty acids reduce hepatic steatosis and consequently attenuate ischemia-reperfusion injury following partial hepatectomy in rats

    NARCIS (Netherlands)

    H.A. Marsman; M. Heger; J.J. Kloek; S.L. Nienhuis; F.J.W. ten Kate; T.M. van Gulik

    2011-01-01

    Aim: The aim of this study was to investigate omega-3 fatty acids (FAs) treatment of experimental steatosis and the consequent effect on ischemia-reperfusion (IR) injury. Background: Fatty livers are more susceptible to IR injury and display decreased regenerative capacity. Consequently, restriction

  8. Warm ischemia time-dependent variation in liver damage, inflammation, and function in hepatic ischemia/reperfusion injury

    NARCIS (Netherlands)

    Olthof, Pim B.; Golen, van Rowan F.; Meijer, Ben; Beek, van Adriaan A.; Bennink, Roelof J.; Verheij, Joanne; Gulik, van Thomas M.; Heger, Michal

    2017-01-01

    Background

    Hepatic ischemia/reperfusion (I/R) injury is characterized by hepatocellular damage, sterile inflammation, and compromised postoperative liver function. Generally used mouse I/R models are too severe and poorly reflect the clinical injury profile. The aim was to establish a mouse

  9. The role of polymorphonudear cells in lung ischemia-reperfusion injury in a canine model of pulmonary thromboembolism

    Institute of Scientific and Technical Information of China (English)

    邓朝胜

    2006-01-01

    Objective To explore the effects of polymoronuclear cells (PMN) on lung ischemia-reperfusion(I/R) injury in a canine model of pulmonary thromboembolism. Methods Fifteen dogs were divided into three groups; a sham group (n=5), an ischemia group (n=5) and a reperfusion group (n=5). PMN in the whole blood were isolated with density gradient centrifugation. Apoptosis rate of the PMN was measured through flow cytome-

  10. Spironolactone Effect in Hepatic Ischemia/Reperfusion Injury in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Julio César Jiménez Pérez

    2016-01-01

    Full Text Available Introduction. Ischemia/reperfusion (IR injury, often associated with liver surgery, is an unresolved problem in the clinical practice. Spironolactone is an antagonist of aldosterone that has shown benefits over IR injury in several tissues, but its effects in hepatic IR are unknown. Objective. To evaluate the effect of spironolactone on IR-induced damage in liver. Materials and Methods. Total hepatic ischemia was induced in rats for 20 min followed by 60 min of reperfusion. Spironolactone was administered and hepatic injury, cytokine production, and oxidative stress were assessed. Results. After IR, increased transaminases levels and widespread acute inflammatory infiltrate, disorganization of hepatic hemorrhage trabeculae, and presence of apoptotic bodies were observed. Administration of SPI reduced biochemical and histological parameters of liver injury. SPI treatment increased IL-6 levels when compared with IR group but did not modify either IL-1β or TNF-α with respect to IR group. Regarding oxidative stress, increased levels of catalase activity were recorded in IR + SPI group in comparison with group without treatment, whereas MDA levels were similar in IR + SPI and IR groups. Conclusions. Spironolactone reduced the liver damage induced by IR, and this was associated with an increase in IL-6 production and catalase activity.

  11. Riboflavin (vitamin B-2) reduces hepatocellular injury following liver ischaemia and reperfusion in mice.

    Science.gov (United States)

    Sanches, Sheila Cristina; Ramalho, Leandra Naira Z; Mendes-Braz, Mariana; Terra, Vânia Aparecida; Cecchini, Rubens; Augusto, Marlei Josiele; Ramalho, Fernando Silva

    2014-05-01

    Riboflavin has been shown to exhibit anti-inflammatory and antioxidant properties in the settings of experimental sepsis and ischaemia/reperfusion (I/R) injury. We investigated the effect of riboflavin on normothermic liver I/R injury. Mice were submitted to 60 min of ischaemia plus saline or riboflavin treatment (30 μmoles/kg BW) followed by 6 h of reperfusion. Hepatocellular injury was evaluated by aminotransferase levels, reduced glutathione (GSH) content and the histological damage score. Hepatic neutrophil accumulation was assessed using the naphthol method and by measuring myeloperoxidase activity. Hepatic oxidative/nitrosative stress was estimated by immunohistochemistry. Liver endothelial and inducible nitric oxide synthase (eNOS/iNOS) and nitric oxide (NO) amounts were assessed by immunoblotting and a chemiluminescence assay. Riboflavin significantly reduced serum and histological parameters of hepatocellular damage, neutrophil infiltration and oxidative/nitrosative stress. Furthermore, riboflavin infusion partially recovered hepatic GSH reserves and decreased the liver contents of eNOS/iNOS and NO. These data indicate that riboflavin exerts antioxidant and anti-inflammatory effects in the ischaemic liver, protecting hepatocytes against I/R injury. The mechanism of these effects appears to be related to the intrinsic antioxidant potential of riboflavin/dihydroriboflavin and to reduced hepatic expression of eNOS/iNOS and reduced NO levels, culminating in attenuation of oxidative/nitrosative stress and the acute inflammatory response.

  12. Adenovirus-mediated eNOS expression augments liver injury after ischemia/reperfusion in mice.

    Directory of Open Access Journals (Sweden)

    Arun P Palanisamy

    Full Text Available Hepatic ischemia/reperfusion (l/R injury continues to be a critical problem. The role of nitric oxide in liver I/R injury is still controversial. This study examines the effect of endothelial nitric oxide synthase (eNOS over-expression on hepatic function following I/R. Adenovirus expressing human eNOS (Ad-eNOS was administered by tail vein injection into C57BL/6 mice. Control mice received either adenovirus expressing LacZ or vehicle only. Sixty minutes of total hepatic ischemia was performed 3 days after adenovirus treatment, and mice were sacrificed after 6 or 24 hrs of reperfusion to assess hepatic injury. eNOS over expression caused increased liver injury as evidenced by elevated AST and ALT levels and decreased hepatic ATP content. While necrosis was not pervasive in any group, TUNEL demonstrated significantly increased apoptosis in Ad-eNOS infected livers. Western blotting demonstrated increased levels of protein nitration and upregulation of the pro-apoptotic proteins bax and p53. Our data suggest that over-expression of eNOS is detrimental in the setting of hepatic I/R.

  13. The protective effects of pomegranate extracts against renal ischemia-reperfusion injury in male rats

    Directory of Open Access Journals (Sweden)

    Ahmet A Sancaktutar

    2014-01-01

    Full Text Available Aim: To evaluate the possible protective effect of pomegranate extract (PE on rats following renal ischemia-reperfusion (I/R injury. Materials and Methods: Twenty-four Wistar rats were divided into three groups. Sham group underwent laparotomy then waited for 45 minutes without ischemia. I/R group were subjected to left renal ischemia for 45 minutes followed by 60 minutes of reperfusion. I/R + PE group were subjected to the same renal I/R as the I/R group were also given 225 mg/kg PE peroral 30 minutes prior to the ischemia. Malondialdehyde (MDA, total antioxidant capacity (TAC, total oxidant status (TOS, and oxidative stress index (OSI were determined on the blood samples and kidney tissues. Histopathological analyses were conducted on the kidney tissues. Results: Serum TAC levels were significantly decreased in I/R group when compared with S group (P = 0.001. Serum MDA levels were increased in I/R group; however, it was not statistically significant. In rat kidney tissues, TOS levels and OSI index were significantly increased after I/R injury, while TAC levels were decreased. In I/R + PE group, PE reversed the negative effects of I/R injury. PE pretreatment was effective in decreasing tubular necrosis score. Conclusion: PE pretreatment ameliorated the oxidative damage and histopathological changes occurring following renal I/R injury.

  14. Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver

    Institute of Scientific and Technical Information of China (English)

    Fahrettin Yildiz; Alpaslan Terzi; Sacit Coban; Mustafa Ares,; Nurten Aksoy; Hale Cakir; Ali Riza Ocak; Muharrem Bitiren,

    2008-01-01

    AIM:To determine whether Nigella sativa prevents hepatic ischemia-reperfusion injury to the liver.METHODS:Thirty rats were divided into three groups as sham(Group 1),control(Group 2),and Nigella sativa(NS)treatment group(Group 3).All rats underwent hepatic ischemia for 45 min followed by 60 min period of reperfusion.Rats were intraperitoneally infused with only 0.9% saline solution in group 2.Rats in group 3 received NS(0.2 mL/kg)intraperitoneally,before ischemia and before reperfusion.Blood samples and liver tissues were harvested from the rats,and then the rats were sacrificed.Serum aspartate aminotransferase(AST),alanine aminotransferase(ALT),and lactate dehydrogenase(LDH)Ievels were determined.Total antioxidant capacity(TAC),catalase(CAT),total oxidative status(TOS),oxidative stress index(OSI)and myeloperoxidase(MPO)in hepatic tissue were measured.Also liver tissue histopathology was evaluated by light microscopy.RESULTS:The levels of liver anzymes in group 3 were significantly lower than those in the group 2.TAC in liver tissue was significantly higher in group 3 than in group 2.TOS,OSI and MPO in hepatic tissue were significantly lower in group 3 than the group 2.Histo logical tissue damage was milder in the NS treatment group than that in the control group.CONCLUSION:Our results suggest that Nigella sativa treatment protects the rat liver against to hepatic ischemia-reperfusion injury.(C)2008 The WJG Press.All rights reserved.

  15. Postconditioning's Protection of THSG on Cardiac Ischemia-reperfusion Injury and Mechanism

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    2,3,5,4'-tetra-hydroxystilbene-2-O-glucoside (THSG), the water-soluble active components extracted from dried tuber root of Polygonum multiflorum (Polygonaceae), can promote the release of nitric oxide (NO) from vascular endothelial cells and has strong antioxidation. The postconditioning's protection of THSG on cardiac ischemia-reperfusion injury and the mechanism were investigated. After reperfusion for 3 h following occlusion of rat left anterior descending coronary artery (LAD) for 30 min, SαT recovery speed, arrhythmia and cardiac infarct size were observed.The ischemic size and infarct size was identified by using Evans blue and TTC staining methods respectively. The results showed that the infarct size in THSG 7. 5 mg/kg postconditioning group was significantly decreased from 43.6 %±9.1 % in mode group to 16.5 %±6.5 % (P<0.01).SαT recovery was quicker and the incidence of arrhythmia (55.6 % vs 100 %, P<0.05) was significantly lower than in control group. The infarct size in THSG+glybenclamide group was greater than in THSG group, but equivalent to that in control group (46.8 %±9.8 % vs 43.6 %±9. 1 %, P >0. 05), SαT recovery speed slower and the incidence of arrhythmia also lower (33. 3 % vs 100 %, P<0. 01), suggesting that glybenclamide could abolish the effects of THSG postconditioning reducing the cardiac infart size. It was concluded that THSG administration before reperfusion could effectively alleviate the cardiac reperfusion injury and possessed the postconditioning effects of reducing cardiac infarct size, which might be related with the KATP channel opening.

  16. The effect of Euryale ferox (Makhana), an herb of aquatic origin, on myocardial ischemic reperfusion injury.

    Science.gov (United States)

    Das, Samarjit; Der, Peter; Raychaudhuri, Utpal; Maulik, Nilanjana; Das, Dipak K

    2006-09-01

    Fox nut or gorgon nut (Euryale ferox--Family Nymphaeaceae), popularly known as Makhana, has been widely used in traditional oriental medicine to cure a variety of diseases including kidney problems, chronic diarrhea, excessive leucorrhea and hypofunction of the spleen. Based on the recent studies revealing antioxidant activities of Euryale ferox and its glucosides composition, we sought to determine if Euryale ferox seeds (Makhana) could reduce myocardial ischemic reperfusion injury. Two different models were used: acute model, where isolated rat hearts were preperfused for 15 min with Krebs Henseleit bicarbonate (KHB) buffer containing three different doses of makhana (25, 125 or 250 microg/ml) followed by 30 min of ischemia and 2 h of reperfusion; and chronic model, where rats were given two different doses of makhana (250 and 500 mg/kg/day) for 21 days, after which isolated hearts were subjected to 30 min of ischemia followed by 2 h of reperfusion. In both cases, the hearts of the Makhana treated rats were resistant to ischemic reperfusion injury as evidenced by their improved post-ischemic ventricular function and reduced myocardial infarct size. Antibody array technique was used to identify the cardioprotective proteins. The Makhana-treated hearts had increased amounts of thioredoxin-1 (Trx-1) and thioredoxin-related protein-32 (TRP32) compared to the control hearts. Western blot analysis confirmed increased expression of TRP32 and thioredoxin proteins. In vitro studies revealed that Makhana extracts had potent reactive oxygen species scavenging activities. Taken together, the results of this study demonstrate cardioprotective properties of Makhana and suggest that such cardioprotective properties may be linked with the ability of makhana to induce TRP32 and Trx-1 proteins and to scavenge ROS.

  17. Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice.

    Directory of Open Access Journals (Sweden)

    Megumi Eguchi

    Full Text Available Diabetes is associated with higher incidence of myocardial infarction (MI and increased propensity for subsequent events post-MI. Here we conducted a temporal analysis of the influence of diabetes on cardiac dysfunction and remodeling after ischemia reperfusion (IR injury in mice. Diabetes was induced using streptozotocin and IR performed by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for up to 42 days. We first evaluated changes in cardiac function using echocardiography after 24 hours reperfusion and observed IR injury significantly decreased the systolic function, such as ejection fraction, fractional shortening and end systolic left ventricular volume (LVESV in both control and diabetic mice. The longitudinal systolic and diastolic strain rate were altered after IR, but there were no significant differences between diabetic mice and controls. However, a reduced ability to metabolize glucose was observed in the diabetic animals as determined by PET-CT scanning using 2-deoxy-2-((18Ffluoro-D-glucose. Interestingly, after 24 hours reperfusion diabetic mice showed a reduced infarct size and less apoptosis indicated by TUNEL analysis in heart sections. This may be explained by increased levels of autophagy detected in diabetic mice hearts. Similar increases in IR-induced macrophage infiltration detected by CD68 staining indicated no change in inflammation between control and diabetic mice. Over time, control mice subjected to IR developed mild left ventricular dilation whereas diabetic mice exhibited a decrease in both end diastolic left ventricular volume and LVESV with a decreased intraventricular space and thicker left ventricular wall, indicating concentric hypertrophy. This was associated with marked increases in fibrosis, indicted by Masson trichrome staining, of heart sections in diabetic IR group. In summary, we demonstrate that diabetes principally influences distinct IR-induced chronic changes

  18. Matrix metalloproteinase-9 expression and blood brain barrier permeability in the rat brain after cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Lifang Lei; Xiaohong Zi; Qiuyun Tu

    2008-01-01

    BACKGROUND: The integrity of the blood brain barrier (BBB) plays an important role in the patho-physiological process of cerebral ischemia/reperfusion injury. It has been recently observed that metalloproteinase-9 (MMP-9) is closely related to cerebral ischemia/reperfusion injuryOBJECTIVE: This study was designed to observe MMP-9 expression in the rat brain after cerebral ischemia/reperfusion injury and to investigate its correlation to BBB permeability.DESIGN, TIME AND SETTING: This study, a randomized controlled animal experiment, was performed at the Institute of Neurobiology, Central South University between September 2005 and March 2006.MATERIALS: Ninety healthy male SD rats, aged 3-4 months, weighing 200-280g, were used in the present study. Rabbit anti-rat MMP-9 polyclonal antibody (Boster, Wuhan, China) and Evans blue (Sigma, USA) were also used.METHODS: All rats were randomly divided into 9 groups with 10 rats in each group: normal control group, sham-operated group, and ischemia for 2 hours followed by reperfusion for 3,6,12 hours, 1,2,4 and 7 days groups. In the ischemia/reperfusion groups, rats were subjected to ischemia/reperfusion injury by suture occlusion of the right middle cerebral artery. In the sham-operated group, rats were merely subjected to vessel dissociation. In the normal control group, rats were not modeled.MAIN OUTCOME MEASURES: BBB permeability was assessed by determining the level of effusion of Evans blue. MMP-9 expression was detected by an immunohistochemical method.RESULTS: All 90 rats were included in the final analysis. BBB permeability alteration was closely correlated to ischemia/reperfusion time. BBB permeability began to increase at ischemia/reperfusion for 3 hours, then it gradually reached a peak level at ischemia/reperfusion for 1 day, and thereafter it gradually decreased. MMP-9 expression began to increase at ischemia/reperfusion for 3 hours, then gradually reached its peak level 2 days after perfusion, and thereafter

  19. Addition of ulinastatin to preservation solution promotes protection against ischemia-reperfusion injury in rabbit lung

    Institute of Scientific and Technical Information of China (English)

    XU Ming; WEN Xiao-hong; CHEN Shu-ping; AN Xiao-xia; XU He-yun

    2011-01-01

    Background The composition of the lung preservation solution used in lung graft procurement has been considered the key to minimize lung injury during the period of ischemia. Low-potassium dextran glucose (LPDG), an extracellular-type solution, has been adopted by most lung transplantation centers, due to the experimental and clinical evidences that LPDG is superior to intracellular-type solutions. Ulinastatin has been shown to attenuate ischemia-reperfusion (I/R) injury in various organs in animals. We supposed that the addition of ulinastatin to LPDG as a flushing solution, would further ameliorate I/R lung injury than LPDG solution alone.Methods Twelve male New Zealand white rabbits were randomly divided into 2 groups. Using an alternative in situ lung I/R model, the left lung in the control group was supplied and preserved with LPDG solution for 120 minutes. In the study group 50 000 U/kg of ulinastatin was added to the LPDG solution for lung preservation. Then re-ventilation and reperfusion of the left lung were performed for 90 minutes. Blood gas analysis (PaO2, PaCO2), mean pulmonary artery pressure (MPAP) and serum TNF-α level were measured intermittently. The pulmonary water index (D/W), tissue myeloperoxidase (MPO) activity, tissue malondialdehyde (MDA) content and morphologic changes were analyzed.Results The study group showed significantly higher PaO2 and lower MPAP at the end of reperfusion. Serum TNF-α level, left lung tissue MPO and MDA in the study group were significantly lower than those in the control group. D/W and pathologic evaluation were also remarkably different between the two groups.Conclusions This study indicated that better lung preservation could be achieved with the use of an ulinastatin modified LPDG solution. Ulinastatin further attenuated lung I/R injury, at least partly by reducing oxidative reactions,inhibiting the release of inflammatory factors and neutrophils immigration.

  20. Polyethylene glycol reduces early and long-term cold ischemia-reperfusion and renal medulla injury.

    Science.gov (United States)

    Faure, Jean Pierre; Hauet, Thierry; Han, Zeqiu; Goujon, Jean Michel; Petit, Isabelle; Mauco, Gerard; Eugene, Michel; Carretier, Michel; Papadopoulos, Vassilios

    2002-09-01

    Ischemia-reperfusion injury (IRI) after transplantation is a major cause of delayed graft function, which has a negative impact on early and late graft function and improve acute rejection. We have previously shown that polyethylene glycol (PEG) and particularly PEG 20M has a protective effect against cold ischemia and reperfusion injury in an isolated perfused pig and rat kidney model. We extended those observations to investigate the role of PEG using different doses (30g or 50g/l) added (ICPEG30 or ICPEG50) or not (IC) to a simplified preservation solution to reduce IRI after prolonged cold storage (48-h) of pig kidneys when compared with Euro-Collins and University of Wisconsin solutions. The study of renal function and medulla injury was performed with biochemical methods and proton NMR spectroscopy. Histological and inflammatory cell studies were performed after reperfusion (30-40 min) and on days 7 and 14 and weeks 4, 8, and 12. Peripheral-type benzodiazepine receptor (PBR), a mitochondrial protein involved in cholesterol homeostasis, was also studied. The results demonstrated that ICPEG30 improved renal function and reduced medulla injury. ICPEG30 also improved tubular function and strongly protect mitochondrial integrity. Post-IRI inflammation was strongly reduced in this group, particularly lymphocytes TCD4(+), PBR expression was influenced by IRI in the early period and during the development of chronic dysfunction. This study clearly shows that PEG has a beneficial effect in renal preservation and suggests a role of PBR as a marker IRI and repair processes.

  1. Total flavonoid of Litsea coreana leve exerts anti-oxidative effects and alleviates focal cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shuying Dong; Xuhui Tong; Jun Li; Cheng Huang; Chengmu Hu; Hao Jiao; Yuchen Gu

    2013-01-01

    In this study, we hypothesized that total flavonoid of Litsea coreana leve (TFLC) protects against focal cerebral ischemia/reperfusion injury. TFLC (25, 50, 100 mg/kg) was administered oral y to a rat model of focal ischemia/reperfusion injury, while the free radical scavenging agent, edaravone, was used as a positive control drug. Results of neurological deficit scoring, 2,3,5-triphenyl tetrazolium chloride staining, hematoxylin-eosin staining and biochemical tests showed that TFLC at different doses significantly al eviated cerebral ischemia-induced neurological deficits and histopathological changes, and reduced infarct volume. Moreover, it suppressed the increase in the levels of nitrates plus nitrites, malondialdehyde and lactate dehydrogenase, and it diminished the reduction in gluta-thione, superoxide dismutase and catalase activities induced by cerebral ischemia/reperfusion in-jury. Compared with edaravone, the protective effects of TFLC at low and medium doses (25, 50 mg/kg) against cerebral ischemia/reperfusion injury were weaker, while the protective effects at high dose (100 mg/kg) were similar. Our experimental findings suggest that TFLC exerts neuroprotective effects against focal cerebral ischemia/reperfusion injury in rats, and that the effects may be asso-ciated with its antioxidant activities.

  2. Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Gu

    Full Text Available Poloxamer 188 (P188, a multiblock copolymer surfactant, has been shown to protect against ischemic tissue injury of cardiac muscle, testes and skeletal muscle, but the mechanisms have not been fully understood. In this study, we explored whether P188 had a protective effect against cerebral ischemia/reperfusion injury and its underlying mechanisms. The in vivo results showed that P188 significantly reduced the infarct volume, ameliorated the brain edema and neurological symptoms 24 h after ischemia/reperfusion. In the long-term outcome study, P188 markedly alleviated brain atrophy and motor impairments and increased survival rate in 3 weeks of post stroke period. Additionally, P188 protected cultured hippucampal HT22 cells against oxygen-glucose deprivation and reoxygenation (OGD/R injury. The ability in membrane sealing was assessed with two fluorescent membrane-impermeant dyes. The results showed that P188 treatment significantly reduced the PI-positive cells following ischemia/reperfusion injury and repaired the HT22 cell membrane rupture induced by Triton X-100. In addition, P188 inhibited ischemia/reperfusion-induced activation of matrix metalloproteinase (MMP-9 and leakage of Evans blue. Therefore, the present study concludes that P188 can protect against cerebral ischemia/reperfusion injury, and the protection involves multi-mechanisms in addition to the membrane resealing.

  3. Modified Pectoralis Major Tendon Transfer for Reanimation of Elbow Flexion as a Salvage Procedure in Complete Brachial Plexus Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    S Taran

    2013-03-01

    Full Text Available Traumatic brachial plexus injuries rarely recover spontaneously and if the window period for neurotisation has elapsed, the only option for restoration of function lies in a salvage procedure. Many such salvage procedures have been described in the literature with variable functional results. We report the case of a 16-year-old boy who presented after unsuccessful treatment for a complete brachial plexus injury; we performed a pectoralis major tendon transfer to attain elbow flexion. Postoperatively, the elbow was splinted with flexion at 100°. After 4 weeks of immobilization the splint was removed and the patient could actively flex his elbow from 30° to 100°.

  4. Meclizine Preconditioning Protects the Kidney Against Ischemia–Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Seiji Kishi

    2015-09-01

    Full Text Available Global or local ischemia contributes to the pathogenesis of acute kidney injury (AKI. Currently there are no specific therapies to prevent AKI. Potentiation of glycolytic metabolism and attenuation of mitochondrial respiration may decrease cell injury and reduce reactive oxygen species generation from the mitochondria. Meclizine, an over-the-counter anti-nausea and -dizziness drug, was identified in a ‘nutrient-sensitized’ chemical screen. Pretreatment with 100 mg/kg of meclizine, 17 h prior to ischemia protected mice from IRI. Serum creatinine levels at 24 h after IRI were 0.13 ± 0.06 mg/dl (sham, n = 3, 1.59 ± 0.10 mg/dl (vehicle, n = 8 and 0.89 ± 0.11 mg/dl (meclizine, n = 8. Kidney injury was significantly decreased in meclizine treated mice compared with vehicle group (p < 0.001. Protection was also seen when meclizine was administered 24 h prior to ischemia. Meclizine reduced inflammation, mitochondrial oxygen consumption, oxidative stress, mitochondrial fragmentation, and tubular injury. Meclizine preconditioned kidney tubular epithelial cells, exposed to blockade of glycolytic and oxidative metabolism with 2-deoxyglucose and NaCN, had reduced LDH and cytochrome c release. Meclizine upregulated glycolysis in glucose-containing media and reduced cellular ATP levels in galactose-containing media. Meclizine inhibited the Kennedy pathway and caused rapid accumulation of phosphoethanolamine. Phosphoethanolamine recapitulated meclizine-induced protection both in vitro and in vivo.

  5. DISSOCIATION OF STRUCTURE AND FUNCTION AFTER ISCHAEMIA-REPERFUSION INJURY IN THE ISOLATED PERFUSED RAT KIDNEYS

    Directory of Open Access Journals (Sweden)

    M. Kadkhodaee

    1999-08-01

    Full Text Available Oxygen-derived free radical* (OFR involvement in ischacmia-rcpcrfusion (IR injury was investigated in a rat isolated kidney model, using 20 minutes iscliaemia followed by 15 or 60 minutes reperfusion. Two antioxidants, the xanthine oxidase inhibitor allopurinol and the hydroxyl radical scavenger dimcthylthiourca (DMTU, were uscit to try and prevent OFR-relatcd damage. Renal function was estimated from the inulin clearance, fractional soiiium excretion and renal vascular resistance, location and extent of tubular damage, and type of cell death (apoptosis vs necrosis were used as morphological parameters of IR-iiuluced change. Cell damage was most extensive in the nephron segments of the outer zone of the outer medulla (straight proximal tubule and thick ascending limb (TAL. I're-treatment with allopttrinol or DMTU did not Improve renal function. Less structural damage was observed in the TAL of allopuriol - or DMTU - treated kidneys compared with IR alone. In allopurinol - treated kidneys, luminal debris was less extensive than that seen in IR kidneys. Most cell death was necrotic in type and morphological features of apoptosis were seen infrequently. Tlic beneficial effects of allopurinol and DMTU on structural change did not correlate with functional improvement during the reperfusion period, litis may require longer repcrfusion or multiple treatments. Tlie results suggest that OFR ■ injury is of limited significance in this model of renal IR injury. Targeting OFR injury may only be useful after very brief periods of iscliaemia where necrosis is minimal ami the potential for recover}- is greater, Tiie results confirm the different susccptibilitcs of individual nephron segments to injury within the intact kidney. Understanding the molecular response to injury in each segment should facilitate development of methods to accelerate repair after [R injury.

  6. Meclizine Preconditioning Protects the Kidney Against Ischemia–Reperfusion Injury

    Science.gov (United States)

    Kishi, Seiji; Campanholle, Gabriela; Gohil, Vishal M.; Perocchi, Fabiana; Brooks, Craig R.; Morizane, Ryuji; Sabbisetti, Venkata; Ichimura, Takaharu; Mootha, Vamsi K.; Bonventre, Joseph V.

    2015-01-01

    Global or local ischemia contributes to the pathogenesis of acute kidney injury (AKI). Currently there are no specific therapies to prevent AKI. Potentiation of glycolytic metabolism and attenuation of mitochondrial respiration may decrease cell injury and reduce reactive oxygen species generation from the mitochondria. Meclizine, an over-the-counter anti-nausea and -dizziness drug, was identified in a ‘nutrient-sensitized’ chemical screen. Pretreatment with 100 mg/kg of meclizine, 17 h prior to ischemia protected mice from IRI. Serum creatinine levels at 24 h after IRI were 0.13 ± 0.06 mg/dl (sham, n = 3), 1.59 ± 0.10 mg/dl (vehicle, n = 8) and 0.89 ± 0.11 mg/dl (meclizine, n = 8). Kidney injury was significantly decreased in meclizine treated mice compared with vehicle group (p phosphoethanolamine. Phosphoethanolamine recapitulated meclizine-induced protection both in vitro and in vivo. PMID:26501107

  7. Mannitol in reperfusion skin island flaps injury Manitol na reperfusão de retalhos cutâneos em ilha

    Directory of Open Access Journals (Sweden)

    Alberto Schanaider

    1999-09-01

    Full Text Available In the skin, the concept of reperfusion injury is well established. The application of this knowledge to deal with skin flap surgery problems, has a great prophylactic potential. This experimental study was performed to evaluate the action of mannitol as a scavenger of oxygen-free radicals, after an ischemia-reperfusion injury on skin island flaps. Thirty six male Wistar rats were divided into three test groups (n = 12: a non-ischemic group (group I, and two others (groups II and III which were subjected to nine hours of ischemia following by 30 minutes of reperfusion. After seven days, all animals of group II, treated with saline, showed full skin flap necrosis. The assessment of group III, that received a 20% solution of mannitol prior to the onset of reperfusion, revealed 75% (9/12 of flap viability. These results suggest that pre-treatment with mannitol is able to enhance flaps survival with significantly less tissue necrosis (p O conhecimento acerca da lesão decorrente da reperfusão na pele, já encontra-se consolidado. A aplicação destes conceitos revela uma perspectiva muito promissora na profilaxia de problemas cirúrgicos resultantes do manuseio de retalhos cutâneos em ilha. Este estudo experimental foi realizado com o objetivo de avaliar a ação do manitol, na qualidade de inativador dos radicais oxigênio livres, após isquemia e reperfusão sobre retalhos cutâneos em ilha. Trinta e seis ratos machos, do tipo Wistar, foram divididos em três grupos (n =12, cada com a seguinte distribuição: Grupo I - sem isquemia, grupos II e III - submetidos durante nove horas a isquemia seguida por 30 minutos de reperfusão. Após sete dias, todos os animais do grupo II, tratados com solução salina, apresentaram necrose e em toda extensão dos retalhos. Na análise do grupo III, que recebeu solução de manitol a 20% previamente ao inicio da reperfusão, verificou-se viabilidade de 75% (9/12 dos retalhos. Estes resultados sugerem que o pr

  8. Effects of electrical stimulated hypothalamuic paraventricular nucleus ongastric ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Jian Fu Zhang; Yong Mei Zhang; Chang Dong Yan

    2000-01-01

    AIM To investigate the effect and regulation of electrical stimulation on the paraventricular nucleus (PVN)of hypothalamus using rat gastric ischemia-reperfusion injury (I-RI)induced ulcer model.METHODS Adult male Sprague-Dawley rats weighing 150 g-250 g were used. The surgically prepared ratswere kept fasting for 24 h, but allowed free access to water. They were then anesthetized with urathane(1 g/kg), the celiac artery was clamped with a small clip (holding force 145 g) for 30min, reperfusion wasestablished by removal of the clamp, 60min after reperfusion, the rats were killed and their stomachs wereremoved and perfused intragastrically with 100 mL/L formalin for 30min, and the ulcer index was scoredaccording to Guth et al. The PVN was obtained according to atlas of Paxinos and Watson. The electrodesand cannula were inserted into the PVN for the electrical stimulation, electrical injury and PVN injection,RESULTS In control group (30min ischemia and 60ain reperfusion only), ulcer index was 184.70±60.80(n = 8); in electrical stimulations of PVN (0.2mA, 0.4mA and 0.6mA) + I-RI group, ulcer indexes were102.40±20.39, 85.37±39.76 and 45.00±19.04 (n =8) respectively. Compared with the control groupthere was significant difference ( P < 0.01) in a dose-dependent manner. In electrical lesion of bilateral PVN+ I-RI group, ulcer index was greatly increased (230.00±47.30, n = 8). Microinjection of 3% L-glutamate0.5μL into PVN could produce similar effect to that of PVN stimulation (ulcer index 75.14±37.18, n = 8).A further study indicated that the MDA, pepsin activity and gastric acidity were reduced by PVN stimulationbut no obvious changes of gastric juice volume, total acid output and gastric mucus barrier were observed.CONCLUSION The PVN is one of the specific CNS areas capable of protecting the gastric ischemic-reperfusion injury in rats, and related to decreased MPA, pepsin activity, gastric acidity, while gastric juicevolume, total acid output and gastric

  9. The effects of iloprost on lung injury induced by skeletal muscle ischemia-reperfusion.

    Science.gov (United States)

    Erer, D; Dursun, A D; Oktar, G L; Iriz, E; Zor, M H; Elmas, C; Donmez, T; Kirisci, M; Comu, F M; Arslan, M

    2014-01-01

    The aim of this study was to investigate the effects of iloprost (I) on lung injury as a remote organ following skeletal muscle ischemia-reperfusion injury in a rat model. Twenty-four Wistar Albino rats were randomized into four groups (n = 6). Laparotomy was performed in all groups under general anesthesia. Only laparotomy was applied in Group S (Sham). Ischemia reperfusion group (Group I/R) underwent ischemia and reperfusion performed by clamping and declamping of the infrarenal abdominal aorta for 120 minutes. Group iloprost (Group I) received intravenous infusion of iloprost 0.5 ng/kg/min, without ischemia and reperfusion. Group I/R/I received intravenous infusion of iloprost 0.5 ng/kg/min immediately after 2 hours of ischemia. At the end of the study, lung tissue was obtained for determining total oxidant status (TOS) and total antioxidant status (TAS) levels, histochemical and immunohistochemical determination. Diffuse lymphocyte infiltration was detected in immunohistochemical examination of lung tissue in Group I/R. The connective tissue around bronchi, bronchioles and vessel walls was found to be increased. Although minimal local lymphocyte infiltration was detected in some fields in Group I/R/I, the overall tissue was found to be similar to Group S. iNOS expression was significantly higher in Group I/R, when compared with Group S and significantly lower in Group I/R/I compared to Group I/R.TOS levels were significantly higher in Group I/R, when compared with groups S and I (p = 0.028, p = 0.016, respectively) and significantly lower in group I/R/I, when compared with Group I/R (p = 0.048). TAS levels were significantly higher in Group I/R, when compared with groups S, I (p = 0.014, p = 0.027, respectively) and significantly lower in Group I/R/I, when compared with Group I/R (p = 0.032). These results indicate that administration of iloprost may have protective effects against ischemia reperfusion injury (Fig. 8, Tab. 1, Ref. 30)

  10. Protective Effects and Mechanism of Puerarin on Learning-Memory Disorder after Global Cerebral Ischemia-Reperfusion Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    WU Hai-qin; GUO He-na; WANG Hu-qing; CHANG Ming-ze; ZHANG Gui-lian; ZHAO Ying-xian

    2009-01-01

    Objective: To observe the effect of puerarin on the learning-memory disorder after global cerebral ischemia-reperfusion injury in rats, and to explore its mechanism of action. Methods: The global cerebral ischemia-reperfusion injury model was established using the modified Pulsinelli four-vessel occlusion in Sprague-Dawley rats. Rats were intraperitoneally injected with puerarin (100 mg/kg) 1 h before ischemia and once every 6 h afterwards. The learning-memory ability was evaluated by the passive avoidance test. The dynamic changes of the cell counts of apoptosis and positive expression of Bcl-2 in the hippocampus CA1 region were determined by the TUNEL and immunohistochemical methods, respectively. Results: (1) Compared with the reperfusion group, the step through latency (STL) in the passive avoidance test in the puerarin group was prolonged significantly (P<0.01). (2) The apoptotic neurons were injured most severely on the 3rd day in the hippocampal CA1 region after global ischemia and reperfusion. In the pueradn group, the number of apoptotic cells decreased at respective time points after ischemia-reperfusion (P<0.01). (3) The level of positive expression of Bcl-2 varied according to the duration of reperfusion and the peak level occurred on day 1 in the hippocampal CA1 region after global cerebral ischemia. Compared with the reperfusion group, the expression of Bcl-2 in the pueradn group was up-regulated at the respective time points after ischemia raperfusion (P<0.01), reaching the peak on day 1. Conclusions: Puerarin could improve the learning-memory ability after global cerebral ischemia and reperfusion in rats. The protective mechanism might be related to the effect of inhibiting or delaying the cell apoptosis through up-regulating the expression of Bcl-2 after ischemia and reperfusion.

  11. Effects of alprostadil and iloprost on renal, lung, and skeletal muscle injury following hindlimb ischemia–reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Erer D

    2016-08-01

    Full Text Available Dilek Erer,1,* Abdullah Özer,1,* Hüseyin Demirtaş,1 İpek Işık Gönül,2 Halil Kara,3 Hande Arpacı,4 Faruk Metin Çomu,5 Gürsel Levent Oktar,1 Mustafa Arslan,6 Ayşegül Küçük7 1Department of Cardiovascular Surgery, 2Department of Pathology, Gazi University Medical Faculty, 3Department of Pharmacology, Yıldırım Beyazıt University Medical Faculty, 4Department of Oral and Maxillofacial Surgery, Ankara University Faculty of Dentistry, Besevler, Ankara, 5Department of Physiology, Kırıkkale University Medical Faculty, Kırıkkale, 6Department of Anesthesiology and Reanimation, Gazi University Medical Faculty, Ankara, 7Department of Physiology, Dumlupınar University Medical Faculty, Kütahya, Turkey *These authors contributed equally to this work Objectives: To evaluate the effects of alprostadil (prostaglandin [PGE1] analog and iloprost (prostacyclin [PGI2] analog on renal, lung, and skeletal muscle tissues after ischemia reperfusion (I/R injury in an experimental rat model.Materials and methods: Wistar albino rats underwent 2 hours of ischemia via infrarenal aorta clamping with subsequent 2 hours of reperfusion. Alprostadil and iloprost were given starting simultaneously with the reperfusion period. Effects of agents on renal, lung, and skeletal muscle (gastrocnemius tissue specimens were examined.Results: Renal medullary congestion, cytoplasmic swelling, and mean tubular dilatation scores were significantly lower in the alprostadil-treated group than those found in the I/R-only group (P<0.0001, P=0.015, and P<0.01, respectively. Polymorphonuclear leukocyte infiltration, pulmonary partial destruction, consolidation, alveolar edema, and hemorrhage scores were significantly lower in alprostadil- and iloprost-treated groups (P=0.017 and P=0.001; P<0.01 and P<0.0001. Polymorphonuclear leukocyte infiltration scores in skeletal muscle tissue were significantly lower in the iloprost-treated group than the scores found in the nontreated I

  12. [Research progress of acupuncture for cerebral ischemia reperfusion injury in recent 10 years].

    Science.gov (United States)

    Yang, Yang; Sun, Hua

    2015-07-01

    By searching relevant data from the PubMed database, Chinese National Knowledge Infrastructure (CNKI) database and Wanfang database, a comprehensive analysis and review regarding acupuncture for cerebral ischemia reperfusion injury (CIRI) in recent 10 years were performed. The results showed that acupuncture could inhibit the inflammatory reaction, reduce oxidative stress injury, restrain brain edema formation, inhibit apoptosis, promote neural and vascular regeneration, etc. Acupuncture methods used included electroacupuncture, scalp acupuncture, eye acupuncture and "consciousness-restoring resuscitation needling", etc. The existing problem was that the intervention action of acupuncture was mainly focused on inhibiting inflammatory reaction and oxidative stress injury, and the study on apoptosis and neural and vascular regeneration was needed. It is suggested that from the aspect of multiple target points, the intervention mechanism of acupuncture for CIRI should be systemically studied in the future, which could provide new idea for clinical diagnosis and treatment on ischemic cerebrovascular diseases.

  13. Intermittent Ischemia but Not Ischemic Preconditioning Is Effective in Restoring Bile Flow After Ischemia Reperfusion Injury in the Livers of Aged Rats

    NARCIS (Netherlands)

    Schiesser, Marc; Wittert, Anna; Nieuwenhuijs, Vincent B.; Morphett, Arthur; Padbury, Robert T. A.; Barritt, Greg J.

    2009-01-01

    BackgroundlAims. Ischemic preconditioning (IPC) and intermittent ischemia (INT) reduce liver injury following ischemia reperfusion in liver resections. Aged livers are at higher risk for ischemia reperfusion injury, but little is known of the effectiveness of IPC and INT in aged livers. The aim of t

  14. Hypothermic protection in rat focal ischemia models: strain differences and relevance to "reperfusion injury".

    Science.gov (United States)

    Ren, Yubo; Hashimoto, Megumi; Pulsinelli, William A; Nowak, Thaddeus S

    2004-01-01

    Hypothermic protection was compared in Long-Evans and spontaneously hypertensive rat (SHR) strains using transient focal ischemia, and in Wistar and SHR strains using permanent focal ischemia. Focal ischemia was produced by distal surgical occlusion of the middle cerebral artery and tandem occlusion of the ipsilateral common carotid artery (MCA/CCAO). Moderate hypothermia of 2 hours' duration was produced by systemic cooling to 32 degrees C, with further cooling of the brain achieved by reducing to 30 degrees C the temperature of the saline drip superfusing the exposed occlusion site. Infarct volume was determined from serial hematoxylin and eosin-stained frozen sections obtained routinely at 24 hours, or in some cases after 3 days' survival. In the SHR, moderate hypothermia was only effective when initiated before recirculation after a 90-minute occlusion period. In contrast, the same intervention was strikingly effective in the Long-Evans rat even when initiated after as long as 30-minute reperfusion after a 3-hour occlusion. This magnitude and duration of cooling was not protective in permanent MCA/CCAO in the SHR, but such transient hypothermia did effectively reduce infarct volume after permanent occlusions in Wistar rats. These results show striking differences in the temporal window for hypothermic protection among rat focal ischemia models. As expected, "reperfusion injury" in the Long-Evans strain is particularly responsive to delayed cooling. The finding that the SHR can be protected by hypothermia initiated immediately before recirculation suggests a rapidly evolving component of injury occurs subsequent to reperfusion in this model as well. Hypothermic protection after permanent occlusion in Wistar rats identifies a transient, temperature-sensitive phase of infarct evolution that is not evident in the unreperfused SHR. These observations confirm that distinct mechanisms can underlie the temporal progression of injury in rat stroke models, and emphasize

  15. Long Non-coding RNA H19 Induces Cerebral Ischemia Reperfusion Injury via Activation of Autophagy

    Science.gov (United States)

    Wang, Jue; Cao, Bin; Han, Dong; Sun, Miao; Feng, Juan

    2017-01-01

    Long non-coding RNA H19 (lncRNA H19) was found to be upregulated by hypoxia, its expression and function have never been tested in cerebral ischemia and reperfusion (I/R) injury. This study intended to investigate the role of lncRNA H19 and H19 gene variation in cerebral I/R injury with focusing on its relationship with autophagy activation. Cerebral I/R was induced in rats by middle cerebral artery occlusion followed by reperfusion. SH-SY5Y cells were subjected to oxygen and glucose deprivation and reperfusion (OGD/R) to simulate I/R injury. Real-time PCR, flow cytometry, immunofluorescence and Western blot were used to evaluate the level of lncRNA H19, apoptosis, autophagy and some related proteins. The modified multiple ligase reaction was used to analyze the gene polymorphism of six SNPs in H19, rs217727, rs2067051, rs2251375, rs492994, rs2839698 and rs10732516 in ischemic stroke patients. We found that the expression of lncRNA H19 was upregulated by cerebral I/R in rats, as well as by OGD/R in vitro in the cells. Inhibition of lncRNA H19 and autophagy protected cells from OGD/R-induced death, respectively. Autophagy activation induced by OGD/R was prevented by H19 siRNA. Autophagy inducer, rapamycin, abolished lncRNA H19 effect. Furthermore, we found that lncRNA H19 inhibited autophagy through DUSP5-ERK1/2 axis. The result from blood samples of ischemic patients revealed that the variation of H19 gene increased the risk of ischemic stroke. Taken together, the results of present study suggest that LncRNA H19 could be a new therapeutic target of ischemic stroke. PMID:28203482

  16. Neuroprotective Effect of Sodium Butyrate against Cerebral Ischemia/Reperfusion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available Sodium butyrate (NaB is a dietary microbial fermentation product of fiber and serves as an important neuromodulator in the central nervous system. In this study, we further investigated that NaB attenuated cerebral ischemia/reperfusion (I/R injury in vivo and its possible mechanisms. NaB (5, 10 mg/kg was administered intragastrically 3 h after the onset of reperfusion in bilateral common carotid artery occlusion (BCCAO mice. After 24 h of reperfusion, neurological deficits scores were estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E staining. The levels of oxidative stress and inflammatory cytokines were assessed. Apoptotic neurons were measured by TUNEL; apoptosis-related protein caspase-3, Bcl-2, Bax, the phosphorylation Akt (p-Akt, and BDNF were assayed by western blot and immunohistochemistry. The results showed that 10 mg/kg NaB treatment significantly ameliorated neurological deficit and histopathology changes in cerebral I/R injury. Moreover, 10 mg/kg NaB treatment markedly restored the levels of MDA, SOD, IL-1β, TNF-α, and IL-8. 10 mg/kg NaB treatment also remarkably inhibited the apoptosis, decreasing the levels of caspase-3 and Bax and increasing the levels of Bcl-2, p-Akt, and BDNF. This study suggested that NaB exerts neuroprotective effects on cerebral I/R injury by antioxidant, anti-inflammatory, and antiapoptotic properties and BDNF-PI3K/Akt pathway is involved in antiapoptotic effect.

  17. Delivery of antioxidant enzyme genes to protect against ischemia/reperfusion-induced injury to retinal microvasculature.

    Science.gov (United States)

    Chen, Baihua; Caballero, Sergio; Seo, Soojung; Grant, Maria B; Lewin, Alfred S

    2009-12-01

    Retinal ischemia/reperfusion (I/R) injury results in the generation of reactive oxygen species (ROS). The aim of this study was to investigate whether delivery of the manganese superoxide dismutase gene (SOD2) or the catalase gene (CAT) could rescue the retinal vascular damage induced by I/R in mice. I/R injury to the retina was induced in mice by elevating intraocular pressure for 2 hours, and reperfusion was established immediately afterward. One eye of each mouse was pretreated with plasmids encoding manganese superoxide dismutase or catalase complexed with cationic liposomes and delivered by intravitreous injection 48 hours before initiation of the procedure. Superoxide ion, hydrogen peroxide, and 4-hydroxynonenal (4-HNE) protein modifications were measured by fluorescence staining, immunohistochemistry, and Western blot analysis 1 day after the I/R injury. At 7 days after injury, retinal vascular cell apoptosis and acellular capillaries were quantitated. Superoxide ion, hydrogen peroxide, and 4-HNE protein modifications increased at 24 hours after I/R injury. Administration of plasmids encoding SOD2 or CAT significantly reduced levels of superoxide ion, hydrogen peroxide, and 4-HNE. Retinal vascular cell apoptosis and acellular capillary numbers increased greatly by 7 days after the injury. Delivery of SOD2 or CAT inhibited the I/R-induced apoptosis of retinal vascular cell and retinal capillary degeneration. Delivery of antioxidant genes inhibited I/R-induced retinal capillary degeneration, apoptosis of vascular cells, and ROS production, suggesting that antioxidant gene therapy might be a treatment for I/R-related disease.

  18. Attenuation of mitochondrial, but not cytosolic, Ca2+ overload reduces myocardial injury induced by ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Chun-mei CAO; Wing-yee YAN; Jing LIU; Kenneth WL KAM; Shi-zhong ZHAN; James SK SHAM; Tak-ming WONG

    2006-01-01

    Aim: Attenuation of mitochondrial Ca2+ ([Ca2+]m, but not cytosolic Ca2+ ([Ca2+]c), overload improves contractile recovery. We hypothesized that attenuation of [Ca2+]m, but not [Ca2+]c, overload confers cardioprotection against ischemia/ reperfusion-induced injury. Methods: Infarct size from isolated perfused rat heart, cell viability, and electrically-induced Ca2+ transient in isolated rat ventricular myocytes were measured. We determined the effects of BAPTA-AM, a Ca2+ chelator, at concentrations that abolish the overload of both [Ca2+]c and [Ca2+]m, and ruthenium red, an inhibitor of mitochondrial uniporter of Ca2+ transport, at concentrations that abolish the overload of [Ca2+]m, but not [Ca2+]c, on cardiac injury induced by ischemia/reperfusion. Results: Attenuation of both [Ca2+]m and [Ca2+]c by BAPTA-AM, and attenuation of [Ca2+]m, but not [Ca2+]c, overload by ruthenium red, reduced the cardiac injury observations, indicating the importance of [Ca2+]m in cardioprotection and contractile recovery in response to ischemia/reperfusion. Conclusion: The study has provided unequivocal evidence using a cause-effect approach that attenuation of [Ca2+]m, but not [Ca2+]c, overload is responsible for cardioprotection against ischemia/reperfusion-induced injury. We also confirmed the previous observation that attenuation of [Ca2+]m, but not [Ca2+]c, by ruthenium red improves contractile recovery following ischemia/ reperfusion.

  19. Traditional Chinese Medicine Shuang Shen Ning Xin Attenuates Myocardial Ischemia/Reperfusion Injury by Preserving of Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Xueli Li

    2014-01-01

    Full Text Available To investigate the potential cardioprotective effects of Shuang Shen Ning Xin on myocardial ischemia/reperfusion injury. Wistar rats were treated with trimetazidine (10 mg/kg/day, ig, Shuang Shen Ning Xin (22.5, 45 mg/kg/day, ig, or saline for 5 consecutive days. Myocardial ischemia/reperfusion injury was induced by ligation of the left anterior descending coronary artery for 40 min and reperfusion for 120 min on the last day of administration. It is found that Shuang Shen Ning Xin pretreatment markedly decreased infarct size and serum LDH levels, and this observed protection was associated with reduced myocardial oxidative stress and cardiomyocyte apoptosis after myocardial ischemia/reperfusion injury. In addition, further studies on mitochondrial function showed that rats treated with Shuang Shen Ning Xin displayed decreased mitochondrial swelling and cytosolic cytochrome c levels, which were accompanied by a preservation of complex I activities and inhibition of mitochondrial permeability transition. In conclusion, the mitochondrial protective effect of Shuang Shen Ning Xin could be a new mechanism, by which Shuang Shen Ning Xin attenuates myocardial ischemia/reperfusion injury.

  20. Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury.

    Science.gov (United States)

    Verma, Rajkumar; Mishra, Vikas; Sasmal, Dinakar; Raghubir, Ram

    2010-07-25

    Recently glutamate transporters have emerged as a potential therapeutic target in a wide range of acute and chronic neurological disorders, owing to their novel mode of action. The modulation of GLT-1, a major glutamate transporter has been shown to exert neuroprotection in various models of ischemic injury and motoneuron degeneration. Therefore, an attempt was made to explore its neuroprotective potential in cerebral ischemia/reperfusion injury using ceftriaxone, a GLT-1 modulator. Pre-treatment with ceftriaxone (100mg/kg. i.v) for five days resulted in a significant reduction (Pceftriaxone-mediated increased glutamine synthetase activity by dihydrokainate (DHK), a GLT-1 specific inhibitor, confirms the specific effect of ceftriaxone on GLT-1 activity. In addition, ceftriaxone also induced a significant (P<0.01) increase in [(3)H]-glutamate uptake, mediated by GLT-1 in glial enriched preparation, as evidenced by use of DHK and DL-threo-beta-benzyloxyaspartate (DL-TBOA). Thus, the present study provides overwhelming evidence that modulation of GLT-1 protein expression and activity confers neuroprotection in cerebral ischemia/reperfusion injury.

  1. Cardioprotective Effect of the Aqueous Extract of Lavender Flower against Myocardial Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-01-01

    Full Text Available This study was conducted to evaluate the cardioprotective property of the aqueous extract of lavender flower (LFAE. The myocardial ischemia/reperfusion (I/R injury of rat was prepared by Langendorff retrograde perfusion technology. The heart was preperfused with K-H solution containing LFAE for 10 min before 20 minutes global ischemia, and then the reperfusion with K-H solution was conducted for 45 min. The left ventricular developed pressure (LVDP and the maximum up/downrate of left ventricular pressure (±dp/dtmax were recorded by physiological recorder as the myocardial function and the myocardial infarct size was detected by TTC staining. Lactate dehydrogenase (LDH and creatine kinase (CK activities in the effluent were measured to determine the myocardial injury degree. The superoxide anion dismutase (SOD and malondialdehyde (MDA in myocardial tissue were detected to determine the oxidative stress degree. The results showed that the pretreatment with LFAE significantly decreased the myocardial infarct size and also decreased the LDH, CK activities, and MDA level, while it increased the LVDP, ±dp/dtmax, SOD activities, and the coronary artery flow. Our findings indicated that LFAE could provide protection for heart against the I/R injury which may be related to the improvement of myocardial oxidative stress states.

  2. Effect of infliximab on acute hepatic ischemia/reperfusion injury in rats

    Science.gov (United States)

    Yucel, Ahmet Fikret; Pergel, Ahmet; Aydin, Ibrahim; Alacam, Hasan; Karabicak, Ilhan; Kesicioglu, Tugrul; Tumkaya, Levent; Kalkan, Yildiray; Ozer, Ender; Arslan, Zakir; Sehitoglu, Ibrahim; Sahin, Dursun Ali

    2015-01-01

    This study aimed to investigate the hepatoprotective and antioxidant effects of infliximab (IFX) against liver ischemia/reperfusion (I/R) injury in rats. A total of 30 male Wistar albino rats were divided into three groups: sham, I/R, and I/R+IFX. IFX was given at a dose of 3 mg/kg for three days before I/R. Rat livers were subjected to 60 min of ischemia followed by 90 h of reperfusion. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), TNF-α, malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were measured in the serum. The liver was removed to evaluate the histopathologic changes. The I/R group had a significant increase in AST, ALT, MDA, and TNF-α levels, and a decrease in GSH-Px activity compared with the sham group. The use of IFX significantly reduced the ALT, AST, MDA and TNF-α levels and significantly increased GSH-Px activity. IFX attenuated the histopathologic changes. IFX has a protective effect on liver I/R injury. This liver protective effect may be related to antioxidant and anti-TNF-α effects. We propose that, for the relief of liver injury subsequent to transplantation, liver resection, trauma, and shock, tentative treatments can be incorporated with IFX, which is already approved for clinical use. PMID:26885068

  3. Protective Effect of N-Acetylserotonin against Acute Hepatic Ischemia-Reperfusion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Jiying Jiang

    2013-08-01

    Full Text Available The purpose of this study was to investigate the possible protective effect of N-acetylserotonin (NAS against acute hepatic ischemia-reperfusion (I/R injury in mice. Adult male mice were randomly divided into three groups: sham, I/R, and I/R + NAS. The hepatic I/R injury model was generated by clamping the hepatic artery, portal vein, and common bile duct with a microvascular bulldog clamp for 30 min, and then removing the clamp and allowing reperfusion for 6 h. Morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining, respectively. Activated caspase-3 expression was evaluated by immunohistochemistry and Western blot. The activation of aspartate aminotransferase (AST, malondialdehyde (MDA, and superoxide dismutase (SOD was evaluated by enzyme-linked immunosorbent assay (ELISA. The data show that NAS rescued hepatocyte morphological damage and dysfunction, decreased the number of apoptotic hepatocytes, and reduced caspase-3 activation. Our work demonstrates that NAS ameliorates hepatic IR injury.

  4. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion.

    Directory of Open Access Journals (Sweden)

    Bin Liu

    Full Text Available Hepatic ischemia/reperfusion (I/R injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation.

  5. Myocardial contrast echocardiography to assess perfusion in a mouse model of ischemia/reperfusion injury

    Science.gov (United States)

    Hossack, John A.; Li, Yinbo; Christensen, Jonathan P.; Yang, Zequan; French, Brent A.

    2004-04-01

    Noninvasive approaches for measuring anatomical and physiological changes resulting from myocardial ischemia / reperfusion injury in the mouse heart have significant value since the mouse provides a practical, low-cost model for modeling human heart disease. In this work, perfusion was assessed before, during and after an induced closed- chest, coronary ischemic event. Ultrasound contrast agent, similar to MP1950, in a saline suspension, was injected via cannulated carotid artery as a bolus and imaged using a Siemens Sequoia 512 scanner and a 15L8 intraoperative transducer operating in second harmonic imaging mode. Image sequences were transferred from the scanner to a PC for analysis. Regions of interest were defined in septal and anterior segments of the myocardium. During the ischemic event, when perfusion was diminished in the anterior segment, mean video intensity in the affected segment was reduced by one half. Furthermore, following reperfusion, hyperemia (enhanced blood flow) was observed in the anterior segment. Specifically, the mean video intensity in the affected segment was increased by approximately 50% over the original baseline level prior to ischemia. Following the approach of Kaul et al., [1], gamma variate curves were fitted to the time varying level of mean video intensity. This foundation suggests the possibility of quantifying myocardial blood flow in ischemic regions of a mouse heart using automated analysis of contrast image data sets. An improved approach to perfusion assessment using the destruction-reperfusion approach [2] is also presented.

  6. Reduction of myocardial ischemia reperfusion injury with regular consumption of grapes.

    Science.gov (United States)

    Cui, Jianhua; Cordis, Gerald A; Tosaki, Arpad; Maulik, Nilanjana; Das, Dipak K

    2002-05-01

    Recently several polyphenolic antioxidants derived from grape seeds and skins have been implicated in cardioprotection. This study was undertaken to determine if the grapes were equally cardioprotective. Sprague Dawley male rats were given (orally) standardized grape extract (SGE) for a period of three weeks. Time-matched control experiments were performed by feeding the animals 45 microg/100 of glucose plus 45 microg/100 g fructose per day for three weeks. After 30 days, rats were sacrificed, hearts excised and perfused via working-mode. Hearts were made ischemic for 30 min followed by two hours of reperfusion. At 100 mg/kg and at 200 mg/kg, SGE provided significant cardioprotection as evidenced by improved post-ischemic ventricular recovery and reduced amount of myocardial infarction. No cardioprotection was apparent when rats were given grape samples at a dose of 50 mg/100 g/day. In vitro studies demonstrated that the SGE could directly scavenge superoxide and hydroxyl radicals which are formed in the ischemic reperfused myocardium. The results demonstrate that the heats of the rats fed SGE reduced myocardial ischemia reperfusion injury by functioning as in vivo antioxidant.

  7. Glycine blunts transplantative liver ischemia-reperfusion injury by downregulating interleukin 1 receptor associated kinase-4

    Institute of Scientific and Technical Information of China (English)

    Zuo-jin LIU; Lu-nan YAN; Shen-wei LI; Hai-bo YOU; Jian-ping GONG

    2006-01-01

    Aim: To determine whether glycine could downregulate interleukin 1 receptor associated kinase-4 (IRAK-4) expression to interfere with lipopolysaccharides (LPS) signal transduction and blunt transplantative liver ischemia-reperfusion injury (I/RI). Methods: SD rats were randomly divided into two groups: donor animals of the glycine group (n=40) were given glycine (1.5 mL; 300 mmol/L, iv) 1 h before harvest, and the control group were treated with 1.5 mL physiological saline (n= 40). Orthotropic liver transplantation was then performed according to the Kamada technique. Ten animals in each group were followed up for 7 d after surgery to assess survival. The remaining animals in each group were divided into 3 subgroups (n=10) at 1h, 2 h and 6 h after portal vein reperfusion. Levels of LPS, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin in portal circulation, as well as IRAK-4 and TNF-α expression, NF-кB transcriptional activity and morphological study of liver tissues were analyzed. Results: Reperfusion resulted in a significant elevation of LPS concentrations in each group persisting to the end of our study. However, glycine, which led to improved survival rate and liver function, significantly alleviated liver parenchyma cell damage by downregulating IRAK-4, TNF-α expression and NF-кB transcriptional activity compared with the control group. Conclusion: Glycine can attenuate hepatic I/RI by downregulating IRAK-4 to interfere with LPS signal transduction.

  8. Preconditioning of intravenous parecoxib attenuates focal cerebral ischemia/reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Na; GUO Qu-lian; YE Zhi; XIA Ping-ping; WANG E; YUAN Ya-jing

    2011-01-01

    Background Several studies suggest that oyclooxygenase-2 (COX-2) contributes to the delayed progression of ischemic brain damage. This study was designed to investigate whether COX-2 inhibition with parecoxib reduces focal cerebral ischemia/reperfusion injury in rats.Methods Ninety male Sprague-Dawley rats were randomly assigned to three groups: the sham group, ischemia/reperfusion (I/R) group and parecoxib group. The parecoxib group received 4 mg/kg of parecoxib intravenously via the vena dorsalis penis 15 minutes before ischemia and again at 12 hours after ischemia. The neurological deficit scores (NDSs) were evaluated at 24 and 72 hours after reperfusion. The rats then were euthanized. Brains were removed and processed for hematoxylin and eosin staining, Nissl staining, and measurements of high mobility group Box 1 protein (HMGB1) and tumor necrosis factor-a (TNF-α) levels. Infarct volume was assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining.Results The rats in the I/R group had lower NDSs (P <0.05), larger infarct volume (P <0.05), lower HMGB1 levels (P<0.05), and higher TNF-α levels (P<0.05) compared with those in the sham group. Parecoxib administration significantly improved NDSs, reduced infarct volume, and decreased HMGB1 and TNF-α levels (P <0.05).Conclusions Pretreatment with intravenous parecoxib was neuroprotective. Its effects may be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory mediators.

  9. Sildenafil citrate (viagra) induces cardioprotective effects after ischemia/reperfusion injury in infant rabbits.

    Science.gov (United States)

    Bremer, Yvonne A; Salloum, Fadi; Ockaili, Ramzi; Chou, Eric; Moskowitz, William B; Kukreja, Rakesh C

    2005-01-01

    Infants undergoing surgery for congenital heart disease are at risk for myocardial ischemia during cardiopulmonary bypass, circulatory arrest, or low-flow states. The purpose of this study was to demonstrate the effects of sildenafil, a selective phosphodiesterase-5 (PDE-5) inhibitor on myocardial functional improvement and infarct size reduction during ischemia/reperfusion injury in infant rabbits. Infant rabbits (aged 8 wk) were treated with sildenafil citrate (0.7 mg/kg i.v.) or normal saline 30 min before sustained ischemia for 30 min and reperfusion for 3 h. Transesophageal echocardiography (TEE) was used to assess left ventricular cardiac output (LVCO) and aortic velocity time integral (VTI). After ischemia/reperfusion, risk area was demarcated by Evan's blue dye and infarct size determined by computer morphometry of triphenyltetrazolium chloride-stained sections. The sildenafil-treated group had preservation and elevation in LVCO (143% of baseline, p sildenafil group compared with controls (n = 6/group, p sildenafil-treated group had significant reduction in infarct size (15.5 +/- 1.2 versus 33 +/- 2.3 in the saline group, % risk area, mean +/- SEM, n = 10-15/group, p sildenafil citrate promotes myocardial protection in infant rabbits as evidenced by postischemic preservation and elevation in LVCO and aortic VTI and reduction in infarct size.

  10. Cardioprotective effects of anesthetic preconditioning in rats with ischemia-reperfusion injury: propofol versus isoflurane

    Institute of Scientific and Technical Information of China (English)

    Xing TAO; Ling-qiao LU; Qing XU; Shu-ren LI; Mao-tsun LIN

    2009-01-01

    Objective: We compare the cardioprotective effects of anesthetic preconditioning by propofol and/or isoflurane in rats with ischemia-reperfusion injury. Methods: Male adult Wistar rats were subjected to 60 min of anterior descending coronary artery occlusion followed by 120 min of reperfusion. Before the long ischemia, anesthetics were administered twice for 10 min followed by 5 min washout. Isoflurane was inhaled at I MAC (0.016) in I group, whereas propofol was inhaled intravenously at 37.5 mg/(kg.h) in P group. A combination ofisoflurane and propofol was administered simultaneously in I+P group. Results: In control (without anesthetic preconditioning, C group), remarkable myocardial infarction and apoptosis accompanied by an increased level of cardiac troponin T were noted 120 rain after ischemia-reperfusion. As compared to those of control group, I and P groups had comparable cardioprotection. In addition, I+P group shares with I and P groups the comparable cardioprotective effects in terms of myocardial infarction and cardiac troponin T elevation. Conclusion: A combination of isoflurane and propofol produced no ad-ditional cardioprotection.

  11. Protective effects of ginseng extracts and common anti-aggregant drugs on ischaemia-reperfusion injury.

    Science.gov (United States)

    Caliskan, Ahmet; Karahan, Oguz; Yazici, Suleyman; Demirtas, Sinan; Guclu, Orkut; Tezcan, Orhan; Yavuz, Celal

    2015-01-01

    Ginseng is a traditional herbal medicinal product widely used for various types of diseases because of its cellular protective effects. Possible protective effects of ginseng were investigated in blood, cardiac and renal tissue samples and compared with common anti-aggregant agents in an animal ischaemia-reperfusion (I/R) model. Twenty rats were equally divided into four different groups as follows: control group (I/R-induced group without drug use), group I (acetylsalicylic acid-administered group), group II (clopidogrel bisulfate-administered group), group III (ginsenoside Rb1-administered group). For the groups assigned to a medication, peripheral I/R was induced by clamping the femoral artery one week after initiation of the specified medication. After reperfusion was initiated, cardiac and renal tissues and blood samples were obtained from each rat with subsequent analysis of nitrogen oxide (NOx), malondialdehyde (MDA), paraoxonase 1 (PON1) and prolidase. NOx levels were similar in each group. Significant decrements were observed in serum PON1 levels in each group when compared with the control (p ginseng extracts may have a potential beneficial effect in I/R injury. However, more comprehensive studies are required to clarify the hypothetical cardiac, renal and systemic protective effects in reperfusion-induced oxidative damage.

  12. Role of Mitochondria in Neuron Apoptosis during Ischemia-Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    段秋红; 王西明; 王忠强; 卢涛; 韩义香; 何善述

    2004-01-01

    To investigate the role of mitochondria in neuronal apoptosis, ischemia-reperfusion mediated neuronal cell injury model was established by depriving of glucose, serum and oxygen in media.DNA fragmentation, cell viability, cytochrome C releasing, caspase3 activity and mitochondrial transmembrane potential were observed after N2a cells suffered the insults. The results showed that N2a cells in ischemic territory exhibited survival damage, classical cell apoptosis change, DNA ladder and activation of caspase3. Apoptosis-related alterations in mitochondrial functions, including release of cytochrome C and depression of mitochondrial transmembrane potential (△ψm)were testified in N2a cells after mimic ischemia-reperfusion. Moreover, activation of caspase3 occurred following the release of cytochrome C. However, the inhibitor of caspase3, Ac-DEVDinhibitor of mitochondria permeability transition pore only partly inhibited caspase3 activity and reduced DNA damage. Interestingly, treatment of Z-IETD-FMK, an inhibitor of caspase8 could comthat there were caspase3 dependent and independent cellular apoptosis pathways in N2a cells suffering ischemia-reperfusion insults. Mitochondria dysfunction may early trigger apoptosis and amplify apoptosis signal.

  13. Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation.

    Science.gov (United States)

    Yue, Shi; Rao, Jianhua; Zhu, Jianjun; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2014-06-01

    Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in regulating cell proliferation is well established, its function in immune responses remains to be fully appreciated. In the current study, we analyzed myeloid-specific PTEN function in regulating tissue inflammatory immune response in a murine liver partial warm ischemia model. Myeloid-specific PTEN knockout (KO) resulted in liver protection from ischemia reperfusion injury (IRI) by deviating the local innate immune response against ischemia reperfusion toward the regulatory type: expression of proinflammatory genes was selectively decreased and anti-inflammatory IL-10 was simultaneously increased in ischemia reperfusion livers of PTEN KO mice compared with those of wild-type (WT) mice. PI3K inhibitor and IL-10-neutralizing Abs, but not exogenous LPS, recreated liver IRI in these KO mice. At the cellular level, Kupffer cells and peritoneal macrophages isolated from KO mice expressed higher levels of M2 markers and produced lower TNF-α and higher IL-10 in response to TLR ligands than did their WT counterparts. They had enhanced Stat3- and Stat6-signaling pathway activation, but diminished Stat1-signaling pathway activation, in response to TLR4 stimulation. Inactivation of Kupffer cells by gadolinium chloride enhanced proinflammatory immune activation and increased IRI in livers of myeloid PTEN KO mice. Thus, myeloid PTEN deficiency protects livers from IRI by facilitating M2 macrophage differentiation.

  14. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  15. Lower limb ischaemia and reperfusion injury in healthy volunteers measured by oxidative and inflammatory biomarkers

    DEFF Research Database (Denmark)

    Halladin, N. L.; Busch, Sarah Victoria Ekeløf; Alamili, M.

    2015-01-01

    exposed to 20 minutes of lower limb ischaemia. Muscle biopsies and blood samples were taken at baseline and 5, 15, 30, 60 and 90 minutes after tourniquet release and analysed for malondialdehyde (MDA), ascorbic acid, dehydroascorbic acid, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-1 receptor...... at any sampling time. CONCLUSION: Twenty minutes of lower limb ischaemia does not result in an ischaemia-reperfusion injury in healthy volunteers, measurable by oxidative and pro- and anti-inflammatory biomarkers in muscle biopsies and in the systemic circulation....

  16. Antioxidant and antiapoptotic effects of erdosteine in a rat model of ovarian ischemia-reperfusion injury

    OpenAIRE

    Ugurel, Vedat; Cicek, Ahmet Cagatay; Cemek, Mustafa; Demirtas, Selim; Kocaman, A Tuba; Karaca, Turan

    2017-01-01

    Objective(s): To evaluate the protective effect of erdosteine, an antiapoptotic and antioxidant agent, on torsion–detorsion evoked histopathological changes in experimental ovarian ischemia-reperfusion (IR) injury. Materials and Methods: Eighteen female Wistar albino rats were used in control, IR, and IR+Edosteine (IR-E) groups, (n=6 in each). The IR-E group received the erdosteine for seven days before the induction of torsion/retorsion, (10 mg/kg/days). The IR and IR-E groups were exposed t...

  17. Pretreatment with mangafodipir improves liver graft tolerance to ischemia/reperfusion injury in rat.

    Directory of Open Access Journals (Sweden)

    Ismail Ben Mosbah

    Full Text Available Ischemia/reperfusion injury occurring during liver transplantation is mainly due to the generation of reactive oxygen species (ROS upon revascularization. Thus, delivery of antioxidant enzymes might reduce the deleterious effects of ROS and improve liver graft initial function. Mangafodipir trisodium (MnDPDP, a contrast agent currently used in magnetic resonance imaging of the liver, has been shown to be endowed with powerful antioxidant properties. We hypothesized that MnDPDP could have a protective effect against liver ischemia reperfusion injury when administrated to the donor prior to harvesting. Livers from Sprague Dawley rats pretreated or not with MnDPDP were harvested and subsequently preserved for 24 h in Celsior® solution at 4°C. Organs were then perfused ex vivo for 120 min at 37°C with Krebs Henseleit solution. In MnDPDP (5 µmol/kg group, we observed that ATP content was significantly higher at the end of the cold preservation period relative to untreated group. After reperfusion, livers from MnDPDP-treated rats showed better tissue integrity, less hepatocellular and endothelial cell injury. This was accompanied by larger amounts of bile production and higher ATP recovery as compared to untreated livers. The protective effect of MnDPDP was associated with a significant decrease of lipid peroxidation, mitochondrial damage, and apoptosis. Interestingly, MnDPDP-pretreated livers exhibited activation of Nfr2 and HIF-1α pathways resulting in a higher catalase and HO-1 activities. MnDPDP also increased total nitric oxide (NO production which derived from higher expression of constitutive NO synthase and lower expression of inducible NO synthase. In conclusion, our results show that donor pretreatment with MnDPDP protects the rat liver graft from cold ischemia/reperfusion injury and demonstrate for the first time the potential interest of this molecule in the field of organ preservation. Since MnDPDP is safely used in liver imaging

  18. Continuous inhibition of poly(ADP-ribose) polymerase does not reduce reperfusion injury in isolated rat heart.

    Science.gov (United States)

    Nishizawa, Kenya; Yanagida, Shigeki; Yamagishi, Tadashi; Takayama, Eiichi; Bessho, Motoaki; Kusuhara, Masatoshi; Adachi, Takeshi; Ohsuzu, Fumitaka

    2013-07-01

    Poly(ADP-ribose) polymerase (PARP), an enzyme that is important to the regulation of nuclear function, is activated by DNA strand breakage. In massive DNA damage, PARP is overactivated, exhausting nicotinamide adenine dinucleotide and leading to cell death. Recent studies have succeeded in reducing cellular damage in ischemia/reperfusion by inhibiting PARP. However, PARP plays an important part in the DNA repair system, and its inhibition may be hazardous in certain situations. We compared the short-time inhibition of PARP against continuous inhibition during ischemia/reperfusion using isolated rat hearts. The hearts were reperfused after 21 minutes of ischemia with a bolus injection of 3-aminobenzamide (3-AB) (10 mg/kg) followed by continuous 3-AB infusion (50 μM) for the whole reperfusion period or for the first 6 minutes or without 3-AB. At the end of reperfusion, contractile function, high-energy phosphate content, nicotinamide adenine dinucleotide content, and infarcted area were significantly preserved in the 3-AB 6-minute group. In the 3-AB continuous group, these advantages were not apparent. At the end of reperfusion, PARP cleavage had significantly proceeded in the 3-AB continuous group, indicating initiation of the apoptotic cascade. Thus, continuous PARP inhibition by 3-AB does not reduce reperfusion injury in the isolated rat heart, which may be because of acceleration of apoptosis.

  19. MCT1 and MCT4 Expression During Myocardial Ischemic-Reperfusion Injury in the Isolated Rat Heart

    Directory of Open Access Journals (Sweden)

    Yi Zhu

    2013-09-01

    Full Text Available Background/Aims: Myocardium ischemia-reperfusion (I/R injury can be caused by imbalances in cellular metabolism. Lactate, transported by monocarboxylate transporters (MCTs, has been implicated as a mechanism in this process. The present study was designed to investigate the expression and functional role of MCTs in rat hearts during ischemia and reperfusion. Methods: Langendorff-perfused rat hearts were subjected to 20 minutes stabilization, 30 minutes of global ischemia and 60 minutes reperfusion. Hearts were collected serially for detecting expression changes in MCT1, MCT4 during myocardial I/R injury and lactate concentration was measured. Post-ischemic left ventricular function and infract size were determined at end-point, followed by the pretreatment of D-lactate, a competitive inhibitor of MCTs. Results: MCT4 was significantly increased following global ischemia and MCT1 expression was increased during the early stages of reperfusion in isolated rat hearts, while the expression of the ancillary protein CD147 was increased during I/R injury. We determined increases in AMPK phosphorylation status, which was significantly elevated following ischemia and early reperfusion. Blocking monocarboxylate transport by competitive inhibition with D-lactate caused decreased left ventricular performance and increased infarct size. Conclusion: Increased MCT4 expression facilitates lactate extrusion during the ischemic period, while increased MCT1 may facilitate lactate transport into and out of cells simultaneously during early reperfusion, with increases in AMPK phosphorylation status during the myocardial I/R period. Lactate transport by MCTs has a profound protective effect during myocardial ischemia reperfusion injury.

  20. Role of Kupffer cells in reperfusion injury in fat-loaded livers from ethanol-treated rats.

    Science.gov (United States)

    Zhong, Z; Connor, H D; Mason, R P; Qu, W; Gao, W; Lemasters, J J; Thurman, R G

    1995-12-01

    Reperfusion injury was studied in blood-free perfused livers from fat-loaded, ethanol-treated rats. Rats were pair-fed a modified Lieber-DeCarli liquid diet containing 36% calories as ethanol or isocaloric maltose-dextrin for 4 to 5 weeks. Reperfusion injury to the liver, which occurs in previously hypoxic regions upon reintroduction of oxygen, was studied in a low-flow, reflow perfusion model. Lactate dehydrogenase in effluent perfusate increased from basal levels of < 1 to 17 IU/g/h in livers from controls, whereas prior alcohol treatment elevated values to 37 IU/g/h. Pretreatment of rats with gadolinium chloride (GdCl3, 20 mg/kg i.v.), a selective Kupffer cell toxicant, minimized lactate dehydrogenase release during reperfusion to 7 to 8 IU/g/h in livers from both groups. Rates of malondialdehyde production were 144 and 166 nmol/g/h during reperfusion in control and alcohol-treated rats, respectively, but values reached only 54 and 79 nmol/g/h after GdCl3 treatment. Interestingly, a typical PBN/carbon-centered free radical adduct signal was detected in bile of livers from ethanol-treated rats, but not in controls or ethanol-treated rats given GdCl3. Portal pressure increased during the reperfusion period in livers from alcohol-treated rats, although not in controls, and GdCl3 reduced it significantly. Taken together, these data indicate that reperfusion injury is greater in fatty livers from alcohol-treated rats in a blood-free model. Inactivation of Kupffer cells minimized reperfusion injury in both control and alcohol-treated rats, most likely by diminishing lipid peroxidation thereby improving hepatic microcirculation.

  1. Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Hai-lei DING; Hai-feng ZHU; Jian-wen DONG; Wei-zhong ZHU; Wei-wei YANG; Huang-tian YANG; Zhao-nian ZHOU

    2005-01-01

    Aim: To investigate the role of inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) in the cardioprotection of intermittent hypoxia (IH) against ischemia/reperfusion (I/R) injury. Methods: Langendorff-perfused isolated rat hearts were used to measure variables of left ventricular function during baseline perfusion, ischemia, and reperfusion period. Nitrate plus nitrite (NOx) content in myocardium was measured using a biochemical method, iNOS mRNA and protein expression in rat left ventricles were detected using reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. Results: Myocardial function recovered better in IH rat hearts than in normoxic control hearts.The iNOS-selective inhibitor aminoguanidine (AG) (100 μmol/L) significantly inhibited the protective effects of IH, but had no influence on normoxic rat hearts.The baseline content of NOx in IH hearts was higher than that in normoxic hearts.After 30 min ischemia, the NOx level in normoxic hearts increased compared to the corresponding baseline level, whereas there was no significant change in IH hearts. However, the NOx level in IH hearts was still higher than that of normoxic hearts during ischemia and reperfusion period. AG 100 μmol/L significantly diminished the NOx content in IH and normoxic hearts during ischemia and reperfusion period. The baseline levels of iNOS mRNA and protein in IH hearts were higher than those of normoxic hearts. Compared to the corresponding baseline level,iNOS mRNA and protein levels in normoxic rat hearts increased and those in IH rat hearts decreased after reperfusion. The addition of AG 100 μmol/L significantly decreased iNOS mRNA and protein expression in IH rat hearts after I/R.Conclusion: IH upregulated the baseline level of iNOS mRNA and protein expression leading to an increase in NO production, which may play an important role in the cardiac protection of IH against I/R injury.

  2. Cardioprotective effect of aqueous extract of Chichorium intybus on ischemia-reperfusion injury in isolated rat heart.

    Science.gov (United States)

    Sadeghi, Najmeh; Dianat, Mahin; Badavi, Mohammad; Malekzadeh, Ahad

    2015-01-01

    Several studies have shown that Chichorium intybus (C. intybus) which possesses flavonoid compounds has an effective role in treatment of cardiovascular diseases. Contractile dysfunction mostly occurs after acute myocardial infarction, cardiac bypass surgery, heart transplantation and coronary angioplasty. The aim of the present study was to investigate the effect of aqueous extract of C. intybus on ischemia- reperfusion injury in isolated rat heart. The animals were divided into four groups (Sham, Control, 1 mg/ml and 3 mg/ml of extract) of 8 rats. The aorta was cannulated, and then the heart was mounted on a Langendorff apparatus. Next, a balloon was inserted into the left ventricle (LV) and peak positive value of time derivate of LV pressure (+dp/dt), coronary flow (CF), and left ventricular systolic pressure (LVSP) in pre-ischemia and reperfusion period were calculated by a Power Lab system. All groups underwent a 30-minute global ischemia followed by a 60-minute reperfusion. The results showed that heart rate (HR), coronary flow, and left ventricular developed pressure (LVDP) and rate of pressure product (RPP) significantly decreased in the control group during reperfusion, while these values in the groups receiving the extract (3mg/ml) improved significantly during reperfusion (p<0.001). It seems that flavonoid compounds of aqueous extract of C. intybus reduce ischemia - reperfusion injuries, suggesting its protective effect on heart function after ischemia.

  3. Perioperative release of pro-regenerative biochemical signals from human renal allografts subjected to ischemia-reperfusion injury.

    Science.gov (United States)

    Błogowski, Wojciech; Dolegowska, Barbara; Budkowska, Marta; Sałata, Daria; Domański, Leszek; Starzynska, Teresa

    2014-02-01

    Complement-derived molecules modulate the intensity of renal ischemia-reperfusion injury and may lead to the generation of biochemical signals [such as stromal-derived factor-1 (SDF-1) or sphingosine-1-phosphate (S1P)], which stimulate tissue/organ regeneration after injury. We tested the association between perioperative C5b-9/membrane attack complex (MAC) levels and intensified erythrocyte lysis, and asked whether significant changes in the levels of pro-regenerative substances occur during the early phase of renal allograft reperfusion. Seventy-five recipients were enrolled and divided into the early, slow, and delayed graft function (DGF) groups. Perioperative blood samples were collected from the renal vein during consecutive minutes of reperfusion. Extracellular hemoglobin (eHb), albumin (plasma S1P transporter), 8-iPF2α-III isoprostane, SDF-1 and S1P concentrations were measured. Throughout the reperfusion period, erythrocyte lysis intensified and was most pronounced in the DGF group. However, perioperative eHb levels did not correlate significantly with C5b-9/MAC values, but rather with the intensity of oxidative stress. No significant changes were observed in S1P, its plasma transporter (albumin) or SDF-1 levels, which were relatively low in all groups throughout the reperfusion period. Our study therefore demonstrates that no known biochemical signal for bone marrow-derived stem cell mobilization is released from human renal allografts to the periphery during the early phase of reperfusion.

  4. The hepatoprotective effects of Hypericum perforatum L. on hepatic ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Bayramoglu, Gokhan; Bayramoglu, Aysegul; Engur, Selin; Senturk, Hakan; Ozturk, Nilgun; Colak, Suat

    2014-05-01

    Little is known about the effective role of Hypericum perforatum on hepatic ischemia-reperfusion (I/R) injury in rats. Hence, albino rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. Hypericum perforatum extract (HPE) at the dose of 50 mg/kg body weight (HPE50) was intraperitonally injected as a single dose, 15 min prior to ischemia. Rats were sacrificed at the end of reperfusion period and then, biochemical investigations were made in serum and liver tissue. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (p < 0.05). Treatment with HPE50 significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats without treatment-control group (p < 0.05). In oxidative stress generated by hepatic ischemia-reperfusion, H. perforatum L. as an antioxidant agent contributes an alteration in the delicate balance between the scavenging capacity of antioxidant defence systems and free radicals in favour of the antioxidant defence systems in the body.

  5. Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    János Pálóczi

    2016-01-01

    Full Text Available Background and Aims. Human embryonic stem cell- (hESC- derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days and then on more differentiated cardiomyocytes (6 + 24 days, both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP (10−7, 10−6, and 10−5 M, BNP (10−9, 10−8, and 10−7 M, and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10−5 M. Results. SNAP (10−6, 10−5 M significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10−6 M also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms.

  6. Orexigenic hormone ghrelin attenuates local and remote organ injury after intestinal ischemia-reperfusion.

    Directory of Open Access Journals (Sweden)

    Rongqian Wu

    Full Text Available BACKGROUND: Gut ischemia/reperfusion (I/R injury is a serious condition in intensive care patients. Activation of immune cells adjacent to the huge endothelial cell surface area of the intestinal microvasculature produces initially local and then systemic inflammatory responses. Stimulation of the vagus nerve can rapidly attenuate systemic inflammatory responses through inhibiting the activation of macrophages and endothelial cells. Ghrelin, a novel orexigenic hormone, is produced predominately in the gastrointestinal system. Ghrelin receptors are expressed at a high density in the dorsal vagal complex of the brain stem. In this study, we investigated the regulation of the cholinergic anti-inflammatory pathway by the novel gastrointestinal hormone, ghrelin, after gut I/R. METHODS AND FINDINGS: Gut ischemia was induced by placing a microvascular clip across the superior mesenteric artery for 90 min in male adult rats. Our results showed that ghrelin levels were significantly reduced after gut I/R and that ghrelin administration inhibited pro-inflammatory cytokine release, reduced neutrophil infiltration, ameliorated intestinal barrier dysfunction, attenuated organ injury, and improved survival after gut I/R. Administration of a specific ghrelin receptor antagonist worsened gut I/R-induced organ injury and mortality. To determine whether ghrelin's beneficial effects after gut I/R require the intact vagus nerve, vagotomy was performed in sham and gut I/R animals immediately prior to the induction of gut ischemia. Our result showed that vagotomy completely eliminated ghrelin's beneficial effect after gut I/R. To further confirm that ghrelin's beneficial effects after gut I/R are mediated through the central nervous system, intracerebroventricular administration of ghrelin was performed at the beginning of reperfusion after 90-min gut ischemia. Our result showed that intracerebroventricular injection of ghrelin also protected the rats from gut I

  7. Protective role of adiponectin in a rat model of intestinal ischemia reperfusion injury

    Science.gov (United States)

    Liu, Xu-Hui; Yang, Yue-Wu; Dai, Hai-Tao; Cai, Song-Wang; Chen, Rui-Han; Ye, Zhi-Qiang

    2015-01-01

    AIM: To determine the potential protective role of adiponectin in intestinal ischemia reperfusion (I/R) injury. METHODS: A rat model of intestinal I/R injury was established. The serum level of adiponectin in rats with intestinal I/R injury was determined by enzyme-linked immunosorbent assay (ELISA). The serum levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were also measured by ELISA. Apoptosis of intestinal cells was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The production of malondialdehyde (MDA) and superoxide dismutase (SOD) and villous injury scores were also measured. RESULTS: Adiponectin was downregulated in the serum of rats with intestinal I/R injury compared with sham rats. No significant changes in the expression of adiponectin receptor 1 and adiponectin receptor 2 were found between sham and I/R rats. Pre-treatment with recombinant adiponectin attenuated intestinal I/R injury. The production of pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α, in rats with intestinal I/R injury was reduced by adiponectin pre-treatment. The production of MDA was inhibited, and the release of SOD was restored by adiponectin pre-treatment in rats with intestinal I/R injury. Adiponectin pre-treatment also inhibited cell apoptosis in these rats. Treatment with the AMP-activated protein kinase (AMPK) signaling pathway inhibitor, compound C, or the heme oxygenase 1 (HO-1) inhibitor, Snpp, attenuated the protective effects of adiponectin against intestinal I/R injury. CONCLUSION: Adiponectin exhibits protective effects against intestinal I/R injury, which may involve the AMPK/HO-1 pathway. PMID:26715807

  8. Critical role of interleukin-17A in murine intestinal ischemia-reperfusion injury.

    Science.gov (United States)

    Lee, H Thomas; Kim, Mihwa; Kim, Joo Yun; Brown, Kevin M; Ham, Ahrom; D'Agati, Vivette D; Mori-Akiyama, Yuko

    2013-01-01

    Intestinal ischemia-reperfusion (I/R) injury causes severe illness frequently complicated by remote multiorgan dysfunction and sepsis. Recent studies implicated interleukin-17A (IL-17A) in regulating inflammation, autoimmunity, and I/R injury. Here, we determined whether IL-17A is critical for generation of intestinal I/R injury and subsequent liver and kidney injury. Mice subjected to 30 min of superior mesenteric artery ischemia not only developed severe small intestinal injury (necrosis, apoptosis, and neutrophil infiltration) but also developed significant renal and hepatic injury. We detected large increases in IL-17A in the small intestine, liver, and plasma. IL-17A is critical for generating these injuries, since genetic deletion of IL-17A- or IL-17A-neutralizing antibody treatment markedly protected against intestinal I/R injury and subsequent liver and kidney dysfunction. Intestinal I/R caused greater increases in portal plasma and small intestine IL-17A, suggesting an intestinal source for IL-17A generation. We also observed that intestinal I/R caused rapid small intestinal Paneth cell degranulation and induced murine α-defensin cryptdin-1 expression. Furthermore, genetic or pharmacological depletion of Paneth cells significantly attenuated the intestinal I/R injury as well as hepatic and renal dysfunction. Finally, Paneth cell depletion significantly decreased small intestinal, hepatic, and plasma IL-17A levels after intestinal I/R. Taken together, we propose that Paneth cell-derived IL-17A may play a critical role in intestinal I/R injury as well as extraintestinal organ dysfunction.

  9. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury

    Directory of Open Access Journals (Sweden)

    Amadou K.S. Camara

    2011-04-01

    Full Text Available The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g. ischemic heart disease, alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury.

  10. Allopurinol Protects against Ischemia/Reperfusion-Induced Injury in Rat Urinary Bladders

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Shin

    2015-01-01

    Full Text Available Bladder ischemia-reperfusion (I/R injury results in the generation of reactive oxygen species (ROS and markedly elevates the risk of lower urinary tract symptoms (LUTS. Allopurinol is an inhibitor of xanthine oxidase (XO and thus can serve as an antioxidant that reduces oxidative stress. Here, a rat model was used to assess the ability of allopurinol treatment to ameliorate the deleterious effects of urinary bladder I/R injury. I/R injury reduced the in vitro contractile responses of longitudinal bladder strips, elevated XO activity in the plasma and bladder tissue, increased the bladder levels of tumor necrosis factor-α (TNF-α, c-Jun N-terminal kinase (JNK, and p38 mitogen-activated protein kinase, reduced the bladder levels of extracellular regulated kinase (ERK, and decreased and increased the bladder levels of Bcl-2 and Bax, respectively. I/R injury also elevated lipid peroxidation in the bladder. Allopurinol treatment in the I/R injury was generated significantly ameliorating all I/R-induced changes. Moreover, an in situ fluorohistological approach also showed that allopurinol reduces the generation of intracellular superoxides enlarged by I/R injury. Together, the beneficial effects of allopurinol reducing ROS production may be mediated by normalizing the activity of the ERK, JNK, and Bax/Bcl-2 pathways and by controlling TNF-α expression.

  11. Reducing the oxidative stress mediates the cardioprotection of bicyclol against ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Jie CUI; Zhi LI; Ling-bo QIAN; Qin GAO; Jue WANG; Meng XUE; Xiao-e LOU

    2013-01-01

    Objective:To investigate the beneficial effect of bicyclol on rat hearts subjected to ischemia-reperfusion (IR) injuries and its possible mechanism.Methods:Male Sprague-Dawley rats were intragastrically administered with bicyclol (25,50 or 100 mg/(kg·d)) for 3 d.Myocardial IR was produced by occlusion of the coronary artery for 1 h and reperfusion for 3 h.Left ventricular hemodynamics was continuously monitored.At the end of reperfusion,myocardial infarct was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining,and serum lactate dehydrogenase (LDH) level and myocardial superoxide dismutase (SOD) activity were determined by spectrophotometry.Isolated ventricular myocytes from adult rats were exposed to 60 min anoxia and 30 min reoxygenation to simulate IR injuries.After reperfusion,cell viability was determined with trypan blue; reactive oxygen species (ROS) and mitochondrial membrane potential of the cardiomyocytes were measured with the fluorescent probe.The mitochondrial permeability transition pore (mPTP) opening induced by Ca2+ (200 μmol/L) was measured with the absorbance at 520 nm in the isolated myocardial mitochondria.Results:Low dose of bicyclol (25 mg/(kg·d)) had no significant improving effect on all cardiac parameters,whereas pretreatment with high bicyclol markedly reduced the myocardial infarct and improved the left ventricular contractility in the myocardium exposed to IR (P<0.05).Medium dose of bicyclol (50 mg/(kg·d))markedly improved the myocardial contractility,left ventricular myocyte viability,and SOD activity,as well decreased infarct size,serum LDH level,ROS production,and mitochondrial membrane potential in rat myocardium exposed to IR.The reduction of ventricular myocyte viability in IR group was inhibited by pretreatment with 50 and 100 mg/(kg.d) bicyclol (P<0.05 vs.IR),but not by 25 mg/(kg·d) bicyclol.The opening of mPTP evoked by Ca2+ was significantly inhibited by medium bicyclol.Conclusions:Bicyclol exerts

  12. Neutrophils accentuate renal cold ischemia-reperfusion injury. Dose-dependent protective effect of a platelet-activating factor receptor antagonist.

    Science.gov (United States)

    Riera, M; Torras, J; Herrero, I; Valles, J; Paubert-Braquet, M; Cruzado, J M; Alsina, J; Grinyo, J M

    1997-02-01

    This study was undertaken to evaluate whether the renal damage induced by cold ischemia-reperfusion was worsened by neutrophils (PMN), and if blockade of platelet-activating factor (PAF) could effectively decrease this injury. After flushing with EuroCollins, 85 kidneys from Sprague-Dawley rats underwent either no cold ischemia or a 4-h cold ischemia, and then were reperfused for 75 min at 37 degrees C and 100 mm Hg in an isolated perfusion circuit. Reperfusion was performed with a Krebs-Henseleit solution containing 4.5% albumin, with and without human PMN (7.5 x 10(5) cells/ml) and with and without addition of a PAF receptor antagonist (BN 52021). Hemodynamic and functional parameters were continuously assessed during reperfusion. At end of the study, PAF production was evaluated. Presence of PMN during reperfusion of nonischemic kidneys produced no alteration of functional parameters or PAF production. After 4-h cold ischemia, the presence of PMN during reperfusion produced a significant worsening of plasma flow rate, glomerular filtration rate and sodium reabsorption in comparison with kidneys reperfused without PMN. Also, higher production of PAF was observed in the kidneys reperfused with PMN than in the kidneys reperfused without PMN. After 4-h cold ischemia, addition of BN 52021 during reperfusion in the presence of PMN significantly increased the plasma flow rate, glomerular filtration rate and sodium reabsorption in comparison with kidneys reperfused without this PAF antagonist. This effect was dose dependent. After 4-h cold ischemia, addition of BN 52021 during reperfusion in the absence of PMN produced no significant effect on functional parameters in comparison with kidneys reperfused without this PAF antagonist. These results indicate that PMN contribute to renal cold ischemia-reperfusion injury evaluated in the isolated perfused kidney. Treatment with a PAF receptor antagonist attenuated this injury in a dose-dependent manner, which suggests that it

  13. Pharmacological preconditioning with hyperbaric oxygen: can this therapy attenuate myocardial ischemic reperfusion injury and induce myocardial protection via nitric oxide?

    Science.gov (United States)

    Yogaratnam, Jeysen Zivan; Laden, Gerard; Guvendik, Lavent; Cowen, Mike; Cale, Alex; Griffin, Steve

    2008-09-01

    Ischemic reperfusion injury (IRI) is an inevitable part cardiac surgery such as coronary artery bypass graft (CABG). While ischemic hypoxia and the ensuing normoxic or hyperoxic reperfusion are critical to the initiation and propagation of IRI, conditioning myocardial cells to an oxidative stress prior to IRI may limit the consequences of this injury. Hyperbaric oxygen (HBO2) is a modality of treatment that is known to generate an oxidative stress. Studies have shown that treatment with HBO2 postischemia and reperfusion is useful in ameliorating myocardial IRI. Moreover, preconditioning the myocardium with HBO2 before reperfusion has demonstrated a myocardial protective effect by limiting the infarct size post ischemia and reperfusion. Current evidence suggests that HBO2 preconditioning may partly attenuate IRI by stimulating the endogenous production of nitric oxide (NO). As NO has the capacity to reduce neutrophil sequestration, adhesion and associated injury, and improve vascular flow, HBO2 preconditioning induced NO may play a role in providing myocardial protection during interventions that involve an inevitable episode of IRI. This current opinion review article attempts to suggest that HBO2 may be used to pharmacologically precondition and protect the myocardium from the effects of IRI that is known to occur during cardiac surgery.

  14. Protective effect of bradykinin antagonist Hoe-140 during in vivo myocardial ischemic-reperfusion injury in the cat.

    Science.gov (United States)

    Kumari, Rashmi; Maulik, Mohua; Manchanda, Subhash Chandra; Maulik, Subir Kumar

    2003-10-15

    The effect of icatibant (Hoe-140), a selective bradykinin receptor (B(2)) antagonist on myocardial ischemic-reperfusion injury was studied in open chest barbiturate anaesthetized cats. The left anterior descending coronary artery was occluded for 15 min, followed by 60 min of reperfusion. Saline or icatibant (200 microg/kg) was administered intravenously slowly over 2 min, 5 min before reperfusion. In the saline-treated group, myocardial ischemic-reperfusion injury was evidenced by depressed MAP, depressed peak positive and negative dP/dt and elevated left ventricular end-diastolic pressure and enhanced oxidative stress [elevated plasma thiobarbituric acid reactive substances (TBARS; a marker for lipid peroxidation), depressed myocardial GSH (reduced glutathione), superoxide dismutase (SOD), catalase] and depletion of adenosine triphosphate (ATP) along with rise in plasma creatine phosphokinase (CPK). Administration of icatibant resulted in complete hemodynamic recovery together with repletion of ATP and reduction in plasma TBARS without any significant change in myocardial SOD, catalase and GSH. The results of the present study suggest a protective role of icatibant in myocardial ischemic-reperfusion injury.

  15. Protective effects of Guizhi-Fuling-Capsules on rat brain ischemia/reperfusion injury.

    Science.gov (United States)

    Li, Tie-Jun; Qiu, Yan; Mao, Jun-Qin; Yang, Peng-Yuan; Rui, Yao-Cheng; Chen, Wan-Sheng

    2007-09-01

    Previous studies revealed that Guizhi-Fuling-Capsules (GZFLC), a traditional Chinese medical (Kampo) formulation composed of five kinds of medicinal plants, Cinnamomum cassia BLUME (Cinnamomi Cortex), Paeonia lactiflora PALL. (Peonies Radix), Paeonia suffruticosa ANDREWS (Moutan Cortex), Prunus persica BATSCH (Persicae Semen), and Poria cocos WOLF (Hoelen), exerts a protective effect against vascular injury and has a protective effect against glutamate- or nitro oxide-mediated neuronal damage. In the present study, the effect of GZFLC in a rat in vivo model of focal cerebral ischemia and reperfusion was investigated. Administration of GZFLC (0.3 and 0.9 g/kg, p.o.) after focal cerebral ischemia significantly decreased brain infarction and water contents in rats subjected to 2-h ischemia followed by 24-h reperfusion from 31.72 +/- 2.49%, 84.76 +/- 1.63% in the model group to 17.31 +/- 3.66%, 82.51 +/- 1.36% and 8.30 +/- 3.73%, 81.35 +/- 1.73%, respectively. Furthermore, analysis of inflammatory cytokines in ischemic brain showed that GZFLC treatment significantly down-regulated expressions of pro-inflammatory cytokines including interleukin (IL)-1beta and tissue necrosis factor-alpha and markedly up-regulated expressions of anti-inflammatory cytokines IL-10 and IL-10R both in mRNA and protein levels. The serum levels of these inflammatory cytokines were also regulated the same way. These results suggested that GZFLC may be beneficial for the treatment of brain ischemia-reperfusion injury partly due to its anti-inflammatory properties.

  16. Erythropoietin reduces ischemia-reperfusion injury after liver transplantation in rats.

    Science.gov (United States)

    Schmeding, Maximilian; Hunold, Gerhard; Ariyakhagorn, Veravoorn; Rademacher, Sebastian; Boas-Knoop, Sabine; Lippert, Steffen; Neuhaus, Peter; Neumann, Ulf P

    2009-07-01

    Human recombinant Erythropoietin (rHuEpo) has recently been shown to be a potent protector of ischemia- reperfusion injury in warm-liver ischemia. Significant enhancement of hepatic regeneration and survival after large volume partial hepatic resection has also been demonstrated. It was the aim of this study to evaluate the capacities of rHuEpo in the setting of rat liver transplantation. One-hundred-and-twenty Wistar rats were used: 60 recipients received liver transplantation following donor organ treatment (60 donors) with either 1000 IU rHuEpo or saline injection (controls) into portal veins (cold ischemia 18 h, University of Wisconsin (UW) solution). Recipients were allocated to two groups, which either received 1000 IU rHuEpo at reperfusion or an equal amount of saline (control). Animals were sacrificed at defined time-points (2, 4.5, 24, 48 h and 7 days postoperatively) for analysis of liver enzymes, histology [hematoxylin-eosin (HE) staining, periodic acid Schiff staining (PAS)], immunostaining [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Hypoxyprobe] and real-time polymerase chain reaction (RT-PCR) of cytokine mRNA (IL-1, IL-6). Lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) values were significantly reduced among the epo-treated animals 24 and 48 h after liver transplantation (LT). The TUNEL and Hypoxyprobe analyses as well as necrotic index evaluation displayed significant reduction of apoptosis and necrosis in rHuEpo-treated graft livers. Erythropoietin reduces ischemia-reperfusion injury after orthotopic liver transplantation in rats.

  17. Anti-CD163-dexamethasone protects against apoptosis after ischemia/reperfusion injuries in the rat liver.

    Science.gov (United States)

    Møller, Lin Nanna Okholm; Knudsen, Anders Riegels; Andersen, Kasper Jarlhelt; Nyengaard, Jens Randel; Hamilton-Dutoit, Stephen; Okholm Møller, Elise Marie; Svendsen, Pia; Møller, Holger Jon; Moestrup, Søren Kragh; Graversen, Jonas Heilskov; Mortensen, Frank Viborg

    2015-12-01

    The Pringle maneuver is a way to reduce blood loss during liver surgery. However, this may result in ischemia/reperfusion injury in the development of which Kupffer cells play a central role. Corticosteroids are known to have anti-inflammatory effects. Our aim was to investigate whether a conjugate of dexamethasone and antibody against the CD163 macrophage cell surface receptor could reduce ischemia/reperfusion injury in the rat liver. Thirty-six male Wistar rats were used for the experiments. Animals were randomly divided into four groups of eight receiving anti-CD163-dexamethasone, high dose dexamethasone, low dose dexamethasone or placebo intravenously 18 h before laparotomy with subsequent 60 min of liver ischemia. After reperfusion for 24 h the animals had their liver removed. Bloods were drawn 30 min and 24 h post ischemia induction. Liver cell apoptosis and necrosis were analyzed by stereological quantification. After 24 h' reperfusion, the fraction of cell in non-necrotic tissues exhibiting apoptotic profiles was significantly lower in the high dose dexamethasone (p = 0.03) and anti-CD163-dex (p = 0.03) groups compared with the low dose dexamethasone and placebo groups. There was no difference in necrotic cell volume between groups. After 30 min of reperfusion, levels of haptoglobin were significantly higher in the anti-CD163-dex and high dose dexamethasone groups. Alanine aminotransferase and alkaline phosphatase were significantly higher in the high dose dexamethasone group compared to controls after 24 h' reperfusion. We show that pharmacological preconditioning with anti-CD163-dex and high dose dexamethasone reduces the number of apoptotic cells following ischemia/reperfusion injury.

  18. Protective Effect of Salvia miltiorrhiza Extract Against Renal Ischemia-Reperfusion-Induced Injury in Rats

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2012-01-01

    Full Text Available The present study investigates the effect of pre-treatment with Salvia miltiorrhiza ethanol extracts (SMEE on renal function markers, immunity and antioxidant activities in renal ischemia and reperfusion (IR rats. Wistar rat kidneys were subjected to 60 min of global ischemia at 37 °C followed by 30 min of reperfusion, and were randomly assigned into the sham, IR model and three SMEE-treated groups (n = 8 per group. Results showed that high serum creatinin (Scr, blood urea nitrogen (BUN, interleukin-6 (IL-6, interleukin-8 (IL-8, tumor necrosis factor-alpha (TNF-α and malondialhehyde (MDA levels, and low antioxidant enzyme activities were observed in IR rats compared to the sham rats. Pre-treatment of Salvia miltiorrhiza ethanol extracts for 20 days prior to IR operation improved renal function, reduced IR induced renal inflammatory and oxidative injury. It is concluded that Salvia miltiorrhiza ethanol extracts could be beneficial in the treatment of renal ischemic injury.

  19. Protective role of methylprednisolone and heparin in ischaemic-reperfusion injury of the rat testicle.

    Science.gov (United States)

    Mertoğlu, C; Senel, U; Cayli, S; Tas, U; Küskü Kiraz, Z; Özyurt, H

    2016-09-01

    This study evaluated the therapeutic efficacy of heparin and methylprednisolone in the treatment of ischaemic reperfusion (IR) injury of the testis. Twenty-four male Sprague-Dawley rats were allocated equally into three groups of eight animals each. The left testes were rotated 720° for 2 h in the rats in the torsion-detorsion group. Rats in the treatment groups underwent the same surgical procedure as the torsion-detorsion group but were also given methylprednisolone (group II) or heparin (group III) by an intraperitoneal route 30 min prior to detorsion. Left orchiectomy was performed in all rats from each experimental animal at 2 h after detorsion, and the tissue was harvested for the measurement of malondialdehyde (MDA), protein carbonyl (PC) and nitric oxide (NO) and the endogenous antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase. Additional tissue was evaluated using histopathological and immunohistochemical changes. PC and MDA levels were significantly reduced in the treated groups compared to the control group. There was no statistically significant difference in NO level or SOD, GSH-Px and catalase activity among the treatment groups. Histopathological and immunohistochemical findings supported biochemical changes. It is concluded that pre-treatment with methylprednisolone or heparin protects the testis in ischaemic reperfusion injury caused by testicular torsion-detorsion.

  20. Spermine ameliorates ischemia/reperfusion injury in cardiomyocytes via regulation of autophagy

    Science.gov (United States)

    Duan, Qunjun; Yang, Weijun; Jiang, Daming; Tao, Kaiyu; Dong, Aiqiang; Cheng, Haifeng

    2016-01-01

    Myocardial infarction could result in high morbidity and mortality and heart diseases of children have becoming prevalent. Functions of spermine administration on cardiomyocytes remain unknown. The present study was designed to investigate the role of spermine pretreatment on myocardial ischemia/reperfusion injury (IRI). A cell model of simulated ischemia/reperfusion injury was established by incubating neonatal Sprague-Dawley rat cardiomyocytes in ischemia medium and re-cultured in normal medium. Of note, spermine pretreatment significantly reduced apoptosis and increased viability of immature cardiomyocytes. Spermine pretreatment enhanced autophagic flux as determined by confocal microscopy and transmission electron microscopy. Furthermore, proteins of mammalian target of rapamycin (mTOR) pathway were significantly reduced in response to spermine pretreatment during IRI, while proteins related to autophagy were up-regulated. The cell viability was enhanced and apoptosis decreased by rapamycin after spermine pretreatment, while these were reversed by 3-methyladenine. However, when immature cardiomyocytes were pretreated with rapamycin or 3-methyladenine, followed by IRI and spermine administration, no significant changes of viability and apoptosis were observed. In conclusion, this study suggests that spermine is a potential novel approach for preventing IRI, especially in children. PMID:27725878

  1. Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis.

    Science.gov (United States)

    Wu, Nan; Zhang, Xiaowen; Jia, Pengyu; Jia, Dalin

    2015-12-01

    The effect of hypercholesterolemia on myocardial ischemia reperfusion injury (MIRI) is in controversy and the underlying mechanism is still not well understood. In the present study, we firstly detected the effects of hypercholesterolemia on MIRI and the role of endoplasmic reticulum (ER) stress-mediated apoptosis pathway in this process. The infarct size was determined by TTC staining, and apoptosis was measured by the TUNEL method. The marker proteins of ER stress response and ER stress-mediated apoptosis pathway were detected by Western blot. The results showed that high cholesterol diet-induced hypercholesterolemia significantly increased the myocardial infarct size, the release of myocardium enzyme and the ratio of apoptosis, but did not affect the recovery of cardiac function. Moreover, hypercholesterolemia also remarkably up-regulated the expressions of ER stress markers (glucose-regulated protein 78 and calreticulin) and critical molecules in ER stress-mediated apoptosis pathway (CHOP, caspase 12, phospho-JNK). In conclusion, our study demonstrated that hypercholesterolemia enhanced myocardial vulnerability/sensitivity to ischemia reperfusion injury involved in aggravation the ER stress and activation of ER stress-mediated apoptosis pathway and it gave us a new insight into the underlying mechanisms associated with hypercholesterolemia-induced exaggerated MIRI and also provided a novel target for preventing MIRI in the presence of hypercholesterolemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits

    Directory of Open Access Journals (Sweden)

    Shan Le-qun

    2010-08-01

    Full Text Available Abstract Background Hydroxysafflor Yellow A (HSYA, which is one of the most important active ingredients of the Chinese herb Carthamus tinctorius L, is widely used in the treatment of cerebrovascular and cardiovascular diseases. However, the potential protective effect of HSYA in spinal cord ischemia/reperfusion (I/R injury is still unknown. Methods Thirty-nine rabbits were randomly divided into three groups: sham group, I/R group and HSYA group. All animals were sacrificed after neurological evaluation with modified Tarlov criteria at the 48th hour after reperfusion, and the spinal cord segments (L4-6 were harvested for histopathological examination, biochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL staining. Results Neurological outcomes in HSYA group were slightly improved compared with those in I/R group. Histopathological analysis revealed that HSYA treatment attenuated I/R induced necrosis in spinal cords. Similarly, alleviated oxidative stress was indicated by decreased malondialdehyde (MDA level and increased superoxide dismutase (SOD activity after HSYA treatment. Moreover, as seen from TUNEL results, HSYA also protected neurons from I/R-induced apoptosis in rabbits. Conclusions These findings suggest that HSYA may protect spinal cords from I/R injury by alleviating oxidative stress and reducing neuronal apoptosis in rabbits.

  3. GnRH analogue attenuated apoptosis of rat hippocampal neuron after ischemia-reperfusion injury.

    Science.gov (United States)

    Chu, Chenyu; Xu, Bainan; Huang, Weiquan

    2010-12-01

    The expression and new functions of reproductive hormones in organs beyond hypothalamus-pituitary-gonad axis have been reported. So far, there is no report about the protective effects of GnRH analogue to hippocampal neurons suffering from ischemia-reperfusion injury. Middle cerebral artery occlusion model together with TUNEL staining were made in vivo and oxygen-glucose deprivation model together with double staining of Annexin V/PI with flow cytometer were made in vitro to observe the anti-apoptotic effects of GnRH analogue to hippocampal neurons after ischemia-reperfusion injury. The results found that the number of TUNEL positive pyramidal neurons in CA1 region in GnRH analogue experiment group was less than that in control group in vivo; the percentage of apoptotic neurons in GnRH analogue experiment group was less than that in control group in vitro. These findings suggested that pretreatment with certain concentration of GnRH analogue could attenuate apoptosis of hippocampal neurons. GnRH analogue has the protective effects to neurons.

  4. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Yihan Zhang

    2016-01-01

    Full Text Available Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R after high (25 mM or low (5.5 mM glucose culture. Cell viability, reactive oxygen species (ROS, and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2 and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.

  5. Diabetic Inhibition of Preconditioning- and Postconditioning-Mediated Myocardial Protection against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Xia Yin

    2012-01-01

    Full Text Available Ischemic preconditioning (IPC or postconditioning (Ipost is proved to efficiently prevent ischemia/reperfusion injuries. Mortality of diabetic patients with acute myocardial infarction was found to be 2–6 folds higher than that of non-diabetic patients with same myocardial infarction, which may be in part due to diabetic inhibition of IPC- and Ipost-mediated protective mechanisms. Both IPC- and Ipost-mediated myocardial protection is predominantly mediated by stimulating PI3K/Akt and associated GSK-3β pathway while diabetes-mediated pathogenic effects are found to be mediated by inhibiting PI3K/Akt and associated GSK-3β pathway. Therefore, this review briefly introduced the general features of IPC- and Ipost-mediated myocardial protection and the general pathogenic effects of diabetes on the myocardium. We have collected experimental evidence that indicates the diabetic inhibition of IPC- and Ipost-mediated myocardial protection. Increasing evidence implies that diabetic inhibition of IPC- and Ipost-mediated myocardial protection may be mediated by inhibiting PI3K/Akt and associated GSK-3β pathway. Therefore any strategy to activate PI3K/Akt and associated GSK-3β pathway to release the diabetic inhibition of both IPC and Ipost-mediated myocardial protection may provide the protective effect against ischemia/reperfusion injuries.

  6. Cardioprotective Effect of Electroacupuncture Pretreatment on Myocardial Ischemia/Reperfusion Injury via Antiapoptotic Signaling

    Directory of Open Access Journals (Sweden)

    Sheng-feng Lu

    2016-01-01

    Full Text Available Objectives. Our previous study has used RNA-seq technology to show that apoptotic molecules were involved in the myocardial protection of electroacupuncture pretreatment (EAP on the ischemia/reperfusion (I/R animal model. Therefore, this study was designed to investigate how EAP protects myocardium against myocardial I/R injury through antiapoptotic mechanism. Methods. By using rats with myocardial I/R, we ligated the left anterior descending artery (LAD for 30 minutes followed by 4 hr of reperfusion after EAP at the Neiguan (PC6 acupoint for 12 days; we employed arrhythmia scores, serum myocardial enzymes, and cardiac troponin T (cTnT to evaluate the cardioprotective effect. Heart tissues were harvested for western blot analyses for the expressions of pro- and antiapoptotic signaling molecules. Results. Our preliminary findings showed that EAP increased the survival of the animals along with declined arrhythmia scores and decreased CK, LDH, CK-Mb, and cTnT levels. Further analyses with the heart tissues detected reduced myocardial fiber damage, decreased number of apoptotic cells and the protein expressions of Cyt c and cleaved caspase 3, and the elevated level of Endo G and AIF after EAP intervention. At the same time, the protein expressions of antiapoptotic molecules, including Xiap, BclxL, and Bcl2, were obviously increased. Conclusions. The present study suggested that EAP protected the myocardium from I/R injury at least partially through the activation of endogenous antiapoptotic signaling.

  7. Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng; XIANG Meng; MENG Dan; SUN Ning; CHEN Si-feng

    2016-01-01

    Exosomes secreted by mesenchymal stem cells have shown great therapeutic potential in regenerative medicine .In this study, we performed meta-analysis to assess the clinical effectiveness of using exosomes in ischemia /reperfusion injury based on the reports pub-lished between January 2000 and September 2015 and indexed in the PubMed and Web of Science databases .The effect of exosomes on heart function was evaluated according to the following parameters:the area at risk as a percentage of the left ventricle , infarct size as a percentage of the area at risk , infarct size as a percentage of the left ventricle , left ventricular ejection fraction , left ventricular frac-tion shortening , end-diastolic volume , and end-systolic volume .Our analysis indicated that the currently available evidence confirmed the therapeutic potential of mesenchymal stem cell-secreted exosomes in the improvement of heart function .However , further mechanis-tic studies, therapeutic safety and clinical trials are required for optimization and validation of this approach to cardiac regeneration after ischemia/reperfusion injury .

  8. Protective effects of thymoquinone and melatonin on intestinal ischemia–reperfusion injury

    Directory of Open Access Journals (Sweden)

    Ufuk Tas

    2015-01-01

    Full Text Available Background/Aim: In the present study, we aimed to compare the potential protective effects of thymoquinone and melatonin by using equivalent dose, on oxidative stress-induced ischemia–reperfusion (IR injury in the intestinal tissue of rats. Materials and Methods: The study was performed using 32 male Wistar–Albino rats (weighing 180–200 g randomly divided into four groups: Group I, sham group; Group II, IR group; Group III, IR with melatonin group; and Group IV, IR with thymoquinone group. After laparotomy, ischemia and reperfusion were performed for 60 and 120 min, respectively, on all the groups. Intestinal tissue sections were stained using routine histological methods and examined under the light microscope. In addition, the sections were immunohistochemically stained using the TUNEL method for determination of apoptosis. Superoxide dismutase (SOD activity, glutathione peroxidase (GSH-Px activity, and malondialdehyde (MDA levels in the intestinal tissue were also measured. Results: The IR group had significantly elevated tissue SOD activity, GSH-Px activity, and MDA levels compared with the sham group. Administration of thymoquinone and melatonin efficiently reduced these increases. Statistically significant number of apoptotic cells was observed in the intestinal tissue of IR group rats compared with the sham group. Treatment with thymoquinone and melatonin markedly reduced the number of apoptotic cells. Conclusion: The effects of melatonin and thymoquinone on IR-induced oxidative stress in rat intestines were similar. Our findings suggest that melatonin and thymoquinone protect against IR-induced injury to intestinal tissues.

  9. Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Emma Folch-Puy

    2016-05-01

    Full Text Available The endoplasmic reticulum (ER is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS. This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR, which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes.

  10. Cardioprotective Effects of Quercetin in Cardiomyocyte under Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Yi-Wen Chen

    2013-01-01

    Full Text Available Quercetin, a polyphenolic compound existing in many vegetables, fruits, has antiinflammatory, antiproliferation, and antioxidant effect on mammalian cells. Quercetin was evaluated for protecting cardiomyocytes from ischemia/reperfusion injury, but its protective mechanism remains unclear in the current study. The cardioprotective effects of quercetin are achieved by reducing the activity of Src kinase, signal transducer and activator of transcription 3 (STAT3, caspase 9, Bax, intracellular reactive oxygen species production, and inflammatory factor and inducible MnSOD expression. Fluorescence two-dimensional differential gel electrophoresis (2D-DIGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS can reveal the differentially expressed proteins of H9C2 cells treated with H2O2 or quercetin. Although 17 identified proteins were altered in H2O2-induced cells, these proteins such as alpha-soluble NSF attachment protein (α-SNAP, Ena/VASP-like protein (Evl, and isopentenyl-diphosphate delta-isomerase 1 (Idi-1 were reverted by pretreatment with quercetin, which correlates with kinase activation, DNA repair, lipid, and protein metabolism. Quercetin dephosphorylates Src kinase in H2O2-induced H9C2 cells and likely blocks the H2O2-induced inflammatory response through STAT3 kinase modulation. This probably contributes to prevent ischemia/reperfusion injury in cardiomyocytes.

  11. Mast Cell Protease 5 Mediates Ischemia-Reperfusion Injury of Mouse Skeletal Muscle1

    Science.gov (United States)

    Abonia, J. Pablo; Friend, Daniel S.; Austen, William G.; Moore, Francis D.; Carroll, Michael C.; Chan, Rodney; Afnan, Jalil; Humbles, Alison; Gerard, Craig; Knight, Pamela; Kanaoka, Yoshihide; Yasuda, Shinsuke; Morokawa, Nasa; Austen, K. Frank; Stevens, Richard L.; Gurish, Michael F.

    2010-01-01

    Ischemia with subsequent reperfusion (IR) injury is a significant clinical problem that occurs after physical and surgical trauma, myocardial infarction, and organ transplantation. IR injury of mouse skeletal muscle depends on the presence of both natural IgM and an intact C pathway. Disruption of the skeletal muscle architecture and permeability also requires mast cell (MC) participation, as revealed by the fact that IR injury is markedly reduced in c-kit defective, MC-deficient mouse strains. In this study, we sought to identify the pathobiologic MC products expressed in IR injury using transgenic mouse strains with normal MC development, except for the lack of a particular MC-derived mediator. Histologic analysis of skeletal muscle from BALB/c and C57BL/6 mice revealed a strong positive correlation (R2 = 0.85) between the extent of IR injury and the level of MC degranulation. Linkage between C activation and MC degranulation was demonstrated in mice lacking C4, in which only limited MC degranulation and muscle injury were apparent. No reduction in injury was observed in transgenic mice lacking leukotriene C4 synthase, hemopoietic PGD2 synthase, N-deacetylase/N-sulfotransferase-2 (enzyme involved in heparin biosynthesis), or mouse MC protease (mMCP) 1. In contrast, muscle injury was significantly attenuated in mMCP-5-null mice. The MCs that reside in skeletal muscle contain abundant amounts of mMCP-5 which is the serine protease that is most similar in sequence to human MC chymase. We now report a cytotoxic activity associated with a MC-specific protease and demonstrate that mMCP-5 is critical for irreversible IR injury of skeletal muscle. PMID:15905575

  12. Mast cell protease 5 mediates ischemia-reperfusion injury of mouse skeletal muscle.

    Science.gov (United States)

    Abonia, J Pablo; Friend, Daniel S; Austen, William G; Moore, Francis D; Carroll, Michael C; Chan, Rodney; Afnan, Jalil; Humbles, Alison; Gerard, Craig; Knight, Pamela; Kanaoka, Yoshihide; Yasuda, Shinsuke; Morokawa, Nasa; Austen, K Frank; Stevens, Richard L; Gurish, Michael F

    2005-06-01

    Ischemia with subsequent reperfusion (IR) injury is a significant clinical problem that occurs after physical and surgical trauma, myocardial infarction, and organ transplantation. IR injury of mouse skeletal muscle depends on the presence of both natural IgM and an intact C pathway. Disruption of the skeletal muscle architecture and permeability also requires mast cell (MC) participation, as revealed by the fact that IR injury is markedly reduced in c-kit defective, MC-deficient mouse strains. In this study, we sought to identify the pathobiologic MC products expressed in IR injury using transgenic mouse strains with normal MC development, except for the lack of a particular MC-derived mediator. Histologic analysis of skeletal muscle from BALB/c and C57BL/6 mice revealed a strong positive correlation (R(2) = 0.85) between the extent of IR injury and the level of MC degranulation. Linkage between C activation and MC degranulation was demonstrated in mice lacking C4, in which only limited MC degranulation and muscle injury were apparent. No reduction in injury was observed in transgenic mice lacking leukotriene C(4) synthase, hemopoietic PGD(2) synthase, N-deacetylase/N-sulfotransferase-2 (enzyme involved in heparin biosynthesis), or mouse MC protease (mMCP) 1. In contrast, muscle injury was significantly attenuated in mMCP-5-null mice. The MCs that reside in skeletal muscle contain abundant amounts of mMCP-5 which is the serine protease that is most similar in sequence to human MC chymase. We now report a cytotoxic activity associated with a MC-specific protease and demonstrate that mMCP-5 is critical for irreversible IR injury of skeletal muscle.

  13. Erdosteine in renal ischemia-reperfusion injury: an experimental study in pigs.

    Science.gov (United States)

    Lee, Jae-Yeon; Kim, Hyun-Soo; Park, Chang-Sik; Kim, Myung-Cheol

    2010-01-01

    The aim of the present study was to investigate the effect of erdosteine on renal reperfusion injury. Twelve male Landrace and Yorkshire mixed pigs were randomly divided into two groups: untreated control group (I/R), erdosteine treated group (I/R + erdosteine). Each group is composed of six pigs, and the pigs were unilaterally nephrectomized and their contralateral kidneys were subjected to 30 min of renal pedicle occlusion. The elevations of creatinine and blood urea nitrogen levels were lower in the treated group compared with the control group. The catalase activity and the glutathione peroxidase activity were higher in the erdosteine group. As a result, this study suggests that the erdosteine treatment has a role of attenuation of renal I/R injury recovery of renal function in pig.

  14. Xanthohumol suppresses inflammatory response to warm ischemia-reperfusion induced liver injury.

    Science.gov (United States)

    Dorn, Christoph; Massinger, Sabine; Wuzik, Andreas; Heilmann, Jörg; Hellerbrand, Claus

    2013-02-01

    Liver ischemia/reperfusion (I/R) leads to formation of reactive oxygen species (ROS), which cause hepatic injury and initiate an inflammatory response, which is a critical problem after liver surgery and transplantation. Xanthohumol, the major prenylated chalcone found in hops, has been discussed for its anti-inflammatory and ROS-scavenging properties, and thus, we aimed to investigate the effect of xanthohumol in a model of warm I/R liver injury. Xanthohumol was applied to BALB/c mice orally at a dose of 1 mg/g body weight for 5 days before I/R-injury was induced by clamping the vascular blood supply to the median and left lateral liver lobe for 1 h followed by a 6 h period of reperfusion. At this time, HPLC analysis revealed hepatic xanthohumol levels of approximately 2 μM, a concentration which has been shown to inhibit inflammatory effects in vitro. Assessment of hepatic HMOX1 expression, hepatic glutathione content and immunohistochemical analysis for proteins conjugated with the reactive aldehyde 4-hydroxynonenal indicated that I/R-induced oxidative stress was significantly inhibited in xanthohumol-fed compared to control mice. Histological analysis, TUNEL staining and determination of transaminase serum levels revealed no significant effects of xanthohumol on acute hepatocellular injury. However, at the same time point, pretreatment with xanthohumol almost completely blunted the I/R-induced AKT and NFκB activation and the expression of the proinflammatory genes IL-1alpha, IL-6, MCP-1 and ICAM-1, which are known to play a crucial role in the subacute phase of I/R-induced liver damage. In conclusion, these data indicate the potential of xanthohumol application to prevent adverse inflammatory responses to I/R-induced liver damage such as after surgical liver resection or transplantation.

  15. Fucoidan reduces inflammatory response in a rat model of hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Li, Xiao-Jing; Ye, Qi-Fa

    2015-11-01

    Ischemia-reperfusion (I/R) injury after a liver transplant is a major cause of severe complications that lead to graft dysfunction. Fucoidan, a complex of sulfated polysaccharides derived from marine brown algae, demonstrated antiapoptotic as well as potential anti-inflammatory properties in previous studies. Fucoidan has also shown protective effects on I/R-injured kidney and heart. However, whether fucoidan can attenuate hepatic I/R injury has not been examined. To clarify the role of fucoidan in hepatic I/R injury, Sprague-Dawley rats were subjected to sham operation or ischemia followed by reperfusion with treatment of saline or fucoidan (50, 100, or 200 mg·(kg body mass)(-1)·d(-1)). The fucoidan-treated group showed decreased levels of alanine aminotransferase and aspartate aminotransferase compared with the control group. Myeloperoxidase and malondialdehyde activities and mRNA levels of CD11b in the fucoidan-treated group were significantly decreased. Hepatocellular swelling/necrosis, sinusoidal/vascular congestion, and inflammatory cell infiltration were also attenuated in the fucoidan group. The expression of TNF-α, IL-6, IL-1β, CXCL-10, VCAM-1, and ICAM-1 were markedly decreased in the samples from the fucoidan-treated group. Fucoidan largely prevented activation of the inflammatory signaling pathway, compared with the control group. In summary, fucoidan can protect the liver from I/R injury through suppressing activation of the inflammatory signaling pathway, as well as the expression of inflammatory mediators, and inflammatory cell infiltration.

  16. Combined L-arginine and antioxidative vitamin treatment mollifies ischemia-reperfusion injury of skeletal muscle.

    Science.gov (United States)

    Nanobashvili, Joseph; Neumayer, Christoph; Fuegl, Alexander; Punz, Andreas; Blumer, Roland; Mittlböck, Martina; Prager, Manfred; Polterauer, Peter; Dobrucki, Lawrence W; Huk, Ihor; Malinski, Tadeusz

    2004-04-01

    Enhanced production of superoxide in L-arginine-depleted environments and concomitant reduction of nitric oxide (NO) concentration are involved in ischemia-reperfusion (I/R) injury. Treatment with L-arginine or antioxidative vitamins alone and in combination was used to mollify I/R injury in skeletal muscle. Untreated rabbits were compared with those treated with L-arginine/antioxidative vitamin cocktail Omnibionta only, or a combination of L-arginine/ antioxidative vitamins during hind limb I/R (2.5 hours/2 hours). NO was continuously measured in vivo. Plasma malondialdehyde (MDA) served as the measure of oxygen free radical formation. Interstitial edema formation, microvessel diameter alterations, microvessel plugging, and blood flow changes were used as indicators of I/R injury. The MDA level in untreated animals 2 hours after reperfusion was significantly higher than in control animals (0.81 micromol/L +/- 0.14 micromol/L vs 0.57 micromol/L +/- 0.11 micromol/L; Pvitamins alone had a minimally positive effect on edema formation and microvascular plugging, possibly by suppression of oxygen free radical production, as expressed by the reduction in plasma MDA levels. However, this therapy failed to preserve basal NO production and to protect from microvascular constriction and no reflow. Treatment with L-arginine alone had a stronger protective effect, maintaining basal NO production, further reduction of neutrophil plugging, abolition of microvascular constriction, and no reflow. The combination of antioxidative vitamins and L-arginine was the best treatment against I/R injury, expressed not only by the protection of microvessel constriction, but also by abolition of microvascular plugging, increase in NO production (68 nmol/L +/- 5 nmol/L) over the basal level (52 nmol/L +/- 7 nmol/L), and higher blood flow, as compared with treatment with L-arginine or antioxidative vitamins alone.

  17. Ambroxol alleviates hepatic ischemia reperfusion injury by antioxidant and antiapoptotic pathways.

    Science.gov (United States)

    Jiang, K; Wang, X; Mao, X; Lao, H; Zhang, J; Wang, G; Cao, Y; Tong, I; Zhang, F

    2013-01-01

    Hepatic ischemia/reperfusion (HI/R) injury is a common pathologic process caused by many clinical settings, such as liver resection, liver transplantation, hypovolemic shock, and trauma. The use of ambroxol, which acts as a mucolytic agent, provides antioxidant and anti-inflammatory effects. A rat model of HI/R was induced by clamping the hepatic artery, the hepatoportal vein, and the bile duct with a vascular clamp for 30 minutes followed by reperfusion for 6 hours under anesthesia. The sham group underwent laparotomy without hepatic ischemia. The ambroxol group was injected into the tail vein in the ambroxol group 5 minutes before HI/R at one dose of 20 mg/kg, 80 mg/kg, or 140 mg/kg. The control group underwent the same procedure as the ambroxol group but with administration of physiological saline. Liver injury was evaluated by biochemical and histopathological examinations. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in serum samples. Superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA), and glutathione (GSH) were spectrophotometrically measured. Furthermore, caspase-3, Bcl-2 and Bax expression as well as the level of c-Jun N-terminal kinases (JNK) we estimated activation. Wistar rats that received 20, 80 mg or 140 mg of ambroxol displayed reduced HI/R injury compared with controls. Use of ambroxol reduced the histologic injury and significantly decreased serum ALT and AST levels. In addition, ambroxol enhanced the activity of hepatic tissue SOD and CAT, increasing GSH but decreasing MDA tissue contents. In the ambroxol group, Bcl-2 expression was increased and Bax and caspase-3 decreased compared with the controls. Furthermore, ambroxol reduced levels of phosphorylated JNK (P ambroxol attenuated rat HI/R through upregulation of intracellular antioxidant and anti-apoptotic signaling pathways. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism.

    Directory of Open Access Journals (Sweden)

    Pauline M Snijder

    Full Text Available BACKGROUND: Ischemia-reperfusion injury (IRI is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. METHODS: Male C57BL/6 mice received a 0, 10, or 100 ppm H2S-N2 mixture starting 30 minutes prior to ischemia until 5 minutes pre-reperfusion. IRI was inflicted by temporary ligation of the left coronary artery for 30 minutes. High-resolution respirometry equipment was used to assess CO2-production and blood pressure was measured using internal transmitters. The effects of H2S were assessed by histological and molecular analysis. RESULTS: Treatment with 100 ppm H2S decreased CO2-production by 72%, blood pressure by 14% and heart rate by 25%, while treatment with 10 ppm H2S had no effects. At day 1 of reperfusion 10 ppm H2S showed no effect on necrosis, while treatment with 100 ppm H2S reduced necrosis by 62% (p<0.05. Seven days post-reperfusion, both 10 ppm (p<0.01 and 100 ppm (p<0.05 H2S showed a reduction in fibrosis compared to IRI animals. Both 10 ppm and 100 ppm H2S reduced granulocyte-influx by 43% (p<0.05 and 60% (p<0.001, respectively. At 7 days post-reperfusion both 10 and 100 ppm H2S reduced expression of fibronectin by 63% (p<0.05 and 67% (p<0.01 and ANP by 84% and 63% (p<0.05, respectively. CONCLUSIONS: Gaseous administration of H2S is protective when administered during a cardiac ischemic insult. Although hypometabolism is restricted to small animals, we now showed that low non-hypometabolic concentrations of H2S also have protective properties in IRI. Since IRI is a frequent cause of myocardial damage during percutaneous coronary intervention and cardiac

  19. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat

    Institute of Scientific and Technical Information of China (English)

    V Haktan Ozacmak; Hale Sayan

    2007-01-01

    AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase,malondialdehyde, and reduced glutathione levels were measured.RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.

  20. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation

    Directory of Open Access Journals (Sweden)

    Heemann Uwe

    2010-05-01

    Full Text Available Abstract Inflammatory reactions in the graft have a pivotal influence on acute as well as long-term graft function. The main reasons for an inflammatory reaction of the graft tissue are rejection episodes, infections as well as ischemia/reperfusion (I/R injury. The latter is of particular interest as it affects every solid organ during the process of transplantation. I/R injury impairs acute as well as long-term graft function and is associated with an increased number of acute rejection episodes that again affect long-term graft outcome. I/R injury is the result of ATP depletion during prolonged hypoxia. Further tissue damage results from the reperfusion of the tissue after the ischemic insult. Adaptive cellular responses activate the innate immune system with its Toll-like receptors and the complement system as well as the adaptive immune system. This results in a profound inflammatory tissue reaction with immune cells infiltrating the tissue. The damage is mediated by various cytokines, chemokines, adhesion molecules, and compounds of the extracellular matrix. The expression of these factors is regulated by specific transcription factors with NF-κB being one of the key modulators of inflammation. Strategies to prevent or treat I/R injury include blockade of cytokines/chemokines, adhesion molecules, NF-κB, specific MAP kinases, metalloproteinases, induction of protective genes, and modulation of the innate immune system. Furthermore, preconditioning of the donor is an area of intense research. Here pharmacological treatment as well as new additives to conventional cold storage solutions have been analyzed together with new techniques for the perfusion of grafts, or methods of normothermic storage that would avoid the problem of cold damage and graft ischemia. However, the number of clinical trials in the field of I/R injury is limited as compared to the large body of experimental knowledge that accumulated during recent years in the field of

  1. Effect of intestinal ischemia/reperfusion injury on leptin and orexin-A levels

    Institute of Scientific and Technical Information of China (English)

    LIN Ji; YAN Guangtao; GAO Xiaoning; LIAO Jie; HAO Xiuhua; ZHANG Kai

    2007-01-01

    The aim of this paper is to explore the effect of intestinal ischemia/reperfusion (I/R) injury on leptin and orexin-A levels in peripheral blood and central secretory tissues,and to examine the roles of leptin and orexin-A in acute inflammatory responses.An intestinal I/R injury model of rats was made;the rats were grouped according to the time of after 60 rnin ischemia.Radioimmunoassay was employed to detect the levels of leptin in serum and adipose tissue and orexin-A levels in plasma and hypothalamus.Reverse transcriptase-polymerase chain reaction was used to detect mRNA expressions of adipose leptin and hypothalamus orexin-A.Compared with the levels before the injury,serum leptin in 60 rain ischemia/30 rain reperfusion (I60'R30) group decreased and that of I60'R360' group increased.Compared with sham-operation group (sham group) after injury,serum leptin level of I60aq360' group increased,adipose leptin levels of I60'R30' and I60'R90' decreased,and adipose leptin in I60'R360' group increased.After the injury,adipose leptin mRNA expressions of I60'30',I60'R240' and I60'R360' increased,whereas that of I60'R150' group decreased as compared with the sham group.There was no significant difference in the protein levels of orexin-A,either between plasma and hypothalamus or between pro- and post-I/R injury.Compared with sham group,hypothalamus orexin-A mRNA expressions of I60'R30' and I60'90'decreased gradually after the injury,with that of I60'R150'group reaching the lowest,and those of I60'R240' andI60'R360' recovering gradually,although they were still significantly lower than that of sham group.Leptin and orexin-A respond to intestinal I/R injury in a time-dependent manner,with leptin responding more quickly than orexin-A does,and both of them may contribute to the metabolic disorders in acute inflammation.

  2. The Effects of Oxygen Therapy on Myocardial Salvage in ST Elevation Myocardial Infarction Treated with Acute Percutaneous Coronary Intervention: The Supplemental Oxygen in Catheterized Coronary Emergency Reperfusion (SOCCER) Study.

    Science.gov (United States)

    Khoshnood, Ardavan; Carlsson, Marcus; Akbarzadeh, Mahin; Bhiladvala, Pallonji; Roijer, Anders; Bodetoft, Stefan; Höglund, Peter; Zughaft, David; Todorova, Lizbet; Erlinge, David; Ekelund, Ulf

    2015-01-01

    Despite a lack of scientific evidence, oxygen has long been a part of standard treatment for patients with acute myocardial infarction (AMI). However, several studies suggest that oxygen therapy may have negative cardiovascular effects. We here describe a randomized controlled trial, i.e. Supplemental Oxygen in Catheterized Coronary Emergency Reperfusion (SOCCER), aiming to evaluate the effect of oxygen therapy on myocardial salvage and infarct size in patients with ST elevation myocardial infarction (STEMI) treated with a primary percutaneous coronary intervention (PCI). One hundred normoxic STEMI patients accepted for a primary PCI are randomized in the ambulance to either standard oxygen therapy or no supplemental oxygen. All patients undergo cardiovascular magnetic resonance imaging (CMR) 2-6 days after the primary PCI, and a subgroup of 50 patients undergo an extended echocardiography during admission and at 6 months. All patients are followed for 6 months for hospital admission for heart failure and subjective perception of health. The primary endpoint is the myocardial salvage index on CMR. Even though oxygen therapy is a part of standard care, oxygen may not be beneficial for patients with AMI and is possibly even harmful. The results of the present and concurrent oxygen trials may change international treatment guidelines for patients with AMI or ischemia.

  3. The effects of iloprost on ischemia-reperfusion injury in skeletal muscles in a rodent model.

    Science.gov (United States)

    Avci, Tuba; Erer, Dilek; Kucuk, Aysegul; Oztürk, Yasin; Tosun, Murat; Oktar, Gursel L; Arslan, Mustafa; Iriz, Erkan; Kavutcu, Mustafa; Tatar, Tolga

    2014-03-01

    The aim of this study was to investigate the effects of iloprost (IL) on ischemia-reperfusion injury in a rodent model. Twenty-four Wistar Albino rats were randomized into four groups (n = 6). Laparotomy was performed in all groups under general anesthesia. Only laparotomy was applied in group S (Sham). Ischemia-reperfusion group (group I/R) underwent ischemia and reperfusion performed by clamping and declamping of the infrarenal abdominal aorta for 120 min. The iloprost group (group IL) received intravenous infusion of IL 0.5 ng/kg/min, without I/R. Group I/R + IL received intravenous infusion of IL 0.5 ng/kg/min immediately after 2 h period of ischemia. At the end of the reperfusion period, all rats were killed under anesthesia and skeletal muscle samples of lower extremity were harvested for biochemical and histopathologic analyses. Tissue levels of endothelial nitric oxide were significantly higher in I/R groups than those in groups S and IL. The heat shock protein 60 levels were higher in group I/R than the other groups. But the heat shock protein 60 levels in group I/R + IL were found to be similar with the groups S and IL. Malondialdehyde levels were significantly higher in group I/R. On the other hand, in group I/R + IL, malondialdehyde levels were higher than those in groups S and IL but lower than those in group I/R. Superoxide dismutase (SOD) enzyme activities were found to be significantly lower in group I/R than the other groups. Also in group I/R/I, the SOD enzyme activities were higher than those in group I/R. But, in group I/R + IL, SOD levels were found to be higher than those in group I/R but lower than those in groups S and IL. These results indicate that IL has protective effects on I/R injury in skeletal muscle in a rodent model. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effects of Wy14643 on hepatic ischemia reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Si-Qi Xu; Yuan-Hai Li; Sheng-Hong Hu; Ke Chen; Liu-Yi Dong

    2008-01-01

    AIM: To investigate the effects and possible mechanisms of Wy14643 on hepatic ischemiareperfusion (I/R) injury in rats.METHODS: Thirty male Sprague-Dawley rats weighing 220-280 g were randomly divided into five experimental groups: sham group (G1, n = 6): a sham operation was performed (except for liver I/R);I/R-untreated group (G2, n = 6): rats underwent liver ischemia for 90 min followed by reperfusion for 4h; and I/R + Wy14643 groups (G3, G4, G5, n =6): after the same surgical procedure as in group 2,animals were pretreated with Wy14643 at the dose of 1, 5 and 10 mg/kg 1 h before ischemia, respectively.Hepatic ischemia-reperfusion (I/R) was induced by clamping blood supply to the left lateral and median lobes of the liver for 90 min, and atraumatic clamp was removed for 4 h reperfusion. Blood samples and liver tissues were obtained at the end of reperfusion to assess serum and hepatic tissue homogenate aminotransferase (ALT), aspartate aminotransferase (AST), myeloperoxidase (MPO), serum interleukin1β (IL-1β) and tumor necrosis factor alpha (TNF-α),as well as activity of superoxide dismutase (SOD)and content of malondialdehyde (MDA) in the hepatic tissue homogenate.RESULTS: Hepatic I/R induced a significant increase in the serum levels of ALT, AST, TNF-α, IL-1β and MPO, as well as the levels of ALT, AST and MDA in the liver tissue homogenate, which were reduced by pretreatment with Wy14643 at the dose of 1, 5 and 10 mg/kg, respectively. The activity of SOD in the liver tissue homogenate was decreased after hepatic I/R, which was enhanced by Wy14643 pretreatment.In addition, serum and liver tissue homogenate ALT and AST in the Wy14643 10 mg/kg group were lower than in the Wy14643 1 mg/kg and 5 mg/kg groups,respectively.CONCLUSION: Wy14643 pretreatment exerts significant protection against hepatic I/R injury in rats. The protective effects are possibly associated with enhancement of anti-oxidant and inhibition inflammation response.

  5. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury.

    Science.gov (United States)

    Feinman, Rena; Deitch, Edwin A; Watkins, Anthony C; Abungu, Billy; Colorado, Iriana; Kannan, Kolenkode B; Sheth, Sharvil U; Caputo, Francis J; Lu, Qi; Ramanathan, Madhuri; Attan, Shirhan; Badami, Chirag D; Doucet, Danielle; Barlos, Dimitrios; Bosch-Marce, Marta; Semenza, Gregg L; Xu, Da-Zhong

    2010-10-01

    Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) are major causes of death in trauma patients. Gut inflammation and loss of gut barrier function as a consequence of splanchnic ischemia-reperfusion (I/R) have been implicated as the initial triggering events that contribute to the development of the systemic inflammatory response, ALI, and MODS. Since hypoxia-inducible factor (HIF-1) is a key regulator of the physiological and pathophysiological response to hypoxia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Utilizing partially HIF-1α-deficient mice in a global trauma hemorrhagic shock (T/HS) model, we found that HIF-1 activation was necessary for the development of gut injury and that the prevention of gut injury was associated with an abrogation of lung injury. Specifically, in vivo studies demonstrated that partial HIF-1α deficiency ameliorated T/HS-induced increases in intestinal permeability, bacterial translocation, and caspase-3 activation. Lastly, partial HIF-1α deficiency reduced TNF-α, IL-1β, cyclooxygenase-2, and inducible nitric oxide synthase levels in the ileal mucosa after T/HS whereas IL-1β mRNA levels were reduced in the lung after T/HS. This study indicates that prolonged intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. Consequently, these results provide unique information on the initiating events in trauma-hemorrhagic shock-induced ALI and MODS as well as potential therapeutic insights.

  6. The role of hepatic ischemia-reperfusion injury and liver parenchymal quality on cancer recurrence.

    Science.gov (United States)

    Orci, Lorenzo A; Lacotte, Stéphanie; Oldani, Graziano; Morel, Philippe; Mentha, Gilles; Toso, Christian

    2014-09-01

    Hepatic ischemia/reperfusion (I/R) injury is a common clinical challenge. Despite accumulating evidence regarding its mechanisms and potential therapeutic approaches, hepatic I/R is still a leading cause of organ dysfunction, morbidity, and resource utilization, especially in those patients with underlying parenchymal abnormalities. In the oncological setting, there are growing concerns regarding the deleterious impact of I/R injury on the risk of post-surgical tumor recurrence. This review aims at giving the last updates regarding the role of hepatic I/R and liver parenchymal quality injury in the setting of oncological liver surgery, using a "bench-to-bedside" approach. Relevant medical literature was identified by searching PubMed and hand scanning of the reference lists of articles considered for inclusion. Numerous preclinical models have depicted the impact of I/R injury and hepatic parenchymal quality (steatosis, age) on increased cancer growth in the injured liver. Putative pathophysiological mechanisms linking I/R injury and liver cancer recurrence include an increased implantation of circulating cancer cells in the ischemic liver and the upregulation of proliferation and angiogenic factors following the ischemic insult. Although limited, there is growing clinical evidence that I/R injury and liver quality are associated with the risk of post-surgical cancer recurrence. In conclusion, on top of its harmful early impact on organ function, I/R injury is linked to increased tumor growth. Therapeutic strategies tackling I/R injury could not only improve post-surgical organ function, but also allow a reduction in the risk of cancer recurrence.

  7. Effect of lidocaine on retinal aquaporin-4 expression after ischemia/reperfusion injury in the rat

    Institute of Scientific and Technical Information of China (English)

    Liying He; Li Li

    2008-01-01

    BACKGROUND: Several studies have demonstrated that high doses of lidocaine can reduce edema in rats with brain injury by down-regulating aquaporin-4 (AQP4) expression. The hypothesis for the present study is that lidocaine could retinal edema that is associated with AQP4 expression.OBJECTIVE: This study was designed to investigate the interventional effects of lidocaine on retinal AQP4 expression and retinal edema following ischemia/reperfusion injury in the rat.DESIGN, TIME AND SETTING: This study, a randomized, controlled, animal experiment, was performed at the Basic Research Institute, Chongqing Medical University from September 2006 to May 2007.MATERIALS: Seventy-five, healthy, adult, female, Sprague-Dawley rats were included. A total of 50 rats were used to establish a retinal ischemia/reperfusion injury model using an anterior chamber enhancing perfusion unit. Rabbit anti-rat AQP4 antibody was purchased from Santa Cruz Biotechnology, USA.METHODS: All 75 rats were randomly divided into three groups, with 25 rats in each: control, model, and lidocaine. At each time point (1, 6, 12, 24, and 48 hours after modeling, five rats for each time point), each rat in the lidocaine group was intraperitoneally administered lidocaine with an initial dose of 30 mg/kg, followed by subsequent doses of 15 mg/kg every six hours. The entire treatment process lasted three days for each rat. At each above-mentioned time point, rats in the model group were modeled, but not administered any substances. Rats in the control group received the same treatments as in the lidocaine group except that lidocaine was replaceld by physiological saline.MAIN OUTCOME MEASURES: Following hematoxylin-eosin staining, rat retinal tissue was observed to investigate retinal edema degree through the use of an optical microscope and transmission electron microscope. Retinal AQP4 expression was determined by immunohistochemistry.RESULTS: At each above-mentioned time point, AQP4 expression was

  8. The Effect of the Antioxidant Drug U-74389G on Uric Acid Levels during Ischemia Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Tsompos Constantinos

    2016-09-01

    Full Text Available This experimental study examined the effect of the anti-oxidant drug U-74389G in a rat model using a renal ischaemia-reperfusion (IR protocol. The effects of the molecule were studied biochemically by assessing mean serum uric acid levels (SUA. In total, 40 rats (mean weight = 231.875 g were used in the study. SUA levels were measured at 60 min of reperfusion for groups A and C and at 120 min of reperfusion for groups B and D. The drug U-74389G was administered only in groups C and D. U-74389G administration non-significantly increased the SUA levels by 15.43%±9.10% (p=0.096 at the representative endpoint of 1.5 h. The reperfusion time non-significantly decreased the SUA levels by 13.61%±9.18% (p=0.126. However, the interaction of U-74389G administration and reperfusion time non-significantly increased the SUA levels by 4.78%±5.64% (p= 0.387. Whether it interacted with the reperfusion time, U-74389G administration non-significantly increased SUA levels. It seems that U-74389G cannot reverse injury to IR tubular epithelial cells within 2 hours.

  9. Tyrosol prevents ischemia/reperfusion-induced cardiac injury in H9c2 cells: involvement of ROS, Hsp70, JNK and ERK, and apoptosis.

    Science.gov (United States)

    Sun, Liwei; Fan, Hang; Yang, Lingguang; Shi, Lingling; Liu, Yujun

    2015-02-25

    Ischemia-Reperfusion (I/R) injury causes ROS overproduction, creating oxidative stress, and can trigger myocyte death, resulting in heart failure. Tyrosol is an antioxidant abounded in diets and medicine. Our objective was to investigate the protective effect of tyrosol on I/R-caused mortality in H9c2 cardiomyocytes through its influence on ROS, Hsp70, ERK, JNK, Bcl-2, Bax and caspase-8. A simulated I/R model was used, myocytes loss was examined by MTT, and ROS levels were measured using DCFH-DA. Nuclear condensation and caspase-3 activity were assessed by DAPI staining and fluorometric assay. Phosphorylated ERK and JNK were determined by electrochemiluminescent ELISA, and Hsp70, Bcl-2, Bax and caspase-8 were examined by Western blotting. Results show that tyrosol salvaged myocyte loss, inhibited nuclear condensation and caspase-3 activity dose-dependently, indicating its protection against I/R-caused myocyte loss. Furthermore, tyrosol significantly inhibited ROS accumulation and activation of ERK and JNK, augmenting Hsp70 expression. Besides, tyrosol inhibited I/R-induced apoptosis, associated with retained anti-apoptotic Bcl-2 protein, and attenuated pro-apoptotic Bax protein, resulting in a preservation of Bcl-2/Bax ratio. Finally, tyrosol notably decreased cleaved caspase-8 levels. In conclusion, cytoprotection of tyrosol in I/R-caused myocyte mortality was involved with the mitigation of ROS, prohibition of the activation of ERK, JNK and caspase-8, and elevation of Hsp70 and Bcl-2/Bax ratio.

  10. Tyrosol Prevents Ischemia/Reperfusion-Induced Cardiac Injury in H9c2 Cells: Involvement of ROS, Hsp70, JNK and ERK, and Apoptosis

    Directory of Open Access Journals (Sweden)

    Liwei Sun

    2015-02-01

    Full Text Available Ischemia-Reperfusion (I/R injury causes ROS overproduction, creating oxidative stress, and can trigger myocyte death, resulting in heart failure. Tyrosol is an antioxidant abounded in diets and medicine. Our objective was to investigate the protective effect of tyrosol on I/R-caused mortality in H9c2 cardiomyocytes through its influence on ROS, Hsp70, ERK, JNK, Bcl-2, Bax and caspase-8. A simulated I/R model was used, myocytes loss was examined by MTT, and ROS levels were measured using DCFH-DA. Nuclear condensation and caspase-3 activity were assessed by DAPI staining and fluorometric assay. Phosphorylated ERK and JNK were determined by electrochemiluminescent ELISA, and Hsp70, Bcl-2, Bax and caspase-8 were examined by Western blotting. Results show that tyrosol salvaged myocyte loss, inhibited nuclear condensation and caspase-3 activity dose-dependently, indicating its protection against I/R-caused myocyte loss. Furthermore, tyrosol significantly inhibited ROS accumulation and activation of ERK and JNK, augmenting Hsp70 expression. Besides, tyrosol inhibited I/R-induced apoptosis, associated with retained anti-apoptotic Bcl-2 protein, and attenuated pro-apoptotic Bax protein, resulting in a preservation of Bcl-2/Bax ratio. Finally, tyrosol notably decreased cleaved caspase-8 levels. In conclusion, cytoprotection of tyrosol in I/R-caused myocyte mortality was involved with the mitigation of ROS, prohibition of the activation of ERK, JNK and caspase-8, and elevation of Hsp70 and Bcl-2/Bax ratio.

  11. Influence of ulinastatin on myocardial enzyme spectrum, inflammatory state and reperfusion injury of patients with extracorporeal circulation heart operation

    Institute of Scientific and Technical Information of China (English)

    Ming-Bin Deng; Ju-Yi Wan; Yi-Bing Fang

    2016-01-01

    Objective:To study the influence of ulinastatin on the myocardial enzymes, the inflammatory state and the reperfusion injury of patients with cardiopulmonary bypass.Methods:A total of 60 patients with extracorporeal circulation heart operation in our hospital from September 2012 to August 2015 were taken as research objects. 60 patients were randomly divided into two groups: observation group (conventional surgery group with ulinastatin, 30 cases) and control group (conventional surgery group, 30 cases), and then detected and compared the related indicators of serum cardiac enzymes, inflammatory state and ischemia-reperfusion injury of two test groups at 12 h, 24 h, 72 h after operation.Results:The serum myocardial zymogram of the observation group at 12 h, 24 h and 72 h after the operation were all lower than those of the control group. Meanwhile, the inflammatory indexes and the reperfusion injury indexes of the observation group were also better than those of the control group. The test result of two groups had significant differences.Conclusions: Ulinastatin can effectively improve the myocardial enzyme spectrum and the inflammatory state of patients with extracorporeal circulation heart operation. Besides, ulinastatin is also plays active role in the prevention of reperfusion injury.

  12. The study of protective effects and mechanisms of rofecoxib on focal cerebral ischemia- reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    YUJuan; ZHOUYu; QIULi-Ying; CHENBai-Ling; CHENChong-Hong

    2004-01-01

    AIM : To study the protective effects and the mechanisms of rofecoxib as a specific type 2 cyclooxygenase (COX- 2 inhibitor on focal cerebral ischemia reperfusion injury ( CIRI in rats. METHODS : The model of focal CIRI was induced by reversible middle cerebral artery occlusion ( MCAO with inserting a thread through internal carotid artery, 2 h occlusion followed

  13. The Influence of Copper (Cu) Deficiency in a Cardiomyocyte Cell Model (HL-1 Cell) of Ischemia/Reperfusion Injury

    Science.gov (United States)

    Mitochondria are important mediators of cell death and this study examines whether mitochondrial dysfunction caused by Cu deprivation promotes cell death in a cell culture model for ischemia/reperfusion injury in cardiomyocytes. HL-1 cells (kindly donated by Dr. William C. Claycomb, LSU Health Scien...

  14. [Therapeutic approach in vascular injuries of the lower extremity: Amputation or limb salvage].

    Science.gov (United States)

    Ozal, E; Us, M H; Bingöl, H; Oz, B S; Kuralay, E; Tatar, H

    2001-07-01

    The management of lower extremity trauma with vasculary involvement should be directed toward to the salvage of the extremity or to the primary amputation according to the additional pathologies, parameters of the patient and the extremity. We investigated the efficiency of Mangled Extremity Severity Score (MESS) system which is proposed as an grading system to evaluate the change to extremity salvage or the risk for onset of systemic complications. 81 patients with lower extremity trauma were analyzed according to MESS criteria. 79 of the patients were men and mean age was 23 +/- 4. Fourteen patients had higher MESS score. (MESS > 7). Seven of them were older than 50 years. Primary amputation was performed in four of these 7 patients. Vascular repair was performed in three of patients. Multiorgan failure was developed in two of them and both patients died. Secondary amputation was performed to another patients underwent vasculary repair who had MESS > 7 score. Primary amputation was not performed directly in young patients who had MESS > 7. Secondary amputation was required in two of these patients. MESS scoring system can easily predict amputation in older patients but may cause unnecessary amputation in young patients.

  15. Mild hypoxemia during initial reperfusion alleviates the severity of secondary energy failure and protects brain in neonatal mice with hypoxic-ischemic injury.

    Science.gov (United States)

    Niatsetskaya, Zoya V; Charlagorla, Pradeep; Matsukevich, Dzmitry A; Sosunov, Sergey A; Mayurasakorn, Korapat; Ratner, Veniamin I; Polin, Richard A; Starkov, Anatoly A; Ten, Vadim S

    2012-02-01

    Reperfusion triggers an oxidative stress. We hypothesized that mild hypoxemia in reperfusion attenuates oxidative brain injury following hypoxia-ischemia (HI). In neonatal HI-mice, the reperfusion was initiated by reoxygenation with room air (RA) followed by the exposure to 100%, 21%, 18%, 15% oxygen for 60 minutes. Systemic oxygen saturation (SaO(2)), cerebral blood flow (CBF), brain mitochondrial respiration and permeability transition pore (mPTP) opening, markers of oxidative injury, and cerebral infarcts were assessed. Compared with RA-littermates, HI-mice exposed to 18% oxygen exhibited significantly decreased infarct volume, oxidative injury in the brain mitochondria and tissue. This was coupled with improved mitochondrial tolerance to mPTP opening. Oxygen saturation maintained during reperfusion at 85% to 95% was associated (r=0.57) with the best neurologic outcome. Exposure to 100% or 15% oxygen significantly exacerbated brain injury and oxidative stress. Compared with RA-mice, hyperoxia dramatically increased reperfusion CBF, but exposure to 15% oxygen significantly reduced CBF to values observed during the HI-insult. Mild hypoxemia during initial reperfusion alleviates the severity of HI-brain injury by limiting the reperfusion-driven oxidative stress to the mitochondria and mPTP opening. This suggests that at the initial stage of reperfusion, a slightly decreased systemic oxygenation (SaO(2) 85% to 95%) may be beneficial for infants with birth asphyxia.

  16. Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    YAO Yun-tai; FANG Neng-xin; SHI Chun-xia; LI Li-huan

    2010-01-01

    Background Studies suggested that anesthetics administered upon the early reperfusion or "anesthetic postconditioning" could protect post-ischemic hearts against myocardial ischemia reperfusion injury (MIRI).However, the mechanism responsible for such protection was not well-elucidated.We investigated the cardioprotection induced by sevoflurane postconditioning (SpostC) in rat hearts in vitro, and the respective role of phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase 1 and 2 (ERK 1/2), mitochondrial KATP channels (mitoKATP) and mitochondrial permeability transition pore (mPTP), by selectively inhibiting PI3K, ERK 1/2, mitoKATP, with LY294002 (LY), PD98059 (PD), 5-hydroxydecanoate (5-HD) and by directly opening of mPTP with atractyloside (ATR), respectively.Methods Isolated rat hearts were randomly assigned to one of the 12 groups (n=15):Time control (continuous perfusion), ISCH (30 minutes of ischemia followed by 60 minutes of reperfusion alone), SpostC (3% sevoflurane postconditioning was administered during the first 15 minutes of reperfusion after 30 minutes of ischemia), ISCH+LY,ISCH+PD, ISCH+ATR, ISCH+5-HD and ISCH+ dimethyl sulfoxide (DMSO) groups (LY, PD, ATR, 5-HD and DMSO (the vehicle) was administered respectively during the first 15 minutes of reperfusion following test ischemia), SpostC+LY, SpostC+PD, SpostC+ATR and SpostC+5-HD groups (LY, PD, ATR and 5-HD was coadministered with 3% sevoflurane, respectively).Hemodynamics was compared within and between groups.Infarction size was determined at the end of experiments using triphenyltetrazolium chloride (TTC) staining.Lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) released from necrotic myocardium, were compared among TC, ISCH and SpostC groups.To investigate the relationships between RISK and mPTP implicated in SpostC, NAD+ content in myocardium, a marker of mPTP opening, was compared among some experimental groups (TC, ISCH, ISCH

  17. bcl-xl over-expression in transgenic mice reduces cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Furong Wang; Yongsheng Jiang; Yan Liu; Wenwu Xiao; Suming Zhang

    2008-01-01

    reperfusion, cerebral infarct volume was reduced by 30% in bcl-xl transgenic mice compared with wild-type mice. Simultaneously, the number of apoptotic cells in the ischemic cerebral cortex was significantly less in the transgenic mice compared with the wild-type mice. Overall, the number of apoptotic cells in the transgenic mice remained at a relatively low level. Prior to and subsequent to cerebral ischemia/reperfusion, transgenic mice exhibited markedly higher Bcl-xl protein levels compared with wild-type mice. In addition, after reperfusion, the level of Bcl-xl protein was increased in both transgenic and wild-type mice, but there was no significant difference (P > 0.05) between the two groups. The level of cytochrome C in the transgenic mice was low in the first 24 hours after reperfusion and increased thereafter but was still lower compared with wild-type mice. Neurological function scores demonstrated that transgenic mice exhibited milder neurological function impairment compared with wild-type mice. CONCLUSION: bcl-xl over-expression can inhibit cytochrome C release and result in an inhibitory effect on neural cell apoptosis, thereby alleviating neural cell injury. This is likely to occur due to exogenous over-expression of bcl-xl rather than endogenous production of bcl-xl.

  18. Endothelial dysfunction of bypass graft: direct comparison of in vitro and in vivo models of ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Gábor Veres

    Full Text Available Although, ischemia/reperfusion induced vascular dysfunction has been widely described, no comparative study of in vivo- and in vitro-models exist. In this study, we provide a direct comparison between models (A ischemic storage and in-vitro reoxygenation (B ischemic storage and in vitro reperfusion (C ischemic storage and in-vivo reperfusion.Aortic arches from rats were stored for 2 hours in saline. Arches were then (A in vitro reoxygenated (B in vitro incubated in hypochlorite for 30 minutes (C in vivo reperfused after heterotransplantation (2, 24 hours and 7 days reperfusion. Endothelium-dependent and independent vasorelaxations were assessed in organ bath. DNA strand breaks were assessed by TUNEL-method, mRNA expressions (caspase-3, bax, bcl-2, eNOS by quantitative real-time PCR, proteins by Western blot analysis and the expression of CD-31 by immunochemistry. Endothelium-dependent maximal relaxation was drastically reduced in the in-vivo models compared to ischemic storage and in-vitro reperfusion group, and no difference showed between ischemic storage and control group. CD31-staining showed significantly lower endothelium surface ratio in-vivo, which correlated with TUNEL-positive ratio. Increased mRNA and protein levels of pro- and anti-apoptotic gens indicated a significantly higher damage in the in-vivo models.Even short-period of ischemia induces severe endothelial damage (in-vivo reperfusion model. In-vitro models of ischemia-reperfusion injury can be limitedly suited for reliable investigations. Time course of endothelial stunning is also described.

  19. Olmesartan restores the protective effect of remote ischemic perconditioning against myocardial ischemia/reperfusion injury in spontaneously hypertensive rats.

    Science.gov (United States)

    Lu, Xin; Bi, Yan-Wen; Chen, Ke-Biao

    2015-07-01

    Remote ischemic perconditioning is the newest technique used to lessen ischemia/reperfusion injury. However, its effect in hypertensive animals has not been investigated. This study aimed to examine the effect of remote ischemic perconditioning in spontaneously hypertensive rats and determine whether chronic treatment with Olmesartan could influence the effect of remote ischemic perconditioning. Sixty rats were randomly divided into six groups: vehicle-sham, vehicle-ischemia/reperfusion injury, vehicle-remote ischemic perconditioning, olmesartan-sham, olmesartan-ischemia/reperfusion and olmesartan-remote ischemic perconditioning. The left ventricular mass index, creatine kinase concentration, infarct size, arrhythmia scores, HIF-1α mRNA expression, miR-21 expression and miR-210 expression were measured. Olmesartan significantly reduced the left ventricular mass index, decreased the creatine kinase concentration, limited the infarct size and reduced the arrhythmia score. The infarct size, creatine kinase concentration and arrhythmia score during reperfusion were similar for the vehicle-ischemia/reperfusion group and vehicle-remote ischemic perconditioning group. However, these values were significantly decreased in the olmesartan-remote ischemic perconditioning group compared to the olmesartan-ischemia/reperfusion injury group. HIF-1α, miR-21 and miR-210 expression were markedly down-regulated in the Olmesartan-sham group compared to the vehicle-sham group and significantly up-regulated in the olmesartan-remote ischemic perconditioning group compared to the olmesartan-ischemia/reperfusion injury group. The results indicate that (1) the protective effect of remote ischemic perconditioning is lost in vehicle-treated rats and that chronic treatment with Olmesartan restores the protective effect of remote ischemic perconditioning; (2) chronic treatment with Olmesartan down-regulates HIF-1α, miR-21 and miR-210 expression and reduces hypertrophy, thereby limiting

  20. Olmesartan restores the protective effect of remote ischemic perconditioning against myocardial ischemia/reperfusion injury in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Xin Lu

    2015-07-01

    Full Text Available OBJECTIVES: Remote ischemic perconditioning is the newest technique used to lessen ischemia/reperfusion injury. However, its effect in hypertensive animals has not been investigated. This study aimed to examine the effect of remote ischemic perconditioning in spontaneously hypertensive rats and determine whether chronic treatment with Olmesartan could influence the effect of remote ischemic perconditioning. METHODS: Sixty rats were randomly divided into six groups: vehicle-sham, vehicle-ischemia/reperfusion injury, vehicle-remote ischemic perconditioning, olmesartan-sham, olmesartan-ischemia/reperfusion and olmesartan-remote ischemic perconditioning. The left ventricular mass index, creatine kinase concentration, infarct size, arrhythmia scores, HIF-1α mRNA expression, miR-21 expression and miR-210 expression were measured. RESULTS: Olmesartan significantly reduced the left ventricular mass index, decreased the creatine kinase concentration, limited the infarct size and reduced the arrhythmia score. The infarct size, creatine kinase concentration and arrhythmia score during reperfusion were similar for the vehicle-ischemia/reperfusion group and vehicle-remote ischemic perconditioning group. However, these values were significantly decreased in the olmesartan-remote ischemic perconditioning group compared to the olmesartan-ischemia/reperfusion injury group. HIF-1α, miR-21 and miR-210 expression were markedly down-regulated in the Olmesartan-sham group compared to the vehicle-sham group and significantly up-regulated in the olmesartan-remote ischemic perconditioning group compared to the olmesartan-ischemia/reperfusion injury group. CONCLUSION: The results indicate that (1 the protective effect of remote ischemic perconditioning is lost in vehicle-treated rats and that chronic treatment with Olmesartan restores the protective effect of remote ischemic perconditioning; (2 chronic treatment with Olmesartan down-regulates HIF-1α, miR-21 and mi

  1. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia.

    Science.gov (United States)

    Zheng, Yong-Qiu; Liu, Jian-Xun; Wang, Jan-Nong; Xu, Li

    2007-03-23

    This paper studied the effects of crocin, a pharmacologically active component of Crocus sativus L., on ischemia/reperfusion (I/R) injury in mice cerebral microvessels. Transient global cerebral ischemia (20 min), followed by 24 h of reperfusion, significantly promoted the generation of nitric oxide (NO) and malondialdehyde (MDA) in cortical microvascular homogenates, as well as markedly reduced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) and promoted the activity of nitric oxide synthase (NOs). Reperfusion for 24 h led to serous edema with substantial microvilli loss, vacuolation, membrane damage and mitochondrial injuries in cortical microvascular endothelial cells (CMEC). Furthermore, enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and decreased expression of matrix metalloproteinase-9 (MMP-9) were detected in cortical microvessels after I (20 min)/R (24 h). Reperfusion for 24 h also induced membrane (functional) G protein-coupled receptor kinase 2 (GRK2) expression, while it reduced cytosol GRK2 expression. Pretreatment with crocin markedly inhibited oxidizing reactions and modulated the ultrastructure of CMEC in mice with 20 min of bilateral common carotid artery occlusion (BCCAO) followed by 24 h of reperfusion in vivo. Furthermore, crocin inhibited GRK2 translocation from the cytosol to the membrane and reduced ERK1/2 phosphorylation and MMP-9 expression in cortical microvessels. We propose that crocin protects the brain against excessive oxidative stress and constitutes a potential therapeutic candidate in transient global cerebral ischemia.

  2. Combination Anti-Apoptotic Effect of Erythropoietin and Melatonin on Ischemia Reperfusion-Induced Renal Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shokofeh Banaei

    2016-11-01

    Full Text Available Renal ischemia-reperfusion (IR contributes to the development of acute renal failure (ARF. Oxygen free radicals are considered to be principal components involved in the pathophysiological tissue alterations observed during renal IR. The purpose of this study was to investigate the combination effect of melatonin (MEL and erythropoietin (EPO, which are a potent antioxidant and anti-apoptotic agents, in IR-induced renal injury in rats. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10 mg/kg, i.p and EPO (5000 U/kg, i.p were administered prior to ischemia. After 24 h reperfusion, following decapitation, blood samples were collected for the determination of superoxide dismutase (SOD, glutathione peroxidase (GPx, and malondialdehyde (MDA levels. Also, renal samples were taken for histological evaluation and apoptosis assay. Ischemia-reperfusion increased SOD, GPx, MDA levels, and TUNEL positive cells. Histopathological findings of the IR group confirmed that there was renal impairment in the tubular epithelium. Treatment with EPO and MEL decreased SOD, GPx, and MDA levels, histopathological changes, and TUNEL positive cells. These results indicated that the combination of MEL and EPO could not exert more nephroprotective and anti-apoptotic effects than MEL treatment in renal ischemia-reperfusion injury.

  3. Protective effect of nitric oxide on hepatopulmonary syndrome from ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Tong-Jin Diao; Xin Chen; Li-Hua Deng; Han-Xiang Chen; Yan Liang; Xiao-Dong Zhao; Qing-Hua Wang

    2012-01-01

    AIM:To evaluate immunological protection of nitric oxide (NO) in hepatopulmonary syndrome and probable mechanisms of ischemia-reperfusion (IR) injury in rat liver transplantation.METHODS:Sixty-six healthy male Wistar rats were randomly divided into three groups (11 donor/recipient pairs).In group Ⅱ,organ preservation solution was lactated Ringer's solution with heparin 10 000/μL at 4 ℃.In groups Ⅰ and Ⅲ,the preservation solution added,respectively,L-arginine or NG-L-arginine methyl ester (L-NAME) (1 mmol/L) based on group Ⅱ,and recipients were injected with L-arginine or L-NAME (50 mg/kg) in the anhepatic phase.Grafted livers in each group were stored for 6 h and implanted into recipients.Five rats were used for observation of postoperative survival in each group.The other six rats in each group were used to obtain tissue samples,and executed at 3 h and 24 h after transplantation.The levels of alanine aminotransferase (ALT),tumor necrosis factor (TNF)-α and NO metabolites (NOx) were detected,and expression of NO synthase,TNF-α and intercellular adhesion molecule 1 (ICAM-1) was examined by triphosphopyridine nucleotide diaphorase histochemical and immunohistochemical staining.RESULTS:By supplementing L-arginine to strengthen the NO pathway,a high survival rate was achieved and hepatic function was improved.One-week survival rate of grafted liver recipients in group Ⅰ was significantly increased (28.8 ± 36.6 d vs 4 ± 1.7 d,P< 0.01) as compared with groups Ⅱ and Ⅲ.Serum levels of ALT in group Ⅰ were 2-7 times less than those in groups Ⅱ and Ⅲ (p < 0.01).The cyclic guanosine monophosphate (cGMP) levels in liver tissue and NOx in group Ⅰ were 3-4 times higher than those of group Ⅱ after 3 h and 24 h reperfusion,while in group Ⅲ,they were significantly reduced as compared with those in group Ⅱ (P < 0.01).The levels of TNF-α in group Ⅰ were significantly lower than in group Ⅱ after 3 h and 24 h reperfusion (P < 0.01),while

  4. Drag reducing polymers decrease hepatic injury and metastases after liver ischemia-reperfusion

    Science.gov (United States)

    Yazdani, Hamza O.; Sud, Vikas; Goswami, Julie; Loughran, Patricia; Huang, Hai; Simmons, Richard L.; Tsung, Allan

    2017-01-01

    Introduction Surgery, a crucial therapeutic modality in the treatment of solid tumors, can induce sterile inflammatory processes which can result in metastatic progression. Liver ischemia and reperfusion (I/R) injury, an inevitable consequence of hepatic resection of metastases, has been shown to foster hepatic capture of circulating cancer cells and accelerate metastatic growth. Efforts to reduce these negative consequences have not been thoroughly investigated. Drag reducing polymers (DRPs) are blood-soluble macromolecules that can, in nanomolar concentrations, increase tissue perfusion, decrease vascular resistance and decrease near-wall microvascular concentration of neutrophils and platelets thereby possibly reducing the inflammatory microenvironment. We hypothesize that DRP can potentially be used to ameliorate metastatic capture of tumor cells and tumor growth within the I/R liver. Methods Experiments were performed utilizing a segmental ischemia model of mice livers. Five days prior or immediately prior to ischemia, murine colon adenocarcinoma cells (MC38) were injected into the spleen. DRP (polyethylene oxide) or a control of low-molecular-weight polyethylene glycol without drag reducing properties were administered intraperitoneally at the onset of reperfusion. Results After three weeks from I/R, we observed that liver I/R resulted in an increased ability to capture and foster growth of circulating tumor cells; in addition, the growth of pre-existing micrometastases was accelerated three weeks later. These effects were significantly curtailed when mice were treated with DRPs at the time of I/R. Mechanistic investigations in vivo indicated that DRPs protected the livers from I/R injury as evidenced by significant decreases in hepatocellular damage, neutrophil recruitment into the liver, formation of neutrophil extracellular traps, deposition of platelets, formation of microthrombi within the liver sinusoids and release of inflammatory cytokines

  5. Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats

    Directory of Open Access Journals (Sweden)

    Sayed M. Mizar

    2015-03-01

    Full Text Available Oxidative stress plays a key role in the pathogenesis of hepatic ischemia/reperfusion (I/R-induced injury, one of the leading causes of liver damage post-surgical intervention, trauma and transplantation. This study aimed to evaluate the protective effect of nebivolol and chrysin against I/R-induced liver injury via their vasodilator and antioxidant effects, respectively. Adult male Wister rats received nebivolol (5 mg/kg and/or chrysin (25 mg/kg by oral gavage daily for one week then subjected to ischemia via clamping the portal triad for 30 min then reperfusion for 30 min. Liver function enzymes, alanine transaminase (ALT and aspartate transaminase (AST, as well as hepatic Myeloperoxidase (MPO, total nitrate (NOx, glutathione (GSH and liver malondialdehyde (MDA were measured at the end of the experiment. Liver tissue damage was examined by histopathology. In addition, the expression levels of nitric oxide synthase (NOS subtypes, endothelial (eNOS and inducible (iNOS in liver samples were assessed by Western blotting and confirmed by immunohistochemical analysis. Both chrysin and nebivolol significantly counteracted I/R-induced oxidative stress and tissue damage biomarkers. The combination of these agents caused additive liver protective effect against I/R-induced damage via the up regulation of nitric oxide expression and the suppression of oxidative stress. Chrysin and nebivolol combination showed a promising protective effect against I/R-induced liver injury, at least in part, via decreasing oxidative stress and increasing nitric oxide levels.

  6. Drag reducing polymers decrease hepatic injury and metastases after liver ischemia-reperfusion.

    Science.gov (United States)

    Tohme, Samer; Kameneva, Marina V; Yazdani, Hamza O; Sud, Vikas; Goswami, Julie; Loughran, Patricia; Huang, Hai; Simmons, Richard L; Tsung, Allan

    2017-08-29

    Surgery, a crucial therapeutic modality in the treatment of solid tumors, can induce sterile inflammatory processes which can result in metastatic progression. Liver ischemia and reperfusion (I/R) injury, an inevitable consequence of hepatic resection of metastases, has been shown to foster hepatic capture of circulating cancer cells and accelerate metastatic growth. Efforts to reduce these negative consequences have not been thoroughly investigated. Drag reducing polymers (DRPs) are blood-soluble macromolecules that can, in nanomolar concentrations, increase tissue perfusion, decrease vascular resistance and decrease near-wall microvascular concentration of neutrophils and platelets thereby possibly reducing the inflammatory microenvironment. We hypothesize that DRP can potentially be used to ameliorate metastatic capture of tumor cells and tumor growth within the I/R liver. Experiments were performed utilizing a segmental ischemia model of mice livers. Five days prior or immediately prior to ischemia, murine colon adenocarcinoma cells (MC38) were injected into the spleen. DRP (polyethylene oxide) or a control of low-molecular-weight polyethylene glycol without drag reducing properties were administered intraperitoneally at the onset of reperfusion. After three weeks from I/R, we observed that liver I/R resulted in an increased ability to capture and foster growth of circulating tumor cells; in addition, the growth of pre-existing micrometastases was accelerated three weeks later. These effects were significantly curtailed when mice were treated with DRPs at the time of I/R. Mechanistic investigations in vivo indicated that DRPs protected the livers from I/R injury as evidenced by significant decreases in hepatocellular damage, neutrophil recruitment into the liver, formation of neutrophil extracellular traps, deposition of platelets, formation of microthrombi within the liver sinusoids and release of inflammatory cytokines. DRPs significantly attenuated

  7. Levosimendan: a cardiovascular drug to prevent liver ischemia-reperfusion injury?

    Directory of Open Access Journals (Sweden)

    Peter Onody

    Full Text Available INTRODUCTION: Temporary occlusion of the hepatoduodenal ligament leads to an ischemic-reperfusion (IR injury in the liver. Levosimendan is a new positive inotropic drug, which induces preconditioning-like adaptive mechanisms due to opening of mitochondrial KATP channels. The aim of this study was to examine possible protective effects of levosimendan in a rat model of hepatic IR injury. MATERIAL AND METHODS: Levosimendan was administered to male Wistar rats 1 hour (early pretreatment or 24 hours (late pretreatment before induction of 60-minute segmental liver ischemia. Microcirculation of the liver was monitored by laser Doppler flowmeter. After 24 hours of reperfusion, liver and blood samples were taken for histology, immuno- and enzyme-histochemistry (TUNEL; PARP; NADH-TR as well as for laboratory tests. Furthermore, liver antioxidant status was assessed and HSP72 expression was measured. RESULTS: In both groups pretreated with levosimendan, significantly better hepatic microcirculation was observed compared to respective IR control groups. Similarly, histological damage was also reduced after levosimendan administration. This observation was supported by significantly lower activities of serum ALT (p early = 0.02; p late = 0.005, AST (p early = 0.02; p late = 0.004 and less DNA damage by TUNEL test (p early = 0.05; p late = 0.034 and PAR positivity (p early = 0.02; p late = 0.04. Levosimendan pretreatment resulted in significant improvement of liver redox homeostasis. Further, significantly better mitochondrial function was detected in animals receiving late pretreatment. Finally, HSP72 expression was increased by IR injury, but it was not affected by levosimendan pretreatment. CONCLUSION: Levosimendan pretreatment can be hepatoprotective and it could be useful before extensive liver resection.

  8. Vagus nerve stimulation attenuates cerebral ischemia and reperfusion injury via endogenous cholinergic pathway in rat.

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    Full Text Available Inflammation and apoptosis play critical roles in the acute progression of ischemic injury pathology. Emerging evidence indicates that vagus nerve stimulation (VNS following focal cerebral ischemia and reperfusion (I/R may be neuroprotective by limiting infarct size. However, the underlying molecular mechanisms remain unclear. In this study, we investigated whether the protective effects of VNS in acute cerebral I/R injury were associated with anti-inflammatory and anti-apoptotic processes. Male Sprague-Dawley (SD rats underwent VNS at 30 min after focal cerebral I/R surgery. Twenty-four h after reperfusion, neurological deficit scores, infarct volume, and neuronal apoptosis were evaluated. In addition, the levels of pro-inflammatory cytokines were detected using enzyme-linked immune sorbent assay (ELISA, and immunofluorescence staining for the endogenous "cholinergic anti-inflammatory pathway" was also performed. The protein expression of a7 nicotinic acetylcholine receptor (a7nAchR, phosphorylated Akt (p-Akt, and cleaved caspase 3 in ischemic penumbra were determined with Western blot analysis. I/R rats treated with VNS (I/R+VNS had significantly better neurological deficit scores, reduced cerebral infarct volume, and decreased number of TdT mediated dUTP nick end labeling (TUNEL positive cells. Furthermore, in the ischemic penumbra of the I/R+VNS group, the levels of pro-inflammatory cytokines and cleaved caspase 3 protein were significantly decreased, and the levels of a7nAchR and phosphorylated Akt were significantly increased relative to the I/R alone group. These results indicate that VNS is neuroprotective in acute cerebral I/R injury by suppressing inflammation and apoptosis via activation of cholinergic and a7nAchR/Akt pathways.

  9. Protective role of p70S6K in intestinal ischemia/reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Kechen Ban

    Full Text Available The mTOR signaling pathway plays a crucial role in the regulation of cell growth, proliferation, survival and in directing immune responses. As the intestinal epithelium displays rapid cell growth and differentiation and is an important immune regulatory organ, we hypothesized that mTOR may play an important role in the protection against intestinal ischemia reperfusion (I/R-induced injury. To better understand the molecular mechanisms by which the mTOR pathway is altered by intestinal I/R, p70S6K, the major effector of the mTOR pathway, was investigated along with the effects of rapamycin, a specific inhibitor of mTOR and an immunosuppressant agent used clinically in transplant patients. In vitro experiments using an intestinal epithelial cell line and hypoxia/reoxygenation demonstrated that overexpression of p70S6K promoted cell growth and migration, and decreased cell apoptosis. Inhibition of p70S6K by rapamycin reversed these protective effects. In a mouse model of gut I/R, an increase of p70S6K activity was found by 5 min and remained elevated after 6 h of reperfusion. Inhibition of p70S6K by rapamycin worsened gut injury, promoted inflammation, and enhanced intestinal permeability. Importantly, rapamycin treated animals had a significantly increased mortality. These novel results demonstrate a key role of p70S6K in protection against I/R injury in the intestine and suggest a potential danger in using mTOR inhibitors in patients at risk for gut hypoperfusion.

  10. Protective Effects of L-Malate against Myocardial Ischemia/Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shiao Ding

    2016-01-01

    Full Text Available Objective. To investigate the protective effects of L-malate against myocardial ischemia/reperfusion (I/R injury in rats. Methods. Male Sprague-Dawley rats were randomly assigned to the following groups: sham (sham, an ischemia/reperfusion (I/R model group (model, an DMF pretreated group (DMF, and 5 L-malate pretreated groups (15, 60, 120, 240, or 480 mg/kg, gavage before inducing myocardial ischemia. Plasma LDH, cTn-I, TNF-α, hs-CRP, SOD, and GSH-PX were measured 3 h later I/R. Areas of myocardial infarction were measured; hemodynamic parameters during I/R were recorded. Hearts were harvested and Western blot was used to quantify Nrf2, Keap1, HO-1, and NQO-1 expression in the myocardium. Results. L-malate significantly reduced LDH and cTn-I release, reduced myocardial infarct size, inhibited expression of inflammatory cytokines, and partially preserved heart function, as well as increasing antioxidant activity after myocardial I/R injury. Western blot confirmed that L-malate reduced Kelch-like ECH-associated protein 1 in ischemic myocardial tissue, upregulated expression of Nrf2 and Nrf2 nuclear translocation, and increased expression of heme oxygenase-1 and NAD(PH:quinone oxidoreductase 1, which are major targets of Nrf2. Conclusions. L-malate may protect against myocardial I/R injury in rats and this may be associated with activation of the Nrf2/Keap1 antioxidant pathway.

  11. Protective Effects of N-acetylcysteine and a Prostaglandin E1 Analog, Alprostadil, Against Hepatic Ischemia: Reperfusion Injury in Rats

    OpenAIRE

    Hsieh, Cheng-Chu; Hsieh, Shu-Chen; Chiu, Jen-Hwey; Wu, Ying-Ling

    2014-01-01

    Ischemia–reperfusion (I/R) injury has a complex pathophysiology resulting from a number of contributing factors. Therefore, it is difficult to achieve effective treatment or protection by individually targeting the mediators or mechanisms. Our aim was to analyze the individual and combined effects of N-acetylcysteine (NAC) and the prostaglandin E1 (PGE1) analog alprostadil on hepatic I/R injury in rats. Thirty male Sprague-Dawley rats were randomly divided into five groups (six rats per group...

  12. EFFECT OF CANNABINOIDS ON TESTICULAR ISCHEMIA-REPERFUSION INJURY IN RAT

    Directory of Open Access Journals (Sweden)

    H. Sepehri

    2006-11-01

    Full Text Available Anandamide is an endogenous ligand for cannabinoid receptors and has endothelial protective effect against ischemic preconditioning. The purpose of this study was to investigate the effects of cannabinoids on reperfusion injury due to testicular torsion-detorsion (T/D. A total of 36 adult male Sprague-Dawley rats were divided into 6 groups. Testicular ischemia was achieved by twisting the right testes 720◦ counters clockwise for 1 hour and reperfusion was allowed for 4 hours after detorsion. In baseline (normal group, bilateral orchiectomies performed after anesthesia. Sham operated group was served as a control group. Torsion/detorsion group underwent 1 hour testicular torsion and 4 hours of detorsion. Anandamide (cannabinoid agonist group received pretreatment with intraperitoneally anandamide 30 min before torsion. AM251 (CB1 antagonist group, received intraperitoneally injection of AM251 45 min before torsion. Anandamid/AM251 (An/AM group received administrations of AM251 45 min before torsion and anandamide 30 min before torsion. The ipsilateral malondialdehyde (MDA level in T/D group were significantly higher versus control and base line groups. Ipsilateral MDA values in anandamid group were significantly lower than T/D and An/AM groups. There were also significant decreases in catalase activity in T/D group compared with control and base line groups. These values were significantly higher in cannabinoid group versus T/D and An/AM groups. Anandamide increased ipsilateral intratesticular antioxidative markers and decreased free radicals formation during reperfusion phase after unilateral testicular torsion, which was reflected in lesser testicular MDA level. Furthermore, the effects of anandamide were mediated via cannabinoid receptors, since AM251 could abolish these effects.

  13. Citicoline (CDP-choline) protects myocardium from ischemia/reperfusion injury via inhibiting mitochondrial permeability transition.

    Science.gov (United States)

    Hernández-Esquivel, Luz; Pavón, Natalia; Buelna-Chontal, Mabel; González-Pacheco, Héctor; Belmont, Javier; Chávez, Edmundo

    2014-02-06

    Oxidative stress emerges after reperfusion of an organ following an ischemic period and results in tissue damage. In the heart, an amplified generation of reactive oxygen species and a significant Ca(2+) accumulation cause ventricular arrhythmias and mitochondrial dysfunction. This occurs in consequence of increased non-specific permeability. A number of works have shown that permeability transition is a common substrate that underlies the reperfusion-induced heart injury. The aim of this work was to explore the possibility that CDP-choline may circumvent heart damage and mitochondrial permeability transition. Rats were injected i.p. with CDP-choline at 20 mg/kg body weight. Heart electric behavior was followed during a closure/opening cycle of the left coronary descendent artery. Heart mitochondria were isolated from rats treated with CDP-choline, and their function was evaluated by analyzing Ca(2+) movements, achievement of a high level of the transmembrane potential, and respiratory control. Oxidative stress was estimated following the activity of the enzymes cis-aconitase and superoxide dismutase, as well as the disruption of mitochondrial DNA. This study shows that CDP-choline avoided ventricular arrhythmias and drop of blood pressure. Results also show that mitochondria, isolated from CDP-choline-treated rats, maintained selective permeability, retained accumulated Ca(2+), an elevated value of transmembrane potential, and a high ratio of respiratory control. Furthermore, activity of cis-aconitase enzyme and mDNA structure were preserved. This work introduces CDP-choline as a useful tool to preserve heart function from reperfusion damage by inhibiting mitochondrial permeability transition. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Mechanism of the protective effects of noninvasive limbs preconditioning on myocardial ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-guang; WU Bin-yang; WANG Jun-ke; BAI Tao

    2005-01-01

    Background This study aimed at assessing the effect of noninvasive limb preconditioning on myocardial infarct size, and determining whether nitric oxide and neurogenic pathway play an important role in the mechanism of acute remote ischemic preconditioning (IPC).Methods Forty Wistar rats were randomly divided into four experimental groups. In Group Ⅰ, the rats underwent 30-minute occlusion of the left anterior descending coronary artery, and 120-minute reperfusion. In Group PL, the rats underwent four cycles of 5-minute occlusion and reperfusion of both hind limbs using a tourniquet before the experiment was continued as in Group Ⅰ. In Group PL-N and Group PL-H, we administered L-nitro-arginine methyl ester (L-NAME) 10 mg/kg or hexamethonium chloride 20 mg/kg intravenously, 10 minutes before IPC. Infarct size as a percentage of the area at risk was determined by triphenyltetrazolium chloride staining. Results There were no statistically significant differences in mean arterial pressure and heart rate among these groups at any time point during the experiment (P>0.05). The myocardial infarct size (IS) was decreased significantly in Group PL and Group PL-H compared with Group Ⅰ, and the IS/AAR was 34.5%±7.6%, 35.9%±8.6% and 58.5%±8.5%, respectively (P0.05).Conclusions Noninvasive limb IPC is effective in protecting the myocardium from ischemia reperfusion injury. Nitric oxide plays an important role in the mechanism of acute remote IPC, in which the neurogenic pathway is not involved.

  15. Cardiac Ischemia Reperfusion Injury Following Instillation of 20 nm Citrate-capped Nanosilver

    Energy Technology Data Exchange (ETDEWEB)

    Becak DP, Holland NA; Shannahan, Jonathan H.

    2015-10-01

    Background: Silver nanoparticles (AgNP) have garnered much interest due to their antimicrobial properties, becoming one of the most utilized nano scale materials. However, any potential evocable cardiovascular injury associated with exposure has not been previously reported. We have previously demonstrated expansion of myocardial infarction after intratracheal (IT) instillation of other nanomaterials. We hypothesized that pulmonary exposure to Ag core AgNP induces persistent increase in circulating cytokines, expansion of cardiac ischemia-reperfusion (I/R) injury and associated with altered coronary vessel reactivity. Methods: Male Sprague-Dawley rats were exposed to 200 µg of 20 nm citrate capped Ag core AgNP, or a citrate vehicle intratracheally (IT). One and 7 days following IT instillation lungs were evaluated for inflammation and silver presence, serum was analyzed for concentrations of selected cytokines, and cardiac I/R injury and coronary artery reactivity was assessed. Results: AgNP instillation resulted in modest pulmonary injury with detection of silver in lung tissue and infiltrating cells, elevation of serum cytokines: G-CSF, MIP-1α, IL-1β, IL-2, IL-6, IL-13, IL-10, IL-18, IL-17, TNFα, and RANTES, expansion of I/R injury and depression of the coronary vessel reactivity at 1 day post IT compared to vehicle treated rats. Seven days post IT instillation was associated with persistent detection of silver in lungs, elevation in cytokines: IL-2, IL-13, and TNFα and expansion of I/R injury. Conclusions: Based on these data, IT instillation of AgNP increases circulating levels of several cytokines, which may contribute to persistent expansion of I/R injury possibly through an impaired vascular responsiveness.

  16. Polyol pathway and modulation of ischemia-reperfusion injury in Type 2 diabetic BBZ rat hearts

    Directory of Open Access Journals (Sweden)

    Guberski Dennis

    2008-10-01

    Full Text Available Abstract We investigated the role of polyol pathway enzymes aldose reductase (AR and sorbitol dehydrogenase (SDH in mediating injury due to ischemia-reperfusion (IR in Type 2 diabetic BBZ rat hearts. Specifically, we investigated, (a changes in glucose flux via cardiac AR and SDH as a function of diabetes duration, (b ischemic injury and function after IR, (c the effect of inhibition of AR or SDH on ischemic injury and function. Hearts isolated from BBZ rats, after 12 weeks or 48 weeks diabetes duration, and their non-diabetic littermates, were subjected to IR protocol. Myocardial function, substrate flux via AR and SDH, and tissue lactate:pyruvate (L/P ratio (a measure of cytosolic NADH/NAD+, and lactate dehydrogenase (LDH release (a marker of IR injury were measured. Zopolrestat, and CP-470,711 were used to inhibit AR and SDH, respectively. Myocardial sorbitol and fructose content, and associated changes in L/P ratios were significantly higher in BBZ rats compared to non-diabetics, and increased with disease duration. Induction of IR resulted in increased ischemic injury, reduced ATP levels, increases in L/P ratio, and poor cardiac function in BBZ rat hearts, while inhibition of AR or SDH attenuated these changes and protected hearts from IR injury. These data indicate that AR and SDH are key modulators of myocardial IR injury in BBZ rat hearts and that inhibition of polyol pathway could in principle be used as a therapeutic adjunct for protection of ischemic myocardium in Type 2 diabetic patients.

  17. Nuclear factor-κB decoy oligodeoxynucleotides attenuates ischemia/reperfusion injury in rat liver graft

    Institute of Scientific and Technical Information of China (English)

    Ming-Qing Xu; Xiu-Rong Shuai; Mao-Lin Yan; Ming-Man Zhang; Lu-Nan Yan

    2005-01-01

    AIM: To evaluate the protective effect of NF-κB decoy oligodeoxynucleotides (ODNs) on ischemia/reperfusion (I/R) injury in rat liver graft.METHODS: Orthotopic syngeneic rat liver transplantation was performed with 3 h of cold preservation of liver graft in University of Wisconsin solution containing phosphorothioated double-stranded NF-κB decoy ODNs or scrambled ODNs. NF-κB decoy ODNs or scrambled ODNs were injected intravenously into donor and recipient rats 6 and 1 h before operation,respectively. Recipients were killed 0 to 16 h after liver graft reperfusion. NF-κB activity in the liver graft was analyzed by electrophoretic mobility shift assay (EMSA). Hepatic mRNA expression of TNF-α, IFN-γand intercellular adhesion molecule-1 (ICAM-1) were determined by semiquantitative RT-PCR. Serum levels of TNF-α and IFN-γ were measured by enzyme-linked immunosorbent assays (ELISA). Serum level of alanine transaminase (ALT) was measured using a diagnostic kit. Liver graft myeloperoxidase (MPO) content was assessed.RESULTS: NF-κB activation in liver graft was induced in a time-dependent manner, and NF-κB remained activated for 16 h after graft reperfusion. NF-κB activation in liver graft was significant at 2 to 8 h and slightly decreased at 16 h after graft reperfusion. Administration of NF-κB decoy ODNs significantly suppressed NF-κB activation as well as mRNA expression of TNF-α, IFN-γ and ICAM-1 in the liver graft. The hepatic NF-κB DNA binding activity [presented as integral optical density (IOD) value] in the NF-κB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (2.16±0.78 vs 36.78±6.35 and 3.06±0.84 vs 47.62± 8.71 for IOD value after 4 and 8 h of reperfusion, respectively, P<0.001).The hepatic mRNA expression level of TNF-α, IFN-y and ICAM-1 [presented as percent of β-actin mRNA(%)] in the NF-κBdecoy ODNs treatment group rat was significantly lower than that of the I/R group rat (8.31 ±3.48 vs 46.37±10

  18. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes.

    Science.gov (United States)

    Huang, Zhouqing; Han, Zhihua; Ye, Bozhi; Dai, Zhenyu; Shan, Peiren; Lu, Zhongqiu; Dai, Kezhi; Wang, Changqian; Huang, Weijian

    2015-09-05

    Ischemia/reperfusion (I/R)-induced autophagy increases the severity of cardiomyocyte injury. The aim of this study was to investigate the effects of berberine, a natural extract from Rhizoma coptidis, on the I/R-induced excessive autophagy in in vitro and in vivo models. Autophagy was increased both in H9c2 myocytes during hypoxia/reoxygenation (H/R) injury and in mouse hearts exposed to I/R. And the expression level of p-AMPK and p-mTORC2 (Ser2481) were increased during H/R period. In addition, the increased autophagy level was correlated with reduced cell survival in H9c2 myocytes and increased infarct size in mouse hearts. However, berberine treatment significantly enhanced the H/R-induced cell viability and reduced I/R-induced myocardial infarct size, which was accompanied by improved cardiac function. The beneficial effect of berberine is associated with inhibiting the cellular autophagy level, due to decreasing the expression level of autophagy-related proteins such as SIRT1, BNIP3, and Beclin-1. Furthermore, both the level of p-AMPK and p-mTORC2 (Ser2481) in H9c2 myocytes exposed to H/R were decreased by berberine. In summary, berberine protects myocytes during I/R injury through suppressing autophagy activation. Therefore, berberine may be a promising agent for treating I/R-induced cardiac myocyte injury.

  19. Neuroprotective Effect of Salvianolic Acids against Cerebral Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Shuai Hou

    2016-07-01

    Full Text Available This study investigated the neuroprotective effect of salvianolic acids (SA against ischemia/reperfusion (I/R injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43 via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and also evaluated the morphology of astrocyte mitochondria with transmission electron microscopy. In vivo, we determined the cerebral infarction volume and measured superoxide dismutase (SOD activity and malondialdehyde (MDA content. Additionally, mtCx43, p-mtCx43, AKT, and p-AKT levels were determined. In vitro, we found that I/R injury induced apoptosis, decreased cell mitochondrial membrane potential (MMP, and damaged mitochondrial morphology in astrocytes. In vivo, we found that I/R injury resulted in a large cerebral infarction, decreased SOD activity, and increased MDA expression. Additionally, I/R injury reduced both the p-mtCx43/mtCx43 and p-AKT/AKT ratios. We reported that both in vivo and in vitro, SA ameliorated the detrimental outcomes of the I/R. Interestingly, co-administering an inhibitor of the PI3K/AKT pathway blunted the effects of SA. SA represents a potential treatment option for cerebral infarction by up-regulating mtCx43 through the PI3K/AKT pathway.

  20. Autophagy protects cardiomyocytes from the myocardial ischaemia-reperfusion injury through the clearance of CLP36

    Science.gov (United States)

    Li, Shiguo; Liu, Chao; Gu, Lei; Wang, Lina; Shang, Yongliang; Liu, Qiong; Wan, Junyi; Shi, Jian; Wang, Fang; Xu, Zhiliang; Ji, Guangju

    2016-01-01

    Cardiovascular disease (CVD) is the leading cause of the death worldwide. An increasing number of studies have found that autophagy is involved in the progression or prevention of CVD. However, the precise mechanism of autophagy in CVD, especially the myocardial ischaemia-reperfusion injury (MI/R injury), is unclear and controversial. Here, we show that the cardiomyocyte-specific disruption of autophagy by conditional knockout of Atg7 leads to severe contractile dysfunction, myofibrillar disarray and vacuolar cardiomyocytes. A negative cytoskeleton organization regulator, CLP36, was found to be accumulated in Atg7-deficient cardiomyocytes. The cardiomyocyte-specific knockout of Atg7 aggravates the MI/R injury with cardiac hypertrophy, contractile dysfunction, myofibrillar disarray and severe cardiac fibrosis, most probably due to CLP36 accumulation in cardiomyocytes. Altogether, this work reveals autophagy may protect cardiomyocytes from the MI/R injury through the clearance of CLP36, and these findings define a novel relationship between autophagy and the regulation of stress fibre in heart. PMID:27512143

  1. Intermedin protects against myocardial ischemia-reperfusion injury in hyperlipidemia rats.

    Science.gov (United States)

    Yang, S M; Liu, J; Li, C X

    2014-10-20

    Hyperlipidemia is a well-established risk factor for the development of coronary atherosclerosis, while intermedin (IMD) has been identified as a novel calcitonin/calcitonin gene-related peptide family member involved in cardiovascular protection. However, whether IMD protects against hyperlipidemia-associated myocardial ischemia/reperfusion (MI/R) injury is unknown. We established a hyperlipidemia model using Sprague-Dawley rats, and created a MI/R condition by ligating the cardiac left circumflex artery. The possible pathophysiological role of IMD and its physiological function in MI/R was further studied. The level of IMD significantly decreased in hyperlipidemia rats (P hyperlipidemia rats compared to the sham-operated rats (P hyperlipidemia rats (P hyperlipidemia-associated MI/R injury. Additional IMD could protect cardiac myocytes against MI/R injury via reduction of apoptosis and inflammation in the hyperlipidemia rat model, and thus, it may play a potential role as a novel therapeutic target for cardiac ischemic injury in hyperlipidemic patients.

  2. Renalase as a Novel Biomarker for Evaluating the Severity of Hepatic Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Huili Li

    2016-01-01

    Full Text Available Hepatic ischemia-reperfusion (I/R injury is a serious complication in clinical practice. However, no efficient biomarkers are available for the evaluation of the severity of I/R injury. Recently, renalase has been reported to be implicated in the I/R injury of various organs. This protein is secreted into the blood in response to increased oxidative stress. To investigate the responsiveness of renalase to oxidative stress, we examined the changes of renalase in cell and mouse models. We observed a significant increase of renalase expression in HepG2 cells in a time- and dose-dependent manner when treated with H2O2. Renalase expression also increased significantly in liver tissues that underwent the hepatic I/R process. The increased renalase levels could be efficiently suppressed by antioxidants in vitro and in vivo. Furthermore, serum renalase levels were significantly increased in the mouse models and also efficiently suppressed by antioxidants treatment. The variation trends are consistent between renalase and liver enzymes in the mouse models. In conclusion, renalase is highly sensitive and responsive to oxidative stress in vitro and in vivo. Moreover, renalase can be detected in the blood. These properties make renalase a highly promising biomarker for the evaluation of the severity of hepatic I/R injury.

  3. Amelioration of cerebral ischemia-reperfusion injury based on liposomal drug delivery system with asialo-erythropoietin.

    Science.gov (United States)

    Ishii, Takayuki; Asai, Tomohiro; Oyama, Dai; Fukuta, Tatsuya; Yasuda, Nodoka; Shimizu, Kosuke; Minamino, Tetsuo; Oku, Naoto

    2012-05-30

    Cerebral ischemia-reperfusion (I/R) injury induces secondary cerebral damage. As drugs for treating this type of injury have shown poor efficacy and adverse side effects in clinical trials, a novel therapeutic strategy has been long awaited. In this study, we focused on the disruption of the blood-brain barrier after stroke, and applied a liposomal drug delivery system (DDS) designed to enhance the pharmacological effect of the neuroprotectant and to avoid side effects. PEGylated liposomes were injected at varying time after the start of reperfusion in transient middle cerebral artery occlusion (t-MCAO) model rats. The results showed PEGylated liposomes accumulated in the ischemic hemisphere at an early stage after reperfusion and were retained in the lesion for at least 24h after injection. We also investigated the effectiveness of asialo-erythropoietin (AEPO)-modified PEGylated liposomes (AEPO-liposomes) in treating the cerebral I/R injury. AEPO-liposome treatment significantly reduced TTC-defined cerebral legion following cerebral I/R injury, and ameliorated motor function compared with vehicle and AEPO treatment. In conclusion, these results indicate that AEPO-liposomes are a promising liposomal formulation for protecting the brain from I/R injury, and that this liposomal DDS has potential as a novel strategy for the treatment of cerebral I/R injury.

  4. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    Science.gov (United States)

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  5. Breath pentane as a potential biomarker for survival in hepatic ischemia and reperfusion injury--a pilot study.

    Science.gov (United States)

    Wang, Changsong; Shi, Jinghui; Sun, Bo; Liu, Desheng; Li, Peng; Gong, Yulei; He, Ying; Liu, Shujuan; Xu, Guowang; Li, Jianyi; Luo, Ailin; Li, Enyou

    2012-01-01

    Exhaled pentane, which is produced as a consequence of reactive oxygen species-mediated lipid peroxidation, is a marker of oxidative stress. Propofol is widely used as a hypnotic agent in intensive care units and the operating room. Moreover, this agent has been reported to inhibit lipid peroxidation by directly scavenging reactive oxygen species. In this study, using a porcine liver ischemia-reperfusion injury model, we have evaluated the hypothesis that high concentrations of breath pentane are related to adverse outcome and that propofol could reduce breath pentane and improve liver injury and outcome in swine in this situation. Twenty male swine were assigned to two groups: propofol (n = 10) and chloral hydrate groups (n = 10). Hepatic ischemia was induced by occluding the portal inflow vessels. Ischemia lasted for 30 min, followed by reperfusion for 360 min. Exhaled and blood pentane concentrations in the chloral hydrate group markedly increased 1 min after reperfusion and then decreased to baseline. Breath and blood pentane concentrations in the propofol group increased 1 min after reperfusion but were significantly lower than in the chloral hydrate group. A negative correlation was found between breath pentane levels and survival in the chloral hydrate group. The median overall survival was 251 min after reperfusion (range 150-360 min) in the chloral hydrate group. All of the swine were alive in the propofol group. Monitoring of exhaled pentane may be useful for evaluating the severity of hepatic ischemia-reperfusion injury and aid in predicting the outcome; propofol may improve the outcome in this situation.

  6. Breath pentane as a potential biomarker for survival in hepatic ischemia and reperfusion injury--a pilot study.

    Directory of Open Access Journals (Sweden)

    Changsong Wang

    Full Text Available BACKGROUND: Exhaled pentane, which is produced as a consequence of reactive oxygen species-mediated lipid peroxidation, is a marker of oxidative stress. Propofol is widely used as a hypnotic agent in intensive care units and the operating room. Moreover, this agent has been reported to inhibit lipid peroxidation by directly scavenging reactive oxygen species. In this study, using a porcine liver ischemia-reperfusion injury model, we have evaluated the hypothesis that high concentrations of breath pentane are related to adverse outcome and that propofol could reduce breath pentane and improve liver injury and outcome in swine in this situation. METHODOLOGY/PRINCIPAL FINDINGS: Twenty male swine were assigned to two groups: propofol (n = 10 and chloral hydrate groups (n = 10. Hepatic ischemia was induced by occluding the portal inflow vessels. Ischemia lasted for 30 min, followed by reperfusion for 360 min. Exhaled and blood pentane concentrations in the chloral hydrate group markedly increased 1 min after reperfusion and then decreased to baseline. Breath and blood pentane concentrations in the propofol group increased 1 min after reperfusion but were significantly lower than in the chloral hydrate group. A negative correlation was found between breath pentane levels and survival in the chloral hydrate group. The median overall survival was 251 min after reperfusion (range 150-360 min in the chloral hydrate group. All of the swine were alive in the propofol group. CONCLUSIONS: Monitoring of exhaled pentane may be useful for evaluating the severity of hepatic ischemia-reperfusion injury and aid in predicting the outcome; propofol may improve the outcome in this situation.

  7. The effect of levosimendan on myocardial ischemia–reperfusion injury in streptozotocin-induced diabetic rats

    Science.gov (United States)

    Kiraz, Hasan Ali; Poyraz, Fatih; Kip, Gülay; Erdem, Özlem; Alkan, Metin; Arslan, Mustafa; Özer, Abdullah; Şivgin, Volkan; Çomu, Faruk Metin

    2015-01-01

    Objective Ischemia/reperfusion (I/R) injury is an important cause of myocardial damage by means of oxidative, inflammatory, and apoptotic mechanisms. The aim of the present study was to examine the potential cardio protective effects of levosimendan in a diabetic rat model of myocardial I/R injury. Methods A total of 18 streptozotocin-induced diabetic Wistar Albino rats (55 mg/kg) were randomly divided into three equal groups as follows: the diabetic I/R group (DIR) in which myocardial I/R was induced following left thoracotomy, by ligating the left anterior descending coronary artery for 60 min, followed by 2 h of reperfusion; the diabetic I/R levosimendan group (DIRL), which underwent I/R by the same method while taking levosimendan intraperitoneal 12 µg kg−1; and the diabetic control group (DC) which underwent sham operations without tightening of the coronary sutures. As a control group (C), six healthy age-matched Wistar Albino rats underwent sham operations similar to the DC group. Two hours after the operation, the rats were sacrificed and the myocardial tissue samples were examined by light microscopy for evidence of myonecrosis and inflammatory cell infiltration. Results Myonecrosis findings were significantly different among groups (p=0.008). Myonecrosis was more pronounced in the DIR group compared with the C, DC, and DIRL groups (p=0.001, p=0.007 and p=0.037, respectively). Similarly, the degree of inflammatory cell infiltration showed significant difference among groups (p<0.0001). Compared with C, DC, and DIRL groups, the inflammatory cell infiltration was significantly higher among the DIR group (p<0.0001, p<0.0001, and p=0.020, respectively). Also, myocardial tissue edema was significantly different among groups (p=0.006). The light microscopic myocardial tissue edema levels were significantly higher in the DIR group than the C, DC, and DIRL groups (p=0.001, p=0.037, and p=0.014, respectively). Conclusion Taken together, our data indicate that

  8. The effect of levosimendan on myocardial ischemia–reperfusion injury in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Hasan Ali Kiraz

    2015-12-01

    Full Text Available Objective: Ischemia/reperfusion (I/R injury is an important cause of myocardial damage by means of oxidative, inflammatory, and apoptotic mechanisms. The aim of the present study was to examine the potential cardio protective effects of levosimendan in a diabetic rat model of myocardial I/R injury. Methods: A total of 18 streptozotocin-induced diabetic Wistar Albino rats (55 mg/kg were randomly divided into three equal groups as follows: the diabetic I/R group (DIR in which myocardial I/R was induced following left thoracotomy, by ligating the left anterior descending coronary artery for 60 min, followed by 2 h of reperfusion; the diabetic I/R levosimendan group (DIRL, which underwent I/R by the same method while taking levosimendan intraperitoneal 12 µg kg−1; and the diabetic control group (DC which underwent sham operations without tightening of the coronary sutures. As a control group (C, six healthy age-matched Wistar Albino rats underwent sham operations similar to the DC group. Two hours after the operation, the rats were sacrificed and the myocardial tissue samples were examined by light microscopy for evidence of myonecrosis and inflammatory cell infiltration. Results: Myonecrosis findings were significantly different among groups (p=0.008. Myonecrosis was more pronounced in the DIR group compared with the C, DC, and DIRL groups (p=0.001, p=0.007 and p=0.037, respectively. Similarly, the degree of inflammatory cell infiltration showed significant difference among groups (p<0.0001. Compared with C, DC, and DIRL groups, the inflammatory cell infiltration was significantly higher among the DIR group (p<0.0001, p<0.0001, and p=0.020, respectively. Also, myocardial tissue edema was significantly different among groups (p=0.006. The light microscopic myocardial tissue edema levels were significantly higher in the DIR group than the C, DC, and DIRL groups (p=0.001, p=0.037, and p=0.014, respectively. Conclusion: Taken together, our data

  9. Ozone Prevents Cochlear Damage From Ischemia-Reperfusion Injury in Guinea Pigs.

    Science.gov (United States)

    Onal, Merih; Elsurer, Cagdas; Selimoglu, Nebil; Yilmaz, Mustafa; Erdogan, Ender; Bengi Celik, Jale; Kal, Oznur; Onal, Ozkan

    2017-08-01

    The cochlea is an end organ, which is metabolically dependent on a nutrient and oxygen supply to maintain its normal physiological function. Cochlear ischemia and reperfusion (IR) injury is considered one of the most important causes of human idiopathic sudden sensorineural hearing loss. The aim of the present study was to study the efficacy of ozone therapy against cochlear damage caused by IR injury and to investigate the potential clinical use of this treatment for sudden deafness. Twenty-eight guinea pigs were randomized into four groups. The sham group (S) (n = 7) was administered physiological saline intraperitoneally (i.p.) for 7 days. The ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 days. In the IR + O group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 days before IR injury. On the eighth day, the IR + O group was subjected to cochlear ischemia for 15 min by occluding the bilateral vertebral artery and vein with a nontraumatic clamp and then reperfusion for 2 h. The IR group was subjected to cochlear IR injury. After the IR procedure, the guinea pigs were sacrificed on the same day. In a general histological evaluation, cochlear and spiral ganglionic tissues were examined with a light microscope, and apoptotic cells were counted by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The apoptotic index (AI) was then calculated. Blood samples were sent for analyses of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase, malondialdehyde (MDA), the total oxidant score (TOS), and total antioxidant capacity (TAC). Data were evaluated statistically using the Kruskal-Wallis test. The AI was highest in the IR group. The AI of the IR + O group was lower than that of the IR group. The biochemical antioxidant parameters SOD and GSH-Px and the TAC values were highest in the O group and lowest in the IR group. The MDA level and TOS were highest in the IR group and lowest

  10. Dose-dependent effects of procyanidin on nerve growth factor expression following cerebral ischemia/ reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Feng Li; Hai Xie; Ying Gao; Tongxia Zhan

    2008-01-01

    BACKGROUND: Recently, grape seed procyanidin (GSP) has been shown to be exhibit antioxidant effects, effectively reducing ischemia/reperfusion injury and inhibiting brain cell apoptosis.OBJECTIVE: To study the effects of GSP on nerve growth factor (NGF) expression and neurological function following cerebral ischemia/reperfusion injury in rats.DESIGN: Randomized controlled study based on SD rats.SETTING: Weifang Municipal People's Hospital. MATERIALS: Forty-eight healthy adult SD rats weighing 280-330 g and irrespective of gender were provided by the Experimental Animal Center of Shandong University. GSP derived from grape seed was a new high-effective antioxidant provided by Tianjin Jianfeng Natural Product Researching Company (batch number: 20060107). Rabbit-anti-rat NGF monoclonal antibody was provided by Beijing Zhongshan Biotechnology Co., Ltd., and SABC immunohistochemical staining kit by Wuhan Boster Bioengineering Co., Ltd. METHODS: The present study was performed in the Functional Laboratory of Weifang Medical College from April 2006 to January 2007. Forty-eight SD rats were randomly divided into the sham operation group, ischemia/reperfusion group, high-dose GSP (40 mg/kg) group, or low-dose GSP (10 mg/kg) group (n = 12 per group). Ischemia/reperfusion injury was established using the threading embolism method of the middle cerebral artery. Rats in the ischemia/reperfusion model group were given saline injection (2 mL/kg i.p.) once daily for seven days pre-ischemia/reperfusion, and once more at 15 minutes before reperfusion. Rats in the high-dose and low-dose GSP groups were injected with GSP (20 or 5 mg/mL i.p., respectively, 2 mL/kg) with the same regime as the ischemia/reperfusion model group. The surgical procedures in the sham operation group were as the same as those in the ischemia/reperfusion model group, but the thread was approximately 10 mm long, thus, the middle cerebral artery was not blocked. MAIN OUTCOME MEASURES: NGF expression in the

  11. N-Acetylcysteine Attenuates Diabetic Myocardial Ischemia Reperfusion Injury through Inhibiting Excessive Autophagy

    Science.gov (United States)

    Wang, Sheng; Yan, Fuxia; Wang, Tingting; He, Yi

    2017-01-01

    Background. Excessive autophagy is a major mechanism of myocardial ischemia reperfusion injury (I/RI) in diabetes with enhanced oxidative stress. Antioxidant N-acetylcysteine (NAC) reduces myocardial I/RI. It is unknown if inhibition of autophagy may represent a mechanism whereby NAC confers cardioprotection in diabetes. Methods and Results. Diabetes was induced in Sprague-Dawley rats with streptozotocin and they were treated without or with NAC (1.5 g/kg/day) for four weeks before being subjected to 30-minute coronary occlusion and 2-hour reperfusion. The results showed that cardiac levels of 15-F2t-Isoprostane were increased and that autophagy was evidenced as increases in ratio of LC3 II/I and protein P62 and AMPK and mTOR expressions were significantly increased in diabetic compared to nondiabetic rats, concomitant with increased postischemic myocardial infarct size and CK-MB release but decreased Akt and eNOS activation. Diabetes was also associated with increased postischemic apoptotic cell death manifested as increases in TUNEL positive cells, cleaved-caspase-3, and ratio of Bax/Bcl-2 protein expression. NAC significantly attenuated I/RI-induced increases in oxidative stress and cardiac apoptosis, prevented postischemic autophagy formation in diabetes, and reduced postischemic myocardial infarction (all p < 0.05). Conclusions. NAC confers cardioprotection against diabetic heart I/RI primarily through inhibiting excessive autophagy which might be a major mechanism why diabetic hearts are less tolerant to I/RI. PMID:28265179

  12. Protective Effect Of Bosentan In Experimental Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Eser Ataş

    2013-02-01

    Full Text Available OBJECTIVE: In cerebral ischemia, there are many factors that start the events leading to cell death. These factors contain free radical production, excitotoxicity, sodium and calcium flow disruption, enzymatic changes, stimulation of the inflamatuar process, the activation of platelets and leukocytes, delayed coagulation, endothelial dysfunction and endothelin (ET release. Bosentan is the competitive antagonist of endothelin receptors; ETA and ETB. The aim of this study is to determine whether the protective effects of bosentan in experimental cerebral ischemia reperfusion injury. MATERIAL and METHODS: In this study, after ischemia-reperfusion procedure, bosentan molecule was regularly given to rats for 5 days. The brain tissues of decapitated rats were histopathologically examined. The levels of oxidant and antioxidant were determined in these brain tissues. RESULTS: It was observed that antioxidant levels and histopathological examinations were in rats given bosentan better than control group rats. CONCLUSION: In conclusion, this study has showed that bosentan may be an agent which could reduce negative effects resulting from neuronal death associated with ischemic stroke.

  13. Protection from ischemia by preconditioning, postconditioning, and combined treatment in rabbit testicular ischemia reperfusion injury.

    Science.gov (United States)

    Zhang, Xiaoying; Lv, Fangqing; Tang, Jie

    2016-10-15

    This study aimed to investigate the protection of ischemic preconditioning (IPreC), ischemic postconditioning (IPostC) and combined treatment on ischemia reperfusion injury (IRI) of testis. A rabbit testicular ischemia reperfusion (IR) model was established with determining of rabbit serum testosterone, nitric oxide (NO), malondialdehyde (MDA), protein carbonyl (PC), superoxide dismutase (SOD), myeloperoxidase (MPO), glutathione peroxidase (GSH-Px), and tissues pathology. After IR, the NO, MDA, PC, SOD, MPO, and GSH-Px expression significantly increased in torsive testis, and significantly decreased after IPreC, IPostC, and combined treatment in torsive testis when compared to contralateral testis. In torsive testis, testicular tissues was severely damaged with spermatogenic cells disappearing, and were filled with light eosin edema liquid. Cell apoptosis index significantly increased, and the ratio of Bcl-2/Bax significantly decreased. After IPreC, IPostC, and combined treatment, testicular tissues were restored to normal, cell apoptosis index significantly decreased, and the ratio of Bcl-2/Bax significantly increased. It indicates that IPreC, IPostC, and combined treatment has an obvious protective effect on testicular IRI, by decreasing the oxidative stress index and cell apoptosis, provides a significant reference for the treatment of testicular torsion induced infertility, and exhibits a great value in clinical applications.

  14. Increased myocardial vulnerability to ischemia-reperfusion injury in the presence of left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Mølgaard, Søren; Faricelli, Barbara; Salomonsson, Max

    2016-01-01

    Objective: Despite its high prevalence among patients suffering myocardial infarction, the significance of left ventricle hypertrophy for infarct size is not known. We asked whether infarct size might be increased by this condition, and whether any such increase might be associated with an increa......Objective: Despite its high prevalence among patients suffering myocardial infarction, the significance of left ventricle hypertrophy for infarct size is not known. We asked whether infarct size might be increased by this condition, and whether any such increase might be associated...... with an increased mitochondrial damage following coronary occlusion.  Methods: Occlusion of the left descending artery in isolated, perfused hearts of SHR-SP (spontaneously hypertensive rat stroke-prone) (left ventricular hypertrophy) or Wistar-Kyoto (WKY) (control) rats was used, followed by reperfusion.......  Conclusion: Hearts from hypertensive (SHR-SP) rats with left ventricle hypertrophy appeared more vulnerable to ischemia-reperfusion injury, as supported by a more profound infarct development and an earlier loss of postconditioning by Exe-4. Mitochondrial complexes III and IV were identified among possible...

  15. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress.

    Science.gov (United States)

    Fukuda, Kei-ichi; Asoh, Sadamitsu; Ishikawa, Masahiro; Yamamoto, Yasuhiro; Ohsawa, Ikuroh; Ohta, Shigeo

    2007-09-28

    We have recently showed that molecular hydrogen has great potential for selectively reducing cytotoxic reactive oxygen species, such as hydroxyl radicals, and that inhalation of hydrogen gas decreases cerebral infarction volume by reducing oxidative stress [I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K.-I. Katsura, Y. Katayama, S. Asoh, S. Ohta, Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals, Nat. Med., 13 (2007) 688-694]. Here we show that the inhalation of hydrogen gas is applicable for hepatic injury caused by ischemia/reperfusion, using mice. The portal triad to the left lobe and the left middle lobe of the liver were completely occluded for 90min, followed by reperfusion for 180min. Inhalation of hydrogen gas (1-4%) during the last 190min suppressed hepatic cell death, and reduced levels of serum alanine aminotransferase and hepatic malondialdehyde. In contrast, helium gas showed no protective effect, suggesting that the protective effect by hydrogen gas is specific. Thus, we propose that inhalation of hydrogen gas is a widely applicable method to reduce oxidative stress.

  16. Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury.

    Science.gov (United States)

    Chaturvedi, Swasti; Yuen, Darren A; Bajwa, Amandeep; Huang, Yi-Wei; Sokollik, Christiane; Huang, Liping; Lam, Grace Y; Tole, Soumitra; Liu, Guang-Ying; Pan, Jerry; Chan, Lauren; Sokolskyy, Yaro; Puthia, Manoj; Godaly, Gabriela; John, Rohan; Wang, Changsen; Lee, Warren L; Brumell, John H; Okusa, Mark D; Robinson, Lisa A

    2013-07-01

    Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.

  17. Brabykinin B1 Receptor Antagonism Is Beneficial in Renal Ischemia-Reperfusion Injury

    Science.gov (United States)

    Wang, Pamella H. M.; Campanholle, Gabriela; Cenedeze, Marcos A.; Feitoza, Carla Q.; Gonçalves, Giselle M.; Landgraf, Richardt G.; Jancar, Sonia; Pesquero, João B.; Pacheco-Silva, Alvaro; Câmara, Niels O. S.

    2008-01-01

    Previously we have demonstrated that bradykinin B1 receptor deficient mice (B1KO) were protected against renal ischemia and reperfusion injury (IRI). Here, we aimed to analyze the effect of B1 antagonism on renal IRI and to study whether B1R knockout or antagonism could modulate the renal expression of pro and anti-inflammatory molecules. To this end, mice were subjected to 45 minutes ischemia and reperfused at 4, 24, 48 and 120 hours. Wild-type mice were treated intra-peritoneally with antagonists of either B1 (R-954, 200 µg/kg) or B2 receptor (HOE140, 200 µg/kg) 30 minutes prior to ischemia. Blood samples were collected to ascertain serum creatinine level, and kidneys were harvested for gene transcript analyses by real-time PCR. Herein, B1R antagonism (R-954) was able to decrease serum creatinine levels, whereas B2R antagonism had no effect. The protection seen under B1R deletion or antagonism was associated with an increased expression of GATA-3, IL-4 and IL-10 and a decreased T-bet and IL-1β transcription. Moreover, treatment with R-954 resulted in lower MCP-1, and higher HO-1 expression. Our results demonstrated that bradykinin B1R antagonism is beneficial in renal IRI. PMID:18725957

  18. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors.

    Science.gov (United States)

    Huang, Ming; Cheng, Gen; Tan, Han; Qin, Rui; Zou, Yimin; Wang, Yun; Zhang, Ying

    2017-09-01

    Capsaicin, the ingredient responsible for the pungent taste of hot chili peppers, is widely used in the study and management of pain. Recently, its neuroprotective effect has been described in multiple studies. Herein, we investigated the underlying mechanisms for the neuroprotective effect of capsaicin. Direct injection of capsaicin (1 or 3nmol) into the peri-infarct area reduced the infarct volume and improved neurological behavioral scoring and motor coordination function in the middle cerebral artery occlusion (MCAO)/reperfusion model in rats. The time window of the protective effect of capsaicin was within 1h after reperfusion, when excitotoxicity is the main reason of cell death. In cultured cortical neurons, administration of capsaicin attenuated glutamate-induced excitotoxic injury. With respect to the mechanisms of the neuroprotective effect of capsaicin, reduced calcium influx after glutamate stimulation was observed following capsaicin pretreatment in cortical neurons. Trpv1 knock-out abolished the inhibitory effect of capsaicin on glutamate-induced calcium influx and subsequent neuronal death. Reduced expression of GluN1 and GluN2B, subunits of NMDA receptor, was examined after capsaicin treatment in cortical neurons. In summary, our studies reveal that the neuroprotective effect of capsaicin in cortical neurons is TRPV1-dependent and down-regulation of the expression and function of NMDA receptors contributes to the protection afforded by capsaicin. Copyright © 2017. Published by Elsevier Inc.

  19. Glycyrrhiza glabra protects from myocardial ischemia-reperfusion injury by improving hemodynamic, biochemical, histopathological and ventricular function.

    Science.gov (United States)

    Ojha, Shreesh; Golechha, Mahaveer; Kumari, Santosh; Bhatia, Jagriti; Arya, Dharamvir S

    2013-01-01

    Present study evaluated the cardioprotective effect of Glycyrrhiza glabra against ischemia-reperfusion injury (I-R) induced by ligation of left anterior descending coronary artery (LADCA) in rats. Ligation of LADCA for 45 min followed by 60 min of reperfusion has induced significant (pglabra significantly (pglabra also prevented GSH depletion and inhibited lipid peroxidation in heart. In addition to improving biochemical indices of myocardial function, G. glabra also significantly (pglabra. Taken together, results of the present study clearly suggest the cardioprotective potential of G. glabra against myocardial infarction by amelioration of oxidative stress and favorable modulation of cardiac function.

  20. Protective effects of pinacidil hyperpolarizing cardioplegia on myocardial ischemia reperfusion injury by mitochondrial KATP channels

    Institute of Scientific and Technical Information of China (English)

    YU Tian; FU Xiao-yun; LIU Xing-kui; YU Zhi-hao

    2011-01-01

    Background Many studies have indicated that hyperpolarizing cardioplegia is responsible for myocardial preservation and researchers have suggested that the adenosine triphosphate-sensitive potassium channels (KATP) were the end effectors of cardio-protection.But whether mitochondrial KATP plays an important role in hyperpolarizing cardioplegia is not apparent.The present study investigated the effect of hyperpolarizing cardioplegia containing pinacidil (a nonselective KATP opener) on ischemia/reperfusion injury in rat hearts,especially the role of mitochondrial KATP in pinacidil hyperpolarizing cardioplegia.Methods Sprague-Dawley rat hearts were Langendorff-perfused for 20 minutes with Krebs-Henseleit buffer at 37℃before equilibration.Cardiac arrest was then induced in different treatments:there was no arrest and ischemia in the normal group,the control group were arrested by clamping the aorta,depolarizing caidioplegia (St.Thomas solution containing 16 mmol/L KCI) and hyperpolarizing cardioplegia groups used St.Thomas solution containing 0.05 mmol/L pinacidil and 5 mmol/L KCI to induce cardiac arrest in group hyperkalemic and group pinacidil,in group hyperkalemic + 5-hydroxydecanote (5HD) and Pinacidil + 5HD,5HD (0.1 mmol/L) was added to the above two solutions to block mitochondria KATP channels.Global ischemia was then administrated for 40 minutes at 37℃,followed by 30 minutes of reperfusion.At the end of equilibration and reperfusion,hemodynamics,ultrastructure,and mitochondrial function were measured.Results In the control group,ischemia/reperfusion decreased the left ventricular developed pressure,heart rate,coronary flow,mitochondrial membrane potential,impaired mitochondrial respiratory function,increased reactive oxygen species and left ventricular end diastolic pressure.Damage to myocardial ultrastructure was also evident.Both depolarized arrest and especially hyperpolarized cardioplegia significantly reduced these lesions.5HD partially blocked the

  1. Blockade of p-selectin reduces neutrophil infiltration into the murine testis after ischemia-reperfusion-injury.

    Science.gov (United States)

    Celebi, M; Paul, A G A

    2008-12-01

    Germ cell specific apoptosis after ischemia-reperfusion (I/R) induced testicular injury is dependent on neutrophil recruitment to the testis. Intravascular adhesion molecules like the P- and E- selectins play an important role in this recruitment.The purpose of this study was to inhibit neutrophil recruitment in I/R induced testicular injury by using a function-blocking monoclonal anti-mouse P-selectin antibody. Adult mice were subjected to a 2 h period of testicular torsion (ischemia) followed by detorsion (reperfusion).Ten minutes after the onset of reperfusion, mice received either 100 microg of a function-blocking monoclonal P-selectin antibody (FBMAB group) or isotype-matched control antibody (IMCA group). Separate groups of mice underwent sham-operation (SO group) or received 500 ng of TNFalpha (IF group) to induce inflammation. Mice were sacrificed 24 h after reperfusion and testiscular interstitial cells were isolated and analyzed for the presence of neutrophils by means of flow cytometry. The function-blocking monoclonal P-selectin antibody reduced neutrophil recruitment in I/R induced testicular injury significantly (FBMAB group as compared to the IMCA group 26 +/- 4 vs. 52 +/- 10% Gr-1 +CD11 b+ of total leucocytes; P < 0.001). Therefore, blocking P-selectin may be therapeutically beneficial to protect postischemic testis.

  2. Ginsenoside Rb1 Preconditioning Enhances eNOS Expression and Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Rui Xia

    2011-01-01

    Full Text Available Diabetes mellitus is associated with decreased NO bioavailability in