WorldWideScience

Sample records for repeated stress-induced alterations

  1. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  2. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  3. Environmental stress induces trinucleotide repeat mutagenesis in human cells.

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H

    2015-03-24

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.

  4. Environmental Stress Induces Trinucleotide Repeat Mutagenesis in Human Cells by Alt-Nonhomologous End Joining Repair.

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Yotnda, Patricia; Wilson, John H

    2016-07-31

    Multiple pathways modulate the dynamic mutability of trinucleotide repeats (TNRs), which are implicated in neurodegenerative disease and evolution. Recently, we reported that environmental stresses induce TNR mutagenesis via stress responses and rereplication, with more than 50% of mutants carrying deletions or insertions-molecular signatures of DNA double-strand break repair. We now show that knockdown of alt-nonhomologous end joining (alt-NHEJ) components-XRCC1, LIG3, and PARP1-suppresses stress-induced TNR mutagenesis, in contrast to the components of homologous recombination and NHEJ, which have no effect. Thus, alt-NHEJ, which contributes to genetic mutability in cancer cells, also plays a novel role in environmental stress-induced TNR mutagenesis. Published by Elsevier Ltd.

  5. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  6. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    Science.gov (United States)

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  7. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  8. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  9. Altered Stress-Induced Regulation of Genes in Monocytes in Adults with a History of Childhood Adversity.

    Science.gov (United States)

    Schwaiger, Marion; Grinberg, Marianna; Moser, Dirk; Zang, Johannes C S; Heinrichs, Markus; Hengstler, Jan G; Rahnenführer, Jörg; Cole, Steve; Kumsta, Robert

    2016-09-01

    Exposure to serious or traumatic events early in life can lead to persistent alterations in physiological stress response systems, including enhanced cross talk between the neuroendocrine and immune system. These programming effects may be mechanistically involved in mediating the effects of adverse childhood experience on disease risk in adulthood. We investigated hormonal and genome-wide mRNA expression responses in monocytes to acute stress exposure, in a sample of healthy adults (n=30) with a history of early childhood adversity, and a control group (n=30) without trauma experience. The early adversity group showed altered hypothalamus-pituitary-adrenal axis responses to stress, evidenced by lower ACTH and cortisol responses. Analyses of gene expression patterns showed that stress-responsive transcripts were enriched for genes involved in cytokine activity, cytokine-cytokine receptor interaction, chemokine activity, and G-protein coupled receptor binding. Differences between groups in stress-induced regulation of gene transcription were observed for genes involved in steroid binding, hormone activity, and G-protein coupled receptor binding. Transcription factor binding motif analysis showed an increased activity of pro-inflammatory upstream signaling in the early adversity group. We also identified transcripts that were differentially correlated with stress-induced cortisol increases between the groups, enriched for genes involved in cytokine-cytokine receptor interaction and glutamate receptor signaling. We suggest that childhood adversity leads to persistent alterations in transcriptional control of stress-responsive pathways, which-when chronically or repeatedly activated-might predispose individuals to stress-related psychopathology.

  10. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  11. A large-scale perspective on stress-induced alterations in resting-state networks

    Science.gov (United States)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  12. Chronic intermittent ethanol exposure during adolescence: Effects on stress-induced social alterations and social drinking in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Kim, Esther U; Spear, Linda P

    2017-01-01

    We previously observed lasting and sex-specific detrimental consequences of early adolescent intermittent ethanol exposure (AIE), with male, but not female, rats showing social anxiety-like alterations when tested as adults. The present study used Sprague Dawley rats to assess whether social alterations induced by AIE (3.5g/kg, intragastrically, every other day, between postnatal days [P] 25-45) are further exacerbated by stressors later in life. Another aim was to determine whether AIE alone or in combination with stress influenced intake of a sweetened ethanol solution (Experiment 1) or a sweetened solution ("supersac") alone (Experiment 2) under social circumstances. Animals were exposed to restraint on P66-P70 (90min/day) or left nonstressed, with corticosterone (CORT) levels assessed on day 1 and day 5 in Experiment 2. Social anxiety-like behavior emerged after AIE in non-stressed males, but not females, whereas stress-induced social anxiety was evident only in water-exposed males and females. Adult-typical habituation of the CORT response to repeated restraint was not evident in adult animals after AIE, a lack of habituation reminiscent of that normally evident in adolescents. Neither AIE nor stress affected ethanol intake under social circumstances, although AIE and restraint independently increased adolescent-typical play fighting in males during social drinking. Among males, the combination of AIE and restraint suppressed "supersac" intake; this index of depression-like behavior was not seen in females. The results provide experimental evidence associating adolescent alcohol exposure, later stress, anxiety, and depression, with young adolescent males being particularly vulnerable to long-lasting adverse effects of repeated ethanol. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Protective Effect of Repeatedly Preadministered Brazilian Propolis Ethanol Extract against Stress-Induced Gastric Mucosal Lesions in Rats

    Directory of Open Access Journals (Sweden)

    Tadashi Nakamura

    2014-01-01

    Full Text Available The present study was conducted to clarify the protective effect of Brazilian propolis ethanol extract (BPEE against stress-induced gastric mucosal lesions in rats. The protective effect of BPEE against gastric mucosal lesions in male Wistar rats exposed to water-immersion restraint stress (WIRS for 6 h was compared between its repeated preadministration (50 mg/kg/day, 7 days and its single preadministration (50 mg/kg. The repeated BPEE preadministration attenuated WIRS-induced gastric mucosal lesions and gastric mucosal oxidative stress more largely than the single BPEE preadministration. In addition, the repeated BPEE preadministration attenuated neutrophil infiltration in the gastric mucosa of rats exposed to WIRS. The protective effect of the repeated preadministration of BPEE against WIRS-induced gastric mucosal lesions was similar to that of a single preadministration of vitamin E (250 mg/kg in terms of the extent and manner of protection. From these findings, it is concluded that BPEE preadministered in a repeated manner protects against gastric mucosal lesions in rats exposed to WIRS more effectively than BPEE preadministered in a single manner possibly through its antioxidant and anti-inflammatory actions.

  14. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice.

    Science.gov (United States)

    Taksande, Brijesh G; Faldu, Dharmesh S; Dixit, Madhura P; Sakaria, Jay N; Aglawe, Manish M; Umekar, Milind J; Kotagale, Nandkishor R

    2013-11-15

    Chronic stress exposure and resulting dysregulation of the hypothalamic pituitary adrenal axis develops susceptibility to variety of neurological and psychiatric disorders. Agmatine, a putative neurotransmitter has been reported to be released in response to various stressful stimuli to maintain the homeostasis. Present study investigated the role of agmatine on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alteration in mice. Exposure of mice to CUMS protocol for 28 days resulted in diminished performance in sucrose preference test, splash test, forced swim test and marked elevation in plasma corticosterone levels. Chronic agmatine (5 and 10 mg/kg, ip, once daily) treatment started on day-15 and continued till the end of the CUMS protocol significantly increased sucrose preference, improved self-care and motivational behavior in the splash test and decreased duration of immobility in the forced swim test. Agmatine treatment also normalized the elevated corticosterone levels and prevented the body weight changes in chronically stressed animals. The pharmacological effect of agmatine was comparable to selective serotonin reuptake inhibitor, fluoxetine (10mg/kg, ip). Results of present study clearly demonstrated the anti-depressant like effect of agmatine in chronic unpredictable mild stress induced depression in mice. Thus the development of drugs based on brain agmatinergic modulation may represent a new potential approach for the treatment of stress related mood disorders like depression. © 2013 Published by Elsevier B.V.

  15. FKBP5 polymorphisms influence pre-learning stress-induced alterations of learning and memory.

    Science.gov (United States)

    Zoladz, Phillip R; Dailey, Alison M; Nagle, Hannah E; Fiely, Miranda K; Mosley, Brianne E; Brown, Callie M; Duffy, Tessa J; Scharf, Amanda R; Earley, McKenna B; Rorabaugh, Boyd R

    2017-03-01

    FK506 binding protein 51 (FKBP5) is a co-chaperone of heat shock protein 90 and significantly influences glucocorticoid receptor sensitivity. Single nucleotide polymorphisms (SNPs) in the FKBP5 gene are associated with altered hypothalamus-pituitary-adrenal (HPA) axis function, changes in the structure and function of several cognitive brain areas, and increased susceptibility to post-traumatic stress disorder, major depression, bipolar disorder and suicidal events. The mechanisms underlying these associations are largely unknown, but it has been speculated that the influence of these SNPs on emotional memory systems may play a role. In the present study, 112 participants were exposed to the socially evaluated cold pressor test (stress) or control (no stress) conditions immediately prior to learning a list of 42 words. Participant memory was assessed immediately after learning (free recall) and 24 h later (free recall and recognition). Participants provided a saliva sample that enabled the genotyping of three FKBP5 polymorphisms: rs1360780, rs3800373 and rs9296158. Results showed that stress impaired immediate recall in risk allele carriers. More importantly, stress enhanced long-term recall and recognition memory in non-carriers of the risk alleles, effects that were completely absent in risk allele carriers. Follow-up analyses revealed that memory performance was correlated with salivary cortisol levels in non-carriers, but not in carriers. These findings suggest that FKBP5 risk allele carriers may possess a sensitized stress response system, perhaps specifically for stress-induced changes in corticosteroid levels, which might aid our understanding of how SNPs in the FKBP5 gene confer increased risk for stress-related psychological disorders and their related phenotypes. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Individual differences and repeatability in vocal production: stress-induced calling exposes a songbird's personality

    Science.gov (United States)

    Guillette, Lauren M.; Sturdy, Christopher B.

    2011-11-01

    Recent research in songbirds has demonstrated that male singing behavior varies systematically with personality traits such as exploration and risk taking. Here we examine whether the production of bird calls, in addition to bird songs, is repeatable and related to exploratory behavior, using the black-capped chickadee ( Poecile atricapillus) as a model. We assessed the exploratory behavior of individual birds in a novel environment task. We then recorded the vocalizations and accompanying motor behavior of both male and female chickadees, over the course of several days, in two different contexts: a control condition with no playback and a stressful condition where chick-a-dee mobbing calls were played to individual birds. We found that several vocalizations and behaviors were repeatable within both a control and a stressful context, and across contexts. While there was no relationship between vocal output and exploratory behavior in the control context, production of alarm and chick-a-dee calls in the stressful condition was positively associated with exploratory behavior. These findings are important because they show that bird calls, in addition to bird song, are an aspect of personality, in that calls are consistent both within and across contexts, and covary with other personality measures (exploration).

  17. β3-Adrenergic receptors, adipokines and neuroendocrine activation during stress induced by repeated immune challenge in male and female rats.

    Science.gov (United States)

    Csanova, Agnesa; Hlavacova, Natasa; Hasiec, Malgorzata; Pokusa, Michal; Prokopova, Barbora; Jezova, Daniela

    2017-05-01

    The main hypothesis of the study is that stress associated with repeated immune challenge has an impact on β 3 -adrenergic receptor gene expression in the brain. Sprague-Dawley rats were intraperitoneally injected with increasing doses of lipopolysaccharide (LPS) for five consecutive days. LPS treatment was associated with body weight loss and increased anxiety-like behavior. In LPS-treated animals of both sexes, β 3 -receptor gene expression was increased in the prefrontal cortex but not the hippocampus. LPS treatment decreased β 3 -receptor gene expression in white adipose tissue with higher values in males compared to females. In the adipose tissue, LPS reduced peroxisome proliferator-activated receptor-gamma, leptin and adiponectin gene expression, but increased interleukin-6 expression, irrespective of sex. Repeated immune challenge resulted in increased concentrations of plasma aldosterone and corticosterone with higher values of corticosterone in females compared to males. Concentrations of dehydroepiandrosterone (DHEA) in plasma were unaffected by LPS, while DHEA levels in the frontal cortex were lower in the LPS-treated animals compared to the controls. Thus, changes of DHEA levels in the brain take place irrespective of the changes of this neurosteroid in plasma. We have provided the first evidence on stress-induced increase in β 3 -adrenergic receptor gene expression in the brain. Greater reduction of β 3 -adrenergic receptor expression in the adipose tissue and of the body weight gain by repeated immune challenge in male than in female rats suggests sex differences in the role of β 3 -adrenergic receptors in the metabolic functions. LPS-induced changes in adipose tissue regulatory factors and hormone concentrations might be important for coping with chronic infections.

  18. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Acute stress induces selective alterations in cost/benefit decision-making.

    Science.gov (United States)

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-09-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1-3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression.

  20. Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making

    Science.gov (United States)

    Shafiei, Naghmeh; Gray, Megan; Viau, Victor; Floresco, Stan B

    2012-01-01

    Acute stress can exert beneficial or detrimental effects on different forms of cognition. In the present study, we assessed the effects of acute restraint stress on different forms of cost/benefit decision-making, and some of the hormonal and neurochemical mechanisms that may underlie these effects. Effort-based decision-making was assessed where rats chose between a low effort/reward (1 press=2 pellets) or high effort/reward option (4 pellets), with the effort requirement increasing over 4 blocks of trials (2, 5, 10, and 20 lever presses). Restraint stress for 1 h decreased preference for the more costly reward and induced longer choice latencies. Control experiments revealed that the effects on decision-making were not mediated by general reductions in motivation or preference for larger rewards. In contrast, acute stress did not affect delay-discounting, when rats chose between a small/immediate vs larger/delayed reward. The effects of stress on decision-making were not mimicked by treatment with physiological doses of corticosterone (1–3 mg/kg). Blockade of dopamine receptors with flupenthixol (0.25 mg/kg) before restraint did not attenuate stress-induced effects on effort-related choice, but abolished effects on choice latencies. These data suggest that acute stress interferes somewhat selectively with cost/benefit evaluations concerning effort costs. These effects do not appear to be mediated solely by enhanced glucocorticoid activity, whereas dopaminergic activation may contribute to increased deliberation times induced by stress. These findings may provide insight into impairments in decision-making and anergia associated with stress-related disorders, such as depression. PMID:22569506

  1. Repeated Short-term (2h×14d) Emotional Stress Induces Lasting Depression-like Behavior in Mice.

    Science.gov (United States)

    Kim, Kyoung-Shim; Kwon, Hye-Joo; Baek, In-Sun; Han, Pyung-Lim

    2012-03-01

    Chronic behavioral stress is a risk factor for depression. To understand chronic stress effects and the mechanism underlying stress-induced emotional changes, various animals model have been developed. We recently reported that mice treated with restraints for 2 h daily for 14 consecutive days (2h-14d or 2h×14d) show lasting depression-like behavior. Restraint provokes emotional stress in the body, but the nature of stress induced by restraints is presumably more complex than emotional stress. So a question remains unsolved whether a similar procedure with "emotional" stress is sufficient to cause depression-like behavior. To address this, we examined whether "emotional" constraints in mice treated for 2h×14d by enforcing them to individually stand on a small stepping platform placed in a water bucket with a quarter full of water, and the stress evoked by this procedure was termed "water-bucket stress". The water-bucket stress activated the hypothalamus-pituitary-adrenal gland (HPA) system in a manner similar to restraint as evidenced by elevation of serum glucocorticoids. After the 2h×14d water-bucket stress, mice showed behavioral changes that were attributed to depression-like behavior, which was stably detected >3 weeks after last water-bucket stress endorsement. Administration of the anti-depressant, imipramine, for 20 days from time after the last emotional constraint completely reversed the stress-induced depression-like behavior. These results suggest that emotional stress evokes for 2h×14d in mice stably induces depression-like behavior in mice, as does the 2h×14d restraint.

  2. Role of Nrf2 in preventing oxidative stress induced chloride current alteration in human lung cells.

    Science.gov (United States)

    Canella, Rita; Benedusi, Mascia; Martini, Marta; Cervellati, Franco; Cavicchio, Carlotta; Valacchi, Giuseppe

    2018-08-01

    The lung tissue is one of the main targets of oxidative stress due to external sources and respiratory activity. In our previous work, we have demonstrated in that O 3 exposure alters the Cl - current-voltage relationship, with the appearance of a large outward rectifier component mainly sustained by outward rectifier chloride channels (ORCCs) in human lung epithelial cells (A549 line). In the present study, we have performed patch clamp experiments, in order to identify which one of the O 3 byproducts (4hydroxynonenal (HNE) and/or H 2 O 2 ) was responsible for chloride current change. While 4HNE exposition (up to 25 μM for 30' before electrophysiological analysis) did not reproduce O 3 effect, H 2 O 2 produced by glucose oxidase 10 mU for 24 hr before electrophysiological analysis mimicked O 3 response. This result was confirmed treating the cell with catalase (CAT) before O 3 exposure (1,000 U/ml for 2 hr): CAT was able to rescue Cl - current alteration. Since CAT is regulated by Nrf2 transcription factor, we pre-treated the cells with the Nrf2 activators, resveratrol and tBHQ. Immunochemical and immunocytochemical results showed Nrf2 activation with both substances that lead to prevent OS effect on Cl - current. These data bring new insights into the mechanisms involved in OS-induced lung tissue damage, pointing out the role of H 2 O 2 in chloride current alteration and the ability of Nfr2 activation in preventing this effect. © 2017 Wiley Periodicals, Inc.

  3. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Ana Ortega

    Full Text Available BACKGROUND: The endoplasmic reticulum (ER is a multifunctional organelle responsible for the synthesis and folding of proteins as well as for signalling and calcium storage, that has been linked to the contraction-relaxation process. Perturbations of its homeostasis activate a stress response in diseases such as heart failure (HF. To elucidate the alterations in ER molecular components, we analyze the levels of ER stress and structure proteins in human dilated (DCM and ischemic (ICM cardiomyopathies, and its relationship with patient's functional status. METHODS AND RESULTS: We examined 52 explanted human hearts from DCM (n = 21 and ICM (n = 21 subjects and 10 non-failing hearts as controls. Our results showed specific changes in stress (IRE1, p<0.05; p-IRE1, p<0.05 and structural (Reticulon 1, p<0.01 protein levels. The stress proteins GRP78, XBP1 and ATF6 as well as the structural proteins RRBP1, kinectin, and Nogo A and B, were upregulated in both DCM and ICM patients. Immunofluorescence results were concordant with quantified Western blot levels. Moreover, we show a novel relationship between stress and structural proteins. RRBP1, involved in procollagen synthesis and remodeling, was related with left ventricular function. CONCLUSIONS: In the present study, we report the existence of alterations in ER stress response and shaping proteins. We show a plausible effect of the ER stress on ER structure in a suitable sample of DCM and ICM subjects. Patients with higher values of RRBP1 had worse left ventricular function.

  4. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis.

    Science.gov (United States)

    Yuan, Fuwen; Xu, Chenzhong; Li, Guodong; Tong, Tanjun

    2018-05-03

    The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.

  5. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  6. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  7. Repeated electroacupuncture attenuating of apelin expression and function in the rostral ventrolateral medulla in stress-induced hypertensive rats.

    Science.gov (United States)

    Zhang, Cheng-Rong; Xia, Chun-Mei; Jiang, Mei-Yan; Zhu, Min-Xia; Zhu, Ji-Min; Du, Dong-Shu; Liu, Min; Wang, Jin; Zhu, Da-Nian

    2013-08-01

    Studies have revealed that apelin is a novel multifunctional peptide implicated both in blood pressure (BP) regulation and cardiac function control. Evidence shows that apelin and its receptor (APJ) in the rostral ventrolateral medulla (RVLM) may play an important role in central BP regulation; however, its role is controversial and very few reports have shown the relationship between acupuncture and apelin. Our study aims to both investigate the apelinergic system role in stress-induced hypertension (SIH) and determine whether acupuncture therapy effects on hypertension involve the apelinergic system in the RVLM. We established the stress-induced hypertensive rat (SIHR) model using electric foot-shock stressors with noise interventions. The expression of both apelin and the APJ receptor in the RVLM neurons was examined by immunohistochemical staining and Western blots. The results showed apelin expression increased remarkably in SIHR while APJ receptor expression showed no significant difference between control and SIHR groups. Microinjection of apelin-13 into the RVLM of control rats or SIHR produced pressor and tachycardic effects. Furthermore, effects induced by apelin-13 in SIHR were significantly greater than those of control rats. In addition, repetitive electroacupuncture (EA) stimulation at the Zusanli (ST-36) acupoint attenuated hypertension and apelin expression in the RVLM in SIHR; it also attenuated the pressor effect elicited by exogenous apelin-13 microinjection in SIHR. The results suggest that augmented apelin in the RVLM was part of the manifestations of SIH; the antihypertensive effects of EA might be associated with the attenuation of apelin expression and function in the RVLM, which might be a novel role for EA in SIH setting. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Neuropsychiatry phenotype in asthma: Psychological stress-induced alterations of the neuroendocrine-immune system in allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Isao Ohno

    2017-09-01

    Full Text Available Since the recognition of asthma as a syndrome with complex pathophysiological signs and symptoms, recent research has sought to classify asthma phenotypes based on its clinical and molecular pathological features. Psychological stress was first recognized as a potential immune system modulator of asthma at the end of the 19th century. The activation of the central nervous system (CNS upon exposure to psychological stress is integral for the initiation of signal transduction processes. The stress hormones, including glucocorticoids, epinephrine, and norepinephrine, which are secreted following CNS activation, are involved in the immunological alterations involved in psychological stress-induced asthma exacerbation. The mechanisms underlying this process may involve a pathological series of events from the brain to the lungs, which is attracting attention as a conceptually advanced phenotype in asthma pathogenesis. This review presents insights into the critical role of psychological stress in the development and exacerbation of allergic asthma, with a special focus on our own data that emphasizes on the continuity from the central sensing of psychological stress to enhanced eosinophilic airway inflammation.

  9. Myg1-deficient mice display alterations in stress-induced responses and reduction of sex-dependent behavioural differences.

    Science.gov (United States)

    Philips, Mari-Anne; Abramov, Urho; Lilleväli, Kersti; Luuk, Hendrik; Kurrikoff, Kaido; Raud, Sirli; Plaas, Mario; Innos, Jürgen; Puussaar, Triinu; Kõks, Sulev; Vasar, Eero

    2010-02-11

    Myg1 (Melanocyte proliferating gene 1) is a highly conserved and ubiquitously expressed gene, which encodes a protein with mitochondrial and nuclear localization. In the current study we demonstrate a gradual decline of Myg1 expression during the postnatal development of the mouse brain that suggests relevance for Myg1 in developmental processes. To study the effects of Myg1 loss-of-function, we created Myg1-deficient (-/-) mice by displacing the entire coding sequence of the gene. Initial phenotyping, covering a multitude of behavioural, cognitive, neurological, physiological and stress-related responses, revealed that homozygous Myg1 (-/-) mice are vital, fertile and display no gross abnormalities. Myg1 (-/-) mice showed an inconsistent pattern of altered anxiety-like behaviour in different tests. The plus-maze and social interaction tests revealed that male Myg1 (-/-) mice were significantly less anxious than their wild-type littermates; female (-/-) mice showed increased anxiety in the locomotor activity arena. Restraint-stress significantly reduced the expression of the Myg1 gene in the prefrontal cortex of female wild-type mice and restrained female (-/-) mice showed a blunted corticosterone response, suggesting involvement of Myg1 in stress-induced responses. The main finding of the present study was that Myg1 invalidation decreases several behavioural differences between male and female animals that were obvious in wild-type mice, indicating that Myg1 contributes to the expression of sex-dependent behavioural differences in mice. Taken together, we provide evidence for the involvement of Myg1 in anxiety- and stress-related responses and suggest that Myg1 contributes to the expression of sex-dependent behavioural differences.

  10. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  11. Permanent relief from intermittent cold stress-induced fibromyalgia-like abnormal pain by repeated intrathecal administration of antidepressants

    Directory of Open Access Journals (Sweden)

    Mukae Takehiro

    2011-09-01

    Full Text Available Abstract Background Fibromyalgia (FM is characterized by chronic widespread pain, which is often refractory to conventional painkillers. Numerous clinical studies have demonstrated that antidepressants are effective in treating FM pain. We previously established a mouse model of FM-like pain, induced by intermittent cold stress (ICS. Results In this study, we find that ICS exposure causes a transient increase in plasma corticosterone concentration, but not in anxiety or depression-like behaviors. A single intrathecal injection of an antidepressant, such as milnacipran, amitriptyline, mianserin or paroxetine, had an acute analgesic effect on ICS-induced thermal hyperalgesia at post-stress day 1 in a dose-dependent manner. In addition, repeated daily antidepressant treatments during post-stress days 1-5 gradually reversed the reduction in thermal pain threshold, and this recovery was maintained for at least 7 days after the final treatment. In addition, relief from mechanical allodynia, induced by ICS exposure, was also observed at day 9 after the cessation of antidepressant treatment. In contrast, the intravenous administration of these antidepressants at conventional doses failed to provide relief. Conclusions These results suggest that the repetitive intrathecal administration of antidepressants permanently cures ICS-induced FM pain in mice.

  12. Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells.

    Science.gov (United States)

    Liu, Qian; Sun, Shanquan; Yu, Wei; Jiang, Jin; Zhuo, Fei; Qiu, Guoping; Xu, Shiye; Jiang, Xuli

    2015-04-01

    Long non-coding RNAs (lncRNAs), a recently discovered class of non-coding genes, are transcribed throughout the genome. Emerging evidence suggests that lncRNAs may be involved in modulating various aspects of tumor biology, including regulating gene activity in response to external stimuli or DNA damage. No data are available regarding the expression of lncRNAs during genotoxic stress-induced apoptosis and/or necrosis in human glioma cells. In this study, we detected a change in the expression of specific candidate lncRNAs (neat1, GAS5, TUG1, BC200, Malat1, MEG3, MIR155HG, PAR5, and ST7OT1) during DNA damage-induced apoptosis in human glioma cell lines (U251 and U87) using doxorubicin (DOX) and resveratrol (RES). We also detected the expression pattern of these lncRNAs in human glioma cell lines under necrosis induced using an increased dose of DOX. Our results reveal that the lncRNA expression patterns are distinct between genotoxic stress-induced apoptosis and necrosis in human glioma cells. The sets of lncRNA expressed during genotoxic stress-induced apoptosis were DNA-damaging agent-specific. Generally, MEG3 and ST7OT1 are up-regulated in both cell lines under apoptosis induced using both agents. The induction of GAS5 is only clearly detected during DOX-induced apoptosis, whereas the up-regulation of neat1 and MIR155HG is only found during RES-induced apoptosis in both cell lines. However, TUG1, BC200 and MIR155HG are down regulated when necrosis is induced using a high dose of DOX in both cell lines. In conclusion, our findings suggest that the distinct regulation of lncRNAs may possibly involve in the process of cellular defense against genotoxic agents.

  13. Ropivacaine and Bupivacaine prevent increased pain sensitivity without altering neuroimmune activation following repeated social defeat stress.

    Science.gov (United States)

    Sawicki, Caroline M; Kim, January K; Weber, Michael D; Jarrett, Brant L; Godbout, Jonathan P; Sheridan, John F; Humeidan, Michelle

    2018-03-01

    Mounting evidence indicates that stress influences the experience of pain. Exposure to psychosocial stress disrupts bi-directional communication pathways between the central nervous system and peripheral immune system, and can exacerbate the frequency and severity of pain experienced by stressed subjects. Repeated social defeat (RSD) is a murine model of psychosocial stress that recapitulates the immune and behavioral responses to stress observed in humans, including activation of stress-reactive neurocircuitry and increased pro-inflammatory cytokine production. It is unclear, however, how these stress-induced neuroimmune responses contribute to increased pain sensitivity in mice exposed to RSD. Here we used a technique of regional analgesia with local anesthetics in mice to block the development of mechanical allodynia during RSD. We next investigated the degree to which pain blockade altered stress-induced neuroimmune activation and depressive-like behavior. Following development of a mouse model of regional analgesia with discrete sensory blockade over the dorsal-caudal aspect of the spine, C57BL/6 mice were divided into experimental groups and treated with Ropivacaine (0.08%), Liposomal Bupivacaine (0.08%), or Vehicle (0.9% NaCl) prior to exposure to stress. This specific region was selected for analgesia because it is the most frequent location for aggression-associated pain due to biting during RSD. Mechanical allodynia was assessed 12 h after the first, third, and sixth day of RSD after resolution of the sensory blockade. In a separate experiment, social avoidance behavior was determined after the sixth day of RSD. Blood, bone marrow, brain, and spinal cord were collected for immunological analyses after the last day of RSD in both experiments following behavioral assessments. RSD increased mechanical allodynia in an exposure-dependent manner that persisted for at least one week following cessation of the stressor. Mice treated with either Ropivacaine or

  14. Chronic exercise improves repeated restraint stress-induced anxiety and depression through 5HT1A receptor and cAMP signaling in hippocampus.

    Science.gov (United States)

    Kim, Mun Hee; Leem, Yea Hyun

    2014-03-01

    Mood disorders such as anxiety and depression are prevalent psychiatric illness, but the role of 5HT1A in the anti-depressive effects of exercise has been rarely known yet. We investigated whether long-term exercise affected a depressive-like behavior and a hippocampal 5HT1A receptor-mediated cAMP/PKA/CREB signaling in depression mice model. To induce depressive behaviors, mice were subjected to 14 consecutive days of restraint stress (2 hours/day). Depression-like behaviors were measured by forced swimming test (TST), and anxiety-like behavior was assessed by elevated plus maze (EPM). Treadmill exercise was performed with 19 m/min for 60 min/day, 5 days/week from weeks 0 to 8. Restraint stress was started at week 6 week and ended at week 8. To elucidate the role of 5HT1A in depression, the immunoreactivities of 5HT1A were detected in hippocampus using immunohistochemical technique. Chronic/repeated restraint stress induced behavioral anxiety and depression, such as reduced time and entries in open arms in EPM and enhanced immobility time in FST. These anxiety and depressive behaviors were ameliorated by chronic exercise. Also, these behavioral changes were concurrent with the deficit of 5HT1A and cAMP/PKA/CREB cascade in hippocampus, which was coped with chronic exercise. These results suggest that chronic exercise may improve the disturbance of hippocampal 5HT1A-regulated cAMP/PKA/CREB signaling in a depressed brain, thereby exerting an antidepressive action.

  15. Beneficial Effects of Tianeptine on Hippocampus-Dependent Long-Term Memory and Stress-Induced Alterations of Brain Structure and Function

    Science.gov (United States)

    Zoladz, Phillip R.; Muñoz, Carmen; Diamond, David M.

    2010-01-01

    Tianeptine is a well-described antidepressant which has been shown to prevent stress from producing deleterious effects on brain structure and function. Preclinical studies have shown that tianeptine blocks stress-induced alterations of neuronal morphology and synaptic plasticity. Moreover, tianeptine prevents stress from impairing learning and memory, and, importantly, demonstrates memory-enhancing properties in the absence of stress. Recent research has indicated that tianeptine works by normalizing glutamatergic neurotransmission, a mechanism of action that may underlie its effectiveness as an antidepressant. These findings emphasize the value in focusing on the mechanisms of action of tianeptine, and specifically, the glutamatergic system, in the development of novel pharmacotherapeutic strategies in the treatment of depression.

  16. Beneficial Effects of Tianeptine on Hippocampus-Dependent Long-Term Memory and Stress-Induced Alterations of Brain Structure and Function

    Directory of Open Access Journals (Sweden)

    Carmen Muñoz

    2010-10-01

    Full Text Available Tianeptine is a well-described antidepressant which has been shown to prevent stress from producing deleterious effects on brain structure and function. Preclinical studies have shown that tianeptine blocks stress-induced alterations of neuronal morphology and synaptic plasticity. Moreover, tianeptine prevents stress from impairing learning and memory, and, importantly, demonstrates memory-enhancing properties in the absence of stress. Recent research has indicated that tianeptine works by normalizing glutamatergic neurotransmission, a mechanism of action that may underlie its effectiveness as an antidepressant. These findings emphasize the value in focusing on the mechanisms of action of tianeptine, and specifically, the glutamatergic system, in the development of novel pharmacotherapeutic strategies in the treatment of depression.

  17. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    Science.gov (United States)

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  18. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress.

    Directory of Open Access Journals (Sweden)

    Olivier Girard

    Full Text Available Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C and CON (25°C conditions.Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting.Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001 and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05 temperatures, together with thermal comfort (P<0.001 were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001 and contact time (+3.2±2.4%; P<0.01 higher in HOT for the mean of sets 1-3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001, with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06. Mean vertical (-2.6±5.5%; P<0.01, horizontal (-9.1±4.4%; P<0.001 and resultant ground reaction forces (-3.0±2.8%; P<0.01 along with vertical stiffness (-12.9±2.3%; P<0.001 and leg stiffness (-8.4±2.7%; P<0.01 decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001, with lower propulsive power values in set 2 (-6.6%; P<0.05 in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise.Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations.

  19. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    Science.gov (United States)

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  20. Possible GABAergic modulation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage.

    Science.gov (United States)

    Kumar, Anil; Goyal, Richa

    2008-03-01

    Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P zolpidem (5 mg/kg) per se (P zolpidem against hypoxic stress.

  1. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    Directory of Open Access Journals (Sweden)

    Holly K. Ober

    2014-04-01

    Full Text Available Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantations of three different species (loblolly, Pinus taeda; longleaf, P. palustris; and slash, P. elliottii. We sampled arthropods quarterly for three years in raked and un-raked pine stands to assess temporal shifts in abundance among dominant orders of arthropods. Effects varied greatly among orders of arthropods, among timber types, and among years. Distinct trends over time were apparent among orders that occupied both high trophic positions (predators and low trophic positions (fungivores, detritivores. Multivariate analyses demonstrated that raking caused stronger shifts in arthropod community composition in longleaf and loblolly than slash pine stands. Results highlight the role of pine litter in shaping terrestrial arthropod communities, and imply that repeated removal of pine straw during consecutive years is likely to have unintended consequences on arthropod communities that exacerbate over time.

  2. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Alessandro Ieraci

    2016-01-01

    Full Text Available Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.

  3. Potential role of licofelone, minocycline and their combination against chronic fatigue stress induced behavioral, biochemical and mitochondrial alterations in mice.

    Science.gov (United States)

    Kumar, Anil; Vashist, Aditi; Kumar, Puneet; Kalonia, Harikesh; Mishra, Jitendriya

    2012-01-01

    Chronic fatigue stress (CFS) is a common complaint among general population. Persistent and debilitating fatigue severely impairs daily functioning and is usually accompanied by combination of several physical and psychiatric problems. It is now well established fact that oxidative stress and neuroinflammation are involved in the pathophysiology of chronic fatigue and related disorders. Targeting both COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways have been proposed to be involved in neuroprotective effect. In the present study, mice were put on the running wheel apparatus for 6 min test session daily for 21 days, what produced fatigue like condition. The locomotor activity and anxiety like behavior were measured on 0, 8(th), 15(th) and 22(nd) day. The brains were isolated on 22(nd) day immediately after the behavioral assessments for the estimation of oxidative stress parameters and mitochondrial enzyme complexes activity. Pre-treatment with licofelone (2.5, 5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) for 21 days, significantly attenuated fatigue like behavior as compared to the control (rotating wheel activity test session, RWATS) group. Further, licofelone (5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) drug treatments for 21 days significantly attenuated behavioral alterations, oxidative damage and restored mitochondrial enzyme complex activities (I, II, III and IV) as compared to control, whereas combination of licofelone (5 mg/kg) with minocycline (50 mg/kg) significantly potentiated their protective effect which was significant as compared to their effect per se. The present study highlights the therapeutic potential of licofelone, minocycline and their combination against CFS in mice.

  4. Chronic Stress Induces Structural Alterations in Splenic Lymphoid Tissue That Are Associated with Changes in Corticosterone Levels in Wistar-Kyoto Rats

    Directory of Open Access Journals (Sweden)

    María Eugenia Hernandez

    2013-01-01

    Full Text Available Major depressive disorder patients present chronic stress and decreased immunity. The Wistar-Kyoto rat (WKY is a strain in which the hypothalamic-pituitary-adrenal axis is overactivated. To determine whether chronic stress induces changes in corticosterone levels and splenic lymphoid tissue, 9-week-old male rats were subject to restraint stress (3 h daily, chemical stress (hydrocortisone treatment, 50 mg/Kg weight, mixed stress (restraint plus hydrocortisone, or control treatment (without stress for 1, 4, and 7 weeks. The serum corticosterone levels by RIA and spleens morphology were analyzed. Corticosterone levels as did the structure, size of the follicles and morphology of the parenchyma (increase in red pulp in the spleen, varied depending on time and type of stressor. These changes indicate that chronic stress alters the immune response in the spleen in WKY rats by inducing morphological changes, explaining in part the impaired immunity that develops in organisms that are exposed to chronic stress.

  5. Repeated forced swimming impairs prepulse inhibition and alters brain-derived neurotrophic factor and astroglial parameters in rats.

    Science.gov (United States)

    Borsoi, Milene; Antonio, Camila Boque; Müller, Liz Girardi; Viana, Alice Fialho; Hertzfeldt, Vivian; Lunardi, Paula Santana; Zanotto, Caroline; Nardin, Patrícia; Ravazzolo, Ana Paula; Rates, Stela Maris Kuze; Gonçalves, Carlos-Alberto

    2015-01-01

    Glutamate perturbations and altered neurotrophin levels have been strongly associated with the neurobiology of neuropsychiatric disorders. Environmental stress is a risk factor for mood disorders, disrupting glutamatergic activity in astrocytes in addition to cognitive behaviours. Despite the negative impact of stress-induced neuropsychiatric disorders on public health, the molecular mechanisms underlying the response of the brain to stress has yet to be fully elucidated. Exposure to repeated swimming has proven useful for evaluating the loss of cognitive function after pharmacological and behavioural interventions, but its effect on glutamate function has yet to be fully explored. In the present study, rats previously exposed to repeated forced swimming were evaluated using the novel object recognition test, object location test and prepulse inhibition (PPI) test. In addition, quantification of brain-derived neurotrophic factor (BDNF) mRNA expression and protein levels, glutamate uptake, glutathione, S100B, GluN1 subunit of N-methyl-D-aspartate receptor and calmodulin were evaluated in the frontal cortex and hippocampus after various swimming time points. We found that swimming stress selectively impaired PPI but did not affect memory recognition. Swimming stress altered the frontal cortical and hippocampal BDNF expression and the activity of hippocampal astrocytes by reducing hippocampal glutamate uptake and enhancing glutathione content in a time-dependent manner. In conclusion, these data support the assumption that astrocytes may regulate the activity of brain structures related to cognition in a manner that alters complex behaviours. Moreover, they provide new insight regarding the dynamics immediately after an aversive experience, such as after behavioural despair induction, and suggest that forced swimming can be employed to study altered glutamatergic activity and PPI disruption in rodents. Copyright © 2014. Published by Elsevier Inc.

  6. Effect of Mucuna pruriens (Linn.) on oxidative stress-induced structural alteration of corpus cavernosum in streptozotocin-induced diabetic rat.

    Science.gov (United States)

    Suresh, Sekar; Prakash, Seppan

    2011-07-01

    Erectile dysfunction is one of the major secondary complications of diabetes. Mucuna pruriens (M. pruriens), a leguminous plant identified for its antidiabetic, aphrodisiac, and fertility enhancing properties, has been the choice of Indian traditional medicine. The objective of the present study was to analyze the efficacy of M. pruriens on free radicals-mediated penile tissue alterations in hyperglycemic male rats. Methods.  Male albino rats were divided as group I (sham) control, group II (STZ) diabetes-induced (streptozotocin 60 mg/kg of body weight [bw] in 0.1 M citrate buffer), group III (STZ + MP) diabetic rats administered with 200 mg/kg bw of ethanolic extract of M. pruriens seed, group IV (STZ + SIL) diabetic rats administered with 5 mg/kg bw of sildenafil citrate, group V (sham + MP) administered with 200 mg/kg bw of extract alone, and group VI (sham + SIL) administered with 5 mg/kg bw of sildenafil citrate. The M. pruriens and sildenafil citrate were given (gavage) once daily for a period of 60 days. At the end of 60 days, the animals were sacrificed and subjected to analysis of reactive oxygen species levels, enzymic and nonenzymic antioxidant levels, levels of NOx, histological, and histomorphometrical study of penile tissue. Remedial use of M. pruriens seed extract on diabetes-induced erectile tissue damage. Significantly high levels of oxidative stress and low levels of antioxidants in the penile tissue seem to contribute to the increased collagen deposition and fibrosis of erectile tissue in STZ rats. Relatively, there was increased damage in STZ + SIL group. Supplementation of M. pruriens in STZ + MP group has revealed the potency to overcome oxidative stress, and good preservation of penile histoarchitecture.  The ethanolic extract of M. pruriens seed significantly recovered or protected erectile tissue from the oxidative stress-induced degeneration by its antioxidant potentials. These findings propound to serve mankind by the treatment of

  7. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice

    OpenAIRE

    I?iguez, Sergio D.; Aubry, Antonio; Riggs, Lace M.; Alipio, Jason B.; Zanca, Roseanna M.; Flores-Ramirez, Francisco J.; Hernandez, Mirella A.; Nieto, Steven J.; Musheyev, David; Serrano, Peter A.

    2016-01-01

    Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes fo...

  8. Altered oscillatory brain dynamics after repeated traumatic stress

    Directory of Open Access Journals (Sweden)

    Ruf Martina

    2007-10-01

    Full Text Available Abstract Background Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. Methods Using magnetoencephalographic (MEG-based source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD in comparison to 97 controls. Results PTSD patients showed elevated production of focally generated slow waves (1–4 Hz, particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. Conclusion The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala.

  9. Cholinergic Modulation of Restraint Stress Induced Neurobehavioral ...

    African Journals Online (AJOL)

    The involvement of the cholinergic system in restraint stress induced neurobehavioral alterations was investigated in rodents using the hole board, elevated plus maze, the open field and the light and dark box tests. Restraint stress (3h) reduced significantly (p<0.05) the number of entries and time spent in the open arm, ...

  10. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice.

    Science.gov (United States)

    Iñiguez, Sergio D; Aubry, Antonio; Riggs, Lace M; Alipio, Jason B; Zanca, Roseanna M; Flores-Ramirez, Francisco J; Hernandez, Mirella A; Nieto, Steven J; Musheyev, David; Serrano, Peter A

    2016-12-01

    Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes for 10 consecutive days. Twenty-four h later, separate groups of mice were tested on the social interaction and tail suspension tests. Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ), protein kinase C zeta (PKCζ), the dopamine-1 (D1) receptor, tyrosine hydroxylase (TH), and the dopamine transporter (DAT). Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95) protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom) using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile

  11. Altered ERK1/2 Signaling in the Brain of Learned Helpless Rats: Relevance in Vulnerability to Developing Stress-Induced Depression

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2016-01-01

    Full Text Available Extracellular signal-regulated kinase 1/2- (ERK1/2- mediated cellular signaling plays a major role in synaptic and structural plasticity. Although ERK1/2 signaling has been shown to be involved in stress and depression, whether vulnerability to develop depression is associated with abnormalities in ERK1/2 signaling is not clearly known. The present study examined ERK1/2 signaling in frontal cortex and hippocampus of rats that showed vulnerability (learned helplessness, (LH or resiliency (non-learned helplessness, (non-LH to developing stress-induced depression. In frontal cortex and hippocampus of LH rats, we found that mRNA and protein expressions of ERK1 and ERK2 were significantly reduced, which was associated with their reduced activation and phosphorylation in cytosolic and nuclear fractions, where ERK1 and ERK2 target their substrates. In addition, ERK1/2-mediated catalytic activities and phosphorylation of downstream substrates RSK1 (cytosolic and nuclear and MSK1 (nuclear were also lower in the frontal cortex and hippocampus of LH rats without any change in their mRNA or protein expression. None of these changes were evident in non-LH rats. Our study indicates that ERK1/2 signaling is differentially regulated in LH and non-LH rats and suggests that abnormalities in ERK1/2 signaling may be crucial in the vulnerability to developing depression.

  12. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Sergio D. Iñiguez

    2016-12-01

    Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ, protein kinase C zeta (PKCζ, the dopamine-1 (D1 receptor, tyrosine hydroxylase (TH, and the dopamine transporter (DAT. Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95 protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile social stress induces GluA2- and dopamine-associated dysregulation in the hippocampus – a neurobiological mechanism potentially underlying the development of mood-related syndromes as a consequence of adolescent bullying.

  13. Mouse social stress induces increased fear conditioning, helplessness and fatigue to physical challenge together with markers of altered immune and dopamine function.

    Science.gov (United States)

    Azzinnari, Damiano; Sigrist, Hannes; Staehli, Simon; Palme, Rupert; Hildebrandt, Tobias; Leparc, German; Hengerer, Bastian; Seifritz, Erich; Pryce, Christopher R

    2014-10-01

    In neuropsychiatry, animal studies demonstrating causal effects of environmental manipulations relevant to human aetiology on behaviours relevant to human psychopathologies are valuable. Such valid models can improve understanding of aetio-pathophysiology and preclinical discovery and development of new treatments. In depression, specific uncontrollable stressful life events are major aetiological factors, and subsequent generalized increases in fearfulness, helplessness and fatigue are core symptoms or features. Here we exposed adult male C57BL/6 mice to 15-day psychosocial stress with loss of social control but minimal physical wounding. One cohort was assessed in a 3-day test paradigm of motor activity, fear conditioning and 2-way avoid-escape behaviour on days 16-18, and a second cohort was assessed in a treadmill fatigue paradigm on days 19 and 29, followed by the 3-day paradigm on days 30-32. All tests used a physical aversive stimulus, namely mild, brief electroshocks. Socially stressed mice displayed decreased motor activity, increased fear acquisition, decreased 2-way avoid-escape responding (increased helplessness) and increased fatigue. They also displayed increased plasma TNF and spleen hypertrophy, and adrenal hypertrophy without hyper-corticoidism. In a third cohort, psychosocial stress effects on brain gene expression were assessed using next generation sequencing. Gene expression was altered in pathways of inflammation and G-protein coupled receptors in prefrontal cortex and amygdala; in the latter, expression of genes important in dopamine function were de-regulated including down-regulated Drd2, Adora2a and Darpp-32. This model can be applied to identify targets for treating psychopathologies such as helplessness or fatigue, and to screen compounds/biologics developed to act at these targets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Altered methylation and expression of ER-associated degradation factors in long-term alcohol and constitutive ER stress-induced murine hepatic tumors

    Directory of Open Access Journals (Sweden)

    Hui eHan

    2013-10-01

    Full Text Available Mortality from liver cancer in humans is increasingly attributable to heavy or long-term alcohol consumption. The mechanisms by which alcohol exerts its carcinogenic effect are not well understood. In this study, the role of alcohol-induced endoplasmic reticulum (ER stress response in liver cancer development was investigated using an animal model with a liver knockout of the chaperone BiP and under constitutive hepatic ER stress. Long-term alcohol and high fat diet (HFD feeding resulted in higher levels of serum alanine aminotransferase (ALT, impaired ER stress response, and higher incidence of liver tumor in older (aged 16 months knockout females than in either middle-aged (6 months knockouts or older (aged 16 months wild type females. In the older knockout females, stronger effects of the alcohol on methylation of CpG islands at promoter regions of genes involved in the ER associated degradation (ERAD were also detected. Altered expression of ERAD factors including derlin 3, Creld2 (cysteine-rich with EGF-like domains 2, Herpud1 (ubiquitin-like domain member, Wfs1 (wolfram syndrome gene, and Yod1 (deubiquinating enzyme 1 was co-present with decreased proteasome activities, increased estrogen receptor alpha variant (ERa36, and enhanced phosphorylations of ERK1/2 (extracellular signal-regulated protein kinases 1 and 2 and STAT3 (the signal transducers and activators of transcription in the older knockout female fed alcohol. Our results suggest that long-term alcohol consumption and ageing may promote liver tumorigenesis in females through interfering with DNA methylation and expression of genes involved in the ER associated degradation.

  15. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning.

    Science.gov (United States)

    Anderson, Ian C; Bastias, Brigitte A; Genney, David R; Parkin, Pamela I; Cairney, John W G

    2007-04-01

    Soil basidiomycetes play key roles in forest nutrient and carbon cycling processes, yet the diversity and structure of below ground basidiomycete communities remain poorly understood. Prescribed burning is a commonly used forest management practice and there is evidence that single fire events can have an impact on soil fungal communities but little is known about the effects of repeated prescribed burning. We have used internal transcribed spacer (ITS) terminal restriction fragment length polymorphism (T-RFLP) analysis to investigate the impacts of repeated prescribed burning every two or four years over a period of 30 years on soil basidiomycete communities in an Australian wet sclerophyll forest. Detrended correspondence analysis of ITS T-RFLP profiles separated basidiomycete communities in unburned control plots from those in burned plots, with those burned every two years being the most different from controls. Burning had no effect on basidiomycete species richness, thus these differences appear to be due to changes in community structure. Basidiomycete communities in the unburned control plots were vertically stratified in the upper 20 cm of soil, but no evidence was found for stratification in the burned plots, suggesting that repeated prescribed burning results in more uniform basidiomycete communities. Overall, the results demonstrate that repeated prescribed burning alters soil basidiomycete communities, with the effect being greater with more frequent burning.

  16. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    Science.gov (United States)

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  17. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    Science.gov (United States)

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  18. Physiological correlates of stress-induced decrements in human perceptual performance.

    Science.gov (United States)

    1993-11-01

    Stress-induced changes in human performance have been thought to result from alterations in the "multidimensional arousal state" of the individual, as indexed by alterations in the physiological and psychological mechanisms controlling performance. I...

  19. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  20. Repeated drought alters resistance of seed bank regeneration in baldcypress swamps of North America

    Science.gov (United States)

    Lei, Ting; Middleton, Beth A.

    2018-01-01

    Recurring drying and wetting events are likely to increase in frequency and intensity in predicted future droughts in the central USA and alter the regeneration potential of species. We explored the resistance of seed banks to successive droughts in 53 sites across the nine locations in baldcypress swamps in the southeastern USA. Along the Mississippi River Alluvial Valley and northern Gulf of Mexico, we investigated the capacity of seed banks to retain viable seeds after successive periods of drying and wetting in a greenhouse study. Mean differences in species richness and seed density were compared to examine the interactions of successive droughts, geographical location and water regime. The results showed that both species richness and total density of germinating seedlings decreased over repeated drought trials. These responses were more pronounced in geographical areas with higher annual mean temperature. In seed banks across the southeastern swamp region, most species were exhausted after Trial 2 or 3, except for semiaquatic species in Illinois and Tennessee, and aquatic species in Texas. Distinct geographical trends in seed bank resistance to drought demonstrate that climate-induced drying of baldcypress swamps could influence the regeneration of species differently across their ranges. Despite the health of adult individuals, lack of regeneration may push ecosystems into a relict status. Seed bank depletion by germination without replenishment may be a major conservation threat in a future with recurring droughts far less severe than megadrought. Nevertheless, the protection of moist refugia might aid conservation.

  1. Cold stress induces lower urinary tract symptoms.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Nishizawa, Osamu

    2013-07-01

    Cold stress as a result of whole-body cooling at low environmental temperatures exacerbates lower urinary tract symptoms, such as urinary urgency, nocturia and residual urine. We established a model system using healthy conscious rats to explore the mechanisms of cold stress-induced detrusor overactivity. In this review, we summarize the basic findings shown by this model. Rats that were quickly transferred from room temperature (27 ± 2°C) to low temperature (4 ± 2°C) showed detrusor overactivity including increased basal pressure and decreased voiding interval, micturition volume, and bladder capacity. The cold stress-induced detrusor overactivity is mediated through a resiniferatoxin-sensitve C-fiber sensory nerve pathway involving α1-adrenergic receptors. Transient receptor potential melastatin 8 channels, which are sensitive to thermal changes below 25-28°C, also play an important role in mediating the cold stress responses. Additionally, the sympathetic nervous system is associated with transient hypertension and decreases of skin surface temperature that are closely correlated with the detrusor overactivity. With this cold stress model, we showed that α1-adrenergic receptor antagonists have the potential to treat cold stress-exacerbated lower urinary tract symptoms. In addition, we showed that traditional Japanese herbal mixtures composed of Hachimijiogan act, in part, by increasing skin temperature and reducing the number of cold sensitive transient receptor potential melastatin channels in the skin. The effects of herbal mixtures have the potential to treat and/or prevent the exacerbation of lower urinary tract symptoms by providing resistance to the cold stress responses. Our model provides new opportunities for utilizing animal disease models with altered lower urinary tract functions to explore the effects of novel therapeutic drugs. © 2013 The Japanese Urological Association.

  2. Alteraciones del desarrollo embrionario, poliaminas y estrés oxidativo inducidos por plaguicidas organofosforados en Rhinella Arenarum Alterations in embryonic development, polyamines and oxidative stress induced by organophosphates in Rhinella arenarum

    Directory of Open Access Journals (Sweden)

    Cecilia Inés Lascano

    2009-07-01

    use an amphibian embryonic model (Rhinella arenarum in order to assess the mechanisms by which the OP pesticides azinphos methyl (AM and chlorpyrifos (CP could cause teratogenesis. The embryos were developed in different concentrations of AM or CP until they reached the stage of complete operculum (CO. We analyzed malformations, histology, reduced gluthatione content (GSH and activity of antioxidant enzymes, polyamine content, ornithine decarboxilase (ODC and protein kinase C (PKC activities. Both OP pesticides caused a time- and dose-dependent increase in the number of malformations, reaching 100% teratogenesis in late embryonic development at the highest OP concentrations used. Malformations assessed include exogastrulation, caudal fin curvature, axial shortening, edema, and gill atrophy. Increasing evidence of oxidative stress was observed: GSH dependent enzymes (S- transferase, GST; peroxidase and reductase were early induced in embryos exposed to low concentrations of the OP pesticides, but their activities were inhibited in the stage of CO at high concentrations of OP. These changes were accompanied by a significant decrease in GSH content (62% in embryos exposed to AM. Besides, AM significantly increased (18X ODC activity in the stage of CO, along with putrescine levels (60% of increase but spermidine and spermine levels were significantly decreased (56% and 100%, respectively. The OP pesticide CP caused and early decrease in ODC activity and polyamine levels. The decrease in polyamine levels could be due to an increase in their degradation by polyamine oxidase, contributing to the oxidative stress induced by OP. This, in turn, would cause the decline in GSH levels and the activation of PKC in the embryonic stage of CO (55%, which is involved in the positive feedback of GST and ODC. Finally, the oxidative stress and the decrease in PA levels could be the cause of the observed embryonic alterations.

  3. ALTERED HIPPOCAMPAL NEUROGENESIS AND AMYGDALAR NEURONAL ACTIVITY IN ADULT MICE WITH REPEATED EXPERIENCE OF AGGRESSION

    Directory of Open Access Journals (Sweden)

    Dmitriy eSmagin

    2015-12-01

    Full Text Available The repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos positive cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

  4. Polymorphic repeat in AIB1 does not alter breast cancer risk

    International Nuclear Information System (INIS)

    Haiman, Christopher A; Hankinson, Susan E; Spiegelman, Donna; Colditz, Graham A; Willett, Walter C; Speizer, Frank E; Brown, Myles; Hunter, David J

    2000-01-01

    We assessed the association between a glutamine repeat polymorphism in AIB1 and breast cancer risk in a case-control study (464 cases, 624 controls) nested within the Nurses' Health Study cohort. We observed no association between AIB1 genotype and breast cancer incidence, or specific tumor characteristics. These findings suggest that AIB1 repeat genotype does not influence postmenopausal breast cancer risk among Caucasian women in the general population. A causal association between endogenous and exogenous estrogens and breast cancer has been established. Steroid hormones regulate the expression of proteins that are involved in breast cell proliferation and development after binding to their respective steroid hormone receptors. Coactivator and corepressor proteins have recently been identified that interact with steroid hormone receptors and modulate transcriptional activation [1]. AIB1 (amplified in breast 1) is a member of the steroid receptor coactivator (SRC) family that interacts with estrogen receptor (ER)α in a ligand-dependent manner, and increases estrogen-dependent transcription [2]. Amplification and overexpression of AIB1 has been observed in breast and ovarian cancer cell lines and in breast tumors [2,3]. A polymorphic stretch of glutamine amino acids, with unknown biologic function, has recently been described in the carboxyl-terminal region of AIB1 [4]. Among women with germline BRCA1 mutations, significant positive associations were observed between AIB1 alleles with 26 or fewer glutamine repeats and breast cancer risk [5] To establish whether AIB1 repeat alleles are associated with breast cancer risk and specific tumor characteristics among Caucasian women. We evaluated associations prospectively between AIB1 alleles and breast cancer risk in the Nurses' Health Study using a nested case-control design. The Nurses' Health Study was initiated in 1976, when 121 700 US-registered nurses between the ages of 30 and 55 years returned an

  5. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells

    International Nuclear Information System (INIS)

    Denner, Joachim; Specke, Volker; Thiesen, Ulla; Karlas, Alexander; Kurth, Reinhard

    2003-01-01

    Human-tropic porcine endogenous retroviruses (PERV) such as PERV-A and PERV-B can infect human cells and are therefore a potential risk to recipients of xenotransplants. A similar risk is posed by recombinant viruses containing the receptor-binding site of PERV-A and large parts of the genome of the ecotropic PERV-C including its long terminal repeat (LTR). We describe here the unique organization of the PERV-C LTR and its changes during serial passage of recombinant virus in human cells. An increase in virus titer correlated with an increase in LTR length, caused by multiplication of 37-bp repeats containing nuclear factor Y binding sites. Luciferase dual reporter assays revealed a correlation between the number of repeats and the extent of expression. No alterations have been observed in the receptor-binding site, indicating that the increased titer is due to the changes in the LTR. These data indicate that recombinant PERVs generated during infection of human cells can adapt and subsequently replicate with greater efficiency

  6. Repeated dose oral toxicity of inorganic mercury in wistar rats: biochemical and morphological alterations

    Directory of Open Access Journals (Sweden)

    M. D. Jegoda

    2013-06-01

    Full Text Available Aim: The study was conducted to find out the possible toxic effect of mercuric chloride (HgCl2 at the histological, biochemical, and haematological levels in the wistar rats for 28 days. Materials and Methods: The biochemical and hematological alteration were estimated in four groups of rat (each group contain ten animals, which were treated with 0 (control, 2, 4, and 8 mg/kg body weight of HgCl2 through oral gavage. At the end of study all rats were sacrificed and subjected for histopathology. Result: A significantly (P < 0.05 higher level of serum alanine amino transferase (ALT, gamma Glutamyle Transferase, and creatinine were recorded in treatment groups, while the level of alkaline phosphtase (ALP was significantly decreased as compared to the control group. The toxic effect on hematoclogical parameter was characterized by significant decrease in hemoglobin, packed cell volume, total erythrocytes count, and total leukocyte count. Gross morphological changes include congestion, severe haemorrhage, necrosis, degenerative changes in kidneys, depletion of lymphocyte in spleen, decrease in concentration of mature spermatocyte, and edema in testis. It was notable that kidney was the most affected organ. Conclusion: Mercuric chloride (HgCl caused dose-dependent toxic effects on blood parameters and kidney. [Vet World 2013; 6(8.000: 563-567

  7. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation.

    Science.gov (United States)

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A; Bartel, Bonnie; Herrera-Estrella, Luis

    2005-02-01

    Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.

  8. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  9. Stress-induced osteolysis of distal clavicle: imaging patterns and treatment using CT-guided injection

    Energy Technology Data Exchange (ETDEWEB)

    Sopov, V.; Groshar, D. [Dept. of Nuclear Medicine, Technion-Israel Inst. of Technology, Haifa (Israel); Fuchs, D. [Dept. of Orthopaedics, Technion-Israel Inst. of Technology, Haifa (Israel); Bar-Meir, E. [Dept. of Radiology, Technion-Israel Inst. of Technology, Haifa (Israel)

    2001-02-01

    Osteolysis of distal clavicle (ODC) may occur in patients who experience repeated stress or microtrauma to the shoulder. This entity has clinical and radiological findings similar to post-traumatic ODC. We describe a case of successful treatment of stress-induced ODC with CT-guided injection of corticosteroid and anesthetic drug into the acromioclavicular joint. (orig.)

  10. Stress-induced osteolysis of distal clavicle: imaging patterns and treatment using CT-guided injection

    International Nuclear Information System (INIS)

    Sopov, V.; Groshar, D.; Fuchs, D.; Bar-Meir, E.

    2001-01-01

    Osteolysis of distal clavicle (ODC) may occur in patients who experience repeated stress or microtrauma to the shoulder. This entity has clinical and radiological findings similar to post-traumatic ODC. We describe a case of successful treatment of stress-induced ODC with CT-guided injection of corticosteroid and anesthetic drug into the acromioclavicular joint. (orig.)

  11. Alterations in brain-derived neurotrophic factor in the mouse hippocampus following acute but not repeated benzodiazepine treatment.

    Directory of Open Access Journals (Sweden)

    Stephanie C Licata

    Full Text Available Benzodiazepines (BZs are safe drugs for treating anxiety, sleep, and seizure disorders, but their use also results in unwanted effects including memory impairment, abuse, and dependence. The present study aimed to reveal the molecular mechanisms that may contribute to the effects of BZs in the hippocampus (HIP, an area involved in drug-related plasticity, by investigating the regulation of immediate early genes following BZ administration. Previous studies have demonstrated that both brain derived neurotrophic factor (BDNF and c-Fos contribute to memory- and abuse-related processes that occur within the HIP, and their expression is altered in response to BZ exposure. In the current study, mice received acute or repeated administration of BZs and HIP tissue was analyzed for alterations in BDNF and c-Fos expression. Although no significant changes in BDNF or c-Fos were observed in response to twice-daily intraperitoneal (i.p. injections of diazepam (10 mg/kg + 5 mg/kg or zolpidem (ZP; 2.5 mg/kg + 2.5 mg/kg, acute i.p. administration of both triazolam (0.03 mg/kg and ZP (1.0 mg/kg decreased BDNF protein levels within the HIP relative to vehicle, without any effect on c-Fos. ZP specifically reduced exon IV-containing BDNF transcripts with a concomitant increase in the association of methyl-CpG binding protein 2 (MeCP2 with BDNF promoter IV, suggesting that MeCP2 activity at this promoter may represent a ZP-specific mechanism for reducing BDNF expression. ZP also increased the association of phosphorylated cAMP response element binding protein (pCREB with BDNF promoter I. Future work should examine the interaction between ZP and DNA as the cause for altered gene expression in the HIP, given that BZs can enter the nucleus and intercalate into DNA directly.

  12. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin

    Directory of Open Access Journals (Sweden)

    Beverley Greenwood-Van Meerveld

    2017-11-01

    Full Text Available Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS. Early life stress (ELS is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for

  13. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin

    Science.gov (United States)

    Greenwood-Van Meerveld, Beverley; Johnson, Anthony C.

    2017-01-01

    Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced

  14. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli

    NARCIS (Netherlands)

    Oei, N.Y.L.; Both, S.; van Heemst, D.; van der Grond, J.

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in

  15. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  16. Attenuation of stress induced memory deficits by nonsteroidal anti-inflammatory drugs (NSAIDs) in rats: Role of antioxidant enzymes.

    Science.gov (United States)

    Emad, Shaista; Qadeer, Sara; Sadaf, Sana; Batool, Zehra; Haider, Saida; Perveen, Tahira

    2017-04-01

    Repeated stress paradigms have been shown to cause devastating alterations on memory functions. Stress is linked with inflammation. Psychological and certain physical stressors could lead to neuroinflammation. Inflammatory process may occur by release of mediators and stimulate the production of prostaglandins through cyclooxygenase (COX). Treatment with COX inhibitors, which restrain prostaglandin production, has enhanced memory in a number of neuroinflammatory states showing a potential function for raised prostaglandins in these memory shortfalls. In the present study, potential therapeutic effects of indomethacin and diclofenac sodium on memory in both unrestraint and restraint rats were observed. Two components, long term memory and short term memory were examined by Morris water maze (MWM) and elevated plus maze (EPM) respectively. The present study also demonstrated the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on lipid peroxidation (LPO) and activities of antioxidant enzymes along with the activity of acetylcholinesterase (AChE). Results of MWM and EPM showed significant effects of drugs in both unrestraint and restraint rats as escape latency and transfer latency, in respective behavioral models were decreased as compared to that of control. This study also showed NSAIDs administration decreased LPO and increased antioxidant enzymes activity and decreased AChE activity in rats exposed to repeated stress. In conclusion this study suggests a therapeutic potential of indomethacin and diclofenac against repeated stress-induced memory deficits. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  17. Stress-induced release of GUT peptides in young women classified as restrained or unrestrained eaters.

    Science.gov (United States)

    Hilterscheid, Esther; Laessle, Reinhold

    2015-12-01

    Basal release of GUT peptides has been found to be altered in restrained eaters. Stress-induced secretion, however, has not yet been described, but could be a biological basis of overeating that exposes restrained eaters to a higher risk of becoming obese. The aim of the present study was to compare restrained and unrestrained eaters with respect to stress-induced release of the GUT peptides ghrelin and PYY. 46 young women were studied. Blood sampling for peptides was done before and after the Trier Social Stress Test. Ghrelin secretion after stress was significantly elevated in the restrained eaters, whereas no significant differences were detected for PYY. Stress-induced release of GUT peptides can be interpreted as a cause as well as a consequence of restrained eating.

  18. Central mechanisms of stress-induced headache.

    Science.gov (United States)

    Cathcart, S; Petkov, J; Winefield, A H; Lushington, K; Rolan, P

    2010-03-01

    Stress is the most commonly reported trigger of an episode of chronic tension-type headache (CTTH); however, the causal significance has not been experimentally demonstrated to date. Stress may trigger CTTH through hyperalgesic effects on already sensitized pain pathways in CTTH sufferers. This hypothesis could be partially tested by examining pain sensitivity in an experimental model of stress-induced headache in CTTH sufferers. Such examinations have not been reported to date. We measured pericranial muscle tenderness and pain thresholds at the finger, head and shoulder in 23 CTTH sufferers (CTH-S) and 25 healthy control subjects (CNT) exposed to an hour-long stressful mental task, and in 23 CTTH sufferers exposed to an hour-long neutral condition (CTH-N). Headache developed in 91% of CTH-S, 4% of CNT, and 17% of CTH-N subjects. Headache sufferers had increased muscle tenderness and reduced pain thresholds compared with healthy controls. During the task, muscle tenderness increased and pain thresholds decreased in the CTH-S group compared with CTH-N and CNT groups. Pre-task muscle tenderness and reduction in pain threshold during task were predictive of the development and intensity of headache following task. The main findings are that stress induced a headache in CTTH sufferers, and this was associated with pre-task muscle tenderness and stress-induced reduction in pain thresholds. The results support the hypothesis that stress triggers CTTH through hyperalgesic effects on already increased pain sensitivity in CTTH sufferers, reducing the threshold to noxious input from pericranial structures.

  19. Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    2013-03-01

    Full Text Available Fragile X-associated tremor/ataxia syndrome (FXTAS is an inherited neurodegenerative disorder caused by the expansion of 55–200 CGG repeats in the 5′ UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.

  20. Effects of the antipsychotic paliperidone on stress-induced changes in the endocannabinoid system in rat prefrontal cortex.

    Science.gov (United States)

    MacDowell, Karina S; Sayd, Aline; García-Bueno, Borja; Caso, Javier R; Madrigal, José L M; Leza, Juan Carlos

    2017-09-01

    Objectives There is a need to explore novel mechanisms of action of existing/new antipsychotics. One potential candidate is the endocannabinoid system (ECS). The present study tried to elucidate the effects of the antipsychotic paliperidone on stress-induced ECS alterations. Methods Wister rats were submitted to acute/chronic restraint stress. Paliperidone (1 mg/kg) was given prior each stress session. Cannabinoid receptors and endocannabinoids (eCBs) synthesis and degradation enzymes were measured in prefrontal cortex (PFC) samples by RT-PCR and Western Blot. Results In the PFC of rats exposed to acute stress, paliperidone increased CB1 receptor (CB1R) expression. Furthermore, paliperidone increased the expression of the eCB synthesis enzymes N-acylphosphatidylethanolamine- hydrolysing phospholipase D and DAGLα, and blocked the stress-induced increased expression of the degrading enzyme fatty acid amide hydrolase. In chronic conditions, paliperidone prevented the chronic stress-induced down-regulation of CB1R, normalised DAGLα expression and reverted stress-induced down-regulation of the 2-AG degrading enzyme monoacylglycerol lipase. ECS was analysed also in periphery. Acute stress decreased DAGLα expression, an effect prevented by paliperidone. Contrarily, chronic stress increased DAGLα and this effect was potentiated by paliperidone. Conclusions The results obtained described a preventive effect of paliperidone on stress-induced alterations in ECS. Considering the diverse alterations on ECS described in psychotic disease, targeting ECS emerges as a new therapeutic possibility.

  1. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli

    OpenAIRE

    Oei, Nicole Y. L.; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Summary Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain’s ‘‘reward system’’, and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PETstudies indicate that the stress hormone cortisol may be crucial in the interaction between st...

  2. Geranylgeranylacetone prevents stress-induced decline of leptin secretion in mice.

    Science.gov (United States)

    Itai, Miki; Kuwano, Yuki; Nishikawa, Tatsuya; Rokutan, Kazuhito; Kensei, Nishida

    2018-01-01

    Geranylgeranylacetone (GGA) is a chaperon inducer that protects various types of cell and tissue against stress. We examined whether GGA modulated energy intake and expenditure under stressful conditions. After mice were untreated or treated orally with GGA (0.16 g per kg body weight per day) for 10 days, they were subjected to 2-h restraint stress once or once a day for 5 consecutive days. GGA administration did not affect corticosterone response to the stress. Restraint stress rapidly decreased plasma leptin levels in control mice. GGA significantly increased circulating leptin levels without changing food intake and prevented the stress-induced decline of circulating leptin. However GGA-treated mice significantly reduced food intake during the repeated stress, compared with control mice. GGA prevented the stress-induced decline of leptin mRNA and its protein levels in epidydimal adipose tissues. We also found that GGA decreased ghrelin mRNA expression in gastric mucosa before the stress, whereas GGA-treated mice recovered the ghrelin mRNA expression to the baseline level after the repeated stress. Leptin and ghrelin are now recognized as regulators of anxiety and depressive mood. Our results suggest that GGA may regulate food intake and relief stress-induced mood disturbance through regulating leptin and ghrelin secretions. J. Med. Invest. 65:103-109, February, 2018.

  3. Repeated inoculation of cattle rumen with bison rumen contents alters the rumen microbiome and improves nitrogen digestibility in cattle

    OpenAIRE

    Ribeiro, Gabriel O.; Oss, Daniela B.; He, Zhixiong; Gruninger, Robert J.; Elekwachi, Chijioke; Forster, Robert J.; Yang, WenZhu; Beauchemin, Karen A.; McAllister, Tim A.

    2017-01-01

    Future growth in demand for meat and milk, and the socioeconomic and environmental challenges that farmers face, represent a ?grand challenge for humanity?. Improving the digestibility of crop residues such as straw could enhance the sustainability of ruminant production systems. Here, we investigated if transfer of rumen contents from bison to cattle could alter the rumen microbiome and enhance total tract digestibility of a barley straw-based diet. Beef heifers were adapted to the diet for ...

  4. Repeated sprint ability and stride kinematics are altered following an official match in national-level basketball players.

    Science.gov (United States)

    Delextrat, A; Baliqi, F; Clarke, N

    2013-04-01

    The aim of the study was to investigate the effects of playing an official national-level basketball match on repeated sprint ability (RSA) and stride kinematics. Nine male starting basketball players (22.8±2.2 years old, 191.3±5.8 cm, 88±10.3 kg, 12.3±4.6% body fat) volunteered to take part. Six repetitions of maximal 4-s sprints were performed on a non-motorised treadmill, separated by 21-s of passive recovery, before and immediately after playing an official match. Fluid loss, playing time, and the frequencies of the main match activities were recorded. The peak, mean, and performance decrement for average and maximal speed, acceleration, power, vertical and horizontal forces, and stride parameters were calculated over the six sprints. Differences between pre- and post-match were assessed by student t-tests. Significant differences between pre- and post-tests were observed in mean speed (-3.3%), peak and mean horizontal forces (-4.3% and -17.4%), peak and mean vertical forces (-3.4% and -3.7%), contact time (+7.3%), stride duration (+4.6%) and stride frequency (-4.0%), (Pvertical force were significantly correlated to fluid loss and sprint, jump and shuffle frequencies (P<0.05). These results highlight that the impairment in repeated sprint ability depends on the specific activities performed, and that replacing fluid loss through sweating during a match is crucial.

  5. Stress-Induced Neurodegeneration: Mechanisms and Interventions

    National Research Council Canada - National Science Library

    Meyerhoff, James

    2000-01-01

    .... chronic stress in several species, including mouse, rat, tree shrew and monkey, have been reported to develop alterations in hippocampal morphology, including apical dendritic atrophy, depletion...

  6. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography.

    Directory of Open Access Journals (Sweden)

    Hannah V Wilson

    Full Text Available The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG has not been published.To investigate the; (1 reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm, (2 effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude and contraction time (Tc, (3 the effect of changing inter-electrode distance on Dm and Tc.Within subject, repeated measures.10 participants for each objective.Dm and Tc of the rectus femoris, measured using TMG.The coefficient of variance (CV and the intra-class correlation (ICC of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively.Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles.

  7. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography

    Science.gov (United States)

    Johnson, Mark I.; Francis, Peter

    2018-01-01

    Context The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG) has not been published. Objective To investigate the; (1) reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm), (2) effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude) and contraction time (Tc), (3) the effect of changing inter-electrode distance on Dm and Tc. Design Within subject, repeated measures. Participants 10 participants for each objective. Main outcome measures Dm and Tc of the rectus femoris, measured using TMG. Results The coefficient of variance (CV) and the intra-class correlation (ICC) of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively. Conclusion Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles. PMID:29451885

  8. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  9. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    Science.gov (United States)

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  10. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  11. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Science.gov (United States)

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  12. Stress Induced Cardiomyopathy Triggered by Acute Myocardial Infarction: A Case Series Challenging the Mayo Clinic Definition.

    Science.gov (United States)

    Christodoulidis, Georgios; Kundoor, Vishwa; Kaluski, Edo

    2017-08-28

    BACKGROUND Various physical and emotional factors have been previously described as triggers for stress induced cardiomyopathy. However, acute myocardial infarction as a trigger has never been reported. CASE REPORT We describe four patients who presented with an acute myocardial infarction, in whom the initial echocardiography revealed wall motion abnormalities extending beyond the coronary distribution of the infarct artery. Of the four patients identified, the mean age was 59 years; three patients were women and two patients had underlying psychiatric history. Electrocardiogram revealed ST elevation in the anterior leads in three patients; QTc was prolonged in all cases. All patients had ≤ moderately elevated troponin. Single culprit lesion was found uniformly in the proximal or mid left anterior descending artery. Initial echocardiography revealed severely reduced ejection fraction with relative sparing of the basal segments, whereas early repeat echocardiography revealed significant improvement in the left ventricular function in all patients. CONCLUSIONS This is the first case series demonstrating that acute myocardial infarction can trigger stress induced cardiomyopathy. Extensive reversible wall motion abnormalities, beyond the ones expected from angiography, accompanied by modest elevation in troponin and marked QTc prolongation, suggest superimposed stress induced cardiomyopathy.

  13. Repeated Administration of D-Amphetamine Induces Distinct Alterations in Behavior and Metabolite Levels in 129Sv and Bl6 Mouse Strains

    Directory of Open Access Journals (Sweden)

    Taavi Vanaveski

    2018-06-01

    . Simultaneously a significant decline of hexoses, citrulline, ADMA, and kynurenine occurred. The reduced levels of kynurenine, ADMA, and citrulline likely reflect altered function of N-methyl-D-aspartate (NMDA and NO systems caused by repeated AMPH. Altogether, 129Sv strain displays stronger sensitization toward AMPH and larger variance in metabolite levels than Bl6.

  14. The Glt1 glutamate receptor mediates the establishment and perpetuation of chronic visceral pain in an animal model of stress-induced bladder hyperalgesia.

    Science.gov (United States)

    Ackerman, A Lenore; Jellison, Forrest C; Lee, Una J; Bradesi, Sylvie; Rodríguez, Larissa V

    2016-04-01

    Psychological stress exacerbates interstitial cystitis/bladder pain syndrome (IC/BPS), a lower urinary tract pain disorder characterized by increased urinary frequency and bladder pain. Glutamate (Glu) is the primary excitatory neurotransmitter modulating nociceptive networks. Glt1, an astrocytic transporter responsible for Glu clearance, is critical in pain signaling termination. We sought to examine the role of Glt1 in stress-induced bladder hyperalgesia and urinary frequency. In a model of stress-induced bladder hyperalgesia with high construct validity to human IC/BPS, female Wistar-Kyoto (WKY) rats were subjected to 10-day water avoidance stress (WAS). Referred hyperalgesia and tactile allodynia were assessed after WAS with von Frey filaments. After behavioral testing, we assessed Glt1 expression in the spinal cord by immunoblotting. We also examined the influence of dihydrokainate (DHK) and ceftriaxone (CTX), which downregulate and upregulate Glt1, respectively, on pain development. Rats exposed to WAS demonstrated increased voiding frequency, increased colonic motility, anxiety-like behaviors, and enhanced visceral hyperalgesia and tactile allodynia. This behavioral phenotype correlated with decreases in spinal Glt1 expression. Exogenous Glt1 downregulation by DHK resulted in hyperalgesia similar to that following WAS. Exogenous Glt1 upregulation via intraperitoneal CTX injection inhibited the development of and reversed preexisting pain and voiding dysfunction induced by WAS. Repeated psychological stress results in voiding dysfunction and hyperalgesia that correlate with altered central nervous system glutamate processing. Manipulation of Glu handling altered the allodynia developing after psychological stress, implicating Glu neurotransmission in the pathophysiology of bladder hyperalgesia in the WAS model of IC/BPS. Copyright © 2016 the American Physiological Society.

  15. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    Science.gov (United States)

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  17. Tumoral Environment Triggers Transcript Anomalies in Established Tumors: Induction of Altered Gene Expression and of Aberrant, Truncated and B2 Repeat-Containing Gene Transcripts

    Directory of Open Access Journals (Sweden)

    Pieter Rottiers

    1999-12-01

    Full Text Available In addition to eugenetic changes, cancerous cells exhibit extensive modifications in the expression levels of a variety of genes. The phenotypic switch observed after inoculation of T lymphoma cells into syngenic mice illustrates the active participation of tumoral environment in the induction of an aberrant gene expression pattern. To further substantiate this contribution, we performed polymerase chain reaction (PCR-based subtraction suppression hybridization (SSH to identify genes that are differentially expressed in tumor-derived EL4/13.3 cells compared to the same cells isolated from cultures. Besides a number of unknown genes, the subtracted library contained several known genes that have been reported to be expressed at increased levels in tumors and/or to contribute to carcinogenesis. Apart from clones representing translated transcripts, the subtracted library also contained a high number of clones representing B2 repeat elements, viz. short interspersed repetitive elements that are transcribed by RNA polymerase III. Northern blotting confirmed the induction of B2 transcripts in tumor tissue and also revealed induction of chimeric, B2 repeat-containing mRNA. The appearance of chimeric transcripts was accompanied by aberrant, shorter-than-full-length transcripts, specifically from upregulated genes. Accordingly, in addition to altered gene expression, tumoral environmental triggers constitute a potent mechanism to create an epigenetic diversity in cancers by inducing extensive transcript anomalies.

  18. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration.

    Science.gov (United States)

    Strekalova, Tatyana; Spanagel, Rainer; Bartsch, Dusan; Henn, Fritz A; Gass, Peter

    2004-11-01

    In order to develop a model for a depression-like syndrome in mice, we subjected male C57BL/6 mice to a 4-week-long chronic stress procedure, consisting of rat exposure, restraint stress, and tail suspension. This protocol resulted in a strong decrease in sucrose preference, a putative indicator of anhedonia in rodents. Interestingly, predisposition for stress-induced anhedonia was indicated by submissive behavior in a resident-intruder test. In contrast, most mice with nonsubmissive behavior did not develop a decrease in sucrose preference and were regarded as nonanhedonic. These animals were used as an internal control for stress-induced behavioral features not associated with the anhedonic state, since they were exposed to the same stressors as the anhedonic mice. Using a battery of behavioral tests after termination of the stress procedure, we found that anhedonia, but not chronic stress per se, is associated with key analogues of depressive symptoms, such as increased floating during forced swimming and decreased exploration of novelty. On the other hand, increased anxiety, altered locomotor activity, and loss of body weight were consequences of chronic stress, which occurred independently from anhedonia. Thus, behavioral correlates of stress-induced anhedonia and of chronic stress alone can be separated in the present model.

  19. Repeated, Intermittent Social Defeat across the Entire Juvenile Period Resulted in Behavioral, Physiological, Hormonal, Immunological, and Neurochemical Alterations in Young Adult Male Golden Hamsters

    Science.gov (United States)

    Yu, Wei-Chun; Liu, Ching-Yi; Lai, Wen-Sung

    2016-01-01

    findings indicate that repeated, intermittent social defeats throughout entire adolescence in hamsters impact their adult responses at multiple levels. Our results also suggest that the “social threat” group may serve as an appropriate control. This study further suggest that the alterations of behavioral responses and neurobiological functions in the body and brain might provide potential markers to measure the negative consequences of chronic social defeats. PMID:27375450

  20. Serotonergic involvement in stress-induced vasopressin and oxytocin secretion

    DEFF Research Database (Denmark)

    Jørgensen, Henrik; Knigge, Ulrich; Kjaer, Andreas

    2002-01-01

    OBJECTIVE: To investigate the involvement of serotonin (5-hydroxytryptamine - 5-HT) receptors in mediation of stress-induced arginine vasopressin (AVP) and oxytocin (OT) secretion in male rats. DESIGN: Experiments on laboratory rats with control groups. METHODS: Different stress paradigms were...... the swim stress-induced OT response. CONCLUSION: 5-HT(2A), 5-HT(2C) and possibly 5-HT(3) and 5-HT(4) receptors, but not 5-HT(1A) receptors, are involved in the restraint stress-induced AVP secretion. 5-HT does not seem to be involved in the dehydration- or hemorrhage-induced AVP response. The restraint...... stress-induced OT response seems to be mediated via 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptors. The dehydration and hemorrhage-induced OT responses are at least mediated by the 5-HT(2A) and 5-HT(2C) receptors. The 5-HT(3) and 5-HT(4) receptors are not involved in stress-induced OT secretion....

  1. MicroRNA expression in rat brain exposed to repeated inescapable shock: differential alterations in learned helplessness vs. non-learned helplessness.

    Science.gov (United States)

    Smalheiser, Neil R; Lugli, Giovanni; Rizavi, Hooriyah S; Zhang, Hui; Torvik, Vetle I; Pandey, Ghanshyam N; Davis, John M; Dwivedi, Yogesh

    2011-11-01

    MicroRNA (miRNA) expression was measured within frontal cortex of male Holtzman rats subjected to repeated inescapable shocks at days 1 and 7, tested for learned helplessness (LH) at days 2 and 8, and sacrificed at day 15. We compared rats that did vs. did not exhibit LH, as well as rats that were placed in the apparatus and tested for avoidance but not given shocks (tested controls, TC). Non-learned helpless (NLH) rats showed a robust adaptive miRNA response to inescapable shock whereas LH rats showed a markedly blunted response. One set of 12 miRNAs showed particularly large, significant down-regulation in NLH rats relative to tested controls (mir-96, 141, 182, 183, 183*, 298, 200a, 200a*, 200b, 200b*, 200c, 429). These were encoded at a few shared polycistronic loci, suggesting that the down-regulation was coordinately controlled at the level of transcription. Most of these miRNAs are enriched in synaptic fractions. Moreover, almost all of these share 5'-seed motifs with other members of the same set, suggesting that they will hit similar or overlapping sets of target mRNAs. Finally, half of this set is predicted to hit Creb1 as a target. We also identified a core miRNA co-expression module consisting of 36 miRNAs that are highly correlated with each other across individuals of the LH group (but not in the NLH or TC groups). Thus, miRNAs participate in the alterations of gene expression networks that underlie the normal (NLH) as well as aberrant (LH) response to repeated shocks.

  2. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The cumulative impacts of repeated heavy rainfall, flooding and altered water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia.

    Science.gov (United States)

    Butler, I R; Sommer, B; Zann, M; Zhao, J-X; Pandolfi, J M

    2015-07-15

    Terrestrial runoff and flooding have resulted in major impacts on coral communities worldwide, but we lack detailed understanding of flood plume conditions and their ecological effects. Over the course of repeated flooding between 2010 and 2013, we measured coral cover and water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia. In 2013, salinity, total suspended solids, total nitrogen and total phosphorus were altered for up to six months post-flooding. Submarine groundwater caused hypo-saline conditions for a further four months. Despite the greater magnitude of flooding in 2013, declines in coral abundance (∼28%) from these floods were lower than the 2011 flood (∼40%), which occurred immediately after a decade of severe drought. There was an overall cumulative decrease of coral by ∼56% from 2010 to 2013. Our study highlights the need for local scale monitoring and research to facilitate informed management and conservation of catchments and marine environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo.

    Science.gov (United States)

    Hirashima, Kyotaro; Seimiya, Hiroyuki

    2015-02-27

    Telomere erosion causes cell mortality, suggesting that longer telomeres enable more cell divisions. In telomerase-positive human cancer cells, however, telomeres are often kept shorter than those of surrounding normal tissues. Recently, we showed that cancer cell telomere elongation represses innate immune genes and promotes their differentiation in vivo. This implies that short telomeres contribute to cancer malignancy, but it is unclear how such genetic repression is caused by elongated telomeres. Here, we report that telomeric repeat-containing RNA (TERRA) induces a genome-wide alteration of gene expression in telomere-elongated cancer cells. Using three different cell lines, we found that telomere elongation up-regulates TERRA signal and down-regulates innate immune genes such as STAT1, ISG15 and OAS3 in vivo. Ectopic TERRA oligonucleotides repressed these genes even in cells with short telomeres under three-dimensional culture conditions. This appeared to occur from the action of G-quadruplexes (G4) in TERRA, because control oligonucleotides had no effect and a nontelomeric G4-forming oligonucleotide phenocopied the TERRA oligonucleotide. Telomere elongation and G4-forming oligonucleotides showed similar gene expression signatures. Most of the commonly suppressed genes were involved in the innate immune system and were up-regulated in various cancers. We propose that TERRA G4 counteracts cancer malignancy by suppressing innate immune genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Salt stress induced ion accumulation, ion homeostasis, membrane ...

    African Journals Online (AJOL)

    Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice ( Oryza sativa L. spp. indica ) roots under isoosmotic conditions. ... The accumulation of sugars in PT1 roots may be a primary salt-defense mechanism and may function as an osmotic control. Key words: ...

  6. Implication of snail in metabolic stress-induced necrosis.

    Directory of Open Access Journals (Sweden)

    Cho Hee Kim

    2011-03-01

    Full Text Available Necrosis, a type of cell death accompanied by the rupture of the plasma membrane, promotes tumor progression and aggressiveness by releasing the pro-inflammatory and angiogenic cytokine high mobility group box 1. It is commonly found in the core region of solid tumors due to hypoxia and glucose depletion (GD resulting from insufficient vascularization. Thus, metabolic stress-induced necrosis has important clinical implications for tumor development; however, its regulatory mechanisms have been poorly investigated.Here, we show that the transcription factor Snail, a key regulator of epithelial-mesenchymal transition, is induced in a reactive oxygen species (ROS-dependent manner in both two-dimensional culture of cancer cells, including A549, HepG2, and MDA-MB-231, in response to GD and the inner regions of a multicellular tumor spheroid system, an in vitro model of solid tumors and of human tumors. Snail short hairpin (sh RNA inhibited metabolic stress-induced necrosis in two-dimensional cell culture and in multicellular tumor spheroid system. Snail shRNA-mediated necrosis inhibition appeared to be linked to its ability to suppress metabolic stress-induced mitochondrial ROS production, loss of mitochondrial membrane potential, and mitochondrial permeability transition, which are the primary events that trigger necrosis.Taken together, our findings demonstrate that Snail is implicated in metabolic stress-induced necrosis, providing a new function for Snail in tumor progression.

  7. Stress-induced hyperthermia in translational stress research

    NARCIS (Netherlands)

    Vinkers, C.H.; Penning, R.; Ebbens, M.M.; Helhammer, J.; Verster, J.C.; Kalkman, C.J.; Olivier, B.

    2010-01-01

    The stress-induced hyperthermia (SIH) response is the transient change in body temperature in response to acute stress. This body temperature response is part of the autonomic stress response which also results in tachycardia and an increased blood pressure. So far, a SIH response has been found in

  8. Salubrious effects of oxytocin on social stress-induced deficits

    Science.gov (United States)

    Smith, Adam S.; Wang, Zuoxin

    2012-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. PMID:22178036

  9. Water stress induced changes in antioxidant enzymes, membrane ...

    African Journals Online (AJOL)

    Water stress induced changes in antioxidant enzymes membrane stablity index and seed protein profiling of four different wheat (Triticum aestivum L.) accessions (011251, 011417, 011320 and 011393) were determined in a pot study under natural condition during the wheat-growing season 2005 and 2006. Sampling was ...

  10. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  11. Effect of water deprivation on baseline and stress-induced corticosterone levels in the Children's python (Antaresia childreni).

    Science.gov (United States)

    Dupoué, Andréaz; Angelier, Frédéric; Lourdais, Olivier; Bonnet, Xavier; Brischoux, François

    2014-02-01

    Corticosterone (CORT) secretion is influenced by endogenous factors (e.g., physiological status) and environmental stressors (e.g., ambient temperature). Heretofore, the impact of water deprivation on CORT plasma levels has not been thoroughly investigated. However, both baseline CORT and stress-induced CORT are expected to respond to water deprivation not only because of hydric stress per se, but also because CORT is an important mineralocorticoid in vertebrates. We assessed the effects of water deprivation on baseline CORT and stress-induced CORT, in Children's pythons (Antaresia childreni), a species that experiences seasonal droughts in natural conditions. We imposed a 52-day water deprivation on a group of unfed Children's pythons (i.e., water-deprived treatment) and provided water ad libitum to another group (i.e., control treatment). We examined body mass variations throughout the experiment, and baseline CORT and stress-induced CORT at the end of the treatments. Relative body mass loss averaged ~10% in pythons without water, a value 2 to 4 times higher compared to control snakes. Following re-exposition to water, pythons from the water-deprived treatment drank readily and abundantly and attained a body mass similar to pythons from the control treatment. Together, these results suggest a substantial dehydration as a consequence of water deprivation. Interestingly, stress-induced but not baseline CORT level was significantly higher in water-deprived snakes, suggesting that baseline CORT might not respond to this degree of dehydration. Therefore, possible mineralocorticoid role of CORT needs to be clarified in snakes. Because dehydration usually induces adjustments (reduced movements, lowered body temperature) to limit water loss, and decreases locomotor performances, elevated stress-induced CORT in water-deprived snakes might therefore compensate for altered locomotor performances. Future studies should test this hypothesis. Copyright © 2013 Elsevier Inc

  12. GAD65 haplodeficiency conveys resilience in animal models of stress-induced psychopathology

    Directory of Open Access Journals (Sweden)

    Iris eMüller

    2014-08-01

    Full Text Available GABAergic mechanisms are critically involved in the control of fear and anxiety, but their role in the development of stress-induced psychopathologies, including post-traumatic stress disorder (PTSD and mood disorders is not sufficiently understood. We studied these functions in two established mouse models of risk factors for stress-induced psychopathologies employing variable juvenile stress and/or social isolation. A battery of emotional tests in adulthood revealed the induction of contextually generalized fear, anxiety, hyperarousal and depression-like symptoms in these paradigms. These reflect the multitude and complexity of stress effects in human PTSD patients. With factor analysis we were able to identify parameters that reflect these different behavioral domains in stressed animals and thus provide a basis for an integrated scoring of affectedness more closely resembling the clinical situation than isolated parameters. To test the applicability of these models to genetic approaches we further tested the role of GABA using heterozygous mice with targeted mutation of the GABA synthesizing enzyme GAD65 (GAD65+/- mice, which show a delayed postnatal increase in tissue GABA content in limbic and cortical brain areas. Unexpectedly, GAD65(+/- mice did not show changes in exploratory activity regardless of the stressor type and were after the variable juvenile stress procedure protected from the development of contextual generalization in an auditory fear conditioning experiment. Our data demonstrate the complex nature of behavioral alterations in rodent models of stress-related psychopathologies and suggest that GAD65 haplodeficiency, likely through its effect on the postnatal maturation of GABAergic transmission, conveys resilience to some of these stress-induced effects.

  13. Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence

    DEFF Research Database (Denmark)

    Dierick, Jean François; Kalume, Dário E; Wenders, Frédéric

    2002-01-01

    Exposure of human proliferative cells to subcytotoxic stress triggers stress-induced premature senescence (SIPS) which is characterized by many biomarkers of replicative senescence. Proteomic comparison of replicative senescence and stress-induced premature senescence indicates that, at the level...

  14. Social factors modulate restraint stress induced hyperthermia in mice.

    Science.gov (United States)

    Watanabe, Shigeru

    2015-10-22

    Stress-induced hyperthermia (SIH) was examined in three different social conditions in mice by thermographic measurement of the body surface temperature. Placing animals in cylindrical holders induced restraint stress. I examined the effect of the social factors in SIH using the thermograph (body surface temperature). Mice restrained in the holders alone showed SIH. Mice restrained in the holders at the same time as other similarly restrained cage mates (social equality condition) showed less hyperthermia. Interestingly, restrained mice with free moving cage mates (social inequality condition) showed the highest hyperthermia. These results are consistent with a previous experiment measuring the memory-enhancing effects of stress and the stress-induced elevation of corticosterone, and suggest that social inequality enhances stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Calcium channel blocker prevents stress-induced activation of renin and aldosterone in conscious pig

    International Nuclear Information System (INIS)

    Ceremuzynski, L.K.; Klos, J.; Barcikowski, B.; Herbaczynska-Cedro, K.

    1991-01-01

    A considerable amount of data suggest the involvement of calcium-mediated processes in the activation of the renin-angiotensin-aldosterone (RAA) cascade. To investigate the effect of calcium-channel inhibition on the RAA system, the authors studied 21 conscious pigs. Blood renin and aldosterone levels increased by subjecting animals to 24 hours of immobilization stress. Renin and aldosterone levels were repeatedly measured by radioimmunoassay in blood samples taken periodically over 24 hours from a chronically implanted arterial cannula. Pretreatment of the animals (N = 11) with nisoldipine, 2 x 20 mg p.o. daily for 2 days before and on the day of immobilization, transiently attenuated the stress-induced increase of plasma renin activity and completely prevented the rise of aldosterone, as compared to nontreated controls (N = 10). The finding that nisoldipine suppresses RAA activation induced by a nonpharmacologic stimulus in the conscious intact animal may have clinical implications

  16. Salubrious effects of oxytocin on social stress-induced deficits

    OpenAIRE

    Smith, Adam S.; Wang, Zuoxin

    2011-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to m...

  17. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd.

    Science.gov (United States)

    Bascuñán-Godoy, Luisa; Reguera, Maria; Abdel-Tawab, Yasser M; Blumwald, Eduardo

    2016-03-01

    Water deficit stress followed by re-watering during grain filling resulted in the induction of the ornithine pathway and in changes in Quinoa grain quality. The genetic diversity of Chenopodium quinoa Willd. (Quinoa) is accompanied by an outstanding environmental adaptability and high nutritional properties of the grains. However, little is known about the biochemical and physiological mechanisms associated with the abiotic stress tolerance of Quinoa. Here, we characterized carbon and nitrogen metabolic changes in Quinoa leaves and grains in response to water deficit stress analyzing their impact on the grain quality of two lowland ecotypes (Faro and BO78). Differences in the stress recovery response were found between genotypes including changes in the activity of nitrogen assimilation-associated enzymes that resulted in differences in grain quality. Both genotypes showed a common strategy to overcome water stress including the stress-induced synthesis of reactive oxygen species scavengers and osmolytes. Particularly, water deficit stress induced the stimulation of the ornithine and raffinose pathways. Our results would suggest that the regulation of C- and N partitioning in Quinoa during grain filling could be used for the improvement of the grain quality without altering grain yields.

  18. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior

    Science.gov (United States)

    Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore

    2016-01-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1 to 3 hr, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory

  20. Exercise-Induced Rhabdomyolysis and Stress-Induced Malignant Hyperthermia Events, Association with Malignant Hyperthermia Susceptibility, and RYR1 Gene Sequence Variations

    Directory of Open Access Journals (Sweden)

    Antonella Carsana

    2013-01-01

    Full Text Available Exertional rhabdomyolysis (ER and stress-induced malignant hyperthermia (MH events are syndromes that primarily afflict military recruits in basic training and athletes. Events similar to those occurring in ER and in stress-induced MH events are triggered after exposure to anesthetic agents in MH-susceptible (MHS patients. MH is an autosomal dominant hypermetabolic condition that occurs in genetically predisposed subjects during general anesthesia, induced by commonly used volatile anesthetics and/or the neuromuscular blocking agent succinylcholine. Triggering agents cause an altered intracellular calcium regulation. Mutations in RYR1 gene have been found in about 70% of MH families. The RYR1 gene encodes the skeletal muscle calcium release channel of the sarcoplasmic reticulum, commonly known as ryanodine receptor type 1 (RYR1. The present work reviews the documented cases of ER or of stress-induced MH events in which RYR1 sequence variations, associated or possibly associated to MHS status, have been identified.

  1. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear.

    Science.gov (United States)

    Meyer, R M; Burgos-Robles, A; Liu, E; Correia, S S; Goosens, K A

    2014-12-01

    Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is no clear relationship between the levels of these hormones and stress-associated mental illnesses such as posttraumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin-releasing factor (CRF) or corticosterone. Repeated intraamygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was enhanced by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear-enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin and

  2. Lateral stress-induced propagation characteristics in photonic crystal fibres

    Institute of Scientific and Technical Information of China (English)

    Tian Hong-Da; Yu Zhong-Yuan; Han Li-Hong; Liu Yu-Min

    2009-01-01

    Using the finite element method, this paper investigates lateral stress-induced propagation characteristics in a pho-tonic crystal fibre of hexagonal symmetry. The results of simulation show the strong stress dependence of effective index of the fundamental guided mode, phase modal birefringence and confinement loss. It also finds that the contribution of the geometrical effect that is related only to deformation of the photonic crystal fibre and the stress-related contribution to phase modal birefringence and confinement loss are entirely different. Furthermore, polarization-dependent stress sensitivity of confinement loss is proposed in this paper.

  3. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis

    International Nuclear Information System (INIS)

    Li Tie; Lu Luo

    2007-01-01

    CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NFκB activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells

  4. Neuroendocrine and oxidoreductive mechanisms of stress-induced cardiovascular diseases.

    Science.gov (United States)

    Pajović, S B; Radojcić, M B; Kanazir, D T

    2008-01-01

    The review concerns a number of basic molecular pathways that play a crucial role in perception, transmission, and modulation of the stress signals, and mediate the adaptation of the vital processes in the cardiovascular system (CVS). These highly complex systems for intracellular transfer of information include stress hormones and their receptors, stress-activated phosphoprotein kinases, stress-activated heat shock proteins, and antioxidant enzymes maintaining oxidoreductive homeostasis of the CVS. Failure to compensate for the deleterious effects of stress may result in the development of different pathophysiological states of the CVS, such as ischemia, hypertension, atherosclerosis and infarction. Stress-induced dysbalance in each of the CVS molecular signaling systems and their contribution to the CVS malfunctioning is reviewed. The general picture of the molecular mechanisms of the stress-induced pathophysiology in the CVS pointed out the importance of stress duration and intensity as etiological factors, and suggested that future studies should be complemented by the careful insights into the individual factors of susceptibility to stress, prophylactic effects of 'healthy' life styles and beneficial action of antioxidant-rich nutrition.

  5. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  6. Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders.

    Science.gov (United States)

    Gu, Simeng; Wang, Wei; Wang, Fushun; Huang, Jason H

    2016-01-01

    Affective disorders are a leading cause of disabilities worldwide, and the etiology of these many affective disorders such as depression and posttraumatic stress disorder is due to hormone changes, which includes hypothalamus-pituitary-adrenal axis in the peripheral nervous system and neuromodulators in the central nervous system. Consistent with pharmacological studies indicating that medical treatment acts by increasing the concentration of catecholamine, the locus coeruleus (LC)/norepinephrine (NE) system is regarded as a critical part of the central "stress circuitry," whose major function is to induce "fight or flight" behavior and fear and anger emotion. Despite the intensive studies, there is still controversy about NE with fear and anger. For example, the rats with LC ablation were more reluctant to leave a familiar place and took longer to consume the food pellets in an unfamiliar place (neophobia, i.e., fear in response to novelty). The reason for this discrepancy might be that NE is not only for flight (fear), but also for fight (anger). Here, we try to review recent literatures about NE with stress induced emotions and their relations with mental disorders. We propose that stress induced NE release can induce both fear and anger. "Adrenaline rush or norepinephrine rush" and fear and anger emotion might act as biomarkers for mental disorders.

  7. Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders

    Directory of Open Access Journals (Sweden)

    Simeng Gu

    2016-01-01

    Full Text Available Affective disorders are a leading cause of disabilities worldwide, and the etiology of these many affective disorders such as depression and posttraumatic stress disorder is due to hormone changes, which includes hypothalamus-pituitary-adrenal axis in the peripheral nervous system and neuromodulators in the central nervous system. Consistent with pharmacological studies indicating that medical treatment acts by increasing the concentration of catecholamine, the locus coeruleus (LC/norepinephrine (NE system is regarded as a critical part of the central “stress circuitry,” whose major function is to induce “fight or flight” behavior and fear and anger emotion. Despite the intensive studies, there is still controversy about NE with fear and anger. For example, the rats with LC ablation were more reluctant to leave a familiar place and took longer to consume the food pellets in an unfamiliar place (neophobia, i.e., fear in response to novelty. The reason for this discrepancy might be that NE is not only for flight (fear, but also for fight (anger. Here, we try to review recent literatures about NE with stress induced emotions and their relations with mental disorders. We propose that stress induced NE release can induce both fear and anger. “Adrenaline rush or norepinephrine rush” and fear and anger emotion might act as biomarkers for mental disorders.

  8. Stress induces pain transition by potentiation of AMPA receptor phosphorylation.

    Science.gov (United States)

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng

    2014-10-08

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.

  9. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway.

    Science.gov (United States)

    Rei, Damien; Mason, Xenos; Seo, Jinsoo; Gräff, Johannes; Rudenko, Andrii; Wang, Jun; Rueda, Richard; Siegert, Sandra; Cho, Sukhee; Canter, Rebecca G; Mungenast, Alison E; Deisseroth, Karl; Tsai, Li-Huei

    2015-06-09

    Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.

  10. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway

    Science.gov (United States)

    Rei, Damien; Mason, Xenos; Seo, Jinsoo; Gräff, Johannes; Rudenko, Andrii; Wang, Jun; Rueda, Richard; Siegert, Sandra; Cho, Sukhee; Canter, Rebecca G.; Mungenast, Alison E.; Deisseroth, Karl; Tsai, Li-Huei

    2015-01-01

    Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation. PMID:25995364

  11. Sex differences in stress-induced visceral hypersensitivity following early life adversity: a two hit model.

    Science.gov (United States)

    Prusator, D K; Greenwood-Van Meerveld, B

    2016-12-01

    Early life adversity (ELA) has been indicated as a risk factor for the development of stress axis dysfunction in adulthood, specifically in females. We previously showed that unpredictable ELA induces visceral hyperalgesia in adult female rats. It remains to be determined whether ELA alters visceral nociceptive responses to stress in adulthood. The current study tested the hypothesis that following ELA, exposure to an adulthood stressor, or second hit, serves as a risk factor for exaggerated stress-induced visceral hypersensitivity that is sex-specific. Following ELA, adult stress was induced via a single exposure (acute) or repetitive daily exposure, 1 h/day for 7 days (chronic), to water avoidance stress (WAS). Acute WAS increased pain behaviors in all adult female rats, however, females that experienced unpredictable ELA exhibited significantly more pain behaviors compared to those exposed to predictable ELA or controls. Following chronic WAS, all adult females exhibited increased pain responses, however, an exaggerated response was observed in rats exposed to unpredictable or predictable ELA compared to controls. Similarly, in adult male rats exposure to acute or chronic WAS increased pain behaviors, however, there were no differences in pain behaviors between ELA groups. This study highlights a novel consequence of ELA on stress-induced visceral nociception in adulthood that is sex-specific. More importantly, our study suggests that ELA not only serves as a risk factor for development of chronic pain in adulthood, but also serves as a predisposition for worsening of visceral pain following adult stress in female rats. © 2016 John Wiley & Sons Ltd.

  12. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction.

    Science.gov (United States)

    Sharp, B M

    2017-08-08

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

  13. Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain.

    Science.gov (United States)

    Nation, Kelsey M; De Felice, Milena; Hernandez, Pablo I; Dodick, David W; Neugebauer, Volker; Navratilova, Edita; Porreca, Frank

    2018-05-01

    The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.

  14. Stress-induced roughening instabilities along surfaces of piezoelectric materials

    International Nuclear Information System (INIS)

    Chien, N.Y.; Gao, H.

    1993-01-01

    The possibility of using electric field to stabilize surfaces of piezoelectric solids against stress-induced morphological roughening is explored in this paper. Two types of idealized boundary conditions are considered: (1) a traction free and electrically insulating surface and (2) a traction free and electrically conducting surface. A perturbation solution for the energy variation associated with surface roughening suggests that the electric field can be used to suppress the roughening instability to various degrees. A completely stable state is possible in the insulating case, and kinetically more stable states can be attained in the conducting case. The stabilization has importance in reducing concentration of stress and electric fields due to microscopic surface roughness which might trigger failure processes involving dislocation, cracks and dielectric breakdown

  15. Stress-induced premature senescence of endothelial cells.

    Science.gov (United States)

    Chen, Jun; Patschan, Susann; Goligorsky, Michael S

    2008-01-01

    Stress-induced premature senescence (SIPS) is characterized by cell cycle arrest and curtailed Hayflick limit. Studies support a central role for Rb protein in controlling this process via signaling from the p53 and p16 pathways. Cellular senescence is considered an essential contributor to the aging process and has been shown to be an important tumor suppression mechanism. In addition, emerging evidence suggests that SIPS may be involved in the pathogenesis of chronic human diseases. Here, focusing on endothelial cells, we discuss recent advances in our understanding of SIPS and the pathways that trigger it, evaluate their correlation with the apoptotic response and examine their links to the development of chronic diseases, with the emphasis on vasculopathy. Emerging novel therapeutic interventions based on recent experimental findings are also reviewed.

  16. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  17. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  18. STRESS INDUCED OBESITY: LESSONS FROM RODENT MODELS OF STRESS

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-07-01

    Full Text Available Stress is defined as the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA axis. When an organism encounters a stressor (social, physical, etc., these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and loose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further our understanding of stress-induced

  19. Clonidine blocks stress-induced craving in cocaine users.

    Science.gov (United States)

    Jobes, Michelle L; Ghitza, Udi E; Epstein, David H; Phillips, Karran A; Heishman, Stephen J; Preston, Kenzie L

    2011-11-01

    Reactivity to stressors and environmental cues, a putative cause of relapse in addiction, may be a useful target for relapse-prevention medication. In rodents, alpha-2 adrenergic agonists such as clonidine block stress-induced reinstatement of drug seeking, but not drug cue-induced reinstatement. The objective of this study is to test the effect of clonidine on stress- and cue-induced craving in human cocaine users. Healthy, non-treatment-seeking cocaine users (n = 59) were randomly assigned to three groups receiving clonidine 0, 0.1, or 0.2 mg orally under double-blind conditions. In a single test session, each participant received clonidine or placebo followed 3 h later by exposure to two pairs of standardized auditory-imagery scripts (neutral/stress and neutral/drug). Subjective measures of craving were collected. Subjective responsivity ("crave cocaine" Visual Analog Scale) to stress scripts was significantly attenuated in the 0.1- and 0.2-mg clonidine groups; for drug-cue scripts, this attenuation occurred only in the 0.2-mg group. Other subjective measures of craving showed similar patterns of effects but Dose × Script interactions were not significant. Clonidine was effective in reducing stress-induced (and, at a higher dose, cue-induced) craving in a pattern consistent with preclinical findings, although this was significant on only one of several measures. Our results, though modest and preliminary, converge with other evidence to suggest that alpha-2 adrenergic agonists may help prevent relapse in drug abusers experiencing stress or situations that remind them of drug use.

  20. Mutations that alter a repeated ACCA element located at the 5' end of the Potato virus X genome affect RNA accumulation.

    Science.gov (United States)

    Park, Mi-Ri; Kwon, Sun-Jung; Choi, Hong-Soo; Hemenway, Cynthia L; Kim, Kook-Hyung

    2008-08-15

    The repeated ACCA or AC-rich sequence and structural (SL1) elements in the 5' non-translated region (NTR) of the Potato virus X (PVX) RNA play vital roles in the PVX life cycle by controlling translation, RNA replication, movement, and assembly. It has already been shown that the repeated ACCA or AC-rich sequence affect both gRNA and sgRNA accumulation, while not affecting minus-strand RNA accumulation, and are also required for host protein binding. The functional significance of the repeated ACCA sequence elements in the 5' NTR region was investigated by analyzing the effects of deletion and site-directed mutations on PVX replication in Nicotiana benthamiana plants and NT1 protoplasts. Substitution (ACCA into AAAA or UUUU) mutations introduced in the first (nt 10-13) element in the 5' NTR of the PVX RNA significantly affected viral replication, while mutations introduced in the second (nt 17-20) and third (nt 20-23) elements did not. The fourth (nt 29-32) ACCA element weakly affected virus replication, whereas mutations in the fifth (nt 38-41) significantly reduced virus replication due to the structure disruption of SL1 by AAAA and/or UUUU substitutions. Further characterization of the first ACCA element indicated that duplication of ACCA at nt 10-13 (nt 10-17, ACCAACCA) caused severe symptom development as compared to that of wild type, while deletion of the single element (nt 10-13), DeltaACCA) or tripling of this element caused reduced symptom development. Single- and double-nucleotide substitutions introduced into the first ACCA element revealed the importance of CC located at nt positions 11 and 12. Altogether, these results indicate that the first ACCA element is important for PVX replication.

  1. Public speaking stress-induced neuroendocrine responses and circulating immune cell redistribution in irritable bowel syndrome.

    Science.gov (United States)

    Elsenbruch, Sigrid; Lucas, Ayscha; Holtmann, Gerald; Haag, Sebastian; Gerken, Guido; Riemenschneider, Natalie; Langhorst, Jost; Kavelaars, Annemieke; Heijnen, Cobi J; Schedlowski, Manfred

    2006-10-01

    Augmented neuroendocrine stress responses and altered immune functions may play a role in the manifestation of functional gastrointestinal (GI) disorders. We tested the hypothesis that IBS patients would demonstrate enhanced psychological and endocrine responses, as well as altered stress-induced redistribution of circulating leukocytes and lymphocytes, in response to an acute psychosocial stressor when compared with healthy controls. Responses to public speaking stress were analyzed in N = 17 IBS patients without concurrent psychiatric conditions and N = 12 healthy controls. At baseline, immediately following public speaking, and after a recovery period, state anxiety, acute GI symptoms, cardiovascular responses, serum cortisol and plasma adrenocorticotropic hormone (ACTH) were measured, and numbers of circulating leukocytes and lymphocyte subpopulations were analyzed by flow cytometry. Public speaking led to significant cardiovascular activation, a significant increase in ACTH, and a redistribution of circulating leukocytes and lymphocyte subpopulations, including significant increases in natural killer cells and cytotoxic/suppressor T cells. IBS patients demonstrated significantly greater state anxiety both at baseline and following public speaking. However, cardiovascular and endocrine responses, as well as the redistribution of circulating leukocytes and lymphocyte subpopulations after public speaking stress, did not differ for IBS patients compared with controls. In IBS patients without psychiatric comorbidity, the endocrine response as well as the circulation pattern of leukocyte subpopulations to acute psychosocial stress do not differ from healthy controls in spite of enhanced emotional responses. Future studies should discern the role of psychopathology in psychological and biological stress responses in IBS.

  2. The effect of repeated stress on KCC2 and NKCC1 immunoreactivity in the hippocampus of female mice

    Directory of Open Access Journals (Sweden)

    Takao Tsukahara

    2016-03-01

    Full Text Available K+–Cl− co-transporter (KCC2 and Na+–K+–2Cl− co-transporter (NKCC1 are the main regulators of neuronal intracellular chloride concentration; altered expression patterns of KCC2 and NKCC1 have been reported in several neurodegenerative diseases. In this paper, we show the effect of repeated stress on KCC2, NKCC1, and serine 940 phosphorylated KCC2 (pKCC2ser940 immunoreactivity.The data were obtained from the hippocampus of female mice using single-plane confocal microscopy images. The mean fluorescence intensity of the perisomatic area of neurons, defined as raw fluorescence intensity (RFI was calculated. Repeated stress (RS resulted in a decrease in perisomatic area of immunoreactive (IR-KCC2 and an increase of the IR-NKCC1. In addition, RS decreased perisomatic IR-pKCC2ser940, corresponding to that of KCC2. The data in this article support the results of a previous study [1] and provide the details of immunohistological methods. Interpretation of the data in this article can be found in “Repeated stress-induced expression pattern alterations of the hippocampal chloride transporters KCC2 and NKCC1 associated with behavioral abnormalities in female mice” by Tsukahara et al. [1]. Keywords: KCC2, NKCC1, repeated stress, IHC

  3. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation.

    Science.gov (United States)

    Badyaev, Alexander V

    2005-05-07

    Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.

  4. Deployment Repeatability

    Science.gov (United States)

    2016-04-01

    evaluating the deployment repeatability builds upon the testing or analysis of deployment kinematics (Chapter 6) and adds repetition. Introduction...material yield or failure during a test. For the purposes of this chapter, zero shift will refer to permanent changes in the structure, while reversible ...the content of other chapters in this book: Gravity Compensation (Chapter 4) and Deployment Kinematics and Dynamics (Chapter 6). Repeating the

  5. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus.

    Science.gov (United States)

    Hennebelle, Marie; Champeil-Potokar, Gaëlle; Lavialle, Monique; Vancassel, Sylvie; Denis, Isabelle

    2014-02-01

    Chronic stress causes the release of glucocorticoids, which greatly influence cerebral function, especially glutamatergic transmission. These stress-induced changes in neurotransmission could be counteracted by increasing the dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Numerous studies have described the capacity of n-3 PUFAs to help protect glutamatergic neurotransmission from damage induced by stress and glucocorticoids, possibly preventing the development of stress-related disorders such as depression or anxiety. The hippocampus contains glucocorticoid receptors and is involved in learning and memory. This makes it particularly sensitive to stress, which alters certain aspects of hippocampal function. In this review, the various ways in which n-3 PUFAs may prevent the harmful effects of chronic stress, particularly the alteration of glutamatergic synapses in the hippocampus, are summarized. © 2014 International Life Sciences Institute.

  6. Specific alteration of rhythm in temperature-stressed rats possess features of abdominal pain in IBS patients

    Directory of Open Access Journals (Sweden)

    Yasuo Itomi

    2015-09-01

    Full Text Available It is known that specific alteration of rhythm in temperature (SART stress produces somatic pain. However, it remains to be investigated whether SART stress induces visceral pain. In this study, we investigated the visceral hypersensitivity in the SART stress model by pharmacological tools and heterotopical nociception. Four-week-old Sprague–Dawley rats were exposed to repeated cold stress. Visceral pain was measured by visceromotor response to colorectal distension, and the effects of alosetron and duloxetine on visceral pain were investigated in SART rats. Heterotopical nociception was given by capsaicin injection into the left forepaw to induce diffuse noxious inhibitory controls (DNIC. SART stress induced visceral hypersensitivity that was sustained at minimum for one week. In pharmacological analysis, alosetron and duloxetine improved SART stress-induced visceral hypersensitivity. Heterotopical nociception induced DNIC in normal conditions, but was disrupted in SART rats. On the other hand, RMCP-II mRNA in distal colon was not affected by SART stress. In conclusion, SART rats exhibit several features of visceral pain in IBS, and may be a useful model for investigating the central modification of pain control in IBS.

  7. Repeated ketamine administration alters N-methyl-d-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    Science.gov (United States)

    Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  8. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans.

    Science.gov (United States)

    Xu, Ke; Lipsky, Robert H

    2015-02-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. © 2014 by the Society for Experimental Biology and Medicine.

  9. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  10. ADRA2B deletion variant selectively predicts stress-induced enhancement of long-term memory in females.

    Science.gov (United States)

    Zoladz, Phillip R; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Lyle, Sarah M; Peters, David M; Brown, Callie M; Cadle, Chelsea E; Scharf, Amanda R; Dailey, Alison M; Wolters, Nicholas E; Talbot, Jeffery N; Rorabaugh, Boyd R

    2014-10-01

    Clarifying the mechanisms that underlie stress-induced alterations of learning and memory may lend important insight into susceptibility factors governing the development of stress-related psychological disorders, such as post-traumatic stress disorder (PTSD). Previous work has shown that carriers of the ADRA2B Glu(301)-Glu(303) deletion variant exhibit enhanced emotional memory, greater amygdala responses to emotional stimuli and greater intrusiveness of traumatic memories. We speculated that carriers of this deletion variant might also be more vulnerable to stress-induced enhancements of long-term memory, which would implicate the variant as a possible susceptibility factor for traumatic memory formation. One hundred and twenty participants (72 males, 48 females) submerged their hand in ice cold (stress) or warm (no stress) water for 3min. Immediately afterwards, they studied a list of 42 words varying in emotional valence and arousal and then completed an immediate free recall test. Twenty-four hours later, participants' memory for the word list was examined via free recall and recognition assessments. Stressed participants exhibiting greater heart rate responses to the stressor had enhanced recall on the 24-h assessment. Importantly, this enhancement was independent of the emotional nature of the learned information. In contrast to previous work, we did not observe a general enhancement of memory for emotional information in ADRA2B deletion carriers. However, stressed female ADRA2B deletion carriers, particularly those exhibiting greater heart rate responses to the stressor, did demonstrate greater recognition memory than all other groups. Collectively, these findings implicate autonomic mechanisms in the pre-learning stress-induced enhancement of long-term memory and suggest that the ADRA2B deletion variant may selectively predict stress effects on memory in females. Such findings lend important insight into the physiological mechanisms underlying stress

  11. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior.

    Science.gov (United States)

    Cheng, Yuyan; Pardo, Marta; Armini, Rubia de Souza; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S; Beurel, Eleonore

    2016-03-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6-12h after stress. A 24h prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1-3h, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and

  12. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation

    Czech Academy of Sciences Publication Activity Database

    Světlák, M.; Bob, P.; Roman, R.; Ježek, S.; Damborská, A.; Chládek, Jan; Shaw, D. J.; Kukleta, M.

    2013-01-01

    Roč. 62, č. 6 (2013), s. 711-719 ISSN 0862-8408 Institutional support: RVO:68081731 Keywords : electrodermal activity * pointwise trasinformation * autonomic nervous system * asymmetry * stress Subject RIV: CE - Biochemistry Impact factor: 1.487, year: 2013

  13. Stress-induced memory alters growth of clonal offspring of white clover (Trifolium repens)

    Czech Academy of Sciences Publication Activity Database

    González, Alejandra Pilar Rendina; Chrtek, Jindřich; Dobrev, Petre; Dumalasová, Veronika; Fehrer, Judith; Mráz, Patrik; Latzel, Vít

    2016-01-01

    Roč. 103, č. 9 (2016), s. 1567-1574 ISSN 0002-9122 R&D Projects: GA ČR(CZ) GA14-06802S Institutional support: RVO:67985939 ; RVO:61389030 Keywords : asexual reproduction * DNA methylation * epigenetic variation Subject RIV: EF - Botanics; EF - Botanics (UEB-Q) Impact factor: 3.050, year: 2016

  14. The Role of Oxidative Stress-Induced Epigenetic Alterations in Amyloid- ? Production in Alzheimer's Disease

    OpenAIRE

    Zuo, Li; Hemmelgarn, Benjamin T.; Chuang, Chia-Chen; Best, Thomas M.

    2015-01-01

    An increasing number of studies have proposed a strong correlation between reactive oxygen species (ROS)-induced oxidative stress (OS) and the pathogenesis of Alzheimer’s disease (AD). With over five million people diagnosed in the United States alone, AD is the most common type of dementia worldwide. AD includes progressive neurodegeneration, followed by memory loss and reduced cognitive ability. Characterized by the formation of amyloid-beta (Aβ) plaques as a hallmark, the connection betwee...

  15. Stress-induced Premature Promotes Prostate Cancer Growth and Metastasis through Alteration of Microenvironment

    Science.gov (United States)

    2012-01-01

    comprised of NF-YA, -YB and -YC proteins. NF- Y can interact with p53 to transcriptionally repress specific genes , including Cdc2 and Chk2 (Yun et al...cells already have lowered p53 (Figure 1e). NF- Y A–C proteins bind p53 and suppress transcrip- tion of target genes involved in cell cycle regulation...regulation in H(2)O(2)- induced premature senescence of human diploid fibroblasts and regulatory control exerted by the papilloma virus E6 and E7

  16. Stress-induced hyperglycaemia and venous thromboembolism following total hip or total knee arthroplasty Analysis from the RECORD trials

    NARCIS (Netherlands)

    Cohn, Danny M.; Hermanides, Jeroen; DeVries, J. Hans; Kamphuisen, Pieter-Willem; Kuhls, Silvia; Homering, Martin; Hoekstra, Joost B. L.; Lensing, Anthonie W. A.; Büller, Harry R.

    2012-01-01

    Stress-induced hyperglycaemia is common during orthopaedic surgery. In addition, hyperglycaemia activates coagulation. The aim of the study was to assess whether stress-induced hyperglycaemia is associated with symptomatic or asymptomatic venous thromboembolism (VTE) following orthopaedic surgery.

  17. Stress-induced endocrine response and anxiety: the effects of comfort food in rats.

    Science.gov (United States)

    Ortolani, Daniela; Garcia, Márcia Carvalho; Melo-Thomas, Liana; Spadari-Bratfisch, Regina Celia

    2014-05-01

    The long-term effects of comfort food in an anxiogenic model of stress have yet to be analyzed. Here, we evaluated behavioral, endocrine and metabolic parameters in rats submitted or not to chronic unpredictable mild stress (CUMS), with access to commercial chow alone or to commercial chow and comfort food. Stress did not alter the preference for comfort food but decreased food intake. In the elevated plus-maze (EPM) test, stressed rats were less likely to enter/remain in the open arms, as well as being more likely to enter/remain in the closed arms, than were control rats, both conditions being more pronounced in the rats given access to comfort food. In the open field test, stress decreased the time spent in the centre, independent of diet; neither stress nor diet affected the number of crossing, rearing or grooming episodes. The stress-induced increase in serum corticosterone was attenuated in rats given access to comfort food. Serum concentration of triglycerides were unaffected by stress or diet, although access to comfort food increased total cholesterol and glucose. It is concluded that CUMS has an anorexigenic effect. Chronic stress and comfort food ingestion induced an anxiogenic profile although comfort food attenuated the endocrine stress response. The present data indicate that the combination of stress and access to comfort food, common aspects of modern life, may constitute a link among stress, feeding behavior and anxiety.

  18. N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish.

    Science.gov (United States)

    Mocelin, Ricieri; Herrmann, Ana P; Marcon, Matheus; Rambo, Cassiano L; Rohden, Aline; Bevilaqua, Fernanda; de Abreu, Murilo Sander; Zanatta, Leila; Elisabetsky, Elaine; Barcellos, Leonardo J G; Lara, Diogo R; Piato, Angelo L

    2015-12-01

    Despite the recent advances in understanding the pathophysiology of anxiety disorders, the pharmacological treatments currently available are limited in efficacy and induce serious side effects. A possible strategy to achieve clinical benefits is drug repurposing, i.e., discovery of novel applications for old drugs, bringing new treatment options to the market and to the patients who need them. N-acetylcysteine (NAC), a commonly used mucolytic and paracetamol antidote, has emerged as a promising molecule for the treatment of several neuropsychiatric disorders. The mechanism of action of this drug is complex, and involves modulation of antioxidant, inflammatory, neurotrophic and glutamate pathways. Here we evaluated the effects of NAC on behavioral parameters relevant to anxiety in zebrafish. NAC did not alter behavioral parameters in the novel tank test, prevented the anxiety-like behaviors induced by an acute stressor (net chasing), and increased the time zebrafish spent in the lit side in the light/dark test. These data may indicate that NAC presents an anti-stress effect, with the potential to prevent stress-induced psychiatric disorders such as anxiety and depression. The considerable homology between mammalian and zebrafish genomes invests the current data with translational validity for the further clinical trials needed to substantiate the use of NAC in anxiety disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Stress-Induced Visceral Pain: Toward Animal Models of Irritable-Bowel Syndrome and Associated Comorbidities

    Science.gov (United States)

    Moloney, Rachel D.; O’Mahony, Siobhain M.; Dinan, Timothy G.; Cryan, John F.

    2015-01-01

    Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent. PMID:25762939

  20. Pharmacologic stress-induced stunning: evaluation with quantitative gated SPECT

    International Nuclear Information System (INIS)

    Chun, K. A.; Cho, I. H.; Won, K. J.; Lee, H. W.

    2000-01-01

    The after-effect of pharmacologic stress (adenosine) on left ventricular (LV) function, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were evaluated after pharmacologic stress with Tl-201 and 99m Tc-MIBI SPECT using an automated program in 153 subjects. The subjects were grouped as follows: 1) Tl-201 group (n=35, male 18, female 17, mean age: 58 years); normal scan (n=24), ischemia (n=8) and infarction (n=3). 2) 99m Tc-MIBI group (n=118, male 60, female 58, mean age: 62 years); normal scan (n=73), ischemia (n=20) and infarction (n=25) based on the interpretation of perfusion images. All patients were in sinus rhythm during the study. 1)Tl-201 group; In patients with ischemia (the mean time interval between injection and acquisition is 12.3 min), post-stress LVEF was significantly depressed after adenosine infusion (51.2 ± 6.3% vs 59.8± 8.2%, p 99m Tc-MIBI group; In patients with ischemia (the mean time interval between injection and acquisition is 80 min), post-stress LVEF was significantly depressed after adenosine infusion (p<0.001) and ΔLVEF was 5.1%. Eight patients (40%) showed an increase in LVEF greater than 5% from poststress to rest. Poststress ESV (37.1±17.3 ml) was significantly higher than ESV (31.3±15.5 ml, p<0.001) at rest, but no significant difference in EDV. These results showed that pharmacologic stress induced stunning is well noted in the early quantitative gated SPECT in ischemic patients and also observed in the delayed gated SPECT, even though the rate of stunning is less than the early SPECT

  1. Dysregulation of Prefrontal Cortex-Mediated Slow-Evolving Limbic Dynamics Drives Stress-Induced Emotional Pathology.

    Science.gov (United States)

    Hultman, Rainbo; Mague, Stephen D; Li, Qiang; Katz, Brittany M; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D; Dzirasa, Kafui

    2016-07-20

    Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.

    Science.gov (United States)

    Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S

    2017-08-01

    Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli.

    Science.gov (United States)

    Oei, Nicole Y L; Both, Stephanie; van Heemst, Diana; van der Grond, Jeroen

    2014-01-01

    Stress is thought to alter motivational processes by increasing dopamine (DA) secretion in the brain's "reward system", and its key region, the nucleus accumbens (NAcc). However, stress studies using functional magnetic resonance imaging (fMRI), mainly found evidence for stress-induced decreases in NAcc responsiveness toward reward cues. Results from both animal and human PET studies indicate that the stress hormone cortisol may be crucial in the interaction between stress and dopaminergic actions. In the present study we therefore investigated whether cortisol mediated the effect of stress on DA-related responses to -subliminal-presentation of reward cues using the Trier Social Stress Test (TSST), which is known to reliably enhance cortisol levels. Young healthy males (n = 37) were randomly assigned to the TSST or control condition. After stress induction, brain activation was assessed using fMRI during a backward-masking paradigm in which potentially rewarding (sexual), emotionally negative and neutral stimuli were presented subliminally, masked by pictures of inanimate objects. A region of interest analysis showed that stress decreased activation in the NAcc in response to masked sexual cues (voxel-corrected, pcortisol levels were related to stronger NAcc activation, showing that cortisol acted as a suppressor variable in the negative relation between stress and NAcc activation. The present findings indicate that cortisol is crucially involved in the relation between stress and the responsiveness of the reward system. Although generally stress decreases activation in the NAcc in response to rewarding stimuli, high stress-induced cortisol levels suppress this relation, and are associated with stronger NAcc activation. Individuals with a high cortisol response to stress might on one hand be protected against reductions in reward sensitivity, which has been linked to anhedonia and depression, but they may ultimately be more vulnerable to increased reward

  4. Phenotypic heterogeneity in a bacteriophage population only appears as stress-induced mutagenesis.

    Science.gov (United States)

    Yosef, Ido; Edgar, Rotem; Qimron, Udi

    2016-11-01

    Stress-induced mutagenesis has been studied in cancer cells, yeast, bacteria, and archaea, but not in viruses. In a recent publication, we present a bacteriophage model showing an apparent stress-induced mutagenesis. We show that the stress does not drive the mutagenesis, but only selects the fittest mutants. The mechanism underlying the observed phenomenon is a phenotypic heterogeneity that resembles persistence of the viral population. The new findings, the background for the ongoing debate on stress-induced mutagenesis, and the phenotypic heterogeneity underlying a novel phage infection strategy are discussed in this short manuscript.

  5. Bupleurum falcatum prevents depression and anxiety-like behaviors in rats exposed to repeated restraint stress.

    Science.gov (United States)

    Lee, Bombi; Yun, Hye-Yeon; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2012-03-01

    Previous studies have demonstrated that repeated restraint stress in rodents produces increases in depression and anxietylike behaviors and alters the expression of corticotrophinreleasing factor (CRF) in the hypothalamus. The current study focused on the impact of Bupleurum falcatum (BF) extract administration on repeated restraint stress-induced behavioral responses using the forced swimming test (FST) and elevated plus maze (EPM) test. Immunohistochemical examinations of tyrosine hydroxylase (TH) expression in rat brain were also conducted. Male rats received daily doses of 20, 50, or 100 mg/kg (i.p.) BF extract for 15 days, 30 min prior to restraint stress (4 h/day). Hypothalamicpituitary- adrenal axis activation in response to repeated restraint stress was confirmed base on serum corticosterone levels and CRF expression in the hypothalamus. Animals that were pre-treated with BF extract displayed significantly reduced immobility in the FST and increased open-arm exploration in the EPM test in comparison with controls. BF also blocked the increase in TH expression in the locus coeruleus of treated rats that experienced restraint stress. Together, these results demonstrate that BF extract administration prior to restraint stress significantly reduces depression and anxiety-like behaviors, possibly through central adrenergic mechanisms, and they suggest a role for BF extract in the treatment of depression and anxiety disorders.

  6. Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocaine, d-amphetamine and 3,4- methylenedioxymethamphetamine ("Ecstasy").

    Science.gov (United States)

    Taylor, J R; Jentsch, J D

    2001-07-15

    Psychomotor stimulant drugs can produce long-lasting changes in neurochemistry and behavior after multiple doses. In particular, neuroadaptations within corticolimbic brain structures that mediate incentive learning and motivated behavior have been demonstrated after chronic exposure to cocaine, d-amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA). As stimulus-reward learning is likely relevant to addictive behavior (i.e., augmented conditioned reward and stimulus control of behavior), we have investigated whether prior repeated administration of psychomotor stimulant drugs (of abuse, including cocaine, d-amphetamine, or MDMA, would affect the acquisition of Pavlovian approach behavior. Water-deprived rats were tested for the acquisition of Pavlovian approach behavior after 5 days treatment with cocaine (15-20 mg/kg once or twice daily), d-amphetamine (2.5 mg/kg once or twice daily), or MDMA (2.5 mg/kg twice daily) followed by a 7-day, drug-free period. Prior repeated treatment with cocaine or d-amphetamine produced a significant enhancement of acquisition of Pavlovian approach behavior, indicating accelerated stimulus-reward learning, whereas MDMA administration produced increased inappropriate responding, indicating impulsivity. Abnormal drug-induced approach behavior was found to persist throughout the testing period. These studies demonstrate that psychomotor stimulant-induced sensitization can produce long-term alterations in stimulus-reward learning and impulse control that may contribute to the compulsive drug taking that typifies addiction.

  7. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  8. Repeated exposure to conditioned fear stress increases anxiety and delays sleep recovery following exposure to an acute traumatic stressor

    Directory of Open Access Journals (Sweden)

    Benjamin N Greenwood

    2014-10-01

    Full Text Available Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep-wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by humans, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to either no, mild (10, or severe (100 acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced REM and NREM sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep / wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep / wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders.

  9. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity.

    Science.gov (United States)

    Castro, Jorge E; Diessler, Shanaz; Varea, Emilio; Márquez, Cristina; Larsen, Marianne H; Cordero, M Isabel; Sandi, Carmen

    2012-08-01

    Emerging evidence indicates that certain behavioral traits, such as anxiety, are associated with the development of depression-like behaviors after exposure to chronic stress. However, single traits do not explain the wide variability in vulnerability to stress observed in outbred populations. We hypothesized that a combination of behavioral traits might provide a better characterization of an individual's vulnerability to prolonged stress. Here, we sought to determine whether the characterization of relevant behavioral traits in rats could aid in identifying individuals with different vulnerabilities to developing stress-induced depression-like behavioral alterations. We also investigated whether behavioral traits would be related to the development of alterations in the hypothalamic-pituitary-adrenal axis and in brain activity - as measured through phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2)--in response to an acute stressor following either sub-chronic (2 weeks) or chronic (4 weeks) unpredictable stress (CUS). Sprague-Dawley rats were characterized using a battery of behavioral tasks, and three principal traits were identified: anxiety, exploration and activity. When combined, the first two traits were found to explain the variability in the stress responses. Our findings confirm the increased risk of animals with high anxiety developing certain depression-like behaviors (e.g., increased floating time in the forced swim test) when progressively exposed to stress. In contrast, the behavioral profile based on combined low anxiety and low exploration was resistant to alterations related to social behaviors, while the high anxiety and low exploration profile displayed a particularly vulnerable pattern of physiological and neurobiological responses after sub-chronic stress exposure. Our findings indicate important differences in animals' vulnerability and/or resilience to the effects of repeated stress, particularly during initial or

  10. Repeating Marx

    DEFF Research Database (Denmark)

    Fuchs, Christian; Monticelli, Lara

    2018-01-01

    This introduction sets out the context of the special issue “Karl Marx @ 200: Debating Capitalism & Perspectives for the Future of Radical Theory”, which was published on the occasion of Marx’s bicentenary on 5 May 2018. First, we give a brief overview of contemporary capitalism’s development...... and its crises. Second, we argue that it is important to repeat Marx today. Third, we reflect on lessons learned from 200 years of struggles for alternatives to capitalism. Fourth, we give an overview of the contributions in this special issue. Taken together, the contributions in this special issue show...... that Marx’s theory and politics remain key inspirations for understanding exploitation and domination in 21st-century society and for struggles that aim to overcome these phenomena and establishing a just and fair society. We need to repeat Marx today....

  11. Deployment Repeatability

    Science.gov (United States)

    2016-08-31

    large cohort of trials to spot unusual cases. However, deployment repeatability is inherently a nonlinear phenomenon, which makes modeling difficult...and GEMS tip position were both tracked during ground testing by a laser target tracking system. Earlier SAILMAST testing in 2005 [8] used...recalls the strategy used by SRTM, where a constellation of lights was installed at the tip of the boom and a modified star tracker was used to track tip

  12. Stress-inducible expression of an F-box gene TaFBA1 from wheat enhanced the drought tolerance in transgenic tobacco plants without impacting growth and development

    Directory of Open Access Journals (Sweden)

    Xiangzhu Kong

    2016-09-01

    Full Text Available E3 ligase plays an important role in the response to many environment stresses in plants. In our previous study, constitutive overexpression of an F-box protein gene TaFBA1 driven by 35S promoter improved the drought tolerance in transgenic tobacco plants, but the growth and development in transgenic plants was altered in normal conditions. In this study, we used stress-inducible promoter RD29A instead of 35S promoter, as a results, the stress-inducible transgenic tobacco plants exhibit a similar phenotype with WT plants. However, the drought tolerance of the transgenic plants with stress-inducible expressed TaFBA1 was enhanced. The improved drought tolerance of transgenic plants was indicated by their higher seed germination rate and survival rate, greater biomass and photosynthesis than those of WT under water stress, which may be related to their greater water retention capability and osmotic adjustment. Moreover, the transgenic plants accumulated less reactive oxygen species (ROS, kept lower MDA content and membrane leakage under water stress, which may be related to their higher levels of antioxidant enzyme activity and upregulated gene expression of some antioxidant enzymes. These results suggest that stress induced expression of TaFBA1 confers drought tolerance via the improved water retention and antioxidative compete abilibty. Meanwhile, this stress-inducible expression strategy by RD29A promoter can minimize the unexpectable effects by 35S constitutive promoter on phenotypes of the transgenic plants.

  13. Stress-Inducible Expression of an F-box Gene TaFBA1 from Wheat Enhanced the Drought Tolerance in Transgenic Tobacco Plants without Impacting Growth and Development.

    Science.gov (United States)

    Kong, Xiangzhu; Zhou, Shumei; Yin, Suhong; Zhao, Zhongxian; Han, Yangyang; Wang, Wei

    2016-01-01

    E3 ligase plays an important role in the response to many environment stresses in plants. In our previous study, constitutive overexpression of an F-box protein gene TaFBA1 driven by 35S promoter improved the drought tolerance in transgenic tobacco plants, but the growth and development in transgenic plants was altered in normal conditions. In this study, we used stress-inducible promoter RD29A instead of 35S promoter, as a results, the stress-inducible transgenic tobacco plants exhibit a similar phenotype with wild type (WT) plants. However, the drought tolerance of the transgenic plants with stress-inducible expressed TaFBA1 was enhanced. The improved drought tolerance of transgenic plants was indicated by their higher seed germination rate and survival rate, greater biomass and photosynthesis than those of WT under water stress, which may be related to their greater water retention capability and osmotic adjustment. Moreover, the transgenic plants accumulated less reactive oxygen species, kept lower MDA content and membrane leakage under water stress, which may be related to their higher levels of antioxidant enzyme activity and upregulated gene expression of some antioxidant enzymes. These results suggest that stress induced expression of TaFBA1 confers drought tolerance via the improved water retention and antioxidative compete ability. Meanwhile, this stress-inducible expression strategy by RD29A promoter can minimize the unexpectable effects by 35S constitutive promoter on phenotypes of the transgenic plants.

  14. Chronic stress-induced effects of corticosterone on brain: direct and indirect

    NARCIS (Netherlands)

    Dallman, M. F.; Akana, S. F.; Strack, A. M.; Scribner, K. S.; Pecoraro, N.; La Fleur, S. E.; Houshyar, H.; Gomez, F.

    2004-01-01

    Acutely, glucocorticoids act to inhibit stress-induced corticotrophin-releasing factor (CRF) and adrenocorticotrophic hormone (ACTH) secretion through their actions in brain and anterior pituitary (canonical feedback). With chronic stress, glucocorticoid feedback inhibition of ACTH secretion changes

  15. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ayşin Akıncı; Mukaddes Eşrefoğlu; Elif Taşlıdere; Burhan Ateş

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino...

  16. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    OpenAIRE

    Ak?nc?, Ay?in; E?refo?lu, Mukaddes; Ta?l?dere, Elif; Ate?, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were...

  17. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Tae Woon Kim

    2015-03-01

    Full Text Available Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT, acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH, immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  18. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats.

    Science.gov (United States)

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-03-01

    Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  19. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    Science.gov (United States)

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-06-01

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  20. Stress-Induced Proton Disorder in Hydrous Ringwoodite

    Science.gov (United States)

    Koch-Müller, M.; Rhede, D.; Mrosko, M.; Speziale, S.; Schade, U.

    2008-12-01

    observed up to 30 GPa without any discontinuity and their pressure behaviour (dν/dP) can well be described by linear fits. Molecular vibrations are very sensitive to non-hydrostatic conditions and we interpret the disappearance of the OH-bands as a stress-induced proton disordering in hydrous ringwoodite due to the use of hard pressure transmiting media like CsI or argon without thermal annealing. Thus, our study cannot confirm the phase transition observed by Camorro Perez et al. (2006) in ringwoodite. But as they used Neon as pressure transmitting medium, which is known to become non-hydrostatic at pressure above 16 GPa (Bell and Mao, 1981) we argue that their observation of a sudden disappearance of the OH band may also be related to non-hydrostatic conditions. References Bell P.M. and Mao H.-K. (1981) Carnegie Inst. Wash Yrbk 80: 404-406. Camorro Perez E.M., Daniel I., Chervin J.-C., Dumas P., Bass J.D. and Inoue T. (2006) Phys. Chem. Minerals, 33, 502 - 510. Kudoh Y., Kuribayashi T., Mizohata H., Ohtani E., (2000) Phys. Chem. Mineral. 27, 474-479. Wittlinger J., Fischer R., Wener S., ScheiderJ., Schulz J. (1997) Acta Cryst B53, 745 - 749.

  1. Early repeated maternal separation induces alterations

    Indian Academy of Sciences (India)

    These findings suggest that the long-term effects of MS on the expression levels of hippocampal reelin mRNA and protein depends on the age at which the stressed rats' brains were collected; reelin had important implications for the maternal-neonate interaction needed for normal brain development. In conclusion ...

  2. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles

    Science.gov (United States)

    Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.

    2008-02-01

    The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.

  4. Gestational stress induces persistent depressive-like behavior and structural modifications within the postpartum nucleus accumbens

    Science.gov (United States)

    Haim, Achikam; Sherer, Morgan; Leuner, Benedetta

    2015-01-01

    Postpartum depression (PPD) is a common complication following childbirth experienced by one in every five new mothers. Pregnancy stress enhances vulnerability to PPD and has also been shown to increase depressive-like behavior in postpartum rats. Thus, gestational stress may be an important translational risk factor that can be used to investigate the neurobiological mechanisms underlying PPD. Here we examined the effects of gestational stress on depressive-like behavior during the early/mid and late postpartum periods and evaluated whether this was accompanied by altered structural plasticity in the nucleus accumbens (NAc), a brain region that has been linked to PPD. We show that early/mid (PD8) postpartum female rats exhibited more depressive-like behavior in the forced swim test as compared to late postpartum females (PD22). However, two weeks of restraint stress during pregnancy increased depressive-like behavior regardless of postpartum timepoint. In addition, dendritic length, branching, and spine density on medium spiny neurons in the NAc shell were diminished in postpartum rats that experienced gestational stress although stress-induced reductions in spine density were evident only in early/mid postpartum females. In the NAc core, structural plasticity was not affected by gestational stress but late postpartum females exhibited lower spine density and reduced dendritic length. Overall, these data not only demonstrate structural changes in the NAc across the postpartum period, they also show that postpartum depressive-like behavior following exposure to gestational stress is associated with compromised structural plasticity in the NAc and thus may provide insight into the neural changes that could contribute to PPD. PMID:25359225

  5. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  6. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  7. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  8. A Deletion Variant of the α2b-Adrenoceptor Modulates the Stress-Induced Shift from "Cognitive" to "Habit" Memory.

    Science.gov (United States)

    Wirz, Lisa; Wacker, Jan; Felten, Andrea; Reuter, Martin; Schwabe, Lars

    2017-02-22

    Stress induces a shift from hippocampus-based "cognitive" toward dorsal striatum-based "habitual" learning and memory. This shift is thought to have important implications for stress-related psychopathologies, including post-traumatic stress disorder (PTSD). However, there is large individual variability in the stress-induced bias toward habit memory, and the factors underlying this variability are completely unknown. Here we hypothesized that a functional deletion variant of the gene encoding the α2b-adrenoceptor ( ADRA2B ), which has been linked to emotional memory processes and increased PTSD risk, modulates the stress-induced shift from cognitive toward habit memory. In two independent experimental studies, healthy humans were genotyped for the ADRA2B deletion variant. After a stress or control manipulation, participants completed a dual-solution learning task while electroencephalographic (Study I) or fMRI measurements (Study II) were taken. Carriers compared with noncarriers of the ADRA2B deletion variant exhibited a significantly reduced bias toward habit memory after stress. fMRI results indicated that, whereas noncarriers of the ADRA2B deletion variant showed increased functional connectivity between amygdala and putamen after stress, this increase in connectivity was absent in carriers of the deletion variant, who instead showed overall enhanced connectivity between amygdala and entorhinal cortex. Our results indicate that a common genetic variation of the noradrenergic system modulates the impact of stress on the balance between cognitive and habitual memory systems, most likely via altered amygdala orchestration of these systems. SIGNIFICANCE STATEMENT Stressful events have a powerful effect on human learning and memory. Specifically, accumulating evidence suggests that stress favors more rigid dorsal striatum-dependent habit memory, at the expense of flexible hippocampus-dependent cognitive memory. Although this shift may have important implications

  9. Stress-induced rearrangement of Fusarium retrotransposon sequences.

    Science.gov (United States)

    Anaya, N; Roncero, M I

    1996-11-27

    Rearrangement of fusarium oxysporum retrotransposon skippy was induced by growth in the presence of potassium chlorate. Three fungal strains, one sensitive to chlorate (Co60) and two resistant to chlorate and deficient for nitrate reductase (Co65 and Co94), were studied by Southern analysis of their genomic DNA. Polymorphism was detected in their hybridization banding pattern, relative to the wild type grown in the absence of chlorate, using various enzymes with or without restriction sites within the retrotransposon. Results were consistent with the assumption that three different events had occurred in strain Co60: genomic amplification of skippy yielding tandem arrays of the element, generation of new skippy sequences, and deletion of skippy sequences. Amplification of Co60 genomic DNA using the polymerase chain reaction and divergent primers derived from the retrotransposon generated a new band, corresponding to one long terminal repeat plus flanking sequences, that was not present in the wild-type strain. Molecular analysis of nitrate reductase-deficient mutants showed that generation and deletion of skippy sequences, but not genomic amplification in tandem repeats, had occurred in their genomes.

  10. Acute stress-induced sensitization of the pituitary-adrenal response to heterotypic stressors: independence of glucocorticoid release and activation of CRH1 receptors.

    Science.gov (United States)

    Belda, Xavier; Daviu, Núria; Nadal, Roser; Armario, Antonio

    2012-09-01

    A single exposure to some severe stressors causes sensitization of the hypothalamic-pituitary-adrenal (HPA) response to novel stressors. However, the putative factors involved in stress-induced sensitization are not known. In the present work we studied in adult male rats the possible role of glucocorticoids and CRH type 1 receptor (CRH-R1), using an inhibitor of glucocorticoid synthesis (metyrapone, MET), the glucocorticoid receptor (GR) antagonist RU38486 (mifepristone) and the non-peptide CRH-R1 antagonist R121919. In a first experiment we demonstrated with different doses of MET (40-150 mg/kg) that the highest dose acted as a pharmacological stressor greatly increasing ACTH release and altering the normal circadian pattern of HPA hormones, but no dose affected ACTH responsiveness to a novel environment as assessed 3 days after drug administration. In a second experiment, we found that MET, at a dose (75 mg/kg) that blocked the corticosterone response to immobilization (IMO), did not alter IMO-induced ACTH sensitization. Finally, neither the GR nor the CRH-R1 antagonists blocked IMO-induced ACTH sensitization on the day after IMO. Thus, a high dose of MET, in contrast to IMO, was unable to sensitize the HPA response to a novel environment despite the huge activation of the HPA axis caused by the drug. Neither a moderate dose of MET that markedly reduced corticosterone response to IMO, nor the blockade of GR or CRH-R1 receptors was able to alter stress-induced HPA sensitization. Therefore, stress-induced sensitization is not the mere consequence of a marked HPA activation and does not involve activation of glucocorticoid or CRH-R1 receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Stress Induced Hyperglycemia and the Subsequent Risk of Type 2 Diabetes in Survivors of Critical Illness

    Science.gov (United States)

    Plummer, Mark P.; Finnis, Mark E.; Phillips, Liza K.; Kar, Palash; Bihari, Shailesh; Biradar, Vishwanath; Moodie, Stewart; Horowitz, Michael; Shaw, Jonathan E.; Deane, Adam M.

    2016-01-01

    Objective Stress induced hyperglycemia occurs in critically ill patients who have normal glucose tolerance following resolution of their acute illness. The objective was to evaluate the association between stress induced hyperglycemia and incident diabetes in survivors of critical illness. Design Retrospective cohort study. Setting All adult patients surviving admission to a public hospital intensive care unit (ICU) in South Australia between 2004 and 2011. Patients Stress induced hyperglycemia was defined as a blood glucose ≥ 11.1 mmol/L (200 mg/dL) within 24 hours of ICU admission. Prevalent diabetes was identified through ICD-10 coding or prior registration with the Australian National Diabetes Service Scheme (NDSS). Incident diabetes was identified as NDSS registration beyond 30 days after hospital discharge until July 2015. The predicted risk of developing diabetes was described as sub-hazard ratios using competing risk regression. Survival was assessed using Cox proportional hazards regression. Main Results Stress induced hyperglycemia was identified in 2,883 (17%) of 17,074 patients without diabetes. The incidence of type 2 diabetes following critical illness was 4.8% (821 of 17,074). The risk of diabetes in patients with stress induced hyperglycemia was approximately double that of those without (HR 1.91 (95% CI 1.62, 2.26), phyperglycemia identifies patients at subsequent risk of incident diabetes. PMID:27824898

  12. [Prediabetes as a riskmarker for stress-induced hyperglycemia in critically ill adults].

    Science.gov (United States)

    García-Gallegos, Diego Jesús; Luis-López, Eliseo

    2017-01-01

    It is not known if patients with prediabetes, a subgroup of non-diabetic patients that usually present hyperinsulinemia, have higher risk to present stress-induced hyperglycemia. The objective was to determine if prediabetes is a risk marker to present stress-induced hyperglycemia. Analytic, observational, prospective cohort study of non-diabetic critically ill patients of a third level hospital. We determined plasmatic glucose and glycated hemoglobin (HbA1c) at admission to diagnose stress-induced hyperglycemia (glucose ≥ 140 mg/dL) and prediabetes (HbA1c between 5.7 and 6.4%), respectively. We examined the proportion of non-prediabetic and prediabetic patients that developed stress hyperglycemia with contingence tables and Fisher's exact test for nominal scales. Of 73 patients studied, we found a proportion of stress-induced hyperglycemia in 6.6% in those without prediabetes and 61.1% in those with prediabetes. The Fisher's exact test value was 22.46 (p Prediabetes is a risk marker for stress-induced hyperglycemia in critically ill adults.

  13. Selective attenuation of norepinephrine release and stress-induced heart rate increase by partial adenosine A1 agonism.

    Directory of Open Access Journals (Sweden)

    Lorenz Bott-Flügel

    Full Text Available The release of the neurotransmitter norepinephrine (NE is modulated by presynaptic adenosine receptors. In the present study we investigated the effect of a partial activation of this feedback mechanism. We hypothesized that partial agonism would have differential effects on NE release in isolated hearts as well as on heart rate in vivo depending on the genetic background and baseline sympathetic activity. In isolated perfused hearts of Wistar and Spontaneously Hypertensive Rats (SHR, NE release was induced by electrical stimulation under control conditions (S1, and with capadenoson 6 · 10(-8 M (30 µg/l, 6 · 10(-7 M (300 µg/l or 2-chloro-N(6-cyclopentyladenosine (CCPA 10(-6 M (S2. Under control conditions (S1, NE release was significantly higher in SHR hearts compared to Wistar (766+/-87 pmol/g vs. 173+/-18 pmol/g, p<0.01. Capadenoson led to a concentration-dependent decrease of the stimulation-induced NE release in SHR (S2/S1  =  0.90 ± 0.08 with capadenoson 6 · 10(-8 M, 0.54 ± 0.02 with 6 · 10(-7 M, but not in Wistar hearts (S2/S1  =  1.05 ± 0.12 with 6 · 10(-8 M, 1.03 ± 0.09 with 6 · 10(-7 M. CCPA reduced NE release to a similar degree in hearts from both strains. In vivo capadenoson did not alter resting heart rate in Wistar rats or SHR. Restraint stress induced a significantly greater increase of heart rate in SHR than in Wistar rats. Capadenoson blunted this stress-induced tachycardia by 45% in SHR, but not in Wistar rats. Using a [(35S]GTPγS assay we demonstrated that capadenoson is a partial agonist compared to the full agonist CCPA (74+/-2% A(1-receptor stimulation. These results suggest that partial adenosine A(1-agonism dampens stress-induced tachycardia selectively in rats susceptible to strong increases in sympathetic activity, most likely due to a presynaptic attenuation of NE release.

  14. Possible Involvement of µ Opioid Receptor in the Antidepressant-Like Effect of Shuyu Formula in Restraint Stress-Induced Depression-Like Rats

    Directory of Open Access Journals (Sweden)

    Fu-rong Wang

    2015-01-01

    Full Text Available Recently μ opioid receptor (MOR has been shown to be closely associated with depression. Here we investigated the action of Shuyu, a Chinese herbal prescription, on repeated restraint stress induced depression-like rats, with specific attention to the role of MOR and the related signal cascade. Our results showed that repeated restraint stress caused significant depressive-like behaviors, as evidenced by reduced body weight gain, prolonged duration of immobility in forced swimming test, and decreased number of square-crossings and rearings in open field test. The stress-induced depression-like behaviors were relieved by Shuyu, which was accompanied by decreased expression of MOR in hippocampus. Furthermore, Shuyu upregulated BDNF protein expression, restored the activity of CREB, and stimulated MEK and ERK phosphorylation in hippocampus of stressed rats. More importantly, MOR is involved in the effects of Shuyu on these depression-related signals, as they can be strengthened by MOR antagonist CTAP. Collectively, these data indicated that the antidepressant-like properties of Shuyu are associated with MOR and the corresponding CREB, BDNF, MEK, and ERK signal pathway. Our study supports clinical use of Shuyu as an effective treatment of depression and also suggests that MOR might be a target for treatment of depression and developing novel antidepressants.

  15. Tianeptine, olanzapine and fluoxetine show similar restoring effects on stress induced molecular changes in mice brain: An FT-IR study

    Science.gov (United States)

    Türker-Kaya, Sevgi; Mutlu, Oğuz; Çelikyurt, İpek K.; Akar, Furuzan; Ulak, Güner

    2016-05-01

    Chronic stress which can cause a variety of disorders and illness ranging from metabolic and cardiovascular to mental leads to alterations in content, structure and dynamics of biomolecules in brain. The determination of stress-induced changes along with the effects of antidepressant treatment on these parameters might bring about more effective therapeutic strategies. In the present study, we investigated unpredictable chronic mild stress (UCMS)-induced changes in biomolecules in mouse brain and the restoring effects of tianeptine (TIA), olanzapine (OLZ) and fluoxetine (FLX) on these variations, by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that chronic stress causes different membrane packing and an increase in lipid peroxidation, membrane fluidity. A significant increment for lipid/protein, Cdbnd O/lipid, CH3/lipid, CH2/lipid, PO-2/lipid, COO-/lipid and RNA/protein ratios but a significant decrease for lipid/protein ratios were also obtained. Additionally, altered protein secondary structure components were estimated, such as increment in random coils and beta structures. The administration of TIA, OLZ and FLX drugs restored these stress-induced variations except for alterations in protein structure and RNA/protein ratio. This may suggest that these drugs have similar restoring effects on the consequences of stress activity in brain, in spite of the differences in their action mechanisms. All findings might have importance in understanding molecular mechanisms underlying chronic stress and contribute to studies aimed for drug development.

  16. Estrogen Receptor β Agonist Attenuates Endoplasmic Reticulum Stress-Induced Changes in Social Behavior and Brain Connectivity in Mice.

    Science.gov (United States)

    Crider, Amanda; Nelson, Tyler; Davis, Talisha; Fagan, Kiley; Vaibhav, Kumar; Luo, Matthew; Kamalasanan, Sunay; Terry, Alvin V; Pillai, Anilkumar

    2018-02-12

    Impaired social interaction is a key feature of several major psychiatric disorders including depression, autism, and schizophrenia. While, anatomically, the prefrontal cortex (PFC) is known as a key regulator of social behavior, little is known about the cellular mechanisms that underlie impairments of social interaction. One etiological mechanism implicated in the pathophysiology of the aforementioned psychiatric disorders is cellular stress and consequent adaptive responses in the endoplasmic reticulum (ER) that can result from a variety of environmental and physical factors. The ER is an organelle that serves essential roles in protein modification, folding, and maturation of proteins; however, the specific role of ER stress in altered social behavior is unknown. In this study, treatment with tunicamycin, an ER stress inducer, enhanced the phosphorylation level of inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) and increased X-box-binding protein 1 (XBP1) mRNA splicing activity in the mouse PFC, whereas inhibition of IRE1/XBP1 pathway in PFC by a viral particle approach attenuated social behavioral deficits caused by tunicamycin treatment. Reduced estrogen receptor beta (ERβ) protein levels were found in the PFC of male mice following tunicamycin treatment. Pretreatment with an ERβ specific agonist, ERB-041 significantly attenuated tunicamycin-induced deficits in social behavior, and activation of IRE1/XBP1 pathway in mouse PFC. Moreover, ERB-041 inhibited tunicamycin-induced increases in functional connectivity between PFC and hippocampus in male mice. Together, these results show that ERβ agonist attenuates ER stress-induced deficits in social behavior through the IRE-1/XBP1 pathway.

  17. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies.

    Science.gov (United States)

    Nowacka, Marta; Obuchowicz, Ewa

    2013-01-01

    Stress is known to play an important role in etiology, development and progression of affective diseases. Especially, chronic stress, by initiating changes in the hypothalamic-pituitary-adrenal axis (HPA), neurotransmission and the immune system, acts as a trigger for affective diseases. It has been reported that the rise in the concentration of pro-inflammatory cytokines and persistent up-regulation of glucocorticoid expression in the brain and periphery increases the excitotoxic effect on CA3 pyramidal neurons in the hippocampus resulting in dendritic atrophy, apoptosis of neurons and possibly inhibition of neurogenesis in adult brain. Stress was observed to disrupt neuroplasticity in the brain, and growing evidence demonstrates its role in the pathomechanism of affective disorders. Experimental studies indicate that a well-known brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) which have recently focused increasing attention of neuroscientists, promote cell survival, positively modulate neuroplasticity and hippocampal neurogenesis. In this paper, we review the alterations in BDNF and VEGF pathways induced by chronic and acute stress, and their relationships with HPA axis activity. Moreover, behavioral effects evoked in rodents by both above-mentioned factors and the effects consequent to their deficit are presented. Biochemical as well as behavioral findings suggest that BDNF and VEGF play an important role as components of cascade of changes in the pathomechanism of stress-induced affective diseases. Further studies on the mechanisms regulating their expression in stress conditions are needed to better understand the significance of trophic hypothesis of stress-induced affective diseases.

  18. Structure-dependent behavior of stress-induced voiding in Cu interconnects

    International Nuclear Information System (INIS)

    Wu Zhenyu; Yang Yintang; Chai Changchun; Li Yuejin; Wang Jiayou; Li Bin; Liu Jing

    2010-01-01

    Stress modeling and cross-section failure analysis by focused-ion-beam have been used to investigate stress-induced voiding phenomena in Cu interconnects. The voiding mechanism and the effect of the interconnect structure on the stress migration have been studied. The results show that the most concentrated tensile stress appears and voids form at corners of vias on top surfaces of Cu M1 lines. A simple model of stress induced voiding in which vacancies arise due to the increase of the chemical potential under tensile stress and diffuse under the force of stress gradient along the main diffusing path indicates that stress gradient rather than stress itself determines the voiding rate. Cu interconnects with larger vias show less resistance to stress-induced voiding due to larger stress gradient at corners of vias.

  19. Cardioprotective effect of amlodipine in oxidative stress induced by experimental myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Sudhira Begum

    2007-12-01

    Full Text Available The present study investigated whether the administration of amlodipine ameliorates oxidative stress induced by experimental myocardial infarction in rats. Adrenaline was administered and myocardial damage was evaluated biochemically [significantly increased serum aspertate aminotransferase (AST, lactate dehydrogenase (LDH and malondialdehyde (MDA levels of myocardial tissue] and histologically (morphological changes of myocardium. Amlodipine was administered as pretreatment for 14 days in adrenaline treated rats. Statistically significant amelioration in all the biochemical parameters supported by significantly improved myocardial morphology was observed in amlodipine pretreatment. It was concluded that amlodipine afforded cardioprotection by reducing oxidative stress induced in experimental myocardial infarction of catecholamine assault.

  20. Model for Stress-induced Protein Degradation in Lemna minor1

    Science.gov (United States)

    Cooke, Robert J.; Roberts, Keith; Davies, David D.

    1980-01-01

    Transfer of Lemna minor fronds to adverse or stress conditions produces a large increase in the rate of protein degradation. Cycloheximide partially inhibits stress-induced protein degradation and also partially inhibits the protein degradation which occurs in the absence of stress. The increased protein degradation does not appear to be due to an increase in activity of soluble proteolytic enzymes. Biochemical evidence indicates that stress, perhaps acting via hormones, affects the permeability of certain membranes, particularly the tonoplast. A general model for stress-induced protein degradation is presented in which changes in membrane properties allow vacuolar proteolytic enzymes increased access to cytoplasmic proteins. PMID:16661588

  1. Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus.

    Science.gov (United States)

    Patel, D; Anilkumar, S; Chattarji, S; Buwalda, B

    2018-03-23

    Previous studies have demonstrated that repeated immobilization and restraint stress cause contrasting patterns of dendritic reorganization as well as alterations in spine density in amygdalar and hippocampal neurons. Whether social and ethologically relevant stressors can induce similar patterns of morphological plasticity remains largely unexplored. Hence, we assessed the effects of repeated social defeat stress on neuronal morphology in basolateral amygdala (BLA), hippocampal CA1 and infralimbic medial prefrontal cortex (mPFC). Male Wistar rats experienced social defeat stress on 5 consecutive days during confrontation in the resident-intruder paradigm with larger and aggressive Wild-type Groningen rats. This resulted in clear social avoidance behavior one day after the last confrontation. To assess the morphological consequences of repeated social defeat, 2 weeks after the last defeat, animals were sacrificed and brains were stained using a Golgi-Cox procedure. Morphometric analyses revealed that, compared to controls, defeated Wistar rats showed apical dendritic decrease in spine density on CA1 but not BLA. Sholl analysis demonstrated a significant dendritic atrophy of CA1 basal dendrites in defeated animals. In contrast, basal dendrites of BLA pyramidal neurons exhibited enhanced dendritic arborization in defeated animals. Social stress failed to induce lasting structural changes in mPFC neurons. Our findings demonstrate for the first time that social defeat stress elicits divergent patterns of structural plasticity in the hippocampus versus amygdala, similar to what has previously been reported with repeated physical stressors. Therefore, brain region specific variations may be a universal feature of stress-induced plasticity that is shared by both physical and social stressors. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. [Biological consequences of oxidative stress induced by pesticides].

    Science.gov (United States)

    Grosicka-Maciąg, Emilia

    2011-06-17

    Pesticides are used to protect plants and numerous plant products. They are also utilized in several industrial branches. These compounds are highly toxic to living organisms. In spite of close supervision in the use of pesticides there is a serious risk that these agents are able to spread into the environment and contaminate water, soil, food, and feedstuffs. Recently, more and more studies have been focused on understanding the toxic mechanisms of pesticide actions. The data indicate that the toxic action of pesticides may include the induction of oxidative stress and accumulation of free radicals in the cell. Long-lasting or acute oxidative stress disturbs cell metabolism and is able to produce permanent changes in the structure of proteins, lipids, and DNA. The proteins that are oxidized may lose or enhance their activity. Moreover, the proteins oxidized are able to form aggregates that inhibit the systems responsible for protein degradation and lead to alterations of proteins in the cell. Once oxidized, lipids have the capacity to damage and depolarize cytoplasmic membranes. Free oxygen radicals are harmful to DNA including damage to single nitric bases, DNA strand breaks and adduct production. Many studies indicate that oxidative stress may accelerate development of numerous diseases including cancer and neurodegenerative ones such as Alzheimer’s and Parkinson’s disease and may also be responsible for infertility.

  3. Metal stress induces programmed cell death in aquatic fungi

    International Nuclear Information System (INIS)

    Azevedo, Maria-Manuel; Almeida, Bruno; Ludovico, Paula; Cassio, Fernanda

    2009-01-01

    Aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover in both clean and metal-polluted streams. We examined the ability of Cu or Zn to induce programmed cell death (PCD) in three aquatic hyphomycete species through the evaluation of typical apoptotic markers, namely reactive oxygen species (ROS) accumulation, caspase-like activity, nuclear morphological alterations, and the occurrence of DNA strand breaks assessed by TUNEL assay. The exposure to both metals induced apoptotic events in all tested aquatic fungi. The most tolerant fungi either to Zn (Varicosporium elodeae) or Cu (Heliscussubmersus) exhibited higher levels of PCD markers, suggesting that PCD processes might be linked to fungal resistance/tolerance to metal stress. Moreover, different patterns of apoptotic markers were found, namely a PCD process independent of ROS accumulation in V. elodeae exposed to Cu, or independent of caspase-like activity in Flagellospora curta exposed to Zn, or even without the occurrence of DNA strand breaks in F. curta exposed to Cu. This suggests that a multiplicity of PCD pathways might be operating in aquatic hyphomycetes. The occurrence of a tightly regulated cell death pathway, such as PCD, in aquatic hyphomycetes under metal stress might be a part of the mechanisms underlying fungal acclimation in metal-polluted streams, because it would allow the rapid removal of unwanted or damaged cells sparing nutrients and space for the fittest ones.

  4. Reversal of Stress-Induced Social Interaction Deficits by Buprenorphine.

    Science.gov (United States)

    Browne, Caroline A; Falcon, Edgardo; Robinson, Shivon A; Berton, Olivier; Lucki, Irwin

    2018-02-01

    Patients with post-traumatic stress disorder frequently report persistent problems with social interactions, emerging after a traumatic experience. Chronic social defeat stress is a widely used rodent model of stress that produces robust and sustained social avoidance behavior. The avoidance of other rodents can be reversed by 28 days of treatment with selective serotonin reuptake inhibitors, the only pharmaceutical class approved by the U.S. Food and Drug Administration for treating post-traumatic stress disorder. In this study, the sensitivity of social interaction deficits evoked by 10 days of chronic social defeat stress to prospective treatments for post-traumatic stress disorder was examined. The effects of acute and repeated treatment with a low dose of buprenorphine (0.25 mg/kg/d) on social interaction deficits in male C57BL/6 mice by chronic social defeat stress were studied. Another cohort of mice was used to determine the effects of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg/d), the NMDA antagonist ketamine (10 mg/kg/d), and the selective kappa opioid receptor antagonist CERC-501 (1 mg/kg/d). Changes in mRNA expression of Oprm1 and Oprk1 were assessed in a separate cohort. Buprenorphine significantly reversed social interaction deficits produced by chronic social defeat stress following 7 days of administration, but not after acute injection. Treatment with fluoxetine for 7 days, but not 24 hours, also reinstated social interaction behavior in mice that were susceptible to chronic social defeat. In contrast, CERC-501 and ketamine failed to reverse social avoidance. Gene expression analysis found: (1) Oprm1 mRNA expression was reduced in the hippocampus and increased in the frontal cortex of susceptible mice and (2) Oprk1 mRNA expression was reduced in the amygdala and increased in the frontal cortex of susceptible mice compared to non-stressed controls and stress-resilient mice. Short-term treatment with buprenorphine and fluoxetine

  5. Role of bed nucleus of the stria terminalis corticotrophin-releasing factor receptors in frustration stress-induced binge-like palatable food consumption in female rats with a history of food restriction.

    Science.gov (United States)

    Micioni Di Bonaventura, Maria Vittoria; Ciccocioppo, Roberto; Romano, Adele; Bossert, Jennifer M; Rice, Kenner C; Ubaldi, Massimo; St Laurent, Robyn; Gaetani, Silvana; Massi, Maurizio; Shaham, Yavin; Cifani, Carlo

    2014-08-20

    We developed recently a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable food consumption after 15 min exposure to the sight of the palatable food. This "frustration stress" manipulation also activates the hypothalamic-pituitary-adrenal stress axis. Here, we determined the role of the stress neurohormone corticotropin-releasing factor (CRF) in stress-induced binge eating in our model. We also assessed the role of CRF receptors in the bed nucleus of the stria terminalis (BNST), a brain region implicated in stress responses and stress-induced drug seeking, in stress-induced binge eating. We used four groups that were first exposed or not exposed to repeated intermittent cycles of regular chow food restriction during which they were also given intermittent access to high-caloric palatable food. On the test day, we either exposed or did not expose the rats to the sight of the palatable food for 15 min (frustration stress) before assessing food consumption for 2 h. We found that systemic injections of the CRF1 receptor antagonist R121919 (2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7 dipropylamino pyrazolo[1,5-a]pyrimidine) (10-20 mg/kg) and BNST (25-50 ng/side) or ventricular (1000 ng) injections of the nonselective CRF receptor antagonist D-Phe-CRF(12-41) decreased frustration stress-induced binge eating in rats with a history of food restriction. Frustration stress also increased Fos (a neuronal activity marker) expression in ventral and dorsal BNST. Results demonstrate a critical role of CRF receptors in BNST in stress-induced binge eating in our rat model. CRF1 receptor antagonists may represent a novel pharmacological treatment for bingeing-related eating disorders. Copyright © 2014 the authors 0270-6474/14/3411316-09$15.00/0.

  6. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.

    Science.gov (United States)

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.

  7. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    Directory of Open Access Journals (Sweden)

    Maria Razzoli

    2016-01-01

    Conclusion: Our findings demonstrate that thermogenesis and BAT function are determinant of the resilience or vulnerability to stress-induced obesity. Our data support a model in which adrenergic and purinergic pathways exert complementary/synergistic functions in BAT, thus suggesting an alternative to βARs agonists for the activation of human BAT.

  8. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Directory of Open Access Journals (Sweden)

    Lim Sung-Chul

    2011-09-01

    Full Text Available Abstract Background In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1, and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood. Results In the present study, we show that Distal-less 2 (Dlx-2, a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS in response to glucose deprivation (GD, one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an in vitro model of solid tumors. Dlx-2 short hairpin RNA (shRNA inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH release, indicating the important role(s of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis. Conclusions These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.

  9. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related

  10. Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH)

    DEFF Research Database (Denmark)

    Amstislavsky, Sergej; Welker, Pia; Frühauf, Jan-Henning

    2006-01-01

    Hypertensive inbred rats (ISIAH; inherited stress-induced arterial hypertension) present with baseline hypertension (>170 mmHg in adult rats), but attain substantially higher values upon mild emotional stress. We aimed to characterize key parameters related to hypertension in ISIAH. Kidneys, adre...

  11. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  12. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    International Nuclear Information System (INIS)

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  13. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    OpenAIRE

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.; Park, Joon-Young

    2015-01-01

    This study assesses effects of aerobic exercise training on the release of microparticles from endothelial cells and corroborates these findings using an in vitro experimental exercise stimulant, laminar shear stress. Furthermore, this study demonstrated that shear stress-induced mitochondrial biogenesis mediates these effects against endothelial cell activation and injury.

  14. Ghrelin mediates stress-induced food-reward behavior in mice.

    Science.gov (United States)

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  15. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    Science.gov (United States)

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  16. C. elegans Stress-Induced Sleep Emerges from the Collective Action of Multiple Neuropeptides.

    Science.gov (United States)

    Nath, Ravi D; Chow, Elly S; Wang, Han; Schwarz, Erich M; Sternberg, Paul W

    2016-09-26

    The genetic basis of sleep regulation remains poorly understood. In C. elegans, cellular stress induces sleep through epidermal growth factor (EGF)-dependent activation of the EGF receptor in the ALA neuron. The downstream mechanism by which this neuron promotes sleep is unknown. Single-cell RNA sequencing of ALA reveals that the most highly expressed, ALA-enriched genes encode neuropeptides. Here we have systematically investigated the four most highly enriched neuropeptides: flp-7, nlp-8, flp-24, and flp-13. When individually removed by null mutation, these peptides had little or no effect on stress-induced sleep. However, stress-induced sleep was abolished in nlp-8; flp-24; flp-13 triple-mutant animals, indicating that these neuropeptides work collectively in controlling stress-induced sleep. We tested the effect of overexpression of these neuropeptide genes on five behaviors modulated during sleep-pharyngeal pumping, defecation, locomotion, head movement, and avoidance response to an aversive stimulus-and we found that, if individually overexpressed, each of three neuropeptides (nlp-8, flp-24, or flp-13) induced a different suite of sleep-associated behaviors. These overexpression results raise the possibility that individual components of sleep might be specified by individual neuropeptides or combinations of neuropeptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Heme oxygenase-1 expression protects melanocytes from stress-induced cell death: implications for vitiligo

    NARCIS (Netherlands)

    Elassiuty, Yasser E.; Klarquist, Jared; Speiser, Jodi; Yousef, Randa M.; El Refaee, Abdelaziz A.; Hunter, Nahla S.; Shaker, Olfat G.; Gundeti, Mohan; Nieuweboer-Krobotova, Ludmila; Caroline Le Poole, I.

    2011-01-01

    To study protection of melanocytes from stress-induced cell death by heme oxygenases during depigmentation and repigmentation in vitiligo, expression of isoforms 1 and 2 was studied in cultured control and patient melanocytes and normal skin explants exposed to UV or bleaching agent 4-TBP.

  18. Despite higher glucocorticoid levels and stress responses in female rats, both sexes exhibit similar stress-induced changes in hippocampal neurogenesis.

    Science.gov (United States)

    Hulshof, Henriëtte J; Novati, Arianna; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter

    2012-10-01

    Sex differences in stress reactivity may be one of the factors underlying the increased sensitivity for the development of psychopathologies in women. Particularly, an increased hypothalamic-pituitary-adrenal (HPA) axis reactivity in females may exacerbate stress-induced changes in neuronal plasticity and neurogenesis, which in turn may contribute to an increased sensitivity to psychopathology. The main aim of the present study was to examine male-female differences in stress-induced changes in different aspects of hippocampal neurogenesis, i.e. cell proliferation, differentiation and survival. Both sexes were exposed to a wide variety of stressors, where after differences in HPA-axis reactivity and neurogenesis were assessed. To study the role of oestradiol in potential sex differences, ovariectomized females received low or high physiological oestradiol level replacement pellets. The results show that females in general have a higher basal and stress-induced HPA-axis activity than males, with minimal differences between the two female groups. Cell proliferation in the dorsal hippocampus was significantly higher in high oestradiol females compared to low oestradiol females and males, while doublecortin (DCX) expression as a marker of cell differentiation was significantly higher in males compared to females, independent of oestradiol level. Stress exposure did not significantly influence cell proliferation or survival of new cells, but did reduce DCX expression. In conclusion, despite the male-female differences in HPA-axis activity, the effect of repeated stress exposure on hippocampal cell differentiation was not significantly different between sexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  20. Mental stress-induced left ventricular dysfunction and adverse outcome in ischemic heart disease patients.

    Science.gov (United States)

    Sun, Julia L; Boyle, Stephen H; Samad, Zainab; Babyak, Michael A; Wilson, Jennifer L; Kuhn, Cynthia; Becker, Richard C; Ortel, Thomas L; Williams, Redford B; Rogers, Joseph G; O'Connor, Christopher M; Velazquez, Eric J; Jiang, Wei

    2017-04-01

    Aims Mental stress-induced myocardial ischemia (MSIMI) occurs in up to 70% of patients with clinically stable ischemic heart disease and is associated with increased risk of adverse prognosis. We aimed to examine the prognostic value of indices of MSIMI and exercise stress-induced myocardial ischemia (ESIMI) in a population of ischemic heart disease patients that was not confined by having a recent positive physical stress test. Methods and results The Responses of Mental Stress Induced Myocardial Ischemia to Escitalopram Treatment (REMIT) study enrolled 310 subjects who underwent mental and exercise stress testing and were followed annually for a median of four years. Study endpoints included time to first and total rate of major adverse cardiovascular events, defined as all-cause mortality and hospitalizations for cardiovascular causes. Cox and negative binomial regression adjusting for age, sex, resting left ventricular ejection fraction, and heart failure status were used to examine associations of indices of MSIMI and ESIMI with study endpoints. The continuous variable of mental stress-induced left ventricular ejection fraction change was significantly associated with both endpoints (all p values mental stress, patients had a 5% increase in the probability of a major adverse cardiovascular event at the median follow-up time and a 20% increase in the number of major adverse cardiovascular events endured over the follow-up period of six years. Indices of ESIMI did not predict endpoints ( ps > 0.05). Conclusion In patients with stable ischemic heart disease, mental, but not exercise, stress-induced left ventricular ejection fraction change significantly predicts risk of future adverse cardiovascular events.

  1. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory.

    Science.gov (United States)

    Lee, Vallent; MacKenzie, Georgina; Hooper, Andrew; Maguire, Jamie

    2016-10-01

    It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAA R) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells, whereas there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAA R δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAA R δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAA R δ subunit-mediated tonic inhibition

  2. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory

    Science.gov (United States)

    Hooper, Andrew; Maguire, Jamie

    2016-01-01

    It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAAR) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells; whereas, there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAAR δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAAR δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAAR δ subunit-mediated tonic inhibition in

  3. Neuroendocrine and cardiovascular parameters during simulation of stress-induced rise in circulating oxytocin in the rat.

    Science.gov (United States)

    Ondrejcakova, M; Bakos, J; Garafova, A; Kovacs, L; Kvetnansky, R; Jezova, D

    2010-07-01

    Physiological functions of oxytocin released during stress are not well understood. We have (1) investigated the release of oxytocin during chronic stress using two long-term stress models and (2) simulated stress-induced oxytocin secretion by chronic treatment with oxytocin via osmotic minipumps. Plasma oxytocin levels were significantly elevated in rats subjected to acute immobilization stress for 120 min, to repeated immobilization for 7 days and to combined chronic cold stress exposure for 28 days with 7 days immobilization. To simulate elevation of oxytocin during chronic stress, rats were implanted with osmotic minipumps subcutaneously and treated with oxytocin (3.6 microg/100 g body weight/day) or vehicle for 2 weeks. Chronic subcutaneous oxytocin infusion led to an increase in plasma oxytocin, adrenocorticotropic hormone, corticosterone, adrenal weights and heart/body weight ratio. Oxytocin treatment had no effect on the incorporation of 5-bromo-2-deoxyuridine into DNA in the heart ventricle. Mean arterial pressure response to intravenous phenylephrine was reduced in oxytocin-treated animals. Decrease in adrenal tyrosin hydroxylase mRNA following oxytocin treatment was not statistically significant. Oxytocin treatment failed to modify food intake and slightly increased water consumption. These data provide evidence on increased concentrations of oxytocin during chronic stress. It is possible that the role of oxytocin released during stress is in modulating hypothalamic-pituitary-adrenocortical axis and selected sympathetic functions.

  4. Stress-induced locomotor sensitization to amphetamine in adult, but not in adolescent rats, is associated with increased expression of ΔFosB in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Carneiro de Oliveira

    2016-09-01

    Full Text Available While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the interaction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively were restrained for 2 hours once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p. and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats.

  5. Short-term environmental enrichment is sufficient to counter stress-induced anxiety and associated structural and molecular plasticity in basolateral amygdala.

    Science.gov (United States)

    Ashokan, Archana; Hegde, Akshaya; Mitra, Rupshi

    2016-07-01

    Moderate levels of anxiety enable individual animals to cope with stressors through avoidance, and could be an adaptive trait. However, repeated stress exacerbates anxiety to pathologically high levels. Dendritic remodeling in the basolateral amygdala is proposed to mediate potentiation of anxiety after stress. Similarly, modulation of brain-derived neurotrophic factor is thought to be important for the behavioral effects of stress. In the present study, we investigate if relatively short periods of environmental enrichment in adulthood can confer resilience against stress-induced anxiety and concomitant changes in neuronal arborisation and brain derived neurotrophic factor within basolateral amygdala. Two weeks of environmental enrichment countermanded the propensity of increased anxiety following chronic immobilization stress. Environmental enrichment concurrently reduced dendritic branching and spine density of projection neurons of the basolateral amygdala. Moreover, stress increased abundance of BDNF mRNA in the basolateral amygdala in agreement with the dendritic hypertrophy post-stress and role of BDNF in promoting dendritic arborisation. In contrast, environmental enrichment prevented stress-induced rise in the BDNF mRNA abundance. Gain in body weights and adrenal weights remained unaffected by exposure to environmental enrichment. These observations suggest that a short period of environmental enrichment can provide resilience against maladaptive effects of stress on hormonal, neuronal and molecular mediators of anxiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice.

    Science.gov (United States)

    Markova, Nataliia; Bazhenova, Nataliia; Anthony, Daniel C; Vignisse, Julie; Svistunov, Andrey; Lesch, Klaus-Peter; Bettendorff, Lucien; Strekalova, Tatyana

    2017-04-03

    Thiamine (vitamin B1) deficiency in the brain has been implicated in the development of dementia and symptoms of depression. Indirect evidence suggests that thiamine may contribute to these pathologies by controlling the activities of glycogen synthase kinase (GSK)-3β. While decreased GSK-3β activity appears to impair memory, increased GSK-3β activity is associated with the distressed/depressed state. However, hitherto direct evidence for the effects of thiamine on GSK-3β function has not been reported. Here, we administered thiamine or, the more bioavailable precursor, benfotiamine at 200mg/kg/day for 2weeks to C57BL/6J mice, to determine whether treatment might affect behaviours that are known to be sensitive to GSK-3β activity and whether such administration impacts on GSK-3β expression within the brain. The mice were tested in models of contextual conditioning and extinction, a 5-day rat exposure stress test, and a modified swim test with repeated testing. The tricyclic antidepressant imipramine (7.5mg/kg/day), was administered as a positive control for the effects of thiamine or benfotiamine. As for imipramine, both compounds inhibited the upregulation of GSK-3β induced by predator stress or repeated swimming, and reduced floating scores and the predator stress-induced behavioural changes in anxiety and exploration. Coincident, thiamine and benfotiamine improved learning and extinction of contextual fear, and the acquisition of the step-down avoidance task. Our data indicate that thiamine and benfotiamine have antidepressant/anti-stress effects in naïve animals that are associated with reduced GSK-3β expression and conditioning of adverse memories. Thus thiamine and benfotiamine may modulate GSK-3β functions in a manner that is dependent on whether the contextual conditioning is adaptive or maladaptive. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Chronic Restraint Stress Induces an Isoform-Specific Regulation on the Neural Cell Adhesion Molecule in the Hippocampus

    Science.gov (United States)

    Touyarot, K.; Sandi, C.

    2002-01-01

    Existing evidence indicates that 21-days exposure of rats to restraint stress induces dendritic atrophy in pyramidal cells of the hippocampus. This phenomenon has been related to altered performance in hippocampal-dependent learning tasks. Prior studies have shown that hippocampal expression of cell adhesion molecules is modified by such stress treatment, with the neural cell adhesion molecule (NCAM) decreasing and L1 increasing, their expression, at both the mRNA and protein levels. Given that NCAM comprises several isoforms, we investigated here whether chronic stress might differentially affect the expression of the three major isoforms (NCAM-120, NCAM-140, NCAM-180) in the hippocampus. In addition, as glucocorticoids have been implicated in the deleterious effects induced by chronic stress, we also evaluated plasma corticosterone levels and the hippocampal expression of the corticosteroid mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The results showed that the protein concentration of the NCAM-140 isoform decreased in the hippoampus of stressed rats. This effect was isoform-specific, because NCAM-120 and NCAM-180 levels were not significantly modified. In addition, whereas basal levels of plasma corticosterone tended to be increased, MR and GR concentrations were not significantly altered. Although possible changes in NCAM-120, NCAM-180 and corticosteroid receptors at earlier time points of the stress period cannot be ignored; this study suggests that a down-regulation of NCAM-140 might be implicated in the structural alterations consistently shown to be induced in the hippocampus by chronic stress exposure. As NCAM-140 is involved in cell-cell adhesion and neurite outgrowth, these findings suggest that this molecule might be one of the molecular mechanisms involved in the complex interactions among neurodegeneration-related events. PMID:12757368

  8. Adrenal-dependent and -independent stress-induced Per1 mRNA in hypothalamic paraventricular nucleus and prefrontal cortex of male and female rats.

    Science.gov (United States)

    Chun, Lauren E; Christensen, Jenny; Woodruff, Elizabeth R; Morton, Sarah J; Hinds, Laura R; Spencer, Robert L

    2018-01-01

    Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.

  9. Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1.

    Directory of Open Access Journals (Sweden)

    Thomas Maslanik

    Full Text Available Regular interactions between commensal bacteria and the enteric mucosal immune environment are necessary for normal immunity. Alterations of the commensal bacterial communities or mucosal barrier can disrupt immune function. Chronic stress interferes with bacterial community structure (specifically, α-diversity and the integrity of the intestinal barrier. These interferences can contribute to chronic stress-induced increases in systemic IL-6 and TNF-α. Chronic stress, however, produces many physiological changes that could indirectly influence immune activity. In addition to IL-6 and TNF-α, exposure to acute stressors upregulates a plethora of inflammatory proteins, each having unique synthesis and release mechanisms. We therefore tested the hypothesis that acute stress-induced inflammatory protein responses are dependent on the commensal bacteria, and more specifically, lipopolysaccharide (LPS shed from Gram-negative intestinal commensal bacteria. We present evidence that both reducing commensal bacteria using antibiotics and neutralizing LPS using endotoxin inhibitor (EI attenuates increases in some (inflammasome dependent, IL-1 and IL-18, but not all (inflammasome independent, IL-6, IL-10, and MCP-1 inflammatory proteins in the blood of male F344 rats exposed to an acute tail shock stressor. Acute stress did not impact α- or β- diversity measured using 16S rRNA diversity analyses, but selectively reduced the relative abundance of Prevotella. These findings indicate that commensal bacteria contribute to acute stress-induced inflammatory protein responses, and support the presence of LPS-mediated signaling in stress-evoked cytokine and chemokine production. The selectivity of the commensal bacteria in stress-evoked IL-1β and IL-18 responses may implicate the inflammasome in this response.

  10. Stress-induced neuroplasticity: (mal)adaptation to adverse life events in patients with PTSD--a critical overview.

    Science.gov (United States)

    Deppermann, S; Storchak, H; Fallgatter, A J; Ehlis, A-C

    2014-12-26

    Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and associated neurochemical reactions, following glucocorticoid release from the adrenal glands, accompanied by rapid physiological responses. Stimulation of this pathway results in the activation of specific brain regions, including the hippocampus, amygdala and prefrontal cortex which are enriched with glucocorticoid receptors (GRs). Recent findings indicate that the activation of GRs mediates the regulation of the brain-derived neurotrophic factor (BDNF). BDNF is crucial for neural plasticity, as it promotes cellular growth and synaptic changes. Hence stress-induced activation of these pathways leads to neuroplastic changes, including the formation of long-lasting memories of the experiences. As a consequence, organisms can learn from stressful events and respond in an adaptive manner to similar demands in the future. Whereas an optimal stress level leads to enhancement of memory performance, the exposure to extreme, traumatic or chronic stressors is a risk factor for psychopathologies which are associated with memory impairment and cognitive deficits such as posttraumatic stress disorder (PTSD). In this review article, we will outline the implications of stress exposure on memory formation involving the role of glucocorticoids and BDNF. Within this context, potential adverse effects of neuroplastic alterations will be discussed using the example of PTSD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Chewing ameliorates stress-induced suppression of spatial memory by increasing glucocorticoid receptor expression in the hippocampus.

    Science.gov (United States)

    Miyake, Shinjiro; Yoshikawa, Gota; Yamada, Kentaro; Sasaguri, Ken-Ichi; Yamamoto, Toshiharu; Onozuka, Minoru; Sato, Sadao

    2012-03-29

    Chewing alters hypothalamic-pituitary-adrenal axis function and improves the ability to cope with stress in rodents. Given that stress negatively influences hippocampus-dependent learning and memory, we aimed to elucidate whether masticatory movements, namely chewing, improve the stress-induced impairment of spatial memory in conjunction with increased hippocampal glucocorticoid receptor expression. Male Sprague-Dawley rats were subjected to restraint stress by immobilization for 2h: the stress with chewing (SC) group were allowed to chew on a wooden stick during the latter half of the immobilization period, whereas the stress without chewing (ST) group were not allowed to do so. Performance in the Morris water maze test was significantly impaired in the ST group compared with the SC group. Further, the numbers of glucocorticoid receptor immunopositive neurons in the hippocampal cornu ammonis 1 region were significantly lower in the ST group than in the control and SC groups. The control and SC rats showed no significant differences in both the water maze performance and the numbers of glucocorticoid receptor-immunopositive neurons. The immunohistochemical finding correlated with the performance in the water maze test. These results suggest that chewing is a behavioral mechanism to cope with stress by increasing hippocampal glucocorticoid receptor expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Chronic early postnatal scream sound stress induces learning deficits and NMDA receptor changes in the hippocampus of adult mice.

    Science.gov (United States)

    Hu, Lili; Han, Bo; Zhao, Xiaoge; Mi, Lihua; Song, Qiang; Wang, Jue; Song, Tusheng; Huang, Chen

    2016-04-13

    Chronic scream sounds during adulthood affect spatial learning and memory, both of which are sexually dimorphic. The long-term effects of chronic early postnatal scream sound stress (SSS) during postnatal days 1-21 (P1-P21) on spatial learning and memory in adult mice as well as whether or not these effects are sexually dimorphic are unknown. Therefore, the present study examines the performance of adult male and female mice in the Morris water maze following exposure to chronic early postnatal SSS. Hippocampal NR2A and NR2B levels as well as NR2A/NR2B subunit ratios were tested using immunohistochemistry. In the Morris water maze, stress males showed greater impairment in spatial learning and memory than background males; by contrast, stress and background females performed equally well. NR2B levels in CA1 and CA3 were upregulated, whereas NR2A/NR2B ratios were downregulated in stressed males, but not in females. These data suggest that chronic early postnatal SSS influences spatial learning and memory ability, levels of hippocampal NR2B, and NR2A/NR2B ratios in adult males. Moreover, chronic early stress-induced alterations exert long-lasting effects and appear to affect performance in a sex-specific manner.

  13. The Effects of Acute Stress-Induced Sleep Disturbance on Acoustic Trauma-Induced Tinnitus in Rats

    Directory of Open Access Journals (Sweden)

    Yiwen Zheng

    2014-01-01

    Full Text Available Chronic tinnitus is a debilitating condition and often accompanied by anxiety, depression, and sleep disturbance. It has been suggested that sleep disturbance, such as insomnia, may be a risk factor/predictor for tinnitus-related distress and the two conditions may share common neurobiological mechanisms. This study investigated whether acute stress-induced sleep disturbance could increase the susceptibility to acoustic trauma-induced tinnitus in rats. The animals were exposed to unilateral acoustic trauma 24 h before sleep disturbance being induced using the cage exchange method. Tinnitus perception was assessed behaviourally using a conditioned lick suppression paradigm 3 weeks after the acoustic trauma. Changes in the orexin system in the hypothalamus, which plays an important role in maintaining long-lasting arousal, were also examined using immunohistochemistry. Cage exchange resulted in a significant reduction in the number of sleep episodes and acoustic trauma-induced tinnitus with acoustic features similar to a 32 kHz tone at 100 dB. However, sleep disturbance did not exacerbate the perception of tinnitus in rats. Neither tinnitus alone nor tinnitus plus sleep disturbance altered the number of orexin-expressing neurons. The results suggest that acute sleep disturbance does not cause long-term changes in the number of orexin neurons and does not change the perception of tinnitus induced by acoustic trauma in rats.

  14. A study on anti-stress property of Nardostachys jatamamsi on stress induced Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Shilpashree R.

    2011-09-01

    Full Text Available Stress is a feeling that’s created when we react to particular events. It s the body’s way of rising to a challenge and preparing to meet a tough situation with focus, strength, stamina, and heightened alertness. As a result of the stress immune system can be suppressed by chronic stress opening to increased infections and increasing the risk of autoimmune diseases. So one has to learn away to overcome stress. Here is an attempt made to overcome the stress induced in Drosophila melanogaster a model organism, in this study. Methotrexate is used to induce the stress at different concentration taking different group of flies and a Nardostachys jatamamsi plant extract having antistress property is used to relieve the stress induced. This stress relieve measured by the various stress related enzymes like catalase and Superoxide dismutase by this antistress property of the plant Nardostachys jatamamsi was shown.

  15. Sociotropic cognition moderates stress-induced cardiovascular responsiveness in college women.

    Science.gov (United States)

    Sauro, M D; Jorgensen, R S; Larson, C A; Frankowski, J J; Ewart, C K; White, J

    2001-10-01

    This study examined the moderating effects of sociotropic cognition (SC), a nondefensive need for approval, on stress-induced cardiovascular responsiveness (CVR) in women. Sixty-seven college-age females had blood pressure (BP) and heart rate (HR) monitored during baseline, anticipation, story-telling (where participants were randomly assigned to a low or high threat condition), and recovery periods. SC showed a positive association with CVR only in the high interpersonal threat context during task and early stages of the recovery periods. SC was positively correlated with such variables as anxiety, ruminative style, dysphoria, and anger. This is the first report examining the moderating effects of SC on interpersonal stress-induced CVR prior to, during, and following a task, using an explicit manipulation of social evaluation. The data help define risk factors for CVR in women, which may aid in the understanding of how emotions and stress affect physical health and well-being.

  16. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  17. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    International Nuclear Information System (INIS)

    Katanchi, B.; Choupani, N.; Khalil-Allafi, J.; Baghani, M.

    2017-01-01

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  18. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics

    International Nuclear Information System (INIS)

    Sun, Q.; Zhao, Z.; Chen, W.; Qing, X.; Xu, X.; Dai, F.

    1994-01-01

    Stress-induced martensitic transformation plastic zones in ceria-stabilized tetragonal zirconia polycrystalline ceramics (Ce-TZP), under loading conditions of uniaxial tension, compression, and three-point bending, are studied by experiments. The transformed monoclinic phase volume fraction distribution and the corresponding plastic strain distribution and the surface morphology (surface uplift) are measured by means of moire interferometry, Raman microprobe spectroscopy, and the surface measurement system. The experimental results from the above three kinds of specimens and methods consistently show that the stress-induced transformation at room temperature of the above specimen is not uniform within the transformation zone and that the plastic deformation is concentrated in some narrow band; i.e., macroscopic plastic flow localization proceeds during the initial stage of plastic deformation. Flow localization phenomena are all observed in uniaxial tension, compression, and three-point bending specimens. Some implications of the flow localization to the constitutive modeling and toughening of transforming thermoelastic polycrystalline ceramics are explored

  19. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Katanchi, B. [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Choupani, N., E-mail: choupani@sut.ac.ir [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advance Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Baghani, M. [School of Mechanical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-14

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  20. Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala.

    Science.gov (United States)

    Patel, Sachin; Kingsley, Philip J; Mackie, Ken; Marnett, Lawrence J; Winder, Danny G

    2009-12-01

    Psychosocial stress is a risk factor for development and exacerbation of neuropsychiatric illness. Repeated stress causes biochemical adaptations in endocannabinoid (eCB) signaling that contribute to stress-response habituation, however, the synaptic correlates of these adaptations have not been examined. Here, we show that the synthetic enzyme for the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol (DAG) lipase alpha, is heterogeneously expressed in the amygdala, and that levels of 2-AG and precursor DAGs are increased in the basolateral amygdala (BLA) after 10 days, but not 1 day, of restraint stress. In contrast, arachidonic acid was decreased after both 1 and 10 days of restraint stress. To examine the synaptic correlates of these alterations in 2-AG metabolism, we used whole-cell electrophysiology to determine the effects of restraint stress on depolarization-induced suppression of inhibition (DSI) in the BLA. A single restraint stress exposure did not alter DSI compared with control mice. However, after 10 days of restraint stress, DSI duration, but not magnitude, was significantly prolonged. Inhibition of 2-AG degradation with MAFP also prolonged DSI duration; the effects of repeated restraint stress and MAFP were mutually occlusive. These data indicate that exposure to repeated, but not acute, stress produces neuroadaptations that confer BLA neurons with an enhanced capacity to elevate 2-AG content and engage in 2-AG-mediated short-term retrograde synaptic signaling. We suggest stress-induced enhancement of eCB-mediated suppression of inhibitory transmission in the BLA could contribute to affective dysregulation associated with chronic stress.

  1. UHPLC-MS/MS based target profiling of stress-induced phytohormones

    Czech Academy of Sciences Publication Activity Database

    Floková, Kristýna; Tarkowská, Danuše; Miersch, Otto; Strnad, Miroslav; Wasternack, Claus; Novák, Ondřej

    2014-01-01

    Roč. 105, SEP 2014 (2014), s. 147-157 ISSN 0031-9422 R&D Projects: GA ČR GA14-34792S; GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Stress-induced phytohormones * Jasmonates * Abscisic acid Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.547, year: 2014

  2. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage.

    Directory of Open Access Journals (Sweden)

    Francesco Matrisciano

    Full Text Available The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1, an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central

  3. Pathways Involving Beta-3 Adrenergic Receptors Modulate Cold Stress-Induced Detrusor Overactivity in Conscious Rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Nishizawa, Osamu

    2015-01-01

    To investigate pathways involving beta-3 adrenergic receptors (ARs) in detrusor overactivity induced by cold stress, we determined if the beta-3 AR agonist CL316243 could modulate the cold stress-induced detrusor overactivity in normal rats. Two days prior to cystometric investigations, the bladders of 10-week-old female Sprague-Dawley rats were cannulated. Cystometric measurements of the unanesthetized, unrestricted rats were taken to estimate baseline values at room temperature (RT, 27 ± 2 °C) for 20 min. They were then intravenously administered vehicle, 0.1, or 1.0 mg/kg CL316243 (n = 6 in each group). Five minutes after the treatments, they were gently and quickly transferred to the low temperature (LT, 4 ± 2 °C) room for 40 min where the cystometric measurements were again made. Afterward, the rats were returned to RT for final cystometric measurements. The cystometric effects of CL316243 were also measured at RT (n = 6 in each group). At RT, both low and high dose of CL316243 decreased basal and micturition pressure while the high dose (1.0 mg/kg) significantly increased voiding interval and bladder capacity. During LT exposure, the high dose of CL316243 partially reduced cold stress-induced detrusor overactivity characterized by increased basal pressure and urinary frequency. The high drug dose also significantly inhibited the decreases of both voiding interval and bladder capacity compared to the vehicle- and low dose (0.1 mg/kg)-treated rats. A high dose of the beta-3 agonist CL316243 could modulate cold stress-induced detrusor overactivity. Therefore, one of the mechanisms in cold stress-induced detrusor overactivity includes a pathway involving beta-3 ARs. © 2014 Wiley Publishing Asia Pty Ltd.

  4. Adolescent Personality: Associations With Basal, Awakening, and Stress-Induced Cortisol Responses

    OpenAIRE

    Laceulle, Odilia M.; Nederhof, Esther; van Aken, Marcel A. G.; Ormel, Johan

    2015-01-01

    The purpose of the present study was to investigate the associations between personality facets and hypothalamic-pituitary-adrenal (HPA) axis functioning. Previous studies have mainly focussed on stress-induced HPA-axis activation. We hypothesized that other characteristics of HPA-axis functioning would have a stronger association with personality based on the neuroendocrine literature. Data (n=343) were used from the TRacking Adolescents' Individual Lives Survey (TRAILS), a large prospective...

  5. The interplay between neuroendocrine activity and psychological stress-induced exacerbation of allergic asthma

    Directory of Open Access Journals (Sweden)

    Tomomitsu Miyasaka

    2018-01-01

    Full Text Available Psychological stress is recognized as a key factor in the exacerbation of allergic asthma, whereby brain responses to stress act as immunomodulators for asthma. In particular, stress-induced enhanced type 2 T-helper (Th2-type lung inflammation is strongly associated with asthma pathogenesis. Psychological stress leads to eosinophilic airway inflammation through activation of the hypothalamic-pituitary-adrenal pathway and autonomic nervous system. This is followed by the secretion of stress hormones into the blood, including glucocorticoids, epinephrine, and norepinephrine, which enhance Th2 and type 17 T-helper (Th17-type asthma profiles in humans and rodents. Recent evidence has shown that a defect of the μ-opioid receptor in the brain along with a defect of the peripheral glucocorticoid receptor signaling completely disrupted stress-induced airway inflammation in mice. This suggests that the stress response facilitates events in the central nervous and endocrine systems, thus exacerbating asthma. In this review, we outline the recent findings on the interplay between stress and neuroendocrine activities followed by stress-induced enhanced Th2 and Th17 immune responses and attenuated regulatory T (Treg cell responses that are closely linked with asthma exacerbation. We will place a special focus on our own data that has emphasized the continuity from central sensing of psychological stress to enhanced eosinophilic airway inflammation. The mechanism that modulates psychological stress-induced exacerbation of allergic asthma through neuroendocrine activities is thought to involve a series of consecutive pathological events from the brain to the lung, which implies there to be a “neuropsychiatry phenotype” in asthma.

  6. Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions.

    Science.gov (United States)

    Bhatnagar-Mathur, Pooja; Devi, M Jyostna; Reddy, D Srinivas; Lavanya, M; Vadez, Vincent; Serraj, R; Yamaguchi-Shinozaki, K; Sharma, Kiran K

    2007-12-01

    Water deficit is the major abiotic constraint affecting crop productivity in peanut (Arachis hypogaea L.). Water use efficiency under drought conditions is thought to be one of the most promising traits to improve and stabilize crop yields under intermittent water deficit. A transcription factor DREB1A from Arabidopsis thaliana, driven by the stress inducible promoter from the rd29A gene, was introduced in a drought-sensitive peanut cultivar JL 24 through Agrobacterium tumefaciens-mediated gene transfer. The stress inducible expression of DREB1A in these transgenic plants did not result in growth retardation or visible phenotypic alterations. T3 progeny of fourteen transgenic events were exposed to progressive soil drying in pot culture. The soil moisture threshold where their transpiration rate begins to decline relative to control well-watered (WW) plants and the number of days needed to deplete the soil water was used to rank the genotypes using the average linkage cluster analysis. Five diverse events were selected from the different clusters and further tested. All the selected transgenic events were able to maintain a transpiration rate equivalent to the WW control in soils dry enough to reduce transpiration rate in wild type JL 24. All transgenic events except one achieved higher transpiration efficiency (TE) under WW conditions and this appeared to be explained by a lower stomatal conductance. Under water limiting conditions, one of the selected transgenic events showed 40% higher TE than the untransformed control.

  7. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  8. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction.

    Science.gov (United States)

    Qiang, Guifen; Whang Kong, Hyerim; Gil, Victoria; Liew, Chong Wee

    2017-01-09

    In contrast to white adipose tissue, brown adipose tissue (BAT) is known to play critical roles for both basal and inducible energy expenditure. Obesity is associated with reduction of BAT function; however, it is not well understood how obesity promotes BAT dysfunction, especially at the molecular level. Here we show that the transcription regulator TRIP-Br2 mediates ER stress-induced inhibition of lipolysis and thermogenesis in BAT. Using in vitro, ex vivo, and in vivo approaches, we demonstrate that obesity-induced inflammation upregulates brown adipocytes TRIP-Br2 expression via the ER stress pathway and amelioration of ER stress in mice completely abolishes high fat diet-induced upregulation of TRIP-Br2 in BAT. We find that increased TRIP-Br2 significantly inhibits brown adipocytes thermogenesis. Finally, we show that ablation of TRIP-Br2 ameliorates ER stress-induced inhibition on lipolysis, fatty acid oxidation, oxidative metabolism, and thermogenesis in brown adipocytes. Taken together, our current study demonstrates a role for TRIP-Br2 in ER stress-induced BAT dysfunction, and inhibiting TRIP-Br2 could be a potential approach for counteracting obesity-induced BAT dysfunction.

  9. First interactions between hydrogen and stress-induced reverse transformation of Ni-Ti superelastic alloy

    Science.gov (United States)

    Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi

    2017-11-01

    The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.

  10. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  11. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    Science.gov (United States)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  12. Quantification of stress-induced damage and post-fire response of 5083 aluminum alloy

    International Nuclear Information System (INIS)

    Chen, Y.; Puplampu, S.B.; Summers, P.T.; Lattimer, B.Y.; Penumadu, D.; Case, S.W.

    2015-01-01

    One of the major concerns regarding the use of lightweight materials in ship construction is the response of those materials to fire scenarios, including the residual structural performance after a fire event. This paper presents a study on creep damage evolution in 5083 marine-grade aluminum alloy and its impact on residual mechanical behavior. Tests conducted at 400 °C and pre-selected tensile stress levels were interrupted at target amplitudes of accumulated engineering creep strains to investigate the stress-induced damage using ex-situ characterization. Two-dimensional optical and electron microscopy and three-dimensional X-ray tomography were utilized on samples extracted from these test specimens to characterize the external and internal creep damage. The stress-induced damage is primarily manifested as cavitation and dynamic microstructural evolution. Cavitation morphology, orientation and grain structure evolution were investigated on three perpendicular sample surfaces. A 3D examination of the damage state provided consistent damage information to that obtained from the 2D analysis. The post-fire mechanical properties were also evaluated and linked to the microstructural change. The competing processes of cavitation and grain structure evolution were investigated to develop an understanding of the stress-induced damage associated with high temperature creep

  13. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    Directory of Open Access Journals (Sweden)

    Th. F. Mentel

    2013-09-01

    Full Text Available Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4–6% yield. Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate–vegetation feedback mechanisms.

  14. Quantification of stress-induced damage and post-fire response of 5083 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: yanyun@vt.edu [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States); Puplampu, S.B. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Summers, P.T.; Lattimer, B.Y. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Penumadu, D. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Case, S.W. [Department of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2015-08-12

    One of the major concerns regarding the use of lightweight materials in ship construction is the response of those materials to fire scenarios, including the residual structural performance after a fire event. This paper presents a study on creep damage evolution in 5083 marine-grade aluminum alloy and its impact on residual mechanical behavior. Tests conducted at 400 °C and pre-selected tensile stress levels were interrupted at target amplitudes of accumulated engineering creep strains to investigate the stress-induced damage using ex-situ characterization. Two-dimensional optical and electron microscopy and three-dimensional X-ray tomography were utilized on samples extracted from these test specimens to characterize the external and internal creep damage. The stress-induced damage is primarily manifested as cavitation and dynamic microstructural evolution. Cavitation morphology, orientation and grain structure evolution were investigated on three perpendicular sample surfaces. A 3D examination of the damage state provided consistent damage information to that obtained from the 2D analysis. The post-fire mechanical properties were also evaluated and linked to the microstructural change. The competing processes of cavitation and grain structure evolution were investigated to develop an understanding of the stress-induced damage associated with high temperature creep.

  15. Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons.

    Science.gov (United States)

    Wang, Yin; Ma, Keli; Wang, Peixiang; Baba, Otto; Zhang, Helen; Parent, Jack M; Zheng, Pan; Liu, Yang; Minassian, Berge A; Liu, Yan

    2013-08-01

    Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.

  16. Transcranial Stimulation of the Dorsolateral Prefrontal Cortex Prevents Stress-Induced Working Memory Deficits.

    Science.gov (United States)

    Bogdanov, Mario; Schwabe, Lars

    2016-01-27

    Stress is known to impair working memory performance. This disruptive effect of stress on working memory has been linked to a decrease in the activity of the dorsolateral prefrontal cortex (dlPFC). In the present experiment, we tested whether transcranial direct current stimulation (tDCS) of the dlPFC can prevent stress-induced working memory impairments. We tested 120 healthy participants in a 2 d, sham-controlled, double-blind between-subjects design. Participants completed a test of their individual baseline working memory capacity on day 1. On day 2, participants were exposed to either a stressor or a control manipulation before they performed a visuospatial and a verbal working memory task. While participants completed the tasks, anodal, cathodal, or sham tDCS was applied over the right dlPFC. Stress impaired working memory performance in both tasks, albeit to a lesser extent in the verbal compared with the visuospatial working memory task. This stress-induced working memory impairment was prevented by anodal, but not sham or cathodal, stimulation of the dlPFC. Compared with sham or cathodal stimulation, anodal tDCS led to significantly better working memory performance in both tasks after stress. Our findings indicate a causal role of the dlPFC in working memory impairments after acute stress and point to anodal tDCS as a promising tool to reduce cognitive deficits related to working memory in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Working memory deficits are prominent in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Similar working memory impairments have been observed in healthy individuals exposed to acute stress. So far, attempts to prevent such stress-induced working memory deficits focused mainly on pharmacological interventions. Here, we tested the idea that transcranial direct current stimulation of the dorsolateral prefrontal

  17. Prevalence and clinical characteristics of mental stress-induced myocardial ischemia in patients with coronary heart disease.

    Science.gov (United States)

    Jiang, Wei; Samad, Zainab; Boyle, Stephen; Becker, Richard C; Williams, Redford; Kuhn, Cynthia; Ortel, Thomas L; Rogers, Joseph; Kuchibhatla, Maragatha; O'Connor, Christopher; Velazquez, Eric J

    2013-02-19

    The goal of this study was to evaluate the prevalence and clinical characteristics of mental stress-induced myocardial ischemia. Mental stress-induced myocardial ischemia is prevalent and a risk factor for poor prognosis in patients with coronary heart disease, but past studies mainly studied patients with exercise-induced myocardial ischemia. Eligible patients with clinically stable coronary heart disease, regardless of exercise stress testing status, underwent a battery of 3 mental stress tests followed by a treadmill test. Stress-induced ischemia, assessed by echocardiography and electrocardiography, was defined as: 1) development or worsening of regional wall motion abnormality; 2) left ventricular ejection fraction reduction ≥ 8%; and/or 3) horizontal or downsloping ST-segment depression ≥ 1 mm in 2 or more leads lasting for ≥ 3 consecutive beats during at least 1 mental test or during the exercise test. Mental stress-induced ischemia occurred in 43.45%, whereas exercise-induced ischemia occurred in 33.79% (p = 0.002) of the study population (N = 310). Women (odds ratio [OR]: 1.88), patients who were not married (OR: 1.99), and patients who lived alone (OR: 2.24) were more likely to have mental stress-induced ischemia (all p mental stress-induced ischemia (all p Mental stress-induced ischemia is more common than exercise-induced ischemia in patients with clinically stable coronary heart disease. Women, unmarried men, and individuals living alone are at higher risk for mental stress-induced ischemia. (Responses of Myocardial Ischemia to Escitalopram Treatment [REMIT]; NCT00574847). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.

    Science.gov (United States)

    Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian

    2016-09-01

    Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.

  19. Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Berezova, Inna V; Dygalo, Nikolay N

    2012-01-01

    Mechanisms underlying stress-induced depression and antidepressant drug action were shown to involve alterations in serotonergic (5-HT) neurotransmission and expression of genes coding for proteins associated with neurotrophic signaling pathways and cell-survival in the hippocampus and cortex. Expression of these genes in the brainstem containing 5-HT neurons may also be related to vulnerability or resilience to stress-related psychopathology. Here we investigated 5-HT markers and expression of genes for Brain-Derived Neurotrophic Factor (BDNF) and apoptotic proteins in the brainstem in relation to swim stress-induced behavioral despair. We found that anti-apoptotic Bcl-xL gene is sensitive to stress during the course of fluoxetine administration. Responsiveness of this gene to stress appeared concomitantly with an antidepressant-like effect of fluoxetine in the forced swim test. Bcl-xL transcript levels showed negative correlations with duration of immobility in the test and 5-HT turnover in the brainstem. In contrast, BDNF and pro-apoptotic protein Bax mRNA levels were unchanged by either fluoxetine or stress, suggesting specificity of Bcl-xL gene responses to these treatments. We also found that the levels of mRNAs for tryptophan hydroxylase-2 (TPH2) and 5-HT transporter (5-HTT) were significantly down-regulated following prolonged treatment with fluoxetine, but were not affected by stress. Unlike TPH2 and 5-HTT, 5-HT1A receptor mRNA levels were not altered by fluoxetine but significantly increased in response to swim stress. These data show that long-term fluoxetine treatment leads to changes in 5-HT and Bcl-xL responses to stress associated with antidepressant-like effects of the drug. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Overlapping mechanisms of stress-induced relapse to opioid use disorder and chronic pain: Clinical implications

    Directory of Open Access Journals (Sweden)

    Udi E Ghitza

    2016-05-01

    Full Text Available Over the past two decades, a steeply growing number of persons with chronic non-cancer pain have been using opioid analgesics chronically to treat it, accompanied by a markedly increased prevalence of individuals with opioid-related misuse, opioid use disorders, emergency department visits, hospitalizations, admissions to drug treatment programs, and drug overdose deaths. This opioid misuse and overdose epidemic calls for well-designed randomized-controlled clinical trials into more skillful and appropriate pain management and for developing effective analgesics which have lower abuse liability and are protective against stress induced by chronic non-cancer pain. However, incomplete knowledge regarding effective approaches to treat various types of pain has been worsened by an under-appreciation of overlapping neurobiological mechanisms of stress, stress-induced relapse to opioid use, and chronic non-cancer pain in patients presenting for care for these conditions. This insufficient knowledge base has unfortunately encouraged common prescription of conveniently-available opioid pain-relieving drugs with abuse liability, as opposed to treating underlying problems using team-based multidisciplinary, patient-centered, collaborative-care approaches for addressing pain and co-occurring stress and risk for opioid use disorder. This paper reviews recent neurobiological findings regarding overlapping mechanisms of stress-induced relapse to opioid misuse and chronic non-cancer pain, and then discusses these in the context of key outstanding evidence gaps and clinical-treatment research directions which may be pursued to fill these gaps. Such research directions, if conducted through well-designed randomized controlled trials, may substantively inform clinical practice in general medical settings on how to effectively care for patients presenting with pain-related distress and these common co-occurring conditions.

  1. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  2. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Ayşin Akıncı

    2017-02-01

    Full Text Available Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57 was higher than that of the control group (1.50±0.22 (p<0.05. Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05, the stress and stress + standard diet groups (p<0.05, and the stress and stress + LPZ groups (p<0.05. The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05. Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50 and superoxide dismutase (15.18±1.05 and catalase (16.68±2.29 activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system

  3. Effect of vitamin D on stress-induced hyperglycaemia and insulin resistance in critically ill patients.

    Science.gov (United States)

    Alizadeh, N; Khalili, H; Mohammadi, M; Abdollahi, A; Ala, S

    2016-05-01

    Effects of vitamin D supplementation on the glycaemic indices and insulin resistance in diabetic and non-diabetic patients were studied. In this study, effects of vitamin D supplementation on stress-induced hyperglycaemia and insulin resistance were evaluated in non-diabetic surgical critically ill patients. Adult surgical patients with stress-induced hyperglycaemia within the first 24 h of admission to the ICU were recruited. The patients randomly assigned to receive either vitamin D or placebo. Patients in the vitamin D group received a single dose of 600,000 IU vitamin D3 as intramuscular injection at time of recruitment. Besides demographic and clinical characteristics of the patients, plasma glucose, insulin, 25(OH) D and adiponectin levels were measured at the time of ICU admission and day 7. Homoeostasis model assessment for insulin resistance (HOMA-IR) and homestasis model assessment adiponectin (HOMA-AD) ratio were considered at the times of assessment. Comparing with the baseline, plasma 25(OH) D level significantly increased in the subjects who received vitamin D (p = 0.04). Improvement in fasting plasma glucose levels was detected in day 7 of the study compared with the baseline status in both groups. HOMA-IR showed a decrement pattern in vitamin D group (p = 0.09). Fasting plasma adiponectin levels increased significantly in the vitamin D group (p = 0.007), but not in the placebo group (p = 0.38). Finally, changes in HOMA-AD ratio were not significant in the both groups. Vitamin D supplementation showed positive effect on plasma adiponectin level, as a biomarker of insulin sensitivity in surgical critically ill patients with stress-induced hyperglycaemia. However, effects of vitamin D supplementation on HOMA-IR and HOMA-AD as indicators of insulin resistance were not significant. © 2016 John Wiley & Sons Ltd.

  4. Differential effects of stress-induced cortisol responses on recollection and familiarity-based recognition memory.

    Science.gov (United States)

    McCullough, Andrew M; Ritchey, Maureen; Ranganath, Charan; Yonelinas, Andrew

    2015-09-01

    Stress-induced changes in cortisol can impact memory in various ways. However, the precise relationship between cortisol and recognition memory is still poorly understood. For instance, there is reason to believe that stress could differentially affect recollection-based memory, which depends on the hippocampus, and familiarity-based recognition, which can be supported by neocortical areas alone. Accordingly, in the current study we examined the effects of stress-related changes in cortisol on the processes underlying recognition memory. Stress was induced with a cold-pressor test after incidental encoding of emotional and neutral pictures, and recollection and familiarity-based recognition memory were measured one day later. The relationship between stress-induced cortisol responses and recollection was non-monotonic, such that subjects with moderate stress-related increases in cortisol had the highest levels of recollection. In contrast, stress-related cortisol responses were linearly related to increases in familiarity. In addition, measures of cortisol taken at the onset of the experiment showed that individuals with higher levels of pre-learning cortisol had lower levels of both recollection and familiarity. The results are consistent with the proposition that hippocampal-dependent memory processes such as recollection function optimally under moderate levels of stress, whereas more cortically-based processes such as familiarity are enhanced even with higher levels of stress. These results indicate that whether post-encoding stress improves or disrupts recognition memory depends on the specific memory process examined as well as the magnitude of the stress-induced cortisol response. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia.

    Science.gov (United States)

    Terrill, Sarah J; Maske, Calyn B; Williams, Diana L

    2018-03-03

    Glucagon-like peptide 1 (GLP-1) neurons of the caudal brainstem project to many brain areas, including the lateral septum (LS), which has a known role in stress responses. Previously, we showed that endogenous GLP-1 in the LS plays a physiologic role in the control of feeding under non-stressed conditions, however, central GLP-1 is also involved in behavioral and endocrine responses to stress. Here, we asked whether LS GLP-1 receptors (GLP-1R) contribute to stress-induced hypophagia. Male rats were implanted with bilateral cannulas targeting the dorsal subregion of the LS (dLS). In a within-subjects design, shortly before the onset of the dark phase, rats received dLS injections of saline or the GLP-1R antagonist Exendin (9-39) (Ex9) prior to 30 min restraint stress. Food intake was measured continuously for the next 20 h. The stress-induced hypophagia observed within the first 30 min of dark was not influenced by Ex9 pretreatment, but Ex9 tended to blunt the effect of stress as early as 1 and 2 h into the dark phase. By 4-6 h, there were significant stress X drug interactions, and Ex9 pretreatment blocked the stress-induced suppression of feeding. These effects were mediated entirely through changes in average meal size; stress suppressed meal size while dLS Ex9 attenuated this effect. Using a similar design, we examined the role of dLS GLP-1R in the neuroendocrine response to acute restraint stress. As expected, stress potently increased serum corticosterone, but blockade of dLS GLP-1Rs did not affect this response. Together, these data show that endogenous GLP-1 action in the dLS plays a role in some but not all of the physiologic responses to acute stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Effect of the CRF1-receptor antagonist pexacerfont on stress-induced eating and food craving.

    Science.gov (United States)

    Epstein, David H; Kennedy, Ashley P; Furnari, Melody; Heilig, Markus; Shaham, Yavin; Phillips, Karran A; Preston, Kenzie L

    2016-12-01

    In rodents, antagonism of receptors for corticotropin-releasing factor (CRF) blocks stress-induced reinstatement of drug or palatable food seeking. To test anticraving properties of the CRF 1 antagonist pexacerfont in humans. We studied stress-induced eating in people scoring high on dietary restraint (food preoccupation and chronic unsuccessful dieting) with body-mass index (BMI) >22. In a double-blind, between-groups trial, 31 "restrained" eaters were stabilized on either pexacerfont (300 mg/day for 7 days, then 100 mg/day for 21 days) or placebo. On day 15, they underwent a math-test stressor; during three subsequent visits, they heard personalized craving-induction scripts. In each session, stress-induced food consumption and craving were assessed in a bogus taste test and on visual analog scales. We used digital video to monitor daily ingestion of study capsules and nightly rating of food problems/preoccupation on the Yale Food Addiction Scale (YFAS). The study was stopped early due to an administrative interpretation of US federal law, unrelated to safety or outcome. The bogus taste tests suggested some protective effect of pexacerfont against eating after a laboratory stressor (r effect  = 0.30, 95 % CL = -0.12, 0.63, Bayes factor 11.30). Similarly, nightly YFAS ratings were lower with pexacerfont than placebo (r effect  = 0.39, CI 0.03, 0.66), but this effect should be interpreted with caution because it was present from the first night of pill ingestion, despite pexacerfont's slow pharmacokinetics. The findings may support further investigation of the anticraving properties of CRF 1 antagonists, especially for food.

  7. Brain prolactin is involved in stress-induced REM sleep rebound.

    Science.gov (United States)

    Machado, Ricardo Borges; Rocha, Murilo Ramos; Suchecki, Deborah

    2017-03-01

    REM sleep rebound is a common behavioural response to some stressors and represents an adaptive coping strategy. Animals submitted to multiple, intermittent, footshock stress (FS) sessions during 96h of REM sleep deprivation (REMSD) display increased REM sleep rebound (when compared to the only REMSD ones, without FS), which is correlated to high plasma prolactin levels. To investigate whether brain prolactin plays a role in stress-induced REM sleep rebound two experiments were carried out. In experiment 1, rats were either not sleep-deprived (NSD) or submitted to 96h of REMSD associated or not to FS and brains were evaluated for PRL immunoreactivity (PRL-ir) and determination of PRL concentrations in the lateral hypothalamus and dorsal raphe nucleus. In experiment 2, rats were implanted with cannulas in the dorsal raphe nucleus for prolactin infusion and were sleep-recorded. REMSD associated with FS increased PRL-ir and content in the lateral hypothalamus and all manipulations increased prolactin content in the dorsal raphe nucleus compared to the NSD group. Prolactin infusion in the dorsal raphe nucleus increased the time and length of REM sleep episodes 3h after the infusion until the end of the light phase of the day cycle. Based on these results we concluded that brain prolactin is a major mediator of stress-induced REMS. The effect of PRL infusion in the dorsal raphe nucleus is discussed in light of the existence of a bidirectional relationship between this hormone and serotonin as regulators of stress-induced REM sleep rebound. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Stress-induced eating in women with binge-eating disorder and obesity.

    Science.gov (United States)

    Klatzkin, Rebecca R; Gaffney, Sierra; Cyrus, Kathryn; Bigus, Elizabeth; Brownley, Kimberly A

    2018-01-01

    The purpose of the current study was to investigate stress-induced eating in women with binge-eating disorder (BED) and obesity. Three groups of women [obese with BED (n=9); obese non-BED (n=11); and normal weight (NW) non-BED (n=12)], rated their levels of hunger and psychological distress before and after completing the Trier Social Stress Test, followed by food anticipation and then consumption of their preferred snack food. We differentiated between the motivational and hedonic components of eating by measuring the amount of food participants poured into a serving bowl compared to the amount consumed. Stress did not affect poured and consumed calories differently between groups. Across all subjects, calories poured and consumed were positively correlated with post-stress hunger, but calories poured was positively correlated with post-stress anxiety and negative affect. These results indicate that stress-related psychological factors may be more strongly associated with the motivational drive to eat (i.e. amount poured) rather than the hedonic aspects of eating (i.e. amount consumed) for women in general. Exploratory correlation analyses per subgroup suggest that post-stress hunger was positively associated with calories poured and consumed in both non-BED groups. In the obese BED group, calories consumed was negatively associated with dietary restraint and, although not significantly, positively associated with stress-induced changes in anxiety.These findings suggest that stress-induced snacking in obese BED women may be influenced by psychological factors more so than homeostatic hunger mechanisms. After controlling for dietary restraint and negative affect, the NW non-BED women ate a greater percentage of the food they poured than both obese groups, suggesting that obesity may be associated with a heightened motivational drive to eat coupled with a reduction in hedonic pleasure from eating post-stress. Further studies that incorporate novel approaches to

  9. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  10. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  11. Stress Induced Charge-Ordering Process in LiMn_2O_4

    International Nuclear Information System (INIS)

    Chen, Yan; Yu, Dunji; An, Ke

    2016-01-01

    In this letter we report the stress-induced Mn charge-ordering process in the LiMn_2O_4 spinel, evidenced by the lattice strain evolutions due to the Jahn–Teller effects. In situ neutron diffraction reveals the initial stage of this process at low stress, indicating the eg electron localization at the preferential Mn sites during the early phase transition as an underlying charge-ordering mechanism in the charge-frustrated LiMn_2O_4. The initial stage of this transition exhibits as a progressive lattice and charge evolution, without showing a first-order behavior.

  12. Stress-induced state transitions in flexible liquid-crystal devices

    International Nuclear Information System (INIS)

    Ho, I-Lin; Chang, Yia-Chung

    2012-01-01

    This work studies the stress-strain dynamics for the transient optoelectronic characteristics of flexible liquid-crystal (LC) devices. Due to the fast response of LC directors, the configuration of the LC is assumed to be in quasi-equilibrium during the process of elastic deformations of the flexible structures. The LC medium hence can be treated effectively as a thin-film layer and can approximately follow the strain-stress mechanism in the solids. Relevant theoretical algorithms are studied in this work, and numerical results present the stress-induced state transitions in the π cell.

  13. Stress-induced ECM alteration modulates cellular microRNAs that feedback to readjust the extracellular environment and cell behaviour

    Directory of Open Access Journals (Sweden)

    Halyna R Shcherbata

    2013-12-01

    Full Text Available The extracellular environment is a complex entity comprising of the extracellular matrix (ECM and regulatory molecules. It is highly dynamic and under cell-extrinsic stress, transmits the stressed organism’s state to each individual ECM-connected cell. microRNAs (miRNAs are regulatory molecules involved in virtually all the processes in the cell, especially under stress. In this review, we analyse how microRNA expression is regulated downstream of various signal transduction pathways induced by changes in the extracellular environment. In particular, we focus on the muscular dystrophy-associated cell adhesion molecule dystroglycan capable of signal transduction. Then we show how exactly the same miRNAs feedback to regulate the extracellular environment. The ultimate goal of this bi-directional signal transduction process is to change cell behaviour under cell-extrinsic stress in order to respond to it accordingly.

  14. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat.

    Directory of Open Access Journals (Sweden)

    Linda Sterrenburg

    Full Text Available BACKGROUND: Although the higher prevalence of depression in women than in men is well known, the neuronal basis of this sex difference is largely elusive. METHODS: Male and female rats were exposed to chronic variable mild stress (CVMS after which immediate early gene products, corticotropin-releasing factor (CRF mRNA and peptide, various epigenetic-associated enzymes and DNA methylation of the Crf gene were determined in the hypothalamic paraventricular nucleus (PVN, oval (BSTov and fusiform (BSTfu parts of the bed nucleus of the stria terminalis, and central amygdala (CeA. RESULTS: CVMS induced site-specific changes in Crf gene methylation in all brain centers studied in female rats and in the male BST and CeA, whereas the histone acetyltransferase, CREB-binding protein was increased in the female BST and the histone-deacetylase-5 decreased in the male CeA. These changes were accompanied by an increased amount of c-Fos in the PVN, BSTfu and CeA in males, and of FosB in the PVN of both sexes and in the male BSTov and BSTfu. In the PVN, CVMS increased CRF mRNA in males and CRF peptide decreased in females. CONCLUSIONS: The data confirm our hypothesis that chronic stress affects gene expression and CRF transcriptional, translational and secretory activities in the PVN, BSTov, BSTfu and CeA, in a brain center-specific and sex-specific manner. Brain region-specific and sex-specific changes in epigenetic activity and neuronal activation may play, too, an important role in the sex specificity of the stress response and the susceptibility to depression.

  15. Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system.

    Directory of Open Access Journals (Sweden)

    Florian Reichmann

    Full Text Available Environmental enrichment (EE has a beneficial effect on rodent behaviour, neuronal plasticity and brain function. Although it may also improve stress coping, it is not known whether EE influences the brain response to an external (psychological stressor such as water avoidance stress (WAS or an internal (systemic stressor such as gastrointestinal inflammation. This study hence explored whether EE modifies WAS-induced activation of the mouse corticolimbic system and whether this stress response is altered by gastritis or colitis. Male C67BL/6N mice were housed under standard or enriched environment for 9 weeks, after which they were subjected to a 1-week treatment with oral iodoacetamide to induce gastritis or oral dextran sulfate sodium to induce colitis. Following exposure to WAS the expression of c-Fos, a marker of neuronal activation, was measured by immunocytochemistry. EE aggravated experimentally induced colitis, but not gastritis, as shown by an increase in the disease activity score and the colonic myeloperoxidase content. In the brain, EE enhanced the WAS-induced activation of the dentate gyrus and unmasked an inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression within this part of the hippocampus. Conversely, EE inhibited the WAS-evoked activation of the central amygdala and prevented the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this region. EE, in addition, blunted the WAS-induced activation of the infralimbic cortex and attenuated the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this area. These data reveal that EE has a region-specific effect on stress-induced c-Fos expression in the corticolimbic system, which is likely to improve stress resilience. The response of the prefrontal cortex - amygdala - hippocampus circuitry to psychological stress is also modified by the systemic stress of gut inflammation, and this interaction between external

  16. Role of serotonin in the intestinal mucosal epithelium barrier in weaning mice undergoing stress-induced diarrhea.

    Science.gov (United States)

    Dong, Yulan; Wang, Zixu; Qin, Zhuoming; Cao, Jing; Chen, Yaoxing

    2018-02-01

    Stress-induced diarrhea is a frequent and challenging threat to humans and domestic animals. Serotonin (5-HT) has been shown to be involved in the pathological process of stress-induced diarrhea. However, the role of 5-HT in stress-induced diarrhea remains unclear. A stress-induced diarrhea model was established in 21-day-old ICR weaning mice through an intragastric administration of 0.25 mL of 0.4 g/mL folium sennae and restraint of the hind legs with adhesive tape for 4 h to determine whether 5-HT regulates the mucosal barrier to cause diarrhea. Mice with decreased levels of 5-HT were pretreated with an intraperitoneal injection of 300 mg/kg p-chlorophenylalanine (PCPA), a 5-HT synthesis inhibitor. After 5 days of treatment, the stress level, body weight and intestinal mucosal morphology indexes were measured. Compared to the controls, the mice with stress-induced diarrhea displayed a stress reaction, with increased corticosterone levels, as well as increased 5-HT-positive cells. However, the mice with stress-induced diarrhea exhibited decreased body weights, villus height to crypt depth ratios (V/C), and Occludin and Claudin1 expression. The PCPA injection reversed these effects in mice with different degrees of stress-induced diarrhea. Based on these findings, inhibition of 5-HT synthesis relieved the stress response and improved the health of the intestinal tract, including both the intestinal absorption capacity, as determined by the villus height and crypt depth, and the mucosal barrier function, as determined by the tight junction proteins of epithelial cell.

  17. Stress-induced deficits in working memory and visuo-constructive abilities in Special Operations soldiers.

    Science.gov (United States)

    Morgan, Charles A; Doran, Anthony; Steffian, George; Hazlett, Gary; Southwick, Steven M

    2006-10-01

    Pre-clinical and clinical studies have shown acute stress may impair working memory and visuo-spatial ability. This study was designed to clarify the nature of stress-induced cognitive deficits in soldiers and how such deficits may contribute to operational or battlefield errors. One hundred eighty-four Special Operations warfighters enrolled in Survival School completed pre-stress measures of dissociation and trauma exposure. Subjects were randomized to one of three assessment groups (Pre-stress, Stress, Post-stress) and were administered the Rey Ostereith Complex Figure (ROCF). All subjects completed post-stress measures of dissociation. ROCF copy and recall were normal in the Pre- and Post-stress groups. ROCF copy and recall were significantly impaired in the Stress Group. Stress group ROCF copy performance was piecemeal, and ROCF recall was impaired. Symptoms of dissociation were negatively associated with ROCF recall in the Stress group. Baseline dissociation and history of traumatic stress predicted cognitive impairment during stress. Stress exposure impaired visuo-spatial capacity and working memory. In rats, monkeys, and humans, high dopamine and NE turnover in the PFC induce deficits in cognition and spatial working memory. Improved understanding of stress-induced cognitive deficits may assist in identification of soldiers at risk and lead to the development of better countermeasures.

  18. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    International Nuclear Information System (INIS)

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J.; Raikhel, N.V.

    1989-01-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more [ 35 S]cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA

  19. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    Science.gov (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  20. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation within the Amygdala.

    Science.gov (United States)

    Aubry, Antonio V; Serrano, Peter A; Burghardt, Nesha S

    2016-01-01

    Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR) and norepinephrine release within the amygdala leads to the mobilization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

  1. Reward dependence moderates smoking-cue- and stress-induced cigarette cravings.

    Science.gov (United States)

    Michalowski, Alexandra; Erblich, Joel

    2014-12-01

    Cigarette cravings following exposure to smoking cues in a smoker's environment are thought to play an important role in cessation failure. The possibility that dispositional factors may impact cue-induced cravings, though intriguing, has received little attention. According to Cloninger's Tridimensional Personality Theory, factors such as reward dependence (RD), harm avoidance (HA), and novelty seeking (NS) may figure prominently in risk for addiction, as well as relapse, in individuals attempting to abstain from drug and alcohol use. Particularly interesting in this regard is the possibility that smokers with higher levels of RD, who are especially sensitive to reward signals, will have heightened craving reactions to smoking cues. To that end, non-treatment-seeking nicotine dependent smokers (n=96, mean age=41.1, 47% African American, 17% Caucasian, 22% Hispanic, 19.3cigs/day, FTND=7.5) underwent a classic experimental cue-induction, during which they were exposed to imagery of: (1) smoking, (2) neutral, and (3) stress cues, and reported their cigarette cravings (0-100) before and after each exposure. Participants also completed the Tridimensional Personality Questionnaire. Not surprisingly, smoking and stress cues (but not neutral cues) elicited significant elevations in craving (p'scues (pcues (pcues. Furthermore, the similar effects of RD on stress-induced craving suggest that both cue-and stress-induced cravings may be influenced by a common underlying disposition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Stress induced right ventricular dysfunction: An indication of reversible right ventricular ischaemia

    International Nuclear Information System (INIS)

    Underwood, S.R.; Walton, S.; Emanuel, R.W.; Swanton, R.H.; Campos Costa, D.; Laming, P.J.; Ell, P.J.

    1987-01-01

    Stress induced changes in left ventricular ejection fraction are widely used in the detection and assessment of coronary artery disease. This study demonstrates that right ventricular dysfunction may also occur, and assesses its significance in terms of coronary artery anatomy. This study involved 14 normal subjects and 26 with coronary artery disease investigated by equilibrium radionuclide ventriculography, at rest and during maximal dynamic exercise. Mean normal resting right ventricular ejection fraction (RVEF) was 0.40 (SD 0.118), and all normal subjects increased RVEF with stress (mean ΔRVEF+0.13 SD 0.099). Mean ΔRVEF in the subjects with coronary artery disease was significantly lower at 0.00 (SD 0.080), but there was overlap between the two groups. The largest falls in RVEF were seen if the right coronary artery was occluded without retrograde filling. In this subgroup with the most severely compromised right ventricular perfusion (nine subjects), RVEF always fell with stress, and mean ΔRVEF was -0.08 (SD 0.050). There was no significant correlation between ΔLVEF and ΔRVEF, implying that the right ventricular dysfunction was due to right ventricular ischaemia, rather than secondary to left ventricular dysfunction. Stress induced right ventricular ischaemia can therefore be detected readily by radionuclide ventriculography. (orig.)

  3. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  4. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals

    International Nuclear Information System (INIS)

    Chien, F.R.; Ubic, F.J.; Prakash, V.; Heuer, A.H.

    1998-01-01

    The stress-induced tetragonal to monoclinic (t → m) martensitic transformation, stress-induced ferroelastic domain switching, and dislocation slip were induced by Vickers microindentation at elevated temperatures in polydomain single crystals of 3 mol%-Y 2 O 3 -stabilized tetragonal ZrO 2 single crystals (3Y-TZS). Chemical etching revealed traces along t directions adjacent to indentations, and Raman spectroscopy and TEM have shown that these traces are caused by products of the martensitic transformation, i.e. the monoclinic product phase forms primarily as thin, long plates with a habit plane approximately on (bar 301) m . This habit plane and the associated shear strain arising from the transformation, visible in TEM micrographs at the intersection of crystallographically equivalent martensite plates, were successfully predicted using the observed lattice correspondence and the phenomenological invariant plane strain theory of martensitic transformations. The extent of the martensitic transformation increased with increasing temperature from room temperature up to 300 C, but then decreased at higher temperatures. Ferroelastic deformation of tetragonal ZrO 2 has been observed at all temperatures up to 1,000 C. At the highest temperature, only ferroelastic domain switching and dislocation slip occurred during indentation-induced deformation

  5. Molecular Mechanisms of Stress-Induced Increases in Fear Memory Consolidation Within the Amygdala

    Directory of Open Access Journals (Sweden)

    Antonio Aubry

    2016-10-01

    Full Text Available Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR and norepinephrine release within the amygdala leads to the mobilization of AMPA receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

  6. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    Science.gov (United States)

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  7. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    Science.gov (United States)

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  8. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Directory of Open Access Journals (Sweden)

    Penny J Tricker

    2015-09-01

    Full Text Available The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defence ‘priming’ and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity’s adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  9. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Science.gov (United States)

    Tricker, Penny J

    2015-01-01

    The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defense "priming" and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity's adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  10. Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression

    Directory of Open Access Journals (Sweden)

    Francesco Rusconi

    2018-05-01

    Full Text Available Psychiatric disorders entail maladaptive processes impairing individuals’ ability to appropriately interface with environment. Among them, depression is characterized by diverse debilitating symptoms including hopelessness and anhedonia, dramatically impacting the propensity to live a social and active life and seriously affecting working capability. Relevantly, besides genetic predisposition, foremost risk factors are stress-related, such as experiencing chronic psychosocial stress—including bullying, mobbing and abuse—, and undergoing economic crisis or chronic illnesses. In the last few years the field of epigenetics promised to understand core mechanisms of gene-environment crosstalk, contributing to get into pathogenic processes of many disorders highly influenced by stressful life conditions. However, still very little is known about mechanisms that tune gene expression to adapt to the external milieu. In this Perspective article, we discuss a set of protective, functionally convergent epigenetic processes induced by acute stress in the rodent hippocampus and devoted to the negative modulation of stress-induced immediate early genes (IEGs transcription, hindering stress-driven morphostructural modifications of corticolimbic circuitry. We also suggest that chronic stress damaging protective epigenetic mechanisms, could bias the functional trajectory of stress-induced neuronal morphostructural modification from adaptive to maladaptive, contributing to the onset of depression in vulnerable individuals. A better understanding of the epigenetic response to stress will be pivotal to new avenues of therapeutic intervention to treat depression, especially in light of limited efficacy of available antidepressant drugs.

  11. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A Stress-Induced Bias in the Reading of the Genetic Code in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Adi Oron-Gottesman

    2016-11-01

    Full Text Available Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM, composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF-like element in ribosomal protein bS1 (bacterial S1, apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA.

  13. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  14. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  15. Effects of Cynodon dactylon on Stress-Induced Infertility in Male Rats

    Science.gov (United States)

    Chidrawar, VR; Chitme, HR; Patel, KN; Patel, NJ; Racharla, VR; Dhoraji, NC; Vadalia, KR

    2011-01-01

    Cynodon dactylon (Family: Poaceae) is known to be a tackler in Indian mythology and is offered to Lord Ganesha. It is found everywhere, even on waste land, road side, dry places, and spreads vigorously on cultivated ground. This study was carried out with an objective to test if the constituents of this plant are useful in coping stress-induced sexual In this study, we considered immobilization stress to induce male infertility and the effect of C. dactylon in restoration of the dysfunction was evaluated by considering sexual behavioral observations, sexual performance, fructose content of the seminal vesicles, epididymal sperm concentration and histopathological examinations as parameters. Treatment of rats under stress with methanolic extract of C. dactylon has shown a promising effect in overcoming stress-induced sexual dysfunction, sexual performance, fructose content, sperm concentration and its effect on accessory sexual organs and body weight. We conclude that active constituents of C. dactylon present in methanolic extract have a potent aphrodisiac and male fertility activity. PMID:21607051

  16. Finite-strain micromechanical model of stress-induced martensitic transformations in shape memory alloys

    International Nuclear Information System (INIS)

    Stupkiewicz, S.; Petryk, H.

    2006-01-01

    A micromechanical model of stress-induced martensitic transformation in single crystals of shape memory alloys is developed. This model is a finite-strain counterpart to the approach presented recently in the small-strain setting [S. Stupkiewicz, H. Petryk, J. Mech. Phys. Solids 50 (2002) 2303-2331]. The stress-induced transformation is assumed to proceed by the formation and growth of parallel martensite plates within the austenite matrix. Propagation of phase transformation fronts is governed by a rate-independent thermodynamic criterion with a threshold value for the thermodynamic driving force, including in this way the intrinsic dissipation due to phase transition. This criterion selects the initial microstructure at the onset of transformation and governs the evolution of the laminated microstructure at the macroscopic level. A multiplicative decomposition of the deformation gradient into elastic and transformation parts is assumed, with full account for the elastic anisotropy of the phases. The pseudoelastic behavior of Cu-Zn-Al single crystal in tension and compression is studied as an application of the model

  17. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    Science.gov (United States)

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders.

  18. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhu

    Full Text Available Hypothalamus-pituitary-adrenal (HPA hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR - neuronal nitric oxide synthesis enzyme (nNOS - nitric oxide (NO pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  19. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    Science.gov (United States)

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  20. Prenatal chronic mild stress induces depression-like behavior and sex-specific changes in regional glutamate receptor expression patterns in adult rats.

    Science.gov (United States)

    Wang, Y; Ma, Y; Hu, J; Cheng, W; Jiang, H; Zhang, X; Li, M; Ren, J; Li, X

    2015-08-20

    Chronic stress during critical periods of human fetal brain development is associated with cognitive, behavioral, and mood disorders in later life. Altered glutamate receptor (GluR) expression has been implicated in the pathogenesis of stress-dependent disorders. To test whether prenatal chronic mild stress (PCMS) enhances offspring's vulnerability to stress-induced behavioral and neurobiological abnormalities and if this enhanced vulnerability is sex-dependent, we measured depression-like behavior in the forced swimming test (FST) and regional changes in GluR subunit expression in PCMS-exposed adult male and female rats. Both male and female PCMS-exposed rats exhibited stronger depression-like behavior than controls. Males and females exhibited unique regional changes in GluR expression in response to PCMS alone, FST alone (CON-FST), and PCMS with FST (PCMS-FST). In females, PCMS alone did not alter N-methyl-d-aspartate receptor (NMDAR) or metabotropic glutamate receptor (mGluR) expression, while in PCMS males, higher mGluR2/3, mGluR5, and NR1 expression levels were observed in the prefrontal cortex. In addition, PCMS altered the change in GluR expression induced by acute stress (the FST test), and this too was sex-specific. Male PCMS-FST rats expressed significantly lower mGluR5 levels in the hippocampus, lower mGluR5, NR1, postsynaptic density protein (PSD)95, and higher mGluR2/3 in the prefrontal cortex, and higher mGluR5 and PSD95 in the amygdala than male CON-FST rats. Female PCMS-FST rats expressed lower NR1 in the hippocampus, lower NR2B and PSD95 in the prefrontal cortex, lower mGluR2/3 in the amygdala, and higher PSD95 in the amygdala than female CON-FST rats. PCMS may increase the offspring's vulnerability to depression by altering sex-specific stress-induced changes in glutamatergic signaling. Copyright © 2015. Published by Elsevier Ltd.

  1. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE −/− mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Qin, Meng [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China); Ye, Jing-xue [Jilin Agricultural University, No. 2888, Xincheng Street, Changchun, 130118 Jilin (China); Pan, Rui-le; Meng, Xiang-bao; Wang, Min; Luo, Yun; Li, Zong-yang [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China); Wang, Hong-wei, E-mail: hwang@nju.edu.cn [Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210093 (China); Sun, Xiao-bo, E-mail: sunsubmit@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing (China)

    2013-08-15

    Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE −/− mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H{sub 2}O{sub 2})-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H{sub 2}O{sub 2}-induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H{sub 2}O{sub 2}-induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury. - Highlights: • Myricitrin prevents early atherosclerosis in ApoE−/− mice. • Myricitrin protects endothelial cell from H{sub 2}O{sub 2} induced injury in rat and HUVECs. • Myricitrin enhanced NO release and up

  2. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE −/− mice

    International Nuclear Information System (INIS)

    Sun, Gui-bo; Qin, Meng; Ye, Jing-xue; Pan, Rui-le; Meng, Xiang-bao; Wang, Min; Luo, Yun; Li, Zong-yang; Wang, Hong-wei; Sun, Xiao-bo

    2013-01-01

    Atherosclerosis (AS) is a state of heightened oxidative stress characterized by lipid and protein oxidation in vascular walls. Oxidative stress-induced vascular endothelial cell (VEC) injury is a major factor in the pathogenesis of AS. Myricitrin, a natural flavonoid isolated from the root bark of Myrica cerifera, was recently found to have a strong antioxidative effect. However, its use for treating cardiovascular diseases, especially AS is still unreported. Consequently, we evaluated the cytoprotective effect of myricitrin on AS by assessing oxidative stress-induced VEC damage. The in vivo study using an ApoE −/− mouse model of AS demonstrated that myricitrin treatment protects against VEC damage and inhibits early AS plaque formation. This effect is associated with the antioxidative effect of myricitrin, as observed in a hydrogen peroxide (H 2 O 2 )-induced rat model of artery endothelial injury and primary cultured human VECs. Myricitrin treatment also prevents and attenuates H 2 O 2 -induced endothelial injury. Further investigation of the cytoprotective effects of myricitrin demonstrated that myricitrin exerts its function by scavenging for reactive oxygen species, as well as reducing lipid peroxidation, blocking NO release, and maintaining mitochondrial transmembrane potential. Myricitrin treatment also significantly decreased H 2 O 2 -induced apoptosis in VECs, which was associated with significant inhibition of p53 gene expression, activation of caspase-3 and the MAPK signaling pathway, and alteration of the patterns of pro-apoptotic and anti-apoptotic gene expression. The resulting significantly increased bcl-2/bax ratio indicates that myricitrin may prevent the apoptosis induced by oxidative stress injury. - Highlights: • Myricitrin prevents early atherosclerosis in ApoE−/− mice. • Myricitrin protects endothelial cell from H 2 O 2 induced injury in rat and HUVECs. • Myricitrin enhanced NO release and up regulates eNOS activity in HUVECs.

  3. Melatonin mediated antidepressant-like effect in the hippocampus of chronic stress-induced depression rats: Regulating vesicular monoamine transporter 2 and monoamine oxidase A levels.

    Science.gov (United States)

    Stefanovic, Bojana; Spasojevic, Natasa; Jovanovic, Predrag; Jasnic, Nebojsa; Djordjevic, Jelena; Dronjak, Sladjana

    2016-10-01

    The hippocampus is sensitive to stress which activates norepinephrine terminals deriving from the locus coeruleus. Melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behaviour. Thus, in the present study, an examination was made of the effect of chronic melatonin treatment on norepinephrine content, synthesis, uptake, vesicular transport and degradation in the hippocampus of rats exposed to CUMS. This entailed quantifying the norephinephrine, mRNA and protein levels of DBH, NET, VMAT 2, MAO-A and COMT. The results show that CUMS evoked prolonged immobility. Melatonin treatment decreased immobility in comparison with the placebo group, reflecting an antidepressant-like effect. Compared with the placebo group, a dramatic decrease in norepinephrine content, decreased VMAT2 mRNA and protein and increased MAO-A protein levels in the hippocampus of the CUMS rats were observed. However, no significant differences in the levels of DBH, NET, COMT mRNA and protein and MAO-A mRNA levels between the placebo and the stressed groups were found. The results showed the restorative effects of melatonin on the stress-induced decline in the norepinephrine content of the hippocampus. It was observed that melatonin treatment in the CUMS rats prevented the stress-induced decrease in VMAT2 mRNA and protein levels, whereas it reduced the increase of the mRNA of COMT and protein levels of MAO-A. Chronic treatment with melatonin failed to alter the gene expression of DBH or NET in the hippocampus of the CUMS rats. Additionally, the results show that melatonin enhances VMAT2 expression and norepinephrine storage, whilst it reduces norepinephrine degrading enzymes. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  4. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    Science.gov (United States)

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  5. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  6. Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Laplanche, G.; Pfetzing-Micklich, J.; Eggeler, G.

    2014-01-01

    In the present work we used nanoindentation with a spherical indenter tip to study the formation of stress-induced martensite in NiTi shape memory alloys. Prior to nanoindentation, orientation imaging was performed to select austenite grains with specific crystallographic orientations, including the principal crystallographic directions [0 0 1], [1 0 1] and [1 1 1]. We studied a material where stress-induced martensite is stable at room temperature and found surface patterns with four-, two- and threefold symmetries for the [0 0 1], [1 0 1] and [1 1 1] crystallographic indentation directions, respectively. Atomic force microscopy investigations of the topography showed that the surface patterns were associated with sink-ins. The crystallographic sink-in patterns disappeared during heating, which proved their martensitic origin. Our results provide clear experimental evidence which shows that the crystallographic anisotropy of nanoindentation is governed by the crystallographic anisotropy of the stress-induced formation of martensite

  7. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels.

    Science.gov (United States)

    Tripathi, Sunil Jamuna; Chakraborty, Suwarna; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2017-07-01

    Chronic stress causes detrimental effects on various forms of learning and memory. The basolateral amygdala (BLA) not only plays a crucial role in mediating certain forms of memory, but also in the modulation of the effects of stress. Chronic immobilization stress (CIS) results in hypertrophy of the BLA, which is believed to be one of the underlying causes for stress' effects on learning. Thus, it is plausible that preventing the effects of CIS on amygdala would preclude its deleterious cognitive effects. Accordingly, in the first part, we evaluated the effect of excitotoxic lesion of the BLA on chronic stress-induced hippocampal-dependent spatial learning using a partially baited radial arm maze task. The BLA was ablated bilaterally using ibotenic acid prior to CIS. Chronically stressed rats showed impairment in spatial learning with decreased percentage correct choice and increased reference memory errors. Excitotoxic lesion of the BLA prevented the impairment in spatial learning and reference memory. In the retention test, lesion of the BLA was able to rescue the chronic stress-induced impairment. Interestingly, stress-induced enhanced plasma corticosterone levels were partially prevented by the lesion of BLA. These results motivated us to evaluate if the same effects can be observed with temporary inactivation of BLA, only during stress. We found that chronic stress-induced spatial learning deficits were also prevented by temporary inactivation of the BLA. Additionally, temporary inactivation of BLA partially precluded the stress-induced increase in plasma corticosterone levels. Thus, inactivation of BLA precludes stress-induced spatial learning deficits, and enhanced plasma corticosterone levels. It is speculated that BLA inactivation-induced reduction in corticosterone levels during stress, might be crucial in restoring spatial learning impairments. Our study provides evidence that amygdalar modulation during stress might be beneficial for strategic

  8. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  9. Tuning stress-induced magnetic anisotropy and high frequency properties of FeCo films deposited on different curvature substrates

    International Nuclear Information System (INIS)

    Wang, Z.K.; Feng, E.X.; Liu, Q.F.; Wang, J.B.; Xue, D.S.

    2012-01-01

    It is important to control magnetic anisotropy of ferromagnetic materials. In this work, FeCo thin films are deposited on the curving substrates by electrochemical deposition to adjust the stress-induced magnetic anisotropy. The compressive stress is produced in the as-deposited films after the substrates are flattened. A simplified theoretical model of ferromagnetic resonance is utilized to measure the intrinsic magnetic anisotropy field and saturation magnetization. The results show that the stress-induced magnetic anisotropy and the resonance frequency increase with the increase of substrate curvature. The induced easy axis is perpendicular to the compressive stress direction.

  10. Stress induced martensite at the crack tip in NiTi alloys during fatigue loading

    Directory of Open Access Journals (Sweden)

    E. Sgambitterra

    2014-10-01

    Full Text Available Crack tip stress-induced phase transformation mechanisms in nickel-titanium alloys (NiTi were analyzed by Digital Image Correlation (DIC, under fatigue loads. In particular, Single Edge Crack (SEC specimens, obtained from a commercial pseudoelastic NiTi sheet, and an ad-hoc experimental setup were used, for direct measurements of the near crack tip displacement field by the DIC technique. Furthermore, a fitting procedure was developed to calculate the mode I Stress Intensity Factor (SIF, starting from the measured displacement field. Finally, cyclic tensile tests were performed at different operating temperature, in the range 298-338 K, and the evolution of the SIF was studied, which revealed a marked temperature dependence.

  11. Does stress induce (para)sex? Implications for Candida albicans evolution.

    Science.gov (United States)

    Berman, Judith; Hadany, Lilach

    2012-05-01

    Theory predicts that stress is a key factor in explaining the evolutionary role of sex in facultatively sexual organisms, including microorganisms. Organisms capable of reproducing both sexually and asexually are expected to mate more frequently when stressed, and such stress-induced mating is predicted to facilitate adaptation. Here, we propose that stress has an analogous effect on the parasexual cycle in Candida albicans, which involves alternation of generations between diploid and tetraploid cells. The parasexual cycle can generate high levels of diversity, including aneuploidy, yet it apparently occurs only rarely in nature. We review the evidence that stress facilitates four major steps in the parasexual cycle and suggest that parasex occurs much more frequently under stress conditions. This may explain both the evolutionary significance of parasex and its apparent rarity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  13. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ignacio Negrón-Oyarzo

    2016-01-01

    Full Text Available Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.

  14. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  15. Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core.

    Science.gov (United States)

    Dong, Ming-Ming; Wang, Cheng-Wei; Wu, Zheng-Xiang; Zhang, Yang; Pan, Huai-Hai; Zhao, Quan-Zhong

    2013-07-01

    We report on the fabrication of stress-induced optical channel waveguides and waveguide splitters with laser-depressed cladding by femtosecond laser. The laser beam was focused into neodymium doped phosphate glass by an objective producing a destructive filament. By moving the sample along an enclosed routine in the horizontal plane followed by a minor descent less than the filament length in the vertical direction, a cylinder with rarified periphery and densified center region was fabricated. Lining up the segments in partially overlapping sequence enabled waveguiding therein. The refractive-index contrast, near- and far-field mode distribution and confocal microscope fluorescence image of the waveguide were obtained. 1-to-2, 1-to-3 and 1-to-4 splitters were also machined with adjustable splitting ratio. Compared with traditional femtosecond laser writing methods, waveguides prepared by this approach showed controllable mode conduction, strong field confinement, large numerical aperture, low propagation loss and intact core region.

  16. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  17. The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart.

    Science.gov (United States)

    Doroudgar, Shirin; Glembotski, Christopher C

    2011-04-01

    Intercellular communication depends on many factors, including proteins released via the classical or non-classical secretory pathways, many of which must be properly folded to be functional. Owing to their adverse effects on the secretion machinery, stresses such as ischemia can impair the folding of secreted proteins. Paradoxically, cells rely on secreted proteins to mount a response designed to resist stress-induced damage. This review examines this paradox using proteins secreted from the heart, cardiokines, as examples, and focuses on how the ischemic heart maintains or even increases the release of select cardiokines that regulate important cellular processes in the heart, including excitation-contraction coupling, hypertrophic growth, myocardial remodeling and stem cell function, in ways that moderate ischemic damage and enhance cardiac repair. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Kava and valerian in the treatment of stress-induced insomnia.

    Science.gov (United States)

    Wheatley, D

    2001-09-01

    Kava and valerian are herbal remedies, claimed to have anxiolytic and sedative properties respectively, without dependence potential or any appreciable side-effects. In this pilot study, 24 patients suffering from stress-induced insomnia were treated for 6 weeks with kava 120 mg daily. This was followed by 2 weeks off treatment and then, 5 having dropped out, 19 received valerian 600 mg daily for another 6 weeks. Stress was measured in three areas: social, personal and life-events; insomnia in three areas also: time to fall asleep, hours slept and waking mood. Total stress severity was significantly relieved by both compounds (p effects was 58% with each drug respectively and the 'commonest' effect was vivid dreams with valerian (16%), followed by dizziness with kava (12% ). These compounds may be useful in the treatment of stress and insomnia but further studies are required to determine their relative roles for such indications. Copyright 2001 John Wiley & Sons, Ltd.

  19. Heat stress induced changes in metabolic regulators of donkeys from arid tracts in India

    Directory of Open Access Journals (Sweden)

    Kataria N.

    2012-05-01

    Full Text Available To find out heat stress induced changes in metabolic regulators of donkeys from arid tracts in India, blood samples were collected to harvest the serum during moderate and extreme hot ambiences. The metabolic enzymes determined were sorbitol dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, glutamate dehydrogenase, ornithine carbamoyl transferase, gammaglutamayl transferase, 5’nucleotidase, glucose-6-phosphatase, arginase, and aldolase. The mean values of all the serum enzymes increased significantly (p≤0.05 during hot ambience as compared to respective values during moderate ambience. It was concluded that increased activity of all the enzymes in the serum was due to modulation of metabolic reactions to combat the effect of hot ambience on the animals. Activation of gluconeogenesis along with hexose monophosphate shunt and urea cycle probably helped the animals to combat the heat stress.

  20. Stress induced modulation of magnetic domain diffraction of single crystalline yttrium iron garnet

    Science.gov (United States)

    Mito, Shinichiro; Yoshihara, Yuki; Takagi, Hiroyuki; Inoue, Mitsuteru

    2018-05-01

    Stress induced modulation of the diffraction angle and efficiency of the light reflected from a stripe-domain magnetic garnet was demonstrated. The spacing of the magnetic domain was changed using the inverse magnetostriction effect. The sample structure was a piezo actuator/Al reflection layer/magnetic garnet substrate. A diffraction angle between the 0th and 1st ordered light was changed from 9.12 deg. to 10.20 deg. This result indicates that the domain spacing was changed from 3.3 μm to 3.0 μm. The change of the diffraction angle was irreversible for the voltage. However, reversible, linear and continuous change of the diffraction efficiency was observed. These results could be applicable for a voltage-driven optical solid state light deflector with low power consumption and high switching speed.

  1. Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Rebecca M Shansky

    2013-04-01

    Full Text Available The mechanisms and neural circuits that drive emotion and cognition are inextricably linked. Activation of the hypothalamic-pituitary-adrenal (HPA axis as a result of stress or other causes of arousal initiates a flood of hormone and neurotransmitter release throughout the brain, affecting the way we think, decide, and behave. This review will focus on factors that influence the function of the prefrontal cortex (PFC, a brain region that governs higher-level cognitive processes and executive function. The PFC becomes markedly impaired by stress, producing measurable deficits in working memory. These deficits arise from the interaction of multiple neuromodulators, including glucocorticoids, catecholamines, and gonadal hormones; here we will discuss the non- human primate and rodent literature that has furthered our understanding of the circuitry, receptors, and signaling cascades responsible for stress-induced prefrontal dysfunction.

  2. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage

    Directory of Open Access Journals (Sweden)

    Jiaxiang Shao

    2016-03-01

    Full Text Available Abstract SIRT6 is a NAD+-dependent histone deacetylase and has been implicated in the regulation of genomic stability, DNA repair, metabolic homeostasis and several diseases. The effect of SIRT6 in cerebral ischemia and oxygen/glucose deprivation (OGD has been reported, however the role of SIRT6 in oxidative stress damage remains unclear. Here we used SH-SY5Y neuronal cells and found that overexpression of SIRT6 led to decreased cell viability and increased necrotic cell death and reactive oxygen species (ROS production under oxidative stress. Mechanistic study revealed that SIRT6 induced autophagy via attenuation of AKT signaling and treatment with autophagy inhibitor 3-MA or knockdown of autophagy-related protein Atg5 rescued H2O2-induced neuronal injury. Conversely, SIRT6 inhibition suppressed autophagy and reduced oxidative stress-induced neuronal damage. These results suggest that SIRT6 might be a potential therapeutic target for neuroprotection.

  3. Hepcidin is an antibacterial, stress-inducible peptide of the biliary system.

    Directory of Open Access Journals (Sweden)

    Pavel Strnad

    Full Text Available BACKGROUND/AIMS: Hepcidin (gene name HAMP, an IL-6-inducible acute phase peptide with antimicrobial properties, is the key negative regulator of iron metabolism. Liver is the primary source of HAMP synthesis, but it is also produced by other tissues such as kidney or heart and is found in body fluids such as urine or cerebrospinal fluid. While the role of hepcidin in biliary system is unknown, a recent study demonstrated that conditional gp130-knockout mice display diminished hepcidin levels and increased rate of biliary infections. METHODS: Expression and localization of HAMP in biliary system was analyzed by real time RT-PCR, in-situ hybridization, immunostaining and -blotting, while prohepcidin levels in human bile were determined by ELISA. RESULTS: Hepcidin was detected in mouse/human gallbladder and bile duct epithelia. Biliary HAMP is stress-inducible, in that it is increased in biliary cell lines upon IL-6 stimulation and in gallbladder mucosa of patients with acute cholecystitis. Hepcidin is also present in the bile and elevated prohepcidin levels were observed in bile of primary sclerosing cholangitis (PSC patients with concurrent bacterial cholangitis compared to PSC subjects without bacterial infection (median values 22.3 vs. 8.9; p = 0.03. In PSC-cholangitis subjects, bile prohepcidin levels positively correlated with C-reactive protein and bilirubin levels (r = 0.48 and r = 0.71, respectively. In vitro, hepcidin enhanced the antimicrobial capacity of human bile (p<0.05. CONCLUSION: Hepcidin is a stress-inducible peptide of the biliary epithelia and a potential marker of biliary stress. In the bile, hepcidin may serve local functions such as protection from bacterial infections.

  4. Dissecting the roles of ROCK isoforms in stress-induced cell detachment.

    Science.gov (United States)

    Shi, Jianjian; Surma, Michelle; Zhang, Lumin; Wei, Lei

    2013-05-15

    The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1(-/-) and ROCK2(-/-) mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin cytoskeleton and cell adhesion. Here, we present additional insights into the roles of ROCK1 and ROCK2 in regulating stress-induced impairment of cell-matrix and cell-cell adhesion. In response to doxorubicin, ROCK1(-/-) MEFs showed significant preservation of both focal adhesions and adherens junctions, while ROCK2(-/-) MEFs exhibited impaired focal adhesions but preserved adherens junctions compared with the wild-type MEFs. Additionally, inhibition of focal adhesion or adherens junction formations by chemical inhibitors abolished the anti-detachment effects of ROCK1 deletion. Finally, ROCK1(-/-) MEFs, but not ROCK2(-/-) MEFs, also exhibited preserved central stress fibers and reduced cell detachment in response to serum starvation. These results add new insights into a novel mechanism underlying the anti-detachment effects of ROCK1 deletion mediated by reduced peripheral actomyosin contraction and increased actin stabilization to promote cell-cell and cell-matrix adhesion. Our studies further support the differential roles of ROCK isoforms in regulating stress-induced loss of central stress fibers and focal adhesions as well as cell detachment.

  5. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing

    Directory of Open Access Journals (Sweden)

    A. Ghirardo

    2016-03-01

    Full Text Available Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs, which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs and "stress-induced" BVOCs (sBVOCs from the dominant broadleaf woody plant species in the megacity of Beijing. Based on the municipal tree census and cuvette BVOC measurements on leaf level, we built an inventory of BVOC emissions, and assessed the potential impact of BVOCs on secondary organic aerosol (SOA formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids, and sesquiterpenes, constituted a significant fraction ( ∼  40 % of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from  ∼  4.8  ×  109 g C year−1 in 2005 to  ∼  10.3  ×  109 g C year−1 in 2010 due to the increase in urban greening, while at the same time the emission of anthropogenic VOCs (AVOCs decreased by 24 %. Based on the BVOC emission assessment, we estimated the biological impact on SOA mass formation potential in Beijing. Constitutive and stress-induced BVOCs might produce similar amounts of secondary aerosol in Beijing. However, the main contributors of SOA-mass formations originated from anthropogenic sources (> 90 %. This study demonstrates the general importance to include sBVOCs when studying BVOC emissions. Although the main problems regarding air quality in Beijing still originate from anthropogenic activities, the present survey suggests that in urban plantation programs, the selection of low-emitting plant species has some potential beneficial effects on urban air quality.

  6. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    Science.gov (United States)

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  7. Sweet food improves chronic stress-induced irritable bowel syndrome-like symptoms in rats.

    Science.gov (United States)

    Rho, Sang-Gyun; Kim, Yong Sung; Choi, Suck Chei; Lee, Moon Young

    2014-03-07

    To investigate whether palatable sweet foods have a beneficial effect on chronic stress-induced colonic motility and inflammatory cytokines. Adult male rats were divided into 3 groups: control (CON, n = 5), chronic variable stress with chow (CVS-A, n = 6), and chronic variable stress with chow and sweet food (CVS-B, n = 6). The rats were fed standard rodent chow as the chow food and/or AIN-76A as the sweet food. A food preference test for AIN-76A was performed in another group of normal rats (n = 10) for twelve days. Fecal pellet output (FPO) was measured for 6 wk during water bedding stress in the CVS groups. The weight of the adrenal glands, adrenocorticotropic hormone (ACTH) and corticosterone levels in plasma were measured. The expression levels of transforming growth factor-β, interleukin (IL)-2, and interferon-gamma (IFN-γ) were measured in the distal part of colonic tissues and plasma using Western blot analysis. In sweet preference test, all rats initially preferred sweet food to chow food. However, the consumption rate of sweet food gradually decreased and reduced to below 50% of total intake eight days after sweet food feeding. Accumulated FPO was higher in the CVS-A group compared with the CVS-B group over time. All stress groups showed significant increases in the adrenal to body weight ratio (CVS-A, 0.14 ± 0.01; CVS-B, 0.14 ± 0.01) compared with the control group (0.12 ± 0.01, P food ingestion during CVS might have an effect on the reduction of stress-induced colonic hyper-motility and pro-inflammatory cytokine production in rats.

  8. Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death.

    Science.gov (United States)

    Anania, Veronica G; Yu, Kebing; Gnad, Florian; Pferdehirt, Rebecca R; Li, Han; Ma, Taylur P; Jeon, Diana; Fortelny, Nikolaus; Forrest, William; Ashkenazi, Avi; Overall, Christopher M; Lill, Jennie R

    2016-07-01

    Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the "unfolded protein response" (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    Science.gov (United States)

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Estrogen receptor-a in the medial amygdala prevents stress-induced elevations in blood pressure in females

    Science.gov (United States)

    Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in femal...

  12. Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Eberlé, Delphine; Suzuki, Ryo

    2008-01-01

    , improved glucose intolerance, decreased expression of gluconeogenic and lipogenic genes, and reduced hepatic steatosis. Thus, MKP-4 has a protective effect against the development of insulin resistance through its ability to dephosphorylate and inactivate crucial mediators of stress-induced insulin...

  13. Influence of stress-induced deformations on observed water flow in fractures of the Climax Granitic Stock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1987-01-01

    Three examples of stress induced influence on fracture dominated hydrology were noted in drifts 1400 ft below surface in granite. Seepage into portions of shears near a fault zone and an adjoining drift, and mineralization of the joints were the three indicators of shear stress. Interpretation of these results are given

  14. Stress-induced martensite variant reorientation in magnetic shape memory Ni–Mn–Ga single crystal studied by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Molnár, Peter; Šittner, Petr; Lukáš, Petr; Hannula, S.-P.; Heczko, Oleg

    2008-01-01

    Roč. 17, č. 3 (2008), 035014/1-035014/4 ISSN 0964-1726 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10480505 Keywords : NiMnGa single crystal * neutron diffraction * stress induced martensite reorientation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.743, year: 2008

  15. Revisiting the TALE repeat.

    Science.gov (United States)

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  16. Reconfigurable multiport EPON repeater

    Science.gov (United States)

    Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio

    2009-11-01

    An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.

  17. Quantum repeated games revisited

    International Nuclear Information System (INIS)

    Frąckiewicz, Piotr

    2012-01-01

    We present a scheme for playing quantum repeated 2 × 2 games based on Marinatto and Weber’s approach to quantum games. As a potential application, we study the twice repeated Prisoner’s Dilemma game. We show that results not available in the classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games proposed by Iqbal and Toor. We point out the drawbacks that make their results unacceptable. (paper)

  18. Short-term repeated corticosterone administration enhances glutamatergic but not GABAergic transmission in the rat motor cortex.

    Science.gov (United States)

    Kula, Joanna; Blasiak, Anna; Czerw, Anna; Tylko, Grzegorz; Sowa, Joanna; Hess, Grzegorz

    2016-04-01

    It has been demonstrated that stress impairs performance of skilled reaching and walking tasks in rats due to the action of glucocorticoids involved in the stress response. Skilled reaching and walking are controlled by the primary motor cortex (M1); however, it is not known whether stress-related impairments in skilled motor tasks are related to functional and/or structural alterations within the M1. We studied the effects of single and repeated injections of corticosterone (twice daily for 7 days) on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) recorded from layer II/III pyramidal neurons in ex vivo slices of the M1, prepared 2 days after the last administration of the hormone. We also measured the density of dendritic spines on pyramidal cells and the protein levels of selected subunits of AMPA, NMDA, and GABAA receptors after repeated corticosterone administration. Repeatedly administered corticosterone induced an increase in the frequency but not in the amplitude of sEPSCs, while a single administration had no effect on the recorded excitatory currents. The frequency and amplitude of sIPSCs as well as the excitability of pyramidal cells were changed neither after single nor after repeated corticosterone administration. Treatment with corticosterone for 7 days did not modify the density of dendritic spines on pyramidal neurons. Corticosterone influenced neither the protein levels of GluA1, GluA2, GluN1, GluN2A, and GluN2B subunits of glutamate receptors nor those of α1, β2, and γ2 subunits of the GABAA receptor. The increase in sEPSCs frequency induced by repeated corticosterone administration faded out within 7 days. These data indicate that prolonged administration of exogenous corticosterone selectively and reversibly enhances glutamatergic, but not GABAergic transmission in the rat motor cortex. Our results suggest that corticosterone treatment results in an enhancement of spontaneous glutamate release from presynaptic

  19. DinB Upregulation Is the Sole Role of the SOS Response in Stress-Induced Mutagenesis in Escherichia coli

    Science.gov (United States)

    Galhardo, Rodrigo S.; Do, Robert; Yamada, Masami; Friedberg, Errol C.; Hastings, P. J.; Nohmi, Takehiko; Rosenberg, Susan M.

    2009-01-01

    Stress-induced mutagenesis is a collection of mechanisms observed in bacterial, yeast, and human cells in which adverse conditions provoke mutagenesis, often under the control of stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e., are stressed. It is therefore important to understand how stress responses increase mutagenesis. In the Escherichia coli Lac assay, stress-induced point mutagenesis requires induction of at least two stress responses: the RpoS-controlled general/starvation stress response and the SOS DNA-damage response, both of which upregulate DinB error-prone DNA polymerase, among other genes required for Lac mutagenesis. We show that upregulation of DinB is the only aspect of the SOS response needed for stress-induced mutagenesis. We constructed two dinB(oc) (operator-constitutive) mutants. Both produce SOS-induced levels of DinB constitutively. We find that both dinB(oc) alleles fully suppress the phenotype of constitutively SOS-“off” lexA(Ind−) mutant cells, restoring normal levels of stress-induced mutagenesis. Thus, dinB is the only SOS gene required at induced levels for stress-induced point mutagenesis. Furthermore, although spontaneous SOS induction has been observed to occur in only a small fraction of cells, upregulation of dinB by the dinB(oc) alleles in all cells does not promote a further increase in mutagenesis, implying that SOS induction of DinB, although necessary, is insufficient to differentiate cells into a hypermutable condition. PMID:19270270

  20. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J., E-mail: jsun@sjtu.edu.cn

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  1. Reduced Orexin System Function Contributes to Resilience to Repeated Social Stress.

    Science.gov (United States)

    Grafe, Laura A; Eacret, Darrell; Dobkin, Jane; Bhatnagar, Seema

    2018-01-01

    Exposure to stress increases the risk of developing affective disorders such as depression and post-traumatic stress disorder (PTSD). However, these disorders occur in only a subset of individuals, those that are more vulnerable to the effects of stress, whereas others remain resilient. The coping style adopted to deal with the stressor, either passive or active coping, is related to vulnerability or resilience, respectively. Important neural substrates that mediate responses to a stressor are the orexins. These neuropeptides are altered in the cerebrospinal fluid of patients with stress-related illnesses such as depression and PTSD. The present experiments used a rodent social defeat model that generates actively coping rats and passively coping rats, which we have previously shown exhibit resilient and vulnerable profiles, respectively, to examine if orexins play a role in these stress-induced phenotypes. In situ radiolabeling and qPCR revealed that actively coping rats expressed significantly lower prepro-orexin mRNA compared with passively coping rats. This led to the hypothesis that lower levels of orexins contribute to resilience to repeated social stress. To test this hypothesis, rats first underwent 5 d of social defeat to establish active and passive coping phenotypes. Then, orexin neurons were inhibited before each social defeat for three additional days using designer receptors exclusively activated by designer drugs (DREADDs). Inhibition of orexins increased social interaction behavior and decreased depressive-like behavior in the vulnerable population of rats. Indeed, these data suggest that lowering orexins promoted resilience to social defeat and may be an important target for treatment of stress-related disorders.

  2. Impact of repeated uniaxial mechanical strain on flexible a-IGZO thin film transistors with symmetric and asymmetric structures

    Science.gov (United States)

    Liao, Po-Yung; Chang, Ting-Chang; Su, Wan-Ching; Chen, Bo-Wei; Chen, Li-Hui; Hsieh, Tien-Yu; Yang, Chung-Yi; Chang, Kuan-Chang; Zhang, Sheng-Dong; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan

    2017-06-01

    This letter investigates repeated uniaxial mechanical stress-induced degradation behavior in flexible amorphous In-Ga-Zn-O thin-film transistors (TFTs) of different geometric structures. Two types of via-contact structure TFTs are investigated: symmetrical and UI structure (TFTs with I- and U-shaped asymmetric electrodes). After repeated mechanical stress, I-V curves for the symmetrical structure show a significant negative threshold voltage (VT) shift, due to mechanical stress-induced oxygen vacancy generation. However, degradation in the UI structure TFTs after stress is a negative VT shift along with the parasitic transistor characteristic in the forward-operation mode, with this hump not evident in the reverse-operation mode. This asymmetrical degradation is clarified by the mechanical strain simulation of the UI TFTs.

  3. Effects of Gladiolus dalenii on the Stress-Induced Behavioral, Neurochemical, and Reproductive Changes in Rats

    Directory of Open Access Journals (Sweden)

    David Fotsing

    2017-09-01

    Full Text Available Gladiolus dalenii is a plant commonly used in many regions of Cameroon as a cure for various diseases like headaches, epilepsy, schizophrenia, and mood disorders. Recent studies have revealed that the aqueous extract of G. dalenii (AEGD exhibited antidepressant-like properties in rats. Therefore, we hypothesized that the AEGD could protect from the stress-induced behavioral, neurochemical, and reproductive changes in rats. The objective of the present study was to elucidate the effect of the AEGD on behavioral, neurochemical, and reproductive characteristics, using female rats subjected to chronic immobilization stress. The chronic immobilization stress (3 h per day for 28 days was applied to induce female reproductive and behavioral impairments in rats. The immobilization stress was provoked in rats by putting them separately inside cylindrical restrainers with ventilated doors at ambient temperature. The plant extract was given to rats orally everyday during 28 days, 5 min before induction of stress. On a daily basis, a vaginal smear was made to assess the duration of the different phases of the estrous cycle and at the end of the 28 days of chronic immobilization stress, the rat’s behavior was assessed in the elevated plus maze. They were sacrificed by cervical disruption. The organs were weighed, the ovary histology done, and the biochemical parameters assessed. The findings of this research revealed that G. dalenii increased the entries and the time of open arm exploration in the elevated plus maze. Evaluation of the biochemical parameters levels indicated that there was a significant reduction in the corticosterone, progesterone, and prolactin levels in the G. dalenii aqueous extract treated rats compared to stressed rats whereas the levels of serotonin, triglycerides, adrenaline, cholesterol, glucose estradiol, follicle stimulating hormone and luteinizing hormone were significantly increased in the stressed rats treated with, G. dalenii

  4. Ancient genes establish stress-induced mutation as a hallmark of cancer.

    Science.gov (United States)

    Cisneros, Luis; Bussey, Kimberly J; Orr, Adam J; Miočević, Milica; Lineweaver, Charles H; Davies, Paul

    2017-01-01

    Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to

  5. Individual differences in pavlovian autoshaping of lever pressing in rats predict stress-induced corticosterone release and mesolimbic levels of monoamines.

    Science.gov (United States)

    Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D

    2000-03-01

    Pavlovian autoshaping CRs are directed and reflexive consummatory responses targeted at objects repeatedly paired with rewarding substances. To evaluate the hypothesis that autoshaping may provide an animal learning model of vulnerability to drug abuse, this study relates individual differences in lever-press autoshaping CR performance in rats to stress-induced corticosterone release and tissue monoamine levels in the mesolimbic dopamine tract. Long-Evans rats (n = 14) were given 20 sessions of Pavlovian autoshaping training wherein the insertion of a retractable lever CS was followed by the response-independent presentation of food US. Large between-subjects differences in lever-press autoshaping CR performance were observed, with group high CR frequency (n = 5) performing many more lever press CRs than group low CR frequency (n = 9). Tail-blood samples were obtained before and after the 20th autoshaping session, then 24 h later the rats were sacrificed and dissection yielded tissue samples of nucleus accumbens (NAC), prefrontal cortex (PFC), caudate putamen (CP), and ventral tegmental area (VTA). Serum levels of postsession corticosterone were elevated in group high CR frequency. HPLC revealed that group high CR frequency had higher tissue levels of dopamine and DOPAC in NAC, lower levels of DOPAC/DA turnover in CP, and lower levels of 5-HIAA and lower 5-HIAA/5-HT turnover in VTA. The neurochemical profile of rats that perform more autoshaping CRs share some features of vulnerability to drug abuse.

  6. Repeat migration and disappointment.

    Science.gov (United States)

    Grant, E K; Vanderkamp, J

    1986-01-01

    This article investigates the determinants of repeat migration among the 44 regions of Canada, using information from a large micro-database which spans the period 1968 to 1971. The explanation of repeat migration probabilities is a difficult task, and this attempt is only partly successful. May of the explanatory variables are not significant, and the overall explanatory power of the equations is not high. In the area of personal characteristics, the variables related to age, sex, and marital status are generally significant and with expected signs. The distance variable has a strongly positive effect on onward move probabilities. Variables related to prior migration experience have an important impact that differs between return and onward probabilities. In particular, the occurrence of prior moves has a striking effect on the probability of onward migration. The variable representing disappointment, or relative success of the initial move, plays a significant role in explaining repeat migration probabilities. The disappointment variable represents the ratio of actural versus expected wage income in the year after the initial move, and its effect on both repeat migration probabilities is always negative and almost always highly significant. The repeat probabilities diminish after a year's stay in the destination region, but disappointment in the most recent year still has a bearing on the delayed repeat probabilities. While the quantitative impact of the disappointment variable is not large, it is difficult to draw comparisons since similar estimates are not available elsewhere.

  7. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity

    DEFF Research Database (Denmark)

    Castro, Jorge E; Diessler, Shanaz; Varea, Emilio

    2012-01-01

    Emerging evidence indicates that certain behavioral traits, such as anxiety, are associated with the development of depression-like behaviors after exposure to chronic stress. However, single traits do not explain the wide variability in vulnerability to stress observed in outbred populations. We...... hypothesized that a combination of behavioral traits might provide a better characterization of an individual's vulnerability to prolonged stress. Here, we sought to determine whether the characterization of relevant behavioral traits in rats could aid in identifying individuals with different vulnerabilities...... to developing stress-induced depression-like behavioral alterations. We also investigated whether behavioral traits would be related to the development of alterations in the hypothalamic-pituitary-adrenal axis and in brain activity - as measured through phosphorylation of extracellular signal-regulated kinase 1...

  8. Stress induced martensitic transformation from bcc to fcc in Ag-Zn

    International Nuclear Information System (INIS)

    Takezawa, K.; Akamatsu, R.; Marukawa, K.

    1995-01-01

    The martensitic transformation in Ag-Zn alloys of low-Zn content has been studied by optical and electron microscopic observations and by tensile tests. The β 1 phase of B2 structure transforms to the thermo-elastic martensite having 9R structure similar to Cu-based alloys upon cooling to temperature below Ms. When the β 1 phase is stretched at room temperature, the slip deformation occurs at first and then the stress-induced martensite(SIM) of wedge-like morphology forms. The SIM has the ordered fcc structure containing micro-twins. This direct transformation from bcc to fcc is a unique feature in Ag-Zn alloys. In Cu alloys, martensites of fcc structure appear only after the second transformation from the first transformation product of 9R structure. The critical stress for the martensitic transformation and a degree of order of SIM decrease as the deformation temperature rises. In Ag-Zn alloys, the martensite of disordered fcc is thermally produced also by up-quenching to a higher temperature. In the present study, the relation between martensites of ordered and disordered fcc is discussed through thermodynamical calculations. The condition for the direct transformation from bcc to fcc is also examined. (orig.)

  9. Stress-induced chemical detection using flexible metal-organic frameworks.

    Science.gov (United States)

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  10. PTR-MS as a technique for investigating stress induced emission of biogenic VOCS

    International Nuclear Information System (INIS)

    Beauchamp, J.; Hansel, A.; Wisthaler, A.; Kleist, E.; Miebach, M.; Weller, U.; Wildt, J.

    2004-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was used in conjunction with two GC-MS systems to investigate stress induced emissions of volatile organic compounds (VOCs) from plants. Experiments were performed in the laboratory under well defined conditions and VOC emissions were induced by ozone exposure at variable concentrations and for different durations. Tobacco (Nicotiana tabaccum cv. Bel W3) plants were used as the investigated species. This investigation demonstrated the ability of PTR-MS to provide excellent high time-resolution on-line measurements of the relevant species. The combination of the PTR-MS instrument with the two GC-MS systems (which enabled accurate compound identification) allowed for detailed investigation of the dynamics of the plants' responses to ozone stress. VOCs measured included methanol, C6- alcohols and aldehydes, methyl salicylate and sesquiterpenes. Results indicate that the temporal stress response of plants depend on the amount of stress encountered by the plant. Measurement technique and experimental results will be presented. (author)

  11. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    Science.gov (United States)

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  13. Nucleation in stress-induced tetragonal-monoclinic transformation of constrained zirconia

    International Nuclear Information System (INIS)

    Chan, S.K.

    1992-08-01

    A theory for stress-induced tetragonal→monoclinic transformation of constrained zirconia is presented based on the assumption that when forcibly strained to a regime of absolute instability where the free energy density of the tetragonal phase has a negative curvature, the constrained tetragonal zirconia becomes unstable with respect to the development of a modulated strain pattern that will evolve into a band of twin monoclinic domains. The temperature range for such an instability, the critical size of the inclusion, the corresponding critical strain, and the periodicity of the modulation are derived in terms of parameters that can be related to the elastic stiffness coefficients of various orders of the inclusion and the shear modulus of the host matrix. An entirely different mechanism is suggested for the reverse monoclinic→tetragonal transformation because the monoclinic phase is metastable when the extrinsic stress is removed. Estimates for the parameters are inferred from a variety of experimental data for pure zirconia and the numerical values for the predicted physical quantities are obtained

  14. Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Sheng, E-mail: longtubao@zju.edu.cn; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan

    2017-02-01

    The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect. - Highlights: • Magnetic behaviors induced by different loading speeds were investigated. • Loading speed imposes strong impact on the variation of the magnetic field signals. • The magnetic field amplitude reduces gradually with the increasing loading speed. • The Jies-Atherton model theory should consider the effect of loading speed.

  15. Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel

    International Nuclear Information System (INIS)

    Bao, Sheng; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan

    2017-01-01

    The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect. - Highlights: • Magnetic behaviors induced by different loading speeds were investigated. • Loading speed imposes strong impact on the variation of the magnetic field signals. • The magnetic field amplitude reduces gradually with the increasing loading speed. • The Jies-Atherton model theory should consider the effect of loading speed.

  16. Evaluation of Stress-Inducing Factors of Educational Environment in Hamadan Dentistry School’s Students

    Directory of Open Access Journals (Sweden)

    M. Dalband

    2007-01-01

    Full Text Available ntroduction & Objective: The aim of this study was to evaluate stressor factors of educational environment in Hamadan dental school’s students in year 2002.Materials & Methods: The study design was descriptive, cross-sectional and it was accomplished using a questionnaire which was taken from DES (dental environment stress questionnaire. According to restricted number of statistical population all members of population (154 students were evaluated as samples and this study was a survey one. Results: The results of this study indicated that most stressfull factors in dental students has been related to class work with mean score 3.18±0.83 and faculty-student relationship with mean score 3.05±0.83. Female students showed more total stress than male students (2.73 vs. 2.44. The fourth-year students had the most stress rate in all students of different years (3.05 and preclinical and clinical factors were the most stress-inducing factors of these students (3.63.Conclusion: It is concluded that the environment of Hamadan dental school and the process of education in the field of dentistry is potentially stressful. Also there is a reverse relationship between level of stress in students and their academic efficiencies.

  17. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity.

    Science.gov (United States)

    Azadmehr, Abbas; Oghyanous, Keyvan Alizadeh; Hajiaghaee, Reza; Amirghofran, Zahra; Azadbakht, Mohammad

    2013-11-01

    In this study, the neuroprotective effect of Scrophularia striata Boiss (Scrophulariaceae) extract, a plant growing in northeastern of Iran, against oxidative stress-induced neurocytotoxicity in PC12 was evaluated. The PC12 cell line pretreated with different concentrations (10, 50, 100, and 200 μg/ml) of the extract and then treated with H2O2 to induce oxidative stress and neurotoxicity. Survival of the cells, reactive oxygen species (ROS) generation, and apoptosis were measured using MTT assay, fluorescent probe 2',7'-dichlorofluorescein diacetate, and annexin V/propidium iodide, respectively. Moreover, the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) was used to evaluate the antioxidant capacity of the plant extract. Phytochemical assay by thin layer chromatography showed that the main components, including phenolic compounds, phenyl propanoids and flavonoids, were presented in the S. striata extract. The extract in concentrations of 50-200 μg/ml protected PC12 cells from H2O2-induced toxicity. The survival of the cells at concentration of 200 μg/ml was 64 % compared to that of H2O2 alone-treated cells (48 %) (p extract also dose-dependently reduced intracellular ROS production (p extract showed antioxidative effects and decreased apoptotic cells. Collectively, these findings indicated the ability of S. striata to decrease ROS generation and cell apoptosis and also suggest the presence of the neuroprotective agents in this plant.

  18. Fish can show emotional fever: stress-induced hyperthermia in zebrafish.

    Science.gov (United States)

    Rey, Sonia; Huntingford, Felicity A; Boltaña, Sebastian; Vargas, Reynaldo; Knowles, Toby G; Mackenzie, Simon

    2015-11-22

    Whether fishes are sentient beings remains an unresolved and controversial question. Among characteristics thought to reflect a low level of sentience in fishes is an inability to show stress-induced hyperthermia (SIH), a transient rise in body temperature shown in response to a variety of stressors. This is a real fever response, so is often referred to as 'emotional fever'. It has been suggested that the capacity for emotional fever evolved only in amniotes (mammals, birds and reptiles), in association with the evolution of consciousness in these groups. According to this view, lack of emotional fever in fishes reflects a lack of consciousness. We report here on a study in which six zebrafish groups with access to a temperature gradient were either left as undisturbed controls or subjected to a short period of confinement. The results were striking: compared to controls, stressed zebrafish spent significantly more time at higher temperatures, achieving an estimated rise in body temperature of about 2-4°C. Thus, zebrafish clearly have the capacity to show emotional fever. While the link between emotion and consciousness is still debated, this finding removes a key argument for lack of consciousness in fishes. © 2015 The Authors.

  19. Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model.

    Science.gov (United States)

    Yosef, Ido; Edgar, Rotem; Levy, Asaf; Amitai, Gil; Sorek, Rotem; Munitz, Ariel; Qimron, Udi

    2016-04-18

    The emergence of mutations following growth-limiting conditions underlies bacterial drug resistance, viral escape from the immune system and fundamental evolution-driven events. Intriguingly, whether mutations are induced by growth limitation conditions or are randomly generated during growth and then selected by growth limitation conditions remains an open question(1). Here, we show that bacteriophage T7 undergoes apparent stress-induced mutagenesis when selected for improved recognition of its host's receptor. In our unique experimental set-up, the growth limitation condition is physically and temporally separated from mutagenesis: growth limitation occurs while phage DNA is outside the host, and spontaneous mutations occur during phage DNA replication inside the host. We show that the selected beneficial mutations are not pre-existing and that the initial slow phage growth is enabled by the phage particle's low-efficiency DNA injection into the host. Thus, the phage particle allows phage populations to initially extend their host range without mutagenesis by virtue of residual recognition of the host receptor. Mutations appear during non-selective intracellular replication, and the frequency of mutant phages increases by natural selection acting on free phages, which are not capable of mutagenesis.

  20. Stress potentiates decision biases: A stress induced deliberation-to-intuition (SIDI model

    Directory of Open Access Journals (Sweden)

    Rongjun Yu

    2016-06-01

    Full Text Available Humans often make decisions in stressful situations, for example when the stakes are high and the potential consequences severe, or when the clock is ticking and the task demand is overwhelming. In response, a whole train of biological responses to stress has evolved to allow organisms to make a fight-or-flight response. When under stress, fast and effortless heuristics may dominate over slow and demanding deliberation in making decisions under uncertainty. Here, I review evidence from behavioral studies and neuroimaging research on decision making under stress and propose that stress elicits a switch from an analytic reasoning system to intuitive processes, and predict that this switch is associated with diminished activity in the prefrontal executive control regions and exaggerated activity in subcortical reactive emotion brain areas. Previous studies have shown that when stressed, individuals tend to make more habitual responses than goal-directed choices, be less likely to adjust their initial judgment, and rely more on gut feelings in social situations. It is possible that stress influences the arbitration between the emotion responses in subcortical regions and deliberative processes in the prefrontal cortex, so that final decisions are based on unexamined innate responses. Future research may further test this ‘stress induced deliberation-to-intuition’ (SIDI model and examine its underlying neural mechanisms.

  1. Randomized test of an implementation intention-based tool to reduce stress-induced eating.

    Science.gov (United States)

    O'Connor, Daryl B; Armitage, Christopher J; Ferguson, Eamonn

    2015-06-01

    Stress may indirectly contribute to disease (e.g. cardiovascular disease, cancer) by producing deleterious changes to diet. The purpose of this study was to test the effectiveness of a stress management support (SMS) tool to reduce stress-related unhealthy snacking and to promote stress-related healthy snacking. Participants were randomized to complete a SMS tool with instruction to link stressful situations with healthy snack alternatives (experimental) or a SMS tool without a linking instruction (control). On-line daily reports of stressors and snacking were completed for 7 days. Daily stressors were associated with unhealthy snack consumption in the control condition but not in the experimental condition. Participants highly motivated towards healthy eating consumed a greater number of healthy snacks in the experimental condition on stressful days compared to participants in the experimental condition with low and mean levels of motivation. This tool is an effective, theory driven, intervention that helps to protect against stress-induced high-calorie snack consumption.

  2. ROS-mediated abiotic stress-induced programmed cell death in plants

    Directory of Open Access Journals (Sweden)

    Veselin ePetrov

    2015-02-01

    Full Text Available During the course of their ontogenesis, plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD. This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help to develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.

  3. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    Science.gov (United States)

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  4. New insights into the mechanisms of water-stress-induced cavitation in conifers.

    Science.gov (United States)

    Cochard, Hervé; Hölttä, Teemu; Herbette, Stéphane; Delzon, Sylvain; Mencuccini, Maurizio

    2009-10-01

    Cavitation resistance is a key parameter to understand tree drought tolerance but little is known about the mechanisms of air entry into xylem conduits. For conifers three mechanisms have been proposed: (1) a rupture of pit margo microfibrils, (2) a displacement of the pit torus from its normal sealing position over the pit aperture, and (3) a rupture of an air-water menisci in a pore of the pit margo. In this article, we report experimental results on three coniferous species suggesting additional mechanisms. First, when xylem segments were injected with a fluid at a pressure sufficient to aspirate pit tori and well above the pressure for cavitation induction we failed to detect the increase in sample conductance that should have been caused by torus displacement from blocking the pit aperture or by membrane rupture. Second, by injecting xylem samples with different surfactant solutions, we found a linear relation between sample vulnerability to cavitation and fluid surface tension. This suggests that cavitation in conifers could also be provoked by the capillary failure of an air-water meniscus in coherence with the prediction of Young-Laplace's equation. Within the bordered pit membrane, the exact position of this capillary seeding is unknown. The possible Achilles' heel could be the seal between tori and pit walls or holes in the torus. The mechanism of water-stress-induced cavitation in conifers could then be relatively similar to the one currently proposed for angiosperms.

  5. Cross-country differences in basal and stress-induced cortisol secretion in older adults.

    Directory of Open Access Journals (Sweden)

    Juliana N Souza-Talarico

    Full Text Available Several studies have emphasized the association between socioeconomic status (SES and inadequate response of the biological stress system. However, other factors related to SES are rarely considered, such as cultural values, social norms, organization, language and communication skills, which raises the need to investigate cross-country differences in stress response. Although some studies have shown differences in cortisol levels between immigrants and natives, there is no cross-country evidence regarding cortisol levels in country-native elders. This is particularly important given the high prevalence of stress-related disorders across nations during aging. The current study examined basal diurnal and reactive cortisol levels in healthy older adults living in two different countries.Salivary cortisol of 260 older adults from Canada and Brazil were analyzed. Diurnal cortisol was measured in saliva samples collected at home throughout two working days at awakening, 30 min after waking, 1400 h, 1600 h and before bedtime. Cortisol reactivity was assessed in response to the Trier Social Stress Test (TSST in both populations.Our results showed that even under similar health status, psychological and cognitive characteristics, Brazilian elders exhibited higher basal and stress-induced cortisol secretion compared to the Canadian participants.These findings suggest that country context may modulate cortisol secretion and could impact the population health.

  6. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.

    Science.gov (United States)

    Zolla, Gaston; Heimer, Yair M; Barak, Simon

    2010-01-01

    Plant roots exhibit remarkable developmental plasticity in response to local soil conditions. It is shown here that mild salt stress stimulates a stress-induced morphogenic response (SIMR) in Arabidopsis thaliana roots characteristic of several other abiotic stresses: the proliferation of lateral roots (LRs) with a concomitant reduction in LR and primary root length. The LR proliferation component of the salt SIMR is dramatically enhanced by the transfer of seedlings from a low to a high NO3- medium, thereby compensating for the decreased LR length and maintaining overall LR surface area. Increased LR proliferation is specific to salt stress (osmotic stress alone has no stimulatory effect) and is due to the progression of more LR primordia from the pre-emergence to the emergence stage, in salt-stressed plants. In salt-stressed seedlings, greater numbers of LR primordia exhibit expression of a reporter gene driven by the auxin-sensitive DR5 promoter than in unstressed seedlings. Moreover, in the auxin transporter mutant aux1-7, the LR proliferation component of the salt SIMR is completely abrogated. The results suggest that salt stress promotes auxin accumulation in developing primordia thereby preventing their developmental arrest at the pre-emergence stage. Examination of ABA and ethylene mutants revealed that ABA synthesis and a factor involved in the ethylene signalling network also regulate the LR proliferation component of the salt SIMR.

  7. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  8. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Dengke Bao

    2017-07-01

    Full Text Available Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson’s disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH release when exposed to hydrogen peroxide (H2O2. The significantly-alleviated intracellular reactive oxygen species (ROS, malondialdehyde (MDA, and lipoperoxidation of the cell membrane of PC-12 cells induced by H2O2 were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GSH-Px in PC-12 cells exposed to H2O2 were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress.

  9. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12) Cells.

    Science.gov (United States)

    Bao, Dengke; Wang, Jingkai; Pang, Xiaobin; Liu, Hongliang

    2017-07-06

    Oxidative stress has been implicated in the pathogenesis of many kinds of neurodegenerative disorders, particularly Parkinson's disease. Quercetin is a bioflavonoid found ubiquitously in fruits and vegetables, and has antioxidative activity. However, the underlying mechanism of the antioxidative effect of quercetin in neurodegenerative diseases has not been well explored. Here, we investigated the antioxidative effect and underlying molecular mechanisms of quercetin on PC-12 cells. We found that PC-12 cells pretreated with quercetin exhibited an increased cell viability and reduced lactate dehydrogenase (LDH) release when exposed to hydrogen peroxide (H₂O₂). The significantly-alleviated intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and lipoperoxidation of the cell membrane of PC-12 cells induced by H₂O₂ were observed in the quercetin pretreated group. Furthermore, quercetin pretreatment markedly reduced the apoptosis of PC-12 cells and hippocampal neurons. The inductions of antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in PC-12 cells exposed to H₂O₂ were significantly reduced by preatment with quercetin. In addition, quercetin pretreatment significantly increased Bcl-2 expression, and reduced Bax, cleaved caspase-3 and p53 expressions. In conclusion, this study demonstrated that quercetin exhibited a protective effect against oxidative stress-induced apoptosis in PC-12 cells. Our findings suggested that quercetin may be developed as a novel therapeutic agent for neurodegenerative diseases induced by oxidative stress.

  10. Stress-induced insomnia treated with kava and valerian: singly and in combination.

    Science.gov (United States)

    Wheatley, David

    2001-06-01

    Kava and valerian are herbal remedies that are claimed to have anxiolytic and sedative properties respectively, without dependence potential or any appreciable side effects. In this pilot study, 24 patients suffering from stress-induced insomnia were treated for 6 weeks with kava (LI-150), 120 mg daily. This was followed by a 2-week 'wash-out' period off treatment, and then, five patients having dropped out, 19 received valerian (LI-156), 600 mg daily, for another 6 weeks. Then there was a further 2-week period off treatment, and a final 6 weeks of treatment of these 19 patients with the two compounds combined (kava + valerian). Stress was measured in three areas: social, personal and life events; insomnia in three areas also: time to fall asleep, hours slept and waking mood. Total stress severity was significantly relieved by both compounds individually (p effects on kava, 10 (53%) on valerian and 10 (53%) on the combination. The 'commonest' effect was vivid dreams with kava + valerian (4 cases (21%)) and with valerian alone (3 cases (16%)), followed by gastric discomfort and dizziness with kava (3 cases each (3 %)). These results are considered to be extremely promising but further studies may be required to determine the relative roles of the two compounds for such indications. Copyright 2001 John Wiley & Sons, Ltd.

  11. A terrified-sound stress induced proteomic changes in adult male rat hippocampus.

    Science.gov (United States)

    Yang, Juan; Hu, Lili; Wu, Qiuhua; Liu, Liying; Zhao, Lingyu; Zhao, Xiaoge; Song, Tusheng; Huang, Chen

    2014-04-10

    In this study, we investigated the biochemical mechanisms in the adult rat hippocampus underlying the relationship between a terrified-sound induced psychological stress and spatial learning. Adult male rats were exposed to a terrified-sound stress, and the Morris water maze (MWM) has been used to evaluate changes in spatial learning and memory. The protein expression profile of the hippocampus was examined using two-dimensional gel electrophoresis (2DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and bioinformatics analysis. The data from the MWM tests suggested that a terrified-sound stress improved spatial learning. The proteomic analysis revealed that the expression of 52 proteins was down-regulated, while that of 35 proteins were up-regulated, in the hippocampus of the stressed rats. We identified and validated six of the most significant differentially expressed proteins that demonstrated the greatest stress-induced changes. Our study provides the first evidence that a terrified-sound stress improves spatial learning in rats, and that the enhanced spatial learning coincides with changes in protein expression in rat hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.

    Science.gov (United States)

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Chae, Sungwook; Zhang, Rui; Jung, Myung Sun; Ham, Young Min; Baik, Jong Seok; Lee, Nam Ho; Hyun, Jin Won

    2006-02-15

    We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. (c) 2005 Wiley-Liss, Inc.

  13. Effect of the critical size of initial voids on stress-induced migration

    International Nuclear Information System (INIS)

    Aoyagi, Minoru

    2004-01-01

    The stress-induced migration phenomenon is one of the problems related to the reliability of metal interconnections in semiconductor devices. This phenomenon causes voids and fractures in interconnections. The basic feature of this phenomenon is vacancy migration to minute initial voids. Expanding initial voids grow into larger voids and fractures. The purpose of this work is to theoretically clarify the effects of residual thermal stress and void surface stress on the behavior of the initial voids which exist immediately after a passivation process. Using a spherical metal sample with a spherical void under external stress, vacancy absorption or emission was investigated between the void surface and the sample surface. The behavior of vacancies and atoms was also investigated in interconnections under residual thermal stress. We show that the void or sample surface becomes a vacancy sink or source, depending on the mutual relationship between the surface stress due to the surface-free energy and the residual thermal stress. We also reveal that the initial voids, which exist immediately after a passivation process, grow into larger voids and fractures when the size of the initial voids exceeds the critical size. If the size of the initial void can be controlled to below the critical size, voids and fractures do not occur

  14. Cross-country differences in basal and stress-induced cortisol secretion in older adults.

    Science.gov (United States)

    Souza-Talarico, Juliana N; Plusquellec, Pierrich; Lupien, Sonia J; Fiocco, Alexandra; Suchecki, Deborah

    2014-01-01

    Several studies have emphasized the association between socioeconomic status (SES) and inadequate response of the biological stress system. However, other factors related to SES are rarely considered, such as cultural values, social norms, organization, language and communication skills, which raises the need to investigate cross-country differences in stress response. Although some studies have shown differences in cortisol levels between immigrants and natives, there is no cross-country evidence regarding cortisol levels in country-native elders. This is particularly important given the high prevalence of stress-related disorders across nations during aging. The current study examined basal diurnal and reactive cortisol levels in healthy older adults living in two different countries. Salivary cortisol of 260 older adults from Canada and Brazil were analyzed. Diurnal cortisol was measured in saliva samples collected at home throughout two working days at awakening, 30 min after waking, 1400 h, 1600 h and before bedtime. Cortisol reactivity was assessed in response to the Trier Social Stress Test (TSST) in both populations. Our results showed that even under similar health status, psychological and cognitive characteristics, Brazilian elders exhibited higher basal and stress-induced cortisol secretion compared to the Canadian participants. These findings suggest that country context may modulate cortisol secretion and could impact the population health.

  15. The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-) : cystine supplier and beyond.

    Science.gov (United States)

    Conrad, Marcus; Sato, Hideyo

    2012-01-01

    The oxidative stress-inducible cystine/glutamate exchange system, system x (c) (-) , transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system x (c) (-) has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system x (c) (-) may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system x (c) (-) research up to now.

  16. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    Science.gov (United States)

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  17. Analysis of the stress-inducible transcription factor SsNAC23 in sugarcane plants

    Directory of Open Access Journals (Sweden)

    Renata Fava Ditt

    2011-08-01

    Full Text Available Stresses such as cold and drought can impair plant yield and induce a highly complex array of responses. Sugarcane (Saccharum spp. is cultivated in tropical and subtropical areas and is considered a cold-sensitive plant. We previously showed that cold stress induces the expression of several genes in in vitro sugarcane plantlets. Here we characterize one of those genes, SsNAC23, a member of the NAC family of plant-specific transcription factors, which are induced by low temperature and other stresses in several plant species. The expression of SsNAC23 was induced in sugarcane plants exposed to low temperatures (4ºC. With the aim of further understanding the regulatory network in response to stress, we used the yeast two-hybrid system to identify sugarcane proteins that interact with SsNAC23. Using SsNAC23 as bait, we screened a cDNA expression library of sugarcane plants submitted to 4ºC for 48 h. Several interacting partners were identified, including stress-related proteins, increasing our knowledge on how sugarcane plants respond to cold stress. One of these interacting partners, a thioredoxin h1, offers insights into the regulation of SsNAC23 activity.

  18. Lithium modulates the chronic stress-induced effect on blood glucose level of male rats

    Directory of Open Access Journals (Sweden)

    Popović Nataša

    2010-01-01

    Full Text Available In the present study we examined gross changes in the mass of whole adrenal glands and that of the adrenal cortex, as well as the serum corticosterone and glucose level of mature male Wistar rats subjected to three different treatments: animals subjected to chronic restraint-stress, animals injected with lithium (Li and chronically stressed rats treated with Li. Under all three conditions we observed hypertrophy of whole adrenals, as well as the adrenal cortices. Chronic restraint stress, solely or in combination with Li treatment, significantly elevated the corticosterone level, but did not change the blood glucose level. Animals treated only with Li exhibited an elevated serum corticosterone level and blood glucose level. The aim of our study was to investigate the modulation of the chronic stress-induced effect on the blood glucose level by lithium, as a possible mechanism of avoiding the damage caused by chronic stress. Our results showed that lithium is an agent of choice which may help to reduce stress-elevated corticosterone and replenish exhausted glucose storages in an organism.

  19. Genome wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations

    Directory of Open Access Journals (Sweden)

    Hilal eTaymaz-Nikerel

    2016-02-01

    Full Text Available Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to changing conditions. Genome wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short- and long- term. This review focuses on response of yeast cells to diverse stress inducing perturbations including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, as well as to genetic interventions such as deletion and over-expression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.

  20. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  1. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Leary, A. M., E-mail: leary@cmu.edu; Keylin, V.; McHenry, M. E. [Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Ohodnicki, P. R. [Functional Materials Development Division, National Energy Technology Laboratory (NETL), 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236 (United States)

    2015-05-07

    The use of processing techniques to create magnetic anisotropy in soft magnetic materials is a well-known method to control permeability and losses. In nanocomposite materials, field annealing below the Curie temperature results in uniaxial anisotropy energies up to ∼2 kJ/m{sup 3}. Higher anisotropies up to ∼10 kJ/m{sup 3} result after annealing Fe-Si compositions under stress due to residual stress in the amorphous matrix acting on body centered cubic crystals. This work describes near zero magnetostriction Co{sub 80−x−y}Fe{sub x}Mn{sub y}Nb{sub 4}B{sub 14}Si{sub 2} soft magnetic nanocomposites, where x and y < 8 at.% with close packed crystalline grains that show stress induced anisotropies up to ∼50 kJ/m{sup 3} and improved mechanical properties with respect to Fe-Si compositions. Difference patterns measured using transmission X-ray diffraction show evidence of affine strain with respect to the stress axis.

  2. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death

    International Nuclear Information System (INIS)

    Apostolou, Andria; Shen Yuxian; Liang Yan; Luo Jun; Fang Shengyun

    2008-01-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR

  3. Micromechanical modeling of stress-induced strain in polycrystalline Ni–Mn–Ga by directional solidification

    International Nuclear Information System (INIS)

    Zhu, Yuping; Shi, Tao; Teng, Yao

    2015-01-01

    Highlights: • A micromechanical model of directional solidification Ni–Mn–Ga is developed. • The stress–strain curves in different directions are tested. • The martensite Young’s moduli in different directions are predicted. • The macro reorientation strains in different directions are investigated. - Abstract: Polycrystalline ferromagnetic shape memory alloy Ni–Mn–Ga produced by directional solidification possess unique properties. Its compressive stress–strain behaviors in loading–unloading cycle show nonlinear and anisotropic. Based on the self-consistent theory and thermodynamics principle, a micromechanical constitutive model of polycrystalline Ni–Mn–Ga by directional solidification is developed considering the generating mechanism of the macroscopic strain and anisotropy. Then, the stress induced strains at different angles to solidification direction are calculated, and the results agree well with the experimental data. The predictive curves of martensite Young’s modulus and macro reorientation strain in different directions are investigated. It may provide theoretical guidance for the design and use of ferromagnetic shape memory alloy

  4. The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans.

    Science.gov (United States)

    Iannacone, Michael J; Beets, Isabel; Lopes, Lindsey E; Churgin, Matthew A; Fang-Yen, Christopher; Nelson, Matthew D; Schoofs, Liliane; Raizen, David M

    2017-01-17

    In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans , stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1 , which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo , is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness.

  5. Mechanisms of Stress-Induced Visceral Pain: Implications in Irritable Bowel Syndrome.

    Science.gov (United States)

    Greenwood-Van Meerveld, B; Moloney, R D; Johnson, A C; Vicario, M

    2016-08-01

    Visceral pain is a term describing pain originating from the internal organs of the body and is a common feature of many disorders, including irritable bowel syndrome (IBS). Stress is implicated in the development and exacerbation of many visceral pain disorders. Recent evidence suggests that stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviours. The Young Investigator Forum at the International Society of Psychoneuroendocrinology (ISPNE) annual meeting reported experimental evidence suggesting the gut microbiota can affect the stress response to affect visceral pain. Building upon human imaging data showing abnormalities in the central processing of visceral stimuli in patients with IBS and knowledge that the amygdala plays a pivotal role in facilitating the stress axis, the latest experimental evidence supporting amygdala-mediated mechanisms in stress-induced visceral pain was reviewed. The final part of the session at ISPNE reviewed experimental evidence suggesting that visceral pain in IBS may be a result, at least in part, of afferent nerve sensitisation following increases in epithelial permeability and mucosal immune activation. © 2016 British Society for Neuroendocrinology.

  6. An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation

    Directory of Open Access Journals (Sweden)

    Xicotencatl Gracida

    2017-12-01

    Full Text Available Neuromodulatory cells transduce environmental information into long-lasting behavioral responses. However, the mechanisms governing how neuronal cells influence behavioral plasticity are difficult to characterize. Here, we adapted the translating ribosome affinity purification (TRAP approach in C. elegans to profile ribosome-associated mRNAs from three major tissues and the neuromodulatory dopaminergic and serotonergic cells. We identified elc-2, an Elongin C ortholog, specifically expressed in stress-sensing amphid neuron dual ciliated sensory ending (ADF serotonergic sensory neurons, and we found that it plays a role in mediating a long-lasting change in serotonin-dependent feeding behavior induced by heat stress. We demonstrate that ELC-2 and the von Hippel-Lindau protein VHL-1, components of an Elongin-Cullin-SOCS box (ECS E3 ubiquitin ligase, modulate this behavior after experiencing stress. Also, heat stress induces a transient redistribution of ELC-2, becoming more nuclearly enriched. Together, our results demonstrate dynamic regulation of an E3 ligase and a role for an ECS complex in neuromodulation and control of lasting behavioral states.

  7. Lactobacillus rhamnosus strain JB-1 reverses restraint stress-induced gut dysmotility.

    Science.gov (United States)

    West, C; Wu, R Y; Wong, A; Stanisz, A M; Yan, R; Min, K K; Pasyk, M; McVey Neufeld, K-A; Karamat, M I; Foster, J A; Bienenstock, J; Forsythe, P; Kunze, W A

    2017-01-01

    Environmental stress affects the gut with dysmotility being a common consequence. Although a variety of microbes or molecules may prevent the dysmotility, none reverse the dysmotility. We have used a 1 hour restraint stress mouse model to test for treatment effects of the neuroactive microbe, L. rhamnosus JB-1 ™ . Motility of fluid-filled ex vivo gut segments in a perfusion organ bath was recorded by video and migrating motor complexes measured using spatiotemporal maps of diameter changes. Stress reduced jejunal and increased colonic propagating contractile cluster velocities and frequencies, while increasing contraction amplitudes for both. Luminal application of 10E8 cfu/mL JB-1 restored motor complex variables to unstressed levels within minutes of application. L. salivarius or Na.acetate had no treatment effects, while Na.butyrate partially reversed stress effects on colonic frequency and amplitude. Na.propionate reversed the stress effects for jejunum and colon except on jejunal amplitude. Our findings demonstrate, for the first time, a potential for certain beneficial microbes as treatment of stress-induced intestinal dysmotility and that the mechanism for restoration of function occurs within the intestine via a rapid drug-like action on the enteric nervous system. © 2016 John Wiley & Sons Ltd.

  8. Selye's general adaptation syndrome: stress-induced gastro-duodenal ulceration and inflammatory bowel disease.

    Science.gov (United States)

    Fink, George

    2017-03-01

    Hans Selye in a note to Nature in 1936 initiated the field of stress research by showing that rats exposed to nocuous stimuli responded by way of a 'general adaptation syndrome' (GAS). One of the main features of the GAS was the 'formation of acute erosions in the digestive tract, particularly in the stomach, small intestine and appendix'. This provided experimental evidence for the view based on clinical data that gastro-duodenal (peptic) ulcers could be caused by stress. This hypothesis was challenged by Marshall and Warren's Nobel Prize (2005)-winning discovery of a causal association between Helicobacter pylori and peptic ulcers. However, clinical and experimental studies suggest that stress can cause peptic ulceration in the absence of H. pylori Predictably, the etiological pendulum of gastric and duodenal ulceration has swung from 'all stress' to 'all bacteria' followed by a sober realization that both factors play a role, separately as well as together. This raises the question as to whether stress and H. pylori interact, and if so, how? Stress has also been implicated in inflammatory bowel disease (IBD) and related disorders; however, there is no proof yet that stress is the primary etiological trigger for IBD. Central dopamine mechanisms seem to be involved in the stress induction of peptic ulceration, whereas activation of the sympathetic nervous system and central and peripheral corticotrophin-releasing factor appears to mediate stress-induced IBD. © 2017 Society for Endocrinology.

  9. Early-life stress induces persistent alterationsin 5-HT1Areceptor and serotonin transporter mRNA expression in the adultrat brain.

    Directory of Open Access Journals (Sweden)

    Javier A. Bravo

    2014-04-01

    Full Text Available Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT mRNA expression in brain areas involved in the control of emotions, memory and fear as well as in regions controlling the central serotonergic tone.To test this, Sprague-Dawley rats were subjected to MS for 3h daily during post-natal days 2-12. As control, age matched rats were not separated (NS from their dams. When animals reached adulthood (11-13 weeks brain was extracted and mRNA expression of 5-HT1A receptor in amygdala, hippocampus and dorsal raphé nucleus (DRN and SERT in the DRN was analyzed through in-situ hybridisation.Densitometric analysis revealed that MS increased 5-HT1A receptor mRNA expression in the amygdala, and reduced its expression in the DRN, but no changes were observed in the hippocampus in comparison to NS controls. Also, MS reduced SERT mRNA expression in the DRN when compared to NS rats.These results suggest that early-life stress induces persistent changes in 5-HT1A receptor and SERT mRNA expression in key brain regions involved in the development of stress-related psychiatric disorders. The reduction in SERT mRNA indicates an alteration that is in line with clinical findings such as polymorphic variants in individuals with higher risk of depression. These data may help to understand how early-life stress contributes to the development of mood disorders in adulthood.

  10. Quality control during repeated fryings

    Directory of Open Access Journals (Sweden)

    Cuesta, C.

    1998-08-01

    Full Text Available Most of the debate ¡s about how the slow or frequent turnover of fresh fat affects the deterioration, of fat used in frying. Then, the modification of different oils used in repeated fryings of potatoes without or with turnover of fresh oil, under similar frying conditions, was evaluated by two criteria: by measuring the total polar component isolated by column chromatography and by the evaluation of the specific compounds related to thermoxidative and hydrolytic alteration by High Performance Size Exclusion Chromatography (HPSEC. The results indicate that with frequent turnover of fresh oil, the critical level of 25% of polar material is rarely reached, and there are fewer problems with fat deterioration because the frying tended to increase the level of polar material and thermoxidative compounds (polymers and dimers of triglycerides and oxidized triglycerides in the fryer oil during the first fryings, followed by minor changes and a tendency to reach a near-steady state in successive fryings. However, in repeated frying of potatoes using a null turnover the alteration rate was higher being linear the relationship found between polar material or the different thermoxidative compounds and the number of fryings. On the other hand chemical reactions produced during deep-fat frying can be minimized by using proper oils. In addition the increased level of consumers awareness toward fat composition and its impact on human health could had an impact on the selection of fats for snacks and for industry. In this way monoenic fats are the most adequate from a nutritional point of view and for its oxidative stability during frying.

  11. Histopathological changes associated with oxidative stress induced by electromagnetic waves in rats' ovarian and uterine tissues

    Directory of Open Access Journals (Sweden)

    Ali S.H. Alchalabi

    2016-07-01

    Conclusion: Results executed that the potential alteration of antioxidant capacity may contribute to endometrial oxidative damage that could be related to pathogenesis and progression of endometritis.

  12. The Pentapeptide Repeat Proteins

    OpenAIRE

    Vetting, Matthew W.; Hegde, Subray S.; Fajardo, J. Eduardo; Fiser, Andras; Roderick, Steven L.; Takiff, Howard E.; Blanchard, John S.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S,T,A,V][D,N][L,F]-[S,T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Myc...

  13. Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain

    Directory of Open Access Journals (Sweden)

    Cui Yan Lu

    2017-01-01

    Full Text Available Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD. Gamma-aminobutyric acid (GABA deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5 in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment.

  14. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Christov, Nikolai Kirilov; Christova, Petya Koeva; Kato, Hideki; Liu, Yuelin; Sasaki, Kentaro; Imai, Ryozo

    2014-11-01

    A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Cuminum cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: a noninvasive biochemical approach.

    Science.gov (United States)

    Koppula, Sushruta; Choi, Dong Kug

    2011-07-01

    Cuminum cyminum Linn. (Apiaceae), cumin, is a popular spice with a long history of medicinal use to treat various symptoms such as diarrhea, flatulence, gynecological, and respiratory diseases. To date, no scientific investigation was reported regarding memory-enhancing and antistress activity of cumin fruits. The present study deals with the memory-enhancing and antistress activities and further the antioxidant status via lipid peroxidation inhibition. Antistress activity was evaluated by inducing stress via forced swimming and the urinary vanillylmandelic acid (VMA) and ascorbic acid were estimated as biomarkers. Memory-enhancing activity was studied by conditioned avoidance response using Cook's pole climbing apparatus in normal and scopolamine-induced amnestic rats. Thiobarbituric acid reactive substances (TBARS) assay was used to evaluate the lipid peroxidation. Daily administration of cumin at doses of 100, 200, and 300 mg/kg body weight 1 h prior to induction of stress inhibited the stress-induced urinary biochemical changes in a dose-dependent manner without altering the levels in normal control groups. The cognition, as determined by the acquisition, retention, and recovery in rats, was observed to be dose-dependent. The extract also produced significant lipid peroxidation inhibition in comparison with known antioxidant ascorbic acid in both rat liver and brain. This study provides scientific support for the antistress, antioxidant, and memory-enhancing activities of cumin extract and substantiates that its traditional use as a culinary spice in foods is beneficial and scientific in combating stress and related disorders.

  16. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression

    DEFF Research Database (Denmark)

    Agudelo, Leandro Z; Femenía, Teresa; Orhan, Funda

    2014-01-01

    Depression is a debilitating condition with a profound impact on quality of life for millions of people worldwide. Physical exercise is used as a treatment strategy for many patients, but the mechanisms that underlie its beneficial effects remain unknown. Here, we describe a mechanism by which...... skeletal muscle PGC-1α1 induced by exercise training changes kynurenine metabolism and protects from stress-induced depression. Activation of the PGC-1α1-PPARα/δ pathway increases skeletal muscle expression of kynurenine aminotransferases, thus enhancing the conversion of kynurenine into kynurenic acid......, a metabolite unable to cross the blood-brain barrier. Reducing plasma kynurenine protects the brain from stress-induced changes associated with depression and renders skeletal muscle-specific PGC-1α1 transgenic mice resistant to depression induced by chronic mild stress or direct kynurenine administration...

  17. Effects of Shuyusan on monoamine neurotransmitters expression in a rat model of chronic stress-induced depression

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Zhang; Jianjun Jia; Liping Chen; Zhitao Han; Yulan Zhao; Honghong Zhang; Yazhuo Hu

    2011-01-01

    Shuyusan, a traditional Chinese medicine, was shown to improve depression symptoms and behavioral scores, as well as increase 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid, and 5-hydroxytryptophan levels, in a rat model of chronic stress-induced depression. However, dopamine, noradrenalin, and 3-methoxy-4-hydroxyphenylglycol expressions remained unchanged following Shuyusan treatment. Compared with the model group, the number of 5-HT-positive neurons in layers 4-5 of the frontal cortex, as well as hippocampal CA1 and CA3 regions, significantly increased following Shuyusan treatment. These results suggested that Shuyusan improved symptoms in a rat model of chronic stress-induced depression with mechanisms that involved 5-HT, 5-HT metabolite, 5-HT precursor expressions.

  18. Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction

    International Nuclear Information System (INIS)

    Vaidyanathan, R.; Dunand, D.C.

    1999-01-01

    Superelastic NiTi (51.0 at.% Ni) specimens reinforced with 0, 10 and 20 vol.% TiC particles were deformed under uniaxial compression while neutron diffraction spectra were collected. The experiments yielded in-situ measurements of the thermoelastic stress-induced transformation. The evolution of austenite/martensite phase fractions and of elastic strains in the reinforcing TiC particles and the austenite matrix were obtained by Rietveld refinement during the loading cycle as the austenite transforms to martensite (and its subsequent back transformation during unloading). Phase fractions and strains are discussed in terms of load transfer in composites where the matrix undergoes a stress-induced phase transformation. (orig.)

  19. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4

    Directory of Open Access Journals (Sweden)

    Sarah L. Ullevig

    2014-01-01

    Conclusion: UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds.

  20. Retinal Pigment Epithelial Cell Culture and Cooperation of L-carnitine in Reducing Stress Induced Cellular Damage

    International Nuclear Information System (INIS)

    Shamsi, Farrukh A.; Al-Rajhi, Ali A.; Athmanathan, S.; Boulton, M.; Chaudhry, Imtiaz A.

    2006-01-01

    Purpose was to show that L-carnitine (LC) is capable of reducing non-oxidative stress in the retinal pigment epithelial cells (RPE) of the human eye. The RPE cells were cultured from donor eyes, obtained immediately after post-mortem. The interaction between bovine serum albumin (BSA) and non-oxidative (sodium hydroxide and methyl methane sulphonate) stress-inducers was observed by recording the change in the absorption profiles of the interacting molecules after incubation in light for 5 hours and after treatment with LC. The isolated and cultured RPE cells from the human eyes were treated with sodium hydroxide or methyl methane sulphonate and/or LC for 5 hours under light, and the qualitative effect on cell morphology after treatment was analyzed by staining cells with Giemsa and visualization by light microscopy. The cell morphology was also qualitatively analyzed by scanning electron microscopy (SEM). L-carnitine and stress-inducers interact with BSA and bring about changes in the spectral profile of the interacted molecules. Light microscopy as well as SEM show that the changes in the cellular morphology, induced by 100 uM concentrations of non-oxidative stress-inducers, are considerably reduced in the presence of 100 uM LC. However, L-carnitine alone does not cause any qualitative damage to the cell morphology during incubation under similar conditions. The results give a preliminary indication that LC has ability to reduce the changes brought about by the non-oxidative stress-inducers in the RPF cells in culture. (author)

  1. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ye, Xing; Lin, Junyi; Lin, Zebin; Xue, Aimin; Li, Liliang; Zhao, Ziqin; Liu, Li; Shen, Yiwen; Cong, Bin

    2017-10-15

    Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats.

    Science.gov (United States)

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation.

  3. Salivary alpha-amylase: More than an enzyme Investigating confounders of stress-induced and basal amylase activity

    OpenAIRE

    Strahler, Jana

    2010-01-01

    Summary: Salivary alpha-amylase: More than an enzyme - Investigating confounders of stress-induced and basal amylase activity (Dipl.-Psych. Jana Strahler) The hypothalamus-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS) are two of the major systems playing a role in the adaptation of organisms to developmental changes that threaten homeostasis. The HPA system involves the secretion of glucocorticoids, including cortisol, into the circulatory system. Numerous studies hav...

  4. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan, E-mail: danw@bjmu.edu.cn [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Liu, Jing; Wu, Baiyan [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Tu, Bo; Zhu, Weiguo [Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Luo, Jianyuan, E-mail: jluo@som.umaryland.edu [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore 21201 (United States)

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  5. Academic stress-induced changes in Th1- and Th2-cytokine response

    Directory of Open Access Journals (Sweden)

    Areej M. Assaf

    2017-12-01

    Full Text Available Psychological stress stimulates physiological responses releasing catecholamines and corticoids, which act via corresponding receptors on immune cells, producing a shift in the cytokine balance. These responses are variable depending on the nature of stressors. The effect of the academic stress on the production of the Th1-cytokines (TNF-α, IFN-γ, IL-1β, IL-2, IL-6 and IL-8 and Th2-cytokines (IL-1ra, IL-4, IL-5 and IL-10 on 35 medical/health sciences students after completing their questionnaires was investigated. Blood samples were taken at three stages; baseline stage at the beginning, midterm and final academic examination stages. Plasma cortisol and cytokines were measured during the three stages. The last two stages were compared with the baseline non-stress period. Results of the stress induced during the final examination stage were the highest with a significant increase in cortisol release, IL-4, IL-5 and IL-1ra release with a shift in Th1:Th2 cytokines balance towards Th2. Whereby, the midterm stage did not show significant reduction in Th1-cytokines except for TNF-α, with an increase in IFN-γ level that was reduced in the third stage. Th2 cytokine, IL-1ra, had positive correlations with Th1 cytokines; IL-2 and IFN-γ in the second stage and IL-6 cytokine in the third stage. Cortisol was positively correlated with IL-8 in the last stage and heart rates had negative correlation with IL-10 in the first and last stages. Findings of this study indicate that exam stress down-regulates Th1 with a selective up-regulation of Th2-cytokines. In conclusion, Cortisol might have a role in suppressing the release of Th1- mediated cellular immune response which could increase the vulnerability among the students to infectious diseases.

  6. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Koon-Ho Chan

    Full Text Available Beta-amyloid (Aβ neurotoxicity is important in Alzheimer's disease (AD pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T(2DM which is characterized by insulin resistance. Interestingly, T(2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance. We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y transfected with the Swedish amyloid precursor protein (Sw-APP mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK activation and enhanced nuclear factor-kappa B (NF-κB activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1 AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif and possibly 2 suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.

  7. Academic stress-induced changes in Th1- and Th2-cytokine response.

    Science.gov (United States)

    Assaf, Areej M; Al-Abbassi, Reem; Al-Binni, Maysaa

    2017-12-01

    Psychological stress stimulates physiological responses releasing catecholamines and corticoids, which act via corresponding receptors on immune cells, producing a shift in the cytokine balance. These responses are variable depending on the nature of stressors. The effect of the academic stress on the production of the Th1-cytokines (TNF-α, IFN-γ, IL-1β, IL-2, IL-6 and IL-8) and Th2-cytokines (IL-1ra, IL-4, IL-5 and IL-10) on 35 medical/health sciences students after completing their questionnaires was investigated. Blood samples were taken at three stages; baseline stage at the beginning, midterm and final academic examination stages. Plasma cortisol and cytokines were measured during the three stages. The last two stages were compared with the baseline non-stress period. Results of the stress induced during the final examination stage were the highest with a significant increase in cortisol release, IL-4, IL-5 and IL-1ra release with a shift in Th1:Th2 cytokines balance towards Th2. Whereby, the midterm stage did not show significant reduction in Th1-cytokines except for TNF-α, with an increase in IFN-γ level that was reduced in the third stage. Th2 cytokine, IL-1ra, had positive correlations with Th1 cytokines; IL-2 and IFN-γ in the second stage and IL-6 cytokine in the third stage. Cortisol was positively correlated with IL-8 in the last stage and heart rates had negative correlation with IL-10 in the first and last stages. Findings of this study indicate that exam stress down-regulates Th1 with a selective up-regulation of Th2-cytokines. In conclusion, Cortisol might have a role in suppressing the release of Th1- mediated cellular immune response which could increase the vulnerability among the students to infectious diseases.

  8. Investigation of thermoelastic stresses induced at high altitudes on aircraft external fuel tanks

    Science.gov (United States)

    Mousseau, Stephanie Lynn Steber

    As composite technology has grown over the past several decades, the use of composite materials in military applications has become more feasible and widely accepted. Although composite materials provide many benefits, including strength optimization and reduced weight, damage and repair of these materials creates an additional challenge, especially when operating in a marine environment, such as on a carrier deck. This is evident within the Navy, as excessive damage often leads to the scrapping of F/A-18 External Fuel Tanks. This damage comes in many forms, the most elusive of which is delamination. Often the delamination found on the tanks is beyond repairable limits and the cause unknown, making it difficult to predict and prevent. The purpose of this investigation was to study the structure of the Navy's 330 gallon External Fuel Tanks and investigate one potential cause of delamination, stresses induced at high altitudes by cold temperatures. A stress analysis was completed using finite element software, and validation of the model was accomplished through testing of a scale model specimen. Due to the difficulties in modeling and predicting delamination, such as unknown presence of voids and understanding failure criteria, delamination was not modeled in Abaqus, rather stresses were observed and characteristics were studied to understand the potential for delamination within the layup. In addition, studies were performed to understand the effect of material properties and layup sequence on the stress distribution within the tank. Alternative design solutions are presented which could reduce the radial stresses within the tank, and recommendations are made for further study to understand the trade-offs between stress, cost, and manufacturability.

  9. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  10. Stress-induced premature senescence (SIPS)--influence of SIPS on radiotherapy.

    Science.gov (United States)

    Suzuki, Masatoshi; Boothman, David A

    2008-03-01

    Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy.

  11. Stress-induced premature senescence (SIPS). Influence of SIPS on radiotherapy

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Boothman, D.A.

    2008-01-01

    Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy. (author)

  12. Obesity decreases the oxidant stress induced by tobacco smoke in a rat model.

    Science.gov (United States)

    Montaño, Martha; Pérez-Ramos, J; Esquivel, A; Rivera-Rosales, R; González-Avila, G; Becerril, C; Checa, M; Ramos, C

    2016-09-01

    Obesity and emphysema are associated with low-grade systemic inflammation and oxidant stress. Assuming that the oxidant stress induced by emphysema would be decreased by obesity, we analyzed the oxidant/antioxidant state in a rat model combining both diseases simultaneously. Obesity was induced using sucrose, while emphysema by exposure to tobacco smoke. End-points evaluated were: body weight, abdominal fat, plasma dyslipidemia and malondialdehyde (MDA), insulin and glucose AUC, activities of Mn-superoxide dismutase (Mn-SOD), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GPx); lung MnSOD and 3-nitrotyrosine (3-NT) immunostaining, and expression of αV and β6 integrin subunits. In rats with obesity, the body weight, abdominal fat, plasma triglyceride levels, glucose AUC, insulin levels, GST activity, and αV and β6 integrin expressions were amplified. The rats with emphysema had lower values of body weight, abdominal fat, plasma insulin, triglycerides and glucose AUC but higher values of plasma MDA, GPx activity, and the lung expression of the αV and β6 integrins. The combination of obesity and emphysema compared to either condition alone led to diminished body weight, abdominal fat, plasma insulin MDA levels, GPx and GST activities, and αV and β6 integrin expressions; these parameters were all previously increased by obesity. Immunostaining for MnSOD augmented in all experimental groups, but the staining for 3-NT only increased in rats treated with tobacco alone or combined with sucrose. Results showed that obesity reduces oxidant stress and integrin expression, increasing antioxidant enzyme activities; these changes seem to partly contribute to a protective mechanism of obesity against emphysema development.

  13. Role of residual stresses induced by double peening on fatigue durability of automotive leaf springs

    International Nuclear Information System (INIS)

    Scuracchio, Bruno Geoffroy; Batista de Lima, Nelson; Schön, Cláudio Geraldo

    2013-01-01

    Highlights: ► Proper choice of peening media is needed for higher fatigue strength in leaf springs. ► Optimum double-peening condition for leaf springs: 0.8 mm shot, followed by 0.3 mm. ► Fatigue life correlates with residual stress levels at the surface (up to 0.02 mm). ► Residual stress profile below 0.02 mm has no measurable effect over fatigue life. ► Failure of the investigated parts is nucleation-controlled. - Abstract: Improvement of fatigue life in parts subjected to cyclic stresses by application of mechanical surface treatment processes is already well known, both in the industry and in the academy. Dealing with automotive springs, the shot peening process becomes an essential step in manufacturing. In the case of leaf springs, however, a systematic investigation of the effect of shot peening on fatigue life is still required. The aim of the present work is to improve the knowledge on the role of shot peening in manufacturing leaf springs for vehicles, through the analysis of residual stresses by X-ray diffraction and fatigue tests on a series of samples that were subject to ten different peening schedules. Among the investigated processes, the usage of 0.8 mm diameter cast steel shot followed by a second peening with 0.3 mm diameter cast steel shot leads to optimal performance, regarding fatigue life. X-ray diffraction analysis shows that this improved performance may be attributed to residual compressive stress maintained until a depth of 0.02 mm below the surface, which directly influences fatigue crack nucleation. Residual stresses induced by shot peening in larger depths have no influence on the sample’s fatigue life

  14. Oral administration of γ-aminobutyric acid and γ-oryzanol prevents stress-induced hypoadiponectinemia.

    Science.gov (United States)

    Ohara, Kazuyuki; Kiyotani, Yuka; Uchida, Asako; Nagasaka, Reiko; Maehara, Hiroyuki; Kanemoto, Shigeharu; Hori, Masatoshi; Ushio, Hideki

    2011-06-15

    Metabolic syndrome is a cluster of risk factors including insulin resistance and type 2 diabetes and is found to associate partly with chronic stress at work in human. Adiponectin circulates in mammal blood mainly as a low molecular weight (LMW) trimer, hexamer, and a high molecular weight (HMW) multimers. Low circulating levels of adiponectin are related to metabolic syndrome. We have then investigated the influence of immobilization stress on plasma adiponectin concentrations in mice. Relative LMW and HMW adiponectin levels were markedly reduced by immobilization stress (0.66±0.07 and 0.59±0.06 after 102 h, respectively), significantly different from the control values (p-oryzanol abundantly contained in germinated brown rice have some physiological functions. We further investigated the effect of GABA, γ-oryzanol, GABA plus γ-oryzanol on adiponectin levels in mice subjected to immobilization stress. GABA and γ-oryzanol significantly increased the relative LMW and HMW adiponectin levels under immobilization stress (1.10±0.11 and 0.99±0.19 after 102 h, respectively, for GABA; 1.08±0.17 and 1.15±0.17 after 102 h, respectively, for γ-oryzanol). Additionally, the co-administration of GABA and γ-oryzanol also increased both relative LMW and HMW adiponectin levels (1.02±0.07 and 0.99±0.10 after 102 h, respectively) and was effective in an earlier phase from 30 to 54 h. The results indicate that the co-administration of GABA and γ-oryzanol might be effective in preventing stress-induced hypoadiponectinemia in mice and be also a promising tool for improving metabolic syndrome aggravated by chronic stress. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Gemfibrozil pretreatment proved protection against acute restraint stress-induced changes in the male rats' hippocampus.

    Science.gov (United States)

    Khalaj, Leila; Nejad, Sara Chavoshi; Mohammadi, Marzieh; Zadeh, Sadaf Sarraf; Pour, Marieh Hossein; Ahmadiani, Abolhassan; Khodagholi, Fariba; Ashabi, Ghorbangol; Alamdary, Shabnam Zeighamy; Samami, Elham

    2013-08-21

    Stress predisposes the brain to various neuropathological disorders. Fibrates like gemfibrozil, commonly used for hyperlipidemia, have not yet been examined for their protective/deteriorative potential against restraint stress-induced disturbances. Pretreatment of rats with a range of gemfibrozil concentrations showed significant protection against stress consequences at 90 mg/kg of gemfibrozil, as it resulted in the highest level of antioxidant defense system potentiation among other doses. It also reduced plasma corticosterone compared with the stressed animals. Administration of gemfibrozil (90 mg/kg) before stress induction was able to significantly induce the protein levels of some protective factors including hemeoxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone-1 (NQO-1) in the antioxidant nuclear factor erythroid-derived 2-like 2 (Nrf-2) pathway, as well as mitochondrial pro-survival proteins, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear respiratory factor 1 (NRF-1). In parallel, the level of cleaved caspase-3 and apoptosis-inducing factor (AIF), two proteins involved in apoptotic cell death, and the number of damaged neurons detected in hematoxylin-eosin (H&E) stained hippocampus sections were suppressed in the presence of gemfibrozil. Herein, although gemfibrozil demonstrated protection against the restraint stress, considering its dose and context-dependent effects reported in the previous studies, as well as its common application in clinic, further investigations are essential to unravel its exact beneficial/deleterious effects in various neuronal contexts. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes.

    Science.gov (United States)

    Wang, Changhu; Guo, Weili; Cai, Xingzhe; Li, Ruyu; Ow, David W

    2018-04-21

    Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression. Copyright © 2018. Published by Elsevier B.V.

  17. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Science.gov (United States)

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  18. Psychological stress-induced cerebrovascular dysfunction: the role of metabolic syndrome and exercise.

    Science.gov (United States)

    Brooks, Steven; Brnayan, Kayla W; DeVallance, Evan; Skinner, Roy; Lemaster, Kent; Sheets, J Whitney; Pitzer, Christopher R; Asano, Shinichi; Bryner, Randall W; Olfert, I Mark; Frisbee, Jefferson C; Chantler, Paul D

    2018-05-01

    What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.

  19. Stress-induced chemical detection using flexible metal-organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  20. Sex Differences in Mental Stress-Induced Myocardial Ischemia in Patients With Coronary Heart Disease.

    Science.gov (United States)

    Vaccarino, Viola; Wilmot, Kobina; Al Mheid, Ibhar; Ramadan, Ronnie; Pimple, Pratik; Shah, Amit J; Garcia, Ernest V; Nye, Jonathon; Ward, Laura; Hammadah, Muhammad; Kutner, Michael; Long, Qi; Bremner, J Douglas; Esteves, Fabio; Raggi, Paolo; Quyyumi, Arshed A

    2016-08-24

    Emerging data suggest that young women with coronary heart disease (CHD) are disproportionally vulnerable to the adverse cardiovascular effects of psychological stress. We hypothesized that younger, but not older, women with stable CHD are more likely than their male peers to develop mental stress-induced myocardial ischemia (MSIMI). We studied 686 patients (191 women) with stable coronary heart disease (CHD). Patients underwent (99m)Tc-sestamibi myocardial perfusion imaging at rest and with both mental (speech task) and conventional (exercise/pharmacological) stress testing. We compared quantitative (by automated software) and visual parameters of inducible ischemia between women and men and assessed age as an effect modifier. Women had a more-adverse psychosocial profile than men whereas there were few differences in medical history and CHD risk factors. Both quantitative and visual indicators of ischemia with mental stress were disproportionally larger in younger women. For each 10 years of decreasing age, the total reversibility severity score with mental stress was 9.6 incremental points higher (interaction, P<0.001) and the incidence of MSIMI was 82.6% higher (interaction, P=0.004) in women than in men. Incidence of MSIMI in women ≤50 years was almost 4-fold higher than in men of similar age and older patients. These results persisted when adjusting for sociodemographic and medical risk factors, psychosocial factors, and medications. There were no significant sex differences in inducible ischemia with conventional stress. Young women with stable CHD are susceptible to MSIMI, which could play a role in the prognosis of this group. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Body mass index and risk for mental stress induced ischemia in coronary artery disease.

    Science.gov (United States)

    Soufer, Robert; Fernandez, Antonio B; Meadows, Judith; Collins, Dorothea; Burg, Matthew M

    2016-05-19

    Acute emotionally reactive mental stress (MS) can provoke prognostically relevant deficits in cardiac function and myocardial perfusion, and chronic inflammation increases risk for this ischemic phenomenon. We have described parasympathetic withdrawal and generation of inflammatory factors in MS. Adiposity is also associated with elevated markers of chronic inflammation. High body mass index (BMI) is frequently used as a surrogate for assessment of excess adiposity, and associated with traditional CAD risk factors, and CAD mortality. BMI is also associated with autonomic dysregulation, adipose tissue derived proinflammatory cytokines, which are also attendant to emotion provoked myocardial ischemia. Thus, we sought to determine if body mass index (BMI) contributes to risk of developing myocardial ischemia provoked by mental stress. We performed a prospective interventional study in a cohort of 161 patients with stable CAD. They completed an assessment of myocardial blood flow with single photon emission computed tomography (SPECT) simultaneously during 2 conditions: laboratory mental stress and at rest. Multivariate logistic regression determined the independent contribution of BMI to the occurrence of mental-stress induced ischemia. Mean age was 65.6±9.0 years; 87.0% had a history of hypertension, and 28.6% had diabetes. Mean BMI was 30.4±4.7. Prevalence of mental stress ischemia was 39.8%. BMI was an independent predictor of mental stress ischemia, OR=1.10, 95% CI [1.01-1.18] for one-point increase in BMI and OR=1.53, 95% CI [1.06-2.21] for a 4.7 point increase in BMI (one standard deviation beyond the cohort BMI mean), p=0.025 for all. These data suggest that BMI may serve as an independent risk marker for mental stress ischemia. The factors attendant with greater BMI, which include autonomic dysregulation and inflammation, may represent pathways by which high BMI contribute to this risk and serve as a conceptual construct to replicate these findings in larger

  2. Seagrass proliferation precedes mortality during hypo-salinity events: a stress-induced morphometric response.

    Directory of Open Access Journals (Sweden)

    Catherine J Collier

    Full Text Available Halophytes, such as seagrasses, predominantly form habitats in coastal and estuarine areas. These habitats can be seasonally exposed to hypo-salinity events during watershed runoff exposing them to dramatic salinity shifts and osmotic shock. The manifestation of this osmotic shock on seagrass morphology and phenology was tested in three Indo-Pacific seagrass species, Halophila ovalis, Halodule uninervis and Zostera muelleri, to hypo-salinity ranging from 3 to 36 PSU at 3 PSU increments for 10 weeks. All three species had broad salinity tolerance but demonstrated a moderate hypo-salinity stress response--analogous to a stress induced morphometric response (SIMR. Shoot proliferation occurred at salinities <30 PSU, with the largest increases, up to 400% increase in shoot density, occurring at the sub-lethal salinities <15 PSU, with the specific salinity associated with peak shoot density being variable among species. Resources were not diverted away from leaf growth or shoot development to support the new shoot production. However, at sub-lethal salinities where shoots proliferated, flowering was severely reduced for H. ovalis, the only species to flower during this experiment, demonstrating a diversion of resources away from sexual reproduction to support the investment in new shoots. This SIMR response preceded mortality, which occurred at 3 PSU for H. ovalis and 6 PSU for H. uninervis, while complete mortality was not reached for Z. muelleri. This is the first study to identify a SIMR in seagrasses, being detectable due to the fine resolution of salinity treatments tested. The detection of SIMR demonstrates the need for caution in interpreting in-situ changes in shoot density as shoot proliferation could be interpreted as a healthy or positive plant response to environmental conditions, when in fact it could signal pre-mortality stress.

  3. Environmental enrichment reduces chronic psychosocial stress-induced anxiety and ethanol-related behaviors in mice.

    Science.gov (United States)

    Bahi, Amine

    2017-07-03

    Previous research from our laboratory has shown that exposure to chronic psychosocial stress increased voluntary ethanol consumption and preference as well as acquisition of ethanol-induced conditioned place preference (CPP) in mice. This study was done to determine whether an enriched environment could have "curative" effects on chronic psychosocial stress-induced ethanol intake and CPP. For this purpose, experimental mice "intruders" were exposed to the chronic subordinate colony (CSC) housing for 19 consecutive days in the presence of an aggressive "resident" mouse. At the end of that period, mice were tested for their anxiety-like behavior using the elevated plus maze (EPM) test then housed in a standard or enriched environment (SE or EE respectively). Anxiety and ethanol-related behaviors were investigated using the open field (OF) test, a standard two-bottle choice drinking paradigm, and the CPP procedure. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to single housed colony (SHC) controls. In addition, CSC exposure increased voluntary ethanol intake and ethanol-CPP. Interestingly, we found that EE significantly and consistently reduced anxiety and ethanol consumption and preference. However, neither tastants' (saccharin and quinine) intake nor blood ethanol metabolism were affected by EE. Finally, and most importantly, EE reduced the acquisition of CPP induced by 1.5g/kg ethanol. Taken together, these results support the hypothesis that EE can reduce voluntary ethanol intake and ethanol-induced conditioned reward and seems to be one of the strategies to reduce the behavioral deficits and the risk of anxiety-induced alcohol abuse. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    International Nuclear Information System (INIS)

    Wu, Dan; Liu, Jing; Wu, Baiyan; Tu, Bo; Zhu, Weiguo; Luo, Jianyuan

    2014-01-01

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration

  5. Repeated Causal Decision Making

    Science.gov (United States)

    Hagmayer, York; Meder, Bjorn

    2013-01-01

    Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in…

  6. simple sequence repeat (SSR)

    African Journals Online (AJOL)

    In the present study, 78 mapped simple sequence repeat (SSR) markers representing 11 linkage groups of adzuki bean were evaluated for transferability to mungbean and related Vigna spp. 41 markers amplified characteristic bands in at least one Vigna species. The transferability percentage across the genotypes ranged ...

  7. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunfa, E-mail: chunfa.huang@case.edu [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Bruggeman, Leslie A. [Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Hydo, Lindsey M. [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Miller, R. Tyler [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States)

    2012-06-10

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

  8. Evaluation on the Pharmacological Effect of Traditional Chinese Medicine SiJunZiTang on Stress-Induced Peptic Ulcers

    Directory of Open Access Journals (Sweden)

    Chiu-Mei Chen

    2013-01-01

    Full Text Available Purpose. To explore the effects of SiJunZiTang (SJZT on central neurotransmitters and the inhibition of HCl hypersecretion, along with the role of the vagus nerve. From this, the effects of SJZT and its constituent ingredients on inhibiting stress-induced peptic ulcers will be determined. Methods. Methods used to determine SJZT's effectiveness included (1 measuring the antipeptic ulcer effects of varying combinations of the constituents of SJZT; (2 evaluations of monoamine (MA level in the brain; and (3 measuring the effects of longer-term SJZT treatment. Results. Comparing the control and experimental groups where the rats’ vagus nerves were not cut after taking SJZT orally (500 mg/kg and 1000 mg/kg, the volume of enterogastric juice, free HCl and total acidity all reduce dose-dependently. The group administered SJZT at 1000 mg/kg showed significant reductions (P<0.05. For the experimental groups where the vagus nerves were cut, a comparison with the control group suggests that the group receiving SJZT (500 mg/kg orally for 21 days demonstrated a cure rate of 34.53%. Conclusion. The results display a correlation between the therapeutic effects of SJZT on stress-induced peptic ulcers and central neurotransmitter levels. Further to this, SJZT can inhibit the hypersecretion of HCl in the stomach, thus inhibiting stress-induced peptic ulcers.

  9. Evaluation on the Pharmacological Effect of Traditional Chinese Medicine SiJunZiTang on Stress-Induced Peptic Ulcers.

    Science.gov (United States)

    Chen, Chiu-Mei; Lee, Chien-Ying; Lin, Po-Jung; Hsieh, Chin-Lang; Shih, Hung-Che

    2013-01-01

    Purpose. To explore the effects of SiJunZiTang (SJZT) on central neurotransmitters and the inhibition of HCl hypersecretion, along with the role of the vagus nerve. From this, the effects of SJZT and its constituent ingredients on inhibiting stress-induced peptic ulcers will be determined. Methods. Methods used to determine SJZT's effectiveness included (1) measuring the antipeptic ulcer effects of varying combinations of the constituents of SJZT; (2) evaluations of monoamine (MA) level in the brain; and (3) measuring the effects of longer-term SJZT treatment. Results. Comparing the control and experimental groups where the rats' vagus nerves were not cut after taking SJZT orally (500 mg/kg and 1000 mg/kg), the volume of enterogastric juice, free HCl and total acidity all reduce dose-dependently. The group administered SJZT at 1000 mg/kg showed significant reductions (P cure rate of 34.53%. Conclusion. The results display a correlation between the therapeutic effects of SJZT on stress-induced peptic ulcers and central neurotransmitter levels. Further to this, SJZT can inhibit the hypersecretion of HCl in the stomach, thus inhibiting stress-induced peptic ulcers.

  10. The obesity-induced transcriptional regulator TRIP-Br2 mediates visceral fat endoplasmic reticulum stress-induced inflammation.

    Science.gov (United States)

    Qiang, Guifen; Kong, Hyerim Whang; Fang, Difeng; McCann, Maximilian; Yang, Xiuying; Du, Guanhua; Blüher, Matthias; Zhu, Jinfang; Liew, Chong Wee

    2016-04-25

    The intimate link between location of fat accumulation and metabolic disease risk and depot-specific differences is well established, but how these differences between depots are regulated at the molecular level remains largely unclear. Here we show that TRIP-Br2 mediates endoplasmic reticulum (ER) stress-induced inflammatory responses in visceral fat. Using in vitro, ex vivo and in vivo approaches, we demonstrate that obesity-induced circulating factors upregulate TRIP-Br2 specifically in visceral fat via the ER stress pathway. We find that ablation of TRIP-Br2 ameliorates both chemical and physiological ER stress-induced inflammatory and acute phase response in adipocytes, leading to lower circulating levels of inflammatory cytokines. Using promoter assays, as well as molecular and pharmacological experiments, we show that the transcription factor GATA3 is responsible for the ER stress-induced TRIP-Br2 expression in visceral fat. Taken together, our study identifies molecular regulators of inflammatory response in visceral fat that-given that these pathways are conserved in humans-might serve as potential therapeutic targets in obesity.

  11. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice.

    Science.gov (United States)

    Reguera, Maria; Peleg, Zvi; Abdel-Tawab, Yasser M; Tumimbang, Ellen B; Delatorre, Carla A; Blumwald, Eduardo

    2013-12-01

    The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica 'Kitaake') plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of P(SARK), a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic P(SARK)::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic P(SARK)::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit.

  12. Prickly pear cactus (Opuntia ficus indica var. saboten) protects against stress-induced acute gastric lesions in rats.

    Science.gov (United States)

    Kim, Seung Hyun; Jeon, Byung Ju; Kim, Dae Hyun; Kim, Tae Il; Lee, Hee Kyoung; Han, Dae Seob; Lee, Jong-Hwan; Kim, Tae Bum; Kim, Jung Wha; Sung, Sang Hyun

    2012-11-01

    The protective activity of prickly pear cactus (Opuntia ficus indica var. saboten) fruit juice and its main constituent, betanin, were evaluated against stress-induced acute gastric lesions in rats. After 6 h of water immersion restraint stress (WIRS), gastric mucosal lesions with bleeding were induced in Sprague-Dawley rats. Pretreatment of a lyophilized powder containing O. ficus indica var. saboten fruit juice and maltodextrin (OFSM) and betanin significantly reduced stress lesions (800-1600 mg/kg). Both OFSM and betanin effectively prevented the decrease in gastric mucus content as detected by alcian blue staining. In addition, OFSM significantly suppressed WIRS-induced increases in the level of gastric mucosal tumor necrosis factor-α and myeloperoxidase (MPO). Betanin alone was only effective in decreasing MPO. These results revealed the protective activity of OFSM against stress-induced acute gastric lesions and that betanin may contribute to OFSM's gastric protective activity, at least in part. When OFSM and betanin were taken together, OFSM exerted gastroprotective activity against stress-induced gastric lesions by maintaining gastric mucus, which might be related to the attenuation of MPO-mediated damage and proinflammatory cytokine production.

  13. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    International Nuclear Information System (INIS)

    Srisuttee, Ratakorn; Koh, Sang Seok; Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae; Jhun, Byung Hak; Horio, Yoshiyuki; Chung, Young-Hwa

    2012-01-01

    Highlights: ► Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. ► Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. ► Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. ► Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of β-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  14. Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: A potential therapeutic strategy against oxidative stress-induced cell death.

    Science.gov (United States)

    Itakura, Masanori; Nakajima, Hidemitsu; Semi, Yuko; Higashida, Shusaku; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2015-11-13

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    Science.gov (United States)

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  16. Post-traumatic and stress-induced osteolysis of the distal clavicle: MR imaging findings in 17 patients

    International Nuclear Information System (INIS)

    Puente, R. de la; Boutin, R.D.; Theodorou, D.J.; Hooper, A.; Resnick, D.; Schweitzer, M.

    1999-01-01

    Objective. To describe the MR imaging findings in patients with osteolysis of the distal clavicle and to compare the MR imaging appearance of clavicular osteolysis following acute injury with that related to chronic stress. Design and patients. MR imaging examinations were reviewed in 17 patients (14 men, 3 women; ages 16-55 years) with the diagnosis of post-traumatic or stress-induced osteolysis of the clavicle. A history of a single direct injury was present in seven patients and a history of weight-lifting, participation in sports, or repetitive microtrauma was present in 10 patients. Results. MR imaging showed edema in the distal clavicle in 17 patients and, of these, eight also had edema in the acromion. The edema was most evident in STIR and fat-suppressed T2-weighted pulse sequences. Other findings about the acromioclavicular (AC) joint were prominence of the joint capsule in 14, joint fluid in eight, cortical irregularity in 12, and bone fragmentation in six patients. No differences in the MR imaging features of post-traumatic and stress-induced osteolysis of the distal clavicle were observed. Conclusion. Post-traumatic and stress-induced osteolysis of the distal clavicle have similar appearances on MR imaging, the most common and conspicuous MR imaging feature being increased T2 signal intensity in the distal clavicle. (orig.)

  17. Post-traumatic and stress-induced osteolysis of the distal clavicle: MR imaging findings in 17 patients

    Energy Technology Data Exchange (ETDEWEB)

    Puente, R. de la [Department of Radiology, University of California San Diego and Veterans Affairs Medical Center, San Diego, CA (United States)]|[Servicio de Radioloxia, CXH Cristal Pinor, Ourense (Spain); Boutin, R.D. [Department of Radiology, University of California San Diego and Veterans Affairs Medical Center, San Diego, CA (United States)]|[Department of Radiology, Veterans Affairs Medical Center, San Diego, CA (United States); Theodorou, D.J.; Hooper, A.; Resnick, D. [Department of Radiology, University of California San Diego and Veterans Affairs Medical Center, San Diego, CA (United States); Schweitzer, M. [Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    1999-04-01

    Objective. To describe the MR imaging findings in patients with osteolysis of the distal clavicle and to compare the MR imaging appearance of clavicular osteolysis following acute injury with that related to chronic stress. Design and patients. MR imaging examinations were reviewed in 17 patients (14 men, 3 women; ages 16-55 years) with the diagnosis of post-traumatic or stress-induced osteolysis of the clavicle. A history of a single direct injury was present in seven patients and a history of weight-lifting, participation in sports, or repetitive microtrauma was present in 10 patients. Results. MR imaging showed edema in the distal clavicle in 17 patients and, of these, eight also had edema in the acromion. The edema was most evident in STIR and fat-suppressed T2-weighted pulse sequences. Other findings about the acromioclavicular (AC) joint were prominence of the joint capsule in 14, joint fluid in eight, cortical irregularity in 12, and bone fragmentation in six patients. No differences in the MR imaging features of post-traumatic and stress-induced osteolysis of the distal clavicle were observed. Conclusion. Post-traumatic and stress-induced osteolysis of the distal clavicle have similar appearances on MR imaging, the most common and conspicuous MR imaging feature being increased T2 signal intensity in the distal clavicle. (orig.) With 5 figs., 1 tab., 19 refs.

  18. Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72.

    Science.gov (United States)

    Lancaster, Graeme I; Febbraio, Mark A

    2005-01-01

    The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.

  19. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    Science.gov (United States)

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The role of substance P in the maintenance of colonic hypermotility induced by repeated stress in rats.

    Science.gov (United States)

    Lu, Ping; Luo, Hesheng; Quan, Xiaojing; Fan, Han; Tang, Qincai; Yu, Guang; Chen, Wei; Xia, Hong

    2016-04-01

    The mechanism underlying chronic stress-induced gastrointestinal (GI) dysmotility has not been fully elucidated and GI hormones have been indicated playing a role in mediating stress-induced changes in GI motor function. Our objective was to study the possible role of substance P (SP) in the colonic hypermotility induced by repeated water avoidance stress (WAS) which mimics irritable bowel syndrome. Male Wistar rats were submitted to WAS or sham WAS (SWAS) (1h/day) for up to 10 consecutive days. Enzyme Immunoassay Kit was used to detect the serum level of SP. The expression of neurokinin-1 receptor (NK1R) was investigated by Immunohistochemistry and Western blotting. The spontaneous contraction of muscle strip was studied in an organ bath system. L-type calcium channel currents (ICa,L) of smooth muscle cells (SMCs) were recorded by whole-cell patch-clamp technique. Fecal pellet expulsion and spontaneous contraction of proximal colon in rats were increased after repeated WAS. The serum level of SP was elevated following WAS. Immunohistochemistry proved the expression of NK1R in mucosa, muscularis and myenteric plexus. Western blotting demonstrated stress-induced up-regulation of NK1R in colon devoid of mucosa and submucosa. Repeated WAS increased the contractile activities of longitudinal muscle and circular muscle strips induced by SP and this effect was reversed by a selective NK1R antagonist. The ICa,L of SMCs in the WAS rats were drastically increased compared to controls after addition of SP. Increased serum SP level and up-regulated NK1R in colon may contribute to stress-induced colonic hypermotility. And L-type calcium channels play a potentially important role in the process of WAS-induced dysmotility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Electroconvulsive stimulations prevent stress-induced morphological changes in the hippocampus

    DEFF Research Database (Denmark)

    Hageman, I; Nielsen, M; Wörtwein, Gitta

    2008-01-01

    whether repeated electroconvulsive stimulations (ECSs) could influence such changes in stressed rats. Furthermore, we investigated whether ECSs per se could influence neuronal branching and total length of the CA3 hippocampal neuronal dendritic tree in normal rats. Rats were stressed using the 21-day 6 h...

  2. Reversal of haloperidol induced motor deficits in rats exposed to repeated immobilization stress.

    Science.gov (United States)

    Shireen, Erum; Pervez, Sidra; Masroor, Maria; Ali, Wafa Binte; Rais, Qudsia; Khalil, Samira; Tariq, Anum; Haleem, Darakshan Jabeen

    2014-09-01

    Stress is defined as a non specific response of body to any physiological and psychological demand. Preclinical studies have shown that an uncontrollable stress condition produces neurochemical and behavioral deficits. The present study was conducted to test the hypothesis that a decrease in the responsiveness of somatodendritic 5-hydroxytryptamine (5-HT)-1A receptors following adaptation to stress could attenuate haloperidol induced acute parkinsonian like effect. Results showed that single exposure (2h) to immobilization stress markedly decreased food intake, growth rate and locomotor activity but these stress-induced behavioral deficits were not observed following repeated (2h/day for 5 days) exposure of immobilization stress suggesting behavioral tolerance occurs to similar stress. An important finding of present study is a reversal of haloperidol-induced motor deficits in animals exposed to repeated immobilization stress than respective control animals. It is suggested that stress induced possible desensitization of somatodendritic 5-HT-1A as well as 5-HT-2C receptors could release dopamine system from the inhibitory influence of serotonin. On the other hand, an increase in the effectiveness of postsynaptic 5-HT-1A receptors elicits a direct stimulatory influence on the activity of dopaminergic neuron and is possibly involved in the reversal of haloperidol-induced parkinsonian like symptoms in repeatedly immobilized rats.

  3. Grapefruit-seed extract attenuates ethanol-and stress-induced gastric lesions via activation of prostaglandin, nitric oxide and sensory nerve pathways

    OpenAIRE

    Brzozowski, Tomasz; Konturek, Peter C; Drozdowicz, Danuta; Konturek, Stanislaw J; Zayachivska, Oxana; Pajdo, Robert; Kwiecien, Slawomir; Pawlik, Wieslaw W; Hahn, Eckhart G

    2005-01-01

    AIM: Grapefruit-seed extract (GSE) containing flavonoids, possesses antibacterial and antioxidative properties but whether it influences the gastric defense mechanism and gastroprotection against ethanol- and stress-induced gastric lesions remains unknown.

  4. Inhibitory effect of the Kampo medicinal formula Yokukansan on acute stress-induced defecation in rats

    Directory of Open Access Journals (Sweden)

    Kanada Y

    2018-04-01

    inhibit spontaneous contraction. Conclusion: These results suggested that YKS influences stress-induced defecation and that increased OT secretion may be a mechanism underlying this phenomenon. Keywords: Yokukansan, oxytocin, irritable bowel syndrome, acute stress, corticosterone, Kampo medicine

  5. Can mesenchymal stem cells reverse chronic stress-induced impairment of lung healing following traumatic injury?

    Science.gov (United States)

    Gore, Amy V; Bible, Letitia E; Livingston, David H; Mohr, Alicia M; Sifri, Ziad C

    2015-04-01

    One week following unilateral lung contusion (LC), rat lungs demonstrate full histologic recovery. When animals undergo LC plus the addition of chronic restraint stress (CS), wound healing is significantly delayed. Mesenchymal stem cells (MSCs) are pluripotent cells capable of immunomodulation, which have been the focus of much research in wound healing and tissue regeneration. We hypothesize that the addition of MSCs will improve wound healing in the setting of CS. Male Sprague-Dawley rats (n = 6-7 per group) were subjected to LC/CS with or without the injection of MSCs. MSCs were given as a single intravenous dose of 5 × 10 cells in 1 mL Iscove's Modified Dulbecco's Medium at the time of LC. Rats were subjected to 2 hours of restraint stress on Days 1 to 6 following LC. Seven days following injury, rats were sacrificed, and the lungs were examined for histologic evidence of wound healing using a well-established histologic lung injury score (LIS) to grade injury. LIS examines inflammatory cells/high-power field (HPF) averaged over 30 fields, interstitial edema, pulmonary edema, and alveolar integrity, with scores ranging from 0 (normal) to 11 (highly damaged). Peripheral blood was analyzed by flow cytometry for the presence of T-regulatory (C4CD25FoxP3) cells. Data were analyzed by analysis of variance followed by Tukey's multiple comparison test, expressed as mean (SD). As previously shown, 7 days following isolated LC, LIS has returned to 0.83 (0.41), with a subscore of zero for inflammatory cells/HPF. The addition of CS results in an LIS of 4.4 (2.2), with a subscore of 1.9 (0.7) for inflammatory cells/HPF. Addition of MSC to LC/CS decreased LIS to 1.7 (0.8), with a subscore of zero for inflammatory cells/HPF. Furthermore, treatment of animals undergoing LC/CS with MSCs increased the %T-regulatory cells by 70% in animals undergoing LC/CS alone (12.9% [2.4]% vs. 6.2% [1.3%]). Stress-induced impairment of wound healing is reversed by the addition of MSCs given

  6. Effect of Escitalopram on Mental Stress-Induced Myocardial Ischemia: The Results of the REMIT Trial

    Science.gov (United States)

    Jiang, Wei; Velazquez, Eric J.; Kuchibhatla, Maragatha; Samad, Zainab; Boyle, Stephen H.; Kuhn, Cynthia; Becker, Richard C.; Ortel, Thomas L.; Williams, Redford B.; Rogers, Joseph G.; O’Connor, Christopher

    2015-01-01

    Importance Mental-stress-induced myocardial ischemia (MSIMI) is an intermediate surrogate endpoint representing the pathophysiological link between psychosocial risk factors and adverse outcomes of coronary heart disease (CHD). However, pharmacological interventions aimed at reducing MSIMI have not been well studied. Objective To examine the effects of 6 weeks of escitalopram treatment vs. placebo on MSIMI and other psychological stress-related biophysiological and emotional parameters. Design, Setting, and Participants The REMIT study is a randomized, double-blind, placebo-controlled trial of patients with clinically stable CHD and laboratory MSIMI. Enrollment occurred from 7/24/2007–8/24/2011 at a tertiary medical center. Interventions Eligible participants were randomized 1:1 to receive escitalopram (dose began at 5 mg with titration to 20 mg/day in 3 weeks) or placebo over 6 weeks. Main Outcome Measure Occurrence of MSIMI, defined as (1) development or worsening of regional wall motion abnormality; (2) left ventricular ejection fraction reduction ≥8%; and/or (3) horizontal or downsloping ST-segment depression ≥1mm in ≥2 leads lasting for ≥3 consecutive beats during ≥1 of 3 mental tasks. Results 127 participants were randomized to escitalopram (n=64) or placebo (n=63); 112 (96.1%) completed endpoint assessments (n=56 in each arm). At the end of 6 weeks, more patients taking escitalopram (34.2% [95% CI, 25.4 to 43.0]) had absence of MSIMI during the 3 mental stressors compared with patients taking placebo (17.5% [95% CI, 10.4 to 24.5]) based on unadjusted multiple imputation model for intention-to-treat analysis. A significant difference favoring escitalopram was observed (OR=2.62 [95% CI, 1.06 to 6.44]). Rates of exercise-induced ischemia were slightly lower at 6 weeks in the escitalopram group (45.8% [95% CI, 36.6 to 55.0]) than in patients receiving placebo (52.5% [95% CI, 43.3 to 61.7]), compared with baseline escitalopram (49.2% [95% CI, 39.9 to

  7. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    Science.gov (United States)

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes.

  8. High susceptibility of activated lymphocytes to oxidative stress-induced cell death

    Directory of Open Access Journals (Sweden)

    Giovanna R. Degasperi

    2008-03-01

    Full Text Available The present study provides evidence that activated spleen lymphocytes from Walker 256 tumor bearing rats are more susceptible than controls to tert-butyl hydroperoxide (t-BOOH-induced necrotic cell death in vitro. The iron chelator and antioxidant deferoxamine, the intracellular Ca2+ chelator BAPTA, the L-type Ca2+ channel antagonist nifedipine or the mitochondrial permeability transition inhibitor cyclosporin A, but not the calcineurin inhibitor FK-506, render control and activated lymphocytes equally resistant to the toxic effects of t-BOOH. Incubation of activated lymphocytes in the presence of t-BOOH resulted in a cyclosporin A-sensitive decrease in mitochondrial membrane potential. These results indicate that the higher cytosolic Ca2+ level in activated lymphocytes increases their susceptibility to oxidative stress-induced cell death in a mechanism involving the participation of mitochondrial permeability transition.O presente estudo demonstra que linfócitos ativados de baço de ratos portadores do tumor de Walker 256 são mais susceptíveis à morte celular necrótica induzida por tert-butil hidroperóxido (t-BOOH in vitro quando comparados aos controles. O quelante de ferro e antioxidante deferoxamina, o quelante intracelular de Ca2+ BAPTA, o antagonista de canal de Ca2+ nifedipina ou o inibidor da transição de permeabilidade mitocondrial ciclosporina-A, mas não o inibidor de calcineurina FK-506, inibiram de maneira similar a morte celular induzida por t-BOOH em linfócitos ativados e controles. Os linfócitos ativados apresentaram redução do potencial de membrana mitocondrial induzida por t-BOOH num mecanismo sensível a ciclosporina-A. Nossos resultados indicam que o aumento da concentração de Ca2+ citosólico em linfócitos ativados aumenta a susceptibilidade dos mesmos à morte celular induzida por estresse oxidativo, num mecanismo envolvendo a participação do poro de transição de permeabilidade mitocondrial.

  9. Study of fracture and stress-induced morphological instabilities in polymeric materials

    Science.gov (United States)

    Sabouri-Ghomi, Mohsen

    We study the phenomena of fracture in polymers at the molecular and continuum level. At a molecular level, we study the failure of polymer/polymer interfaces. Our main focus is on a specific mode of failure known as chain pull-out fracture, which is common to weak adhesive junctions, and polymer blends and mixtures. In the case of the interface between incompatible polymers, reinforcement is achieved by adding a block copolymer to the interface. We introduce a microscopic model based on Brownian dynamics to investigate the effect of the polymerization index N, of the block connector chain, on fracture toughness of such reinforced polymeric junctions. We consider the mushroom regime, where connector chains are grafted with low surface density, for the case of large pulling velocity. We find that for short chains the interface fracture toughness depends linearly on the polymerization index N of the connector chains, while for longer chains the dependence becomes N 3/2. We propose a scaling argument, based on the geometry of the initial configuration, that accounts for both short and long chains and the crossover between them. At the continuum level, we study the pattern selection mechanism of finger-like crack growth phenomena in gradient driven growth problems in general, and the structure of stress-induced morphological instabilities in crazing of polymer glasses in particular. We simulate solidification in a narrow channel through the use of a phase-field model with an adaptive grid. By tuning a dimensionless parameter, the Peclet number, we show a continuous crossover from a free dendrite at high Peclet numbers to anisotropic viscous fingering at low Peclet numbers. At low Peclet numbers we find good agreement between our results, theoretical predictions, and experiment, providing the first quantitative test of solvability theory for anisotropic viscous fingers. For high undercoolings, we find new phenomena, a solid forger which satisfies stability and

  10. Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior

    OpenAIRE

    Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore

    2016-01-01

    Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine...

  11. Electroacupuncture alleviates stress-induced visceral hypersensitivity through an opioid system in rats

    Science.gov (United States)

    Zhou, Yuan-Yuan; Wanner, Natalie J; Xiao, Ying; Shi, Xuan-Zheng; Jiang, Xing-Hong; Gu, Jian-Guo; Xu, Guang-Yin

    2012-01-01

    AIM: To investigate whether stress-induced visceral hypersensitivity could be alleviated by electroacupuncture (EA) and whether EA effect was mediated by endogenous opiates. METHODS: Six to nine week-old male Sprague-Dawley rats were used in this study. Visceral hypersensitivity was induced by a 9-d heterotypic intermittent stress (HIS) protocol composed of 3 randomly stressors, which included cold restraint stress at 4 °C for 45 min, water avoidance stress for 60 min, and forced swimming stress for 20 min, in adult male rats. The extent of visceral hypersensitivity was quantified by electromyography or by abdominal withdrawal reflex (AWR) scores of colorectal distension at different distention pressures (20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg). AWR scores either 0, 1, 2, 3 or 4 were obtained by a blinded observer. EA or sham EA was performed at classical acupoint ST-36 (Zu-San-Li) or BL-43 (Gao-Huang) in both hindlimbs of rats for 30 min. Naloxone (NLX) or NLX methiodide (m-NLX) was administered intraperitoneally to HIS rats in some experiments. RESULTS: HIS rats displayed an increased sensitivity to colorectal distention, which started from 6 h (the first measurement), maintained for 24 h, and AWR scores returned to basal levels at 48 h and 7 d after HIS compared to pre-HIS baseline at different distention pressures. The AWR scores before HIS were 0.6 ± 0.2, 1.3 ± 0.2, 1.9 ± 0.2 and 2.3 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. Six hours after termination of the last stressor, the AWR scores were 2.0 ± 0.1, 2.5 ± 0.1, 2.8 ± 0.2 and 3.5 ± 0.2 for 20 mmHg, 40 mmHg, 60 mmHg and 80 mmHg distention pressures, respectively. EA given at classical acupoint ST-36 in both hindlimbs for 30 min significantly attenuated the hypersensitive responses to colorectal distention in HIS rats compared with sham EA treatment [AWRs at 20 mmHg: 2.0 ± 0.2 vs 0.7 ± 0.1, P = 4.23 711 E-4; AWRs at 40 mmHg: 2.6 ± 0.2 vs 1.5 ± 0.2, P

  12. The CRF₁ receptor antagonist SSR125543 prevents stress-induced long-lasting sleep disturbances in a mouse model of PTSD: comparison with paroxetine and d-cycloserine.

    Science.gov (United States)

    Philbert, Julie; Beeské, Sandra; Belzung, Catherine; Griebel, Guy

    2015-02-15

    The selective CRF₁ (corticotropin releasing factor type 1) receptor antagonist SSR125543 has been previously shown to attenuate the long-term behavioral and electrophysiological effects produced by traumatic stress exposure in mice. Sleep disturbances are one of the most commonly reported symptoms by people with post-traumatic stress disorder (PTSD). The present study aims at investigating whether SSR125543 (10 mg/kg/day/i.p. for 2 weeks) is able to attenuate sleep/wakefulness impairment induced by traumatic stress exposure in a model of PTSD in mice using electroencephalographic (EEG) analysis. Effects of SSR125543 were compared to those of the 5-HT reuptake inhibitor, paroxetine (10 mg/kg/day/i.p.), and the partial N-methyl-d-aspartate (NMDA) receptor agonist, d-cycloserine (10 mg/kg/day/i.p.), two compounds which have demonstrated clinical efficacy against PTSD. Baseline EEG recording was performed in the home cage for 6h prior to the application of two electric foot-shocks of 1.5 mA. Drugs were administered from day 1 post-stress to the day preceding the second EEG recording session, performed 14 days later. Results showed that at day 14 post-stress, shocked mice displayed sleep fragmentation as shown by an increase in the occurrence of both non-rapid eye movement (NREM) sleep and wakefulness bouts. The duration of wakefulness, NREM and REM sleep were not significantly affected. The stress-induced effects were prevented by repeated administration of SSR125543, paroxetine and D-cycloserine. These findings confirm further that the CRF₁ receptor antagonist SSR125543 is able to attenuate the deleterious effects of traumatic stress exposure. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Low-Intensity Pulsed Ultrasound Prevents the Oxidative Stress Induced Endothelial-Mesenchymal Transition in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jiamin Li

    2018-02-01

    Full Text Available Background/Aims: Endothelial-mesenchymal transition (EndMT has been shown to take part in the generation and progression of diverse diseases, involving a series of changes leading to a loss of their endothelial characteristics and an acquirement of properties typical of mesenchymal cells. Low-intensity pulsed ultrasound (LIPUS is a new therapeutic option that has been successfully used in fracture healing. However, whether LIPUS can inhibit oxidative stress-induced endothelial cell damages through inhibiting EndMT remained unknown. This study aimed to investigate the protective effects of LIPUS against oxidative stress-induced endothelial cell damages and the underlying mechanisms. Methods: EndMT was induced by H2O2 (100 µm for seven days. Human aortic endothelial cells (HAECs were exposed to H2O2 with or without LIPUS treatment for seven days. The expression of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA were analyzed. The levels of total and phosphorylated PI3K and AKT proteins were detected by Western Blot analysis. Cell chemotaxis was determined by wound healing and transwell assay. Results: LIPUS relieved EndMT by decreasing ROS accumulation and increasing activation of the PI3K signaling cascade. LIPUS alleviated the migration of EndMT-derived mesenchymal-like cells through reducing extracellular matrix (ECM deposition that is associated with matrix metallopeptidase (MMP proteolytic activity and collagen production. Conclusion: LIPUS produces cytoprotective effects against oxidative injuries to endothelial cells through suppressing the oxidative stress-induced EndMT, activating the PI3K/AKT pathway under oxidative stress, and limiting cell migration and excessive ECM deposition.

  14. Stress induced a shift from dorsal hippocampus to prefrontal cortex-dependent memory retrieval: role of regional corticosterone.

    Directory of Open Access Journals (Sweden)

    Gaelle eDominguez

    2014-05-01

    Full Text Available Most of the deleterious effects of stress on memory retrieval are due to a dysfunction of the hippocampo-prefrontal cortex interplay. The role of the stress-induced regional corticosterone increase in such dysfunction remains however unclear, since there is no published study as yet dedicated to measuring corticosterone concentrations simultaneously in both the prefrontal cortex (mPFC and the hippocampus (dHPC in relation with memory impairments. To that aim, we first showed in Experiment 1 that an acute stress (3 electric footschocks; 0.9 mA each delivered before memory testing reversed the memory retrieval pattern (MRP in a serial discrimination task in which mice learned two successive discriminations. More precisely, whereas non-stressed animals remembered accurately the first learned discrimination and not the second one, stressed mice remembered more accurately the second discrimination but not the first one. We demonstrated that local inactivation of dHPC or mPFC with the anesthetic lidocaine recruited the dHPC activity in non-stress conditions whereas the stress-induced MRP inversion recruited the mPFC activity. In a second experiment, we showed that acute stress induced a very similar time-course evolution of corticosterone rises within both the mPFC and dHPC. In a 3rd experiment, we found however that in situ injections of corticosterone either within the mPFC or the dHPC before memory testing favored the emergence of the mPFC-dependent MRP but blocked the emergence of the dHPC-dependent one. Overall, our study evidences that the simultaneous increase of corticosterone after stress in both areas induces a shift from dHPC (non stress condition to mPFC-dependent memory retrieval pattern and that corticosterone is critically involved in mediating the deleterious effects of stress on cognitive functions involving the mPFC-HPC interplay.

  15. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval.

    Science.gov (United States)

    Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T

    2008-11-01

    Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.

  16. Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups.

    Science.gov (United States)

    Takahashi, L K; Kalin, N H

    1991-08-30

    Previous experiments revealed that 14-day-old prenatally stressed rats have significantly elevated concentrations of plasma adrenocorticotrophic hormone (ACTH) and corticosterone suggesting these animals have an overactive hypothalamic-pituitary-adrenal (HPA) system. In these studies, however, stress-induced hormone levels were determined only immediately after exposure to an acute stressor. Therefore, in the current study, we examined in postnatal days 7, 14 and 21 prenatally stressed rats the stress-induced time course of this pituitary-adrenal hormone elevation. Plasma ACTH and corticosterone were measured in the basal state and at 0.0, 0.5, 1.0, 2.0 and 4.0 h after a 10-min exposure period to foot shocks administered in the context of social isolation. Results indicated that at all 3 ages, plasma ACTH in prenatally stressed rats was significantly elevated. Corticosterone concentrations were also significantly higher in prenatally stressed than in control rats, especially in day 14 rats. Analysis of stress-induced hormone fluctuations over time indicated that by 14 days of age, both prenatally stressed than in control and control rats had significant increases in plasma ACTH and corticosterone after exposure to stress. Furthermore, although prenatally stressed rats had significantly higher pituitary-adrenal hormone concentrations than control animals, the post-stress temporal patterns of decline in ACTH and corticosterone levels were similar between groups. Results suggest that throughout the preweaning period, prenatal stress produces an HPA system that functions in a manner similar to that of controls but at an increased level.

  17. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    International Nuclear Information System (INIS)

    Yoshida, Go J.; Saya, Hideyuki

    2014-01-01

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 high / Fbw7 high / c-Myc low and proliferative cancer stem-like cells with CD44v8-10 high / Fbw7 low / c-Myc high

  18. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  19. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  20. The effect of microinjection of dimethyl sulfoxide into the rostral ventromedial medulla on swim stress-induced analgesia

    Directory of Open Access Journals (Sweden)

    S. Nazemi

    2018-02-01

    Full Text Available Background: Dimethyl sulfoxide (DMSO is an important solvent for compounds that used in pain research. Rostral ventromedial medulla (RVM plays an important role in modulating nociception and stress-induced