WorldWideScience

Sample records for repeated spray applications

  1. Spray applicator for spraying coatings and other fluids in space

    Science.gov (United States)

    Kuminecz, J. F.; Lausten, M. F. (Inventor)

    1985-01-01

    A self contained spray application is developed for one handed operation in a zero gravity vacuum environment by a free flying astronaut not attached to any spacecraft. This spray applicator eliminates contamination of the operator by back spray. This applicator includes a rigid accumulator containment of a fluid within a flexible bladder the fluid being urged out of the accumulator under pressure through a spray gun. The spray gun includes a spring loaded lockable trigger which controls a valve. When in an open position, the fluid passes through the valve into the ambient environment in the form of a spray. A spray shield is provided which directs the flow of the spray from the applicator by trapping errant particles of spray yet allowing the passage of escaping gases through its material.

  2. Wind Tunnel and Field Evaluation of Drift from Aerial Spray Applications with Multiple Spray Formulations

    Science.gov (United States)

    2012-01-01

    movement of sprays from aerial sprays continues to be a major concern. Ongoing research and edu- cation efforts, new product developments , and adaption...emulsifiable con- centrate, a liquid flowable, and a water dispersable granule ), with and without a non-ionic surfactant and a crop oil, sprayed in a 52 m/s... Development of the Spray Drift Task Force Database for Aerial Applications,” Envir. Toxic. Chem., Vol. 21, No. 3, 2002, pp. 648–658. [14] Spanoghe, P

  3. Evaluation of Convergent Spray Technology(TM) Spray Process for Roof Coating Application

    Science.gov (United States)

    Scarpa, J.; Creighton, B.; Hall, T.; Hamlin, K.; Howard, T.

    1998-01-01

    The overall goal of this project was to demonstrate the feasibility of(CST) Convergent Spray Technology (Trademark) for the roofing industry. This was accomplished by producing an environmentally compliant coating utilization recycled materials, a CST(Trademark) spray process portable application cart, and hand-held applicator with a CST(Trademark) spray process nozzle. The project culminated with application of this coating to a nine hundred sixty square foot metal for NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  4. Spray drying technique: II. Current applications in pharmaceutical technology.

    Science.gov (United States)

    Sollohub, Krzysztof; Cal, Krzysztof

    2010-02-01

    This review presents current applications of spray drying in pharmaceutical technology. The topics discussed include the obtention of excipients and cospray dried composites, methods for increasing the aqueous solubility and bioavailability of active substances, and modified release profiles from spray-dried particles. This review also describes the use of the spray drying technique in the context of biological therapies, such as the spray drying of proteins, inhalable powders, and viable organisms, and the modification of the physical properties of dry plant extracts.

  5. EVALUATION OF CONVERGENT SPRAY TECHNOLOGYTM SPRAY PROCESS FOR ROOF COATING APPLICATION

    Science.gov (United States)

    The overall goal of this project was to demonstrate the feasibility of Convergent Spray TechnologyTM for the roofing industry. This was accomplished by producing an environmentally compliant coating utilizing recycled materials, a CSTTM spray process portable application cart, a...

  6. Inhalational and dermal exposures during spray application of biocides.

    Science.gov (United States)

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a

  7. Powder consolidation using cold spray process modeling and emerging applications

    CERN Document Server

    Moridi, Atieh

    2017-01-01

    This book first presents different approaches to modeling of the cold spray process with the aim of extending current understanding of its fundamental principles and then describes emerging applications of cold spray. In the coverage of modeling, careful attention is devoted to the assessment of critical and erosion velocities. In order to reveal the phenomenological characteristics of interface bonding, severe, localized plastic deformation and material jet formation are studied. Detailed consideration is also given to the effect of macroscopic defects such as interparticle boundaries and subsequent splat boundary cracking on the mechanical behavior of cold spray coatings. The discussion of applications focuses in particular on the repair of damaged parts and additive manufacturing in various disciplines from aerospace to biomedical engineering. Key aspects include a systematic study of defect shape and the ability of cold spray to fill the defect, examination of the fatigue behavior of coatings for structur...

  8. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  9. Thermal Spray Coatings for Blast Furnace Tuyere Application

    Science.gov (United States)

    Pathak, A.; Sivakumar, G.; Prusty, D.; Shalini, J.; Dutta, M.; Joshi, S. V.

    2015-12-01

    The components in an integrated steel plant are invariably exposed to harsh working environments involving exposure to high temperatures, corrosive gases, and erosion/wear conditions. One such critical component in the blast furnace is the tuyere, which is prone to thermal damage by splashing of molten metal/slag, erosive damage by falling burden material, and corrosion from the ensuing gases. All the above, collectively or independently, accelerate tuyere failure, which presents a potential explosion hazard in a blast furnace. Recently, thermal spray coatings have emerged as an effective solution to mitigate such severe operational challenges. In the present work, five different coatings deposited using detonation spray and air plasma spray techniques were comprehensively characterized. Performance evaluation involving thermal cycling, hot corrosion, and erosion tests was also carried out. Based on the studies, a coating system was suggested for possible tuyere applications and found to yield substantial improvement in service life during actual field trials.

  10. Vacuum plasma spray applications on liquid fuel rocket engines

    Science.gov (United States)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  11. Development, characterization, and application of paper spray ionization.

    Science.gov (United States)

    Liu, Jiangjiang; Wang, He; Manicke, Nicholas E; Lin, Jin-Ming; Cooks, R Graham; Ouyang, Zheng

    2010-03-15

    Paper spray is developed as a direct sampling ionization method for mass spectrometric analysis of complex mixtures. Ions of analyte are generated by applying a high voltage to a paper triangle wetted with a small volume (paper, added with the wetting solution, or transferred from surfaces using the paper as a wipe. It is demonstrated that paper spray is applicable to the analysis of a wide variety of compounds, including small organic compounds, peptides, and proteins. Procedures are developed for analysis of dried biofluid spots and applied to therapeutic drug monitoring with whole blood samples and to illicit drug detection in raw urine samples. Limits of detection of 50 ng/mL (or 20 pg absolute) are achieved for atenolol in bovine blood. The combination of sample collection from surfaces and paper spray ionization also enables fast chemical screening at high sensitivity, for example 100 pg of heroin distributed on a surface and agrochemicals on fruit peels are detectable. Online derivatization with a preloaded reagent is demonstrated for analysis of cholesterol in human serum. The combination of paper spray with miniature mass spectrometers offers a powerful impetus to wide application of mass spectrometry in nonlaboratory environments.

  12. Field experiment on spray drift: Deposition and airborne drift during application to a winter wheat crop

    NARCIS (Netherlands)

    Wolters, A.; Linnemann, V.; Zande, van de J.C.; Vereecken, H.

    2008-01-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done

  13. Modelling of sprays in containment applications with A CMFD code

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.f [Electricite de France R and D Division, 6 Quai Watier, F-78400 Chatou (France); Lamy, J.-S. [Electricite de France R and D Division, 1 av. du General de Gaulle, F-92140 Clamart (France); Lavieville, J. [Electricite de France R and D Division, 6 Quai Watier, F-78400 Chatou (France); Guieu, S.; Martin, M. [Electricite de France SEPTEN Division, 12-14 av. Dutrievoz, 69628 Villeurbanne (France)

    2010-09-15

    During the course of a hypothetical severe accident in a Pressurized Water Reactor (PWR), spray systems are used in the containment in order to prevent overpressure in case of a steam line break, and to enhance the gas mixing in case of the presence of hydrogen. In the frame of the Severe Accident Research Network (SARNET) of the 6th EC Framework Programme, two tests was produced in the TOSQAN facility in order to study the spray behaviour under severe accident conditions: TOSQAN 101 and TOSQAN 113. The TOSQAN facility is a closed cylindrical vessel. The inner spray system is located on the top of the enclosure on the vertical axis. For the TOSQAN 101 case, an initial pressurization in the vessel is performed with superheated steam up to 2.5 bar. Then, steam injection is stopped and spraying starts simultaneously at a given water temperature (around 25 {sup o}C) and water mass flow-rate (around 30 g/s). The depressurization transient starts and continues until the equilibrium phase, which corresponds to the stabilization of the average temperature and pressure of the gaseous mixture inside the vessel. The purpose of the TOSQAN 113 cold spray test is to study helium mixing due to spray activation without heat and mass transfers between gas and droplets. We present in this paper the spray modelling implemented in NEPTUNE{sub C}FD, a three-dimensional multi-fluid code developed especially for nuclear reactor applications. A new model dedicated to the droplet evaporation at the wall is also detailed. Keeping in mind the Best Practice Guidelines, closure laws have been selected to ensure a grid-dependence as weak as possible. For the TOSQAN 113 case, the time evolution of the helium volume fraction calculated shows that the physical approach described in the paper is able to reproduce the mixing of helium by the spray. The prediction of the transient behaviour should be improved by including in the model corrections based on better understanding of the influence of the

  14. Supercritical Fluid Spray Application Process for Adhesives and Primers

    Science.gov (United States)

    2003-03-01

    and adhesives (1-3), synthesis of polymers with microcellular structures (4), and drying of silica aerogel (5-11) already have been developed into...poor solvent and a good solute. In applications such as spraying paint, coatings, and adhesives, aerogel -making, and impregnations, carbon dioxide...microns. Tepper and Levit (64) also demonstrated the deposition of microspheres of high molecular weight poly(dimethylsiloxane) onto the sensing surface

  15. Spray-coatable negative photoresist for high topography MEMS applications

    Science.gov (United States)

    Arnold, Markus; Voigt, Anja; Haas, Sven; Schwenzer, Falk; Schwenzer, Gunther; Reuter, Danny; Gruetzner, Gabi; Geßner, Thomas

    2017-03-01

    In microsystem technology, the lithographical processing of substrates with a topography is very important. Interconnecting lines, which are routed over sloped topography sidewalls from the top of the protecting wafer to the contact pads of the device wafer, are one example of patterning over a topography. For structuring such circuit paths, a photolithography process, and therefore a process for homogeneous photoresist coating, is required. The most flexible and advantageous way of depositing a homogeneous photoresist film over structures with high topography steps is spray-coating. As a pattern transfer process for circuit paths in cavities, the lift-off process is widely used. A negative resist, like ma-N (MRT) or AZnLOF (AZ) is favoured for lift-off processes due to the existing negative angle of the sidewalls. Only a few sprayable negative photoresists are commercially available. In this paper, the development of a novel negative resist spray-coating based on a commercially available single-layer lift-off resist for spin-coating, especially for the patterning of structures inside the cavity and on the cavity wall, is presented. A variety of parameters influences the spray-coating process, and therefore the patterning results. Besides the spray-coating tool and the parameters, the composition of the resist solution itself also influences the coating results. For homogeneous resist coverage over the topography of the substrate, different solvent combinations for diluting the resist solution, different chuck temperatures during the coating process, and also the softbake conditions, are all investigated. The solvent formulations and the process conditions are optimized with respect to the homogeneity of the resist coverage on the top edge of the cavities. Finally, the developed spray-coating process, the resist material and the process stability are demonstrated by the following applications: (i) lift-off, (ii) electroplating, (iii) the wet and (iv) the dry

  16. Application of pulse combustion technology in spray drying process

    Directory of Open Access Journals (Sweden)

    I. Zbicinski

    2000-12-01

    Full Text Available The paper presents development of valved pulse combustor designed for application in drying process and drying tests performed in a specially built installation. Laser technique was applied to investigate the flow field and structure of dispersed phase during pulse combustion spray drying process. PDA technique was used to determine initial atomization parameters as well as particle size distribution, velocity of the particles, mass concentration of liquid phase in the cross section of spray stream, etc., in the drying chamber during drying tests. Water was used to estimate the level of evaporation and 5 and 10% solutions of sodium chloride to carry out drying tests. The Computational Fluid Dynamics technique was used to perform theoretical predictions of time-dependent velocity, temperature distribution and particle trajectories in the drying chamber. Satisfactory agreement between calculations and experimental results was found in certain regions of the drying chamber.

  17. Microgravity Spray Cooling Research for High Powered Laser Applications

    Science.gov (United States)

    Zivich, Chad P.

    2004-01-01

    An extremely powerful laser is being developed at Goddard Space Flight Center for use on a satellite. This laser has several potential applications. One application is to use it for upper atmosphere weather research. In this case, the laser would reflect off aerosols in the upper atmosphere and bounce back to the satellite, where the aerosol velocities could be calculated and thus the upper atmosphere weather patterns could be monitored. A second application would be for the US. Air Force, which wants to use the laser strategically as a weapon for satellite defense. The Air Force fears that in the coming years as more and more nations gain limited space capabilities that American satellites may become targets, and the laser could protect the satellites. Regardless of the ultimate application, however, a critical step along the way to putting the laser in space is finding a way to efficiently cool it. While operating the laser becomes very hot and must be cooled to prevent overheating. On earth, this is accomplished by simply running cool tap water over the laser to keep it cool. But on a satellite, this is too inefficient. This would require too much water mass to be practical. Instead, we are investigating spray cooling as a means to cool the laser in microgravity. Spray cooling requires much less volume of fluid, and thus could be suitable for use on a satellite. We have inherited a 2.2 second Drop Tower rig to conduct our research with. In our experiments, water is pressurized with a compressed air tank and sprayed through a nozzle onto our test plate. We can vary the pressure applied to the water and the temperature of the plate before an experiment trial. The whole process takes place in simulated microgravity in the 2.2 second Drop Tower, and a high speed video camera records the spray as it hits the plate. We have made much progress in the past few weeks on these experiments. The rig originally did not have the capability to heat the test plate, but I did

  18. Novel Applications of Power Ultrasonic Spray

    Science.gov (United States)

    Quan, Ke-Ming

    Atomization is a process where a liquid is dispersed into droplets in a gas. Ultrasonic atomization was discovered in the 1920s (Loomis and Woods, 1927). Since then, atomization has seen diversified applications in devices such as drug nebulizers, room humidifiers, and air refreshers, as well as in industrial processes such as combustion, prilling, and web coating. In contrast to conventional liquid atomizers, ultrasound atomizers generally handle lower flow rates, and atomization of the liquid is achieved not by pressure, but by the vibration of ultrasonic waves (Morgan, 1993). This latter feature decouples the requirement of orifice geometry and pressure from the flow rate, allowing the flow to be controlled independently. Typically, ultrasonic atomizers excel in accurately processing low flow rates and slurry without clogging issues.

  19. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  20. Field Application of Automated Power Arc Spraying System on Steel Bridge Deck

    Institute of Scientific and Technical Information of China (English)

    YI Chun-long; SUO Shuang-fu; SUN Zhi; PANG Xu-nan

    2004-01-01

    The effective corrosion protection coating and high productive coating equipment for steel bridge deck has been a challenge for bridge engineers for many years. An automated power arc spraying system was first designed and field applied to coating the deck of Wuhan Junshan Yangtze River Bridge in high efficiency. This steel bridge is a continuous orthotropic deck box girder cable-stayed bridge with 962 m in length and 38.8 m in width, whose width is the No. 1 in China. The whole orthotropic deck with over 35,000 m2surface area was arc-sprayed a protective coating of zinc on site, followed by a sealant and SMA paving material. The side face and bottom of box girders were arc-sprayed with aluminum in factory.Field application indicated that the newly designed automated power arc spraying system with fan nozzle and separate primary & secondary atomizing air had some advantages over the conventional arc spraying system, such as automated operation,big arc spray current, high spraying rate, big breadth of each coat, even and small atomized particles, high density and low porosity of sprayed coating, and high adhesive strength to the substrate.Working procedure of surface preparation and automated arc spraying on bridge deck were introduced, and the quality of sprayed coating is controlled strictly. Field tests proved that the application of this automated power arc spraying system is successful and suitable for coating the steel bridge deck.

  1. Development of a Crop Adapted Spray Application (CASA) sprayer for orchards

    NARCIS (Netherlands)

    Zande, van de J.C.; Doruchowski, G.; Balsari, P.; Wenneker, M.

    2010-01-01

    In the EU-FP6 ISAFRUIT project a Crop Adapted Spray Application system (CASA) for precision crop protection was developed (Doruchowski et al., 2009). The system ensures efficient and safe spray application in orchards according to actual needs and with respect to the environment. The developed CASA

  2. Pesticide residues in individual versus composite samples of apples after fine or coarse spray quality application

    NARCIS (Netherlands)

    Poulsen, M.; Wenneker, M.; Withagen, J.C.M.; Christensen, H.B.

    2012-01-01

    In this study, field trials on fine and coarse spray quality application of pesticides on apples were performed. The main objectives were to study the variation of pesticide residue levels in individual fruits versus composite samples, and the effect of standard fine spray quality application versus

  3. Development of a Crop Adapted Spray Application (CASA) sprayer for orchards

    NARCIS (Netherlands)

    Zande, van de J.C.; Doruchowski, G.; Balsari, P.; Wenneker, M.

    2010-01-01

    In the EU-FP6 ISAFRUIT project a Crop Adapted Spray Application system (CASA) for precision crop protection was developed (Doruchowski et al., 2009). The system ensures efficient and safe spray application in orchards according to actual needs and with respect to the environment. The developed CASA

  4. Microstructural studies of thermal spray coatings for biomedical applications

    Science.gov (United States)

    Sun, Limin

    2002-01-01

    /EMAA (ethylene methacrylic acid copolymer) coatings were produced using a flame spray system. The coatings exhibited increased Young's modulus compared to pure EMAA coatings and reasonable toughness and dissolution. The mechanical and dissolution behaviors were related to the volume and distribution of the HA in the polymer matrix. This technique provides a new means of preparing HA/polymer coatings for application as implants.

  5. Review of patents and application of spray drying in pharmaceutical, food and flavor industry.

    Science.gov (United States)

    Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis

    2014-04-01

    Spray drying has always remained an energetic field of innovation in pharmaceutical, food and flavor industry since last couple of decades. The current communication embodies an in-depth application of spray drying in pulmonary drug delivery for production of uniform and respirable size particles suitable for nebulizers, dry powder inhalers (DPI) and pressurized metered dose inhalers (pMDI). The review also highlights spray drying application in the manufacturing of mucoadhesive formulation suitable for nasal cavities to improve the drug absorption and bioavailability. Recent research works and patents filed by various researchers on spray drying technology for solubility enhancement have also been accentuated. Benefits of spray drying in production of dry flavorings to meet a product with maximum yield and least flavor loss are also discussed. The use of spray drying in production of various food products like milk or soymilk powder, tomato pulp, dry fruit juice etc, and in encapsulation of vegetable oil or fish oil and dry creamer has been discussed. Current review also highlights the application of spray drying in the biotechnology field like production of dry influenza or measles vaccine as well as application in ceramic industry. Spray drying based patents issued by the U.S. Patent and Trademark Office in the area of drug delivery have also been included in the current review to emphasize importance of spray drying in the recent research scenario.

  6. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    Science.gov (United States)

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  7. Comparison of the distribution of intranasal steroid spray using different application techniques.

    Science.gov (United States)

    Tay, Sok Yan; Chao, Siew Shuen; Mark, Kim Thye Thong; Wang, De Yun

    2016-11-01

    Optimizing the intranasal distribution of nasal steroid spray (NS) is important in managing patients with allergic rhinitis (AR). Using a 3-dimensional computational model of the human nose, we found that inspiratory airflow improved particle distribution by 86%. We hence designed a study to determine if the intranasal distribution of NS is improved by (1) simultaneous gentle inspiration or (2) nasal decongestion. Twenty patients with AR were recruited. Colored triamcinolone nasal spray Nasacort®, was applied to 1 side of the nasal cavity with simultaneous gentle inspiration (technique1) and the other side with no inhalation (technique 2). Flexible nasoendoscopy with video documentation was performed immediately after each application. The same procedures were repeated 30 minutes after nasal decongestion. The nasal cavity was divided into 10 different regions and presence of the colored medication in each region was given 1 point. Prior to decongestion, the mean total score was significantly higher using technique 1 (4.61 ± 0.25) compared to technique 2 (3.80 ± 0.24), (p = 0.03). Following decongestion, the mean total score for techniques 1 and 2 was (5.20 ± 0.40) and (4.30 ± 0.32), respectively. The differences in total score for both techniques before and after decongestant were not significant. The presence of inspiratory airflow, using the gentle inspiration technique, improves the intranasal distribution of NS in patients with AR. The use of correct technique is more important than nasal decongestion in the distribution of nasal spray particles. © 2016 ARS-AAOA, LLC.

  8. Application of radioisotopes Au -198 to radiometrical field investigation of spraying machine

    Energy Technology Data Exchange (ETDEWEB)

    Goraczko, W.; Kocorowska, E. [Technical Univeristy, Poznan (Poland). Radio and Photo-Chemistry Department

    1997-10-01

    The poster shows application of radioisotope {sup 198}Au to radiometrical field testing of spraying machine. In the research was tested the Polish suspensioned tractor OZS400 type spraying machine. The machine worked in two different variants: without and with the beam stabilisation (oscillatory stabilisation)

  9. Ground experimental investigations into an ejected spray cooling system for space closed-loop application

    Directory of Open Access Journals (Sweden)

    Zhang Hongsheng

    2016-06-01

    Full Text Available Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor–liquid mixture from the heat surface and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and experimental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 °C and 78.2 °C under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.

  10. Ground experimental investigations into an ejected spray cooling system for space closed-loop application

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongsheng; Li Yunze; Wang Shengnan; Liu Yang; Zhong Mingliang

    2016-01-01

    Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor–liquid mixture from the heat sur-face and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and exper-imental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 ?C and 78.2 ?C under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed;results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.

  11. Application of laser assisted cold spraying process for metal deposition

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-02-01

    Full Text Available Laser assisted cold spraying (LACS) process is a hybrid technique that uses laser and cold spray to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic which are achieved by entraining...

  12. Digital Image Processing application to spray and flammability studies

    Science.gov (United States)

    Hernan, M. A.; Parikh, P.; Sarohia, V.

    1985-01-01

    Digital Image Processing has been integrated into a new technique for measurements of fuel spray characteristics. The advantages of this technique are: a wide dynamic range of droplet sizes, accounting for nonspherical droplet shapes not possible with other spray assessment techniques. Finally, the technique has been applied to the study of turbojet engine fuel nozzle atomization performance with Jet A and antimisting fuel.

  13. Application of High Performance Computing for Simulations of N-Dodecane Jet Spray with Evaporation

    Science.gov (United States)

    2016-11-01

    ARL-TR-7873 ● NOV 2016 US Army Research Laboratory Application of High Performance Computing for Simulations of N -Dodecane Jet...US Army Research Laboratory Application of High Performance Computing for Simulations of N -Dodecane Jet Spray with Evaporation by Luis...TITLE AND SUBTITLE Application of High Performance Computing for Simulations of N -Dodecane Jet Spray with Evaporation 5a. CONTRACT NUMBER 5b

  14. A Review on Atomization and Sprays of Biofuels for IC Engine Applications

    Directory of Open Access Journals (Sweden)

    Prasad Boggavarapu

    2013-06-01

    Full Text Available Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI engine sprays and briefly for spark ignition (SI engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and have narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI engines.

  15. Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings

    Science.gov (United States)

    Göhler, Daniel; Stintz, Michael

    2014-08-01

    Airborne particle release during the spray application of coatings was analyzed in the nanometre and micrometre size range. In order to represent realistic conditions of domestic and handcraft use, the spray application was performed using two types of commercial propellant spray cans and a manual gravity spray gun. Four different types of coatings doped with three kinds of metal-oxide tracer nanoparticle additives (TNPA) were analyzed. Depending on the used coating and the kind of spray unit, particulate release numbers between 5 × 108 and 3 × 1010 particles per gram ejection mass were determined in the dried spray aerosols. The nanoparticulate fraction amounted values between 10 and 60 no%. The comparison between nanoparticle-doped coatings with non-doped ones showed no TNPA-attributed differences in both the macroscopic spray process characteristics and the particle release numbers. SEM, TEM and EDX-analyzes showed that the spray aerosols were composed of particles made up solely from matrix material and sheathed pigments, fillers and TNPAs. Isolated ZnO- or Fe2O3-TNPAs could not be observed.

  16. Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings.

    Science.gov (United States)

    Göhler, Daniel; Stintz, Michael

    2014-01-01

    Airborne particle release during the spray application of coatings was analyzed in the nanometre and micrometre size range. In order to represent realistic conditions of domestic and handcraft use, the spray application was performed using two types of commercial propellant spray cans and a manual gravity spray gun. Four different types of coatings doped with three kinds of metal-oxide tracer nanoparticle additives (TNPA) were analyzed. Depending on the used coating and the kind of spray unit, particulate release numbers between 5 × 10(8) and 3 × 10(10) particles per gram ejection mass were determined in the dried spray aerosols. The nanoparticulate fraction amounted values between 10 and 60 no%. The comparison between nanoparticle-doped coatings with non-doped ones showed no TNPA-attributed differences in both the macroscopic spray process characteristics and the particle release numbers. SEM, TEM and EDX-analyzes showed that the spray aerosols were composed of particles made up solely from matrix material and sheathed pigments, fillers and TNPAs. Isolated ZnO- or Fe2O3-TNPAs could not be observed.

  17. EVALUATION OF SUPERCRITICAL CARBON DIOXIDE TECHNOLOGY TO REDUCE SOLVENT IN SPRAY COATING APPLICATIONS

    Science.gov (United States)

    This evaluation, part of the Pollution Prevention Clean Technology Demonstration (CTD) Program, addresses the product quality, waste reduction, and economic issues of spray paint application using supercritical carbon dioxide (CO2). Anion Carbide has developed this technology and...

  18. EVALUATION OF SUPERCRITICAL CARBON DIOXIDE TECHNOLOGY TO REDUCE SOLVENT IN SPRAY COATING APPLICATIONS

    Science.gov (United States)

    This evaluation, part of the Pollution Prevention Clean Technology Demonstration (CTD) Program, addresses the product quality, waste reduction, and economic issues of spray paint application using supercritical carbon dioxide (CO2). Anion Carbide has developed this technology and...

  19. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  20. A statistical approach to optimize the spray drying of starch particles: application to dry powder coating.

    Science.gov (United States)

    Bilancetti, Luca; Poncelet, Denis; Loisel, Catherine; Mazzitelli, Stefania; Nastruzzi, Claudio

    2010-09-01

    This article describes the preparation of starch particles, by spray drying, for possible application to a dry powder coating process. Dry powder coating consists of spraying a fine powder and a plasticizer on particles. The efficiency of the coating is linked to the powder morphological and dimensional characteristics. Different experimental parameters of the spray-drying process were analyzed, including type of solvent, starch concentration, rate of polymer feeding, pressure of the atomizing air, drying air flow, and temperature of drying air. An optimization and screening of the experimental parameters by a design of the experiment (DOE) approach have been done. Finally, the produced spray-dried starch particles were conveniently tested in a dry coating process, in comparison to the commercial initial starch. The obtained results, in terms of coating efficiency, demonstrated that the spray-dried particles led to a sharp increase of coating efficiency value.

  1. Effects of Spray Mixtures on Droplet Size Under Aerial Application Conditions and Implications on Drift

    Science.gov (United States)

    2010-01-01

    Keywords. Aerial application, Glyphosate , Spray adjuvant, Droplet size, Spray drift, AGDISP. pray drift, which the Environmental Protection Agency (EPA...environmental and human health protection through drift reduction by accelerating the acceptance and use of improved and cost‐effective application...Louis, Mo.) EPA Reg. No. 524‐549, Active ingredient: Glyphosate : N‐(phosphonomethyl) glycine, in the form of its potassium salt: 1 quart/acre rate

  2. Vacuum Plasma Spray (VPS) Material Applications for Thruster Components

    Science.gov (United States)

    Elam, Sandra; Holmes, Richard; Hickman, Robert

    2006-01-01

    A variety of vacuum plasma spray (VPS) material systems have been successfully applied to injector and thrust chamber components. VPS offers a versatile fabrication process with relatively low costs to produce near net shape parts. The materials available with VPS increase operating margins and improve component life by providing superior thermal and oxidation protection in specific engine environments. Functional gradient materials (FGM) formed with VPS allow thrust chamber liners to be fabricated with GRCop-84 (an alloy of copper, chrome, and niobium) and a protective layer of NiCrAlY on the hot wall. A variety of thrust chamber liner designs have been fabricated to demonstrate the versatility of the process. Hot-fire test results have confined the improved durability and high temperature performance of the material systems for thrust chamber liners. Similar FGM s have been applied to provide superior thermal protection on injector faceplates with NiCrAlY and zirconia coatings. The durability of the applied materials has been demonstrated with hot-fire cycle testing on injector faceplates in high temperature environments. The material systems can benefit the components used in booster and main engine propulsion systems. More recent VPS efforts are focused on producing rhenium based material systems for high temperature applications to benefit in-space engines like reaction control system (RCS) thrusters.

  3. Application of Constrained Linear MPC to a Spray Dryer

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik;

    2014-01-01

    In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against...... experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Spray drying is a cost-effective method to evaporate water from liquid foods and produces a free flowing powder....... The main challenge of spray drying is to meet the residual moisture specification and prevent powder from sticking to the chamber walls. By simulation we compare the performance of the MPC against the conventional PID control strategy. During an industrially recorded disturbance scenario, the MPC increases...

  4. Application of Constrained Linear MPC to a Spray Dryer

    OpenAIRE

    2014-01-01

    In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Sp...

  5. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Shawn M; Harrison, Mark A [Food Science and Technology Department, University of Georgia, Athens, GA, 30602-2610 (United States); Law, S Edward, E-mail: edlaw@engr.uga.edu [Biological and Agricultural Engineering Department, Applied Electrostatics Laboratory www.ael.engr.uga.edu, University of Georgia, Athens, GA, 30602-4435 (United States)

    2011-06-23

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  6. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    Science.gov (United States)

    Lyons, Shawn M.; Harrison, Mark A.; Law, S. Edward

    2011-06-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic

  7. A new application field of plasma spraying technique to environmental depollution

    Institute of Scientific and Technical Information of China (English)

    YE Fu-xing; A.Ohmori

    2004-01-01

    To expand the application of plasma spraying technique, TiO2 coatings were prepared using agglomerated anatase TiO2 powder to solve the environmental problems. The composition and photocatalytic activity of plasma sprayed TiO2 coatings were investigated systematically. The content of anatase TiO2 in the sprayed coatings was approximate to 7%- 15%, which was influenced by the melting state of TiO2 powder in plasma spraying process. The surface of sprayed coating was very rough and the arithmetical mean deviation of the surface profiles (Ra) was in the range of 5.7 - 8.8 μm. Under lower arc current, the surface of the coating became rougher. The anatase to rutile phase transformation temperature of agglomerated anatase TiO2 powder was approximate to 1 173 K. The TiO2 coating sprayed under the arc current of 400 A had good photocatalytic activity for the relative high content of anatase phase in it. It is concluded that the application of plasma spraying technique to environmental field has been developed.

  8. Laser-assisted cold-sprayed hydroxyapatite/titanium composites: evaluation for tissues engineering applications

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2013-08-01

    Full Text Available -1 Laser-assisted cold-sprayed hydroxyapatite/titanium composites: evaluation for tissues engineering applications Monnamme Tlotleng, Mukul Shukla, Esther Akinlabi and Sisa Pityana AIMS AND OBJECTIVES This research work seeks to establish titanium... and hydroxyapatite (Ti-HAP) using Laser- Assisted Cold Spray (LACS) technique on Ti-6Al-4V substrate. The produced coatings must be characterised for: a) Micro-structure (porosity, cracks, etc.) using Optical Microscope (OM); b) Mechanical properties (Hardness...

  9. Numerical Simulation and Experimental Characterization of a Binary Aluminum Alloy Spray - Application to the Spray Rolling Process

    Energy Technology Data Exchange (ETDEWEB)

    S. B. Johnson; J.-P. Delplanque; Y. Lin; Y. Zhou; E. J. Lavernia; K. M. McHugh

    2005-02-01

    A stochastic, droplet-resolved model has been developed to describe the behavior of a binary aluminum alloy spray during the spray-rolling process. In this process, a molten aluminum alloy is atomized and the resulting spray is depostied on the rolls of a twin-roll caster to produce aluminum strip. The one-way coupled spray model allows the prediction of spray characteristics such as enthalph and solid fraction, and their distribution between the nozzle and the depostion surface. This paper outlines the model development and compares the predicted spray dynamics to PDI measurements performed in a controlled configuration. Predicted and measured droplet velocity and size distributions are presented for two points along the spray centerline along with predicted spray averaged specific enthalph and solid fraction curves.

  10. Trajectory Generation and Coupled Numerical Simulation for Thermal Spraying Applications on Complex Geometries

    Science.gov (United States)

    Candel, A.; Gadow, R.

    2009-12-01

    For high process reproducibility and optimized coating quality in thermal spray applications on complex geometries, atmospheric plasma spraying and high-velocity oxygen fuel torches are guided by advanced robot systems. The trajectory of the torch, the spray angle, and the relative speed between torch and component are crucial factors which affect the coating microstructure, properties, and, especially, the residual stress distribution. Thus, the requirement of high-performance thermally sprayed coatings with narrow dimensional tolerances leads to challenges in the field of robot-assisted handling, and software tools for efficient trajectory generation and robot programming are demanded. By appropriate data exchange, the automatically generated torch trajectory and speed profile can be integrated in finite element method models to analyze their influence on the heat and mass transfer during deposition. Coating experiments assisted by online diagnostics were performed to validate the developed software tools.

  11. Recent developments in plasma spray processes for applications in energy technology

    Science.gov (United States)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  12. Metered Cryospray™: a novel uniform, controlled, and consistent in vivo application of liquid nitrogen cryogenic spray

    Science.gov (United States)

    Mulcahey, Thomas I; Coad, James E; Fan, Wei Li; Grasso, Daniel J; Hanley, Brian M; Hawkes, Heather V; McDermott, Sean A; O’Connor, John P; Sheets, Ellen E; Vadala, Charles J

    2017-01-01

    In this article, a novel cryotherapy approach using a uniform, controlled, and consistent in vivo application of liquid nitrogen (LN2) spray as a Metered Cryospray™ (MCS) process is described. Although MCS may be used for many potential clinical applications, this paper focuses on the development that led to the controlled and consistent delivery of radial LN2 cryogen spray in order to generate a uniform circumferential effect and how the amount of MCS can be adapted to specifically ablate targeted diseases within a patient’s lumen such as an airway or esophagus. PMID:28255257

  13. Effect of repeated application of fenthion as a mosquito larvicide on Nile tilapia (Oreochromis niloticus) inhabiting selected water canals in Sri Lanka.

    Science.gov (United States)

    Jayasundara, Viranga K; Pathiratne, Asoka

    2008-04-01

    Health status of feral Nile tilapia following repeated applications of fenthion as a mosquito larvicide to selected water canals in Sri Lanka was assessed. With three spray applications of fenthion to the study sites at weekly intervals at the concentration recommended for mosquito control, condition factor and brain acetylcholinesterase activity of the fish were depressed in a time dependent manner. Prominent histopathological alterations displayed were gill hyperplasia and telangiectasis and vacoulation of hepatocytes. Observed ill health effects of fenthion on the fish demonstrate probable ecological risk to the fish populations inhabiting the water canals which receive repeated inputs of fenthion.

  14. Repeated application of organic waste affects soil organic matter composition

    DEFF Research Database (Denmark)

    Peltre, Clément; Gregorich, Edward G.; Bruun, Sander

    2017-01-01

    of different types of carbon compounds in soil. The objective of this study was to identify and characterise changes in soil organic matter (SOM) composition after repeated applications of organic waste. Soil from the CRUCIAL field experiment in Denmark was sampled after 12 years of annual application...... that there was accumulation in soil of different C compounds for the different types of applied organic waste, which appeared to be related to the degree to which microbial activity was stimulated and the type of microbial communities applied with the wastes or associated with the decomposition of applied wastes...

  15. Spray-coating for biopharmaceutical powder formulations: beyond the conventional scale and its application.

    Science.gov (United States)

    Maa, Yuh-Fun; Ameri, Mahmoud; Rigney, Robert; Payne, Lendon G; Chen, Dexiang

    2004-03-01

    Fluid-bed spray-coating process is widely used to prepare non-protein pharmaceutical solid dosage forms using macro-size seed particles (200-1000 microm) at kilogram batch sizes. In this study we developed a small-scale fluid-bed spray-coating process (20 g) to produce micro-sized vaccine powder formulations (40-60 microm) for epidermal powder immunization (EPI) METHODS: A bench-top spray coater was used to spray two vaccines, diphtheria toxoid (dT) and alum-adsorbed hepatitis-B surface antigen (Alum-HBsAg), onto crystalline lactose particles of 40-60 microm in diameter. Particle properties such as particle size, surface morphology, and degree of particle agglomeration were determined. Protein stability was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The immunogenicity of the vaccine was evaluated in vivo by needle injection and epidermal powder immunization (EPI) of mice or guinea pigs. Coating feasibility was demonstrated for both vaccine formulations containing different excipients. However, the nature of the vaccine antigen appeared to affect coating feasibility in terms of particle agglomeration considerably. Delivery of spray-coated dT and alum-HBsAg through EPI to mice and guinea pigs, respectively, generated significant antibody responses, at a level comparable to liquid formulation delivered subcutaneously through needle/syringe injection. The new spray-coating process represents an important technical advance and may provide a useful tool for developing high-valued biopharmaceutical powder formulations for novel applications. The strong in vivo performance of the coated dT and alum-HBsAg powders by EPI further demonstrated that spray-coating is a viable dry powder formulation process and the skin's epidermal layer presents an efficient vaccine delivery route.

  16. High-volume use of self-cementing spray dry absorber material for structural applications

    Science.gov (United States)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  17. Industrial application of model predictive control to a milk powder spray drying plant

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2016-01-01

    In this paper, we present our first results from an industrial application of model predictive control (MPC) with real-time steady-state target optimization (RTO) for control of an industrial spray dryer that produces enriched milk powder. The MPC algorithm is based on a continuous-time transfer ...

  18. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Bohr, Adam; Boetker, Johan P; Rades, Thomas

    2014-01-01

    . Spray-drying and electrospraying are both technologies that allow production and continuous manufacturing of particle-based amorphous solid dispersions in a single step process and electrospinning further allows the production of fiber based systems. This review presents the use of spray drying...... and electrospraying/electrospinning as techniques for preparing particle-based solid dispersions, describes the particle formation processes via numerical and experimental models and discusses particle engineering using these techniques. Examples are given on the applications of these techniques for preparing solid...

  19. Computational homogenisation for thermoviscoplasticity: application to thermally sprayed coatings

    Science.gov (United States)

    Berthelsen, Rolf; Denzer, Ralf; Oppermann, Philip; Menzel, Andreas

    2017-07-01

    Metal forming processes require wear-resistant tool surfaces in order to ensure a long life cycle of the expensive tools together with a constant high quality of the produced components. Thermal spraying is a relatively widely applied coating technique for the deposit of wear protection coatings. During these coating processes, heterogeneous coatings are deployed at high temperatures followed by quenching where residual stresses occur which strongly influence the performance of the coated tools. The objective of this article is to discuss and apply a thermo-mechanically coupled simulation framework which captures the heterogeneity of the deposited coating material. Therefore, a two-scale finite element framework for the solution of nonlinear thermo-mechanically coupled problems is elaborated and applied to the simulation of thermoviscoplastic material behaviour including nonlinear thermal softening in a geometrically linearised setting. The finite element framework and material model is demonstrated by means of numerical examples.

  20. 40 CFR 429.160 - Applicability; description of the wood furniture and fixture production without water wash spray...

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture and Fixture... Applicability; description of the wood furniture and fixture production without water wash spray booth(s) or... manufacture of wood furniture and fixtures at establishments that (a) do not utilize water wash spray...

  1. Airspeed and orifice size affect spray droplet spectra from an aerial electrostatic nozzle for rotary-wing applications

    Science.gov (United States)

    The aerial electrostatic spraying system patented by the USDA-ARS is a unique aerial application system which inductively charges spray droplets for the purpose of increasing deposition and efficacy. While this system has many potential benefits, no published data exits which describe how changes i...

  2. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications

    Science.gov (United States)

    The aerial electrostatic spraying system patented by the USDA ARS is a unique aerial application system which inductively charges spray particles for the purpose of increasing deposition and efficacy. While this system has many potential benefits, very little is known about how changes in airspeed o...

  3. Thin Spray-on Liner - a potential application. Demonstrated at a longwall installation on Dendrobium mine

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Roger [BHP Billiton, NSW (Australia). Dendrobium Mine; Martin, Philip [BASF AG Australia (Australia). BASF-CC Australia Ltd' s

    2008-08-21

    The paper describes a potential application of a Thin Spray-on Liner, on a longwall installation in Australia. The BHPBilliton mine, Dendrobium, is a relatively new mine in the Southern New South Wales coalfields, near to Wollongong. Normal installation and start-up operations for a new longwall face is to completely rock bolt and mesh the face. The operations use plastic/glassfibre cutable rock bolts, with steel/plastic mesh to prevent spalling. The biggest problem on face start up is the sheets of steel or plastic mesh getting wrapped around the shearer disc, which requires time consuming additional work removing the mesh. BASF Construction Chemicals Australia Pty Ltd's Underground Construction group, (UGC), proposed the use of Masterseal 845A, a fast sprayable cementitious/polymer membrane material that could be trialed and used to replace the steel mesh, as a surface support in unison with the conventional cutable rock bolts. The application took 12 h spraying to cover the 240 m long face line which averaged about 3.3 m high. The product was sprayed between 3.5 m to 4 mm thick, and according to the mine operators was at least three times quicker than mesh installation, not withstanding the savings in transport of the awkward bundles of mesh. In conclusion the Thin Spray-on Liner (TSL) performed adequately and achieved it's objective in this installation at Dendrobium mine. (orig.)

  4. Spray dryer/ESP testing for utility retrofit applications on high-sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    Robards, R.F.; Deguzman, J.S.; Runyan, R.A.; Flora, H.B. II

    1986-01-01

    The Tennessee Valley Authority's continuing research and development efforts for evaluating dry flue gas desulfurization (DFGD) at the Shawnee Test Facility have resulted in the testing of a 1- to 2-MW spray dryer electrostatic precipitator (ESP) system. In this program, three test blocks were used to determine the effectiveness of this concept on high-sulfur coal (3.5- to 4.0-percent sulfur on a dry basis) application. The main ESP variables evaluated included 12- and 15-inch plate spacing using a Duratrode discharge electrode as well as spray dryer variables of lime stoichiometry, approach-to-saturation temperature, residence time, and others. The results indicate that DFGD products are easier to collect than fly ash with removal efficiencies of 96.4 to 99.2 percent at low SCA values. SO/sub 2/ removal across the ESP typically ran 10 to 25 percent (spray dryer SO/sub 2/ removal efficiencies can range up to about 65 percent). Thus, a spray dryer appears to be a potential option for SO/sub 2/ control in a utility retrofit application where an ESP currently exists for particulate collection. Data supporting this conclusion are presented. 3 references.

  5. Spray dryer/ESP testing for utility retrofit applications on high-sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    Robards, R.F.; DeGuzman, J.S.; Runyan, R.A.; Flora, H.B. II

    1986-04-01

    The Tennessee Valley Authority's continuing research and development efforts for evaluating dry flue gas desulfurization (DFGD) at the Shawnee Test Facility have resulted in the testing of a 1- to 2-MW spray dryer electrostatic precipitator (ESP) system. In this program, three test blocks were used to determine the effectiveness of this concept on high-sulfur coal (3.5- to 4.0-percent sulfur on a dry basis) application. The main ESP variables evaluated included 12- and 15-inch plate spacing using a Duratrode discharge electrode as well as spray dryer variables of lime stoichiometry, approach-to-saturation temperature, residence time, and others. The results indicate that DFGD products are easier to collect than fly ash with removal efficiencies of 96.4 to 99.2% at low SCA values. SO/sub 2/ removal across the ESP typically ran 10 to 25% (spray dryer SO/sub 2/ removal efficiences can range up to about 65%). Thus, a spray dryer appears to be a potential option for SO/sub 2/ control in a utility retrofit application where an ESP currently exists for particulate collection. Data supporting this conclusion are presented.

  6. Thermally Sprayed Coatings as Effective Tool Surfaces in Sheet Metal Forming Applications

    Science.gov (United States)

    Franzen, V.; Witulski, J.; Brosius, A.; Trompeter, M.; Tekkaya, A. E.

    2011-06-01

    Two approaches to produce wear-resistant effective surfaces for deep drawing tools by thermal arc wire spraying of hard materials are presented. Arc wire spraying is a very economic coating technique due to a high deposition rate. The coated surface is very rough compared to that of conventional sheet metal forming tools. In the first approach, the coated surface is smoothed in a subsequent CNC-based incremental roller burnishing process. In this process, the surface asperities on the surface are flattened, and the roughness is significantly reduced. In the second approach, the hard material coatings are not sprayed directly on the tool but on a negative mould. Afterward, the rough "as-sprayed" side of the coating is backfilled with a polymer. The bonded hard metal shell is removed from the negative mould and acts as the surface of the hybrid sheet metal forming tool. Sheet metal forming experiments using tools based on these two approaches demonstrate that they are suitable to form high-strength steels. Owing to a conventional body of steel or cast iron, the first approach is suitable for large batch sizes. The application of the second approach lies within the range of small up to medium batch size productions.

  7. Towards an aerogel-based coating for aerospace applications: reconstituting aerogel particles via spray drying

    Science.gov (United States)

    Bheekhun, N.; Abu Talib, A. R.; Mustapha, S.; Ibrahim, R.; Hassan, M. R.

    2016-10-01

    Silica aerogel is an ultralight and highly porous nano-structured ceramic with its thermal conductivity being the lowest than any solids. Although aerogels possess fascinating physical properties, innovative solutions to tackle today's problems were limited due to their relative high manufacturing cost in comparison to conventional materials. Recently, some producers have brought forward quality aerogels at competitive costs, and thereby opening a panoply of applied research in this field. In this paper, the feasibility of spray-drying silica aerogel to tailor its granulometric property is studied for thermal spraying, a novel application of aerogels that is never tried before in the academic arena. Aerogel-based slurries with yttria stabilised zirconia as a secondary ceramic were prepared and spray-dried according to modified T aguchi experimental design in order to appreciate the effect of both the slurry formulation and drying conditions such as the solid content, the ratio of yttria stabilised zirconia:aerogel added, the amount of dispersant and binder, inlet temperature, atomisation pressure and feeding rate on the median particle size of the resulting spray-dried powder. The latter was found to be affected by all the aforementioned independent variables at different degree of significance and inclination. Based on the derived relationships, an optimised condition to achieve maximum median particle size was then predicted.

  8. Recent Trends in Newly Developed Plasma-Sprayed and Sintered Coatings for Implant Applications

    Science.gov (United States)

    Bsat, Suzan; Speirs, Andrew; Huang, Xiao

    2016-08-01

    The current paper aims to review recent trends (2011 to 2015) in newly developed plasma-sprayed and sintered coatings for implant applications. Recent developments in plasma-sprayed and sintered coatings have focused on improving biological performance, bacterial growth resistance, and mechanical properties, predominantly of HA and glass ceramics. The majority of these improvements are attributed to the addition of dopants. To improve biological performance, trace elements, such as Zn and Mg, both of which are found in bone, were added to replicate the functions they provide for the skeletal system. Though bacterial growth resistance is traditionally improved by Ag dopant, the addition of new dopants such as CeO2 and Zn were explored as well. Great effort has also been made to improve coating adherence and reduce stresses by minimizing coefficient of thermal expansion mismatch between the coating and substrate through the addition of elements such as Zn and Mg or the inclusion of a buffer layer. For sintering process in particular, there was an emphasis on reducing sintering temperature through modification of 45S5 Bioglass. New plasma spray and sintering technologies aimed at reducing high-temperature exposure are briefly introduced as well. These include microplasma spray and spark plasma sintering.

  9. Efficacy of Herbicides When Spray Solution Application Is Delayed

    Directory of Open Access Journals (Sweden)

    Peter M. Eure

    2013-01-01

    Full Text Available Information is limited concerning the impact of delaying applications of pesticides after solution preparation on efficacy. Experiments were conducted to determine weed control when diclosulam, dimethenamid-P, flumioxazin, fomesafen, imazethapyr, pendimethalin, and S-metolachlor were applied preemergence the day of solution preparation or 3, 6, and 9 days after solution preparation. Herbicide solutions were applied on the same day regardless of when prepared. Control of broadleaf signalgrass, common lambsquarters, entireleaf morningglory, and Palmer amaranth by these herbicides was not reduced regardless of when herbicide solutions were prepared. Surprisingly entireleaf morningglory control by all herbicides increased when herbicide application was delayed by 9 days. In separate experiments, control of broadleaf signalgrass by clethodim, common ragweed by glyphosate and lactofen, entireleaf morningglory by lactofen, Italian rye grass by glyphosate and paraquat, and Palmer amaranth by atrazine, dicamba, glufosinate, glyphosate, imazethapyr, lactofen, and 2,4-D was affected more by increase in weed size due to delayed application than the time between solution preparation and application.

  10. On the Anelastic Behavior of Plasma Sprayed Ceramic Coatings: Observations, Characterizations and Applications

    Science.gov (United States)

    Dwivedi, Gopal

    Plasma sprayed ceramic materials contain an assortment of microstructural defects, including pores, cracks, and interfaces arising from the droplet based assemblage of the spray deposition technique. The defective architecture of the deposits introduces a novel "anelastic" response in the coatings comprising of their non-linear and hysteretic stress-strain relationship under mechanical loading. It has been established that this anelasticity can be attributed to the relative movement of the embedded defects under varying stresses; while the non-linear response of the coatings arises from the opening/closure of defects, hysteresis is produced by the frictional sliding among defect surfaces. Recent studies have indicated that anelastic behavior of coatings can be a unique descriptor of their mechanical behavior and related to the defect configuration. In this dissertation, a multi-variable study employing systematic processing strategies was conducted to augment the understanding on various aspects of the reported anelastic behavior. Enhancements to bi-layer curvature measurement technique allowed for reliable and repeatable quantification of the anelastic response, enabling extraction of three anelastic parameters; elastic modulus, non-linear degree and hysteresis degree. This allowed for further exploration of the process space enabling controlled introduction of anelasticity in thermal sprayed ceramic coatings. This dissertation reports on these findings by first describing the experimental advancements in bilayer curvature measurements via thermal cycling of a coated beam. This experimental development allowed assessment of sensitivity and repeatability of the obtained anelastic parameters to varying microstructures imposed by processing excursions. Subsequently, controlled modification of anelasticity was achieved through material and process parameters as well as through extrinsic modification of the defects within the microstructure. The results suggest that

  11. Duplex Al-based thermal spray coatings for corrosion protection in high temperature refinery applications

    Directory of Open Access Journals (Sweden)

    Rocha Adriana da Cunha

    2004-01-01

    Full Text Available The application of thermal spray coatings has been effective in preventing corrosion of steel and iron products. It has been used in a wide range of applications spreading from the petroleum to the food industry. In this work, the performance and effectiveness of a two-layered aluminum-based thermal spray coating applied to an ASTM A387 G11 steel was evaluated. The coating structure was comprised of an inner Al-Fe-Cr layer and an outer layer of aluminum. Coated samples were tested in the reactor zone of a fluid catalytic cracking unit (FCCU of a petrochemical plant for 2.5 years. The reactor zone temperature was about 793 K (520 °C and the environment was a mixed gas containing sulfur, oxygen and carbon. Laboratory-scale tests were also conducted on the coated samples in order to gain a better understanding of the corrosive effect of the gaseous species present in the FCCU atmosphere. Porosity present in the thermal spray coatings allowed the penetration of the atmosphere corrodents, which instigated intergranular corrosion of the steel substrate. The presence of an inner Al-Fe-Cr layer did not prevent coating spallation, which further contributed to the internal corrosion process.

  12. Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications

    Science.gov (United States)

    Ghosh, D.; Shukla, A. K.; Roy, H.

    2014-04-01

    The nano structured coating is a major challenge today to improve the different mechanical properties, wear and high temperature corrosion resistance behaviour of different industrial alloys. This paper is a review on synthesis of nano powder, plasma spraying methods, techniques of nano structured coating by plasma spray method, mechanical properties, tribological properties and high temperature corrosion behaviour of nano structured coating. Nano structured coatings of ceramic powders/composites are being developed for wide variety of applications like boiler, turbine and aerospace industries, which requires the resistance against wear, corrosion, erosion etc. The nano sized powders are subjected to agglomeration by spray drying, after which nano structured coating can be successfully applied over the substrate. Nano structured coating shows improved mechanical wear resistance and high temperature corrosion resistance. The significant improvement of wear and corrosion resistance is mainly attributed to formation of semi molten nano zones in case of nano structured coatings. The future scope of application of nano structured coating has also been highlighted in this paper.

  13. A new device for vein localization and effect of application of disinfectant spray on its efficiency

    Directory of Open Access Journals (Sweden)

    Dreyer Jan

    2017-09-01

    Full Text Available A functional device was developed to immediately show the localization of veins by detecting a temperature increase on the skin directly above them. Our new idea, compared to other developments, is the comparison of temperatures between a small, ideally punctiform, skin area, and a larger circularly surrounding area. This is realized by two infrared temperature sensors, one with a small field of view, and the other one with a larger field of view. The position of the vein is indicated by two laser modules, which beams cross in one spot, when the device is held in a defined distance to the skin. If the device is held over a vein, the laser spot lightens up. The device was tested in ten study participants. Cooling of the skin by disinfectant spray prior to the measurements increases the temperature gradient and thereby improves the efficiency of the device. Temperature profiles of four skin areas of each study participant were measured before and one minute after application of disinfectant spray. After application of disinfectant spray, a temperature difference of more than 0.3 K between a measuring point above a vein and points 15 mm next to this could be found in 36 out of 40 measurements (90%, compared to 26 out of 40 (65% before disinfection. The mean temperature gradient could be increased from 0.476 K to 1.03 K (p < 0.001.

  14. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E. [and others

    1995-09-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

  15. Aedes albopictus control with spray application of Bacillus thuringiensis israelensis, strain AM 65-52.

    Science.gov (United States)

    Lam, Patrick H Y; Boon, Chia S; Yng, Ng Y; Benjamin, Seleena

    2010-09-01

    A Bacillus thuringiensis israelensis (Bti) formulation, VectoBac WG (strain AM 65-52), was evaluated for mosquito control in a training area with dense vegetation. Bti was spray applied to target Aedes albopictus larval habitats of 130 ha once every 2 weeks using a motorized back pack mist blower, Stihl SR420, and a vehicle mounted ultra low volume generator (ULV), IGEBA U40. Ovitrap index (OI) and larval density (LD) were used to measure the efficacy of larviciding. In the Bti treated area the OI and LD significantly decreased with time (p ovitrap by 3 months from the start of treatment. During the same period of time there was no significant reduction in OI and LD at the untreated site which was under a conventional mosquito control program. This large scale study indicates larvicidal spraying with Bti of natural breeding sites, was able to reduce Ae. albopictus adult density. This significant reduction was not achieved with conventional manual application methods.

  16. Laryngotracheal application of lidocaine spray increases the incidence of postoperative sore throat after total intravenous anesthesia.

    Science.gov (United States)

    Maruyama, Koichi; Sakai, Hironori; Miyazawa, Hideki; Iijima, Kyou; Toda, Naoyuki; Kawahara, Shuji; Hara, Katsumi

    2004-01-01

    To determine the effect of laryngotracheal application of different doses of lidocaine spray on postoperative sore throat and hoarseness, we evaluated the incidence and severity of these complications in 168 ASA I-III patients aged 15-92 years in a placebo-controlled study. After induction of anesthesia with propofol, ketamine, fentanyl, and vecuronium, the laryngotracheal area was sprayed immediately before intubation with lidocaine spray either 5 times (L5 group, n = 47) or 10 times (L10 group, n = 48) or with normal saline 1 ml (placebo group, n = 51). Postoperative sore throat and hoarseness were evaluated immediately after surgery and on the day after surgery. The incidence of sore throat was significantly higher in the L10 group than in the placebo group on both the day of and the day after surgery. The severity of sore throat was significantly higher in the L5 and L10 groups than in the placebo group on the day of surgery. On the day after surgery, the severity of sore throat remained significantly higher in the L10 group than in the placebo group. Although the incidence and severity of sore throat increased in a dose-dependent manner, these were not significantly different between the L5 and L10 groups. In addition, the incidence and severity of hoarseness did not differ at all among the three groups. We recommend that applications of lidocaine spray to the laryngotracheal area should be avoided to help eliminate unnecessary postoperative sore throat, thereby leading to improvement in patient satisfaction.

  17. Spray coated silver nanowires as transparent electrodes in OPVs for Building Integrated Photovoltaics applications

    OpenAIRE

    Ding, Ziqian; Stoichkov, Vasil; Horie, Masaki; Brousseau, Emmanuel Bruno Jean-Paul; Kettle, Jeffrey

    2016-01-01

    The application of spray coated silver nanowires (AgNWs) onto OPVs for building Integrated Photovoltaics (BIPVs) is demonstrated. By using AgNWs with PEDOT:PSS, a transparent conductive layer was demonstrated on top of an P3HT:PCBM active layer with a sheet resistance of 30 Ω/⎕ for 90% transparency. This has been applied to two separate configurations; semi-transparent OPVs for solar glazing applications and OPVs onto an opaque substrate, namely steel. For the latter, a novel technique to pla...

  18. Poly-urea spray elastomer for waste containment applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.J. [Wayne State Univ., Detroit, MI (United States); Cheng, S.C.J. [Drexel Univ., Philadelphia, PA (United States); Tanis, R. [Foamseal, Lapeer, MI (United States)

    1997-12-31

    Geomembrane usage in environmental applications has increased dramatically following the promulgation of federal regulations resulting from the Resource Conservation and Recovery Act of 1976 (RCRA). Subtitle D rules, formulated under the authority of RCRA, call for minimum performance standards to limit adverse effects of a solid waste disposal facility on human health or the environment (40 CFR 257,258, August 30, 1988). These rules set minimum standards requiring new landfill designs to include liner systems and final cover systems. Each state has the responsibility to develop rules that are at least as stringent as the Subtitle D rules. There are several types of geomembranes currently available for landfill applications, each offering particular advantages and disadvantages. For example, PVC does not show the yield point (point of instability) that HDPE shows, HDPE has a higher puncture resistance than PVC, and PVC will deform much more than HDPE before barrier properties of the geomembrane are lost. Because each geomembrane material exhibits its own particular characteristics the material selected should be chosen based on the individual project requirements. It is preferable to select a design that uses the least expensive material and meets the performance specifications of the project.

  19. Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications

    Science.gov (United States)

    Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua

    2015-10-01

    Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.

  20. New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics

    Science.gov (United States)

    Berrocal, Edouard; Meglinski, Igor; Jermy, Mark

    2005-11-01

    Modern optical diagnostics for quantitative characterization of polydisperse sprays and other aerosols which contain a wide range of droplet size encounter difficulties in the dense regions due to the multiple scattering of laser radiation with the surrounding droplets. The accuracy and efficiency of optical measurements can only be improved if the radiative transfer within such polydisperse turbid media is understood. A novel Monte Carlo code has been developed for modeling of optical radiation propagation in inhomogeneous polydisperse scattering media with typical drop size ranging from 2 μm to 200 μm in diameter. We show how strong variations of both particle size distribution and particle concentration within a 3D scattering medium can be taken into account via the Monte Carlo approach. A new approximation which reduces ~20 times the computational memory space required to determine the phase function is described. The approximation is verified by considering four log-normal drop size distributions. It is found valid for particle sizes in the range of 10-200 μm with increasing errors, due to additional photons scattered at large angles, as the number of particles below than 10 μm increases. The technique is applied to the simulation of typical planar Mie imaging of a hollow cone spray. Simulated and experimental images are compared and shown to agree well. The code has application in developing and testing new optical diagnostics for complex scattering media such as dense sprays.

  1. Methyldibromoglutaronitrile allergy: relationship between patch test and repeated open application test thresholds

    DEFF Research Database (Denmark)

    Fischer, L.A.; Johansen, J.D.; Menne, T.

    2008-01-01

    a significant relationship between the patch test and the repeated open application test (ROAT) reactivity. Objectives To study the relationship between elicitation threshold doses at single occluded exposure and repeated open application, using MDBGN as the allergen. Methods Eighteen subjects allergic to MDBGN...

  2. Repeated Games With Intervention: Theory and Applications in Communications

    CERN Document Server

    Xiao, Yuanzhang; van der Schaar, Mihaela

    2011-01-01

    In communication systems where users share common resources, users' selfish behavior usually results in suboptimal resource utilization. There have been extensive works that model communication systems with selfish users as one-shot games and propose incentive schemes to achieve Pareto optimal action profiles as non-cooperative equilibria. However, in many communication systems, due to strong negative externalities among users, the sets of feasible payoffs in one-shot games are nonconvex. Thus, it is possible to expand the set of feasible payoffs by having users choose convex combinations of different payoffs. In this paper, we propose a repeated game model generalized by intervention. First, we use repeated games to convexify the set of feasible payoffs in one-shot games. Second, we combine conventional repeated games with intervention, originally proposed for one-shot games, to achieve a larger set of equilibrium payoffs and loosen requirements for users' patience to achieve it. We study the problem of maxi...

  3. Fungicides efficiency on wheat diseases control in response to the application with different spray nozzles

    Directory of Open Access Journals (Sweden)

    Felipe Rafael Garcés Fiallos

    2011-12-01

    Full Text Available This study aimed to evaluate the efficiency of fungicides to leaf control diseases of wheat, when applied to different models of spray nozzles. The experiment was conducted in a randomized block design with four replicates of factorial (4 x 3+1. Data were subjected to analysis of variance and means compared by Tukey test at 5% probability. The fungicides used were: Opera® (pyraclostrobin+epoxiconazole 0.75 L.ha-1 , Opera® 0.75 L.ha-1 +Folicur® (tebuconazole 0.3 L.ha-1 , Priori Xtra® (azoxystrobin+cyproconazole 0.3 L.ha-1 , Priori Xtra® 0.3 L.ha-1 +Tilt® (propiconazole 0.3 L.ha-1 . These fungicides were applied with three models of spray nozzles jet planes: XR 11 001 (fine drop, AIRMIX 11,001 (average drop and AVI 11,001 (coarse drop. We evaluated the incidence and severity (damage per plant leaf of yellow spot (Drechslera tritici-repentis, spot blotch (Bipolaris sorokiniana, leaf rust (Puccinia triticina and grain yield (kg.ha-1 culture. The results show that the application of fungicides for control of leaf diseases in wheat resulted in increases in grain yield, and yield higher values were observed with the application of Opera®, using the XR 11001.

  4. An investigation of flow-limited field-injection electrostatic spraying (FFESS) and its applications to thin film deposition

    Science.gov (United States)

    Singh, Ravindra Pratap

    Electrostatic spraying is the process of controlled disruption of a liquid surface due to excess surface charge density. The technique has found applications in a wide range of fields from agricultural sprays to fuel injectors to colloidal thrusters for space vehicle propulsion. Over the past 20 years, the technique has been intensely studied in material processing for synthesis of ceramic and metal powders, nanoparticles and thin films. The importance of the technique lies in its simple setup, high deposition efficiency, and ambient atmosphere operation. In conventional electrostatic spraying (CESS), one uses a conducting nozzle to charge the liquid, mostly by induction charging. CESS is therefore restricted to the single jet mode of spraying which occurs at low spray currents. It lacks stability and reproducibility in the high current, multiple jet regime, which can generate much finer sprays. In flow-limited field-injection electrostatic spraying (FFESS), one uses a field-injection electrode to stably and controllably inject higher currents into the liquid, a la Fowler-Nordheim, using an otherwise insulating nozzle. This way, it is possible to stably electrospray in the multiple jet mode. In addition to producing much finer sprays, the multi-jet mode atomizes liquids at higher rates, and spreads the spray over a wider region and more uniformly than single jet sprays, thus paving way for large-area uniform thin film deposition. A simple yet comprehensive theory is formulated to describe the multi jet formation. The theory, which is based on the energy minimization principle, takes into account, for the first time, the interactions between charged jets which leads to saturation in the number of jets at high spray currents. The possibility of using an array of nozzles to obtain uniform large-area high-throughput thin film deposition is also investigated. A large number of FFESS nozzles with alternating positive and negative polarities arranged in a periodic 2

  5. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Science.gov (United States)

    2010-07-01

    ... detergents, including but not limited to assembly and storage of raw materials, crutching, spray drying... manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment... POINT SOURCE CATEGORY Manufacture of Spray Dried Detergents Subcategory § 417.150...

  6. Application of Liquid Flame Spray in single and multicomponent nanoparticle synthesis and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aromaa, M.

    2012-07-01

    Nanosized materials are interesting because of the unique properties that can only be achieved in nanoscale. The Liquid Flame Spray is an aerosol method for nanoparticle synthesis. The nanoparticles are synthesized from liquid precursor material in a high-temperature, hydrogen-oxygen flame. The aerosol processes in the flame determine the particle size and morphology of the end product. The process parameters used in the synthesis have an effect on the final product. The Liquid Flame Spay process has been utilized in several applications. This thesis deals with the synthesis of nanoparticles with the Liquid Flame Spray and tuning the particle properties. The fundamentals of the aerosol synthesis are discussed first and the process parameters and their effect on the nanoparticles that are synthesized are explained. Later on, the understanding of the process parameters is utilized and the multi-component aerosols are synthesized for various applications and even deposited directly on a substrate to form a functional coating. Titanium dioxide is mainly used in all the papers that are included in the thesis. In addition, other ceramic materials, such as, aluminium oxide and zirconium oxide are synthesized. Dopants, such as, silver are introduced into the product in order to create multifunctional properties. At the moment, the Liquid Flame Spray synthesis is performed in an open atmosphere and therefore the nanoparticles that are synthesized are mainly oxides with the exception of noble metals, e.g. gold, silver palladium and platinum. However, the ceramic particles such as titanium dioxide have interesting properties. Already several decades ago, titanium dioxide was discovered to have photoactive properties, meaning that when excited with UV-light, an electron-hole pair is formed in the titanium dioxide. The process leads to the formation of reactive oxygen and OH-groups on the surface of the material. The reactive oxygen is able to degrade organic molecules leaving

  7. Application of imaging based tools for the characterisation of hollow spray dried amorphous dispersion particles.

    Science.gov (United States)

    Gamble, John F; Ferreira, Ana P; Tobyn, Mike; DiMemmo, Lynn; Martin, Kyle; Mathias, Neil; Schild, Richard; Vig, Balvinder; Baumann, John M; Parks, Stacy; Ashton, Mike

    2014-04-25

    The aim of this study was to investigate novel approaches to determine spray dried dispersion (SDD) specific particle characteristics through the use of imaging based technologies. The work demonstrates approaches that can be applied in order to access quantitative approximations for powder characteristics for hollow particles, such as SDD. Cryo-SEM has been used to measure the solid volume fraction and/or particle density of SDD particles. Application of this data to understand the impact of spray drying process conditions on SDD powder properties, and their impact on processability and final dosage form quality were investigated. The use of data from a Morphologi G3 image based particle characterisation system was also examined in order to explain both the propensity and extent of attrition within a series of SDD samples, and also demonstrate the use of light transmission data to assess the relative wall thickness of SDD particles. Such approaches demonstrate a means to access potentially useful information that can be linked to important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as bulk density, may enable a better understanding of such materials and their impact on downstream processability and final dosage form acceptability.

  8. Modeling intraindividual variability with repeated measures data methods and applications

    CERN Document Server

    Hershberger, Scott L

    2013-01-01

    This book examines how individuals behave across time and to what degree that behavior changes, fluctuates, or remains stable.It features the most current methods on modeling repeated measures data as reported by a distinguished group of experts in the field. The goal is to make the latest techniques used to assess intraindividual variability accessible to a wide range of researchers. Each chapter is written in a ""user-friendly"" style such that even the ""novice"" data analyst can easily apply the techniques.Each chapter features:a minimum discussion of mathematical detail;an empirical examp

  9. A quick telemanipulator calibration and repeatability method with applications

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, J.F.; Haley, D.C. [Oak Ridge National Lab., TN (United States). Robotics & Process Systems Div.

    1994-09-01

    This paper will present a methodology that was used to calibrate and measure the repeatability of two telemanipulators at Oak Ridge National Laboratory. The global accuracy of the method was 0.05 in. ({approx_equal} 1.3 mm), and the orientation accuracy was approximately 6 min ({approx_equal} 0.002 rads). For most teleoperator systems, these accuracies are more than adequate because of the construction of the mechanism and sensor capabilities (e.g., typically 12 bits of resolution). Although industrial robots require accuracies of about 0.05 mm or better, telemanipulators do not.

  10. Repeated applications of CPPU on highbush blueberry cv. Duke increase yield and enhance fruit quality at harvest and during postharvest

    Directory of Open Access Journals (Sweden)

    Jorge B Retamales

    2014-04-01

    Full Text Available Applications of N-(2-chloro-4-pyridyl-N'-phenylurea (CPPU can increase blueberry (Vaccinium corymbosum L. yield and fruit size, but their impact on postharvest is unknown. We studied repeated CPPU applications effects on yield and quality (harvest, postharvest, over 2 yr on mature 'Duke' plants in South-Central Chile. The first year, 5 or 10 mL L-1 CPPU was applied at 3, 10, and/or 17 d after full bloom (DAFB plus a non-sprayed control. The second year, 5 or 10 mL L-1 CPPU were sprayed 10 and 17 DAFB plus a control. The first year, only 10 mL L-1 CPPU sprayed 3+17 DAFB increased yield (32.5% > control; 10 mL L-1 CPPU applied 10 or 3+17 DAFB had highest fruit diameter; and 10 mL L-1 CPPU at 17 DAFB or at 3+10+17 DAFB had highest soluble solids. Overall, 10 mL L-1 CPPU applied 3+17 DAFB, was the best treatment for year one, since it increased fruit yield and diameter, while soluble solids and postharvest weight loss were similar to control. The second year, 10 mL L-1 CPPU reduced fruit coloration (blue color coverage index: BCCI and soluble solids, but not firmness at harvest. This rate increased berry weight (24.2% and fruit wax (59% > wax coverage index: WCI at harvest. Harvest and postharvest WCI increased consistently as CPPU rate increased. CPPU reduced fruit rotting (15% at 45+5 evaluation. During storage, CPPU-treated-fruit had a slower decrease in firmness (30.5% < control at 30+1, but no difference at 30+5. CPPU-treated-fruit usually had higher post harvest soluble solids. Ten mL L-1 CPPU retarded color evolution at harvest and at 30+1, but not at 30+5, 40+1 or 40+5.

  11. 40 CFR 429.170 - Applicability; description of the wood furniture and fixture production with water wash spray...

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Furniture and Fixture...; description of the wood furniture and fixture production with water wash spray booth(s) or with laundry... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the...

  12. Comparison of three single-nozzle operator-carried spray applicators for whitefly (Bemisia tabaci) management on squash

    Science.gov (United States)

    Whiteflies cause problems in vegetable production on a global scale. The primary worldwide whitefly pest is Bemisia tabaci (Gennadius). Insecticides are commonly used to mitigate the whitefly problem in vegetable crops. In limited-resource crop production, operator-carried spray applicators are comm...

  13. Applications of inter simple sequence repeat (ISSR) rDNA in ...

    African Journals Online (AJOL)

    Applications of inter simple sequence repeat (ISSR) rDNA in detecting ... and phylogenetic relationships between Lymnaea natalensis collected from Giza, ... in water samples of all tested governorates with different significant differences.

  14. Bayesian Concordance Correlation Coefficient with Application to Repeatedly Measured Data

    Directory of Open Access Journals (Sweden)

    Atanu BHATTACHARJEE

    2015-10-01

    Full Text Available Objective: In medical research, Lin's classical concordance correlation coefficient (CCC is frequently applied to evaluate the similarity of the measurements produced by different raters or methods on the same subjects. It is particularly useful for continuous data. The objective of this paper is to propose the Bayesian counterpart to compute CCC for continuous data. Material and Methods: A total of 33 patients of astrocytoma brain treated in the Department of Radiation Oncology at Malabar Cancer Centre is enrolled in this work. It is a continuous data of tumor volume and tumor size repeatedly measured during baseline pretreatment workup and post surgery follow-ups for all patients. The tumor volume and tumor size are measured separately by MRI and CT scan. The agreement of measurement between MRI and CT scan is calculated through CCC. The statistical inference is performed through Markov Chain Monte Carlo (MCMC technique. Results: Bayesian CCC is found suitable to get prominent evidence for test statistics to explore the relation between concordance measurements. The posterior mean estimates and 95% credible interval of CCC on tumor size and tumor volume are observed with 0.96(0.87,0.99 and 0.98(0.95,0.99 respectively. Conclusion: The Bayesian inference is adopted for development of the computational algorithm. The approach illustrated in this work provides the researchers an opportunity to find out the most appropriate model for specific data and apply CCC to fulfill the desired hypothesis.

  15. 3D indium tin oxide electrodes by ultrasonic spray deposition for current collection applications

    Science.gov (United States)

    van den Ham, E. J.; Elen, K.; Bonneux, G.; Maino, G.; Notten, P. H. L.; Van Bael, M. K.; Hardy, A.

    2017-04-01

    Three dimensionally (3D) structured indium tin oxide (ITO) thin films are synthesized and characterized as a 3D electrode material for current collection applications. Using metal citrate chemistry in combination with ultrasonic spray deposition, a low cost wet-chemical method has been developed to achieve conformal ITO coatings on non-planar scaffolds. Although there is room for improvement with respect to the resistivity (9.9·10-3 Ω•cm, 220 nm thick planar films), high quality 3D structured coatings were shown to exhibit conductive properties based on ferrocene reactivity. In view of applications in Li-ion batteries, the electrochemical stability of the current collector was investigated, indicating that stability is guaranteed for voltages of 1.5 V and up (vs. Li+/Li). In addition, subsequent 3D coating of the ITO with WO3 as a negative electrode (battery) material confirmed the 3D ITO layer functions as a proper current collector. Using this approach, an over 4-fold capacity increase was booked for 3D structured WO3 in comparison to planar samples, confirming the current collecting capabilities of the 3D ITO coating. Therefore, the 3D ITO presented is considered as a highly interesting material for 3D battery applications and beyond.

  16. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  17. Measurements in liquid fuel sprays

    Science.gov (United States)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  18. Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil

    Institute of Scientific and Technical Information of China (English)

    YU Yunlong; CHU Xiaoqiang; PANG Guohui; XIANG Yueqin; FANG Hua

    2009-01-01

    Carbendazim, a systemic benzimidazole fungicide, is applied repeatedly to control of plant diseases including soilborne diseases, over a growing season. Studies were carried out under laboratory conditions to assess the effects of repeated carbendazim applications on its persistence and microbial community in soil. The results indicate that dissipation of carbendazim in soil was accelerated with its application frequency. The degradation rate constant of carbendazim was increased significantly from 0.074 d-1 to 0.79 d-1. The corresponding half-life was shorten markedly from 9.3 d to 0.9 d after four repeated applications. No significant inhibitory effect of carbendazim on soil microbial utilization of the carbon sources was observed after first treatment, but a slight increase in average well color development (AWCD) was shown after second, third, and fourth applications. It suggested that soil microorganisms become adapted to carbendazim after repeated application. Simpson and Shannon indexes of soil microbial community from carbendazim treated soil were also similar to those from the control soil, indicating that the richness and dominant character of soil microorganisms remain unchangeable after repeated application. However, after first, second, and third addition of carbendazim, McIntosh indexes on day 21 were significantly increased as compared with the control, suggesting that balance of soil microorganisms was altered due to the enrichment of the specific carbendazim-adapting strains in soil.

  19. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Smegal, J. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  20. Spray-formed tooling for injection molding and die casting applications

    Energy Technology Data Exchange (ETDEWEB)

    K. M. McHugh; B. R. Wickham

    2000-06-26

    Rapid Solidification Process (RSP) Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  1. Spray-formed Tooling for Injection Molding and Die Casting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mc Hugh, Kevin Matthew

    2000-06-01

    Rapid Solidification Process (RSP) ToolingTM is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  2. Delayed efficacy of Beauveria bassiana foliar spray applications against Colorado potato beetle: impacts of number and timing of applications on larval and next-generation adult populations

    Science.gov (United States)

    Spray programs comprising multiple or single foliar applications of the fungal pathogen Beauveria bassiana strain GHA (Bb) made during morning (AM) vs. evening (PM) hours were tested against Colorado potato beetle Leptinotarsa decemlineata (CPB) in small research plots of potatoes over multiple fiel...

  3. Highly doped ZnO films deposited by spray-pyrolysis. Design parameters for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, F.A., E-mail: felipe.garces@santafe-conicet.gov.ar [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Budini, N. [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Schmidt, J.A.; Arce, R.D. [Instituto de Física del Litoral (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN (Argentina); Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000AOM (Argentina)

    2016-04-30

    Synthesis and preparation of ZnO films are relevant subjects for obtaining transparent and conducting layers with interesting applications in optoelectronics and photovoltaics. Optimization of parameters such as dopant type and concentration, deposition time and substrate temperature is important for obtaining ZnO layers with optimal properties. In this work we present a study about the induced effects of deposition time on optical and electrical properties of ZnO thin films. These films were deposited by spray pyrolysis of a suitable Zn precursor, obtained through the sol–gel method. The deposition time has direct incidence on internal stress in the crystal structure, generating defects that may affect transparency and electrical transport into the layers. We performed mosaicity measurements, through X-ray diffraction, and used it as a tool to get an insight on structural characteristics and homogeneity of ZnO layers. Also, through this technique, we analyzed thickness and doping effects on crystallinity and carrier transport properties. - Highlights: • Al-doped ZnO films with high conductivity and moderate Hall mobility were obtained. • Mosaicity between crystalline domains increased with film thickness. • Lattice parameters a and c diminished linearly as a function of Al concentration. • First steps for developing porous silicon/doped ZnO heterojunctions were presented.

  4. Numerical Studies of the Application of Shock Tube Technology for Cold Gas Dynamic Spray Process

    Science.gov (United States)

    Nickel, R.; Bobzin, K.; Lugscheider, E.; Parkot, D.; Varava, W.; Olivier, H.; Luo, X.

    2007-12-01

    A new method for a combustion-free spraying is studied fundamentally by modeling and simulation in comparison with first experiments. The article focuses on the numerical simulation of the gas-particle nozzle flow, which is generated by the shock reflection at the end wall section of a shock tube. To study the physical fundamentals of this process, at present only a single shot operation is considered. The particles are injected downstream of the nozzle throat into a supersonic nozzle flow. The measurements of the particle velocity made by a laser Doppler anemometry (LDA) set up show that the maximum velocity amounts to 1220 m/s for stainless steel particles of 15 μm diameter. The CFD-Code (Fluent) is first verified by a comparison with available numerical and experimental data for gas and gas-particle flow fields in a long Laval-nozzle. The good agreement implied the great potential of the new dynamic process concept for cold-gas coating applications. Then the flow fields in the short Laval nozzle designed and realized by the Shock Wave Laboratory (SWL) are investigated. The gas flow for experimentally obtained stagnation conditions is simulated. The gas-particle flow without and with the influence of the particles on the gas flow is calculated by the Surface Engineering Institute (IOT) and compared with experiments. The influence of the injection parameters on the particle velocities is investigated, as well.

  5. Spray structure of a pressure-swirl atomizer for combustion applications

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV and Phase-Doppler Particle Analyzer (P/DPA. The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  6. Characterization of Modified Tapioca Starch Solutions and Their Sprays for High Temperature Coating Applications

    Science.gov (United States)

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Shaari, Ku Zilati Ku

    2014-01-01

    The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature. PMID:24592165

  7. 2001 spray program prospectus

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes weed control on Malheur National Wildlife Refuge in 2001. A total of 2,152 acres were sprayed. Pesticide application report records are...

  8. Cold-spray ionization mass spectrometry: applications in structural coordination chemistry.

    Science.gov (United States)

    Yamaguchi, Kentaro

    2013-01-01

    Electrospray ionization (ESI)-mass spectrometry (MS) is generally used for the characterization of labile supramolecules in which non-covalent bonding interactions are predominant. However, molecular ions are not detected in many cases because of their instability, and even if such ions are detected, thermal decomposition generates fragment ions that also appear in the mass spectrum. Cold-spray ionization (CSI) is designed for the MS detection of labile organic species. It is used to analyze the structures of biomolecular complexes and labile organic species in solution. The method, a variant of ESI-MS, operates at low temperature, allowing simple and precise characterization of labile non-covalent complexes that are difficult or impossible to observe by conventional MS techniques. The CSI method is particularly suitable for elucidating the structures of labile organometallic compounds in solution as it offers a means to investigate the dynamic behavior of unstable molecules and/or labile clusters in solution. Various labile organic compounds are analyzed by using the CSI method in the field of organic chemistry. CSI-MS is also used to investigate the behavior of aggregated steroid compounds, namely, bisguanidinobenzene-benzoic acid complexes, in solution. This method is a powerful tool for analyzing the equilibria of multiply linked self-assembling catenanes in solution. Its application to unstable and complex supramolecules will be shown. We have developed an effective ionization method that uses metal-complex-based ionization probes containing 2,6-bis(oxazolinyl) pyridine (pybox) ligands. Using this method, we were able to detect multiply charged ions of target molecules. This method was proven to effectively ionize large complex molecules, including biomolecules and various supramolecules, as well as carbon clusters, such as fullerenes. Moreover, isotope-labeled pybox-La complexes were used to clearly detect isotopic labeling shifts. Their applications to

  9. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A.; Smegal, J.; Lstiburek, J.

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. The incidents related to rainwater leakage and condensation concerns. Condensation concerns have been extensively studied by others and are not further discussed in this report. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  10. Application of carbonated apatite coating on a Ti substrate by aqueous spray method.

    Science.gov (United States)

    Mochizuki, Chihiro; Hara, Hiroki; Takano, Ichiro; Hayakawa, Tohru; Sato, Mitsunobu

    2013-03-01

    The fabrication and characterization of a carbonate-containing apatite film deposited on a Ti plate via an aqueous spray method is described. The mist of the spray solution emitted from a perpendicularly oriented airbrush was made to strike a warmed Ti substrate. The thicknesses of the sprayed film and those heat-treated at 400 °C-700 °C under Ar gas flow were in the range 1.21-1.40 μm. The results of elemental analyses and Fourier transform infrared spectroscopy of the powders that were mechanically collected from the surface of the sprayed film suggest that the film was Ca(10)(PO4)6(CO3) · 2CO2 · 3H2O. The presence of the carbonate ion and the lattice CO2 molecule was confirmed via the aforementioned analyses; the finding was also consistent with the X-ray diffraction patterns of the films and the chemical identity of the sprayed and heat-treated films that were measured using X-ray photoelectron spectroscopy. The sprayed film comprises a characteristic network structure, which contains round particles within the networks, as was observed by field-emission scanning electron microscopy. A scratch test indicated that the shear stress of the sprayed film (21 MPa) significantly improved to 40 and >133 MPa after heat-treatment at 600 °C and 700 °C, respectively, under Ar gas flow for 10 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Parameters of electrostatic spraying and its influence on the application efficiency

    Directory of Open Access Journals (Sweden)

    Robson Shigueaki Sasaki

    2013-08-01

    Full Text Available When the electrostatic spraying is used correctly, it provides advantages over conventional systems, however many factors can affect the system efficiency. Therefore, the objective of this study was to evaluate the charge/mass ratio (Q/M at different spraying distances (0, 1, 2, 3, 4 and 5 m, and the liquid deposition efficiency on the target. Evaluating the Q/M ratio the Faraday cage method was used and to evaluate the liquid deposition efficiency the artificial targets were positioned longitudinally and transversely to the spray jet. It was found that the spraying distance affects the Q/M ratio, consequently, the liquid deposition efficiency. For the closest distance to the target the Q/M ratio was 4.11 mC kg-1, and at distances of 1, 2, 3, 4 and 5 m, the ratio decreased to 1.38, 0.64, 0.31, 0.17 and 0.005 mC kg-1, respectively. For the liquid deposition, the electrostatic system was affected by the target orientation and spraying distance. The target transversely to the jet of liquid did not improve the liquid deposition, but longitudinally increased the deposition up to 3 meters of distance.

  12. The DRPLA CAG repeats in an Italian population sample: evaluation of the polymorphism for forensic applications.

    Science.gov (United States)

    Pelotti, S; Mantovani, V; Esposti, P D; D'Apote, L; Bragliani, M; Maiolini, E; Abbondanza, A; Pappalardo, G

    1998-03-01

    The DRPLA CAG repeats polymorphism has been studied in an Italian population sample. PCR amplification, manual PAGE and silver staining were employed. A total of 16 different alleles, spanning the range from 5 to 21 CAG triplettes, was observed. The heterozygosity was 0.81 and no significant deviation from Hardy-Weinberg equilibrium was found 81 meioses from parentage testing were also analyzed and a Mendelian pattern of inheritance was observed in all cases. In addition, we could successfully type DRPLA locus in some forensic specimens, 1 ng of DNA allowing clear definition of alleles. The authors conclude that the DRPLA CAG repeats analysis may be useful for forensic applications.

  13. Fabrication of spray-printed organic non-volatile memory devices for low cost electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cha, An-Na [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Ji, Yongsung [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Lee, Sang-A [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju 561-756 (Korea, Republic of); Noh, Yong-Young [Department of Energy and Materials Engineering, Dongguk University, 26 Pil-dong, 3-Ga, Jung-gu, Seoul 100-715 (Korea, Republic of); Na, Seok-In [Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Bae, Sukang; Lee, Sanghyun [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Kim, Tae-Wook, E-mail: twkim@kist.re.kr [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of)

    2015-01-15

    Highlights: • PS:PCBM-based organic non-volatile memory devices was fabricated using spray printing. • The thickness of the film was controlled by adjusting the concentration of the PS:PCBM solutions. • The roughness of spray-printed films was poorer than that of the spin-coated film. • The minimum thickness of the printed film influenced the memory behavior more than the surface roughness. • The spray printed PS:PCBM showed excellent unipolar switching, reliability, retention, and endurance characteristics. - Abstract: We fabricated polystyrene (PS) and 6-phenyl-C61 butyric acid methyl ester (PCBM) based organic non-volatile memory devices using a spray printing technique. Due to the distinct operational properties of this technique, significant differences were observed in the macro- and microscopic features (e.g., the film quality and surface roughness) of the devices. The thickness of the film was successfully controlled by adjusting the concentration of the PS:PCBM solutions sprayed. Although the roughness of the spray-printed films was poorer than that of the spin-coated film, negligible differences were observed in the basic memory characteristics (e.g., the operation voltage range, turn on and off voltage, retention and endurance). In particular, the printing-based organic memory devices were successfully switched, as exhibited by the on/off ratio greater than two orders of magnitude at 0.3 V read voltage. The resistance state of all of the devices was maintained for more than 10{sup 4} s, indicating their non-volatile characteristics.

  14. Spray Atomization Models in Engine Applications, from Correlations to Direct Numerical Simulations Modèles de spray dans les applications moteur, des corrélations aux simulations numériques directes

    Directory of Open Access Journals (Sweden)

    Dos Santos F.

    2011-09-01

    Full Text Available Sprays are among the very main factors of mixture formation and combustion quality in almost every (IC engine. They are of great importance in pollutant formation and energy efficiency although adequate modeling is still on development. For many applications, validation and calibration of models are still an open question. Therefore, we present an overview of existing models and propose some trends of improvement. Models are classified in zero dimensional and dimensional classes ranging from simple formulations aimed at close-to-real-time applications to complete detailed description of early atomization stages. Les sprays sont parmi les principaux facteurs de qualite, dans la formation du melange et la combustion, dans un grand nombre de moteurs (a combustion interne. Ils sont de toute premiere importance dans la formation de polluants et l’efficacite energetique, bien qu’une modelisation adequate soit encore en developpement. Pour un grand nombre d’applications, la validation et la calibration de ces modeles demeurent une question ouverte. Aussi, presentons-nous un apercu des modeles existants et proposons quelques voies d’amelioration. Les modeles sont classes en nondimensionnels et dimensionnels allant de formules simples dediees a des applications proches du temps reel a des descriptions detaillees des premiers stades de l’atomisation.

  15. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  16. A High-Speed All-Digital Technique for Agricultural Spray Measurement and Flow Visualization Image Analysis in Pesticide Application

    Directory of Open Access Journals (Sweden)

    Deyun Wei

    2013-01-01

    Full Text Available In order to solve the faults in usual measurements of droplet distribution and motion in agricultural spraying field, a new method is given for the analysis of droplets characteristics and motion with PDIA (Particle/ Droplet Image Analysis and digital image processing technique. During the analysis of the size of droplet and the velocity, images of droplets in spray field have been captured by using high-speed imager. The parameter of droplet such as size, perimeter, equivalent diameter, shape factor and position etc., have been calculated with digital image processing technology. The trace of droplet in different frames has been tracked with the method, which is based on flag tracking and droplet neighborhood matching probability technique. The results showed this method can both realize the motion trace of droplet in different image frames and analyses the velocity of droplet. This technique can detect the droplet parameters quickly and accurately for agricultural sprays and provide the basic way for research on flow visualization image analysis in pesticide application.

  17. Nitrogenous subcutaneous emphysema caused by spray application of fibrin glue during retroperitoneal laparoscopic surgery.

    Science.gov (United States)

    Matsuse, Shinji; Maruyama, Atsushi; Hara, Yoshiki

    2011-06-01

    We report a case of a patient treated by retroperitoneoscopic partial nephrectomy who developed nitrogenous subcutaneous emphysema (SCE) as a complication. The use of a nitrogen gas-pressured fibrin tissue adhesive applied as a spray caused excessively increased pressure in the closed retroperitoneal space and resulted in widespread SCE with protracted clinical course. To the best of our knowledge, this is the first report of nitrogenous SCE associated with pneumoperitoneum. The clinical significance of nitrogenous SCE is emphasized, and the risks associated with the use of fibrin glue as a spray during laparoscopic surgery are discussed.

  18. The application of plasma-sprayed ceramic coatings on lift roller in float glass

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Oxide ceramic was sprayed via high-energy plasma spray using MCrAlY manufactured with special technique as bond coating and oxide ceramic as top coating in this article. Investigation showed that the dense and highly adhesive coating could be obtained with optimized technique. After grinding and polishing, coating roughness was lower than 0. 2μm, which could meet the requirements of lift roller. After one year serv ice, molten Tin could not adhere to the ceramic coating,well it greatly alleviated its corrosion to the roller , kept the surface of oxide ceramic coating smooth and the improve the quality of glass due to the strengthened lift roll.

  19. Rapid degradation of bensulfuron-methyl upon repeated application in paddy soils

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-mei; LIU Wei-ping; ABID Subhani

    2004-01-01

    Rapid degradation of bensulfuron-methyl upon repeated application in paddy soils was studied. The results showed that the DT50of bensulfuron-methyl was reduced from 16 d to 9 d in soil with one-year bensulfuron-methyl application. Rapid bensulfuron-methyl degradation was happened to previously untreated soil by addition 5% rapid bensuifuron-methyl adapted soil and was inhibited following pre-treatment with broad-spectrum antibiotic chloramphenicol. In bensulfuron-methyl adapted soil mineralisation of 14C labeled bensulfuronmethyl to 14 CO2 occurred at a faster rate than with previously untreated soil. It was concluded that rapid bensulfuron-methyl degradation upon repeated application is probably linked to the adaptation of soil bacteria which can utilize bensulfuron-methyl as a source of carbon and energy.

  20. Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao.

    Science.gov (United States)

    Zhang, Yufan; Smith, Philip; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    Previous work has implicated glycerol-3-phosphate (G3P) as a mobile inducer of systemic immunity in plants. We tested the hypothesis that the exogenous application of glycerol as a foliar spray might enhance the disease resistance of Theobroma cacao through the modulation of endogenous G3P levels. We found that exogenous application of glycerol to cacao leaves over a period of 4 days increased the endogenous level of G3P and decreased the level of oleic acid (18:1). Reactive oxygen species (ROS) were produced (a marker of defence activation) and the expression of many pathogenesis-related genes was induced. Notably, the effects of glycerol application on G3P and 18:1 fatty acid content, and gene expression levels, in cacao leaves were dosage dependent. A 100 mm glycerol spray application was sufficient to stimulate the defence response without causing any observable damage, and resulted in a significantly decreased lesion formation by the cacao pathogen Phytophthora capsici; however, a 500 mm glycerol treatment led to chlorosis and cell death. The effects of glycerol treatment on the level of 18:1 and ROS were constrained to the locally treated leaves without affecting distal tissues. The mechanism of the glycerol-mediated defence response in cacao and its potential use as part of a sustainable farming system are discussed. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  1. Spray deposition of organic electroluminescent coatings for application in flexible light emitting devices

    Directory of Open Access Journals (Sweden)

    Mariya Aleksandrova

    2015-12-01

    Full Text Available Organic electroluminescent (EL films of tris(8-hydroxyquinolinatoaluminum (Alq3 mixed with polystyrene (PS binder were produced by spray deposition. The influence of the substrate temperature on the layer’s morphology and uniformity was investigated. The deposition conditions were optimized and simple flexible light-emitting devices consisting of indium-tin oxide/Alq3:PS/aluminum were fabricated on polyethylene terephthalate (PET foil to demonstrate the advantages of the sprayed organic coatings. Same structure was produced by thermal evaporation of Alq3 film as a reference. The influence of the deposition method on the film roughness and contact resistance at the electrode interfaces for both types of structures was estimated. The results were related to the devices’ efficiency. It was found that the samples with sprayed films turn on at 4 V, which is 2 V lower in comparison to the device with thermal evaporated Alq3. The current through the sprayed device is six times higher as well (17 mA vs. 2.8 mA at 6.5 V, which can be ascribed to the lower contact resistance at the EL film/electrode interfaces. This is due to the lower surface roughness of the pulverized layers.

  2. A method of extending DPIV and its application in spray droplet size measurements

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A field method for measuring particle size distribution within a spray was developed based on extending of digital particle image velocimetry (DPIV) in this note. The size distribution of a water mist was successfully measured with this method, and the measured results were compared with the simply calculated ones.

  3. Effect of formulation and repeated applications on the enantioselectivity of metalaxyl dissipation and leaching in soil.

    Science.gov (United States)

    Celis, Rafael; Gámiz, Beatriz; Adelino, María A; Cornejo, Juan; Hermosín, María C

    2015-11-01

    Soil incubation and column leaching experiments were conducted to address the question of whether the type of formulation (unsupported versus clay supported) and repeated applications of the chiral fungicide (RS)-metalaxyl affected the enantioselectivity of its dissipation and leaching in a slightly alkaline, loamy sand agricultural soil. Regardless of the type of formulation and the number of fungicide applications, the R-enantiomer of metalaxyl was degraded faster than the S-enantiomer, but the individual degradation rates of R- and S-metalaxyl were highly affected by the different application regimes assayed (t1/2 = 2-104 days). Repeated applications accelerated the degradation of the biologically active R-metalaxyl enantiomer, whereas they led to slower degradation of the non-active S-metalaxyl enantiomer. The type of formulation had less influence on the dissipation rates of the enantiomers. For all formulations tested, soil column leachates became increasingly enriched in S-enantiomer as the number of fungicide applications was increased, and application of metalaxyl to soil columns as clay-based formulations reduced the leaching of both enantiomers. Pesticide application conditions can greatly influence the enantioselective dissipation of chiral pesticides in soil, and hence are expected to exert a great impact on both the biological efficacy and the environmental chiral signatures of pesticides applied as mixtures of enantiomers or racemates to agricultural soils. © 2014 Society of Chemical Industry.

  4. [Clustered regularly interspaced short palindromic repeats: structure, function and application--a review].

    Science.gov (United States)

    Cui, Yujun; Li, Yanjun; Yan, Yanfeng; Yang, Ruifu

    2008-11-01

    CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats), the basis of spoligotyping technology, can provide prokaryotes with heritable adaptive immunity against phages' invasion. Studies on CRISPR loci and their associated elements, including various CAS (CRISPR-associated) proteins and leader sequences, are still in its infant period. We introduce the brief history', structure, function, bioinformatics research and application of this amazing immunity system in prokaryotic organism for inspiring more scientists to find their interest in this developing topic.

  5. Application of cashew tree gum on the production and stability of spray-dried fish oil.

    Science.gov (United States)

    Botrel, Diego Alvarenga; Borges, Soraia Vilela; Fernandes, Regiane Victória de Barros; Antoniassi, Rosemar; de Faria-Machado, Adelia Ferreira; Feitosa, Judith Pessoa de Andrade; de Paula, Regina Celia Monteiro

    2017-04-15

    Evaluation of cashew gum compared to conventional materials was conducted regarding properties and oxidative stability of spray-dried fish oil. Emulsions produced with cashew gum showed lower viscosity when compared to Arabic gum. The particle size was larger (29.9μm) when cashew gum was used, and the encapsulation efficiency reached 76%, similar to that of modified starch but higher than that for Arabic gum (60%). The oxidation process for the surface oil was conducted and a relative lower formation of oxidation compounds was observed for the cashew gum treatment. GAB model was chosen to describe the moisture adsorption isotherm behaviours. Microparticles produced using Arabic and cashew gums showed greater water adsorption when exposed to higher relative humidities. Microparticles produced using cashew gum were more hygroscopic however encapsulation efficiency were higher and surface oil oxidation were less pronounced. Cashew gum can be further explored as an encapuslant material for spray drying processes.

  6. Very Low Volatile Organic Compound Spray Application Process for Iron Filled Elastomeric Coatings

    Science.gov (United States)

    2006-05-31

    painting industry (aircraft, furniture, and automotive), the consumer product industry ( deodorants , hair sprays, topical anesthetics and antiseptics...Pro-Engineer software module. The atomizer is constructed primarily out of aluminum . The atomizer has a top plate which is interchangeable for...and liquid is fed through the inner tube. The inner tube is constructed out of brass. All other parts of the atomizer are made with aluminum

  7. Application of steel fibre reinforced sprayed concrete to a deep tunnel in weak rocks

    Institute of Scientific and Technical Information of China (English)

    周宏伟; 彭瑞东; 李振东; 董正亮; 陈文伟; 王健

    2002-01-01

    Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of weak rocks at great depth, a tunneling scheme with rock bolting and steel fibre reinforced sprayed concrete is proposed. This scheme is practiced successfully at a deep tunnel in weak rocks in Coal Mine No.10 of Hebi Coal Mining Administration.

  8. Enhancing Corn Productivity through Application of Vermi Tea as Foliar Spray

    Directory of Open Access Journals (Sweden)

    Stephen P. Bulalin

    2015-12-01

    Full Text Available One of the major commodities in the Province of Apayao is corn. In the municipality of Conner, a previous study conducted showed that corn farmers heavily rely on the use of inorganic fertilizers and still produce low yield. This study was then conducted to compare traditional farming against the use of an intervention using Vermi Tea as supplemental spray. Results of this endeavor showed that the farms applied with supplemental organic spray performed better that that of the usual farmer’s practice in various aspects of corn growth and yield. Findings show that vermi tea, when used as a foliar spray can significantly improve the growth and yield of corn . Due to the presence of plant growth regulators, and its ability to improve the condition of the soil, the corn farm sprayed with vermi tea produced taller corn crops with longer and thicker ears. As reflected in this study, corn when applied with the vermi tea can have an increased yield which can go as high as two tons/ha. More importantly, vermi tea promotes the use of organic fertilizer which does not entail high cost and can be prepared using agricultural wastes and other locally available materials. This will not only contribute to the reduction of the amount of total waste but will also help minimize the use of chemical fertilizers. The technology intervention promoted in this project complements and supports various government agency thrusts and priorities which are geared towards improving the agriculture industry, maintaining environmental quality and sustainable use of resources, climate change adaptation and mitigation; and production of excellent researches that will promote quality education and contribute to the upliftment of the country and encourage multisectoral/ multidisciplinary research along the priority areas like food safety and security among others.

  9. New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics

    OpenAIRE

    Berrocal, Edouard; Meglinski, I. V.; Jermy, Mark C.

    2005-01-01

    Modern optical diagnostics for quantitative characterization of polydisperse sprays and other aerosols which contain a wide range of droplet size encounter difficulties in the dense regions due to the multiple scattering of laser radiation with the surrounding droplets. The accuracy and efficiency of optical measurements can only be improved if the radiative transfer within such polydisperse turbid media is understood. A novel Monte Carlo code has been developed for modeling...

  10. Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids.

    Science.gov (United States)

    Yang, Lu; Wu, Longhua; Liu, Wuxing; Huang, Yujuan; Luo, Yongming; Christie, Peter

    2016-11-21

    Application of biosolids to agricultural soils is one of the pathways by which antibiotics can be introduced into agricultural ecosystems. A pot experiment was conducted with repeated soil amendment with biosolids to examine the concentrations of four classes of antibiotics (tetracyclines, sulfonamides, fluoroquinolones, and macrolides) and their dissipation in three different soil types in wheat-rice rotations. Antibiotics accumulate in the soils after repeated application of biosolids. Fluoroquinolones showed stronger accumulation and persistence in the test soils than the other three classes of antibiotics. The maximum residual antibiotic concentration was that of norfloxacin at 155 ± 16 μg kg(-1) in the Typic Hapli-Stagnic Anthrosols (paddy soil). Predicted half-lives were up to 3.69 years, a much longer period than that between biosolid applications (twice each year on average). Antibiotic accumulation followed the rough order fluoroquinolones > tetracyclines > macrolides > sulfonamides, and the sulfonamides were seldom encountered. When biosolid application was suspended, the dissipation rate accelerated. Antibiotic dissipation was slightly slower when biosolids with high heavy metal concentrations were applied and microbial degradation may have been the main mechanism of dissipation. Norfloxacin persistence was positively correlated with its soil adsorption capacity. Cation exchange capacity and soil organic matter content may have vital roles in the soil adsorption of fluoroquinolones. Because of their persistence, the fluoroquinolones must be taken into account in the planning of biosolid applications in agricultural practice.

  11. Corneal epithelial toxicity of antiglaucoma formulations: in vitro study of repeated applications

    Directory of Open Access Journals (Sweden)

    Meloni M

    2012-09-01

    Full Text Available Marisa Meloni,1 Giampiero Cattaneo,2 Barbara De Servi11VitroScreen In Vitro Research Laboratories, 2Thea Farma, Milan, ItalyBackground: By using a biologically relevant and sensitive three-dimensional model of human corneal epithelium and multiple endpoint analysis, assessment of the potential for eye irritation and long-term compatibility of four registered ophthalmological preparations, ie, Timolabak®, Timoptol®, Nyogel®, and Timogel®, was performed. This approach enables classification of the potential for irritation, discriminating between mildly irritant and non-irritant ocular substances.Methods: The exposure protocol included two time periods, ie, 24 hours (acute application and 72 hours (repeated applications twice daily. This approach allows assessment of not only the acute reaction but also possible recovery, as well as mimicking the potential cumulative effects associated with long-term application. Using benzalkonium chloride (BAK 0.01% as a positive control, the following parameters were quantified: cellular viability by MTT test, histological analysis by hematoxylin and eosin staining, passive release of interleukin-1a by enzyme-linked immunosorbent assay, and OCLN gene expression by quantitative real-time polymerase chain reaction.Results: Cell viability was reduced to under the 50% cutoff value after acute exposure (24 hours to BAK 0.01%, and after repeated application (72 hours of Timoptol and Nyogel. Histological analysis after acute exposure showed signs of superficial damage with all formulations, and severe changes after repeated applications of Timoptol, BAK 0.01%, and Nyogel. Timolabak and Timogel did not significantly alter the morphology of the human corneal epithelial cells after the different exposure times. Interleukin-1α release was greater than that for the negative control (>20 pg/mL and the positive control (BAK 0.01%, Nyogel, and Timoptol treatments and not different after treatment with Timolabak and

  12. Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine.

    Directory of Open Access Journals (Sweden)

    Guo-Chun Ding

    Full Text Available Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure. In this study, a microcosm experiment was performed with two concentrations of the antibiotic sulfadiazine (SDZ which were applied together with manure at three different time points over a period of 133 days. Samples were taken 3 and 60 days after each manure application. The effects of SDZ on soil bacterial communities were explored by barcoded pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. Samples with high concentration of SDZ were analyzed on day 193 only. Repeated inputs of SDZ, especially at a high concentration, caused pronounced changes in bacterial community compositions. By comparison with the initial soil, we could observe an increase of the disturbance and a decrease of the stability of soil bacterial communities as a result of SDZ manure application compared to the manure treatment without SDZ. The number of taxa significantly affected by the presence of SDZ increased with the times of manure application and was highest during the treatment with high SDZ-concentration. Numerous taxa, known to harbor also human pathogens, such as Devosia, Shinella, Stenotrophomonas, Clostridium, Peptostreptococcus, Leifsonia, Gemmatimonas, were enriched in the soil when SDZ was present while the abundance of bacteria which typically contribute to high soil quality belonging to the genera Pseudomonas and Lysobacter, Hydrogenophaga, and Adhaeribacter decreased in response to the repeated application of manure and SDZ.

  13. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices

    NARCIS (Netherlands)

    Ely, Fernando; Matsumoto, Agatha; Zoetebier, Bram; Peressinotto, Valdirene S.; Hirata, Marcelo Kioshi; Sousa, de Douglas A.; Maciel, Rubens

    2014-01-01

    In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were pr

  14. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices

    NARCIS (Netherlands)

    Ely, Fernando; Matsumoto, Agatha; Zoetebier, Bram; Peressinotto, Valdirene S.; Hirata, Marcelo Kioshi; de Sousa, Douglas A.; Maciel, Rubens

    2014-01-01

    In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were

  15. Single versus repeated applications of CuO and Ag nanomaterials and their effect on soil microflora.

    Science.gov (United States)

    Schlich, Karsten; Beule, Lukas; Hund-Rinke, Kerstin

    2016-08-01

    Nanomaterials enter the terrestrial environment via the repeated application of sludge to soils over many years. The goal of this investigation was to compare the effects of CuO and Ag nanomaterials on soil microorganisms after a single application and after repeated applications ultimately resulting in the same test concentrations. The effect on soil microorganisms was determined using the ammonium oxidation (ISO 15685), enzymatic activity patterns (ISO 22939) and MicroResp™ tests on days 28, 56 and 84. The comparability of single and repeated applications of ion-releasing nanomaterials depended on the test endpoint and duration. No significant differences between single and repeated applications were observed when testing nitrifying microorganisms and exoenzymes, but differences were observed in the substrate-induced respiration test. The three test systems used together provide more comprehensive information about the impact of different nanomaterials on the soil microflora and its diversity.

  16. Non-target effects of repeated chlorothalonil application on soil nitrogen cycling: The key functional gene study.

    Science.gov (United States)

    Zhang, Manyun; Xu, Zhihong; Teng, Ying; Christie, Peter; Wang, Jun; Ren, Wenjie; Luo, Yongming; Li, Zhengao

    2016-02-01

    The widespread and increasing application of chlorothalonil (CTN) raises concerns about its non-target impacts, but little information is available on the effect of CTN on the key functional genes related to soil nitrogen (N) cycling, especially in the case of repeated applications. In the present study, a microcosm incubation was conducted to determine CTN residues and the impacts on the abundances of key functional genes related to N cycling after repeated CTN applications. The results demonstrated that repeated CTN applications at the recommended application rate and five times the recommended rate led to the accumulation of CTN residue in soil at concentrations of 5.59 and 78.79 mg kg(-1), respectively, by the end of incubation. Real time PCR (RT-PCR) revealed that repeated CTN applications had negative effects on the chiA and aprA gene abundances. There were significantly negative correlations between CTN residues and abundances of AOA and AOB genes. In addition, the abundances of key functional genes involved in soil denitrification were declined by repeated CTN applications with the sole exception of the nosZ gene. This study suggests that repeated CTN applications could lead to the accumulation of CTN residue and generate somewhat inconsistent and erratic effects on the abundances of key functional genes related to soil N cycling.

  17. Investigations on microstructural and optical properties of CdS films fabricated by a low-cost, simplified spray technique using perfume atomizer for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K.; Philominathan, P. [PG and Research Department of Physics, AVVM, Sri Pushpam College, Poondi, Thanjavur District, Tamil Nadu (India)

    2008-11-15

    Good quality CdS films were fabricated by employing a simplified spray pyrolysis technique using perfume atomizer. CdS films have been deposited from aqueous solutions of sulphur and cadmium, keeping the molar concentrations of S:Cd = 0.01:0.01, 0.02:0.02, 0.04:0.04 and 0.06:0.06 in the starting solutions. The structural studies reveal that the S:Cd concentration has a strong influence on the microstructural characteristics of the sprayed CdS films. It was found that there is a transition in the preferred orientation from (0 0 2) plane to (1 0 1) plane when S:Cd molar concentration increases. The SEM images depict that the films are uniform and homogeneous. All the films have high optical transmittance (>80%) in the visible range. The optical band gap values are found to be in the range of 2.46-2.52 eV. CdS films fabricated by this simple and economic spray technique without using any carrier gas are found to be good in structural and optical properties which are desirable for photovoltaic applications. Hence, this simplified version of spray technique can be considered as an economic alternative to conventional spray pyrolysis (using carrier gas), for the mass production of low-cost, large area CdS coatings for solar cell applications. (author)

  18. Conditional moment closure for two-phase flows - A review of recent developments and application to various spray combustion configurations

    Science.gov (United States)

    Wright, Y. M.; Bolla, M.; Boulouchos, K.; Borghesi, G.; Mastorakos, E.

    2015-01-01

    Energy conversion devices of practical interest such as engines or combustors operate in highly turbulent flow regimes. Due to the nature of the hydrocarbon fuels employed, the oxidation chemistry involves a broad range of time-scales some of which cannot be decoupled from the flow. Among the approaches utilised to tackle the modelling of turbulent combustion, Conditional Moment Closure (CMC), belonging to the computationally efficient class of presumed PDF methods, has shown great potential. For single-phase flows it has been demonstrated on non-premixed turbulent lifted and opposed jets, lifted flames and auto-igniting jets. Here we seek to review recent advances in both modelling and application of CMC for auto-ignition of fuel sprays. The experiments chosen for code validation and model improvement include generic spray test rigs with dimensions of passenger car as well as large two-stroke marine engines. Data for a broad range of operating conditions of a heavy-duty truck engine is additionally employed to assess the predictive capability of the model with respect to NOx emissions. An outlook on future enhancements including e.g. LES-CMC formulation also for two-phase flows as well as developments in the field of soot emissions are summarised briefly.

  19. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs: a particle engineering approach.

    Science.gov (United States)

    Bohr, Adam; Boetker, Johan P; Rades, Thomas; Rantanen, Jukka; Yang, Mingshi

    2014-01-01

    Solid dispersions have been widely studied as an attractive formulation strategy for the increasingly prevalent poorly water-soluble drug compounds, including herbal medicines, often leading to improvements in drug dissolution rate and bioavailability. However, several challenges are encountered with solid dispersions, for instance regarding their physical stability, and the full potential of these formulations has yet to be reached. Solid dispersions have mainly been used to produce immediate release systems using water-soluble polymers but an extended release system may provide equal or better performance due to enhancement in the pharmacokinetics and low variability in plasma concentration. Progress in processing technologies and particle engineering provides new opportunities to prepare particle-based solid dispersions with control of physical characteristics and tailored drug release kinetics. Spray-drying and electrospraying are both technologies that allow production and continuous manufacturing of particle-based amorphous solid dispersions in a single step process and electrospinning further allows the production of fiber based systems. This review presents the use of spray drying and electrospraying/electrospinning as techniques for preparing particle-based solid dispersions, describes the particle formation processes via numerical and experimental models and discusses particle engineering using these techniques. Examples are given on the applications of these techniques for preparing solid dispersions and the challenges associated with the techniques such as stability, preparation of final dosage form and scale-up are also discussed.

  20. Nonenzymatic browning kinetics of a carbohydrate-based low-moisture food system at temperatures applicable to spray drying.

    Science.gov (United States)

    Miao, Song; Roos, Yrjö H

    2004-08-11

    Effects of water contents on nonenzymatic browning (NEB) rates of amorphous, carbohydrate-based food model systems containing L-lysine and D-xylose as reactants were studied at different temperatures (40, 50, 60, 70, 80, and 90 degrees C) applicable to spray drying conditions. Water sorption was determined gravimetrically, and data were modeled using the Brunauer-Emmett-Teller and Guggenheim-Anderson-deBoer equations. Glass transition, Tg was measured by DSC. NEB was followed spectrophotometrically. The rate of browning increased with water content and temperature, but a lower T-Tg was needed for browning at decreasing water content. Water content seemed to affect the activation energy of NEB, and higher water contents decreased the temperature dependence of the NEB. At higher temperatures, the NEB became less water content dependent and enhanced browning in spray-drying. The temperature dependence of nonenzymatic browning could also be modeled using the Williams-Landel-Ferry (WLF) equation, but the WLF constants were dependent on the water content.

  1. On the Applicability of Elastic Network Models for the Study of RNA CUG Trinucleotide Repeat Overexpansion.

    Directory of Open Access Journals (Sweden)

    Àlex L González

    Full Text Available Non-coding RNAs play a pivotal role in a number of diseases promoting an aberrant sequestration of nuclear RNA-binding proteins. In the particular case of myotonic dystrophy type 1 (DM1, a multisystemic autosomal dominant disease, the formation of large non-coding CUG repeats set up long-tract hairpins able to bind muscleblind-like proteins (MBNL, which trigger the deregulation of several splicing events such as cardiac troponin T (cTNT and insulin receptor's, among others. Evidence suggests that conformational changes in RNA are determinant for the recognition and binding of splicing proteins, molecular modeling simulations can attempt to shed light on the structural diversity of CUG repeats and to understand their pathogenic mechanisms. Molecular dynamics (MD are widely used to obtain accurate results at atomistic level, despite being very time consuming, and they contrast with fast but simplified coarse-grained methods such as Elastic Network Model (ENM. In this paper, we assess the application of ENM (traditionally applied on proteins for studying the conformational space of CUG repeats and compare it to conventional and accelerated MD conformational sampling. Overall, the results provided here reveal that ANM can provide useful insights into dynamic rCUG structures at a global level, and that their dynamics depend on both backbone and nucleobase fluctuations. On the other hand, ANM fail to describe local U-U dynamics of the rCUG system, which require more computationally expensive methods such as MD. Given that several limitations are inherent to both methods, we discuss here the usefulness of the current theoretical approaches for studying highly dynamic RNA systems such as CUG trinucleotide repeat overexpansions.

  2. Tin doping in spray pyrolysed indium sulfide thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Meril; Gopinath, Manju; Kartha, C. Sudha; P.Vijayakumar, K. [Department of Physics, Cochin University of Science and Technology, Kochi 682 022 (India); Kashiwaba, Y.; Abe, T. [Department of Electrical and Electronic Engineering, Iwate University, Morioka 020-855 (Japan)

    2010-06-15

    This paper presents studies carried out on tin-doped indium sulfide films prepared using Chemical Spray Pyrolysis (CSP) technique. Effect of both in-situ and ex-situ doping were analyzed. Ex-situ doping was done by thermal diffusion, which was realized by annealing Sn/In{sub 2}S{sub 3} bilayer films. In-situ doping was accomplished by introducing Sn into the spray solution by using SnCl{sub 4}.5H{sub 2}O. Interestingly, it was noted that by ex-situ doping, conductivity of the sample enhanced considerably without affecting any of the physical properties such as crystallinity or band gap. Analysis also showed that higher percentage of doping resulted in samples with low crystallinity and negative photosensitivity. In-situ doping resulted in amorphous films. In contrast to ex-situ doping, 'in- situ doping' resulted in widening of optical band gap through oxygen incorporation; also it gave highly photosensitive films. (author)

  3. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications.

    Science.gov (United States)

    Edris, Amr E; Kalemba, Danuta; Adamiec, Janusz; Piątkowski, Marcin

    2016-08-01

    Oleoresin of Nigella sativa L. (Black cumin) was obtained from the seeds using hexane extraction at room temperature. The oleoresin was emulsified in an aqueous solution containing gum Arabic/maltodextrin (1:1 w/w) and then encapsulated in powder form by spray drying. The characteristics of the obtained powder including moisture content, bulk density, wettability, morphology, encapsulation efficiency were evaluated. The effect of the spray drying on the chemical composition of the volatile oil fraction of N. sativa oleoresin was also evaluated using gas chromatographic-mass spectroscopic analysis. Results indicated that the encapsulation efficiency of the whole oleoresin in the powder can range from 84.2±1.5% to 96.2±0.2% depending on the conditions of extracting the surface oil from the powder. On the other hand the encapsulation efficiency of the volatile oil fraction was 86.2% ±4.7. The formulated N. sativa L. oleoresin powder can be used in the fortification of processed food and nutraceuticals.

  4. Doped nanocrystalline ZnO powders for non-linear resistor applications by spray pyrolysis method.

    Science.gov (United States)

    Hembram, Kaliyan; Vijay, R; Rao, Y S; Rao, T N

    2009-07-01

    Homogeneous and doped nanocrystalline ZnO powders (30-200 nm) were synthesized by spray pyrolysis technique. The spray pyrolysed powders were calcined in the temperature range of 500-750 degrees C. Formation of insulating pyrochlore phase started from 700 degrees C during the calcination itself. The calcined powders were compacted and sintered at different temperatures ranging from 900-1200 degrees C for 0.5-4 h. The densification behavior was found to be dependent on calcination temperature of the nanopowder. The resulting discs were found to have density (5.34-5.62 g/cc) in the range of 96-99% of theoretical density. The breakdown voltage value obtained for the nanopowder based non-linear resistor is 10.3 kV/cm with low leakage current density of 0.7 microA/cm2 and coefficient of nonlinearity as high as 193. The activation energy for grain growth of the doped ZnO nanopowder powders is 449.4 +/- 15 kJ/mol.

  5. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  6. Repeated applications of photodynamic therapy on Candida glabrata biofilms formed in acrylic resin polymerized.

    Science.gov (United States)

    de Figueiredo Freitas, Lírian Silva; Rossoni, Rodnei Dennis; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2017-04-01

    Previous studies have been suggested that photodynamic therapy (PDT) can be used as an adjuvant treatment for denture stomatitis. In this study, we evaluated the effects of multiple sessions of PDT on Candida glabrata biofilms in specimens of polymerized acrylic resin formed after 5 days. Subsequently, four applications of PDT were performed on biofilms in 24-h intervals (days 6-9). Also, we evaluated two types of PDT, including application of laser and methylene blue or light-emitting diode (LED) and erythrosine. The control groups were treated with physiological solution. The effects of PDT on biofilm were evaluated after the first and fourth application of PDT. The biofilm analysis was performed by counting the colony-forming units. The results showed that between the days 6 and 9, the biofilms not treated by PDT had an increase of 5.53 to 6.05 log (p = 0.0271). Regarding the treatments, after one application of PDT, the biofilms decreased from 5.53 to 0.89 log. When it was done four applications, the microbial reduction ranged from 6.05 log to 0.11 log. We observed that one application of PDT with laser or LED caused a reduction of 3.36 and 4.64 compared to the control groups, respectively (p = 0.1708). When it was done four applications of PDT, the reductions achieved were 1.57 for laser and 5.94 for LED (p = 0.0001). It was concluded that repeated applications of PDT on C. glabrata biofilms showed higher antimicrobial activity compared to single application. PDT mediated by LED and erythrosine was more efficient than the PDT mediated by laser and methylene blue.

  7. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage

    DEFF Research Database (Denmark)

    Peltrea, Clément; Nyord, Tavs; Bruun, Sander

    2015-01-01

    for different organic wastes influenced the specific draught. Overall, the decrease in draught force could lead to a decrease in tractor fuel consumption for soil tillage of up to 25% for compost applied at an accelerated rate and up to 14% for compost applied at a normal rate. This reduced fuel consumption......Abstract Soil application of organic waste products (OWP) can maintain or increase soil organic carbon (SOC) content, which in turn could lead to increased porosity and potentially to reduced energy use for soil tillage. Only a few studies have addressed the effect of SOC content on draught force...... for soil tillage, and this still needs to be addressed for fields that receive diverse types of organic waste of urban, agricultural and agro-industrial origin. The objective of this study was to determine the effect of changes in SOC induced by repeated soil application of OWP on draught force for soil...

  8. Assessment of plasma sprayed coatings to modify surface friction for railroad applications

    Science.gov (United States)

    Davis, Heidi Lynn

    For the past hundred years, railroads have been an important means of transportation for passengers and freight. Over the years train traffic, speeds, and loads have increased steadily leading to a more severe wheel/rail environment that exceeds the design limits of the steels thus causing increased wear, decreased rail life, and higher maintenance costs. The cost of controlling friction and the resulting damage is an area of ever-increasing concern. One potential method of modifying friction is by changing the surface properties of the rail. The work reported herein was carried out as part of a larger effort to modify surface friction of rails. The original focus of this research was to use high velocity air plasma spraying to develop friction enhancing coatings for the rail surface. Using the methodology developed at the Oregon Graduate Institute, the plasma spray parameters were optimized and the coatings were tested on the Amsler machine under rolling/sliding wear conditions to determine viability prior to full scale testing. Stainless steel and composite 1080 steel were investigated as potential materials for increasing friction. Poor results with these coatings shifted the research focus to understanding the durability of the coatings and to failure analysis of initial 1080 steel full scale samples tested by the Facility for Accelerated Service Testing that had failed prematurely. After re-optimization of parameters and preparation methodologies further full scale samples (1080 steel/nylon) were tested and failure analysis was performed. Optical and scanning electron microscopy were used to evaluate the microstructure of coatings from the tested samples. The laboratory scale Amsler test did not appear to be a good indicator of the performance of the coating in full scale tests, because variations in microstructure were caused by differences in sample size, geometry and spraying methods when scaling up from a small Amsler roller to a large rail sample. The

  9. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

    KAUST Repository

    Luo, Zhaoyu

    2014-03-04

    n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction. The work of Zhaoyu Luo, Sibendu Som, Max Plomer, William J. Pitz, Douglas E. Longman and Tianfeng Lu was authored as part of their official duties as Employees of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. S. Mani Sarathy hereby waives his right to

  10. Cryogen spray cooling for spatially selective photocoagulation: a feasibility study with potential application for treatment of hemangiomas

    Science.gov (United States)

    Anvari, Bahman; Tanenbaum, B. S.; Milner, Thomas E.; Hoffman, Wendy; Said, Samireh; Chang, Cheng-Jen; Liaw, Lih-Huei L.; Kimel, Sol; Nelson, J. Stuart

    1996-12-01

    The clinical objective in laser treatment of hemangiomas is to photocoagulate the dilated cutaneous blood vessels, while at the same time minimizing nonspecific thermal injury to the overlying epidermis. We present an in-vivo experimental procedure, using a chicken comb animal model, and an infrared feedback system to deliver repetitive cryogen spurts during continuous Nd:YAG laser irradiation. Gross and histologic observations are consistent with calculated thicknesses of protected and damaged tissues, and demonstrate the feasibility of inducing spatially selective photocoagulation when using cryogen spray cooling in conjunction with laser irradiation. Experimental observation of epidermal protection in the chicken comb model suggests selective photocoagulation of subsurface targeted blood vessels for successful treatment of hemangiomas can be achieved by repetitive applications of a cryogen spurt during continuous Nd:YAG laser irradiation.

  11. Replacement of corrosion protection chromate primers and paints used in cryogenic applications on the Space Shuttle with wire arc sprayed aluminum coatings

    Science.gov (United States)

    Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.

    1995-01-01

    With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.

  12. Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits.

    Science.gov (United States)

    Park, Ji; Choi, Sohee; Moon, Hee; Seo, Hyelin; Kim, Ji; Hong, Seok-Pyo; Lee, Bong; Kang, Eunhye; Lee, Jinho; Ryu, Dong; Choi, Insung S

    2017-08-01

    Numerous coating strategies are available to control the surface properties and confer new properties to substrates for applications in energy, environment, biosystems, etc., but most have the intrinsic limitations in the practical setting: (1) highly specific interactions between coating materials and target surfaces are required for stable and durable coating; (2) the coating of bulk substrates, such as fruits, is time-consuming or is not achievable in the conventional solution-based coating. In this respect, material-independent and rapid coating strategies are highly demanded. We demonstrate spray-assisted nanocoating of supramolecular metal-organic complexes of tannic acid and ferric ions. The spray coating developed is material-independent and extremely rapid (coating of commodity goods, such as shoe insoles and fruits, in the controlled fashion. For example, the spray-coated mandarin oranges and strawberries show significantly prolonged post-harvest shelf-life, suggesting practical potential in edible coating of perishable produce.

  13. Application of TiC reinforced Fe-based coatings by means of High Velocity Air Fuel Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Sommer, J.

    2017-03-01

    In the field of hydraulic applications, different development trends can cause problems for coatings currently used as wear and corrosion protection for piston rods. Aqueous hydraulic fluids and rising raw material prices necessitate the search for alternatives to conventional coatings like galvanic hard chrome or High Velocity Oxygen Fuel (HVOF)-sprayed WC/Co coatings. In a previous study, Fe/TiC coatings sprayed by a HVOF-process, were identified to be promising coating systems for wear and corrosion protection in hydraulic systems. In this feasibility study, the novel High Velocity Air Fuel (HVAF)-process, a modification of the HVOF-process, is investigated using the same feedstock material, which means the powder is not optimized for the HVAF-process. The asserted benefits of the HVAF-process are higher particle velocities and lower process temperatures, which can result in a lower porosity and oxidation of the coating. Further benefits of the HVAF process are claimed to be lower process costs and higher deposition rates. In this study, the focus is set on to the applicability of Fe/TiC coatings by HVAF in general. The Fe/TiC HVAF coating could be produced, successfully. The HVAF- and HVOF-coatings, produced with the same powder, were investigated using micro-hardness, porosity, wear and corrosion tests. A similar wear coefficient and micro-hardness for both processes could be achieved. Furthermore the propane/hydrogen proportion of the HVAF process and its influence on the coating thickness and the porosity was investigated.

  14. Multi-component vapor-liquid equilibrium model for LES and application to ECN Spray A

    CERN Document Server

    Matheis, Jan

    2016-01-01

    We present and evaluate a detailed multi-species two-phase thermodynamic equilibrium model for large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model can represent the coexistence of supercritical states and multi-component subcritical two-phase states. LES results for the transcritical Spray A of the Engine Combustion Network (ECN) are found to agree very well to available experimental data. We also address well-known numerical challenges of trans- and supercritical fluid mixing and compare a fully conservative formulation to a quasi conservative formulation of the governing equations. Our results prove physical and numerical consistency of both methods on fine grids and demonstrate the effects of energy conservation errors associated with the quasi conservative formulation on typical LES grids.

  15. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays

    Directory of Open Access Journals (Sweden)

    Sophie eTrouvelot

    2014-11-01

    Full Text Available Increasing interest is devoted to carbohydrates for their roles in plant immunity. Some of them are elicitors of plant defenses whereas other ones act as signaling molecules in a manner similar to phytohormones. This review first describes the main classes of carbohydrates associated to plant immunity, their role and mode of action. More precisely, the state of the art about perception of PAMP, MAMP and DAMP type oligosaccharides is presented and examples of induced defense events are provided. A particular attention is paid to the structure / activity relationships of these compounds. The role of sugars as signaling molecules, especially in plant microbe interactions, is also presented. Secondly, the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity for crop protection against diseases are discussed, with focus on the roles of the leaf cuticle and phyllosphere microflora.

  16. Gas sensing application of nanocrystalline zinc oxide thin films prepared by spray pyrolysis

    Indian Academy of Sciences (India)

    Nisha R; K N Madhusoodanan; T V Vimalkumar; K P Vijayakumar

    2015-06-01

    Nanocrystalline oxygen-deficient ZnO thinfilm sensors were prepared by spray pyrolysis technique using zinc acetate dissolved in propanol and water as precursor. Response of the sensor to target gases NO2 and H2S is studied. At optimum temperature of 200° C, the sensors have a response of 3.32 to 7 ppm NO2 and 1.4 to 18 ppm of H2S gas. The analytical characterizations of the prepared sensors were performed using X-ray diffraction measurement, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Raman spectroscopy. Dynamic response of sensors to different concentrations of NO2 and H2S gas was tested at optimum temperature. Experimental data revealed the sensors to be more selective to NO2 gas with satisfactory response and recovery time.

  17. Characteristics of Plasma-Sprayed Ceramic Coatings and Their Engineering Application

    Institute of Scientific and Technical Information of China (English)

    DENG Hua-ling; ZHANG Zhong-wen; WU Jun

    2004-01-01

    The microstructure, porosity, microhardness and adhesive strength of three plasma- sprayed ceramic coatings (Al2 O3, Cr2 O3 and Cr3 C2 + NiCr) were tested. The wear resistance of the coatings was characterized through sand blasting test. The results showed that the erosion resistance of Cr2 O3 coating was better than Al2 O3 and Cr3 C2 + NiCr coatings'.Through depositing the coating on the surface of boiler overheater tubes and on the surface of baffle- wall of carrying- coal grain blower to test its anti- erosion performance after a period of running, it was confirmed that the coatings present excellent wear resistance. Accordingly, it also demonstrates that ceramic coating has a promising prospects in surface protection in thermal power stations.

  18. Application of spray granulation for conversion of a nanosuspension into a dry powder form.

    Science.gov (United States)

    Bose, Sonali; Schenck, Daniel; Ghosh, Indrajit; Hollywood, Al; Maulit, Ester; Ruegger, Colleen

    2012-08-30

    The in vivo effect of particle agglomeration after drying of nanoparticles has not been extensively studied till date based on current literature review. The purpose of this research was to evaluate the feasibility of spray granulation as a processing method to convert a nanosuspension of a poorly water soluble drug into a solid dosage form and to evaluate the effect of the transformation into a solid powder on the in vivo exposure in beagle dogs. Formulation variables like the level of stabilizer in the nanosuspension formulation, granulation substrate and drug loading in the granulation were evaluated. The granules were characterized for moisture content, drug content, particle size, crystallinity and in vitro dissolution rate. Granulations with 10% drug loading showed dissolution profiles comparable to the nanosuspension, slightly slower dissolution profiles were observed at 20% drug loading. This can be attributed to an increase in the surface hydrophobicity at a higher drug loading and the formation of agglomerates that were harder to disintegrate, thereby compromising the dissolution rate. An in vivo PK study in beagle dogs showed an 8-fold increase and a 6-fold increase in the AUC(0-48) from the nanosuspension and dried nanosuspension formulations respectively compared to the coarse suspension. Also, the nanosuspension and dried nanosuspension formulations showed a 12-fold and 8-fold increase in the C(max) respectively compared to the coarse suspension. This shows the feasibility of using spray granulation as a processing method to convert a nanosuspension into a solid dosage form with improved in vivo exposure compared to the coarse suspension formulation.

  19. Spray coating of carbon nanotube on polyethylene terephthalate film for touch panel application.

    Science.gov (United States)

    Park, Chul; Kim, Seok Won; Lee, Yun-Su; Lee, Sung Ho; Song, Kyu Ho; Park, Lee Soon

    2012-07-01

    From a technical perspective, the major limiting factors for the wide adoption of CNT films are the DC conductivity, uniformity of sheet resistance and good adhesion of CNT on film substrate. In this study, the effects of sonificator and process time on the zeta potential and sheet resistance of the CNT-PET film show that although the dispersing power of horn-type sonificator is stronger than that of bath-type, the SWCNT solution obtained with horn-type sonificator agglomerates faster. Likewise, it has been noted that the SWCNT solutions with low enough zeta potentials exhibit higher sheet resistance after making CNT-PET films due to the damage to SWCNTs caused by high dispersion force. Since the spray coating of SWCNT solution gives the SWCNT-SDS composite layer on PET film after drying, the excess SDS should be washed off. The removal of excess SDS was conducted by dipping in the 3 N HNO3 and SOCl2 solution and washing with deionized water followed by heat treatment in a 120 degrees C convection oven for 30 min. The lift-off of SWCNT-SDS composite layer after 40 min dipping in the 3 N HNO3 solution appeared to be due to the continued permeation leading to swelling of the SDS layer by the 3 N HNO3 aqueous solution. It was found that ten times of spray coating cycle gave CNT-PET film the sheet resistance of 310 Ω/[square] and transmittance of 81%. The TSP made with CNT-PET film exhibited a performance equal to the one made with ITO-PET film.

  20. Impedance spectroscopy and sensors under ethanol vapors application of sprayed vanadium-doped ZnO compounds

    Energy Technology Data Exchange (ETDEWEB)

    Mhamdi, A., E-mail: mhaammar@gmail.com [Unité de physique des dispositifs à semi-conducteurs, Tunis EL MANAR University, 2092 Tunis (Tunisia); Labidi, A. [Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, BP 51, La Marsa 2070, Tunis (Tunisia); Souissi, B. [Unité de physique des dispositifs à semi-conducteurs, Tunis EL MANAR University, 2092 Tunis (Tunisia); Kahlaoui, M. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021 (Tunisia); Yumak, A. [Physics Department, Faculty of Arts and Sciences, Marmara University, 34722 Göztepe, Istanbul (Turkey); Boubaker, K.; Amlouk, A.; Amlouk, M. [Unité de physique des dispositifs à semi-conducteurs, Tunis EL MANAR University, 2092 Tunis (Tunisia)

    2015-08-05

    Highlights: • Proposing an original explanation to the behavior of vanadium-doped zinc oxide structures. • Presenting an original combination of several referred and established characterization means. • Outlining average particle size changes effects along the surface of the compounds. - Abstract: Thin films of vanadium-doped zinc oxide with different vanadium-doping levels (0, 1, 2 and 3 at%) were deposited on glass substrates by employing an inexpensive, simplified spray technique using at relatively low substrate temperature (460 °C). The effect of V doping on the structural, morphological and optical properties of the films was investigated by Mhamdi et al. (2013). The X-ray diffraction analysis shows that the films were well crystallized in würtzite phase with the crystallites preferentially oriented toward (0 0 2) direction parallel c-axis. As also that the average particle size along the surface of the films decreases with increasing of concentration of vanadium. In this work we study the AC and DC conductivity and gas sensor application on ZnO:V thin films. The dielectric properties of ZnO:V thin films were studied by means of complex impedance spectroscopy and frequency dependence of conductivity measured from the impedance data at a range of frequency intervals between 10 Hz and 13 MHz with a temperature between 355 and 445 °C. The frequency dependence of the dielectric constant ε′, dielectric loss ε″, loss tangent (tan δ) and AC electrical conductivity (σ{sub AC}) of the layers was subsequently investigated. In literature, we have shown in previous papers that structural and surface morphology of ZnO thin films, prepared by spray, plays an important role in the gas detection mechanism. In this article, we have studied the response evolution of ZnO:V sensors ethanol versus time and working temperature, relative doping and the concentration of the ethanol vapor.

  1. Multi-criteria indexes to evaluate the effects of repeated organic amendment applications on soil quality

    Science.gov (United States)

    Obriot, Fiona; Stauffer, Marie; Goubard, Yolaine; Vieuble-Gonod, Laure; Revallier, Agathe; Houot, Sabine

    2015-04-01

    Objectives The soil application of organic waste products (OWP) favours the recycling of nutrients, the crop production, the increase of soil biological activity and biodiversity. It may also lead to soil contamination. All these effects occurred simultaneously and must be considered in the evaluation of the practice. This study aims at deciphering the long-term impact of repeated applications and the short-term effect of an additional application on soil quality using 5 different Soil Quality Indices (SQI)[a]: fertility, microbial activity, biodiversity, physical properties and productivity and one pollution index by heavy metals. Methodology A long term field experiment was used (QualiAgro, Ile de France) where repeated applications of 4 amendments (a municipal solid waste compost, MSW; a biowaste compost, BIO; a co-compost of sewage sludge and green waste, GWS and a farmyard manure, FYM) have differentiated soil characteristics and crop production compared to a control treatments without organic residue and receiving mineral fertilizer or not (CONT+N and CONT). The OWP are applied every 2 years, in September, at doses equivalent to 4 t C/ha (4 replicates) on a maize-wheat succession. We used 2 sampling dates: 3 weeks before application (cumulative residual effect of 7 applications) and 3 weeks just after the 8th application (short-term additional effect of a recent application), in 2011. More than 30 different variables were used: chemical (pH, Polsen…), physical (bulk density, plasticity…) and biological (microbial biomass, enzymatic activity…) soil indicators. All of these were classified in 6 classes: fertility, microbial activity, biodiversity, physical properties, productivity and pollution. Five SQI and one pollution index by heavy metals were estimated using a weighted additive index calculation method described by Velasquez et al. (2007)[a]. Only parameters with statistically significant differences (pamendments increased soil fertility and

  2. Isolation Improvement of a Microstrip Patch Array Antenna for WCDMA Indoor Repeater Applications

    Directory of Open Access Journals (Sweden)

    Hongmin Lee

    2012-01-01

    Full Text Available This paper presents the isolation improvement techniques of a microstrip patch array antenna for the indoor wideband code division multiple access (WCDMA repeater applications. One approach is to construct the single-feed switchable feed network structure with an MS/NRI coupled-line coupler in order to reduce the mutual coupling level between antennas. Another approach is to insert the soft surface unit cells near the edges of the microstrip patch elements in order to reduce backward radiation waves. In order to further improve the isolation level, the server antenna and donor antenna are installedinorthogonal direction. The fabricated antenna exhibits a gain over 7 dBi and higher isolation level between server and donor antennas below −70 dB at WCDMA band.

  3. Dual-Band On-Body Repeater Antenna for In-on-On WBAN Applications

    Directory of Open Access Journals (Sweden)

    Jinpil Tak

    2013-01-01

    Full Text Available A dual-band on-body repeater antenna for in-on-on wireless body area network applications is proposed. The proposed antenna has a maximum radiation normal to the human-body surface for communication with implanted devices in the 5.8 GHz industrial, scientific, and medical (ISM band. In addition, to transmit the biological information received from the implanted devices to other on-body devices, the proposed antenna was designed to have a monopole-like radiation pattern along the surface of the human body for communication in the 2.45 GHz ISM band. The antenna was fabricated, and its performance was measured by attaching it to a human-equivalent semisolid phantom. In addition, the human-body effect was studied to ensure antenna performance under an actual situation.

  4. Rotatable fixture for spray coating

    Science.gov (United States)

    Katvala, V.; Porter, E.; Smith, M.

    1979-01-01

    Fixture that rotates about two axes ensures uniform coating and minimizes handling of coated workpiece. Each side of tile is coated in sequence by moving turntables until surface is perpendicular to spray. Process is repeated until desired thickness has built up.

  5. Application of pulverized fly-ash and spray-dry absorption products in sand/lime-brick production

    Energy Technology Data Exchange (ETDEWEB)

    Bloem, P.J.; Sciarone, B.J.

    1989-02-01

    The application of spray-dry absorption (SDA) products in sand/lime bricks was examined to find out more about the possibilities of utilizing these products that consist mainly of calcium sulphite and calcium sulphate. Sand/lime samples containing mixtures of fly-ash and SDA products in various quantities were prepared on a laboratory scale for the purpose. The green samples were autoclaved at 460 K for eight hours. The results regarding the application of these mixtures as partial substitutes for sand were encouraging with respect to strength, porosity and absorption coefficient with capillary action of water. The best results were achieved when the mixture of sand and fly-ash/SDA-product had a ratio of about one. These results were only slightly influenced by the sulphite/sulphate ratio of the SDA products and by the calcium-chloride content. It was also found that the quantity of lime necessary for the autoclaving reaction could be decreased by adding a fly-ash/SDA-product mixture. The application of fly-ashes is limited by their carbon content (about 6 wt%). Efflorescence was not found for sodium- or potassium-sulphate contents lower than 0.4 or 2.2 wt%, respectively. 15 figs., 3 refs., 2 tabs.

  6. Developing a dispersant spraying capability

    Energy Technology Data Exchange (ETDEWEB)

    Gill, S.D.

    1979-01-01

    In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant application program to include the CCG fleet of helicopters.

  7. Efficacy of repeated intrathecal triamcinolone acetonide application in progressive multiple sclerosis patients with spinal symptoms

    Directory of Open Access Journals (Sweden)

    Przuntek Horst

    2004-11-01

    Full Text Available Abstract Background There are controversial results on the efficacy of the abandoned, intrathecal predominant methylprednisolone application in multiple sclerosis (MS in contrast to the proven effectiveness in intractable postherpetic neuralgia. Methods We performed an analysis of the efficacy of the application of 40 mg of the sustained release steroid triamcinolone acetonide (TCA. We intrathecally injected in sterile saline dissolved TCA six times within three weeks on a regular basis every third day in 161 hospitalized primary and predominant secondary progressive MS patients with spinal symptoms. The MS patients did not experience an acute onset of exacerbation or recent distinct increased progression of symptoms. We simultaneously scored the MS patients with the EDSS and the Barthel index, estimated the walking distance and measured somatosensory evoked potentials. Additionally the MS patients received a standardized rehabilitation treatment. Results EDSS score and Barthel index improved, walking distance increased, latencies of somatosensory evoked potentials of the median and tibial nerves shortened in all MS patients with serial evaluation (p Conclusions Repeated intrathecal TCA application improves spinal symptoms, walking distance and SSEP latencies in progressive MS patients in this uncontrolled study. Future trials should evaluate the long-term benefit of this invasive treatment.

  8. Repeating Knowledge Application Practice to Improve Student Performance in a Large, Introductory Science Course

    Science.gov (United States)

    Fujinuma, Ryosuke; Wendling, Laura A.

    2015-11-01

    There is a tendency for lecture-based instruction in large introductory science courses to strongly focus on the delivery of discipline-specific technical terminology and fundamental concepts, sometimes to the detriment of opportunities for application of learned knowledge in evidence-based critical-thinking activities. We sought to improve student performance on evidence-based critical-thinking tasks through the implementation of peer learning and problem-based learning tutorial activities. Small-group discussions and associated learning activities were used to facilitate deeper learning through the application of new knowledge. Student performance was assessed using critical-thinking essay assignments and a final course exam, and student satisfaction with tutorial activities was monitored using online surveys. Overall, students expressed satisfaction with the small-group-discussion-based tutorial activities (mean score 7.5/10). Improved critical thinking was evidenced by improved student performance on essay assignments during the semester, as well as a 25% increase in mean student scores on the final course exam compared to previous years. These results demonstrate that repeated knowledge application practice can improve student learning in large introductory-level science courses.

  9. Ultrasonic Spray Pyrolysis Deposited Copper Sulphide Thin Films for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Y. E. Firat

    2017-01-01

    Full Text Available Polycrystalline copper sulphide (CuxS thin films were grown by ultrasonic spray pyrolysis method using aqueous solutions of copper chloride and thiourea without any complexing agent at various substrate temperatures of 240, 280, and 320°C. The films were characterized for their structural, optical, and electrical properties by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive analysis of X-rays (EDAX, atomic force microscopy (AFM, contact angle (CA, optical absorption, and current-voltage (I-V measurements. The XRD analysis showed that the films had single or mixed phase polycrystalline nature with a hexagonal covellite and cubic digenite structure. The crystalline phase of the films changed depending on the substrate temperature. The optical band gaps (Eg of thin films were 2.07 eV (CuS, 2.50 eV (Cu1.765S, and 2.28 eV (Cu1.765S–Cu2S. AFM results indicated that the films had spherical nanosized particles well adhered to the substrate. Contact angle measurements showed that the thin films had hydrophobic nature. Hall effect measurements of all the deposited CuxS thin films demonstrated them to be of p-type conductivity, and the current-voltage (I-V dark curves exhibited linear variation.

  10. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    Science.gov (United States)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  11. Inactivation of Listeria monocytogenes on hams shortly after vacuum packaging by spray application of lauric arginate.

    Science.gov (United States)

    Taormina, P J; Dorsa, W J

    2009-12-01

    This study measured and compared the short-term efficacy levels of lauric arginate (LAE) as a postlethality treatment against Listeria monocytogenes present on varied surfaces of large-diameter hams. Preliminary in vitro work demonstrated a 5-log inactivation of L. monocytogenes in 5,000- and 9,090-ppm LAE solutions within 180 min at 4.4 and 23 degrees C. Six different whole-muscle ham types were inoculated with L. monocytogenes at ca. 7-log CFU per ham and spray treated with between 15 and 29 ml of a 9,090-ppm LAE solution, or an equal volume of water (control), prior to vacuum packaging. After 48 h at 4.4 degrees C, populations were recovered from ham and interior packaging surfaces by using a surface rinse method with Dey-Engley neutralizing broth followed by plating on modified Oxford medium. Logarithmic reductions of L. monocytogenes exceeding 2 log CFU/cm(2) of ham surfaces were achieved by LAE treatment on all ham types. Hams with 1,129 cm(2) of surface area that had been processed by drenching in liquid smoke had 3.84 and 2.67 CFU/cm(2) 48 h following treatment with 18 ml of water or LAE, respectively, but increasing treatment volumes to 22 ml significantly reduced (P < 0.05) L. monocytogenes levels to 0.65 log CFU/cm(2). This study demonstrated the efficacy of LAE against L. monocytogenes on several ham types, thereby validating it as a postlethality treatment for inactivation of the pathogen.

  12. SPH modeling of adhesion in fast dynamics: Application to the Cold Spray process

    Science.gov (United States)

    Profizi, Paul; Combescure, Alain; Ogawa, Kahuziro

    2016-04-01

    The objective of this paper is to show, in a specific case, the importance of modeling adhesive forces when simulating the bouncing of very small particles impacting a substrate at high speed. The implementation of this model into a fast-dynamics SPH code is described. Taking the example of an impacted elastic cylinder, we show that the adhesive forces, which are surface forces, play a significant role only if the particles are sufficiently small. The effect of the choice of the type of interaction law in the cohesive zone is studied and some conclusions on the relevance of the modeling of the adhesive forces for fast-dynamics impacts are drawn. Then, the adhesion model is used to simulate the Cold Spray process. An aluminum particle is projected against a substrate made of the same material at a velocity ranging from 200 to 1000 m ṡs-1. We study the effects of the various modeling assumptions on the final result: bouncing or sticking. Increasingly complex models are considered. At a 200 m ṡs-1 impact velocity, elastic behavior is assumed, the substrate being simply supported at its base and supplied with absorbing boundaries. The same absorbing boundaries are also used for all the other simulations. Then, plasticity is introduced and the impact velocity is increased up to 1000 m ṡs-1. At the highest velocities, the resulting strains are very significant. The calculations show that if the adhesion model is appropriately chosen, it is possible to reproduce the experimental observations: the particles stick to the substrate in a range of impact velocities surrounded by two velocity ranges in which the particles bounce.

  13. Thickness Effect on Properties of Sprayed In2S3 Films for Photovoltaic Applications

    Science.gov (United States)

    Bouguila, N.; Kraini, M.; Halidou, I.; Lacaze, E.; Bouchriha, H.; Bouzouita, H.

    2016-01-01

    Indium sulfide (In2S3) films have been deposited on soda-lime glass substrates using a spray technique (CSP). Indium chloride and thiourea were used as precursors at a molar ratio of S:In = 2. The substrate temperature was fixed at 340°C. The effect of film thickness on the structural, morphological and optical properties of the as-deposited films has been studied. These films were characterized by x-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical absorption spectroscopy. As-prepared samples were polycrystalline with a cubic structure and (400) as preferential orientation. Their grain size increased from 35 nm to 41 nm with increasing thickness whereas the dislocation density and microstrain of the films decreased with the increase of thickness. Both SEM and AFM images showed that the films were homogenous with an increase of the surface roughness with the increase of thickness. The optical transmittance of the films decreased from 80% to 20% in the visible and infrared regions when the thickness was increased from 0.78 μm to 6.09 μm. The optical band gap E g was found to be in the range of 2.75-2.19 eV and showed a decrease with film thickness. Based on the measured optical constants (n and k), a Wemple-Didomenico model was used to determine the values of single oscillator energy ( E 0), dispersion energy ( E d), optical band gap ( E g) and high frequency dielectric constant ( \\varepsilon_{∞} ). In addition, these films exhibited n-type conductivity and were highly resistive. These results confirm that In2S3 thin films are a promising alternative as a buffer-layer material for CuInGa(S,Se)2-based solar cells.

  14. Sonic spray ionization technology: performance study and application to a LC/MS analysis on a monolithic silica column for heroin impurity profiling.

    Science.gov (United States)

    Dams, Riet; Benijts, Tom; Günther, Wolfgang; Lambert, Willy; De Leenheer, André

    2002-07-01

    Sonic spray (SS) ionization is a relatively novel atmospheric pressure ionization technique for LC/MS, based on the principle of "spray ionization", which only recently became commercially available. In this paper, we evaluate the performance of this ion source as an interface for LC/MS in comparison with the more traditional and better studied pneumatically assisted electrospray or ion spray (IS). The effect of organic modifiers, volatile acids, and buffer systems in the LC eluent on the ionization efficiency of both interfaces is described and some possible explanations for the observed phenomena are highlighted. We could conclude that the presence of organic solvents gradually increased the ionization efficiency for IS and SS, while volatile acids or buffers gave a significant signal suppression. Furthermore, we present the application of the sonic spray interface to a fast LC/MS analysis, for the simultaneous determination of the seven prime opium alkaloids in heroin impurity profiling. Chromatographic separation is performed in 5 min on a monolithic silica column (Chromolith Performance) with a gradient elution system and an optimized flow of 5 mL/min. By means of a postcolumn split of approximately 1/20, a coupling between the fast LC system and the mass spectrometer is made. The method is validated and successfully applied to the analysis of real-time seized heroin street samples.

  15. Toolkit for Monitoring and Evaluation of Indoor Residual Spraying for Visceral Leishmaniasis Control in the Indian Subcontinent: Application and Results

    Directory of Open Access Journals (Sweden)

    M. Mamun Huda

    2011-01-01

    Full Text Available Background. We field tested and validated a newly developed monitoring and evaluation (M&E toolkit for indoor residual spraying to be used by the supervisors at different levels of the national kala-azar elimination programs in Bangladesh, India and Nepal. Methods. Methods included document analysis, in-depth interviews, direct observation of spraying squads, and entomological-chemical assessments (bioassay, susceptibility test, chemical analysis of insecticide residues on sprayed surfaces, vector density measurements at baseline, and three follow-up surveys. Results. We found that the documentation at district offices was fairly complete; important shortcomings included insufficient training of spraying squads and supervisors, deficient spray equipment, poor spraying performance, lack of protective clothing, limited coverage of houses resulting in low bioavailability of the insecticide on sprayed surfaces, and reduced vector susceptibility to DDT in India, which limited the impact on vector densities. Conclusion. The M&E toolkit is a useful instrument for detecting constraints in IRS operations and to trigger timely response.

  16. Toolkit for Monitoring and Evaluation of Indoor Residual Spraying for Visceral Leishmaniasis Control in the Indian Subcontinent: Application and Results

    Science.gov (United States)

    Huda, M. Mamun; Mondal, Dinesh; Kumar, Vijay; Das, Pradeep; Sharma, S. N.; Das, Murari Lal; Roy, Lolita; Gurung, Chitra Kumar; Banjara, Megha Raj; Akhter, Shireen; Maheswary, Narayan Prosad; Kroeger, Axel; Chowdhury, Rajib

    2011-01-01

    Background. We field tested and validated a newly developed monitoring and evaluation (M&E) toolkit for indoor residual spraying to be used by the supervisors at different levels of the national kala-azar elimination programs in Bangladesh, India and Nepal. Methods. Methods included document analysis, in-depth interviews, direct observation of spraying squads, and entomological-chemical assessments (bioassay, susceptibility test, chemical analysis of insecticide residues on sprayed surfaces, vector density measurements at baseline, and three follow-up surveys). Results. We found that the documentation at district offices was fairly complete; important shortcomings included insufficient training of spraying squads and supervisors, deficient spray equipment, poor spraying performance, lack of protective clothing, limited coverage of houses resulting in low bioavailability of the insecticide on sprayed surfaces, and reduced vector susceptibility to DDT in India, which limited the impact on vector densities. Conclusion. The M&E toolkit is a useful instrument for detecting constraints in IRS operations and to trigger timely response. PMID:21811510

  17. Schemes of Repeater Optimizing Distribution based on the MLC Application and CBLRD Simulation

    Directory of Open Access Journals (Sweden)

    Qian Qiuye

    2013-07-01

    Full Text Available The widely use of repeaters raises concern about their coordination among the public. Since repeaters may suffer interaction and limitation bearing capacity, designing a reasonable repeaters coordination method is of great significance. This study address the problem if repeater coordination in a circular flat area with minimal number of repeaters with seamless coverage theory, system simulation method. With 1,000 users, this study model the coverage, getting the minimal number of repeaters of different coverage radius based on extensive used regular hexagon coverage theory. A numerical example was given in this case. When the number of users increases to 10,000, this study simulate to get the signal density across the area according to the consideration of repeaters and the different distribution of users, which are divided into uniform distribution, linear distribution, normal distribution and lognormal distribution. Then, Multi-Layer Coverage (MLC and Coverage by Link Rate Density (CBLRD are created as the distribution scheme on the area where repeat service demand is large. Moreover, for solution on the distribution of the repeaters with barriers, distribution schemes are given considering the transmission of VHF spectrums and the distribution of users around the barrier. Additionally, Spring Comfortable Degree (SCD is used for evaluation of the results and the developing tends are given to improve the model. Due to the reasonable assumption, the solution of repeater distribution is of pivotal reference value based on the reasonable results.

  18. Development of biofilters to treat the pesticides wastes from spraying applications.

    Science.gov (United States)

    Pigeon, O; de Vleeschouwer, C; Cors, F; Weickmans, B; de Ryckel, B; Pussemier, L; Debongnie, Ph; Culot, M

    2005-01-01

    Several studies carried out in Europe showed the importance of direct losses to the contamination of surface water by pesticides. These pesticides losses can occur at the farm site when the sprayer equipment is filled with the pesticide formulation (spills, overflowing, leaking) and during the clean-up (rinsing) of the sprayer after the treatment. In Belgium studies are carried out on biofilters to treat in an efficient way effluents containing pesticides. The biofilter substrate is elaborated from a homogenised mixture of local soil, chopped straw and peat or composted material, able to absorb or degrade the active substances. Biofilters consist in systems of 2 or 3 units depending on the spray equipment of the farmer and on the configuration of the farmyard. Each unit is made from a 1 m3 plastic container and the different units are stacked in a vertical pile and connected between them using plastic valves and pipes. Eight pilot systems were installed in March 2002 in seven farms and in one agricultural school, all selected in the loamy region of Belgium specialised in arable crops such as cereals, sugar beets and vegetables. The efficacy (yield) of the systems was determined by measuring the balance of the inputs and outputs of the pesticides. Results were expressed in percent of pesticide retained on the biofilters. The results obtained after two years with 5 tracer pesticides (atrazine, carbofuran, diuron, lenacil and simazine) brought on the biofilter installations are very satisfactory since the percentage of retention is generally higher than 95% of the amount applied. In the beginning of 2004, ten new pilot biofilters were installed in several farms or agricultural technical centres (producing cereals, sugar beets, potatoes, vegetables, fruits or ornamental plants), and in a municipal maintenance service. Some biofilters were installed in duplicate in order to compare the efficacy of different substrates. The efficacy of the biofilters was studied for the

  19. Monitoring structural dynamics of in situ spray-deposited zinc oxide films for application in dye-sensitized solar cells.

    Science.gov (United States)

    Sarkar, Kuhu; Braden, Erik V; Pogorzalek, Stefan; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter

    2014-08-01

    The spray-deposition technique is an effective and scalable method to deposit zinc oxide nanostructures, which are used as active layers for dye-sensitized solar cells (DSSCs) in the present study. The dynamics of structural evolution are studied with grazing incidence small-angle X-ray scattering during in situ spraying. Nanostructured films obtained through multiple spray shots provide suitable structural length scales, morphologies, and film thicknesses; this leads to reasonable performance in a DSSC with the highest short-circuit current density reported so far.

  20. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms.

    Science.gov (United States)

    Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir

    2016-10-01

    Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.

  1. High-Temperature Erosion Resistance of FeBSiNb Amorphous Coatings Deposited by Arc Spraying for Boiler Applications

    Science.gov (United States)

    Cheng, J. B.; Liang, X. B.; Chen, Y. X.; Wang, Z. H.; Xu, B. S.

    2013-06-01

    Erosive high-temperature wear in boilers is one of the main causes of downtime and one of the principal engineering problems in these installations. This article discusses the use of FeBSiNb amorphous coatings synthesized by arc spraying to improve elevated-temperature erosion resistance for boiler applications. The influence of test temperature, velocity, and impact angle on material wastage was revealed using air solid particle erosion rig. The experimental results showed that moderate degradation of the coating was predominant at lower impact velocity and impact angles, while severe damage arose for higher velocities and impact angles. The erosion behavior of the coating was sensitive to test temperature. The erosion rates of the coating decreased as a function of environment temperature. The relationship between microstructure and erosion resistance of the coating was also analyzed in details. The FeBSiNb coating had excellent elevated-temperature erosion resistance at temperatures at least up to 600 °C during service.

  2. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.

    2016-05-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.

  3. Microstructure and property development in spray formed and extruded Al-Mg-Li-Zr alloys for aerospace and autosport applications

    Energy Technology Data Exchange (ETDEWEB)

    Mi, J.; Grant, P.S. [Department of Materials, Oxford University (United Kingdom); Nilsen, K.E.; Liotti, E. [BOAL UK Ltd. Loughborough (United Kingdom); Hogg, S.C.

    2010-07-15

    Low density Al-4Mg-1.3Li-0.4Zr and Al-6Mg-1.6Li-0.4Zr alloys were spray formed and the billets extruded under a range of conditions. The alloy compositions were selected to provide an attractive balance of tensile strength and elongation, without relying on complex post-processing and heat treatments - and are therefore suitable for complex cross section extrusions and free from quench distortion. The as-spray formed microstructures showed fine homogeneous, equiaxed grains with an average size of 10-15 {mu}m. Firstly, a laboratory scale extrusion was carried out to extrude 30 mm diameter billets into 7.5 mm diameter cross-section and to investigate the effects of temperature and ram speeds on microstructural development. The microstructure after extrusion at 400 C was partially dynamically recrystallised with a {proportional_to}0.5 area fraction of {proportional_to}1 {mu}m grains and the remainder were unrecrystallised elongated grains. Electron backscatter diffraction showed a mixed <111> + <100> double fibre texture. After peak age hardening at 150 C for 96 h, the Al-6Mg-1.6Li-0.4Zr alloy showed a 0.2% proof strength of 495 MPa, a tensile strength of 553 MPa and elongation to failure of 8.5%; Al-4Mg-1.3Li-0.4Zr showed a 0.2% proof strength of 392 MPa, a tensile strength of 476 MPa and an elongation of 10%. Subsequently, large-scale complex cross-section were extruded at {proportional_to}400 C. Due to the complexity of the cross-sections and the non-axisymetric deformation, the fibre texture was distorted to FCC rolled Copper and Brass orientations. After a dual-step age hardening treatment of 130 C for 8h followed by 160 C for 8h, the proof strength, ultimate strength and elongations were 340 MPa, 470 MPa and 16% respectively. The combination of relatively simple process steps, high strength and ductility/formability, and low distortion in complex sections demonstrated the strong potential for these low density alloys in aerospace and autosport applications

  4. Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

    Directory of Open Access Journals (Sweden)

    Do-Gu Kang

    2016-01-01

    Full Text Available A low-profile repeater antenna with parasitic elements for on-on-off WBAN applications is proposed. The proposed antenna consists of a planar inverted-F antenna (PIFA, two parasitic elements, and a ground plane with a slot. Due to the slot, the impedance matching of the resonance formed by the PIFA is improved, which makes the proposed antenna operate in the 5.8 GHz industrial, scientific, and medical (ISM band. To cover the 5.2 GHz wireless local area network (WLAN band, a dual resonance characteristic is realized by the slot and the two parasitic elements. The first coupling between the PIFA and the slot not only makes the slot operate as a resonator, but also forms secondary coupling between the slot and the two parasitic elements. The two parasitic elements operate as an additional resonator due to secondary coupling. The antenna has the enhanced near surface radiation in the 5.8 GHz ISM band due to addition of the slot and radiation toward off-body direction in the 5.2 GHz WLAN band. In order to evaluate antenna performance considering the human body effect, the antenna characteristics on a human equivalent phantom are analyzed.

  5. Repeated open application test with methyldibromo glutaronitrile, a multicentre study within the EECDRG.

    Science.gov (United States)

    Gruvberger, B; Andersen, K E; Brandão, F M; Bruynzeel, D P; Bruze, M; Frosch, P J; Goossens, A; Lahti, A; Maibach, H I; Menné, T; Orton, D; Seidenari, S

    2005-01-01

    Contact allergy to and allergic contact dermatitis from methyldibromo glutaronitrile (MDBGN) have frequently been reported. This study was initiated to help determine the optimal patch test preparation for MDBGN. In 51 patients with a doubtful or a positive patch test reaction to at least 1 of 4 test preparations with MDBGN in petrolatum at 1.0% w/w, 0.5%, 0.3% and 0.1%, a repeated open application test (ROAT) with moisturizers with and without MDBGN at 0.03% w/w was performed on the upper arms for 2 weeks. 18 of the 51 (35.3%) patients developed a positive ROAT. In all patients, there was a positive ROAT only to the moisturizer with MDBGN (P < 0.001). A statistically significant association was also found between the patch test reactivity (PTRL) and the outcome of the ROAT (P < 0.001). If only considering those with a PTRL above 0.3%, thus with negative or doubtful test reactions to 0.1% and 0.3%, there were still statistically significantly more patients with a positive ROAT to the moisturizer with MDBGN than to the moisturizer without MDBGN. The study demonstrates that patch testing with MDBGN at 0.3% and 0.1% will miss clinically relevant patch test reactions to MDBGN.

  6. Analyzing repeated measures semi-continuous data, with application to an alcohol dependence study.

    Science.gov (United States)

    Liu, Lei; Strawderman, Robert L; Johnson, Bankole A; O'Quigley, John M

    2016-02-01

    Two-part random effects models (Olsen and Schafer,(1) Tooze et al.(2)) have been applied to repeated measures of semi-continuous data, characterized by a mixture of a substantial proportion of zero values and a skewed distribution of positive values. In the original formulation of this model, the natural logarithm of the positive values is assumed to follow a normal distribution with a constant variance parameter. In this article, we review and consider three extensions of this model, allowing the positive values to follow (a) a generalized gamma distribution, (b) a log-skew-normal distribution, and (c) a normal distribution after the Box-Cox transformation. We allow for the possibility of heteroscedasticity. Maximum likelihood estimation is shown to be conveniently implemented in SAS Proc NLMIXED. The performance of the methods is compared through applications to daily drinking records in a secondary data analysis from a randomized controlled trial of topiramate for alcohol dependence treatment. We find that all three models provide a significantly better fit than the log-normal model, and there exists strong evidence for heteroscedasticity. We also compare the three models by the likelihood ratio tests for non-nested hypotheses (Vuong(3)). The results suggest that the generalized gamma distribution provides the best fit, though no statistically significant differences are found in pairwise model comparisons.

  7. Repeated annual paper mill and alkaline residuals application affects soil metal fractions.

    Science.gov (United States)

    Gagnon, Bernard; Robichaud, Annie; Ziadi, Noura; Karam, Antoine

    2014-03-01

    The application of industrial residuals in agriculture may raise concerns about soil and crop metal accumulation. A complete study using a fractionation scheme would reveal build-up in metal pools occurring after material addition and predict the transformation of metals in soil between the different forms and potential metal release into the environment. An experimental study was conducted from 2000 to 2008 on a loamy soil at Yamachiche, Quebec, Canada, to evaluate the effects of repeated annual addition of combined paper mill biosolids when applied alone or with several liming by-products on soil Cu, Zn, and Cd fractions. Wet paper mill biosolids at 0, 30, 60, or 90 Mg ha and calcitic lime, lime mud, or wood ash, each at 3 Mg ha with 30 Mg paper mill biosolids ha, were surface applied after seeding. The soils were sampled after 6 (soybean [ (L.) Merr.]) and 9 [corn ( L.)] crop years and analyzed using the Tessier fractionation procedure. Results indicated that biosolids addition increased exchangeable Zn and Cd, carbonate-bound Cd, Fe-Mn oxide-bound Zn and Cd, organically bound Cu and Zn, and total Zn and Cd fractions but decreased Fe-Mn oxide-bound Cu in the uppermost 30-cm layer. With liming by-products, there was a shift from exchangeable to carbonate-bound forms. Even with very small metals addition, paper mill and liming materials increased the mobility of soil Zn and Cd after 9 yr of application, and this metal redistribution resulted into higher crop grain concentrations.

  8. The repeated homogeneous balance method and its applications to nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiqiang [Department of Mathematics, Ocean University of China, Qingdao Shandong 266071 (China)] e-mail: zhaodss@yahoo.com.cn; Wang Limin [Shandong University of Technology, Zibo Shandong 255049 (China); Sun Weijun [Shandong University of Technology, Zibo Shandong 255049 (China)

    2006-04-01

    In this letter, a new method, called the repeated homogeneous balance method, is proposed for seeking the traveling wave solutions of nonlinear partial differential equations. The Burgers-KdV equation is chosen to illustrate our method. It has been confirmed that more traveling wave solutions of nonlinear partial differential equations can be effectively obtained by using the repeated homogeneous balance method.

  9. Tissue deposition of the insect repellent DEET and the sunscreen oxybenzone from repeated topical skin applications in rats.

    Science.gov (United States)

    Fediuk, Daryl J; Wang, Tao; Raizman, Joshua E; Parkinson, Fiona E; Gu, Xiaochen

    2010-12-01

    Insect repellent N,N-diethyl-m-toluamide (DEET) and sunscreen oxybenzone are capable of enhancing skin permeation of each other when applied simultaneously. We carried out a cellular study in rat astrocytes and neurons to assess cell toxicity of DEET and oxybenzone and a 30-day study in Sprague-Dawley rats to characterize skin permeation and tissue disposition of the compounds. Cellular toxicity occurred at 1 µg/mL for neurons and 7-day treatment for astrocytes and neurons. DEET and oxybenzone permeated across the skin to accumulate in blood, liver, and brain after repeated topical applications. DEET disappeared from the application site faster than oxybenzone. Combined application enhanced the disposition of DEET in liver. No overt sign of behavioral toxicity was observed from several behavioral testing protocols. It was concluded that despite measurable disposition of the study compounds in vivo, there was no evidence of neurotoxicological deficits from repeated topical applications of DEET, oxybenzone, or both.

  10. Properties of dry film lubricants prepared by spray application of aqueous starch-oil composites

    Science.gov (United States)

    Aqueous dispersions of starch-soybean oil (SBO) and starch-jojoba oil (JO) composites, prepared by excess steam jet cooking, form effective dry film lubricants when applied as thick coatings to metal surfaces by doctor blade. This application method necessitates long drying times, is wasteful, requ...

  11. Coating Properties of WC-Ni Cold Spray Coating for the Application in Secondary Piping System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JeongWon; Kim, Seunghyun; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    As a result of FAC(flow accelerated corrosion), severe accidents, failure of carbon steel like a Mihama Unit-3 occurred. Chemical composition change of carbon steel or coating to inner surface is one of methods to improve corrosion properties. Among them, thermal spray coating is convenient solution to apply at industry. Powder is melted at blast furnace and ejected to substrate. After adhesion, substrate and coating layer is cooled down and coated layer protects steel from corrosion finally. However high thermal energy is transferred to substrate and coating layer so it leads high thermal residual stress in coating procedure. Besides, high temperature for melting powder makes unexpected chemical reaction of powder like an oxidation or carburization. Whereas, cold spray uses low temperature comparing with other thermal spray. Thermal energy is used for not melting powder but high kinetic energy of powder and plastic deformation during collision. Therefore, fuel such as oxygen-acetylene gas is not needed. It needs carrier gas, compressed air, nitrogen or helium, to increase kinetic energy of powder and move powder to substrate. Comparing cold spray with high velocity oxy fuel (HVOF), one of thermal spray, cold spray coating layer contains only WC and Co. One of other problem about WC is brittleness during coating. To improve deformability of WC, binder metal is added. For example, Co, Cr, Ni, Cu, Al, Fe or etc. Additionally, binder metal lowering melting temperature of composite powder increases coating properties. Among them, Co which is widely used as binder metal maintains mechanical properties like a hardness and improves corrosion properties. Therefore Co is not suitable for binder metal of WC coating. In contrast, Ni has better corrosion resistance to alkaline environment and makes lower melting temperature. Moreover, in a view of cold spray, FCC structure has better deformability than BCC or HCP, and BCC has lowest deformability. WC is BCC structure so it

  12. Study of air entrainment in high pressure spray: optics diagnostics and application to the Diesel injection; Etude de l'entrainement d'air dans un spray haute pression: diagnostics optiques et application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Arbeau, A.

    2004-12-15

    The actual development of the engine must reply to a will of fuel consumption reduction and to norms more and more strict concerning the pollutant emissions. Although the Diesel engines are efficient, the NO{sub x} and particle emissions mainly come from the existence of wealthy fuel zone preventing an optimal combustion. Therefore, the air / fuel mixing preparation, highly controlled by the air entrainment in spray, is essential. In this context, we have developed metrological tools in order to analyse the air entrainment mechanism in a dense spray. The Particle Image Velocimetry (PIV) technique is first applied to a conical spray with an injection pressure less than 100 bars to study the air entrainment in spray. A transfer of the methodologies allows then the characterisation and the understanding of the air entrainment mechanism in high pressure full spray (injection pressure less than 1600 bars) type Diesel one. The influence of injection parameters (injection pressure and back pressure) on the mixing rate is studied. The increase of the injection pressure from 800 to 1600 bars implies an increase of the mixing rate of 60 %. Moreover, the thermodynamic conditions of the ambient air, simulated by the chamber back pressure, widely favours the mixing rate. Actually, this latter increases of 350 % when the chamber back pressure varies from 1 to 7 bars. The experimental results do not follow classical laws of air entrainment in one-phase flow jet with variable density, but are in good agreement with an integral model for air entrainment in an axisymmetric full spray. Finally, the Fluorescence Particle Image Velocimetry (FPIV) is introduced in order to extend the PIV application field in dense two-phase flows. (author)

  13. Persistence of the herbicide butachlor in soil after repeated applications and its effects on soil microbial functional diversity.

    Science.gov (United States)

    Fang, Hua; Yu, Yun L; Wang, Xiu G; Chu, Xiao Q; Yang, Xiao E

    2009-02-01

    Effects of repeated applications of the herbicide butachlor (N-(butoxymethyl)-2-chloro -N-2',6'-dimethyl acetanilide) in soil on its persistence and soil microbial functional diversity were investigated under laboratory conditions. The degradation half-lives of butachlor at the recommended dosage in soil were calculated to be 12.5, 4.5, and 3.2 days for the first, second, and third applications, respectively. Throughout this study, no significant inhibition of the Shannon-Wiener index H' was observed. However, the Simpson index 1/D and McIntosh index U were significantly reduced (P butachlor, and thereafter gradually recovered to a similar level to that of the control soil. A similar variation but faster recovery in 1/D and U was observed after the second and third Butachlor applications. Therefore, repeated applications of butachlor led to more rapid degradation of the herbicide, and more rapid recovery of soil microorganisms. It is concluded that repeated butachlor applications in soil had a temporary or short-term inhibitory effect on soil microbial communities.

  14. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Denoeud France

    2001-03-01

    Full Text Available Abstract Background Some pathogenic bacteria are genetically very homogeneous, making strain discrimination difficult. In the last few years, tandem repeats have been increasingly recognized as markers of choice for genotyping a number of pathogens. The rapid evolution of these structures appears to contribute to the phenotypic flexibility of pathogens. The availability of whole-genome sequences has opened the way to the systematic evaluation of tandem repeats diversity and application to epidemiological studies. Results This report presents a database (http://minisatellites.u-psud.fr of tandem repeats from publicly available bacterial genomes which facilitates the identification and selection of tandem repeats. We illustrate the use of this database by the characterization of minisatellites from two important human pathogens, Yersinia pestis and Bacillus anthracis. In order to avoid simple sequence contingency loci which may be of limited value as epidemiological markers, and to provide genotyping tools amenable to ordinary agarose gel electrophoresis, only tandem repeats with repeat units at least 9 bp long were evaluated. Yersinia pestis contains 64 such minisatellites in which the unit is repeated at least 7 times. An additional collection of 12 loci with at least 6 units, and a high internal conservation were also evaluated. Forty-nine are polymorphic among five Yersinia strains (twenty-five among three Y. pestis strains. Bacillus anthracis contains 30 comparable structures in which the unit is repeated at least 10 times. Half of these tandem repeats show polymorphism among the strains tested. Conclusions Analysis of the currently available bacterial genome sequences classifies Bacillus anthracis and Yersinia pestis as having an average (approximately 30 per Mb density of tandem repeat arrays longer than 100 bp when compared to the other bacterial genomes analysed to date. In both cases, testing a fraction of these sequences for

  15. Atypical presentations of methemoglobinemia from benzocaine spray.

    Science.gov (United States)

    Tantisattamo, Ekamol; Suwantarat, Nuntra; Vierra, Joseph R; Evans, Samuel J

    2011-06-01

    Widely used for local anesthesia, especially prior to endoscopic procedures, benzocaine spray is one of the most common causes of iatrogenic methemoglobinemia. The authors report an atypical case of methemoglobinemia in a woman presenting with pale skin and severe hypoxemia, after a delayed repeat exposure to benzocaine spray. Early recognition and prompt management of methemoglobinemia is needed in order to lessen morbidity and mortality from this entity.

  16. Carbon nanotubes film preparation on 3D structured silicon substrates by spray coating technique for application in solar cells

    Science.gov (United States)

    Xiang, Y.; Li, M.; Lin, C.; Liu, P.; Zhang, J.

    2014-11-01

    This paper firstly reports the preparation of carbon nanotubes (CNTs) film on silicon substrate of three-dimensional (3D) inverted pyramid structure (IPS) by spray coating. The effect of different substrate temperatures, spraying times and opening sizes on CNTs sidewall covering properties were investigated. The results show that the CNTs covering ratio of sidewall is much lower than that of flat surface and gradually decrease with depth. 40μm×40μm opening obtained the best sidewall covering by CNTs suspension of 40μg/ml at 120°C after 30min spraying so that the CNTs can reach the bottom of IPS and cover about 68.9% sidewall area. At last, it is demonstrated that the output power of the CNTs film-Si solar cell can be enhanced 5.7 times by this method compared to that of the plane structure.

  17. Application of Rapid Prototyping and Wire Arc Spray to the Fabrication of Injection Mold Tools (MSFC Center Director's Discretionary Fund)

    Science.gov (United States)

    Cooper, K. G.

    2000-01-01

    Rapid prototyping (RP) is a layer-by-layer-based additive manufacturing process for constructing three-dimensional representations of a computer design from a wax, plastic, or similar material. Wire arc spray (WAS) is a metal spray forming technique, which deposits thin layers of metal onto a substrate or pattern. Marshall Space Flight Center currently has both capabilities in-house, and this project proposed merging the two processes into an innovative manufacturing technique, in which intermediate injection molding tool halves were to be fabricated with RP and WAS metal forming.

  18. The Properties of Sprayed Nanostructured P-Type CuI Films for Dye-Sensitized Solar Cells Application

    OpenAIRE

    2012-01-01

    In our experiments, we provide a new approach for depositing CuI (inorganic compound) thin films using the mister atomizer technique. The CuI solution was sprayed into fine droplets using argon as a carrier gas at different solution concentrations. The solution sprayed was 50 ml for all samples with substrate temperature constant at 50°C during the deposition process. The result shows that the CuI thin film properties strongly depend on its precursor concentration. The structural properties w...

  19. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2017-02-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.

  20. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2016-05-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.

  1. Risk estimation of bystander and residential exposure from orchard spraying based on measured spray drift data. International Advances in Pesticide Application

    NARCIS (Netherlands)

    Zande, van de J.C.; Wenneker, M.; Michielsen, J.M.G.P.

    2010-01-01

    In Dutch municipalities there is a discussion on the safe distance between houses and agricultural activities, especially the application of plant protection products (PPP) in fruit orchards. At this moment a generic safety distance or buffer zone of 50 m is taken into account. Based on general drif

  2. Risk estimation of bystander and residential exposure from orchard spraying based on measured spray drift data. International Advances in Pesticide Application

    NARCIS (Netherlands)

    Zande, van de J.C.; Wenneker, M.; Michielsen, J.M.G.P.

    2010-01-01

    In Dutch municipalities there is a discussion on the safe distance between houses and agricultural activities, especially the application of plant protection products (PPP) in fruit orchards. At this moment a generic safety distance or buffer zone of 50 m is taken into account. Based on general

  3. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping

    Directory of Open Access Journals (Sweden)

    Harvey Steven P

    2007-03-01

    Full Text Available Abstract Background The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. Results B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation to that of the most diverse tandemly repeated regions found in other less diverse bacteria. Conclusion The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were

  4. CuS p- type thin film characterization deposited on Ti, ITO and glass substrates using spray pyrolysis deposition (SPD) for light emitting diode (LED) application

    Science.gov (United States)

    Sabah, Fayroz A.; Ahmed, Naser M.; Hassan, Z.; Rasheed, Hiba S.; Azzez, Shrook A.; Al-Hazim, Nabeel Z.

    2016-07-01

    The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl2.2H2O as a source of Cu2+ and sodium thiosulfate Na2S2O3.5H2O as a source of and S2-. Two concentrations (0.2 and 0.4 M) were used for each CuCl2 and Na2S2O3 to be prepared and then sprayed (20 ml). The process was started by spraying the solution for 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu2S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.

  5. CuS p-type thin film characterization deposited on Ti, ITO and glass substrates using spray pyrolysis deposition (SPD) for light emitting diode (LED) application

    Energy Technology Data Exchange (ETDEWEB)

    Sabah, Fayroz A., E-mail: fayroz-arif@yahoo.com [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Electrical Engineering, College of Engineering, Al-Mustansiriya University, Baghdad (Iraq); Ahmed, Naser M., E-mail: naser@usm.my; Hassan, Z., E-mail: zai@usm.my; Azzez, Shrook A. [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Rasheed, Hiba S., E-mail: hibasaad1980@yahoo.com [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Physics, College of Education, Al-Mustansiriya University, Baghdad (Iraq); Al-Hazim, Nabeel Z., E-mail: nabeelnano333@gmail.com [Institue of Nano-Optoelectronics Research and Technology (INOR), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ministry of Education, the General Directorate for Educational Anbar (Iraq)

    2016-07-06

    The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl{sub 2}.2H{sub 2}O as a source of Cu{sup 2+} and sodium thiosulfate Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as a source of and S{sup 2−}. Two concentrations (0.2 and 0.4 M) were used for each CuCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3} to be prepared and then sprayed (20 ml). The process was started by spraying the solution for 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu{sub 2}S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.

  6. Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.

    Science.gov (United States)

    Stengl, V; Ageorges, H; Ctibor, P; Murafa, N

    2009-05-01

    The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.

  7. PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries.

    Science.gov (United States)

    Seidel, S M; Jeschke, S; Vettikuzha, P; Wiemhöfer, H-D

    2015-08-04

    Improved hybrid polymer electrolyte membranes are introduced based on ether-modified polysiloxanes and poly(vinylidene fluoride-co-hexafluoropropylene) yielding a safe separator membrane, which is able to be sprayed directly onto lithium ion battery active materials, with an active role for enhanced ion transport.

  8. Repeatability in computer-aided diagnosis: application to breast cancer diagnosis on sonography.

    Science.gov (United States)

    Drukker, Karen; Pesce, Lorenzo; Giger, Maryellen

    2010-06-01

    The aim of this study was to investigate the concept of repeatability in a case-based performance evaluation of two classifiers commonly used in computer-aided diagnosis in the task of distinguishing benign from malignant lesions. The authors performed .632+ bootstrap analyses using a data set of 1251 sonographic lesions of which 212 were malignant. Several analyses were performed investigating the impact of sample size and number of bootstrap iterations. The classifiers investigated were a Bayesian neural net (BNN) with five hidden units and linear discriminant analysis (LDA). Both used the same four input lesion features. While the authors did evaluate classifier performance using receiver operating characteristic (ROC) analysis, the main focus was to investigate case-based performance based on the classifier output for individual cases, i.e., the classifier outputs for each test case measured over the bootstrap iterations. In this case-based analysis, the authors examined the classifier output variability and linked it to the concept of repeatability. Repeatability was assessed on the level of individual cases, overall for all cases in the data set, and regarding its dependence on the case-based classifier output. The impact of repeatability was studied when aiming to operate at a constant sensitivity or specificity and when aiming to operate at a constant threshold value for the classifier output. The BNN slightly outperformed the LDA with an area under the ROC curve of 0.88 versus 0.85 (p 90%) and low specificity (clinical decision making.

  9. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Wang, Liang [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Chen, Yuan, E-mail: chenyuan@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore)

    2015-04-15

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10{sup 4} S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m{sup 2}/g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications.

  10. Quantitative patch and repeated open application testing in methyldibromo glutaronitrile-sensitive patients.

    Science.gov (United States)

    Schnuch, A; Kelterer, D; Bauer, A; Schuster, Ch; Aberer, W; Mahler, V; Katzer, K; Rakoski, J; Jappe, U; Krautheim, A; Bircher, A; Koch, P; Worm, M; Löffler, H; Hillen, U; Frosch, P J; Uter, W

    2005-04-01

    Contact allergy to methyldibromo glutaronitrile (MDBGN), often combined with phenoxyethanol (PE) (e.g., Euxyl K 400), increased throughout the 1990s in Europe. Consequently, in 2003, the European Commission banned its use in leave-on products, where its use concentration was considered too high and the non-sensitizing use concentration as yet unknown. The 2 objectives of the study are (a) to find a maximum non-eliciting concentration in a leave-on product in MDBGN/PE-sensitized patients, which could possibly also be considered safe regarding induction and (b) to find the best patch test concentration for MDBGN. We, therefore, performed a use-related test (ROAT) in patients sensitized to MDBGN/PE (n = 39) with 3 concentrations of MDBGN/PE (50, 100 and 250 p.p.m. MDBGN, respectively). A subset of these patients (n = 24) was later patch-tested with various concentrations (0.1, 0.2, 0.3 and 0.5% MDBGN, respectively). 15 patients (38%, 95% confidence interval (CI) = 23-55%) had a negative and 24 (62%; 95% CI = 45-77%) a positive overall repeated open application test (ROAT) result. 13 reacted to the lowest (50 p.p.m.), 8 to the middle (100 p.p.m.) and 3 to the highest concentration (250 p.p.m.) only. In those 13 reacting to the lowest ROAT concentration, dermatitis developed within a few days (1-7). The strength of the initial and the confirmatory patch test result, respectively, and the outcome of the ROAT were positively associated. Of the 24 patients with a use and confirmatory patch test, 15 reacted to 0.1% MDBGN, 16 to 0.2%, 17 to 0.3% and 22 to 0.5%. With the patch test concentration of 0.5%, the number of ROAT-negative patients but patch-test-positive patients increases considerably, particularly due to + reactions. A maximum sensitivity of 94% (95% CI = 70-100%) is reached with a patch test concentration of 0.2%, and is not further improved by increasing the concentration. However, the specificity decreases dramatically from 88 (95% CI = 47-100%) with 0.2% to a

  11. The 2016 Thermal Spray Roadmap

    Science.gov (United States)

    Vardelle, Armelle; Moreau, Christian; Akedo, Jun; Ashrafizadeh, Hossein; Berndt, Christopher C.; Berghaus, Jörg Oberste; Boulos, Maher; Brogan, Jeffrey; Bourtsalas, Athanasios C.; Dolatabadi, Ali; Dorfman, Mitchell; Eden, Timothy J.; Fauchais, Pierre; Fisher, Gary; Gaertner, Frank; Gindrat, Malko; Henne, Rudolf; Hyland, Margaret; Irissou, Eric; Jordan, Eric H.; Khor, Khiam Aik; Killinger, Andreas; Lau, Yuk-Chiu; Li, Chang-Jiu; Li, Li; Longtin, Jon; Markocsan, Nicolaie; Masset, Patrick J.; Matejicek, Jiri; Mauer, Georg; McDonald, André; Mostaghimi, Javad; Sampath, Sanjay; Schiller, Günter; Shinoda, Kentaro; Smith, Mark F.; Syed, Asif Ansar; Themelis, Nickolas J.; Toma, Filofteia-Laura; Trelles, Juan Pablo; Vassen, Robert; Vuoristo, Petri

    2016-12-01

    Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications.

  12. Repeatability in computer-aided diagnosis: Application to breast cancer diagnosis on sonography.

    Science.gov (United States)

    Drukker, Karen; Pesce, Lorenzo; Giger, Maryellen

    2010-06-01

    The aim of this study was to investigate the concept of repeatability in a case-based performance evaluation of two classifiers commonly used in computer-aided diagnosis in the task of distinguishing benign from malignant lesions. The authors performed .632+ bootstrap analyses using a data set of 1251 sonographic lesions of which 212 were malignant. Several analyses were performed investigating the impact of sample size and number of bootstrap iterations. The classifiers investigated were a Bayesian neural net (BNN) with five hidden units and linear discriminant analysis (LDA). Both used the same four input lesion features. While the authors did evaluate classifier performance using receiver operating characteristic (ROC) analysis, the main focus was to investigate case-based performance based on the classifier output for individual cases, i.e., the classifier outputs for each test case measured over the bootstrap iterations. In this case-based analysis, the authors examined the classifier output variability and linked it to the concept of repeatability. Repeatability was assessed on the level of individual cases, overall for all cases in the data set, and regarding its dependence on the case-based classifier output. The impact of repeatability was studied when aiming to operate at a constant sensitivity or specificity and when aiming to operate at a constant threshold value for the classifier output. The BNN slightly outperformed the LDA with an area under the ROC curve of 0.88 versus 0.85 (p90%) and low specificity (clinical decision making. © 2010 American Association of Physicists in Medicine.

  13. Semiparametric Methods to Contrast Gap Time Survival Functions: Application to Repeat Kidney Transplantation

    OpenAIRE

    Shu, Xu; Schaubel, Douglas E.

    2015-01-01

    Times between successive events (i.e., gap times) are of great importance in survival analysis. Although many methods exist for estimating covariate effects on gap times, very few existing methods allow for comparisons between gap times themselves. Motivated by the comparison of primary and repeat transplantation, our interest is specifically in contrasting the gap time survival functions and their integration (restricted mean gap time). Two major challenges in gap time analysis are non-ident...

  14. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    Science.gov (United States)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  15. Repeated applications of cold atmospheric pressure plasma does not induce resistance in Staphylococcus aureus embedded in biofilms

    Directory of Open Access Journals (Sweden)

    Matthes, Rutger

    2014-09-01

    Full Text Available [english] Introduction: The increasing microbial resistance against antibiotics complicates the therapy of bacterial infections. Therefore new therapeutic options, particularly those causing no resistance, are of high interest. Cold atmospheric plasma is one possible option to eradicate multidrug resistant microorganisms, and so far no resistance development against physical plasma is known.Method: We tested 6-fold repeated plasma applications on a strain embedded in biofilm and compared the reduction of the colony forming units between the different treatment periods to asses a possible development of resistance.Result: For all treatment periods, the control biofilms were reduced by plasma in average by 1.7 log CFU, and decreased from 7.6 to 5.8 log (CFU/cm within 5 hours. The results demonstrated that repeated plasma doses not induce resistance or habituation against plasma applied within short time periods.Conclusion: The repeated application of cold plasma is a promising option for the treatment of infected wounds without the risk of development of resistance against plasma.

  16. Development of Erosion-Corrosion-Resistant Cold-Spray Nanostructured Ni-20Cr Coating for Coal-Fired Boiler Applications

    Science.gov (United States)

    Kumar, M.; Singh, H.; Singh, N.; Chavan, N. M.; Kumar, S.; Joshi, S. V.

    2015-12-01

    The erosion-corrosion (E-C) behavior of a cold-spray nanostructured Ni-20Cr coating was studied under cyclic conditions in a coal-fired boiler. This study was done for 15 cycles (1500 h), in which each cycle comprised 100 h of heating in the boiler environment, followed by 1 h of cooling under ambient air conditions. The E-C extent was evaluated in terms of thickness loss data of the samples. The eroded-corroded samples were characterized using XRD, SEM/EDS, and x-ray mapping analyses. The nanostructured coating offered excellent E-C protection to boiler tube material (SA 516 steel) under harsh live conditions of the boiler. This E-C resistance offered by investigated coating may be attributed to the presence of protective NiO and Cr2O3 phases in its oxide scale and its superior as-sprayed microhardness.

  17. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    Science.gov (United States)

    Doisneau, François; Arienti, Marco; Oefelein, Joseph C.

    2017-01-01

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier-Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  18. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    Energy Technology Data Exchange (ETDEWEB)

    Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov

    2017-01-15

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  19. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kenanakis, G., E-mail: gkenanak@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Katsarakis, N. [Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece)

    2014-12-15

    Highlights: • Al–ZnO thin films and nanostructures were obtained by ultrasonic spray pyrolysis. • The texture and morphology of the samples depend on the deposition parameters. • The photocatalytic degradation of stearic acid was studied upon UV-A irradiation. - Abstract: Pure and Al-doped ZnO (Al = 1, 3, 5%) nanostructured thin films were grown at 400 °C on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method, using aqueous solutions as precursors. The structural and morphological characteristics of the samples depend drastically on deposition parameters; ZnO nanostructured films, nanopetals and nanorods were systematically obtained by simply varying the precursor solution and/or the spraying time. Transmittance measurements have shown that all samples are transparent in the visible wavelength region. Finally, the photocatalytic properties of the samples were investigated against the degradation of stearic acid under UV-A light illumination (365 nm); both pure and Al-doped ZnO nanostructured thin films show good photocatalytic activity regarding the degradation of stearic acid, due to their good crystallinity and large surface area.

  20. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  1. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

    Institute of Scientific and Technical Information of China (English)

    Dipak Kumar; KN Pandey; Dipak Kumar Das

    2016-01-01

    In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of theγ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cy-clic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

  2. Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application

    Science.gov (United States)

    Kumar, Dipak; Pandey, K. N.; Das, Dipak Kumar

    2016-08-01

    In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying (APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited CoNiCrAlY bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ'-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in CoNiCrAlY bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.

  3. Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs.

    Science.gov (United States)

    Niwa, Toshiyuki; Shimabara, Hiroko; Danjo, Kazumi

    2010-02-01

    Spray freeze-drying (SFD) technique using four-fluid nozzle (4N), which is a novel particle design technique previously developed by authors, has been further developed to expand its application in pharmaceutical industry. The organic solvent was utilized as a spray solvent to dissolve the poorly soluble drug instead of conventional aqueous solution. Acetonitrile solution of the drug and aqueous solution of the polymeric carrier were separately and simultaneously atomized through 4N, and collided each other at the tip of nozzle edge. The spray mists were immediately frozen in the liquid nitrogen to form a suspension. Then, the iced droplets were freeze-dried to prepare the composite particles of the drug and carrier according to our proprietary method developed before. The resultant composite particles with phenytoin prepared by using acetonitrile (4N-SFD-MeCN system) were deeply characterized compared to those using aqueous solution (4N-SFD-aqua system) from morphological and physicochemical perspectives. The characteristic porous structure was observed in 4N-SFD-MeCN particles as well as 4N-SFD-aqua particles. However, it was found that the size and quantity of pore in 4N-SFD-MeCN particles were smaller than those of 4N-SFD-aqua particles. As a result, the former particles had 2- to 3-times smaller specific surface area than the latter particles independent of the type of carrier loaded. The slight difference of release profiles from the particles prepared between both systems was discussed from the microscopically structural viewpoint. In addition, ciclosporin was applied to organic solvent SFD system because this drug was poorly water soluble and cannot be applied to conventional aqueous SFD system. The release profiles from SFD particles were dramatically improved compared to the bulk material, suggesting that the new SFD technique using organic solvent has potential to develop the novel solubilized formulation for poorly water-soluble active pharmaceutical

  4. Application of inter simple sequence repeat (ISSR) markers to plant genetics.

    Science.gov (United States)

    Godwin, I D; Aitken, E A; Smith, L W

    1997-08-01

    Microsatellites or simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Single-locus SSR markers have been developed for a number of species, although there is a major bottleneck in developing SSR markers whereby flanking sequences must be known to design 5'-anchors for polymerase chain reaction (PCR) primers. Inter SSR (ISSR) fingerprinting was developed such that no sequence knowledge was required. Primers based on a repeat sequence, such as (CA)n, can be made with a degenerate 3'-anchor, such as (CA)8RG or (AGC)6TY. The resultant PCR reaction amplifies the sequence between two SSRs, yielding a multilocus marker system useful for fingerprinting, diversity analysis and genome mapping. PCR products are radiolabelled with 32P or 33P via end-labelling or PCR incorporation, and separated on a polyacrylamide sequencing gel prior to autoradiographic visualisation. A typical reaction yields 20-100 bands per lane depending on the species and primer. We have used ISSR fingerprinting in a number of plant species, and report here some results on two important tropical species, sorghum and banana. Previous investigators have demonstrated that ISSR analysis usually detects a higher level of polymorphism than that detected with restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) analyses. Our data indicate that this is not a result of greater polymorphism genetically, but rather technical reasons related to the detection methodology used for ISSR analysis.

  5. Semiparametric methods to contrast gap time survival functions: Application to repeat kidney transplantation.

    Science.gov (United States)

    Shu, Xu; Schaubel, Douglas E

    2016-06-01

    Times between successive events (i.e., gap times) are of great importance in survival analysis. Although many methods exist for estimating covariate effects on gap times, very few existing methods allow for comparisons between gap times themselves. Motivated by the comparison of primary and repeat transplantation, our interest is specifically in contrasting the gap time survival functions and their integration (restricted mean gap time). Two major challenges in gap time analysis are non-identifiability of the marginal distributions and the existence of dependent censoring (for all but the first gap time). We use Cox regression to estimate the (conditional) survival distributions of each gap time (given the previous gap times). Combining fitted survival functions based on those models, along with multiple imputation applied to censored gap times, we then contrast the first and second gap times with respect to average survival and restricted mean lifetime. Large-sample properties are derived, with simulation studies carried out to evaluate finite-sample performance. We apply the proposed methods to kidney transplant data obtained from a national organ transplant registry. Mean 10-year graft survival of the primary transplant is significantly greater than that of the repeat transplant, by 3.9 months (p=0.023), a result that may lack clinical importance.

  6. The development and application of an automatic boundary segmentation methodology to evaluate the vaporizing characteristics of diesel spray under engine-like conditions

    Science.gov (United States)

    Ma, Y. J.; Huang, R. H.; Deng, P.; Huang, S.

    2015-04-01

    Studying the vaporizing characteristics of diesel spray could greatly help to reduce engine emission and improve performance. The high-speed schlieren imaging method is an important optical technique for investigating the macroscopic vaporizing morphological evolution of liquid fuel, and pre-combustion constant volume combustion bombs are often used to simulate the high pressure and high temperature conditions occurring in diesel engines. Complicated background schlieren noises make it difficult to segment the spray region in schlieren spray images. To tackle this problem, this paper develops a vaporizing spray boundary segmentation methodology based on an automatic threshold determination algorithm. The methodology was also used to quantify the macroscopic characteristics of vaporizing sprays including tip penetration, near-field and far-field angles, and projected spray area and spray volume. The spray boundary segmentation methodology was realized in a MATLAB-based program. Comparisons were made between the spray characteristics obtained using the program method and those acquired using a manual method and the Hiroyasu prediction model. It is demonstrated that the methodology can segment and measure vaporizing sprays precisely and efficiently. Furthermore, the experimental results show that the spray angles were slightly affected by the injection pressure at high temperature and high pressure and under inert conditions. A higher injection pressure leads to longer spray tip penetration and a larger projected area and volume, while elevating the temperature of the environment can significantly promote the evaporation of cold fuel.

  7. Assessment of bone loss with repeated bone mineral measurements: Application to measurements on the individual patient

    Energy Technology Data Exchange (ETDEWEB)

    Wahner, H.W.

    1987-02-01

    Longitudinal measurements on lumbar spine and mid-radius were made by bone absorptiometry techniques in 139 normal women. Bone mineral was measured every 6 months over an median interval of 2.1 years. The results revealed that bone loss at different skeletal sites is non-uniform with equal bone loss patterns in all patients and relatively small variations in bone loss rate between normal women. For achieving these results there is strong demand on high precision and properly spaced measuring intervals for long-term rate of loss measurements. For exclusion of progressive degenerative disease a radiographic evaluation of the spine in the beginning and at the end of the study is mandatory as compression fractures or trauma reveal bone mineral changes independent from the agerelated bone loss. These repeated bone mineral measurements are useful for monitoring and follow-up studies during different therapeutic regimens.

  8. Spray casting project final report

    Energy Technology Data Exchange (ETDEWEB)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step.

  9. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  10. Influence of Isothermal Heat Treatment on Porosity and Crystallite Size in Axial Suspension Plasma Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    Directory of Open Access Journals (Sweden)

    Ashish Ganvir

    2016-12-01

    Full Text Available Axial suspension plasma spraying (ASPS is an advanced thermal spraying technique, which enables the creation of specific microstructures in thermal barrier coatings (TBCs used for gas turbine applications. However, the widely varying dimensional scale of pores, ranging from a few nanometers to a few tenths of micrometers, makes it difficult to experimentally measure and analyze porosity in SPS coatings and correlate it with thermal conductivity or other functional characteristics of the TBCs. In this work, an image analysis technique carried out at two distinct magnifications, i.e., low (500× and high (10,000×, was adopted to analyze the wide range of porosity. Isothermal heat treatment of five different coatings was performed at 1150 °C for 200 h under a controlled atmosphere. Significant microstructural changes, such as inter-columnar spacing widening or coalescence of pores (pore coarsening, closure or densification of pores (sintering and crystallite size growth, were noticed in all the coatings. The noted changes in thermal conductivity of the coatings following isothermal heat treatment are attributable to sintering, crystallite size growth and pore coarsening.

  11. Urinary excretion of phthalates and paraben after repeated whole-body topical application in humans

    DEFF Research Database (Denmark)

    Janjua, Nadeem Rezaq; Frederiksen, Hanne; Skakkebaek, Niels E

    2008-01-01

    were given a whole body topical application of basic cream 2 mg/cm(2) (control week) and then a cream containing 2% (w/w) of DEP, DBP and BP each (treatment week) daily. Twenty-four-hour urine samples were collected. Urinary total, and unconjugated BP, monoethyl phthalate (MEP) and monobutyl phthalate...... through dermal absorption, but there are no published data on absorption, metabolism, and excretion after dermal application. This study investigates urinary concentrations of BP and metabolites of DEP and DBP after topical application. In a 2-week single-blinded study, 26 healthy Caucasian male subjects...... (MBP) metabolites were analysed by Liquid Chromatography-Tandem Mass Spectroscopy (LC-MS/MS). All 26 subjects showed increased excretion of MEP, MBP and BP following topical application. Total MEP, MBP and BP (mean +/- SEM) excreted in urine in the treatment week were, respectively, 41 +/- 1.9, 11...

  12. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction.

    Science.gov (United States)

    Fritz, Bradley K; Hoffmann, W Clint

    2016-09-16

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected.

  13. Monitoring heavy metal concentrations in leachates from a forest soil subjected to repeated applications of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Egiarte, G.; Pinto, M. [NEIKER-Basque Institute of Agricultural Research and Development, Berreaga, 1, 48160 Derio, Bizkaia, Basque Country (Spain); Ruiz-Romera, E. [Departamento de Quimica e Ingenieria Ambiental, Escuela de Ingenieros, Alameda Urquijo, s/n. 48013 Bilbo, UPV, Basque Country (Spain); Camps Arbestain, M. [NEIKER-Basque Institute of Agricultural Research and Development, Berreaga, 1, 48160 Derio, Bizkaia, Basque Country (Spain)], E-mail: mcamps@neiker.net

    2008-12-15

    The aim of the study was to establish whether the repeated application of sewage sludge to an acid forest soil (Dystric Cambisol) would lead to short-term groundwater contamination. Sludge was applied at four loading rates (0, 2.4, 17 and 60 Mg ha{sup -1}) in two consecutive years and leachates were analysed. Heavy metal inputs to soils at the lowest dose were below EC regulations but, at higher doses, limits for Zn, Cd, Cr and Ni were exceeded. Repeated application of sludge at 60 Mg ha{sup -1} resulted in significantly (P < 0.05) higher concentrations of Zn, Cd, Cr and Ni in the leachates than with other treatments. The drinking water standards for Cd and Ni were surpassed in all treatments. Control plots were contaminated by groundwater flow despite the existence of buffer zones between plots. This complicated interpretation of the results, highlighting the importance of careful design of this type of experiment. - The experimental design of field studies on groundwater contamination by soil amendments should ensure that subsurface lateral flow does not occur between plots.

  14. Sub-ppt Mass Spectrometric Detection of Therapeutic Drugs in Complex Biological Matrixes Using Polystyrene-Microsphere-Coated Paper Spray.

    Science.gov (United States)

    Wang, Teng; Zheng, Yajun; Wang, Xiaoting; Austin, Daniel E; Zhang, Zhiping

    2017-08-01

    Polystyrene (PS) is a class of polymer materials that offers great potential for various applications. However, the applications of PS microspheres in paper spray mass spectrometry are largely underexplored. Herein we prepared a series of PS microspheres via a simple dispersion polymerization and then used them as coating materials for paper spray mass spectrometry (MS) in high-sensitivity analysis of various therapeutic drugs in complex biological matrixes. In the preparation of PS-coated papers, the coating method was found playing a key role in determining the performance of the resulting paper substrate in addition to other parameters (e.g., starch type and amount, PS coating amount, and spray solvent). We also found that as a solvent was applied on PS-coated paper for paper spray, the analytes of interest would be first extracted out and then moved to the tip of paper triangle for spray along with the applied solvent. In the process, the surface energy of PS particles had a strong impact on the desorption performance of analytes from PS-coated paper substrate, and the PS with a high surface energy favored the elution of analytes to allow a high MS sensitivity. When the prepared PS coated paper was used as a substrate for paper spray, it gave high sensitivity in analysis of therapeutic drugs in various biological matrixes such as whole blood, serum, and urine with excellent repeatability and reproducibility. In contrast to uncoated filter paper, an improvement of 10-546-fold in sensitivity was achieved using PS-coated paper for paper spray, and an estimated lower limit of quantitation (LLOQs) in the range of 0.004-0.084 ng mL(-1) was obtained. The present study is significant in exploring the potential of PS for high-sensitivity MS analysis, and it provides a promising platform in the translation of the MS technique to clinical applications.

  15. Persistence and distribution of 4-nonylphenol following repeated application to littoral enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Heinis, L.J.; Liber, K.; Tunell, R.L. [Univ. of Wisconsin, Superior, WI (United States). Lake Superior Research Inst.; Knuth, M.L.; Sheedy, B.R.; Ankley, G.T. [Environmental Protection Agency, Duluth, MN (United States). Mid-Continent Ecology Div.

    1999-03-01

    The persistence and distribution of 4-nonylphenol (NP) were monitored for 440 d, following application to 18 littoral enclosures situated in a 2-ha mesotrophic pond near Duluth, Minnesota. Application was accomplished by subsurface, gravity-fed injection over a 20-d period, with a 2-d frequency, to achieve nominal aqueous concentrations of 0, 3, 30, 100, and 300 {micro}g/L. Mean maximum concentrations in the water over the 20-d application period ranged from 75.7 to 81.0% of nominal for the three highest treatment levels and was 181% of nominal at the lowest treatment level. Water was the major compartment, on a mass balance basis, for NP until 2 to 4 d after the application period, with a mean time to 50% dissipation (DT50) of 0.74 d and a mean time to 95% dissipation (DT95) of 13.8 d. 4-Nonylphenol partitioned to enclosure wall material, macrophytes, and sediment within 2 d of initial application. Macrophytes accumulated maximum NP concentrations of 11.5 and 139 mg/kg 1 to 2 d after the application period at the 30- and 300-{micro}g/L treatment levels, respectively. Mean DT50 and DT95 estimates of NP persistence in/on the macrophytes were 10.3 and 189 d, respectively. Sediment from the 30- and 300-{micro}g/L treatments accumulated maximum dry weight NP concentrations of 2.74 and 27.4 mg/kg, respectively within 20 to 48 d of the first application. The mean sediment porewater NP concentration was 18.6 {micro}g/L for the period 2 to 34 d after application 1 at the 300-{micro}g/L treatment. The sediment was the primary sink for NP 440 d after the initial application with a concentration of 1.97 mg/kg at the 300-{micro}g/L treatment. Mean sediment DT50 and DT95 values were 66.0 and 401 d, respectively, indicating a long-term persistence of NP. Ecocores collected 1 d after the final NP application did not show significant decreases in sediment NP concentration during a 55-d incubation period, corroborating the NP persistence observed in the littoral enclosures.

  16. The Properties of Sprayed Nanostructured P-Type CuI Films for Dye-Sensitized Solar Cells Application

    Directory of Open Access Journals (Sweden)

    M. N. Amalina

    2012-01-01

    Full Text Available In our experiments, we provide a new approach for depositing CuI (inorganic compound thin films using the mister atomizer technique. The CuI solution was sprayed into fine droplets using argon as a carrier gas at different solution concentrations. The solution sprayed was 50 ml for all samples with substrate temperature constant at 50°C during the deposition process. The result shows that the CuI thin film properties strongly depend on its precursor concentration. The structural properties were characterized by XRD with strong (111 orientation shows for all the CuI thin films. FESEM images revealed that all the CuI thin films deposited were uniform with the existence of nanostructured CuI particle. The EDX measurement confirms the existence of Cu:I in the films. The nanostructured CuI will improve the penetration of p-type between the mesoporous matrix of TiO2 thin film. Promising conductivity value of about 10° S cm−1 was obtained for CuI thin films deposited by this new deposition method. Low transmittance of below 50% was observed for all CuI thin films. The band gap energy obtained here was between 2.82 eV and 2.92 eV which is much smaller than the reported band gap which is 3.1 eV.

  17. Application of High-Velocity Oxygen-Fuel (HVOF Spraying to the Fabrication of Yb-Silicate Environmental Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Emine Bakan

    2017-04-01

    Full Text Available From the literature, it is known that due to their glass formation tendency, it is not possible to deposit fully-crystalline silicate coatings when the conventional atmospheric plasma spraying (APS process is employed. In APS, rapid quenching of the sprayed material on the substrate facilitates the amorphous deposit formation, which shrinks when exposed to heat and forms pores and/or cracks. This paper explores the feasibility of using a high-velocity oxygen-fuel (HVOF process for the cost-effective fabrication of dense, stoichiometric, and crystalline Yb2Si2O7 environmental barrier coatings. We report our findings on the HVOF process optimization and its resultant influence on the microstructure development and crystallinity of the Yb2Si2O7 coatings. The results reveal that partially crystalline, dense, and vertical crack-free EBCs can be produced by the HVOF technique. However, the furnace thermal cycling results revealed that the bonding of the Yb2Si2O7 layer to the Silicon bond coat needs to be improved.

  18. Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

    Directory of Open Access Journals (Sweden)

    Erki Kärber

    2016-11-01

    Full Text Available Chemical spray pyrolysis (CSP is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH22 = 1:6 sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm2 had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm2, a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas.

  19. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications

    Science.gov (United States)

    Diwate, Kiran; Pawbake, Amit; Rondiya, Sachin; Kulkarni, Rupali; Waykar, Ravi; Jadhavar, Ashok; Rokade, Avinash; Funde, Adinath; Mohite, Kakasaheb; Shinde, Manish; Pathan, Habib; Devan, Rupesh; Jadkar, Sandesh

    2017-02-01

    Thin films of CdS have been prepared by chemical spray pyrolysis by spraying precursor solution directly onto soda lime glass (SLG) substrates. Influence of substrate temperature on structural, optical, morphological and electrical properties have been investigated by using various techniques such as low angle X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), UV-visible spectroscopy photoluminescence (PL) spectroscopy etc. Formation of CdS has been confirmed by low angle XRD, Raman spectroscopy and XPS analysis. XRD pattern showed that CdS films are polycrystalline, have hexagonal structure and prefer orientation of crystallites shifts from (101) to (002) with increase in substrate temperature. Raman spectroscopy revealed that exciton-phonon coupling depends on substrate temperature and hence on crystallite size. Optical band gap increased from 2.43 to 2.99 eV when substrate temperature increased from 325 to 475 ^\\circ {{C}}. Transmittance of the film also showed an increasing trend from ˜ 52 % to ˜ 80 % with increase in substrate temperature. Such high band gap and transmittance values of CdS films prepared at 475 ^\\circ {{C}} make it a useful window material in CdS/CdTe and CdS/Cu2S heterojunction solar cells. Project supported by the Department of Science and Technology (DST), Ministry of New and Renewable Energy (MNRE), Government of India, New Delhi.

  20. Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell.

    Science.gov (United States)

    Kärber, Erki; Katerski, Atanas; Oja Acik, Ilona; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2016-01-01

    Chemical spray pyrolysis (CSP) is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH2)2 = 1:6) sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm(2) had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm(2), a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas.

  1. O3 Layers via Spray Pyrolysis at Low Temperatures and Their Application in High Electron Mobility Transistors

    KAUST Repository

    Isakov, Ivan

    2017-04-06

    The growth mechanism of indium oxide (InO) layers processed via spray pyrolysis of an aqueous precursor solution in the temperature range of 100-300 °C and the impact on their electron transporting properties are studied. Analysis of the droplet impingement sites on the substrate\\'s surface as a function of its temperature reveals that Leidenfrost effect dominated boiling plays a crucial role in the growth of smooth, continuous, and highly crystalline InO layers via a vapor phase-like process. By careful optimization of the precursor formulation, deposition conditions, and choice of substrate, this effect is exploited and ultrathin and exceptionally smooth layers of InO are grown over large area substrates at temperatures as low as 252 °C. Thin-film transistors (TFTs) fabricated using these optimized InO layers exhibit superior electron transport characteristics with the electron mobility reaching up to 40 cm V s, a value amongst the highest reported to date for solution-processed InO TFTs. The present work contributes enormously to the basic understanding of spray pyrolysis and highlights its tremendous potential for large-volume manufacturing of high-performance metal oxide thin-film transistor electronics.

  2. Interfacial microstructures and hardness distributions of vacuum plasma spraying W-coated ODS ferritic steels for fusion plasma facing applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kasada, Ryuta; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Nagasaka, Takuya [National Institute for Fusion Science, Toki, Gifu (Japan); Sokolov, Mikhail A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-04-15

    In the present study, interfacial microstructures and hardness distributions of W-coated ODS steels as plasma facing structural materials were investigated. A vacuum plasma spraying (VPS) technique was employed to fabricate a W layer on the surface of the ODS ferritic steel substrates. The microstructural observations revealed that the VPS-W has very fine grains aligned toward the spraying direction, and a favorable interface between W and ODS ferritic steels by a mechanical inter-locking without an intermetallic layer. However, crack-type defects were found in VPS-W. Because a brittle inter-diffused layer does not exist at the joint interface, the hardness was gradually distributed in the joint region. After neutron irradiation, irradiation hardening significantly occurred in the VPS-W. However, the hardening of VPS-W was less than that of bulk W irradiated at 773 K. Thus, the VPS is considered to be one of the promising ways to join dissimilar materials between W and ODS steels, which can avoid the formation of an interfacial intermetallic layer and create favorable irradiation hardening resistance on the W coated layer.

  3. Effect of the Cold-Sprayed Aluminum Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application

    Science.gov (United States)

    Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel

    2017-03-01

    This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.

  4. Application of quality by design (QbD) approach to ultrasonic atomization spray coating of drug-eluting stents.

    Science.gov (United States)

    McDermott, Martin; Chatterjee, Sharmista; Hu, Xiaoli; Ash-Shakoor, Ariel; Avery, Reginald; Belyaeva, Anastasiya; Cruz, Celia; Hughes, Minerva; Leadbetter, Joanne; Merkle, Conrad; Moot, Taylor; Parvinian, Sepideh; Patwardhan, Dinesh; Saylor, David; Tang, Nancy; Zhang, Tina

    2015-08-01

    The drug coating process for coated drug-eluting stents (DES) has been identified as a key source of inter- and intra-batch variability in drug elution rates. Quality-by-design (QbD) principles were applied to gain an understanding of the ultrasonic spray coating process of DES. Statistically based design of experiments (DOE) were used to understand the relationship between ultrasonic atomization spray coating parameters and dependent variables such as coating mass ratio, roughness, drug solid state composite microstructure, and elution kinetics. Defect-free DES coatings composed of 70% 85:15 poly(DL-lactide-co-glycolide) and 30% everolimus were fabricated with a constant coating mass. The drug elution profile was characterized by a mathematical model describing biphasic release kinetics. Model coefficients were analyzed as a DOE response. Changes in ultrasonic coating processing conditions resulted in substantial changes in roughness and elution kinetics. Based on the outcome from the DOE study, a design space was defined in terms of the critical coating process parameters resulting in optimum coating roughness and drug elution. This QbD methodology can be useful to enhance the quality of coated DES.

  5. Reliability characteristics and applicability of a repeated sprint ability test in male young soccer players.

    Science.gov (United States)

    Castagna, Carlo; Francini, Lorenzo; Krustrup, Peter; Fenarnandes-da-Silva, Juliano; Póvoas, Susana C A; Bernardini, Andrea; D'Ottavio, Stefano

    2017-07-28

    The aim of this study was to examine the usefulness and reliability characteristics of a repeated sprint ability test considering 5 line sprints of 30-m interspersed with 30-s of active recovery in non-elite outfield young male soccer players. Twenty-six (age 14.9±1.2 years, height 1.72±0.12 cm, body mass 62.2±5.1 kg) players were tested 48 hours and 7 days apart for 5x30-m performance over 5 trials (T1-T5). Short- (T1-T2) and long-term reliability (T1-T3-T4-T5) were assessed with Intraclass Correlation Coefficient (ICC) and with typical error for measurement (TEM). Short- and long-term reliability ICCs and TEMs for total sprint time and best sprint performance were nearly perfect and satisfactory, respectively. Usefulness (as smallest worthwhile change and TEM ratio) resulted acceptable (i.e =1) and good (i.e >1) for total sprint time and best sprint performance, respectively. The present study revealed that the 5x30-m sprint test is a reliable field test in the short and long-term when the sum of sprint times and the best sprint performance are considered as outcome variables. Sprint performance decrements variables showed large variability across trials.

  6. Percutaneous absorption of diclofenac in healthy volunteers after single and repeated topical application of diclofenac Emulgel.

    Science.gov (United States)

    Sioufi, A; Pommier, F; Boschet, F; Godbillon, J; Lavoignat, D; Salliere, D

    1994-08-01

    The percutaneous absorption of diclofenac was studied in ten healthy volunteers treated with Emulgel containing 1.16% diclofenac diethylammonium for 8 d as follows: a single application of 5 g Emulgel on days 1 and 8, and two applications d-1 on days 2-7. Plasma concentration profiles of unchanged diclofenac and urinary concentrations of total diclofenac and metabolites (sum of free and conjugated) were determined. High inter-individual variations in plasma and urine data were recorded, due probably to the permeability and the hydration of the skin. Steady state was reached after 2 d of twice-daily administration. Plasma concentrations were low but remained in the range 10-50 nmol L-1 over the full day for most of the subjects, indicating prolonged absorption from the application site.

  7. Quantum repeated games revisited

    CERN Document Server

    Frackiewicz, Piotr

    2011-01-01

    We present a scheme for playing quantum repeated 2x2 games based on the Marinatto and Weber's approach to quantum games. As a potential application, we study twice repeated Prisoner's Dilemma game. We show that results not available in classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games.

  8. Dynamics of changes in methanogenesis and associated microflora in a flooded alluvial soil following repeated application of dicyandiamide, a nitrification inhibitor.

    Science.gov (United States)

    Mohanty, S R; Bharati, K; Rao, V R; Adhya, T K

    2009-01-01

    Influence of repeated application of the nitrification inhibitor dicyandiamide (DCD), on CH(4) production and associated microflora in a flooded alluvial soil, was investigated in a laboratory incubation study. Application of DCD at the time of soil incubation resulted in a substantial reduction in CH(4) production (31% over that of untreated control). Second repeat application of DCD, on the contrary, annulled the inhibitory effect on CH(4) production, restoring it to the level of unamended soil. Application of the third dose of DCD maintained CH(4) production almost to the same extent as that of second application. The alleviation of the initial inhibitory effect of DCD on CH(4) production was linked to the enhanced degradation of DCD following its repeated application to the flooded soil. Admittedly, abatement of the initial inhibitory effect of DCD on CH(4) production in soil repeatedly amended with DCD was also related to the inhibition of CH(4)-oxidizing bacterial population and noticeable stimulation of heterotrophic bacterial population. Results suggest that repeat application of DCD with fertilizer-N to flooded rice soils might not be effective in controlling CH(4) production under field condition.

  9. The Characterization of Twin-Wire Arc-Sprayed FeCrBSi Coating and the Application in Sewage Sludge Boilers

    Science.gov (United States)

    Qin, Enwei; Huang, Qian; Shao, Yumin; Chen, Guoxing; Ye, Lin; Gu, Qin; Wu, Shuhui

    2014-12-01

    Incineration in boilers is an environment-friendly treatment for industrial and civil sewage sludge. However, due to the aggressive nature of the sludge, the boiler fireside-surface is subjected to severe wear, erosive, and high temperature corrosion problems during incineration. In this study, we developed an economical FeCrBSi wire material with iron weight content as high as 80%. The coating was prepared by twin-wire arc spraying processing. The chemical compositions of the coating, as well as phase components were analyzed by energy-dispersive spectroscopy and x-ray diffraction method. The surface roughness, porosity, and cross-sectional morphology were further characterized. The coating hardness is close to that of the commercial Armacor M and Armacor C materials. In-boiler test was also carried out. The low thickness loss of the tube indicates a promising application future in sludge boilers.

  10. Layered growth with bottom-spray granulation for spray deposition of drug.

    Science.gov (United States)

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  11. Characterization of sprays

    Science.gov (United States)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  12. Synthesize, optimize, analyze, repeat (SOAR): Application of neural network tools to ECG patient monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, R.; Towell, G.; Glassman, M.S. [Siemens Corporate Research, Princeton, NJ (United States)

    1995-12-31

    Results are reported from the application of tools for synthesizing, optimizing and analyzing neural networks to an ECG Patient Monitoring task. A neural network was synthesized from a rule-based classifier and optimized over a set of normal and abnormal heartbeats. The classification error rate on a separate and larger test set was reduced by a factor of 2. When the network was analyzed and reduced in size by a factor of 40%, the same level of performance was maintained.

  13. Colonization, safety, and tolerability study of the Streptococcus salivarius 24SMBc nasal spray for its application in upper respiratory tract infections.

    Science.gov (United States)

    Santagati, M; Scillato, M; Muscaridola, N; Metoldo, V; La Mantia, I; Stefani, S

    2015-10-01

    Streptococcus salivarius, a non-pathogenic species and the predominant colonizer of the oral microbiota, finds a wide application in the prevention of upper respiratory tract infections, also reducing the frequency of their main pathogens. In this pilot study, the primary objective was to evaluate the safety and tolerability of a nasal spray, S. salivarius 24SMBc, as a medical device in a clinical study involving 20 healthy adult subjects. The secondary aim was to determine the ability of colonization assessed by molecular fingerprinting. Twenty healthy adult subjects, aged between 30 and 54 years, without a medical history of recurrent otitis media, were enrolled. All patient characteristics fulfilled the inclusion criteria. All subjects were treated daily for 3 days with the nasal spray containing S. salivarius 24SMBc at a concentration of 5 × 10(9) colony-forming units (CFU)/ml. The persistence of S. salivarius in the nasopharynx was investigated by the antagonism test and random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). The tolerability and safety were clinically assessed by clinical examinations during treatment. Our results demonstrate the capability of S. salivarius 24SMBc to colonize the rhinopharynx tissues in 95% of subjects and persist in 55% of them after 6 days from the last dose of the formulation, maintaining a concentration of 10(5) CFU/ml. The treatment was well tolerated by all healthy patients and no adverse effects were found. The topical application of streptococcal probiotics is a relatively undeveloped field but is becoming an attractive approach for both prevention and therapy, especially for pediatric age patients. S. salivarius 24SMBc possess characteristics making this strain suitable for use in bacteriotherapy.

  14. EFFICACY AND SAFETY OF IRRIGATION SPRAY APPLICATION FOR THE THROAT IN COMPLEX THERAPY OF INFLAMMATORY OROPHARYNX DISEASES IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Yu.L. Soldatskiy

    2011-01-01

    Full Text Available Inflammatory diseases of the oropharynx manifested with pain or discomfort in the throat, is a frequent pathology in children. Traditionally, patients with acute and exacerbation of chronic tonsillitis and pharyngitis are prescribed gargarism. In recent years, the use of sea water-based throat sprays have been allowed for irrigation therapy. Their use as part of the complex treatment of inflammatory oropharynx diseases statistically reliably decreases the intensity of pain reaction on the 10th–24th day of treatment compared to conventional gargarism and is comparable with conventional therapy when assessing other clinical symptoms. It is therefore possible to recommend using sea water-based substance as a initial means of irrigation therapy in the complex treatment of inflammatory oropharynx diseases in children.Key words: pharyngitis, tonsillitis, throat pain, irrigation therapy, children.

  15. Optimization of growth temperature of multi-walled carbon nanotubes synthesized by spray pyrolysis method and application for arsenic removal

    Directory of Open Access Journals (Sweden)

    S. Mageswari

    2014-12-01

    Full Text Available Multi-walled carbon nanotubes have been synthesized at different temperatures ranging from 550 °C to 750 °C on silica supported Fe-Co catalyst by spray pyrolysis method using Citrus limonum oil under nitrogen atmosphere. The as-grown MWNTs were characterized by scanning electron microscope (SEM, high resolution transmission electron microscope (HRTEM, X-ray diffraction analysis (XRD and Raman spectral studies. The HRTEM and Raman spectroscopic studies confirmed the evolution of MWNTs with the outer diameter between 25 and 38 nm. The possibility of use of as-grown MWNTs as an adsorbent for removal of As (V ions from drinking water was studied. Adsorption isotherm data were interpreted by the Langmuir and Freundlich equations. Kinetic data were studied using Elovich, pseudo-first order and pseudo-second order equations in order to elucidate the reaction mechanism.

  16. Effectiveness of mist-blower applications of malathion and permethrin to foliage as barrier sprays for salt marsh mosquitoes.

    Science.gov (United States)

    Anderson, A L; Apperson, C S; Knake, R

    1991-03-01

    Permethrin and malathion were applied as salt marsh mosquito barrier sprays by mist-blower to the shrub border of a park. At one and 24 h after treatment, mosquito landing counts in both insecticide treated areas declined by 80-90% relative to counts in an untreated control area. After 48 h, in the malathion-treated area, mosquito activity returned to levels observed in the control area. From 2 to 8 days post-treatment, mosquito landing counts in the permethrin-treated area remained depressed and significantly (P less than 0.01) different from the malathion-treated and control areas. On days 9 and 10 post-treatment, mosquito landing rates returned to high levels in the insecticide-treated and control areas.

  17. Characterization of Copper Coatings Deposited by High-Velocity Oxy-Fuel Spray for Thermal and Electrical Conductivity Applications

    Science.gov (United States)

    Salimijazi, H. R.; Aghaee, M.; Salehi, M.; Garcia, E.

    2017-08-01

    Copper coatings were deposited on steel substrates by high-velocity oxy-fuel spraying. The microstructure of the feedstock copper powders and free-standing coatings were evaluated by optical and scanning electron microscopy. The x-ray diffraction pattern was utilized to determine phase compositions of powders and coatings. Oxygen content was determined by a LECO-T300 oxygen determiner. The thermal conductivity of the coatings was measured in two directions, through-thickness and in-plane by laser flash apparatus. The electrical resistivity of the coatings was measured by the four-point probe method. Oxygen content of the coatings was two times higher than that of the initial powders (0.35-0.37%). The thermal and electrical conductivities of the coatings were different depending on the direction of the measurement. The thermal and electrical conductivity of the coatings improved after annealing for 6 h at a temperature of 600°C.

  18. SnS Thin Films Prepared by Chemical Spray Pyrolysis at Different Substrate Temperatures for Photovoltaic Applications

    Science.gov (United States)

    Sall, Thierno; Soucase, Bernabé Marí; Mollar, Miguel; Sans, Juan Angel

    2017-03-01

    The preparation and analysis of morphological, structural, optical, vibrational and compositional properties of tin monosulfide (SnS) thin films deposited on glass substrate by chemical spray pyrolysis is reported herein. The growth conditions were evaluated to reduce the presence of residual phases different to the SnS orthorhombic phase. X-ray diffraction spectra revealed the polycrystalline nature of the SnS films with orthorhombic structure and a preferential grain orientation along the (111) direction. At high substrate temperature (450°C), a crystalline phase corresponding to the Sn2S3 phase was observed. Raman spectroscopy confirmed the dominance of the SnS phase and the presence of an additional Sn2S3 phase. Scanning electron microscopy (SEM) images reveal that the SnS film morphology depends on the substrate temperature. Between 250°C and 350°C, SnS films were shaped as rounded grains with some cracks between them, while at substrate temperatures above 400°C, films were denser and more compact. Energy-dispersive x-ray spectroscopy (EDS) analysis showed that the stoichiometry of sprayed SnS films improved with the increase of substrate temperature and atomic force microscopy micrographs showed films well covered at 350°C resulting in a rougher and bigger grain size. Optical and electrical measurements showed that the optical bandgap and the resistivity decreased when the substrate temperature increased, and smaller values, 1.46 eV and 60 Ω cm, respectively, were attained at 450°C. These SnS thin films could be used as an absorber layer for the development of tandem solar cell devices due to their high absorbability in the visible region with optimum bandgap energy.

  19. Non-aqueous route spray pyrolyzed Ru:Co{sub 3}O{sub 4} thin electrodes for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Ambare, R.C. [School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Bharadwaj, S.R. [Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, M.S. (India); Lokhande, B.J., E-mail: bjlokhande@yahoo.com [School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India)

    2015-09-15

    Graphical abstract: - Highlights: • Ru incorporated Co{sub 3}O{sub 4} electrodes were prepared using spray pyrolysis using methanolic media. • XRD shows polycrystalline nature with spherical granular, flowery, porous type morphology. • Ru % incorporation affects the crystallinity, morphology, shape of CV and SC. • 0.6% Ru incorporation shows highest value of SC 628.3 F/g with good stability in 1 M KOH. • Internal resistance observed from Nyquist plot is around 1.05 Ω. - Abstract: Spray pyrolytic deposition of ruthenium incorporated cobalt oxide thin film electrodes was carried out via methanolic route at 623 ± 2 K. Structural, morphological, optical, compositional and electrochemical study was made using XRD, SAED, SEM, TEM, UV–vis, EDX, XPS and electrochemical work station. Deposited samples shows face centered cubic crystal structure for Co{sub 3}O{sub 4} and tetragonal for RuO{sub 2} having crystalline nature was confirmed form SAED. Mixed oxide samples having porous nano-grain morphology and mixed microstructure as observed form SEM and TEM. Cyclic voltammogram study reveals double-pseudo-capacitive nature with optimum specific capacitance (SC) 628.33 F/g at the scan rate 1 mV/s in 1 M KOH with good stability. Charge–discharge behavior was studied to calculate electric parameters such as specific energy (SE), specific power (SP) and columbic efficiency (η). The calculated maximum values are SE 19.94 W h/kg, SP 5.33 kW/kg and η 99.43%. Electrochemical impedance study was made in the frequency range 1 mHz to 1 MHz to see the internal resistance and capacitive behavior of the optimized sample. The randles equivalent circuit and its parameters are reported in the text.

  20. Improvement of thermophysiological stress in participants wearing protective clothing for spraying pesticide, and its application in the field.

    Science.gov (United States)

    Hayashi, C; Tokura, H

    2000-04-01

    Thermoregulatory responses were compared under two experimental conditions, in the laboratory (Experiment I), and in the field (Experiment II), between two kinds of protective clothing for spraying pesticides. One was currently being used (Type A), and was composed of ready made Gore-Tex clothing, mask, polyurethane gloves and rubber boots. The other one was newly designed (Type B), and was composed of pesticide-proof clothing (100% cotton with water repellent finish), mask, Gore-Tex gloves, and special boots consisting of rubber for the feet and ankle and Gore-Tex around the legs. In addition, the head and chest were cooled by frozen gel strips fixed in the cap and undershirt. In Experiment I, five female adults took part, in a climate-chamber controlled at an ambient temperature of 28 degrees C and a relative humidity of 60%. In Experiment II, five farmers (one male and four female) were tested in an apple orchard in July, August and September. The main results are summarized as follows: (1) change of rectal temperature was inhibited more effectively in Type B in Experiment I, (2) change of heart rate tended to be lower in Type B than in Type A in both experiments, (3) salivary lactic acid concentration at the end of the first exercise was significantly higher in Type A than in Type B in Experiment I, (4) the number of contractions in the handgrip exercise which was performed immediately after the third exercise, was significantly smaller in Type A than in Type B in Experiment I, (5) subjective comfort sensation was significantly improved in Type B in Experiments I and II. Thus, it was concluded that the newly designed protective clothing could reduce thermal stress during the spraying of pesticides in an apple orchard in summer.

  1. The possibilities of atmospheric plasma-spraying application to obtain hydroxyapatite coatings on the stainless steel samples

    Directory of Open Access Journals (Sweden)

    Mihailović Marija D.

    2013-01-01

    Full Text Available For decades, the standard metallic materials for hip implants, besides the 316LVM stainless steel, were titanium- and cobalt/chromium-based alloys. Although bioinert, due to their corrosion resistance, they are not biocompatible. Contemporary surgical implants are not made just of bioinert metal anymore, but with deposited bioactive hydroxyapatite (HAp coating. Hydroxyapatite is chemically identical with the mineral constituent of bones and teeth, what besides its biocompatibility provides bioactivity as well. The HAp limitations are, however, weak tensile strength and low fatigue resistance for long term loadings, if used alone. This is the reason for HAp to be deposited onto the surgical implant, and to enable its bioactivity, what means intergrowth with bones, and therefore the long-lasting and mechanical stable non-cemented prosthesis. This is important predominantly because the need for such prostheses for younger population, and a better life quality. There are several contemporary techniques that have been used for deposition of these coatings onto the metal implant. The possibilities of atmospheric plasma-spraying for obtaining the stable HAp coatings on the 316LVM stainless steel, ordinary used as a standard material for hip implants production are presented in this paper. The coatings of a commercially available hydroxyapatite powder were plasma-sprayed onto the specimens of medical grade 316LVM stainless steel under various operating conditions. The optical microscopy was used for microstructure and porosity characterization, while coating morphology and Ca/P ratio were analyzed using SEM equipped with EDX. Coating microstructure varied from a porous to a glassy structure, depending on operating conditions applied and coating thickness. Coating porosity was determined to be at the lower required limit requested for the bone-coating intergrowth possibility, but nevertheless adhesion measurements showed good results. The Ca/P ratio was

  2. A study of the wall/jet interaction on a transient spray. Application to diesel injection; Etude de l'interaction jet/paroi dans un spray transitoire. Application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Chale Gongora, H.G.

    1998-07-01

    The aim of this work is to better understand the mechanisms that govern the formation and development of the parietal flow occurring during the impact of a diesel fuel jet on a plate. In order to isolate the dynamical aspects of the phenomenon, a non-confined experimental configuration at ambient temperature and pressure has been used. The behaviour of the dispersed phase for different conditions of jet approach and different plate temperatures has been analyzed. Velocity and diameter fields of the free zone and of the parietal zone have been measured using a laser doppler apparatus up to a plate surface resolution of 0.2 mm. In a first step, an estimation of the average time value gives information about the global behaviour of the spray: the plate effect is sensible up to a very reduced distance but increases with the plate temperature, the momentum of the parietal jet is localized in a zone very close to the wall, an increase of the droplets size and of radial velocities in the parietal zone is observed when the nozzle is moved closer to the wall, and the increase of the plate temperature facilitates the jet penetration and leads to a reduction of the droplets size (increase of the shear stresses) and to a reduction of the liquid film thickness submitted to splashing. In order to examine the behaviour of velocity and droplets diameter with time, a processing has been defined which provides an average description of the phenomena. A laser tomography study in association with fast cinematography and CCD camera video recording has permitted to outline the main aspects of the evolution of the parietal spray with time: fast development of a swirl which drags most of the small droplets and limits their dispersion, effect of the temperature rise of the plate in the beginning of fuel injection, development of a more intense swirl which leads to an increase of velocity fluctuations, development of wavelet structures in the internal zone of the flow, near the wall, and

  3. A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use

    Science.gov (United States)

    Neelon, Brian H.; O’Malley, A. James; Normand, Sharon-Lise T.

    2009-01-01

    In applications involving count data, it is common to encounter an excess number of zeros. In the study of outpatient service utilization, for example, the number of utilization days will take on integer values, with many subjects having no utilization (zero values). Mixed-distribution models, such as the zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB), are often used to fit such data. A more general class of mixture models, called hurdle models, can be used to model zero-deflation as well as zero-inflation. Several authors have proposed frequentist approaches to fitting zero-inflated models for repeated measures. We describe a practical Bayesian approach which incorporates prior information, has optimal small-sample properties, and allows for tractable inference. The approach can be easily implemented using standard Bayesian software. A study of psychiatric outpatient service use illustrates the methods. PMID:21339863

  4. Studies on Ultrasonic Spray Dryer (1)

    OpenAIRE

    井上, 昌夫

    1981-01-01

    Author has initiated research and development activities for a epochal ultrasonic spray dryer in order to obtain large quantities of droplets in uniform diameters, from which a practically applicable ultrasonic spray dryer would possibly be developed. Since the time Wood, Loomis et al. reported their experiments on atomization of liquids by ultrasonic power, research in this field is now widely attempted in many countries. In Japan, this field is being investigated by Ohno et al. Chiba, and M...

  5. Sunscreens in human plasma and urine after repeated whole-body topical application

    DEFF Research Database (Denmark)

    Janjua, N.R.; Kongshoj, B.; Andersson, A.M.;

    2008-01-01

    Background The three chemical ultraviolet absorbers benzophenone-3 (BP-3), octyl-methoxycinnamate (OMC) and 3-(4-methylbenzylidene) camphor (4-MBC) are commercially used in sunscreens worldwide. Apart from sun protection, they may possess endocrine-disrupting effects in animals and in vitro...... the first application, all three sunscreens were detectable in plasma. The maximum median plasma concentrations were 187 ng/mL BP-3, 16 ng/mL 4-MBC and 7 ng/mL OMC for females and 238 ng/mL BP-3, 18 ng/mL 4-MBC and 16 ng/mL OMC for men. In the females, urine levels of 44 ng/mL BP-3 and 4 ng/mL of 4-MBC...... and 6 ng/mL OMC were found, and in the males, urine levels of 81 ng/mL BP-3, 4 ng/mL of 4-MBC and OMC were found. In plasma, the 96-h median concentrations were higher compared with the 24-h concentrations for 4-MBC and OMC in men and for BP-3 and 4-MBC in females Udgivelsesdato: 2008/4...

  6. Physical investigations on NiMn{sub 2}O{sub 4} sprayed magnetic spinel for sensitivity applications

    Energy Technology Data Exchange (ETDEWEB)

    Larbi, T.; Amara, A.; Ouni, B. [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Inoubli, A. [Faculté des Sciences de Bizerte Laboratoire de Physique des Matériaux Département de Physique, Zarzouna, 7021 Bizerte (Tunisia); Karyaoui, M. [Laboratoire de photovoltaïque, Centre de Recherches et des Technologies de l’Énergie, Technopole de Borj-Cédria BP 95, 2050 Hammam-Lif (Tunisia); Yumak, A. [Physics Department, Faculty of Arts and Sciences, Marmara University, Göztepe, 34722 Istanbul (Turkey); Saadallah, F. [Phothermal laboratory IPEIN, Mrezka, BP 62, 8000 Nabeul (Tunisia); Boubaker, K., E-mail: mmbb11112000@yahoo.fr [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Amlouk, M. [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia)

    2015-08-01

    NiMn{sub 2}O{sub 4} ternary nickel manganese oxide thin films spinels have been grown on glass substrates at 350 °C through spray pyrolysis technique. X-ray diffraction and Raman spectroscopy analyses show that the synthesized film has mainly cubic spinel structure with a preferred orientation along (111) plane. Some optical constants such as the refractive index (n), extinction coefficient (k), Urbach energy (E{sub U}=342 eV) and optical energy band gap (E{sub g}=1.07 eV) have been calculated from reflection-transmission spectra. The mirage effect technique has been used to estimate the thermal conductivity (K{sub c}). Its value is K{sub c}=25 W m{sup −1} K{sup −1}. The real part of the ac the conductivity behaviour has been investigated in the frequency range 100 Hz to 1 MHz. It was found that the real conductivity follows a power law (Aω{sup s}). The dc conductivity has been studied in the temperature range from 250 °C to 375 °C and supports the variable range hopping model proposed by Mott. The activation energy value estimated from the relaxation frequency is Ea~0.32 eV. Moreover, the temperature dependency of the resistance indicates that conduction was well described by a variable range hopping model, in which electron transfer takes place between Mn{sup 3+} and Mn{sup 4+} ions. - Highlights: • The nickel manganese oxide (NiMn{sub 2}O{sub 4}) has been prepared by the low-cost spray pyrolysis technique. • The optical band gap of this ternary oxide is around 1 eV and the crystallites are oriented preferentially along (111) direction. • Presenting an accurate technique “Mirage effect” for original investigation of thermal properties. • DC and AC conductivity can be both attributed to a hopping transport, while at high frequency a metallic-like behavior is observed. • A deep analysis within correlated barrier hopping (CBH) model was carried out. • Outlining a correlation between Magnetic and electrical properties.

  7. Effects of HCl and Methanol in the Precursor on Physical Properties of Spray-Deposited Nanostructured CuO Thin Films for Solar Applications

    Science.gov (United States)

    Asl, Hassan Zare; Rozati, Seyed Mohammad

    2017-08-01

    The influence of the presence of HCl and methanol in the precursor on CuO absorber layers deposited by spray pyrolysis has been investigated. The films were deposited on glass substrate at fixed substrate temperature of 450°C using 0.05 molar CuCl2·2H2O in deionized water containing a specific amount of HCl and methanol. The structural, morphological, electrical, and optical properties of the resulting thin films were studied to evaluate their suitability for solar applications. Presence of HCl increased the concentration of Cu2+ ions in the precursor, leading to a rise in the Cu concentration in the resulting film, which improved the crystallinity with increased mean grain size, surface roughness, and carrier mobility at the cost of decreased carrier concentration. However, film deposited with excess HCl suffered from corrosion and huge cracks, making it unfavorable for solar applications. On the other hand, although presence of methanol improved the crystallinity of the resulting film, the surface was smooth due to lower deposition rate. Kubelka-Munk theory was used to estimate the optical bandgap of the deposited thin films, revealing values fairly close to optimum for solar cell applications.

  8. The clinical applicability of a daily summary of patients' self-reported postoperative pain-A repeated measure analysis.

    Science.gov (United States)

    Wikström, Lotta; Eriksson, Kerstin; Fridlund, Bengt; Nilsson, Mats; Årestedt, Kristofer; Broström, Anders

    2017-03-23

    (i) To determine whether a central tendency, median, based on patients' self-rated pain is a clinically applicable daily measure to show patients' postoperative pain on the first day after major surgery (ii) and to determine the number of self-ratings required for the calculation of this measure. Perioperative pain traits in medical records are difficult to overview. The clinical applicability of a daily documented summarising measure of patients' self-rated pain scores is little explored. A repeated measure design was carried out at three Swedish country hospitals. Associations between the measures were analysed with nonparametric statistical methods; systematic and individual group changes were analysed separately. Measure I: pain scores at rest and activity postoperative day 1; measure II: retrospective average pain from postoperative day 1. The sample consisted of 190 general surgery patients and 289 orthopaedic surgery patients with a mean age of 65; 56% were men. Forty-four percent had a pre-operative daily intake of analgesia, and 77% used postoperative opioids. A range of 4-9 pain scores seem to be eligible for the calculation of the daily measures of pain. Rank correlations for individual median scores, based on four ratings, vs. retrospective self-rated average pain, were moderate and strengthened with increased numbers of ratings. A systematic group change towards a higher level of reported retrospective pain was significant. The median values were clinically applicable daily measures. The risk of obtaining a higher value than was recalled by patients seemed to be low. Applicability increased with increased frequency of self-rated pain scores and with high-quality pain assessments. The documenting of daily median pain scores at rest and during activity could constitute the basis for obtaining patients' experiences by showing their pain severity trajectories. The measures could also be an important key to predicting postoperative health

  9. Application of X-ray microtomography for the characterisation of hollow polymer-stabilised spray dried amorphous dispersion particles.

    Science.gov (United States)

    Gamble, John F; Terada, Masako; Holzner, Christian; Lavery, Leah; Nicholson, Sarah J; Timmins, Peter; Tobyn, Mike

    2016-08-20

    The aim of this study was to investigate the capability of X-ray microtomography to obtain information relating to powder characteristics such as wall thickness and solid volume fraction for hollow, polymer-stabilised spray dried dispersion (SDD) particles. SDDs of varying particle properties, with respect to shell wall thickness and degree of particle collapse, were utilised to assess the capability of the approach. The results demonstrate that the approach can provide insight into the morphological characteristics of these hollow particles, and thereby a means to understand/predict the processability and performance characteristics of the bulk material. Quantitative assessments of particle wall thickness, particle/void volume and thereby solid volume fraction were also demonstrated to be achievable. The analysis was also shown to be able to qualitatively assess the impact of the drying rate on the morphological nature of the particle surfaces, thus providing further insight into the final particle shape. The approach demonstrated a practical means to access potentially important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as particle size and bulk density, may enable a better understanding of such materials, and their impact on downstream processability and dosage form performance.

  10. Characterization of spray-deposited ZnO thin films for dye-sensitized solar cell application

    Science.gov (United States)

    Amala Rani, A.; Ernest, Suhashini

    2016-07-01

    ZnO films have been prepared on glass plates with concentrations of 0.025, 0.05 and 0.1 M each consisting of 50 ml of solution using the spray pyrolysis technique. A dye-sensitized solar cell (DSSC) was constructed by means of the obtained film for 0.1 M which was also coated above the ITO substrate. N-719, iodide and platinum-coated ITO glass plates were used as the dye, electrolyte and counter electrode, respectively. XRD confirms that the structure of the film was polycrystalline having wurtzite structure. The surface with pores was found from the FESEM studies. The DSSC shows an optical transmittance of approximately 70 % in the visible region. The photoluminescence study reveals the electronic structure of the material. The efficiency of the DSSC measured for a 0.1 M ZnO thin film by sensitizing every 2 h was η = 0.51, 0.80, 0.54, 1.12, 2.11, 2.71, 3.15 and 3.20 %, respectively.

  11. Application of atmospheric solution precursor plasma spray to photocatalytic devices for small and medium industries in developing countries

    Science.gov (United States)

    Kindole, Dickson; Ando, Yasutaka

    2017-01-01

    For development of a functional film deposition process with high deposition rate, as a basic study, TiO2 films were deposited by atmospheric solution precursor plasma spray (ASPPS) process. Ethanol-diluted titanium tetraisobutoxide [TTIB: Ti(OC4H9)4] was used as a feedstock. To achieve a high plasma thermal energy at a low discharge power, N2-dominant Ar/N2 as the plasma working gas was used, for film deposition at various deposition distances. Consequently, photocatalytic TiO2 with a rutile/anatase mixture film structure was deposited evenly in this case. By conducting methylene blue decomposition and wettability tests, photocatalytic properties of the film were confirmed. When a TiO2 film was applied to photocatalytic dye-sensitized solar cells (DSSCs), the cells generated an electromotive force of 0.143V oc, which is close to those of commercial DSSCs. From these results, the ASPPS process was found to have high potential for high rate functional film deposition and was cost effective, making it suitable for developing countries.

  12. Online monitoring of particle mass flow rate in bottom spray fluid bed coating--development and application.

    Science.gov (United States)

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2010-08-16

    The primary purpose of this study is to develop a visiometric process analyzer for online monitoring of particle mass flow rate in the bottom spray fluid bed coating process. The secondary purpose is to investigate the influences of partition gap and air accelerator insert size on particle mass flow rate using the developed visiometric process analyzer. Particle movement in the region between the product chamber and partition column was captured using a high speed camera. Mean particle velocity and number of particles in the images were determined by particle image velocimetry and morphological image processing method respectively. Mass flow rate was calculated using particle velocity, number of particles in the images, particle density and size information. Particle velocity and number findings were validated using image tracking and manual particle counting techniques respectively. Validation experiments showed that the proposed method was accurate. Partition gap was found to influence particle mass flow rate by limiting the rate of solids flux into the partition column; the air accelerator insert was found to influence particle mass flow rate by a Venturi effect. Partition gap and air accelerator insert diameter needed to be adjusted accordingly in relation to the other variability sources and diameter of coating cores respectively. The potential, challenges and possible solutions of the proposed visiometric process analyzer were further discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  14. Application of a Reinforced Self-Compacting Concrete Jacket in Damaged Reinforced Concrete Beams under Monotonic and Repeated Loading

    Directory of Open Access Journals (Sweden)

    Constantin E. Chalioris

    2013-01-01

    Full Text Available This paper presents the findings of an experimental study on the application of a reinforced self-compacting concrete jacketing technique in damaged reinforced concrete beams. Test results of 12 specimens subjected to monotonic loading up to failure or under repeated loading steps prior to total failure are included. First, 6 beams were designed to be shear dominated, constructed by commonly used concrete, were initially tested, damaged, and failed in a brittle manner. Afterwards, the shear-damaged beams were retrofitted using a self-compacting concrete U-formed jacket that consisted of small diameter steel bars and U-formed stirrups in order to increase their shear resistance and potentially to alter their initially observed shear response to a more ductile one. The jacketed beams were retested under the same loading. Test results indicated that the application of reinforced self-compacting concrete jacketing in damaged reinforced concrete beams is a promising rehabilitation technique. All the jacketed beams showed enhanced overall structural response and 35% to 50% increased load bearing capacities. The ultimate shear load of the jacketed beams varied from 39.7 to 42.0 kN, whereas the capacity of the original beams was approximately 30% lower. Further, all the retrofitted specimens exhibited typical flexural response with high values of deflection ductility.

  15. Effect of Am-80, A Novel Retinoid Derivative, On Contact Hypersensitivity Caused by Repeated Applications of Hapten in Mice

    Directory of Open Access Journals (Sweden)

    Satoru Niwa

    2000-01-01

    Full Text Available Some retinoids show an anti-inflammatory action through regulation of transcription of various genes. In the present study, the inhibitory effect of 4-((5,6,7,8- tetrahydro-5,5,8,8-tetramethyl-2-naphthyl carbamoyl benzoic acid (Am-80, a synthetic retinoid, on mouse contact hypersensitivity provoked by repeated applications of 2,4-dinitrofluorobenzene (DNFB to the ear was investigated. Five-fold applications of DNFB on ears once per week elicited severe contact dermatitis with marked infiltration of inflammatory cells and elevation of anti-dinitrophenyl (DNP-IgE antibody in the serum. The Am-80 significantly inhibited ear swelling in a dose-dependent manner. In the histopathologic study, infiltration of inflammatory cells was clearly decreased by Am-80. However, Am-80 did not affect the production of DNP-specific IgE antibody both at the transcriptional and post-transcriptional levels. The effects of Am-80 on the transcriptional level of cytokines, interferon (IFN-γ, interleukin (IL-1 and IL-4 in cervical lymph nodes were investigated. Marked elevation of mRNA for all cytokines was observed and Am-80 potently inhibited the expression of IFN-γ mRNA, but not IL-1 and IL-4 mRNA. These findings indicated that Am-80 may inhibit the contact dermatitis at the post-sensitization phase by inhibiting IFN-γ production at the transcriptional level in mice.

  16. Performance of spray nozzles in land applications with high speed Desempenho de pontas de pulverização em aplicações terrestres com alta velocidade

    Directory of Open Access Journals (Sweden)

    Samir E. Zaidan

    2012-12-01

    Full Text Available The aim of this study was to evaluate different spray nozzles for land applications in high speed on the coverage and deposit in soybean plants pulverization. It was evaluated the AXI 110 04 plane jet nozzles operated at speed of 4.17m.s-1 (control, the grey APE and the AXI 110 08 plane jets, and the TD HiSpeed 110 06 and AXI TWIN 120 06 twin jets, at speed of 9.72m.s-1. The application volume was fixed in 120L ha-1. The application efficiency was evaluated by two different methods: analysis of the coverage area using fluorescent pigment and UV light and analysis of deposits through the recovery and quantification of FD&C N°1 brilliant blue marker by spectrophotometry. Both analyses were done in samples collected from top, middle and bottom parts of the plants. The spray nozzles showed differences in coverage and deposit pattern, so in the top part, the coverage was increased with smaller drops and the deposits were increased with medium drops. In the other parts of the plants, there were no statistical differences between the treatments for both coverage and deposits. The displacement speed did not influence the application efficiency for nozzles with the same drop pattern, and the obtained spray coverage and deposits at the medium and bottom parts of the plants were less than 50% of that found at the top of the soybean plants.O objetivo do trabalho foi avaliar o efeito de diferentes pontas de pulverização para aplicações terrestres em alta velocidade sobre a cobertura e depósito da pulverização em plantas de soja. Foram avaliadas as pontas de jatos planos AXI 110 04 à velocidade de 4,17 m.s-1 (testemunha, de jatos planos APE cinza e AXI 110 08, e de jatos planos duplos TD HiSpeed 110 06 e AXI TWIN 120 06, à velocidade de deslocamento de 9,72 m.s-1. O volume de aplicação foi fixado em 120 L.ha-1. A eficiência de aplicação foi avaliada por dois métodos: análise visual do percentual de cobertura, utilizando marcador fluorescente

  17. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  18. RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments

    DEFF Research Database (Denmark)

    Peltre, Clément; Christensen, Bent Tolstrup; Dragon, Sophine

    2012-01-01

    Multi-compartment soil carbon (C) simulation models such as RothC are widely used for predicting changes in C stocks of arable soils. However, rigorous routines for establishing entry pools that account for the diversity of exogenous organic matter (EOM) applied to croplands are still lacking. We...... obtained data on changes in soil C stocks after repeated applications of EOM from four long-term experiments (LTEs): Askov K2 (Denmark, 31 yrs), Qualiagro (France, 11 yrs), SERAIL (France, 14 yrs) and Ultuna (Sweden, 52 yrs). The adjustment of the partition coefficients of total organic C in EOM (EOM......-TOC) into the labile, resistant and humified entry pools of RothC (fDPM, fRPM, fHUM, respectively) provided a successful fit to the accumulation of EOM-derived C in the LTE soils. Equations estimating the EOM partition coefficients in the RothC model were based on an indicator (IROC) of the EOM-TOC potentially...

  19. Changes in Soluble-N in Forest and Pasture Soils after Repeated Applications of Tannins and Related Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Jonathan J. Halvorson

    2012-01-01

    Full Text Available Tannins (produced by plants can reduce the solubility of soil-N. However, comparisons of tannins to related non-tannins on different land uses are limited. We extracted soluble-N from forest and pasture soils (0–5 cm with repeated applications of water (Control or solutions containing procyanidin from sorghum, catechin, tannic acid, β-1,2,3,4,6-penta-O-galloyl-D-glucose (PGG, gallic acid, or methyl gallate (10 mg g−1 soil. After eight treatments, samples were rinsed with cool water (23°C and incubated in hot water (16 hrs, 80°C. After each step, the quantity of soluble-N and extraction efficiency compared to the Control was determined. Tannins produced the greatest reductions of soluble-N with stronger effects on pasture soil. Little soluble-N was extracted with cool water but hot water released large amounts in patterns influenced by the previous treatments. The results of this study indicate hydrolyzable tannins like PGG reduce the solubility of labile soil-N more than condensed tannins like sorghum procyanidin (SOR and suggest tannin effects will vary with land management. Because they rapidly reduce solubility of soil-N and can also affect soil microorganisms, tannins may have a role in managing nitrogen availability and retention in agricultural soils.

  20. Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application

    Science.gov (United States)

    Das, Harinarayan; Sakamoto, Naonori; Aono, Hiromichi; Shinozaki, Kazuo; Suzuki, Hisao; Wakiya, Naoki

    2015-10-01

    In this paper, we present the synthesized of magnesium ferrite (MgFe2O4) nano-spheres by a single-step ultrasonic spray pyrolysis (USP) technique from the aqueous metal nitrate precursor solution without any organic additives or post-annealing processes. The effects of different pyrolysis temperatures on the particles size, morphology and their superparamagnetic behavior have been investigated to evaluate the heat generation efficiency in an AC magnetic field. The X-ray powder diffraction spectra of MgFe2O4 nano-spheres synthesized at the pyrolysis temperatures of 600, 700, 800 and 900 °C exhibited single phase cubic structure and obtained mean crystallite size (primary particles) of 4.05, 9.6, 15.97 and 31.48 nm, respectively. Transmission electron microscopy (TEM) confirms that the particles consisted of aggregates of the primary crystallite had densely congested spherical morphology with extremely smooth surface appearance. Field emission electron microscopy (FESEM) reveals that the shape and size of the nano-spheres (secondary particles) does not change significantly but the degree of agglomeration between the secondary particles was reduced with increasing the pyrolysis temperature. The average size and size distribution of nano-spheres measured using electrophoretic scattering photometer have found very low polydispersity index (PDI) for all samples. The field dependent magnetization studies indicated superparamagnetic nature for the particles having crystallite size i.e. 4.05 and 9.6 nm and exhibited ferromagnetic nature for 15.97 and 31.48 nm. It is also demonstrated that, as the pyrolysis temperature increases, the saturation magnetization of the MgFe2O4 nanopowders increases due to enhancement of crystallites. The shift in Curie temperature is well described by the finite-size scaling formula. The magnetically loss heating values of selected samples in crystallite size of 9.6 and 15.97 nm were investigated by measuring the time dependent temperature

  1. Development of an unmanned aerial vehicle-based spray system for highly accurate site-specific application

    Science.gov (United States)

    Application of crop production and protection materials is a crucial component in the high productivity of American agriculture. Agricultural chemical application is frequently needed at a specific time and location for accurate site-specific management of crop pests. Piloted aircrafts that carry ...

  2. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Science.gov (United States)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  3. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  4. Study of Multi-Function Micro-Plasma Spraying Technology

    Institute of Scientific and Technical Information of China (English)

    WANG Liuying; WANG Hangong; HUA Shaochun; CAO Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.

  5. 干油喷射式润滑在连轧管机组设备上的应用%The Application of Dry oil Sprays Lubrication in The Company Tube Rolling Train

    Institute of Scientific and Technical Information of China (English)

    张力

    2011-01-01

    介绍了干油喷射式润滑系统的原理、技术特。最,以及该系统在连轧管机组设备上的成功应用。%In this paper, the author introduced principle and features of dry oil sprays lubrication system, and the application of the system in the company tube rolling train.

  6. Synthesis of Zn1- x Co x Al2O4 Spinel Nanoparticles by Liquid-Feed Flame Spray Pyrolysis: Ceramic Pigments Application

    Science.gov (United States)

    Betancur Granados, Natalia; Yi, Eongyu; Laine, Richard M.; Restrepo Baena, Oscar Jaime

    2016-01-01

    Zn1- x Co x Al2O4 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) spinel nanoparticles were synthesized by a liquid-feed flame spray pyrolysis (LF-FSP) method by combusting metallorganic precursor solutions to produce nanopowders with precise composition control. The precursor solutions were aerosolized into a methane/oxygen flame where it was combusted in an oxygen-rich environment to result in nanopowders at a single step. The nanopowders were analyzed by x-ray diffraction, Fourier transform infrared spectroscopy, colorimetry, field emission scanning electron microscopy, transmission electron microscopy, and BET (Brunauer-Emmett-Teller) N2 adsorption. Results show formation of spherical nanopowders with specific surface areas of 42 m2/g to 50 m2/g, which correspond to average particle sizes of 26 nm to 31 nm. Single-phase materials were obtained with a high control of composition, which indicates that LF-FSP is an excellent method to produce mixed-metal oxides for applications in which powder homogeneity is crucial. The products were evaluated for ceramic pigment application, where the ratio of Zn to Co was gradually changed to observe the color change in the structure with the increase of cobalt concentration. The resulting pigments were calcined at 1200°C, which aimed to identify the color stability after a high-temperature process, whereby the colors were measured using the color space CIE L*a*b* under standardized light, D65. Finally, the powders were tested for ceramic decoration using transparent glazes and ceramic bodies. The application was carried out at 1250°C to evaluate the color performance after a decoration process.

  7. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    Science.gov (United States)

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-04-01

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×104 S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m2/g) are achieved. Two-electrode supercapacitor assembled using the CNT-rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of -64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications.

  8. Laser-Based Spatio-Temporal Characterisation of Port Fuel Injection (PFI Sprays

    Directory of Open Access Journals (Sweden)

    C. T. N. Anand

    2010-06-01

    Full Text Available In the present work, detailed laser-based diagnostic experiments were conducted to characterise the spray from low pressure 2-hole and 4-hole Port Fuel Injection (PFI injectors. The main objective of the work included obtaining quantitative information of the spatio-temporal spray structure of such low-pressure gasoline sprays. A novel approach involving a combination of techniques such as Mie scattering, Granulometry, and Laser Sheet Dropsizing (LSD was used to study the spray structure. The droplet sizes, distributions with time, Sauter Mean Diameters (SMD, droplet velocities, cone angles and spray tip penetrations of the sprays from the injectors were determined. The spray from these injectors is found to be ‘pencil like’ and not dispersed as in high pressure sprays. The application of the above mentioned techniques provides two-dimensional SMD contours of the entire spray at different instants of time, with reasonable accuracy.

  9. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  10. Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application

    Energy Technology Data Exchange (ETDEWEB)

    Das, Harinarayan, E-mail: hn_das@yahoo.com [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561 (Japan); Materials Science Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh (Bangladesh); Sakamoto, Naonori [Department of Electronics and Materials Science, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561 (Japan); Aono, Hiromichi [Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-85770 (Japan); Shinozaki, Kazuo [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 O-okayama Meguro-ku, Tokyo 152-8550 (Japan); Suzuki, Hisao; Wakiya, Naoki [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561 (Japan); Department of Electronics and Materials Science, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561 (Japan)

    2015-10-15

    In this paper, we present the synthesized of magnesium ferrite (MgFe{sub 2}O{sub 4}) nano-spheres by a single-step ultrasonic spray pyrolysis (USP) technique from the aqueous metal nitrate precursor solution without any organic additives or post-annealing processes. The effects of different pyrolysis temperatures on the particles size, morphology and their superparamagnetic behavior have been investigated to evaluate the heat generation efficiency in an AC magnetic field. The X-ray powder diffraction spectra of MgFe{sub 2}O{sub 4} nano-spheres synthesized at the pyrolysis temperatures of 600, 700, 800 and 900 °C exhibited single phase cubic structure and obtained mean crystallite size (primary particles) of 4.05, 9.6, 15.97 and 31.48 nm, respectively. Transmission electron microscopy (TEM) confirms that the particles consisted of aggregates of the primary crystallite had densely congested spherical morphology with extremely smooth surface appearance. Field emission electron microscopy (FESEM) reveals that the shape and size of the nano-spheres (secondary particles) does not change significantly but the degree of agglomeration between the secondary particles was reduced with increasing the pyrolysis temperature. The average size and size distribution of nano-spheres measured using electrophoretic scattering photometer have found very low polydispersity index (PDI) for all samples. The field dependent magnetization studies indicated superparamagnetic nature for the particles having crystallite size i.e. 4.05 and 9.6 nm and exhibited ferromagnetic nature for 15.97 and 31.48 nm. It is also demonstrated that, as the pyrolysis temperature increases, the saturation magnetization of the MgFe{sub 2}O{sub 4} nanopowders increases due to enhancement of crystallites. The shift in Curie temperature is well described by the finite-size scaling formula. The magnetically loss heating values of selected samples in crystallite size of 9.6 and 15.97 nm were investigated by measuring

  11. Assessing the fate of an aromatic hydrocarbon fluid in agricultural spray applications using the three-stage ADVOCATE model framework

    Science.gov (United States)

    Components of emulsifiable concentrates (ECs) used in pesticide formulations may be emitted to air following application in agricultural use and contribute to ozone formation. A key consideration is the fraction of the ECs that is volatilized. This study is designed to provide a mechanistic model fr...

  12. 振孔切喷截渗墙技术在堤防消险加固中的应用%Application of vibrating hole cutting spraying intercepting seepage wall technique in dike damage prevention and dike reinforcement

    Institute of Scientific and Technical Information of China (English)

    王永明; 郝群; 张秀宏

    2001-01-01

    The paper introduced the application of the vibrating hole cutting spraying intercepting seepage wall technique in the urban dike damage prevention,dike reinforcement and intercepting seepage.The technical theory,engineering design,construction technique,quality check for the vibrating hole cutting spraying are discussed in this paper.%介绍振孔切喷截渗墙技术在城区堤防消险加固截渗工程中的应用。其中包括振孔切喷技术工艺原理、工程设计、施工工艺、质量检查方法等。

  13. Inflammation of stratified mixtures in spray guided DI gasoline engines: optimization by application of high speed imaging techniques; Entflammung geschichteter Gemische im strahlgefuehrten Benzin-DI-Motor: Optimierung mit Hilfe von Hochgeschwindigkeits-Visualisierung

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, D.; Kerek, Z.; Wirth, M. [Ford Motor Co. (Germany); Gansert, K.P.; Grzeszik, R.; Storch, A. [Robert Bossch GmbH (Germany); Josefsson, G.; Sandquist, H. [Volvo Car Corp. (Sweden)

    2004-07-01

    Stratified combustion in spray guided DI gasoline engines is characterized by a maximum of fuel economy potential but also by critical design parameters related to the geometric layout of the combustion system. The relative position between fuel spray and ignition location is essential as well as the dedicated design of the spark plug itself. This could be assessed in multicylinder engine experiments creating the base information for subsequent system component optimizations. The combustion system and component design can be supported to a large extend by in-cylinder investigations of the ignition process. High speed video imaging techniques have been applied in a transparent engine in order to gain a deep understanding of different spark discharge events including successful ignitions as well as misfires. The simultaneous application of imaging and high resolution electrical spark discharge analysis coupled with statistical analysis methods provide valuable insights into the specific conditions of the stratified DI ignition requirements. (orig.)

  14. Zolmitriptan Nasal Spray

    Science.gov (United States)

    ... a copy of the manufacturer's information for the patient.To use the nasal spray, follow these steps: ... used to treat certain types of migraine headaches (hemiplegic or basilar) or other types of headaches (such ...

  15. Budesonide Nasal Spray

    Science.gov (United States)

    ... ingredients in budesonide nasal spray. Check the package label for a list of the ingredients.tell your doctor and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  16. Fluticasone Nasal Spray

    Science.gov (United States)

    ... ingredients in fluticasone nasal spray. Check the package label for a list of the ingredients.tell your doctor and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking, or ...

  17. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  18. Sensors in Spray Processes

    Science.gov (United States)

    Fauchais, P.; Vardelle, M.

    2010-06-01

    This paper presents what is our actual knowledge about sensors, used in the harsh environment of spray booths, to improve the reproducibility and reliability of coatings sprayed with hot or cold gases. First are described, with their limitations and precisions, the different sensors following the in-flight hot particle parameters (trajectories, temperatures, velocities, sizes, and shapes). A few comments are also made about techniques, still under developments in laboratories, to improve our understanding of coating formation such as plasma jet temperature measurements in non-symmetrical conditions, hot gases heat flux, particles flattening and splats formation, particles evaporation. Then are described the illumination techniques by laser flash of either cold particles (those injected in hot gases, or in cold spray gun) or liquid injected into hot gases (suspensions or solutions). The possibilities they open to determine the flux and velocities of cold particles or visualize liquid penetration in the core of hot gases are discussed. Afterwards are presented sensors to follow, when spraying hot particles, substrate and coating temperature evolution, and the stress development within coatings during the spray process as well as the coating thickness. The different uses of these sensors are then described with successively: (i) Measurements limited to particle trajectories, velocities, temperatures, and sizes in different spray conditions: plasma (including transient conditions due to arc root fluctuations in d.c. plasma jets), HVOF, wire arc, cold spray. Afterwards are discussed how such sensor data can be used to achieve a better understanding of the different spray processes, compare experiments to calculations and improve the reproducibility and reliability of the spray conditions. (ii) Coatings monitoring through in-flight measurements coupled with those devoted to coatings formation. This is achieved by either maintaining at their set point both in-flight and

  19. Metal atomization spray nozzle

    Science.gov (United States)

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  20. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer

    Directory of Open Access Journals (Sweden)

    Denise Tourino Rezende de Cerqueira

    Full Text Available ABSTRACT: Improved spray deposition can be attained by electrostatically charging spray droplets, which increases the attraction of droplets to plants and decreases operator exposure to pesticide and losses to the environment. However, this technique alone is not sufficient to achieve desirable penetration of the spray solution into the crop canopy; thus, air assistance can be added to the electrostatic spraying to further improve spray deposition. This study was conducted to compare different spraying technologies on spray deposition and two-spotted spider mite control in cut chrysanthemum. Treatments included in the study were: conventional TJ 8003 double flat fan nozzles, conventional TXVK-3 hollow cone nozzles, semi-stationary motorized jet launched spray with electrostatic spray system (ESS and air assistance (AA, and semi-stationary motorized jet launched spray with AA only (no ESS. To evaluate the effect of these spraying technologies on the control of two-spotted spider mite, a control treatment was included that did not receive an acaricide application. The AA spraying technology, with or without ESS, optimized spray deposition and provided satisfactory two-spotted spider mite control up to 4 days after application.

  1. Deployment Repeatability

    Science.gov (United States)

    2016-04-01

    controlled to great precision, but in a Cubesat , there may be no attitude determination at all. Such a Cubesat might treat sun angle and tumbling rates as...could be sensitive to small differences in motor controller timing. In these cases, the analyst might choose to model the entire deployment path, with...knowledge of the material damage model or motor controller timing precision. On the other hand, if many repeated and environmentally representative

  2. DROPLETS AND PARTICLES IN SPRAYS: TAILORING PARTICLE PROPERTIES WITHIN SPRAY PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Udo Fritsching

    2005-01-01

    Particle generation via atomization and spray processes is a widely applied method for powder production.By means of atomization processes, the relevant particle properties may be tailored to the powder user's need in a wide range. Understanding and control of the main subprocesses of atomization is a key feature for choosing a suitable type of spray process and operation conditions. Tailoring particle properties and extending the applications of particle production beyond the current limits is also possible in this way. This contribution highlights some features of spray processes for powder production, namely the gas- and fluid-dynamic processes involved, the materials-related subprocesses, and the formation of the multiphase flow in the spray. As an example, the production of fibre- or sphere-shaped particles from melt atomization is discussed.

  3. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost.

    Science.gov (United States)

    Fang, Wen; Delapp, Rossane C; Kosson, David S; van der Sloot, Hans A; Liu, Jianguo

    2017-02-01

    Leaching assessment procedures have been used to determine the leachability of heavy metals as input for evaluating the risk from sewage sludge compost land application. However, relatively little attention has been paid to understanding leaching from soils with repeated application of sewage sludge compost with elevated levels of heavy metals. In this paper, leaching assessment is extended to evaluate the potential leaching of heavy metals during repetitive application of composted sewage sludge to soils. Four cycling of compost additions and percolation leaching were conducted to investigate how leaching behavior of heavy metals changed with repeated additions of compost. Results showed that repetitive additions of compost to soil significantly increased the content of organic matter, which favored the formation of reducing condition due to improved microbial activities and oxygen consumption. Establishment of reducing conditions can enhance the leaching concentrations of As by approximately 1 order of magnitude, especially for the soil rich in organic matter. For Cd, Cr, Cu, and Pb, repeated additions of compost will cause accumulation in total contents but not enhancement in leaching concentrations. The infiltration following compost additions will leach out the mobile fraction and the residual fraction might not release in the next cycling of compost addition and infiltration. The cumulative release of Cd, Cr, Cu, and Pb accounted for less than 5% of the total contents during four times of compost applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-01-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between multiple identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five GRC provided coupons with 25 layers was shown to be +/- 8.4 whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0. A second group of 10 coupons have been fabricated by Yetispace and tested by Florida State University, through the first 4 tests, the repeatability has been shown to be +/- 16. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  5. Physical and photo-electrochemical characterizations of ZnO thin films deposited by ultrasonic spray method: Application to HCrO4- photoreduction

    Science.gov (United States)

    Zebbar, N.; Trari, M.; Doulache, M.; Boughelout, A.; Chabane, L.

    2014-02-01

    ZnO thin films, prepared by ultrasonic spray onto glass substrate, crystallize in the wurtzite structure. The XRD pattern shows preferential orientation along the [0 0 2] direction. The films deposited at 350 °C consist of 60 nm crystallites with an average thickness of ∼150 nm and SEM images show rough surface areas. The gap increases with increasing the temperature of the substrate and a value of 3.25 eV is obtained for films deposited at 350 °C. ZnO is nominally non-stochiometric and exhibits n-type conduction because of the native defects such as oxygen vacancies (VO) and/or interstitial zinc atom (Zni) which act as donor shallows. The conductivity is thermally activated and obeys to an exponential type law with activation energy of 57 meV and an electron mobility of 7 cm2 V-1 s-1. The capacitance-voltage (C-2 V) measurement in acid electrolyte (pH ∼ 3) shows a linear behavior with a positive slope, characteristic of n-type conduction. A flat band potential of -0.70 VSCE and a donors density of 5.30 × 1016 cm-3 are determined. The Nyquist plot exhibits two semicircles attributed to a capacitive behavior with a low density of surface states within the gap region. The centre is localized below the real axis with a depletion angle of 16° ascribed to a constant phase element (CPE) due to the roughness of the film. The energy band diagram assesses the potentiality of ZnO films for the photo-electrochemical conversion. As application, 94% of chromate (3.8 × 10-4 M) is reduced after 6 h under sunlight (AM 1) with a quantum yield of 0.06% and the oxidation follows a first order kinetic.

  6. Performance experiment of rotary hydraulic atomizing nozzle for aerial spraying application%航空施药旋转液力雾化喷头性能试验

    Institute of Scientific and Technical Information of China (English)

    茹煜; 金兰; 周宏平; 贾志成

    2014-01-01

    无人机航空喷雾将会在未来几年的植物病虫害防治作业中发挥重要作用。为实现无人机低空、低量、高功效的喷洒需求,该文针对兼备液力雾化和离心雾化优点的旋转液力雾化喷头进行了性能试验研究,利用喷头雾化性能测试系统对喷孔直径、喷雾压力、电机转速因素对喷头雾滴粒径、沉积分布、喷幅和功率消耗的影响进行了试验研究。结果显示,喷头旋转电机电压相比喷孔直径、喷雾压力参数对雾滴粒径影响更显著,随着电机电压增加,雾滴粒径变小,雾化效果好;电机电压对幅宽也有明显影响,随着电极电压增加,喷雾角度变大,幅宽明显增加,雾滴沉积量在喷幅范围内呈现正态分布。通过试验结果优选出适合无人机的旋转液力雾化喷头的最佳工作参数:电机电压为10 V,喷雾压力为0.35 MPa,喷嘴孔径是0.7 mm,该工作参数下,液泵功率消耗率最低,雾滴平均粒径为112.35μm,喷幅为3.88 m,电机功率消耗为8.6 W。该文的研究结果为开发适用于无人机的新型喷洒雾化装置,提高无人机作业质量和喷洒功效提供理论依据和技术支持。%Pests and plant diseases cause damage at different levels to China’s grain production and economic crops every year. The annual area damaged by pests and diseases is about 470 000 000 hm2, resulting in significant yield losses-about 20% of the total grain yield. A small-size unmanned helicopter has the advantages of flexible operation, strong automatic control ability, and less droplet drift. In addition, pesticides it sprays can penetrate a crop canopy assisted by rotor airflow. Hence, the agricultural chemical control for pests and diseases in medium and small sized fields using a small-size unmanned helicopter is an important means to guarantee grain production. It is one of effective methods for Chinese pesticide-spraying mechanization. In

  7. Construction and application of mobile spraying uniformity model of hard hose traveler%卷盘式喷灌机移动喷洒均匀度计算模型构建与应用

    Institute of Scientific and Technical Information of China (English)

    葛茂生; 吴普特; 朱德兰; 张林; 肖潇; 许慧泽

    2016-01-01

    卷盘式喷灌机移动喷洒均匀度是衡量灌溉质量的重要指标。现有卷盘式喷灌机组均匀度计算方法或过于繁琐,或显计算精度不足。该研究提出一种基于最小二乘法的移动喷洒均匀度计算模型,模型计算结果与实测结果偏差在6%以内。应用该模型对配备50PYC垂直摇臂式喷枪的卷盘式喷灌机进行模拟,结果表明:不同工作压力下的灌水深度呈梯形分布,移动喷洒均匀度随喷枪工作压力的升高略有提升。喷枪辐射角对机组的喷洒均匀度有较大影响,喷枪辐射角为180°、220°和270°时,移动喷洒均匀度系数分别为61.4%、69.9%和71.9%。喷枪辐射角的增大可有效提高喷洒域内各点的灌水历时,从而降低平均喷灌强度,减小地表径流的发生概率。移动喷洒均匀度系数随组合间距的增加先增高后降低,组合间距在1.5R~1.7R时的组合喷洒均匀度系数不低于85%。综合考虑喷枪辐射角和组合间距双因素对移动喷洒均匀度的影响,该工况下喷枪辐射角的适宜范围为240°~320°,组合间距的适宜范围为1.4 R~1.7 R。该研究结果可为卷盘式喷灌机组运行参数的优化配置提供参考。%Spray uniformity is an important index to evaluate the irrigation quality of hard hose traveler. The existed uniformity calculating methods are complicated or show poor calculation accuracy. In this study, a curve fitting based on least square method was used for the radial water application of large flow rate sprinkler gun and a corresponding simplified calculation model was built to attain the mobile spraying uniformity. The model was mainly composed of three parts: the curve fitting of radial water distribution, water overlapping in the moving direction and the calculation of combined spraying uniformity. A spraying experiment was designed to verify the accuracy of the model. A JP75-300 type hard hose traveler was adopted in the

  8. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  9. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  10. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  11. Water jet/spray measurement analysis

    Science.gov (United States)

    Lala, G. G.

    1986-01-01

    The objective of this study was to provide analysis of data obtained under a previous contract entitled Characterization of Drop Spectra from High Volume Flow Water Jets. Measurements of drop spectra were obtained in the spray resulting from the breakup of high volume flow water jets from a variety of nozzle types. The drop spectra measurements were obtained from two drop spectrometers covering a range from 10 microns to 12 millimeters diameter. The task addressed was to select representative spectra from the individual tests and provide analyses in both numerical and graphical formats as outlined in the proposal. The intended application of these results is an evaluation of the feasibility of fog clearing by high volume water sprays. During the tests, a fog event occurred making it possible to test the concept of fog clearing. Visual range data and fog drop spectra were analyzed, with particular emphasis placed on the modification of these parameters due to the water spray.

  12. Design of a Microgravity Spray Cooling Experiment

    Science.gov (United States)

    Baysinger, Kerri M.; Yerkes, Kirk L.; Michalak, Travis E.; Harris, Richard J.; McQuillen, John

    2004-01-01

    An analytical and experimental study was conducted for the application of spray cooling in a microgravity and high-g environment. Experiments were carried out aboard the NASA KC-135 reduced gravity aircraft, which provided the microgravity and high-g environments. In reduced gravity, surface tension flow was observed around the spray nozzle, due to unconstrained liquid in the test chamber and flow reversal at the heat source. A transient analytical model was developed to predict the temperature and the spray heat transfer coefficient within the heated region. Comparison of the experimental transient temperature variation with analytical results showed good agreement for low heat input values. The transient analysis also verified that thermal equilibrium within the heated region could be reached during the 20-25s reduced gravity portion of the flight profile.

  13. Examining properties of arc sprayed nanostructured coatings

    Directory of Open Access Journals (Sweden)

    A. Czupryński

    2016-04-01

    Full Text Available The article presents the results of examining properties of arc sprayed coating obtained with nano-alloy on the iron matrix with a high amount of fine carbide precipitates sprayed on non-alloyed steel plates intended for high temperature operation. Powder metal cored wire EnDOtec DO*390N 1,6 mm diameter, was used to produce, dense, very high abrasion and erosion resistant coatings approx. 1,0 mm thick. Nano-material coatings characterization was done to determine abrasion resistance, erosion resistance, adhesion strength, hardness as well as metallographic examinations. Results have proved high properties of arc sprayed nano-material coatings and have shown promising industrial applications.

  14. Fullerene monolayer formation by spray coating.

    Science.gov (United States)

    Cervenka, J; Flipse, C F J

    2010-02-10

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method under ambient conditions. This technique has been successfully applied on C(60) dissolved in toluene and carbon disulfide. Monolayer thick C(60) films have been formed on graphite and gold surfaces at particular deposition parameters, as confirmed by atomic force and scanning tunnelling microscopies. Structural and electronic properties of spray coated C(60) films on Au(111) have been found comparable to thermally evaporated C(60). We attribute the monolayer formation in spray coating to a crystallization process mediated by an ultrathin solution film on a sample surface.

  15. Influence of spraying distance and postcooling on cryogen spray cooling for dermatologic laser surgery

    Science.gov (United States)

    Aguilar, Guillermo; Majaron, Boris; Viator, John A.; Basinger, Brooke; Karapetian, Emil; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage in various laser dermatological procedures such as treatment of port wine stain birthmarks and hair removal. However, the spray characteristics and combination of CSC and heating (laser) to obtain optimal treatments have not yet been determined. The distance between the nozzle tip and the skin surface for commercial devices was apparently chosen based on the position at which the cryogen spray reached a minimum temperature, presumably with the expectation that such a minimum would correspond to maximal heat flux. We have systematically measured spray characteristics of various nozzles, such as mean droplet diameter, velocity, temperature, and heat transfer coefficient, as a function of distance from the nozzle tip. Among other interesting correlations between these spray characteristics, it is shown that, for nozzle-to-skin distances between 20 to 80 mm, variations in the heat transfer coefficient are larger than those in the spray temperature and, therefore, maximization of the heat flux should be better dictated by the distance at which the heat transfer coefficient is maximized rather than that at which the spray temperature is minimized. Also, the influence of droplet diameter appears to be more influential on the heat transfer coefficient value than that of droplet velocity. Based on spray characteristic correlations, different ranges for positioning the nozzles are recommended, depending on the clinical application. Also, a 2D finite-difference method has been developed to study the spatial and temporal thermal variations within the skin. Our results show that it is possible to decrease significantly the epidermal damage after laser irradiation provided the heat transfer coefficient is significantly increased. The influence of post-cooling has minimal effects for the cases studied.

  16. Assessing the efficacy of spray-delivered 'eco-friendly' chemicals for the control and eradication of marine fouling pests.

    Science.gov (United States)

    Piola, Richard F; Dunmore, Robyn A; Forrest, Barrie M

    2010-01-01

    Despite its frequent use in terrestrial and freshwater systems, there is a lack of published experimental research examining the effectiveness of spray-delivered chemicals for the management of non-indigenous and/or unwanted pests in marine habitats. This study tested the efficacy of spraying acetic acid, hydrated lime and sodium hypochlorite for the control of marine fouling assemblages. The chemicals are considered relatively 'eco-friendly' due to their low toxicity and reduced environmental persistence compared to synthetic biocides, and they were effective in controlling a wide range of organisms. Pilot trials highlighted acetic acid as the most effective chemical at removing fouling cover, therefore it was selected for more comprehensive full-scale trials. A single spray of 5% acetic acid with an exposure time of 1 min effectively removed up to 55% of the invertebrate species present and 65% of the cover on fouled experimental plates, while one application of 10% acetic acid over 30 min removed up to 78% of species present and 95% of cover. Single-spray treatments of 5% acetic acid reduced cover of the tunicate pest species Didemnum vexillum by up to 100% depending on the exposure duration, while repeat-spraying ensured that even short exposure times (1 min) achieved approximately 99% mortality. Both 5 and 10% acetic acid solutions appeared equally effective at removing the majority of algal species. This technique could be used for controlling the introduction of unwanted species or preventing the spread of pests, and is applicable to use on a variety of natural and artificial substrata, or for the treatment of structures that can be removed from the water.

  17. Application of a novel 3-fluid nozzle spray drying process for the microencapsulation of therapeutic agents using incompatible drug-polymer solutions.

    Science.gov (United States)

    Sunderland, Tara; Kelly, John G; Ramtoola, Zebunnissa

    2015-04-01

    The aim of this study was to evaluate a novel 3-fluid concentric nozzle (3-N) spray drying process for the microencapsulation of omeprazole sodium (OME) using Eudragit L100 (EL100). Feed solutions containing OME and/or EL100 in ethanol were assessed visually for OME stability. Addition of OME solution to EL100 solution resulted in precipitation of OME followed by degradation of OME reflected by a colour change from colourless to purple and brown. This was related to the low pH of 2.8 of the EL100 solution at which OME is unstable. Precipitation and progressive discoloration of the 2-fluid nozzle (2-N) feed solution was observed over the spray drying time course. In contrast, 3-N solutions of EL100 or OME in ethanol were stable over the spray drying period. Microparticles prepared using either nozzle showed similar characteristics and outer morphology however the internal morphology was different. DSC showed a homogenous matrix of drug and polymer for 2-N microparticles while 3-N microparticles had defined drug and polymer regions distributed as core and coat. The results of this study demonstrate that the novel 3-N spray drying process can allow the microencapsulation of a drug using an incompatible polymer and maintain the drug and polymer in separate regions of the microparticles.

  18. Nasal spray flu vaccine (image)

    Science.gov (United States)

    The flu vaccine can also be administered as a nasal spray instead of the usual injection method. It can be ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should not ...

  19. JIT Spraying and Mitigations

    CERN Document Server

    Bania, Piotr

    2010-01-01

    With the discovery of new exploit techniques, novel protection mechanisms are needed as well. Mitigations like DEP (Data Execution Prevention) or ASLR (Address Space Layout Randomization) created a significantly more difficult environment for exploitation. Attackers, however, have recently researched new exploitation methods which are capable of bypassing the operating system’s memory mitigations. One of the newest and most popular exploitation techniques to bypass both of the aforementioned security protections is JIT memory spraying, introduced by Dion Blazakis. In this article we will present a short overview of the JIT spraying technique and also novel mitigation methods against this innovative class of attacks. An anti-JIT spraying library was created as part of our shellcode execution prevention system.

  20. Experimental Analysis of Tensile Mechanical Properties of Sprayed FRP

    Directory of Open Access Journals (Sweden)

    Zhao Yang

    2016-01-01

    Full Text Available To study the tensile mechanical properties of sprayed FRP, 13 groups of specimens were tested through uniaxial tensile experiments, being analyzed about stress-strain curve, tensile strength, elastic modulus, breaking elongation, and other mechanical properties. Influencing factors on tensile mechanical properties of sprayed FRP such as fiber type, resin type, fiber volume ratio, fiber length, and composite thickness were studied in the paper too. The results show that both fiber type and resin type have an obvious influence on tensile mechanical properties of sprayed FRP. There will be a specific fiber volume ratio for sprayed FRP to obtain the best tensile mechanical property. The increase of fiber length can lead to better tensile performance, while that of composite thickness results in property degradation. The study can provide reference to popularization and application of sprayed FRP material used in structure reinforcement.

  1. Design and Application of Spray Evaporative Cooling System for Blast Furnace Gas%高炉煤气喷雾蒸发冷却系统设计应用

    Institute of Scientific and Technical Information of China (English)

    朱亚同

    2014-01-01

    The application of spray evaporative cooling technology in metallurgical enter-prises to cool blast furnace gas is described, related process principles, process features are introduces and practical technical solutions are also provided.%叙述了利用喷雾蒸发冷却技术对钢铁企业中高炉煤气进行降温的工程应用。介绍了相关的工作原理、工艺流程、工艺特点,给出了实际的技术方案。

  2. Physical and photo-electrochemical characterizations of ZnO thin films deposited by ultrasonic spray method: Application to HCrO{sub 4}{sup −} photoreduction

    Energy Technology Data Exchange (ETDEWEB)

    Zebbar, N. [Department of Materials and Compounds, Faculty of Physics, USTHB, BP 32, Algiers 16111 (Algeria); Trari, M., E-mail: solarchemistry@gmail.com [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, Algiers 16111 (Algeria); Doulache, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, Algiers 16111 (Algeria); Boughelout, A.; Chabane, L. [Department of Materials and Compounds, Faculty of Physics, USTHB, BP 32, Algiers 16111 (Algeria)

    2014-02-15

    ZnO thin films, prepared by ultrasonic spray onto glass substrate, crystallize in the wurtzite structure. The XRD pattern shows preferential orientation along the [0 0 2] direction. The films deposited at 350 °C consist of 60 nm crystallites with an average thickness of ∼150 nm and SEM images show rough surface areas. The gap increases with increasing the temperature of the substrate and a value of 3.25 eV is obtained for films deposited at 350 °C. ZnO is nominally non-stochiometric and exhibits n-type conduction because of the native defects such as oxygen vacancies (V{sub O}) and/or interstitial zinc atom (Zn{sub i}) which act as donor shallows. The conductivity is thermally activated and obeys to an exponential type law with activation energy of 57 meV and an electron mobility of 7 cm{sup 2} V{sup −1} s{sup −1}. The capacitance-voltage (C{sup −2} V) measurement in acid electrolyte (pH ∼ 3) shows a linear behavior with a positive slope, characteristic of n-type conduction. A flat band potential of −0.70 V{sub SCE} and a donors density of 5.30 × 10{sup 16} cm{sup −3} are determined. The Nyquist plot exhibits two semicircles attributed to a capacitive behavior with a low density of surface states within the gap region. The centre is localized below the real axis with a depletion angle of 16° ascribed to a constant phase element (CPE) due to the roughness of the film. The energy band diagram assesses the potentiality of ZnO films for the photo-electrochemical conversion. As application, 94% of chromate (3.8 × 10{sup −4} M) is reduced after 6 h under sunlight (AM 1) with a quantum yield of 0.06% and the oxidation follows a first order kinetic.

  3. Application of spray granulation for conversion of mixed phospholipid-bile salt micelles to dry powder form: influence of drug hydrophobicity on nanoparticle reagglomeration

    Directory of Open Access Journals (Sweden)

    Lv QY

    2014-01-01

    Full Text Available Qingyuan Lv,1 Xianyi Li,2 Baode Shen,1 He Xu,1 Chengying Shen,1 Ling Dai,1 Jinxia Bai,1 Hailong Yuan,1 Jin Han11Department of Pharmacy, 302 Military Hospital, 2Institute for Drug and Instrument Control, Health Department, General Logistics Department of People's Liberation Army, Beijing, People's Republic of ChinaAbstract: The aim of this study was to investigate the feasibility of using spray granulation as a drying method to convert phospholipid (PL-sodium deoxycholate (SDC-mixed micelles (MMs containing a water-insoluble drug to a solid dosage form and to evaluate how drugs with significantly different physicochemical properties affect the spray granulation process and subsequent in vitro and in vivo processes. Cucurbitacin B (Cu B and glycyrrhizin (GL were used as the model drugs. After spray granulation, the dried Cu B-PL/SDC-MM powder was completely redispersible within 15 minutes in vitro. Meanwhile, the area under the curve during 24 hours (AUC0–24 and peak serum concentration from the dried powder were significantly (P<0.05 lower than the values from Cu B-PL/SDC-MMs in vivo. However, a better result was obtained for GL, ie, the drug was redispersed completely within 5 minutes in vitro. Further, absorption from the dried GL-PL/SDC-MM powder was increased to the same level as that for GL-PL/SDC-MMs in vivo compared with the control group. The difference in these results can be found in Cu B and GL. Cu B nanoparticles reagglomerated when released, resulting in slower redispersibility and less absorption compared with the original PL-SDC-MMs. However, no agglomeration or delay was observed for GL. A possible explanation is the difference in surface hydrophobicity between Cu B and GL. The results of this study not only show that spray granulation is an effective drying technique that can complement spray-drying and freeze-drying, but also confirm that the physicochemical properties of a drug have a significant influence on the in vitro and

  4. Efficient control system for low-concentration inorganic gases from a process vent stream: application of surfactants in spray and packed columns.

    Science.gov (United States)

    Chein, Hungmin; Aggarwal, Shankar G; Wu, Hsin-Hsien

    2004-11-01

    Control of low-concentration pollutants from a semiconductor process vent stream using a wet-scrubbing technique is a challenging task to meet Taiwan environmental emission standards. An efficient wet-scrubber is designed on a pilot scale and tested to control low concentration acid and base waste-gas emission. The scrubber system consisted of two columns, i.e., a fine spray column [cutoff diameter (based on volume), Dv(50) = 15.63 microm; Sauter mean diameter (SMD) = 7.62 microm], which is especially efficient for NH3 removal as the pH of the spraying liquid is approximately 7 followed by a packed column with a scrubbing liquid pH approximately 9.0 mainly for acids removal. It is observed that use of the surfactants in low concentration about 10(-4) M and 10(-7) M in the spray liquid and in the scrubbing liquid, respectively, remarkably enhances the removal efficiency of the system. A traditional packed column (without the spray column and the surfactant) showed that the removal efficiencies of NH3, HF, and HCl for the inlet concentration range 0.2 to 3 ppm were (n = 5) 22.6+/-3.4%, 43.4+/-5.5%, and 40.4+/-7.4%, respectively. The overall efficiencies of the proposed system (the spray column and the packed column) in the presence of the surfactant in the spray liquid and in the scrubbing liquid forthese three species were found to increase significantly (n = 5) from 60.3+/-3.6 to 82.8+/-6.8%, 59.1+/-2.7 to 83.4+/-4.2%, and 56.2+/-7.3 to 81.0+/-6.7%, respectively. In this work, development of charge on the gas-liquid interface due to the surfactants has been measured and discussed. It is concluded that the presence of charge on the gas-liquid interface is the responsible factor for enhancement of the removal efficiency (mass-transfer in liquid phase). The effects of the type of surfactants, their chain length, concentration in liquid, etc. on the removal efficiency are discussed. Since the pilot tests were performed under the operating conditions similar to most of

  5. Structural and electrical properties of electric field assisted spray deposited pea structured ZnO film

    Science.gov (United States)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2016-05-01

    Spray deposition of ZnO film was carried out. The uneven growth of ZnO nanostructures is resulted for spray deposited ZnO film. Application of DC voltage (1000V) during spray deposition provides formation of pea like structures with uniform coverage over the substrate. Electric field assisted spray deposition provides increased crystallinity with reduced resistivity and improved mobility of the ZnO film as compared to spray deposited ZnO film without electric field. This with large area deposition makes the process more efficient than other techniques.

  6. Spray pattern and droplet size analyses for high-shear viscosity determination of aqueous suspension corticosteroid nasal sprays.

    Science.gov (United States)

    Pennington, Justin; Pandey, Preetanshu; Tat, Henry; Willson, Jennifer; Donovan, Brent

    2008-09-01

    Aqueous suspension corticosteroid nasal sprays exhibit the rheological property of shear thinning, meaning they exhibit a decrease in viscosity upon application of shear. Most rheological methods are limited in the amount of shear that can be applied to samples (approximately 1,000 s(-1)) and thus can only approximate the viscosities at the high-shear conditions of nasal spray devices (approximately 10(5)-10(6) s(-1)). In the current work, spray area and droplet size were shown to demonstrate viscosity dependence. Three Newtonian fluids were used to determine equations to approximate viscosity at the spray nozzle from correlations to spray area and droplet size using a standard 100 microL Pfeiffer nasal spray pump. Several shear-thinning solutions, including four commercial aqueous suspension corticosteroid nasal sprays and three aqueous Avicel (1, 2, and 3%, wt/wt) samples, were analyzed to demonstrate the ability of spray area and droplet size analysis to estimate high-shear viscosities. The calculated viscosity values trend in accordance with the rheometer data along with the ability to distinguish differences between all samples analyzed.

  7. Calcitonin Salmon Nasal Spray

    Science.gov (United States)

    ... is important that you get enough calcium and vitamin D while you are using calcitonin salmon. Your doctor may prescribe supplements if your dietary ... examinations of the nose to make sure calcitonin salmon nasal spray is not ... such as vitamins, minerals, or other dietary supplements. You should bring ...

  8. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    Science.gov (United States)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  9. Analysis of factors affecting repeat visit to a cultural attraction: an application to the Museum of Antioquia

    OpenAIRE

    Brida, Juan Gabriel; Monterubbianesi, Pablo Daniel; Zapata Aguirre, Sandra

    2012-01-01

    This study analyzes the behavior of repeat visitors to a cultural resource, in this case the Museum of Antioquia in Medellin (Colombia), by estimating travel cost model. The empirical results highlight issues such as women are more likely to re-visit the museum that age is also an important variable as is the employment status of visitors and income level. These results are a key tool to the strategic positioning of the museum and cultural tourism. A brief discussion is presented as well as m...

  10. Decreased levels of repulsive guidance molecule A in association with beneficial effects of repeated intrathecal triamcinolone acetonide application in progressive multiple sclerosis patients.

    Science.gov (United States)

    Müller, Thomas; Barghorn, Stefan; Lütge, Sven; Haas, Thomas; Mueller, Reinhold; Gerlach, Bjoern; Öhm, Gabi; Eilert, Katrin; Trommer, Isabel; Mueller, Bernhard K

    2015-06-01

    Repeated intrathecal application of the sustained release steroid triamcinolone acetonide is beneficial in progressive multiple sclerosis patients. Its putative regenerative effect may involve regulation of the repulsive guidance molecule A synthesis. This protein inhibits axonal regeneration and functional recovery. Objectives were to demonstrate the efficacy of four triamcinolone applications every other day in association with repulsive guidance molecule A levels in cerebrospinal fluid. Clinical evaluation was performed at baseline and on each day after a triamcinolone administration in 25 progressive multiple sclerosis patients. Repulsive guidance molecule A concentrations were determined before each triamcinolone application by western blot analysis with quantification. Clinical scores for multiple sclerosis improved, and the maximum walking distance and speed ameliorated in 17 patients. Repulsive guidance molecule A levels declined in these responders. The remaining patients showed no prompt clinical benefit and no decrease of repulsive guidance molecule A concentrations. Decline of repulsive guidance molecule A may reflect regeneration and functional recovery by triamcinolone in progressive multiple sclerosis patients.

  11. Study on the interaction between different solute molecules in a molecular beam produced by the spray-jet technique: an application to dendrimer/dye system

    Science.gov (United States)

    Yamada, Toshiki; Ge, Maofa; Shinohara, Hidenori; Kimura, Katsumi; Mashiko, Shinro

    2003-10-01

    We report on an investigation into the interaction between different neutral non-volatile solute molecules in a molecular beam produced by the spray-jet technique that enables us to produce a molecular beam from a sprayed mist of a sample solution. This technique is applied to poly(propylene imine) dendrimer and 4-dicyanomethylene-2-methyl-6- p-dimethylaminostyryl-4H-pyran (DCM) systems. Resonantly enhanced multiphoton ionization of DCM in the DCM/dendrimer molecular beam leads to an efficient reaction between the dendrimer and DCM. The REMPI excitation spectra provide insights into the interaction between DCM and dendrimer molecules in the gas phase for the first time in these experiments.

  12. Analysis of short tandem repeat (STR polymorphisms by the powerplex 16 system and capillary electrophoresis: application to forensic practice.

    Directory of Open Access Journals (Sweden)

    Okamoto O

    2003-04-01

    Full Text Available Allele and genotype frequencies for 15 short tandem repeat (STR polymorphisms--D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, vWA, D8S1179, TPOX and FGA--in a Japanese population were estimated. No deviations of the observed allele frequency from Hardy-Weinberg equilibrium expectations were found for any of the systems studied. Between 2 new pentanucleotide STR loci, Penta E and Penta D, for which there is only limited data regarding the allelic distribution in Japanese, the Penta E locus was found to be highly polymorphic and exhibited a tri- or tetra-modal distribution pattern having allelic peaks with 5, 11, 15 and 20 repeats. The distribution was significantly different from that of the other ethnic groups. Statistical parameters of forensic importance, the power of discrimination (PD, observed and expected heterozygosity values (H, polymorphism information content (PIC, power of discrimination (PD, matching probability (pM, power of exclusion (PE, and typical paternity index (PI, were calculated for the loci. These parameters indicated the usefulness of the loci in forensic personal identification and paternity testing among Japanese. The systems Penta E, FGA, D18S51 and D8S1179 were the most informative. This method was successfully applied to forensic personal identification and paternity testing among Japanese, thereby confirming its efficacy for forensic practice.

  13. Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II.

    Science.gov (United States)

    Kim, Sun-Ki; Min, Won-Ki; Park, Yong-Cheol; Seo, Jin-Ho

    2015-11-01

    Asparaginase isozyme II from Escherichia coli is a popular enzyme that has been used as a therapeutic agent against acute lymphoblastic leukemia. Here, fusion tag systems consisting of the pelB signal sequence and various lengths of repeated aspartate tags were devised to highly express and to release active asparaginase isozyme II extracellularly in E. coli. Among several constructs, recombinant asparaginase isozyme II fused with the pelB signal sequence and five aspartate tag was secreted efficiently into culture medium at 34.6 U/mg cell of specific activity. By batch fermentation, recombinant E. coli produced 40.8 U/ml asparaginase isozyme II in the medium. In addition, deletion of the gspDE gene reduced extracellular production of asparaginase isozyme II, indicating that secretion of recombinant asparaginase isozyme II was partially ascribed to the recognition by the general secretion machinery. This tag system composed of the pelB signal peptide, and repeated aspartates can be applied to extracellular production of other recombinant proteins.

  14. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Antonio L.N. [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal)]. E-mail: moreira@dem.ist.utl.pt; Carvalho, Joao [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal); Panao, Miguel R.O. [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal)

    2007-04-15

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  15. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  16. A yearly spraying of olive mill wastewater on agricultural soil over six successive years: impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts.

    Science.gov (United States)

    Magdich, Salwa; Jarboui, Raja; Rouina, Béchir Ben; Boukhris, Makki; Ammar, Emna

    2012-07-15

    Olive mill wastewater (OMW) spraying effects onto olive-tree fields were investigated. Three OMW levels (50, 100 and 200 m(3)ha(-1)year(-1)) were applied over six successive years. Olive-crop yields, phenolic compounds progress, phytotoxicity and microbial counts were studied at different soil depths. Olive yield showed improvements with OMW level applied. Soil polyphenolic content increased progressively in relation to OMW levels in all the investigated layers. However, no significant difference was noted in lowest treatment rate compared to the control field. In the soil upper-layers (0-40 cm), five phenolic compounds were identified over six consecutive years of OMW-spraying. In all the soil-layers, the radish germination index exceeded 85%. However, tomato germination test values decreased with the applied OMW amount. For all treatments, microbial counts increased with OMW quantities and spraying frequency. Matrix correlation showed a strong relationship between soil polyphenol content and microorganisms, and a negative one to tomato germination index.

  17. Characterization of Lanthanum Ferric Cobaltite doped with Strontium (LSCF) films deposited by spray-pyrolysis for application as cathode in PaCOS-TI; Caracterizacao de filmes de CFLE depositados por spray-pirolise para utilizacao como catodo em PaCOS-TI

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, L.S.; Guimaraes, V.F.; Paes Junior, H.R. [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Materiais Avancados], Emails: laryssadsa@yahoo.com.br, valtencyguimaraes@yahoo.com.br, herval@uenf.br

    2010-07-01

    The lanthanum ferric cobaltite doped with strontium (LSCF) is a ceramic material with the perovskite structure that stands out in the field of research for its use as cathode in solid oxide fuel cells at intermediate temperatures (IT-SOFC). The films were synthesized by spray-pyrolysis technique on 8% mol Yttria stabilized zirconia (YSZ) substrates. It was studied the influence of heat treatment temperatures (600-1000 deg C) on the properties of the films under the conditions of treatment during four hours. Samples were tested electrically by measuring the variation of electrical conductivity with temperature, structurally by X-ray diffraction (XRD) and morphologically by scanning electron microscopy (SEM). The films heat treated at 700 deg C for 4 hours showed better performance for application as cathode. (author)

  18. Avaliação de pontas de pulverização hidráulicas na aplicação de fungicida em feijoeiro Evaluation of hydraulic spray nozzles for fungicide application on common beans

    Directory of Open Access Journals (Sweden)

    João Paulo Arantes Rodrigues da Cunha

    2005-10-01

    Full Text Available As pontas de pulverização são um dos componentes mais importantes dos pulverizadores hidráulicos para aplicação de agrotóxicos por afetarem as características do jato emitido. Este estudo teve como objetivo avaliar três pontas de pulverização hidráulicas (jato plano padrão, jato plano antideriva e jato cônico vazio no controle de doenças do feijoeiro. O fungicida clorotalonil foi aplicado aos 20, 30, 40 e 50 dias após a emergência (DAE, num volume de água de 125 L ha-1. Para comparação, foi utilizada uma testemunha que não recebeu o defensivo. Empregou-se o delineamento em blocos ao acaso, com quatro repetições. Os primeiros sintomas da antracnose, da mancha-angular e da ferrugem foram observados já aos 20 DAE. A densidade de gotas obtida com as três pontas de pulverização foi superior a 60 gotas cm-2. As três pontas proporcionaram controle satisfatório das doenças e não houve diferença entre pontas. Em média, o aumento da produtividade devido ao fungicida foi de 76%, em relação à testemunha.The spray nozzles are one of the most important components of pesticide hydraulic sprayer because they affect the characteristics of the emitted spray. The objective of this study was to evaluate three hydraulic spray nozzles (standard flat fan, low drift flat fan and hollow cone for bean diseases control upon application of the fungicide chlorothalonil applied at 20, 30, 40 and 50 days after emergency (DAE in a water volume of 125 L ha-1. For comparison, a non-treated plot was used. A randomized complete-block design with four replications was used. The first symptoms of anthracnose, angular leaf spot and rust were observed at 20 DAE. The droplet density obtained with the three spray nozzles was above 60 droplets cm-2. The fungicide applied with the three nozzles provided satisfactory control of the diseases and there were no differences among nozzles. On average, bean yield increased 76% due to the fungicide applications.

  19. Repeated sprints, high-intensity interval training, small-sided games: theory and application to field sports.

    Science.gov (United States)

    Hoffmann, James J; Reed, Jacob P; Leiting, Keith; Chiang, Chieh-Ying; Stone, Michael H

    2014-03-01

    Due to the broad spectrum of physical characteristics necessary for success in field sports, numerous training modalities have been used develop physical preparedness. Sports like rugby, basketball, lacrosse, and others require athletes to be not only strong and powerful but also aerobically fit and able to recover from high-intensity intermittent exercise. This provides coaches and sport scientists with a complex range of variables to consider when developing training programs. This can often lead to confusion and the misuse of training modalities, particularly in the development of aerobic and anaerobic conditioning. This review outlines the benefits and general adaptations to 3 commonly used and effective conditioning methods: high-intensity interval training, repeated-sprint training, and small-sided games. The goals and outcomes of these training methods are discussed, and practical implementations strategies for coaches and sport scientists are provided.

  20. Guest Editorial Particle Sizing And Spray Analysis

    Science.gov (United States)

    Chigier, Norman; Stewart, Gerald

    1984-10-01

    The measurement of particle size and velocity in particle laden flows is a subject of interest in a variety of industrial applications. In combustion systems for electricity generation, industrial processes and heating, and transportation, where liquid and solid fuels are injected into air streams for burning in furnaces, boilers, and gas turbine and diesel engines, the initial size and velocity distributions of particles are determining factors in the overall combustion efficiency and the emission of pollutants and particulates. In the design of injectors and burners for the atomization of liquid fuels, a great deal of attention is being focused on developing instrumentation for the accurate measurement of size and velocity distributions in sprays as a function of space and time. Most recent advances in optical engineering techniques using lasers for particle measurement have focused on detailed spray characterization, where there is a major concern with spherical liquid droplets within the size range of 1 to 500 μm in diameter, with droplet velocities within the range of 1 to 100 m/s, and the requirement for making in situ measurements of moving particles by nonintrusive optical probes. The instruments being developed for spray analysis have much wider applications. These include measurement in particle laden flows encountered in a variety of industrial processes with solid particles in gas and liquid streams and liquid particles in gas streams. Sprays used in agriculture, drying, food processing, coating of materials, chemical processing, clean rooms, pharmaceuticals, plasma spraying, and icing wind tunnels are examples of systems for which information is being sought on particle and fluid dynamic interactions in which there is heat, mass, and momentum transfer in turbulent reacting flows.

  1. [Study on totai flavonoids of Epimedium assisted with soybean polysaccharide spray-drying powder].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Deng, Jia-hui

    2015-08-01

    In order to evaluate the characteristics of the spray drying of total flavonoids of Epimedium extracts assisted with soybean polysaccharide, a certain percentage of soybean polysaccharide or polyvidone were added to the total flavonoids of Epimedium extract to conduct the spray drying. The effect of soybean polysaccharides against the wall sticking effect of the spray drying was detected, as well as the powder property of total flavonoids of Epimedium spray drying powder and the dissolution in vitro behavior of the effective component. Compared with the total flavonoids of Epimedium spray drying powder, soybean polysaccharide revealed a significant anti-wall sticking effect. The spray drying power which had no notable change in the grain size made a increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior. It was worth further studying the application of soybean polysaccharide in spray drying power of traditional Chinese medicine.

  2. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  3. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  4. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  5. Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications.

    Science.gov (United States)

    Merced-Grafals, Emmanuelle J; Dávila, Noraica; Ge, Ning; Williams, R Stanley; Strachan, John Paul

    2016-09-09

    Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with programming speed and programming error. The algorithm is also utilized to program 16 conductance levels on a population of cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 10(6) cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.

  6. Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications

    Science.gov (United States)

    Merced-Grafals, Emmanuelle J.; Dávila, Noraica; Ge, Ning; Williams, R. Stanley; Strachan, John Paul

    2016-09-01

    Beyond use as high density non-volatile memories, memristors have potential as synaptic components of neuromorphic systems. We investigated the suitability of tantalum oxide (TaOx) transistor-memristor (1T1R) arrays for such applications, particularly the ability to accurately, repeatedly, and rapidly reach arbitrary conductance states. Programming is performed by applying an adaptive pulsed algorithm that utilizes the transistor gate voltage to control the SET switching operation and increase programming speed of the 1T1R cells. We show the capability of programming 64 conductance levels with cells in the 1T1R array showing robustness to cell-to-cell variability. In general, the proposed algorithm results in approximately 10× improvement in programming speed over standard algorithms that do not use the transistor gate to control memristor switching. In addition, after only two programming pulses (an initialization pulse followed by a programming pulse), the resulting conductance values are within 12% of the target values in all cases. Finally, endurance of more than 106 cycles is shown through open-loop (single pulses) programming across multiple conductance levels using the optimized gate voltage of the transistor. These results are relevant for applications that require high speed, accurate, and repeatable programming of the cells such as in neural networks and analog data processing.

  7. DEVELOPMENT OF A MULTIPLE-LOCUS VARIABLE NUMBER OF TANDEM REPEAT ANALYSIS (MLVA FOR HELICOBACTER PYLORI AND ITS APPLICATION TO HELICOBACTER PYLORI ISOLATES FROM ROSTOV REGION,RUSSIA

    Directory of Open Access Journals (Sweden)

    Sorokin VM

    2012-09-01

    Full Text Available Stomach infection with Helicobacter pylori (H. pylori is the second most common infectious disease of humans. The severe pathological consequences of this infection include gastric and duodenal ulcer disease, the development of gastric mucosal atrophy, gastric carcinoma, and, more rarely, malignant tumors of the lymphoma. H. pylori infections cause very high morbidity and mortality and are of particular concern in developing countries, where H. pylori prevalences as high as 90% have been reported. The population of H. pylori shows a high genomic variability among isolates. And the polymorphism of repeat-units of genomics had participated the important process of evolution. A variety of molecular typing tools have been developed to access genetic relatedness in H. pylori isolates. However, there is still no standard genotyping system of this bacterium. The MLVA (Multi-Locus of Variable number of tandem repeat Analysis method is useful for performing phylogenetic analysis and is widely used in bacteria genotyping; however, there's little application in H. pylori analysis. This article is the first application of the MLVA method to investigate H. pylori isolates in Russia. MLVA of 4 VNTR loci with high discrimination power based on 10 candidates were performed on a collection of 22 strains of H. pylori which originated from Rostov region of Russia. This method provides a starting point on which improvements to the method and comparisons to other techniques can be made.

  8. Plasma Spray Forming

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the course of plasma spray, the plasma jet is comprehensively functioned by such effects as thermal pinch, magnetic pinch and mechanical compression and the flow is jetting at a high speed, the energy is concentrated and its center temperature is so high as to reach upwards of 15 000 ℃ which is capable of melting various kinds of materials inclusive of ceramic, it has a broad applied prospects in the fields of automobile, electronics, telecommunications, medical treatment, air navigation & space navigati...

  9. Combustion Characteristics of Sprays

    Science.gov (United States)

    1989-08-01

    regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to...00 _’N 1. TI TLE inctuat Security CZaaafication5 Combustion Characteristics of Sprays 12. PERSONAL AUTHOR(S) Sohrab, Siavash H. 13& TYPE OF REPORT...to ?!HF of rich butane/air 3unsen flames. .lso, the rotacion speed and :he oerodic temDeracure fluc:uations of rotacfng ?HF are examined. :’!naily

  10. Study of the droplet size of sprays generated by swirl nozzles dedicated to gasoline direct injection: measurement and application of the maximum entropy formalism; Etude de la granulometrie des sprays produits par des injecteurs a swirl destines a l'injection directe essence: mesures et application du formalisme d'entropie maximum

    Energy Technology Data Exchange (ETDEWEB)

    Boyaval, S.

    2000-06-15

    This PhD presents a study on a series of high pressure swirl atomizers dedicated to Gasoline Direct Injection (GDI). Measurements are performed in stationary and pulsed working conditions. A great aspect of this thesis is the development of an original experimental set-up to correct multiple light scattering that biases the drop size distributions measurements obtained with a laser diffraction technique (Malvern 2600D). This technique allows to perform a study of drop size characteristics near the injector tip. Correction factors on drop size characteristics and on the diffracted intensities are defined from the developed procedure. Another point consists in applying the Maximum Entropy Formalism (MEF) to calculate drop size distributions. Comparisons between experimental distributions corrected with the correction factors and the calculated distributions show good agreement. This work points out that the mean diameter D{sub 43}, which is also the mean of the volume drop size distribution, and the relative volume span factor {delta}{sub v} are important characteristics of volume drop size distributions. The end of the thesis proposes to determine local drop size characteristics from a new development of deconvolution technique for line-of-sight scattering measurements. The first results show reliable behaviours of radial evolution of local characteristics. In GDI application, we notice that the critical point is the opening stage of the injection. This study shows clearly the effects of injection pressure and nozzle internal geometry on the working characteristics of these injectors, in particular, the influence of the pre-spray. This work points out important behaviours that the improvement of GDI principle ought to consider. (author)

  11. Vacuum plasma spray coating

    Science.gov (United States)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  12. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation...... procedure; and means for detecting the edges and estimating the angles of the edges of the leaves so as to discriminate between dicots and monocots; and means for activating one or more of the spray nozzles in response to detected dicots so as to selectively apply the herbicidal composition onto the sensed...... area containing the dicots....

  13. Development of precision spray forming for rapid tooling

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yunfeng [VTT Technical Research Centre of Finland, POB 1000, FI-02044 VTT (Finland); Hannula, Simo-Pekka [VTT Technical Research Centre of Finland, POB 1000, FI-02044 VTT (Finland); Laboratory of Materials Science, Helsinki University of Technology, POB 6200, FI-02015 TKK (Finland)], E-mail: simo-pekka.hannula@tkk.fi

    2008-03-25

    The aim of the work is to improve the capability of the precision spray forming (PSF) rapid tooling process so that it can be extended to various applications. This work comprises the upgrading of the current spray-forming machine from single atomizer to twin atomizers, so that the capability is much improved in terms of insert size and complexity. As a result, the insert size is increased from about 200 mm to 400 mm in diameter, and the process is more reliable to make complex structures. Know-how is accumulated for making large and/or complex inserts with controllable surface and internal soundness. A process of spray forming conformal cooling channels in die inserts or other components used at elevated temperatures is also developed and various mould inserts are spray formed. In this paper the plant modification is described. It is shown that the twin atomizers are more reliable in spray forming small inserts of about 200 mm in diameter and of high complexity than the single atomizer system. Spray forming of disc type inserts up to 400 mm diameter is demonstrated. Influence of deposition temperature and substrate moving speed, as well as the treatment of the ceramic mould surface is determined and the technical measures to prevent surface defects related to large insert spray forming are specified.

  14. Construction of an integrated high density simple sequence repeat linkage map in cultivated strawberry (Fragaria × ananassa) and its applicability.

    Science.gov (United States)

    Isobe, Sachiko N; Hirakawa, Hideki; Sato, Shusei; Maeda, Fumi; Ishikawa, Masami; Mori, Toshiki; Yamamoto, Yuko; Shirasawa, Kenta; Kimura, Mitsuhiro; Fukami, Masanobu; Hashizume, Fujio; Tsuji, Tomoko; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Tsuruoka, Hisano; Minami, Chiharu; Takahashi, Chika; Wada, Tsuyuko; Ono, Akiko; Kawashima, Kumiko; Nakazaki, Naomi; Kishida, Yoshie; Kohara, Mitsuyo; Nakayama, Shinobu; Yamada, Manabu; Fujishiro, Tsunakazu; Watanabe, Akiko; Tabata, Satoshi

    2013-02-01

    The cultivated strawberry (Fragaria × ananassa) is an octoploid (2n = 8x = 56) of the Rosaceae family whose genomic architecture is still controversial. Several recent studies support the AAA'A'BBB'B' model, but its complexity has hindered genetic and genomic analysis of this important crop. To overcome this difficulty and to assist genome-wide analysis of F. × ananassa, we constructed an integrated linkage map by organizing a total of 4474 of simple sequence repeat (SSR) markers collected from published Fragaria sequences, including 3746 SSR markers [Fragaria vesca expressed sequence tag (EST)-derived SSR markers] derived from F. vesca ESTs, 603 markers (F. × ananassa EST-derived SSR markers) from F. × ananassa ESTs, and 125 markers (F. × ananassa transcriptome-derived SSR markers) from F. × ananassa transcripts. Along with the previously published SSR markers, these markers were mapped onto five parent-specific linkage maps derived from three mapping populations, which were then assembled into an integrated linkage map. The constructed map consists of 1856 loci in 28 linkage groups (LGs) that total 2364.1 cM in length. Macrosynteny at the chromosome level was observed between the LGs of F. × ananassa and the genome of F. vesca. Variety distinction on 129 F. × ananassa lines was demonstrated using 45 selected SSR markers.

  15. Combining autosomal and Y-chromosomal short tandem repeat data in paternity testing with male child: methods and application.

    Science.gov (United States)

    Ayadi, Imen; Mahfoudh-Lahiani, Nadia; Makni, Hafedh; Ammar-Keskes, Leila; Rebaï, Ahmed

    2007-09-01

    Paternity testing is being increasingly requested with the aim of challenging presumptive fatherhood. The ability to establish the biological father is usually based on the genotyping of autosomal short tandem repeat (STR) in alleged father, mother and child, but the use of Y-chromosomal STR has gained interest in the last few years. In this work, we propose a new probabilistic approach that combines autosomal and Y-chromosomal STR data in paternity testing with father/son pairs taking into account mutation events. We also suggest a new two-stage approach where we first type Y-STRs and possibly autosomal STR for the putative father and son, conditional on Y-STR results. We applied this approach to 22 cases. Our results show that Y-STRs can identify nonpaternity cases with high accuracy but need to be validated with autosomal STR to establish paternity. Moreover, the two-stage approach is less costly than the standard approach and is very useful in motherless cases.

  16. Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.

    Science.gov (United States)

    Angelbello, Alicia J; González, Àlex L; Rzuczek, Suzanne G; Disney, Matthew D

    2016-12-01

    RNA is an important drug target, but current approaches to identify bioactive small molecules have been engineered primarily for protein targets. Moreover, the identification of small molecules that bind a specific RNA target with sufficient potency remains a challenge. Computer-aided drug design (CADD) and, in particular, ligand-based drug design provide a myriad of tools to identify rapidly new chemical entities for modulating a target based on previous knowledge of active compounds without relying on a ligand complex. Herein we describe pharmacophore virtual screening based on previously reported active molecules that target the toxic RNA that causes myotonic dystrophy type 1 (DM1). DM1-associated defects are caused by sequestration of muscleblind-like 1 protein (MBNL1), an alternative splicing regulator, by expanded CUG repeats (r(CUG)(exp)). Several small molecules have been found to disrupt the MBNL1-r(CUG)(exp) complex, ameliorating DM1 defects. Our pharmacophore model identified a number of potential lead compounds from which we selected 11 compounds to evaluate. Of the 11 compounds, several improved DM1 defects both in vitro and in cells.

  17. Tin sulfide (SnS) nanostructured films deposited by continuous spray pyrolysis (CoSP) technique for dye-sensitized solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Firoz; Dutta, Viresh, E-mail: vdutta@ces.iitd.ac.in

    2015-12-15

    Highlights: • Single phase, perfectly stoichiometric tin sulfide (SnS) films have been deposited by continuous spray pyrolysis technique. • Structural and morphological investigations show the orthorhombic SnS with nanoflakes. • SnS film shows excellent electrochemical stability. • SnS films have been used as a counter electrode (CE) in an I{sub 3}{sup −}/I{sup −} based dye-sensitized solar cells. - Abstract: Tin sulfide (SnS) nanostructured films have been deposited on transparent conducting glass substrate using continuous spray pyrolysis (CoSP) technique using aqueous spray solution of tin chloride and thiourea. Structural, morphological and optical properties of as-synthesized SnS nanostructured films showed the formation of (1 0 1) oriented orthorhombic SnS with nanoflakes having a direct band gap of 1.40 eV. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of pure SnS with Sn in +2 oxidation state. The SnS nanostructured film has also been characterized using Brunauer–Emmett–Teller (BET) technique to determine the surface area and pore volume which are found to be 11.4 m{sup 2}/g and 0.02 cm{sup 2}/g, respectively. The film has been used as a counter electrode (CE) in a triiodide/iodide (I{sub 3}{sup −}/I{sup −}) based dye-sensitized solar cells (DSSCs). The DSSCs of 0.25 cm{sup 2} area with SnS nanostructured CE exhibits a lower power conversion efficiency (2.0 ± 0.06%) than that for the cell with standard platinum (Pt) CE (4.5 ± 0.13%). However, the usefulness of the CoSP technique for deposition of nanostructures SnS CE film has been established in the present study.

  18. Yttrium doped BaCeO{sub 3} thin films by spray pyrolysis technique for application in solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Dubal, S.U.; Jamale, A.P.; Jadhav, S.T.; Patil, S.P.; Bhosale, C.H. [Department of Physics, Shivaji University, Kolhapur 416 004 (India); Jadhav, L.D., E-mail: ldjadhav.phy@gmail.com [Department of Physics, Rajaram College, Kolhapur 416 004 (India)

    2014-02-25

    Highlights: • BCY20 thin electrolyte was deposited by economical spray pyrolysis technique. • Solution concentration and annealing temperature affects structure and morphology. • Excellent agreement with XRD data of lattice parameter. • The dc conductivity in argon at 600 °C was 4.25 × 10{sup −3} S cm{sup −1}. -- Abstract: Yttrium doped barium cerate (BCY) a solid state ion conductor which exhibits proton conductivity under proper atmospheric conditions, is used as an electrolyte in a solid oxide fuel cell (SOFCs). In present work, nanocrystalline BaCe{sub 0.8}Y{sub 0.2}O{sub 2.9} (BCY20) thin films were successfully deposited onto alumina substrates by simple and economical spray pyrolysis technique (SPT) at 250 °C. The effect of solution concentration and annealing on physico-chemical properties of BCY20 thin film has been studied. The X-ray diffraction (XRD) studies of spray pyrolysed BCY20 films revealed polycrystalline (crystallite size 35 nm) orthorhombic structure with lattice parameters a = 8.77 Å, b = 6.234 Å and c = 6.223 Å. The scanning electron micrographs showed dense morphology which is very useful for electrolyte. The stoichiometry was confirmed by elemental analysis and the estimated atomic ratio was in good agreement with that of the precursor solution ratio. The most intense band at 353.26 cm{sup −1} observed in room temperature Raman spectrum of BCY20 film was due to vibrational mode of barium cerate. The FTIR spectra with heat treatment shows no carbon based vibration bonds, revealing absence of carbon based surface impurities in the sample. The dc conductivities measured in air and argon atmospheres at 600 °C were 1.7 × 10{sup −3} and 4.25 × 10{sup −3} S cm{sup −1}, respectively.

  19. Fundamental studies of spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C.; Libby, P.A.; Williams, F.A. [Univ. of California, San Diego, CA (United States)

    1997-12-31

    Our research on spray combustion involves both experiment and theory and addresses the characteristics of individual droplets and of sprays in a variety of flows: laminar and turbulent, opposed and impinging. Currently our focus concerns water and fuel sprays in two stage laminar flames, i.e., flames arising, for example from a stream of fuel and oxidizer flowing opposite to an air stream carrying a water spray. Our interest in these flames is motivated by the goals of reducing pollutant emissions and extending the range of stable spray combustion. There remains considerable research to be carried out in order to achieve these goals. Thus far our research on the characteristics of sprays in turbulent flows has been limited to nonreacting jets impinging on a plate but this work will be extended to opposed flows with and without a flame. In the following we discuss details of these studies and our plans for future work.

  20. AlPO4-C Composite Coating on Ni-based Super Alloy Substrates for High Emissivity Applications : Experimentation on Dip Coating and Spray Coating

    OpenAIRE

    Subir Roy; S. Rangaswamy Reddy; Sindhuja, P; Dipak Das; V.V. Bhauprasad

    2016-01-01

    High emissivity coating was developed on Ni-based super alloy substrates by dip coating and spray coating technique using a chemical precursor sol. The coating material was characterised thoroughly by XRD, SEM, TEM and XPS analyses. Characterisation results showed the presence of nano carbon in the AlPO4 matrix which imparted high emissivity to the coating. Emissivity of the coating varied from 0.6 to 0.9 in the wave length range : 2 µm - 25 µm depending on the thickness of the multilayered c...

  1. Abatement of particulate matter emission from experimental aviary housings for laying hens by spraying rapeseed oil.

    Science.gov (United States)

    Winkel, A; van Riel, J W; van Emous, R A; Aarnink, A J A; Groot Koerkamp, P W G; Ogink, N W M

    2016-12-01

    In alternative systems for laying hens, concentrations and emission rates of particulate matter (PM) give reason for concern with regard to working conditions, bird health and productivity, and health of residents living near farms. Previously, we found that spraying a film of rapeseed oil onto the litter of broilers could substantially reduce PM concentrations and emissions. The objective of this study was to establish dose-response effects of oil spraying in aviaries on concentrations and emission rates of PM with aerodynamic diameters less than 10 μm (PM10) and 2.5 μm (PM2.5), on stockmen's exposure to PM10, on egg production, exterior quality and behavior of the hens, and on the litter. An experiment was carried out with 4 treatments: 0 (control), 15, 30, and 45 mL/m(2) per d (oil treatments). Each treatment was applied in 2 rooms with different aviary systems (8 rooms in total). The experiment was repeated during a second period, both lasting 35 days. From d 11 to d 35, oil was applied daily using a spraying gun. Applying 15, 30, or 45 mL/m(2) per d significantly reduced emission rates of PM10 by 27, 62, and 82%, and emission rates of PM2.5 by 71, 83, and 94%, respectively. No significant effects of oil spraying were found on mortality, egg production, dust bathing behavior, scratching behavior, plumage soiling, DM content of the litter, or friability of the litter. A significant worsening of the plumage condition was found only for the body spot back/wings/tail (not for: throat/neck, chest/breast, or legs) in the 45 mL/m(2) per d treatment. Egg quality shifted significantly towards more second-class eggs in the oil treatments (1.9% versus 1.4%; P = 0.004). Remarkably, foot soiling decreased with increasing oil application. In conclusion, PM concentrations and emission rates in aviaries can be effectively reduced by spraying 15 to 30 mL/m(2) per d with minor side effects within a 25 d application period.

  2. 淋水式杀菌技术在潮式卤水熟肉食品的应用%Application of Water Spray Sterilization Technology in Chaozhou Brine Cooked Food

    Institute of Scientific and Technical Information of China (English)

    陈宇; 郭卓钊; 郭美媛; 郭奕纯; 黄妙云; 杨曼

    2012-01-01

    本文叙述淋水式杀菌技术在潮式卤水传统食品生产中的应用,介绍了淋水式杀菌处理的优点.通过分析不同的处理温度和处理时间对潮式卤水的影响来确定最佳的杀菌方式,淋水式杀菌不仅能实现潮式卤水工业化生产杀菌,还能有效保留潮式卤水食品的风味和色泽.%This paper described the application of water spray sterilization technology in Chouzhou brine cooked food. The optima) sterilization conditions were determined by analyzing the effect for Chouzhou brine cooked food at different temperature and time. Water spray sterilization technology could be used for the production sterilization of Chouzhou brine cooked food, as well as keeping food flavor and color.

  3. Tomographic shadowgraphy for spray diagnostics

    OpenAIRE

    Klinner, Joachim; Willert, Christian

    2011-01-01

    This contribution introduces 3-D shadowgraphy which is capable of resolving the placement of the liquid phase within a certain spray volume both spatially and temporally. The method is based on a multiple view camera setup and inline illumination provided by current pulsed LEDs. The quality of spray reconstruction was investigated using experimental data from multiple view shadowgraphs of hollow cone and flat fan water sprays. After calibration and determination of a 3-D mapping f...

  4. PDF modelling and particle-turbulence interaction of turbulent spray flames

    NARCIS (Netherlands)

    Beishuizen, N.A.

    2008-01-01

    Turbulent spray flames can be found in many applications, such as Diesel engines, rocket engines and power plants. The many practical applications are a motivation to investigate the physical phenomena occurring in turbulent spray flames in detail in order to be able to understand, predict and

  5. PDF modelling and particle-turbulence interaction of turbulent spray flames

    NARCIS (Netherlands)

    Beishuizen, N.A.

    2008-01-01

    Turbulent spray flames can be found in many applications, such as Diesel engines, rocket engines and power plants. The many practical applications are a motivation to investigate the physical phenomena occurring in turbulent spray flames in detail in order to be able to understand, predict and optim

  6. Magnetic Resonance Imaging measurements of a water spray upstream and downstream of a spray nozzle exit orifice

    Science.gov (United States)

    Mastikhin, Igor; Arbabi, Aidin; Bade, Kyle M.

    2016-05-01

    Sprays are dynamic collections of droplets dispersed in a gas, with many industrial and agricultural applications. Quantitative characterization is essential for understanding processes of spray formation and dynamics. There exists a wide range of measurement techniques to characterize sprays, from direct imaging to phase Doppler interferometry to X-rays, which provide detailed information on spray characteristics in the "far-nozzle" region (≫10 diameters of the nozzle). However, traditional methods are limited in their ability to characterize the "near-nozzle" region where the fluid may be inside the nozzle, optically dense, or incompletely atomized. Magnetic Resonance Imaging (MRI) presents potential as a non-invasive technique that is capable of measuring optically inaccessible fluid in a quantitative fashion. In this work, MRI measurements of the spray generated by ceramic flat-fan nozzles were performed. A wide range of flow speeds in the system (0.2 to >25 m/s) necessitated short encoding times. A 3D Conical SPRITE and motion-sensitized 3D Conical SPRITE were employed. The signal from water inside the nozzle was well-characterized, both via proton density and velocity measurements. The signal outside the nozzle, in the near-nozzle region, was detectable, corresponding to the expected flat-fan spray pattern up to 3 mm away. The results demonstrate the potential of MRI for measuring spray characteristics in areas inaccessible by other methods.

  7. Detecting variable responses in time-series using repeated measures ANOVA: Application to physiologic challenges [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2016-07-01

    Full Text Available We present an approach to analyzing physiologic timetrends recorded during a stimulus by comparing means at each time point using repeated measures analysis of variance (RMANOVA. The approach allows temporal patterns to be examined without an a priori model of expected timing or pattern of response. The approach was originally applied to signals recorded from functional magnetic resonance imaging (fMRI volumes-of-interest (VOI during a physiologic challenge, but we have used the same technique to analyze continuous recordings of other physiological signals such as heart rate, breathing rate, and pulse oximetry. For fMRI, the method serves as a complement to whole-brain voxel-based analyses, and is useful for detecting complex responses within pre-determined brain regions, or as a post-hoc analysis of regions of interest identified by whole-brain assessments. We illustrate an implementation of the technique in the statistical software packages R and SAS. VOI timetrends are extracted from conventionally preprocessed fMRI images. A timetrend of average signal intensity across the VOI during the scanning period is calculated for each subject. The values are scaled relative to baseline periods, and time points are binned. In SAS, the procedure PROC MIXED implements the RMANOVA in a single step. In R, we present one option for implementing RMANOVA with the mixed model function “lme”. Model diagnostics, and predicted means and differences are best performed with additional libraries and commands in R; we present one example. The ensuing results allow determination of significant overall effects, and time-point specific within- and between-group responses relative to baseline. We illustrate the technique using fMRI data from two groups of subjects who underwent a respiratory challenge. RMANOVA allows insight into the timing of responses and response differences between groups, and so is suited to physiologic testing paradigms eliciting complex

  8. Fundamental Cost Analysis of Cold Spray

    Science.gov (United States)

    Stier, O.

    2014-01-01

    The cost structure of the cold spray (CS) process is analyzed using a generic cost model applicable to all present types of CS systems ("high pressure," "low pressure," KM™, "kinetic spraying," etc.) and kinds of application (coating, restoration, additive manufacturing, near-net forming). The cost model has originally been developed at SIEMENS and is easy to use, while being sufficiently accurate to support decisions. The dependence of the process costs on the gas stagnation properties is discussed. It is shown (i) that high pressure is generally favorable, (ii) that He-N2 blends possess economic potential, and (iii) that He recovery saves costs in high volume production, even when He-N2 blends are used. The cost model allows for the determination of the cost-optimal He concentration of the propellant gas for a given application. CS is, among others, suited to spray bond coatings on gas turbine blades and offers cost-saving potential, as shown in a case study.

  9. Spray pyrolysis-deposited nanoengineered TiO2 thick films for ultra-high areal and volumetric capacity lithium ion battery applications

    Science.gov (United States)

    Haridas, Anupriya K.; Gangaja, Binitha; Srikrishnarka, Pillalamarri; Unni, Gautam E.; Nair, A. Sreekumaran; Nair, Shantikumar V.; Santhanagopalan, Dhamodaran

    2017-03-01

    Energy storage technologies are sensitively dependent on electrode film quality, thickness and process scalability. In Li-ion batteries, using additive-free titania (TiO2) as electrodes, we sought to show the potential of spray pyrolysis-deposited nanoengineered films with thicknesses up to 135 μm exhibiting ultra-high areal capacities. Detailed electron microscopic characterization indicated that the achieved thick films are composed of highly crystalline anatase TiO2 particles with sizes on the order of 10-12 nm and porous as well. A 135 μm thick film yielded ultra-high areal and volumetric capacities of 3.7 mAh cm-2 and 274 mAh cm-3, respectively, at 1C rate. Also the present work recorded high Coulombic efficiency and good cycling stability. The best previously achieved capacities for additive-free TiO2 films have been less than 0.25 mAh cm-2 and With additives, best reported areal capacity in the literature has been 2.5 mAh cm-2 at 1C rate, but only with electrode thickness as high as 1400 μm. Formation of through-the-thickness percolation of Ti3+ conductive network upon lithiation contributed substantially for the superior performance. Spray pyrolysis deposition of nanoparticulate TiO2 electrodes have the potential to yield volumetric capacities an order of magnitude higher than the other processes previously reported without sacrificing performance and process scalability.

  10. [Ethyl chloride aerosol spray for local anesthesia before arterial puncture: randomized placebo-controlled trial].

    Science.gov (United States)

    Ballesteros-Peña, Sendoa; Fernández-Aedo, Irrintzi; Vallejo-De la Hoz, Gorka

    2017-06-01

    To compare the efficacy of an ethyl chloride aerosol spray to a placebo spray applied in the emergency department to the skin to reduce pain from arterial puncture for blood gas analysis. Single-blind, randomized placebo-controlled trial in an emergency department of Hospital de Basurto in Bilbao, Spain. We included 126 patients for whom arterial blood gas analysis had been ordered. They were randomly assigned to receive application of the experimental ethyl chloride spray (n=66) or a placebo aerosol spray of a solution of alcohol in water (n=60). The assigned spray was applied just before arterial puncture. The main outcome variable was pain intensity reported on an 11-point numeric rating scale. The median (interquartile range) pain level was 2 (1-5) in the experimental arm and 2 (1-4.5) in the placebo arm (P=.72). Topical application of an ethyl chloride spray did not reduce pain caused by arterial puncture.

  11. Spray formation of biodiesel-water in air-assisted atomizer using Schlieren photography

    Science.gov (United States)

    Amirnordin, S. H.; Khalid, A.; Sapit, A.; Salleh, H.; Razali, A.; Fawzi, M.

    2016-11-01

    Biodiesels are attractive renewable energy sources, particularly for industrial boiler and burner operators. However, biodiesels produce higher nitrogen oxide (NOx) emissions compared with diesel. Although water-emulsified fuels can lower NOx emissions by reducing flame temperature, its influence on atomization needs to be investigated further. This study investigates the effects of water on spray formation in air-assisted atomizers. The Schlieren method was used to capture the spray images in terms of tip penetration, spray angle, and spray area. The experiment used palm oil biodiesel at different blending ratios (B5, B10, and B15) and water contents (0vol%-15vol%). Results show that water content in the fuel increases the spray penetration and area but reduces the spray angle because of the changes in fuel properties. Therefore, biodiesel-water application is applicable to burner systems.

  12. [Study on Xinyueshu spray drying assisted with copovidone and its effect on powder property].

    Science.gov (United States)

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Yan, Hong-Mei; Hu, Shao-Ying; Jia, Xiao-Bin

    2013-12-01

    To study the application characteristics of copovidone (PVP-S630) in Xinyueshu extracts during the spray drying process, and its effect on such pharmaceutical properties as micromeritics and drug release behavior. PVP-S630 was added into Xinyueshu extracts to study on the spray drying, the effect of different dosages of PVP-S630 against the wall sticking effect of the spray drying, as well as the power property of Xinyueshu spray drying power and the dissolution in vitro behavior of the effective component of hyperoside. The results showed that PVP-S630 revealed a significant anti-wall sticking effect, with no notable change in the grain size of the spray drying power, increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior of hyperoside. It was worth further studying the application of PVP-S630 in spray drying power of traditional Chinese medicine.

  13. Plasma spraying system with distributed controlling

    Institute of Scientific and Technical Information of China (English)

    李春旭; 陈克选; 张成

    2003-01-01

    A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.

  14. 关于五类线直放站的应用模式探讨%Discussion of CAT5 Repeater Application Model

    Institute of Scientific and Technical Information of China (English)

    钱致文

    2013-01-01

    With the constant development of mobile network, the priority of the network coverage has changed from the breadth to the depth. As the antenna of indoor disturbed system households too difficult, the QoS of indoor signal can't be guaranteed. The pilot pollution of indoor disturbed system which has been built is difficult to solve. Based on this problem, CAT5 repeater is introduced by specific cases. While the technical highlights and application model of CAT5 repeater are discussed.%随着移动网络规模的不断发展,网络覆盖重点已由广覆盖向深度覆盖转变。由于室分天线入户较困难,导致室内信号覆盖效果无法保证,已建室分系统的导频污染等问题较难解决。针对这一问题,通过具体的案例介绍了五类线直放站,并对五类线直放站的技术亮点和应用模式进行了探讨。

  15. 园艺作物的ISSR分子标记研究及应用%Inter-simple sequence repeat and its application in horticultural crop research

    Institute of Scientific and Technical Information of China (English)

    刘淑芹; 吴凤芝; 刘守伟

    2012-01-01

    ISSR (Inter-simple sequence repeat)是一种基于微卫星序列发展起来的新型分子标记方法,具有无需知道任何靶标序列的微卫星背景信息、遗传多态性高、稳定高效、检测快速等特点.目前,ISSR分子标记技术在园艺作物的遗传多样性研究、品种鉴定、遗传图谱构建、基因定位及分子标记辅助育种等方面得到了广泛应用,文章就ISSR标记的原理、方法、特点及其在园艺作物研究中的应用加以综述.%Inter-simple sequence repeat (ISSR) is a new molecular marker method which is based on micro-satellite technique with advantages of simple, quick, stable, reliable and higher DNA polymorphism, etc. At present, ISSR has been widely applied in genetic diversity research, genetic map construction, genetic mapping, molecular marker assisted breeding and variety purity identification of horticultural crops. The purpose of this review is to introduce principles, methods, characteristics of the ISSR and its application in the research of horticultural crops.

  16. Spray characterization during vibration-induced drop atomization

    Science.gov (United States)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    2004-02-01

    Vibration-induced drop atomization is a process of rapid droplet ejection from a larger liquid drop. This occurs when a liquid drop resting on a thin diaphragm is vibrated under the appropriate forcing conditions using an attached piezoelectric actuator. The resulting spray of small droplets is characterized in this work using high-speed imaging and particle-tracking techniques. The results show that the average spatial and velocity distributions of the spray droplets are fairly axisymmetric during all stages of the atomization. The mean diameter of the droplets depends on the forcing frequency to the -2/3 power. The ejection velocity of the spray droplets depends on both the magnitude and the rate of change of the forcing amplitude. Thus, controlling the characteristics of the forcing signal may lead to strategies for controlling the spray process in specific applications.

  17. Gas Permeability of Porous Plasma-Sprayed Coatings

    Science.gov (United States)

    Wittmann-Ténèze, K.; Caron, N.; Alexandre, S.

    2008-12-01

    For different applications, such as solid oxide fuel cells, there is an interest in understanding the relationship between the microstructure and the gas permeability of plasma-sprayed coatings. Nevertheless, plasma spraying processes allow to elaborate coatings with singular microstructures, depending strongly on the initial material and plasma operating conditions. And so, the evolution of permeability is not directly linked to the porosity. In this work, coatings were manufactured using different initial feedstock and spray parameters to obtain various microporous structures. Measurements of their permeation with the pressure drop method and their open porosity just as the observation of the morphology and the structure by optical microscopy were achieved. The different data show that the evolution of the gas permeability with the open porosity follows the Kozeny-Carman equation. This result correlated with the microstructural observation highlights the relationship between the permeability and the physical properties of porous plasma-sprayed layers.

  18. Plasma spray forming of tungsten coatings on copper electrodes

    Institute of Scientific and Technical Information of China (English)

    JIANG Xian-liang(蒋显亮); F.Gitzhofer; M.I.Boulos

    2004-01-01

    Both direct current dc plasma and radio frequency induction plasma were used to deposit tungsten coatings on copper electrodes. Fine tungsten powder with mean particle size of 5μm and coarse tungsten powder with particle size in the range from 45 μm to 75 μm were used as plasma spray feedstock. It is found that dc plasma is only applicable to spray the fine tungsten powder and induction plasma can be used to spray both the coarse powder and the fine powder. The tungsten coating deposited by the induction plasma spraying of the coarse powder is extremely dense. Such a coating with an interlocking structure and an integral interface with the copper substrate demonstrates high cohesion strength and adhesion strength.

  19. Development and application of the global rainbow refractometry for the study of heat and mass transfers in a spray; Developpement et application de la refractometrie arc-en-ciel global pour l'etude des transferts massique et thermique dans un spray

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, P

    2004-12-15

    During the course of an hypothetical severe accident in a Pressure Water Reactor (PWR), hydrogen produced by the degradation and oxidation of the reactor core and high pressure water vapor can be released into the reactor containment. The repartition of the hydrogen in the reactor containment is then dependent of the forced (mixed or natural) convection flows which will be established. This type of accidental scenario will lead then to the pressurization of the reactor containment and to a potential risk of hydrogen combustion, able to prejudice to the integrity of the reactor. One of the means of PWR safety, called spraying, consists to release cold water sprays in the reactor containment, with the aim to make its internal pressure and its temperature decrease, on account of the condensation of water vapor on the injected water droplets. Moreover, the spraying leads to a mixing of the gaseous mixture containing air, water vapor and hydrogen, and contributes to make the hydrogen local concentration decreased. The TOSQAN experiment, developed at the IRSN, allows to reproduce the thermal-hydraulic conditions which represent accidental sequences able to happen in a PWR. In the frame of the current program consecrated to the spraying study, an innovating optical technique has been implemented on the TOSQAN experiment to finely characterize the mass and heat transfers between a spray and the surrounding atmosphere. This work gives into details the development of the global rainbow technique which allows to measure, in a non intrusive way, the temperature of the droplets during their fall. This technique has been coupled with others optical diagnoses such as the spontaneous Raman diffusion spectrometry, the PIV (Particle Image Velocimetry) and the implementation imagery, to respectively measure the water vapor parts as well as the velocities and the droplets sizes. The obtained experimental results have led to a global and local analysis of the interaction between the

  20. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  1. Research Status and Application Progress of Plasma Spray Forming Technology%等离子喷涂成形技术的研究现状和应用进展

    Institute of Scientific and Technical Information of China (English)

    徐玄; 顾进跃; 顾伟华; 王跃明; 熊翔; 解路

    2015-01-01

    Plasma Spray Forming, due to its characteristics of high source temperature and fast flow flame, is suitable for the near-net-forming for the refractory material with high hardness. This paper reviews the research status in the four aspects of PSF technology, including spray powder preparation techniques, preparation and processing of the mandrel, the coating process and post-processing. The application advances of thin-walled parts preparation, rapid tooling and some characterized materials are introduced. An accepted theoretical system in the field of PSF has not been established for most researchers have focused on the application, rather than the basic theory. It has not accepted the formation of a theoretical system. Milling, mandrel and post-treatment processes taken into account, the spray parameters-Part Performances Relations Theory should be established by exploring the physical nature of the coating process based on analyzing the phenomenon and data of the powder melted, the various stages of flight and impact.%等离子喷涂成形(PSF)由于热源温度高、焰流速度快,非常适合高熔点高硬度材料的近净成形,近年来得到广泛关注和发展。文章综述了PSF技术中的喷涂粉末制备、芯模制备和处理、喷涂过程和后处理四个方面的研究现状,详细介绍了PSF技术在制备薄壁零部件、快速模具和某些特征材料方面的应用进展。在PSF研究领域,各国更多地注重应用研究,在其基础理论方面有所欠缺,还没有形成一套公认的理论体系;后续研究应在进一步分析粉末熔融、飞行和撞击各阶段的现象和数据基础上,深入探究喷涂过程的物理本质,综合考虑制粉、芯模和后处理等工序,以求建立一套喷涂参数-制件性能关系理论,用以指导PSF实践。

  2. Spray algorithm without interface construction

    Science.gov (United States)

    Al-Kadhem Majhool, Ahmed Abed; Watkins, A. P.

    2012-05-01

    This research is aimed to create a new and robust family of convective schemes to capture the interface between the dispersed and the carrier phases in a spray without the need to build up the interface boundary. The selection of the Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. In the next step, the high resolution scheme is blended with the WAF scheme to provide the sharpness and boundedness of the interface by using switching strategy. In this work, the Eulerian-Eulerian framework of non-reactive turbulent spray is set in terms of theoretical proposed methodology namely spray moments of drop size distribution, presented by Beck and Watkins [1]. The computational spray model avoids the need to segregate the local droplet number distribution into parcels of identical droplets. The proposed scheme is tested on capturing the spray edges in modelling hollow cone sprays without need to reconstruct two-phase interface. A test is made on simple comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow hollow cone spray. Results show the WAF scheme gives a better prediction than TVD scheme. The only way to check the accuracy of the presented models is by evaluating the spray sheet thickness.

  3. Development of Highly Informative Genome-Wide Single Sequence Repeat Markers for Breeding Applications in Sesame and Construction of a Web Resource: SisatBase

    Science.gov (United States)

    Dossa, Komivi; Yu, Jingyin; Liao, Boshou; Cisse, Ndiaga; Zhang, Xiurong

    2017-01-01

    The sequencing of the full nuclear genome of sesame (Sesamum indicum L.) provides the platform for functional analyses of genome components and their application in breeding programs. Although the importance of microsatellites markers or simple sequence repeats (SSR) in crop genotyping, genetics, and breeding applications is well established, only a little information exist concerning SSRs at the whole genome level in sesame. In addition, SSRs represent a suitable marker type for sesame molecular breeding in developing countries where it is mainly grown. In this study, we identified 138,194 genome-wide SSRs of which 76.5% were physically mapped onto the 13 pseudo-chromosomes. Among these SSRs, up to three primers pairs were supplied for 101,930 SSRs and used to in silico amplify the reference genome together with two newly sequenced sesame accessions. A total of 79,957 SSRs (78%) were polymorphic between the three genomes thereby suggesting their promising use in different genomics-assisted breeding applications. From these polymorphic SSRs, 23 were selected and validated to have high polymorphic potential in 48 sesame accessions from different growing areas of Africa. Furthermore, we have developed an online user-friendly database, SisatBase (http://www.sesame-bioinfo.org/SisatBase/), which provides free access to SSRs data as well as an integrated platform for functional analyses. Altogether, the reference SSR and SisatBase would serve as useful resources for genetic assessment, genomic studies, and breeding advancement in sesame, especially in developing countries. PMID:28878802

  4. Development of Highly Informative Genome-Wide Single Sequence Repeat Markers for Breeding Applications in Sesame and Construction of a Web Resource: SisatBase

    Directory of Open Access Journals (Sweden)

    Komivi Dossa

    2017-08-01

    Full Text Available The sequencing of the full nuclear genome of sesame (Sesamum indicum L. provides the platform for functional analyses of genome components and their application in breeding programs. Although the importance of microsatellites markers or simple sequence repeats (SSR in crop genotyping, genetics, and breeding applications is well established, only a little information exist concerning SSRs at the whole genome level in sesame. In addition, SSRs represent a suitable marker type for sesame molecular breeding in developing countries where it is mainly grown. In this study, we identified 138,194 genome-wide SSRs of which 76.5% were physically mapped onto the 13 pseudo-chromosomes. Among these SSRs, up to three primers pairs were supplied for 101,930 SSRs and used to in silico amplify the reference genome together with two newly sequenced sesame accessions. A total of 79,957 SSRs (78% were polymorphic between the three genomes thereby suggesting their promising use in different genomics-assisted breeding applications. From these polymorphic SSRs, 23 were selected and validated to have high polymorphic potential in 48 sesame accessions from different growing areas of Africa. Furthermore, we have developed an online user-friendly database, SisatBase (http://www.sesame-bioinfo.org/SisatBase/, which provides free access to SSRs data as well as an integrated platform for functional analyses. Altogether, the reference SSR and SisatBase would serve as useful resources for genetic assessment, genomic studies, and breeding advancement in sesame, especially in developing countries.

  5. Measurement of electro-sprayed 238 and 239+240 plutonium isotopes using 4{pi}-alpha spectrometry. Application to environmental samples; Spectrometrie alpha 4{pi} de sources d'actinides realisees par electronebulisation. Developpement et optimisation d'un protocole applique au mesurage des isotopes 238 et 239+240 du plutonium dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Charmoille-Roblot, M. [CEA/Fontenay-aux-Roses, Dept. de Protection de l' Environnement (DPRE), 92 (France)]|[Paris-11 Univ., 91 - Orsay (France)

    1999-07-01

    A new protocol for plutonium deposition using the electro-spray technique coupled with 4{pi}-{alpha} spectrometry is proposed to improve the detection limit, shorten the counting time. In order to increase the detection efficiency, it was proposed to measure 238 and 239+240 plutonium isotopes electro-sprayed deposit simultaneously on both sides of the source support, that must be as transparent as possible to alpha-emissions, in a two-alpha detectors chamber. A radiochemical protocol was adapted to electro-spray constraints and a very thin carbon foil was selected for 4{pi} -alpha spectrometry. The method was applied to a batch of sediment samples and gave the same results as an electrodeposited source measured using conventional alpha spectrometry with a 25 % gain on counting time and 10 % on plutonium 238 detection limit. Validation and application of the technique have been made on reference samples. (author)

  6. Simple one step spray process for CuInS2 / In2S3 heterojunctions on flexible substrates for photovoltaic applications

    Science.gov (United States)

    Thomas, Titu; Kumar, K. Rajeev; Kartha, C. Sudha; Vijayakumar, K. P.

    2015-09-01

    Flexible semiconducting devices such as solar cells and displays have been a recent attraction. Unlike heavy, brittle glass substrates, plastics and metallic foils have advantage of flexibility. They also have added advantages like good thermal stability and high melting point. In this paper we present a very simple method for the growth of Copper Indium Sulphide (CIS) films by depositing merely Indium Sulphide (InS) directly over the Cu foil using simple and economical chemical spray pyrolysis technique. The effects of volume of precursor solution on structural and morphological properties of the films were studied. Finally trials on heterojunctions with a structure of Cu foil/CIS/InS/Ag were also employed. Further improvement on heterojunction is expected by optimizing the morphological and structural properties of the film.

  7. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  8. The Structural Design and Application of Oil-Tank Cleaning Spray Gun%基于OpenCASCADE内核的三维钣金系统研究

    Institute of Scientific and Technical Information of China (English)

    刘峥; 孙波

    2012-01-01

    传统的商用软件二次开发模式难以满足钣金设计的灵活性和交互性要求,基于造型内核开发三维设计环境是可行的方案.在分析OpenCASCADE三维造型内核的开发模式和数据结构的基础上,将钣金展开方法与OpenCASCADE相结合,使用VC++开发出三维钣金设计系统.针对常用钣金件展开方法建立了数学模型,以模型数据和算法为基础,调用OpenCASCADE造型函数,实现了底层数据与显示模块的融合.无论在设计灵活性还是系统扩展性方面都优于传统的商用软件二次开发模式.%Traditional cleaning technology for oil-tank is substituted by the auto-cleaning system because of its low efficiency and low safety.Oil-tank cleaning spray gun is a key component of auto-cleaning system that should be simple,reliable and easy in setup control.This spay gun uses two rotary pairs which has a certain angle and have different rotation speeds ,so that the oil-tank can be cleaned omnidirectionally: At the same time the motion trajectory of the nozzle of the spray gun was simulated and analyzed to achieve preconceived track cleaning and omnidirectional cleaning:Furthermore good social economic benefit was gained by applying the prototype in practical cleaning.

  9. Microbiological and sensory effects of the combined application of hot-cold organic acid sprays and steam condensation at subatmospheric pressure for decontamination of inoculated pig tissue surfaces.

    Science.gov (United States)

    Smulders, Frans J M; Wellm, Gabriele; Hiesberger, Johann; Rohrbacher, Irene; Bauer, Alexandra; Paulsen, Peter

    2011-08-01

    We studied microbiological and sensory effects of treating pig tissue for 15 s with 55 and 10°C sprays of acetic acid (AA; 0.15 to 0.3 M) and lactic acid (LA; 0.1 to 0.2 M) solutions prior to the tissue being subjected to steam condensation (18 s at 65°C or 10 s at 75°C). LA or AA spraying and then steam treatment resulted in 3- to 4-log average reductions of Pseudomonas fragi and Yersinia enterocolitica inocula (6 to 7 log CFU/cm(2)), regardless of acid temperature or concentration. Buffered LA or 1:1 mixtures of AA:LA and then steam treatment yielded similar reductions. Most of the acid-steam-treated samples had microbial counts below the limit of detection (2 log CFU/cm(2)); thus, the results likely underestimate the potential of this procedure. When the period between inoculation and acid-steam treatment was extended from 0.5 to 24 h, up to a 1-log-higher microbial reduction was observed, due to a 1- to 2-log-greater initial contamination. Increasing the LA contact time to 6 min increased the microbial reduction by 0.8 log. Acid-steam treatment effected lower L* values (darker color) on pigskin, but higher L* values on muscle and fat tissue (paler color). Many muscle samples exhibited lower a* values and off-color brown hues. Off-odors were observed immediately after treatment, but with the exception of fat tissue and AA-treated samples, they largely disappeared during further storage. Off-flavors were only detected in AA-treated muscle samples.

  10. Modeling of air-droplet interaction, substrate melting and coating buildup in thermal spraying

    Science.gov (United States)

    Wei, Guanghua

    Among the many surface coating techniques now available, thermal spray is known to offer the most advantages. It can meet a wide range of technical and engineering requirements in a relatively inexpensive and easily controllable way with the capability of producing repeatable results. In the last few decades a lot of important strides have been made in the field of measurements and modelling of thermal spraying. However, due to the complex of the process and the lack of basic materials-based knowledge about the particle melting, spreading and deposition, the relationship between the process parameters and the coating properties still remains unclear. In thermal spraying, a particle is melted to form a droplet with morphology and thermal- and kinetic-energy status change by the interaction with the plasma/flame. In order to produce higher-quality coatings and expand the use of this versatile family of technologies, modelling of the particle behaviors during in-flight, spreading and deposition is essential. This thesis investigates the connections between particle characteristics and coating properties. Momentum, heat and mass transfer phenomena related to particle in-flight, droplet impacting, spreading, and splat layering are studied. Numerical models are developed to establish the quantitative relationships between spray parameters, particle and substrate properties and deposition characteristics. Most existing theoretical studies of in-flight particle assume that the particle is in a spherical shape without voids inside. The behavior of porous particles in thermal spray has not been well understood. However, the presence of voids in the feedstock powders may have a great impact on particle in-flight behaviors such as particle acceleration, melting and oxidation because a hollowed particle is also lighter than a densed one and this will affect the particle trajectory. The particle shape also needs to be taken into account because it influences the drag force and

  11. Evaluation of Multiple Imputation in Missing Data Analysis: An Application on Repeated Measurement Data in Animal Science

    Directory of Open Access Journals (Sweden)

    Gazel Ser

    2015-12-01

    Full Text Available The purpose of this study was to evaluate the performance of multiple imputation method in case that missing observation structure is at random and completely at random from the approach of general linear mixed model. The application data of study was consisted of a total 77 heads of Norduz ram lambs at 7 months of age. After slaughtering, pH values measured at five different time points were determined as dependent variable. In addition, hot carcass weight, muscle glycogen level and fasting durations were included as independent variables in the model. In the dependent variable without missing observation, two missing observation structures including Missing Completely at Random (MCAR and Missing at Random (MAR were created by deleting the observations at certain rations (10% and 25%. After that, in data sets that have missing observation structure, complete data sets were obtained using MI (multiple imputation. The results obtained by applying general linear mixed model to the data sets that were completed using MI method were compared to the results regarding complete data. In the mixed model which was applied to the complete data and MI data sets, results whose covariance structures were the same and parameter estimations and standard estimations were rather close to the complete data are obtained. As a result, in this study, it was ensured that reliable information was obtained in mixed model in case of choosing MI as imputation method in missing observation structure and rates of both cases.

  12. TMO: time and memory optimized algorithm applicable for more accurate alignment of trinucleotide repeat disorders associated genes

    Directory of Open Access Journals (Sweden)

    Done Stojanov

    2016-03-01

    Full Text Available In this study, time and memory optimized (TMO algorithm is presented. Compared with Smith–Waterman's algorithm, TMO is applicable for a more accurate detection of continuous insertion/deletions (indels in genes’ fragments, associated with disorders caused by over-repetition of a certain codon. The improvement comes from the tendency to pinpoint indels in the least preserved nucleotide pairs. All nucleotide pairs that occur less frequently are classified as less preserved and they are considered as mutated codons whose mid-nucleotides were deleted. Other benefit of the proposed algorithm is its general tendency to maximize the number of matching nucleotides included per alignment, regardless of any specific alignment metrics. Since the structure of the solution, when applying Smith–Waterman, depends on the adjustment of the alignment parameters and, therefore, an incomplete (shortened solution may be derived, our algorithm does not reject any of the consistent matching nucleotides that can be included in the final solution. In terms of computational aspects, our algorithm runs faster than Smith–Waterman for very similar DNA and requires less memory than the most memory efficient dynamic programming algorithms. The speed up comes from the reduced number of nucleotide comparisons that have to be performed, without having to imperil the completeness of the solution. Due to the fact that four integers (16 Bytes are required for tracking matching fragment, regardless its length, our algorithm requires less memory than Huang's algorithm.

  13. Shear Strengthening of RC Beams Using Sprayed Glass Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Sayed Mohamad Soleimani

    2012-01-01

    Full Text Available The effectiveness of externally bonded sprayed glass fiber reinforced polymer (Sprayed GFRP in shear strengthening of RC beams under quasi-static loading is investigated. Different techniques were utilized to enhance the bond between concrete and Sprayed GFRP, involving the use of through bolts and nuts paired with concrete surface preparation through sandblasting and through the use of a pneumatic chisel prior to Sprayed GFRP application. It was found that roughening the concrete surface using a pneumatic chisel and using through bolts and nuts were the most effective techniques. Also, Sprayed GFRP applied on 3 sides (U-shaped was found to be more effective than 2-sided Sprayed GFRP in shear strengthening. Sprayed GFRP increased the shear load-carrying capacity and energy absorption capacities of RC beams. It was found that the load-carrying capacity of strengthened RC beams was related to an effective strain of applied Sprayed GFRP. This strain was related to Sprayed GFRP configuration and the technique used to enhance the concrete-FRP bond. Finally, an equation was proposed to calculate the contribution of Sprayed GFRP in the shear strength of an RC beam.

  14. Development of spray coated cathodes for RITS-6.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Sean; Leckbee, Joshua J.; Miller, Stephen Samuel

    2013-09-01

    This report documents work conducted in FY13 to conduct a feasibility study on thermal spray coated cathodes to be used in the RITS-6 accelerator in an attempt to improve surface uniformity and repeatability. Currently, the cathodes are coated with colloidal silver by means of painting by hand. It is believed that improving the cathode coating process could simplify experimental setup and improve flash x-ray radiographic performance. This report documents the experimental setup and summarizes the results of our feasibility study. Lastly, it describes the path forward and potential challenges that must be overcome in order to improve the process for creating uniform and repeatable silver coatings for cathodes.

  15. Repeat-until-success quantum repeaters

    Science.gov (United States)

    Bruschi, David Edward; Barlow, Thomas M.; Razavi, Mohsen; Beige, Almut

    2014-09-01

    We propose a repeat-until-success protocol to improve the performance of probabilistic quantum repeaters. Conventionally, these rely on passive static linear-optics elements and photodetectors to perform Bell-state measurements (BSMs) with a maximum success rate of 50%. This is a strong impediment for entanglement swapping between distant quantum memories. Every time a BSM fails, entanglement needs to be redistributed between the corresponding memories in the repeater link. The key ingredients of our scheme are repeatable BSMs. Under ideal conditions, these turn probabilistic quantum repeaters into deterministic ones. Under realistic conditions, our protocol too might fail. However, using additional threshold detectors now allows us to improve the entanglement generation rate by almost orders of magnitude, at a nominal distance of 1000 km, compared to schemes that rely on conventional BSMs. This improvement is sufficient to make the performance of our scheme comparable to the expected performance of some deterministic quantum repeaters.

  16. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    Science.gov (United States)

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively.

  17. Current situation and development tendency of thermal spraying materials in China

    Institute of Scientific and Technical Information of China (English)

    YU; Yue-guang

    2005-01-01

    The current situations of thermal spraying materials in China are described in this paper.The thermal spraying technology in China has a great progress over tens of years. More than one hundred varieties of material products serve thermal spraying producing now. They belong to three kinds, powders,wires and rods. Technologies for producing alloy, ceramic and composite powders, alloy and cored wires,and oxide ceramic rods are applied to large-scale production. Many research and development works on advanced materials for thermal spraying are carrying out recent years. They show that the general tendencies of thermal spraying materials in China are composite or low-impurity component, ultrafine or nanosized microstructure, high properties, and specialized and systematized applications. Thermal spraying materials have great prospects with the development of saving society in China.

  18. Feature of high velocity oxygen-fuel flame spraying; Kosoku flame yoshaho no tokucho to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Sakaki, K. [Shinshu University, Nagano (Japan). Faculty of Engineering

    1996-05-01

    A description is given about the high velocity flame spraying method. In this method, fuel and oxygen under high pressure are supplied to a spraying gun, a supersonic stream of flame is jetted out of a fine nozzle, and spray particles are injected into the flame to impinge on the substrate surface at a very high speed for the formation of a coating. This method is advantageous in that the spray particles are higher in flying speed than in other spraying methods, that the produced coating is dense and close and excellent in adhesion, that the flame temperature is relatively low, and that the spray material is suppressed in terms of phase transformation, oxidation, and decomposition. This spraying technique is disadvantageous in that the spray materials that it can use are limited in variety because this method meets difficulties in spraying upon high melting-point metal or ceramics. This paper also outlines the spraying devices (chamber combustion type and throat combustion type) and the characteristics of produced coatings, and spray materials and their application (centering about carbide thermit spraying) are mentioned. 23 refs., 6 figs., 2 tabs.

  19. Assessment of application value of 19 autosomal short tandem repeat loci of GoldenEye 20A kit in forensic paternity testing.

    Science.gov (United States)

    Huang, Yan-Mei; Wang, Jie; Jiao, Zhangping; Yang, Liu; Zhang, Xinning; Tang, Hui; Liu, Yacheng

    2013-05-01

    This study was carried out to assess the application value of 19 autosomal short tandem repeat (STR) loci of GoldenEye 20A kit, in which 13 combined DNA index system core STR loci and PentaE, PentaD, D2S1338, D19S433, D12S391, and D6S1043 of six STR loci could be used in forensic paternity testing in Chinese population. We amplified the genomic DNA from blood samples on FTA paper of 289 paternity testing cases by using the GoldenEye 20A kit. The amplified products were detected by capillary electrophoresis, and then the genotypes of 20 genetic markers including 19 STR loci as well as Amelogenin for sex determination were analyzed by GeneMapper v3.2 and GeneMarker HID Software. The results of genotypes were compared to the three commonly used commercial kits including AmpFℓSTR Identifiler, PowerPlex16, and AmpFℓSTR Sinofiler kits. Compared to the three other common commercial kits, the GoldenEye 20A kit had higher value of combined paternity index in certainty of paternity or non-exclusion paternity cases, and more numbers of STR loci were excluded in exclusionary paternity cases. Our data in this study showed that the GoldenEye 20A kit has a higher application value in forensic paternity testing and will be of help for kinship analysis.

  20. Effects of Spray Application of Lanthanum and Cerium on Rape Yield and Quality Based on Different Seasons%不同季节叶面喷施镧、铈对油菜产量及品质的影响

    Institute of Scientific and Technical Information of China (English)

    任艳军; 马建军

    2013-01-01

    以油菜为试材,采用田间小区试验方法,研究了单一稀土La,Ce叶面喷施对同一土壤条件下、不同季节(春季和秋季)油菜产量和营养品质的影响,以期为单一轻稀土农用提供理论依据.结果表明:不同季节种植油菜其营养品质存在明显差异,秋季油菜可溶性糖和维生素C含量较高,可滴定酸和硝酸盐含量较低,糖酸比较高,而春季则相反;La,Ce处理促进春秋两季油菜茎叶干、鲜物重增加,增加干鲜比,增幅大小为Ce处理>La处理;La,Ce处理增加油菜茎叶中可溶性糖含量,降低可滴定酸含量,增加糖酸比,其中春秋两季分别以Ce和La处理作用明显;同时降低油菜茎叶中的维生素C和硝酸盐的含量,其中春秋两季分别以La和Ce处理作用明显;La,Ce处理降低油菜茎叶中的重金属Cu,Zn,Cd,Pb,Ni等元素的含量,降幅大小为Ce处理>La处理.%Using rapes as test material and field plot test method, under the some soil conditions at different seasons ( spring and autumn) , by spray application, the effects of single rare earth La and Ce on rapes yield and nutrition quality were studied, to provide a theoretical basis for the application of single light rare earth in agriculture. The results showed that the rapes nutrient quality planted in two seasons have obvious differences. Planted in autumn, the soluble sugar and vitamin C content was higher, whereas, the titratable acid and nitrate content was relatively low, and sugar acid ratio was also relatively high, while planted in spring the situation was on the contrary. By spraying La or Ce in spring and autumn, the fresh and dry weight ot rapes stems and leaves increased, the dry and fresh ratio also increased, and the increment was Ce > La. Moreover, the soluble sugar content increased, the titratable acid content decreased, so the sugar acid ratio increased. Sprayed Ce and La had more significant effects on spring and autumn rapes, respectively. However

  1. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  2. High Speed Imaging of Diesel Fuel Sprays

    Science.gov (United States)

    Jackson, Ja'kira; Bittle, Joshua

    2016-11-01

    Fuel sprays primarily serve as methods for fuel distribution, fuel/air mixing, and atomization. In this research, a constant pressure flow rig vessel is being tested at various pressures and temperatures using n-heptane. The experiment requires two imaging techniques: color Schlieren and Mie-scatter. Schlieren captures density gradients in a spray which includes both liquid and vapor phases while Mie-scatter is only sensitive to the liquid phase of the fuel spray. Essentially, studies are mainly focused on extracting the liquid boundary from the Schlieren to possibly eliminate the need for acquiring the Mie-Scatter technique. Four test conditions (combination of low and high pressure and temperatures) are used in the application to attempt to find the liquid boundary independent of the Mie-scatter technique. In this pursuit the following methods were used: a color threshold, a value threshold, and the time variation in color. All methods provided some indication of the liquid region but none were able to capture the full liquid boundary as obtained by the Mie-scatter results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  3. Spray printing of organic semiconducting single crystals.

    Science.gov (United States)

    Rigas, Grigorios-Panagiotis; Payne, Marcia M; Anthony, John E; Horton, Peter N; Castro, Fernando A; Shkunov, Maxim

    2016-11-22

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  4. Spray printing of organic semiconducting single crystals

    Science.gov (United States)

    Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim

    2016-11-01

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  5. Alleviating negative effects of irrigation-water salinity on growth and vase life of gerbera by foliar spray of calcium chloride and potassium silicate

    Directory of Open Access Journals (Sweden)

    A. Mohammadi Torkashvand

    2015-11-01

    Full Text Available The required water for greenhouses in Kishestan, Soume-e-Sara town, Guilan province, Iran, is mainly provided by underground resources that have inappropriate quality. One way to reduce the impact of salinity an plant growth is proper nutrition. This greenhouse research was conducted to evaluate the effect of water salinity and foliar spray of calcium (Ca and silicon (Si on growth and vase life of gerbera in a factorial experiment based on compeletly randomized design with two factors. The first factor was salinity of irrigation water at two levels (0 and 1.5 dS/m and the second factor was foliar spray at seven levels (without spray, twice Ca spray, four times Ca spray, two times Ca spray + once Si spray, twice Ca spray + twice Si spray, four times Ca spray + once Si spray, and four times Ca spray + twice Si spray, each with three replications. Results showed that four times Ca foliar spray led to an increase in stem hight, stem and neck diameter, postharvest life and Ca concentration of shoots. In all spray treatments, number of flowers in zero salinity was more than 1.5 dS/m treatments. In general, in case of using low-quality water (electrical conductivity of 1.5 dS/m, the effects of salinity on dry and fresh weights of gerbera plant and vase life of its flowers can be reduced by foliar application of Ca and Si. Since inappropriate water quality in Rasht Greenhouse Complex, Soume-e-Sara town, is one of the main problems of the farmers, especially in growing the ornamental plants, effects of salinity on plant growth could be alleviated with foliar spray of nutrients, especially Ca and Si. In this respect, four times spray of Ca and also twice spray of Ca + twice spray of Si are recommended.

  6. Measurements of the liquid phase temperature in fuel sprays via exciplex fluorescence method. 1st Report. Development of the measuring technique and application to fuel sprays injected into atmospheric pressure and high temperature environments; Exciplex keikoho ni yoru nenryo funmu no ekiso ondo bunpu sokutei. 1. Sokutei shuho no kaihatsu to joatsu koon fun`ikichu ni okeru funmu eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, T.; Nishida, K.; Hiroyasu, H. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering; Funahashi, T.

    1998-07-25

    A measuring method based on the exciplex fluorescence technique has been developed for planar measurements of the liquid phase temperature distribution in fuel sprays. The liquid fuel (n-hexadecane or squalane) was doped with pyrene (C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The spray was excited by laser radiation at 266 nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio. The results demonstrate that this laser-based thermometry technique is available for 2-D measurements of the liquid phase temperature in fuel sprays. 13 refs., 15 figs., 2 tabs.

  7. Ultrasonic Plasma Spray--A New Plasma Spray Process

    Institute of Scientific and Technical Information of China (English)

    LU Zhi-qing; ZHANG Hua-tang; WEN Xiong-wei; LI Lu-ming

    2004-01-01

    The method of arc- ultrasonic is introduced into plasma spray process. The process of spray ZrO2-NiCoCr AlY thermal barrier coatings (TBCs) using air plasma spray (APS) process is studied. A exciting source which can be adjusted from audio frequency to several hundred thousand Hertz is designed successfully. The ultrasonic exciting source is coupled with conventional DC spraying power supply. A few ultrasonic frequencies are selected in the testing. Several parts of the coatings with the coupling arc- ultrasonic are compared with the coatings without it. The results show: with 50 kHz and 80 kHz ultrasound, the coating qualities are improved, whereas 30 kHz has an opposite effect.

  8. Sprayed P25 scaffolds for high-efficiency mesoscopic perovskite solar cells.

    Science.gov (United States)

    Huang, Haibo; Shi, Jiangjian; Lv, Songtao; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2015-06-28

    Uniform, thickness-controllable and large-size mesoscopic TiO2 films based on commercial P25 nanoparticles are prepared by a spray method, which have been applied in the perovskite solar cells, achieving a high efficiency of 16%. This spray method shows promising application in the large-scale production of mesoscopic solar cells.

  9. Development of Air Force aerial spray night operations: High altitude swath characterization

    Science.gov (United States)

    Multiple trials were conducted from 2006 to 2014 in an attempt to validate aerial spray efficacy at altitudes conducive to night spray operations using night vision goggles (NVG). Higher altitude application of pesticide (>400 feet above ground level [AGL]) suggested that effective vector control mi...

  10. Dose-Dependent Effects of CeO2 on Microstructure and Antibacterial Property of Plasma-Sprayed TiO2 Coatings for Orthopedic Application

    Science.gov (United States)

    Zhao, Xiaobing; Liu, Gaopeng; Zheng, Hai; Cao, Huiliang; Liu, Xuanyong

    2015-02-01

    Titanium and its alloys have been used extensively for orthopedic and dental implants. Although these devices have achieved high rates of success, two major complications may be encountered: the lack of osseointegration and the biomaterial-related infection. Accordingly, cerium oxide (CeO2)-doped titanium oxide (TiO2) materials were coated on titanium by an atmospheric plasma spraying (APS) technique. The phase structures, morphologies, and surface chemical states of the obtained coatings were characterized by x-ray diffraction, scanning electron microscopy, and x-ray photoelectron spectroscopy techniques. The in vitro antibacterial and cytocompatibility of the materials were studied with Staphylococcus aureus ( S. aureus, ATCC25923) and osteoblast precursor cell line MC3T3-E1. The results indicated that the addition of CeO2 shifts slightly the diffraction peaks of TiO2 matrix to low angles but does not change its rutile phase structure. In addition, the CeO2/TiO2 composite coatings possess dose-dependent corrosion resistance and antimicrobial properties. And doping of 10 wt.% CeO2 exhibits the highest activity against S. aureus, improved corrosion resistance, and competitive cytocompatibility, which argues a promising option for balancing the osteogenetic and antibacterial properties of titanium implants.

  11. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki

    2015-10-01

    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  12. Potential applications of cold sprayed Cu50Ti20Ni30 metallic glassy alloy powders for antibacterial protective coating in medical and food sectors.

    Science.gov (United States)

    El-Eskandrany, M Sherif; Al-Azmi, Ahmed

    2016-03-01

    Mechanical alloying was utilized for synthesizing of metallic glassy Cu50Ti20Ni30 alloy powders, using a low energy ball milling technique. The metallic glassy powders obtained after 100 h of ball milling had an average particle size of 1.7 mm in diameter and possessed excellent thermal stability, indexed by a relatively high glass transition temperature (358.3 °C) with a wide supercooled liquid region (61 °C). This amorphous phase crystallized into Ti2Cu and CuTiNi2 ordered phases through two overlapped crystallization temperatures at 419.3 °C and 447.5 °C, respectively. The total enthalpy change of crystallization was -4.8 kJ/mol. The glassy powders were employed as feedstock materials to double-face coating the surface of SUS 304 substrate, using cold spraying process under helium gas pressure at 400 °C. This coating material had an extraordinary high nanohardness value of 3.1 GPa. Moreover, it showed a high resistance to wear with a low value of the coefficient of friction ranging from 0.45 to 0.45. Biofilms were grown on 20-mm(2) SUS304 sheets coated coupons inoculated with 1.5 × 10(8) CFU ml(-1)E. coli. Significant biofilm inhibition (p The inhibition of biofilm formation by nanocrystalline powders of Cu-based provides a practical approach to achieve the inhibition of biofilms formation.

  13. Development and Application of a Brush-Spray Derived from a Calligraphy-Brush-Style Synthetic Hair Pen for Use in ESI/MS.

    Science.gov (United States)

    Liu, Jen-Ying; Chen, Pei-Chun; Liou, Yea-Wenn; Chang, Kai-Yin; Lin, Cheng-Huang

    2017-01-01

    The development of a novel type of a sampling/ionization kit for use in electrospray ionization/mass spectrometry is reported. Using a small calligraphy-brush-style synthetic hair pen (nylon-brush), and analogous to paper-spray mass spectrometry, the analytes can be collected, elution/desorption and then ionized from the surface of the nylon-brush. The body of the kit was produced by means of a commercial 3D-printer, in which ABS (acrylonitrile butadiene styrene) was used as the starting material. Meanwhile, a small nylon-brush was embedded inside a 3D-printed plastic cell, in which a solvent was supplied to rinse the brush by means of capillary action. The size and weight of the kit were 1 g and 4 cm, respectively. The kit is disposable and it has various functions, including non-invasive sampling, sample-evaporation and ionization. As a result, when a type of pesticide was selected as the test sample (dimethoate; C5H12NO3PS2), the limit of detection was determined to be 0.1 μg/mL. Collecting the pesticide from a leaf-surface (lettuce) was also successful. The process for fabricating the nylon-brush kit and the optimized experimental conditions are reported herein.

  14. A rapid and sensitive HPLC-APCI-MS/MS method determination of fluticasone in human plasma: application for a bioequivalency study in nasal spray formulations.

    Science.gov (United States)

    Byrro, Ricardo Martins Duarte; César, Isabela Costa; de Santana e Silva Cardoso, Fabiana Fernandes; Mundim, Iram Moreira; Teixeira, Leonardo de Souza; Bonfim, Ricardo Rodrigues; Gomes, Sandro Antônio; Pianetti, Gerson Antônio

    2012-03-05

    A sensitive method for the determination of fluticasone in plasma was developed using high performance liquid chromatography with tandem mass spectrometric detection, whereas beclomethasone was used as internal standard. The analytes were extracted with a simple liquid-liquid extraction from the plasma samples and separated on an ACE C(18) 50 × 4.6 mm i.d.; 5 μm particle size column with a mobile phase consisting of acetonitrile - 0.01% formic acid (48:52, v/v) at a flow rate of 1 ml/min. Detection was achieved by an Applied Biosystems API 5000 mass spectrometer (LC-MS/MS) set at unit resolution in the multiple reaction monitoring mode. Atmospheric pressure chemical ionization (APCI) was used for ion production. The mean recovery for fluticasone propionate was 85%, with a lower limit of quantification set at 2 pg/mL. The validated analytical method was applied to a bioequivalence study of fluticasone propionate administered by nasal spray formulations in human volunteers.

  15. Mass Production of LiFePO4/C Powders by Large Type Spray Pyrolysis Apparatus and Its Application to Cathode for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Shinsuke Akao

    2010-01-01

    Full Text Available Spherical LiFePO4/C powders were successfully produced at a rate of 100 g/h using a large type spray pyrolysis apparatus. Organic compounds such as citric acid and sucrose were used as carbon sources. Scanning electron microscopy observation showed that they had a spherical morphology with nonaggregation. X-ray diffraction analysis revealed that the olivine phase was obtained by heating at 600∘C under argon (95%/hydrogen (5% atmosphere. The chemical composition of LiFePO4/C powders was in good agreement with that of the starting solution. Electrochemical measurement revealed that the use of citric acid was most effective in ensuring a high rechargeable capacity and cycle stability. The rechargeable capacity of the LiFePO4/C cathode obtained using citric acid was 155 mAh/g at a discharge rate of 1 C. Because of the good discharge capacity of the LiFePO4/C cathode, it exhibited excellent cycle stability after 100 cycles at each discharge rate. Moreover, this high cycle stability of the LiFePO4/C cathode was maintained even at 50∘C.

  16. Development of a Convergent Spray Technologies(tm) Spray Process for a Solventless Sprayable Coating, MCC-1

    Science.gov (United States)

    Patel, Anil K.; Meeks, C.

    1998-01-01

    This paper discusses the application of Convergent Spray Technologies (TM) Spray Process to the development and successful implementation of Marshall Convergent Coating (MCC-1) as a primary Thermal Protection System (TPS) for the Space Shuttle Solid Rocket Boosters (SRBs). This paper discusses the environmental and process benefits of the MCC-1 technology, shows the systematic steps taken in developing the technology, including statistical sensitivity studies of about 35 variables. Based on the process and post-flight successes on the SRB, it will be seen that the technology is "field-proven". Application of this technology to other aerospace and commercial programs is summarized to illustrate the wide range of possibilities.

  17. Spray nozzle for fire control

    Science.gov (United States)

    Papavergos, Panayiotis G.

    1990-09-01

    The design of a spray nozzle for fire control is described. It produces a spray of gas and liquid having an oval transverse cross section and it comprises a mixing chamber with an oval transverse cross section adapted to induce a toroidal mixing pattern in pressurized gas and liquid introduced to the mixing chamber through a plurality of inlets. In a preferred embodiment the mixing chamber is toroidal. The spray nozzle produces an oval spray pattern for more efficient wetting of narrow passages and is suitable for fire control systems in vehicles or other confined spaces. Vehicles to which this invention may be applied include trains, armoured vehicles, ships, hovercraft, submarines, oil rigs, and most preferably, aircraft.

  18. Convergent spray process for environmentally friendly coatings

    Science.gov (United States)

    Scarpa, Jack

    1995-01-01

    Conventional spray application processes have poor transfer efficiencies, resulting in an exorbitant loss in materials, solvents, and time. Also, with ever tightening Environmental Protection Agency (EPA) regulations and Occupational Safety and Health Administration requirements, the low transfer efficiencies have a significant impact on the quantities of materials and solvents that are released into the environment. High solids spray processes are also limited by material viscosities, thus requiring many passes over the surface to achieve a thickness in the 0.125 -inch range. This results in high application costs and a negative impact on the environment. Until recently, requirements for a 100 percent solid sprayable, environmentally friendly, lightweight thermal protection system that can be applied in a thick (greater than 0.125 inch) single-pass operation exceeded the capability of existing systems. Such coatings must be applied by hand lay-up techniques, especially for thermal and/or fire protection systems. The current formulation of these coatings has presented many problems such as worker safety, environmental hazards, waste, high cost, and application constraints. A system which can apply coatings without using hazardous materials would alleviate many of these problems. Potential applications include the aerospace thermal protective specialty coatings, chemical and petroleum industries that require fire-protection coatings that resist impact, chemicals, and weather. These markets can be penetrated by offering customized coatings applied by automated processes that are environmentally friendly.

  19. Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review

    Science.gov (United States)

    Gardon, M.; Guilemany, J. M.

    2014-04-01

    Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.

  20. Review on Cold Spray Process and Technology: Part I—Intellectual Property

    Science.gov (United States)

    Irissou, Eric; Legoux, Jean-Gabriel; Ryabinin, Anatoly N.; Jodoin, Bertrand; Moreau, Christian

    2008-12-01

    The number of research papers as well as of patents and patent applications on cold spray and cold spray related technologies has grown exponentially in the current decade. This rapid growth of activity brought a tremendous amount of information on this technology in a short period of time. The main motivation for this review is to summarize the rapidly expanding common knowledge on cold spray to help researchers and engineers already or soon to be involved for their future endeavors with this new technology. Cold spray is one of the various names for describing an all-solid-state coating process that uses a high-speed gas jet to accelerate powder particles toward a substrate where they plastically deform and consolidate upon impact. Cold gas dynamic spray, cold spray, kinetic spray, supersonic particle deposition, dynamic metallization or kinetic metallization are all terminologies found in the literature that designate the above-defined coating process. This review on cold spray technology is divided into two parts. In this article, Part I, patents and patent applications related to this process are reviewed, starting from the first few mentions of the idea at the beginning of the 20th century to its practical discovery in Russia in the 1980s and its subsequent occidental development and commercialization. The patent review encompasses Russian and USA patents and patent applications. Part II will review the scientific literature giving a general perspective of the current understanding and capability of this process.

  1. Thermal transport properties of thermally sprayed coatings: An integrated study of materials, processing and microstructural effects

    Science.gov (United States)

    Chi, Weiguang

    coatings. These results are analyzed from the point of view of modified percolation theory which considers the effect of anisotropic microstructural defects of sprayed coatings on the thermal transport property. In the case of the ceramic coatings (YSZ, Al2O3), the temperature dependent thermal conductivity is also examined for various starting microstructures in collaboration with the Oak Ridge National Laboratory (ORNL). The decisive role of starting microstructure on temperature dependent thermal conductivity is presented. In addition, sintering effects resulting from thermal cycling and isothermal exposure on both room temperature and temperature dependent thermal conductivity have been carefully examined in an effort to assess the relationship to effective starting microstructure and provide quantitative information for life prediction. This dissertation also extends to an investigation of thermal conductivity of metal and alloy thermal spray coatings. A range of metallic materials have been considered and the variation of thermal conductivity is interpreted from the point of view of intrinsic attributes (atomic structure, electronic structure and phase structure) as well as extrinsic effects (as a consequence of oxidation and defected microstructure). Finally, in order to achieve precise and reliable measurement of thermal transport property, the applicability and repeatability of both the laser and xenon flash techniques have been examined through the measurements on these coating systems: ceramics, semiconductors, metals, alloys and composites.

  2. QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY

    Energy Technology Data Exchange (ETDEWEB)

    Eric Nixon; Michelle Pantoya

    2009-07-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.

  3. Highly durable superhydrophobic coatings with gradient density by movable spray method

    Science.gov (United States)

    Tenjimbayashi, Mizuki; Shiratori, Seimei

    2014-09-01

    Superhydrophobic surface is expected to be applied in anti-fouling, anti-icing, and anti-bacterial. However, practical use is interrupted by low mechanical strength, time-consuming process, and limited coating substrate. Here highly durable superhydrophobic coatings were prepared by simple and novel spraying method, which sprays with changing the "spray distance between substrate and spray" (SD), named "movable spray method." We prepared the solution that changes wettability and durability with spraying distance by mixing SiO2 nanoparticles and ethyl alpha cyanoacrylate polymer (EAC). Then, we evaluated the chemical components and surface morphologies of each spraying distance coatings (0 ˜ 50 cm) by XPS, SEM, and laser scanning microscope. It revealed that surface roughness and SiO2/EAC ratio increased as the SD increases. Thus, durable superhydrophobic coatings were designed by spraying with increasing SD gradually. Glow discharge-optical emission spectrometry analysis revealed that designed coatings showed the gradual increase of SiO2/EAC ratio. As a result, coatings prepared on glass, wood, or aluminum substrates maintained their superhydrophobicity up to the abrasion at 40 kPa. This movable spray method is simple coating by the wet process and prepares robust hydrophobic coating on complex shape and large area substrates. The gradient functional surface was found to have mechanical durability and superhydrophobicity, and wide area applications will be expected.

  4. Autonomous Precision Spraying Trials Using a Novel Cell Spray Implement Mounted on an Armadillo Tool Carrier

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Stigaard Laursen, Morten; Midtiby, Henrik

    Precision weeding is one of the most promising applications for autonomous service robots in biological production. Herbicides have been the default weeding solution during the past decades, but there is a growing concern about the environmental impact on drinking water reservoirs etc. The use...... with an Armadillo robotic tool carrier consisting of two battery powered track modules mounted on each side of the implement. This paper focus on the cell sprayer implement design including camera system, sprayer module and integration with the service robot and the robot software. The FroboMind software platform...... of computer vision and precision spraying technology makes it possible to significantly reduce the consumption of herbicides. The work presented here is part of a project with the purpose of performing autonomous precision spraying trials. In this work a novel cell sprayer designed for large scale tests...

  5. Pulmonary and cardiovascular responses of rats to inhalation of a commercial antimicrobial spray containing titanium dioxide nanoparticles

    DEFF Research Database (Denmark)

    McKinney, W; Jackson, M; Sager, T M;

    2012-01-01

    Our laboratory has previously demonstrated that application of an antimicrobial spray product containing titanium dioxide (TiO(2)) generates an aerosol of titanium dioxide in the breathing zone of the applicator. The present report describes the design of an automated spray system...

  6. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.

    Science.gov (United States)

    Zhang, Youfa; Ge, Dengteng; Yang, Shu

    2014-06-01

    A superhydrophobic aluminum alloy was prepared by one-step spray coating of an alcohol solution consisting of hydrophobic silica nanoparticles (15-40 nm) and methyl silicate precursor on etched aluminum alloy with pitted morphology. The as-sprayed metal surface showed a water contact angle of 155° and a roll-off angle of 4°. The coating was subjected to repeated mechanical tests, including high-pressure water jetting, sand particles impacting, and sandpaper shear abrasion. It remained superhydrophobic with a roll-off angle coating mechanical robustness, where the nanoparticles could grab on the rough surface, specifically in the groove structures, in comparison with the smooth glass substrates spray coated with the same materials. Further, we showed that the superhydrophobicity could be restored by spray a new cycle of the nanocomposite solution on the damaged surface. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Establishing Guidelines to Retain Viability of Probiotics during Spray Drying

    NARCIS (Netherlands)

    Perdana, J.A.; Fox, M.B.; Boom, R.M.; Schutyser, M.A.I.

    2015-01-01

    We present the application of a model-based approach to map processing conditions suitable to spray dry probiotics with minimal viability loss. The approach combines the drying history and bacterial inactivation kinetics to predict the retention of viability after drying. The approach was used to

  8. Establishing Guidelines to Retain Viability of Probiotics during Spray Drying

    NARCIS (Netherlands)

    Perdana, J.A.; Fox, M.B.; Boom, R.M.; Schutyser, M.A.I.

    2015-01-01

    We present the application of a model-based approach to map processing conditions suitable to spray dry probiotics with minimal viability loss. The approach combines the drying history and bacterial inactivation kinetics to predict the retention of viability after drying. The approach was used to sy

  9. Aerially released spray penetration of a tall coniferous canopy

    Science.gov (United States)

    An aerial spray deposition project was designed to evaluate aerial application to an Eastern Hemlock (Tsuga canadensis) canopy to combat Hemlock Woolly Adelgid (Adelges tsugae). This adelgid offers a difficult target residing in the forest canopy at the nodes of branchlets. The study collected 1680 ...

  10. Spray pyrolysis for high T{sub c} superconductors films

    Energy Technology Data Exchange (ETDEWEB)

    Odier, P [Laboratoire de Cristallographie, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex (France); Supardi, Z [Physics Department, Universitas Negeri Surabaya, 60231 (Indonesia); De-Barros, D [Laboratoire de Cristallographie, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex (France); Vergnieres, L [Laboratoire de Cristallographie, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex (France); Ramirez-Castellanos, J [Departamento de Quimica Inorganica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040-Madrid (Spain); Gonzales-Calbet, J M [Departamento de Quimica Inorganica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040-Madrid (Spain); Vallet-Regi, M [Departamento de Quimica Inorganica y Bioinorganica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid (Spain); Villard, C [CRTBT, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex (France); Peroz, Ch [CRTBT, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex (France); Weiss, F [Laboratoire des Materiaux et du Genie Physique (LMGP), INPG, 38406 St Martin d' Heres Cedex (France)

    2004-11-01

    Spray pyrolysis at high temperature is reviewed and applied to the formation of epitaxial thick layers of YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO). The necessary conditions to enhance the texture quality and the critical current density are discussed. High critical current densities, over 1.0 MA cm{sup -2} (at 77 K, self-field), are reported, making this technique very promising for low cost applications. This emphasizes the need for more comprehensive studies regarding the chemical phenomena involved in film deposition by spray pyrolysis at high temperature, especially those concerning local equilibrium and reactions occurring in the area involved in the deposition.

  11. A novel gas-droplet numerical method for spray combustion

    Science.gov (United States)

    Chen, C. P.; Shang, H. M.; Jiang, Y.

    1991-01-01

    This paper presents a non-iterative numerical technique for computing time-dependent gas-droplet flows. The method is a fully-interacting combination of Eulerian fluid and Lagrangian particle calculation. The interaction calculations between the two phases are formulated on a pressure-velocity coupling procedure based on the operator-splitting technique. This procedure eliminates the global iterations required in the conventional particle-source-in-cell (PSIC) procedure. Turbulent dispersion calculations are treated by a stochastic procedure. Numerical calculations and comparisons with available experimental data, as well as efficiency assessments are given for some sprays typical of spray combustion applications.

  12. Economic Model Predictive Control for Spray Drying Plants

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert

    and a complexity reduced control model is used for state estimation and prediction in the controllers. These models facilitate development and comparison of control strategies. We develop two MPC strategies; a linear tracking MPC with a Real-Time Optimization layer (MPC with RTO) and an Economic Nonlinear MPC (E...... and sticky powder is avoided from building up on the dryer walls; 3) Demonstrate the industrial application of an MPC strategy to a full-scale industrial four-stage spray dryer. The main scientific contributions can be summarized to: - Modeling of a four-stage spray dryer. We develop new first...

  13. Properties of Spray Dried Food and Spray Drying Characteristics

    Science.gov (United States)

    Katoh, Fumio

    The following conclusions are obtained, studying properties of spray dried food and drying characteristics. (a) Dried particles are similar to spray droplets in size distribution (y=2.5), and particle count distribution is arranged as (dn/dx = ae-bx). (b) The ratio of the particle diameters before and after drying is calculated with moisture before and after drying, and porosity is given as (εp = ww4). (c) The standard drying method is presented to evaluate accurately drying problems at a certain standard. (d) Equilibrium moisture at 20 up to 100°C are summarized in terms of adsorption potential. (e) It makes clear that calulation based on the theory of residence time and drying time represents well complex spray drying characteristics.

  14. Automated quality checks on repeat prescribing.

    OpenAIRE

    Rogers, Jeremy E; Wroe, Christopher J; Roberts, Angus; Swallow, Angela; Stables, David; Cantrill, Judith A; Rector, Alan L.

    2003-01-01

    BACKGROUND: Good clinical practice in primary care includes periodic review of repeat prescriptions. Markers of prescriptions that may need review have been described, but manually checking all repeat prescriptions against the markers would be impractical. AIM: To investigate the feasibility of computerising the application of repeat prescribing quality checks to electronic patient records in United Kingdom (UK) primary care. DESIGN OF STUDY: Software performance test against benchmark manual...

  15. Short Tandem Repeat DNA Internet Database

    Science.gov (United States)

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  16. Scientific considerations for generic synthetic salmon calcitonin nasal spray products.

    Science.gov (United States)

    Lee, Sau L; Yu, Lawrence X; Cai, Bing; Johnsons, Gibbes R; Rosenberg, Amy S; Cherney, Barry W; Guo, Wei; Raw, Andre S

    2011-03-01

    Under the Abbreviated New Drug Application pathway, a proposed generic salmon calcitonin nasal spray is required to demonstrate pharmaceutical equivalence and bioequivalence to the brand-name counterpart or the reference listed drug. This review discusses two important aspects of pharmaceutical equivalence for this synthetic peptide nasal spray product. The first aspect is drug substance sameness, in which a proposed generic salmon calcitonin product is required to demonstrate that it contains the same active ingredient as that in the brand-name counterpart. The second aspect is comparability in product- and process-related factors that may influence immunogenicity (i.e., peptide-related impurities, aggregates, formulation, and leachates from the container/closure system). The comparability of these factors helps to ensure the product safety, particularly with respect to immunogenicity. This review also highlights the key features of in vitro and/or in vivo studies for establishing bioequivalence for a solution nasal spray containing a systemically acting salmon calcitonin.

  17. Direct Biofluid Analysis Using Hydrophobic Paper Spray Mass Spectrometry.

    Science.gov (United States)

    Damon, Deidre E; Davis, Kathryn M; Moreira, Camila R; Capone, Patricia; Cruttenden, Riley; Badu-Tawiah, Abraham K

    2016-02-01

    Ambient electrostatic paper spray ionization from a hydrophobic paper occurs when a DC potential is applied to the dry paper triangle. Online liquid/liquid extraction of small organic compounds from a drop of biological fluid present on the dry hydrophobic paper is achieved with an organic spray solvent in under 1 min and utilizes in situ electrostatic-spray ionization for more efficient detection of extracted molecules. Direct analysis of small volumes of biofluids with no sample pretreatment is possible, which is applicable in point-of-care analyses. High sensitivity and quantitative accuracy was achieved for the direct analysis of illicit drugs in 4 μL of raw blood, serum, and whole urine. The study was extended to monitor the activity of alanine transaminase enzyme, a key biomarker for the detection of liver injury in patients (with HIV and tuberculosis) who typically take several medications at once.

  18. Limitations on quantum key repeaters.

    Science.gov (United States)

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  19. Quantitative repeated open application testing with a rinse-off product in methyldibromo glutaronitrile-sensitive patients: results of the IVDK.

    Science.gov (United States)

    Heratizadeh, Annice; Killig, Claudia; Worm, Margitta; Soost, Stephanie; Simon, Dagmar; Bauer, Andrea; Mahler, Vera; Schuster, Christian; Szliska, Christiane; Frambach, Yvonne; Eben, Ricarda; Werfel, Thomas; Uter, Wolfgang; Schnuch, Axel

    2010-06-01

    While the use of methyldibromo glutaronitrile (MDBGN) in leave-on products is clearly associated with high sensitization or elicitation risk, such a clear-cut relation could be questioned with regard to rinse-off products. The objective of this study was to find a maximum non-eliciting concentration for rinse-off products in MDBGN patch test-positive patients. We performed a use-related test [repeated open application test (ROAT)] in patients sensitized to MDBGN with a liquid soap containing three concentrations of MDBGN (50, 200, and 400 p.p.m. MDBGN, respectively). The soap at 50 p.p.m. was used twice daily for 4 weeks. If no reaction of the skin was observed, the product with the next higher concentration was used for another 4 weeks, etc. In total, 32/37 evaluated cases [86.5%; lower exact one-sided 95% confidence limit (CL): 73.7%] did not react to any of the preparations. The remaining reacted as follows: 1/37 reacted to 50 p.p.m., 3/37 to 200 p.p.m., and 1/37 to 400 p.p.m. The cumulative non-response to 50 p.p.m. was 97.3% (lower CL: 87.8%). The majority of subjects sensitized to MDBGN-tolerated rinse-off products containing a maximum concentration of 400 p.p.m. A concentration in rinse-off products in the range of 50 p.p.m. could be regarded as safe for most individuals already sensitized. These concentrations will presumably prevent induction (sensitization) also.

  20. Qualitative Analysis and Judicial Application of Repeated Drug Crimes%再犯毒品犯罪情节的定性与司法适用

    Institute of Scientific and Technical Information of China (English)

    常秀娇; 吴旸

    2012-01-01

    The Article 356 of the Criminal Code stipulates that recidivists of drug crimes should receive heavier punishment.This stipulation is neither the requirement of the existing nor that of the future recidivist system but the requirement of one of the many statutory aggravating circumstances.Our present Criminal Code further stipulates that issues under different legal applications of Article 356,Article 65 and Article 71 should be dealt with reasonably in the spirit of severe punishment while the recidivists' basic rights fully protected,and on the basis of clear interpretation of stipulations while the "principles of prohibiting repeatable evaluation" strictly followed.%我国《刑法》第三百五十六条规定了对再犯毒品犯罪的行为人从重处罚,此条规定不是已存的累犯制度,也不是将存的再犯制度,而是众多法定从重情节之一。由于我国现行刑法的规定,司法实践中存在第三百五十六条与第六十五条、第七十一条竞合时法律适用混乱的问题,应在明确条文定性的基础上,遵循"禁止重复评价原则",按照严厉打击毒品犯罪、平等尊重和保护犯罪人基本权利的精神,合理解决该问题。

  1. Development and Testing of a Laboratory Spray Table Methodology to Bioassay Simulated Levels of Aerial Spray Drift

    Science.gov (United States)

    2009-05-01

    3 Teske , M. E., and Thistle, H. W., “A Simulation of Release Height and Wind Speed Effects for Drift Minimization,” Trans. ASAE, Vol. 42, 1999, pp...and Teske , M. E., “Evaluation of the AgDISP Aerial Spray Algorithms in the AgDRIFT Model,” Envir. Toxicol. Chem., Vol. 21, 2002, pp. 672–681. 14... Teske , M. E., Vanner, A. L., and Coker, G. W. R., “Validation of SpraySafe Manager, an Aerial Herbicide Application Decision Support System,” Can. J

  2. Annealing effect on the structural, opto-electronic and photoluminescence properties of sprayed Zn{sub 0.76}Mg{sub 0.24}O films for application in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Prathap, P.; Suryanarayana Reddy, A.; Revathi, N.; Ramakrishna Reddy, K.T. [Thin Film Laboratory, Department of Physics, Sri Venkateswara University, 517 502 Tirupati (India); Venkata Subbaiah, Y.P. [Department of Physics, Yogi Vemana University, 516 003 Kadapa (India)

    2010-07-15

    In recent years, Zn{sub 1-x}Mg{sub x}O has attracted the attention of many researchers as its physical behaviour can be suitably controlled by varying the Zn/Mg ratio. The superior advantages associated with Zn{sub 1-x}Mg{sub x}O make this material as a potential candidate for application in Cu(InGa)Se{sub 2}-based solar cells. In the present investigation, Zn{sub 1-x}Mg{sub x}O films have been prepared by spray pyrolysis at 300 C and subsequently annealed in argon and oxygen ambience at temperatures that vary in the range, 100-500 C. The changes occurred in the physical characteristics of the layers as a function of annealing temperature have been studied. The influence of annealing on the structure, topography, opto-electronic and photoluminescence properties was found to be significant. The results have been presented and discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells.

    Science.gov (United States)

    Mahmood, Khalid; Swain, Bhabani Sankar; Jung, Hyun Suk

    2014-08-07

    In this paper, ZnO and Al-doped ZnO films were deposited using the electrospraying method and studied for the first time as photoanodes for efficient perovskite solar cells. Effects of substrate temperature, deposition time, applied voltage, substrate-to-nozzle distance and flow rate (droplet size) on the morphology of ZnO were studied with the help of FE-SEM images. The major factors such as the droplet size of the spray, substrate temperature and substrate-to-nozzle distance at deposition control the film morphology. Indeed, these factors determine the density of the film, its smoothness and the flow of solution over the substrate. The droplet size was controlled by the flow rate of the spray. The substrate-to-nozzle distance and flow rate will both regulate the solution amount deposited on the surface of the substrate. The most favorable conditions for a good quality ZnO thin film were a long substrate-to-nozzle distance and lower solution flow rates. In situ droplet size measurement shows that the size and dispersion of particles were narrowed. The method was shown to have a high deposition rate and efficiency relative to well-established thin film deposition techniques such as chemical and physical vapor deposition. In addition, it also allows easy control of the microstructure and stoichiometry of the deposits. The pure ZnO film produced under optimum conditions (440 nm thick) demonstrated a high power conversion efficiency (PCE) of 10.8% when used as a photoanode for perovskite solar cells, owing to its high porosity, uniform morphology and efficient electron transport. For thicker films a drastic decrease in PCE was observed due to their low porosity. We also observed that the open-circuit voltage increases from 1010 mV to 1045 mV and also the PCE increases from 10.8% to 12.0% when pure ZnO films were doped with aluminum (Al). Under atmospheric pressure, the electrospraying system produces the reasonably uniform-sized droplets of smaller size, so the films

  4. Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs : (Ⅰ) Production of laccase by batch and repeated-batch processes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The production of laccase by Coriolus versicolor wasstudied. The effect of cultivation conditions on laccase productionby Coriolus versicolor was examined to obtain optimal medium andcultivation conditions. Both batch and repeated-batch processeswere performed for laccase production. In repeated-batchfermentation with self-immobilized mycelia, total of 14 cycles wereperformed with laccase activity in the range between 3.4 and 14.8U/ml.

  5. Application of spray drying on Lactobacillus plantarum NCU116 starter culture%植物乳杆菌NCU116菌剂的喷雾干燥制备

    Institute of Scientific and Technical Information of China (English)

    熊涛; 廖良坤; 黄涛; 邓耀军

    2015-01-01

    To investigate the application of spray drying on L.plantarum NCU116 starter culture,it was found that the best formulation of protective agent was 5% (w/w) skim milk,5% (w/w) trehalose and 3% (w/w) monosodium glutamate through orthogonal experiment.Meanwhile,the response surface methodology was used to optimize the spray drying process.The recommended optimum spray drying conditions were inlet temperature of 125 ℃,material flow of 320 mL/h and microbial contents of,10.25 lg CFU/mL.Under this condition,the survival rate of NCU116 was 89.95 % and the viable counts were 10.96 lg CFU/g.The impact of protective agent on the membrane integrity was investigated using flow cytometry.Cells spray drying with protective agent significantly reduced membrane damage and 49.75 % cells were intact after addition of protective agent,which was only 1.12 % before it.All microcapsules showed a spherical shape with concavities and free of fissures and particle sizes between 10 and 18 μm through scanning electron microscope.The glass translation temperature of this starter culture was 79.50 ℃ as determined by differential scanning calorimetry.The storage stability of dried powder showed significant difference at different storage temperature.Storage of starter culture at-20 ℃ led to slightly viability loss after 60 d,while storage at 25 ℃ for 60 d led to 2.31 Log loss of viable cells.The outcome of this study provided a basis for production of starter culture using spray drying.%研究了通过喷雾干燥制备植物乳杆菌NCU116发酵剂.通过正交试验确定,以质量分数为5%的脱脂乳,5%的海藻糖,3%的谷氨酸钠作为喷雾干燥复配保护剂时保护效果最佳,利用响应面分析得到最佳喷雾条件:进风温度125℃,物料流量320 mL/h,菌含量为10.25 lgCFU/mL,此时NCU116存活率为89.95%,活菌数达到10.96 lgCFU/g.通过流式细胞术检测喷雾干燥后菌剂的细胞膜完整性,未添加保护剂时仅有1.12%

  6. Influence of powder and spray parameters on erosion and corrosion properties of HVOF sprayed WC-Co-Cr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Berget, John

    1998-07-01

    Thermal spraying is a generic term including various processes used to deposit coatings on surfaces. The coating material is in the form of powder or a wire and is melted or softened by means of a heat source. A gas stream accelerates the material towards a prepared surface and deposits it there to form the coating. Examples of components being maintained by application of thermal spray coatings are gate valves and ball valves for the offshore industry and turbine blades in power generations installations. Recent investigation has shown that the commonly used coating material WC-Co is not corrosion resistant. But it can be improved by the addition of Cr. The main objective of this thesis is to study the influence of spray process control variables and powder characteristics on the erosion and erosion-corrosion properties of the coatings. Spray process variables investigated include energy input, powder feed rate and spray distance. Powder characteristics studied are average size of the WC particles, relative proportions of Co and Cr in the metal phase and powder grain size distribution.

  7. Application of transrectal ultrasound-guided repeat needle biopsy in the diagnosis of prostate cancer in Chinese population: A retrospective study

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Background: Transrectal ultrasound-guided repeat needle biopsy (TUGRNB is widely used for diagnosis of prostate cancer (PCa. However, significance of TUGRNB in Chinese population was rarely reported. A retrospective study was conducted to evaluate the significance of TUGRNB applied in prediction of PCa in Chinese population. Materials and Methods: A total of 960 from January 2009 to December 2012 were included. Repeat needle biopsy rate and PCa positive detection rate were evaluated. Relationship between prostate specific antigen (PSA levels and PCa positive rates was analyzed. Results: PCa positive detection rate after initial needle biopsy was 28.4%, which was lower than the rate of repeat needle biopsy (40%. The rate for immediate transurethral resection (TUR, surgery after initial needle biopsy, was 27.1%, however with a low PCa positive detection rate (0.66%. The repeat needle biopsy rate was lower compared with the initial biopsy rate (P 20 ng/ml, PCa positive rate was significantly higher than those with PSA < 20 ng/ml (P < 0.05. Conclusion: PCa positive detection rate following repeat needle biopsy in Chinese population was higher, although the repeated needle biopsy rate was still in a low level. TUGRNB should attract more attention in the diagnosis of PCa.

  8. Officials: Aerial Spraying Working Against Miami Mosquitoes

    Science.gov (United States)

    ... 160274.html Officials: Aerial Spraying Working Against Miami Mosquitoes The insects are to blame for first cases ... 2016 (HealthDay News) -- Aerial spraying is killing many mosquitoes in a part of Miami where the insects ...

  9. Computer simulation to arc spraying

    Institute of Scientific and Technical Information of China (English)

    梁志芳; 李午申; 王迎娜

    2004-01-01

    The arc spraying process is divided into two stages: the first stage is atomization-spraying stream (ASS) and the second one is spraying deposition (SD). Then study status is described of both stages' physical model and corresponding controlling-equation. Based on the analysis of study status, the conclusion as follows is got. The heat and mass transfer models with two or three dimensions in ASS stage should be established to far deeply analyses the dynamical and thermal behavior of the overheat droplet. The statistics law of overheated droplets should be further studied by connecting simulation with experiments. More proper validation experiments should be designed for flattening simulation to modify the models in SD stage.

  10. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Science.gov (United States)

    Rigit, A. R. H.; Shrimpton, John S.

    2009-06-01

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/ d ~ 200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested.

  11. Effect of the Shape Factor on the Cold-Spraying Dynamic Characteristics of Sprayed Particles

    Science.gov (United States)

    Song, Jun; Liu, Juanfang; Chen, Qinghua; Li, Kepin

    2017-09-01

    Silicon powder was chosen to be deposited by cold spraying for the consideration of possible applications in lithium ion batteries. The influence of the silicon particle shapes other than spherical on the impact velocity and temperature for different working parameters of the gas streams have been numerically investigated by using computational fluid dynamics modeling. The results show that, for same equivalent diameter, the particle impact velocities increase to a maximum velocity when the shape factor increases to a certain value and then decreases to the impact velocity of spherical particles. In the cold-spraying process, the particle velocity profile for smaller shape factors is much closer to that of the gas stream due to the larger particle surface area. Furthermore, the particle impact velocity increment for smaller shape factors is much more remarkable with a higher main propulsion gas temperature and higher carrier gas pressure. The effect of raising the main propulsion gas pressure on the impact velocity of the particles with very smaller shape factors is negligible. The particle impact velocity and temperature can be altered by not only the change of the working parameters of the gas steams but also the change of the sizes and shapes of the sprayed particles.

  12. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3.

    Science.gov (United States)

    Pushechnikov, Alexei; Lee, Melissa M; Childs-Disney, Jessica L; Sobczak, Krzysztof; French, Jonathan M; Thornton, Charles A; Disney, Matthew D

    2009-07-22

    Herein, we describe the design of high affinity ligands that bind expanded rCUG and rCAG repeat RNAs expressed in myotonic dystrophy type 1 (DM1) and spinocerebellar ataxia type 3. These ligands also inhibit, with nanomolar IC(50) values, the formation of RNA-protein complexes that are implicated in both disorders. The expanded rCUG and rCAG repeats form stable RNA hairpins with regularly repeating internal loops in the stem and have deleterious effects on cell function. The ligands that bind the repeats display a derivative of the bisbenzimidazole Hoechst 33258, which was identified by searching known RNA-ligand interactions for ligands that bind the internal loop displayed in these hairpins. A series of 13 modularly assembled ligands with defined valencies and distances between ligand modules was synthesized to target multiple motifs in these RNAs simultaneously. The most avid binder, a pentamer, binds the rCUG repeat hairpin with a K(d) of 13 nM. When compared to a series of related RNAs, the pentamer binds to rCUG repeats with 4.4- to >200-fold specificity. Furthermore, the affinity of binding to rCUG repeats shows incremental gains with increasing valency, while the background binding to genomic DNA is correspondingly reduced. Then, it was determined whether the modularly assembled ligands inhibit the recognition of RNA repeats by Muscleblind-like 1 (MBNL1) protein, the expanded-rCUG binding protein whose sequestration leads to splicing defects in DM1. Among several compounds with nanomolar IC(50) values, the most potent inhibitor is the pentamer, which also inhibits the formation of rCAG repeat-MBNL1 complexes. Comparison of the binding data for the designed synthetic ligands and MBNL1 to repeating RNAs shows that the synthetic ligand is 23-fold higher affinity and more specific to DM1 RNAs than MBNL1. Further studies show that the designed ligands are cell permeable to mouse myoblasts. Thus, cell permeable ligands that bind repetitive RNAs have been designed

  13. Plasma Spraying of Copper by Hybrid Water-Gas DC Arc Plasma Torch

    Science.gov (United States)

    Kavka, T.; Matějíček, J.; Ctibor, P.; Mašláni, A.; Hrabovský, M.

    2011-06-01

    Water-stabilized DC arc plasma torches offer a good alternative to common plasma sources used for plasma spraying applications. Unique properties of the generated plasma are determined by a specific plasma torch construction. This article is focused on a study of the plasma spraying process performed by a hybrid torch WSP500®-H, which combines two principles of arc stabilization—water vortex and gas flow. Spraying tests with copper powder have been carried out in a wide range of plasma torch parameters. First, analyses of particle in-flight behavior for various spraying conditions were done. After, particles were collected in liquid nitrogen, which enabled analyses of the particle in-flight oxidation. A series of spraying tests were carried out and coatings were analyzed for their microstructure, porosity, oxide content, mechanical, and thermal properties.

  14. Optimizing Spray and Combustion in Diesel Engine by Multidimensional Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lei; ZHAO Chang-lu; ZHANG Fu-jun

    2005-01-01

    The calculation of spray and combustion in diesel engines is described by using the softwares FIRE and BOOST. The application of the resulting computational method to the simulation of fuel spray and breakup, mixture formation and combustion in a heavy duty diesel is presented. According to detailed insight into the governing processes provided by the simulation results, various aspects of the dependence of the spray propagation and combustion on the chamber geometry and spray angle are discussed. Then, global cylinderaveraged pressure traces are extracted from the space and time resolved field quantities and compared to incylinder pressure measurements. Finally, an optimized configuration of the chamber geometry and spray angle with a new injection rate of higher injection pressure is proposed.

  15. Modeling Residual Stress Development in Thermal Spray Coatings: Current Status and Way Forward

    Science.gov (United States)

    Abubakar, Abba A.; Arif, Abul Fazal M.; Al-Athel, Khaled S.; Akhtar, S. Sohail; Mostaghimi, Javad

    2017-08-01

    An overview of analytical and numerical methods for prediction of residual stresses in thermal spray coatings is presented. The various sources and mechanisms underlying residual stress development in thermal spray coatings are discussed, then the various difficulties associated with experimental residual stress measurement in thermal spray coatings are highlighted. The various analytical and numerical models used for prediction of residual stresses in thermal spray coatings are thoroughly discussed. While analytical models for prediction of postdeposition thermal mismatch stresses are fully developed, analytical quenching and peening stress models still require extensive development. Various schemes for prediction of residual stresses using the finite element method are identified. The results of the various numerical and analytical models are critically analyzed, and their accuracy and validity, when compared with experiments, are discussed. Issues regarding the accuracy and applicability of the models for predicting residual stresses in thermal spray coatings are highlighted, and several suggestions for future development of the models are given.

  16. Spray and High-Pressure Flow Computations in the National Combustion Code (NCC) Improved

    Science.gov (United States)

    Raju, Manthena S.

    2002-01-01

    Sprays occur in a wide variety of industrial and power applications and in materials processing. A liquid spray is a two-phase flow with a gas as the continuous phase and a liquid as the dispersed phase in the form of droplets or ligaments. The interactions between the two phases--which are coupled through exchanges of mass, momentum, and energy--can occur in different ways at disparate time and length scales involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the ratecontrolling processes associated with turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates of the spray, among many other factors. With the aim of developing an efficient solution procedure for use in multidimensional combustor modeling, researchers at the NASA Glenn Research Center have advanced the state-of-the-art in spray computations in several important ways.

  17. Hollow Cone Spray Characterization and Integral Modeling

    OpenAIRE

    Bollweg, Peter

    2013-01-01

    The thesis presents a computationally efficient spray model for hollow cone sprays suitable for engine system simulation of direct injecting gasoline internal combustion engines. The model describes the transient evolution of the spray as a two-phase jet. Spatial gradients are resolved along the main injection direction. Momentum exchange, droplet heat-up, and fuel evaporation are accounted for. Diffusive transport of momentum, energy, and fuel species mass between the dense spray zone an...

  18. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  19. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States); Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2016-11-04

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials for corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray

  20. 14 CFR 27.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 27.239 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.239 Spray characteristics. If certification for water operation is requested, no spray...

  1. 14 CFR 23.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision...

  2. 14 CFR 29.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 29.239 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.239 Spray characteristics. If certification for water operation is requested, no spray...

  3. Sequential cryogen spraying for heat flux control at the skin surface

    Science.gov (United States)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  4. Book of abstracts of the SuproFruit 2009 : 10th workshop on spray application techniques in fruit growing, September 30 - October 2, 2009, Wageningen, The Netherlands

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.

    2009-01-01

    The workshop covers the state of the art, novel ideas, new approaches and latest developments in technology and methods that will increase the precision in application of plant protection products and reduce the risks for consumers and the environment. The most recent advances are presented in lectu

  5. Assessing the optimal liquid volume to be sprayed on isolated olive trees according to their canopy volumes.

    Science.gov (United States)

    Miranda-Fuentes, A; Llorens, J; Rodríguez-Lizana, A; Cuenca, A; Gil, E; Blanco-Roldán, G L; Gil-Ribes, J A

    2016-10-15

    The application of pesticides to traditional and intensive olive orchards in Southern Spain has led to environmental problems. More specifically, the lack of an accurate, useful criterion to regulate the spray volume in relation to canopy characteristics has led to spray drift and runoff, which are threats to local ecosystems. The aim of this study was to determine the optimal relationship between canopy volume and the spray application volume, called specific spray volume, CV, through laboratory and field trials. In the laboratory trial, 6 specific spray volumes (0.05, 0.08, 0.10, 0.12, 0.15, and 0.20Lm(-3)) were tested in a specially designed structure containing small, live olive trees in order to simulate an intensive plantation system. The model aimed to evaluate the coverage of pesticide application on water sensitive paper (WSP) collectors. In the field trial, the three laboratory specific spray volumes that gave the best coverage values were tested on live, intensively managed trees, whose crown volume was manually measured. Food dye E-102 was used to determine the spray deposition on artificial targets (10×10cm absorbent paper pieces), and WSP was used to evaluate spray coverage. The spray penetration and deposit homogeneity inside the canopy were also evaluated. Weather conditions during the field trial were monitored with a weather station. The results of the laboratory trial showed that the three best specific spray volumes were 0.08, 0.10, and 0.12Lm(-3), resulting in mean coverage values of approximately 30%. The ANOVA of the field trial results showed that the 0.12Lm(-3) was the optimal specific spray volume for isolated olive trees. This specific spray volume gave the highest mean deposits, the best efficiency (as measured by the greatest normalized deposit), the most favourable penetration and homogeneity, and the highest coverage values.

  6. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    Science.gov (United States)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  7. Chlorhexidine spray as an adjunct in the control of dental biofilm in children with special needs.

    Science.gov (United States)

    Viana, Gilberg Resende; Teiltelbaum, Ana Paula; dos Santos, Fábio André; Sabbagh-Haddad, Aida; Guaré, Renata Oliveira

    2014-01-01

    The aim of this study was to evaluate the clinical effectiveness of .12% chlorhexidine applied via spray and the acceptance. A total of 26 individuals with mental health issues, aged 7-14, were included into two groups: placebo (control, n = 13) and chlorhexidine (experimental, n = 13). Both groups received two daily applications of spray during 2 months. The periodontal conditions were evaluated by the simplified oral hygiene index (OHI-S) and gingival index (GI). The evaluation of acceptance of the application method (spray) was assessed by questionnaire. Data were analyzed with nonparametric tests, with a significance level of 5%. Regarding the OHI-S index, only the experimental group showed significant change during the evaluations (p < 0.001). Regarding the GI, both groups showed significant changes during the evaluations. The method of application was well accepted by patients and caregivers, and .12% chlorhexidine solution applied via spray significantly reduced the rates of dental and gingival biofilm.

  8. Repeatability of Harris Corner Detector

    Institute of Scientific and Technical Information of China (English)

    HU Lili

    2003-01-01

    Interest point detectors are commonly employed to reduce the amount of data to be processed. The ideal interest point detector would robustly select those features which are most appropriate or salient for the application and data at hand. This paper shows that interest points are geometrically stable under different transformations.This property makes interest points very successful in the context of image matching. To measure this property quantatively, we introduce a evaluation criterion: repeatability rate.

  9. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    Science.gov (United States)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  10. Ligament-mediated spray formation

    NARCIS (Netherlands)

    Villermaux, E.; Marmottant, Ph.; Duplat, J.

    2004-01-01

    The spray formed when a fast gas stream blows over a liquid volume presents a wide distribution of fragment sizes. The process involves a succession of changes of the liquid topology, the last being the elongation and capillary breakup of ligaments torn off from the liquid surface. The coalescence o

  11. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  12. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Della Torre, Edward; Bennett, Lawrence H. [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052 (United States); ElBidweihy, Hatem, E-mail: Hatem@gwmail.gwu.edu [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052 (United States)

    2014-02-15

    The Gd{sub 5}Ge{sub 2}Si{sub 2} alloy and the off-stoichiometric Ni{sub 50}Mn{sub 35}In{sub 15} Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd{sub 5}Ge{sub 2}Si{sub 2} and Ni{sub 50}Mn{sub 35}In{sub 15} alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  13. A Review of Recent Developments in X-Ray Diagnostics for Turbulent and Optically Dense Rocket Sprays

    Science.gov (United States)

    Radke, Christopher; Halls, Benjamin; Kastengren, Alan; Meyer, Terrence

    2017-01-01

    Highly efficient mixing and atomization of fuel and oxidizers is an important factor in many propulsion and power generating applications. To better quantify breakup and mixing in atomizing sprays, several diagnostic techniques have been developed to collect droplet information and spray statistics. Several optical based techniques, such as Ballistic Imaging and SLIPI have previously demonstrated qualitative measurements in optically dense sprays, however these techniques have produced limited quantitative information in the near injector region. To complement to these advances, a recent wave of developments utilizing synchrotron based x-rays have been successful been implemented facilitating the collection of quantitative measurements in optically dense sprays.

  14. Análise das deposições da pulverização aérea simulando a aplicação de Metarhizium anisopliae (Metsch na cultura da cana-de-açúcar Aerial spraying analysis for Metarhizium anisopliae (Metsch application in sugarcane crops

    Directory of Open Access Journals (Sweden)

    Hermes Geraldo Corrêa

    1992-01-01

    Full Text Available Aplicações de inseticida biológico constituído de esporos do fungo Metarhizium anisopliae (Metsch têm controlado satisfatoriamente a cigarrinha-da-cana, Mahanarva posticata (Stal, importante praga da cana-de-açúcar, em Alagoas. Este trabalho analisa as deposições da aplicação aérea na cultura da cana-de-açúcar, utilizando traçantes químicos e corantes. Foram determinados os depósitos do magnésio em fitas de papel acetinado colocadas transversalmente à linha de vôo e mediante análises de gotas recolhidas em cartões kromekote dispostos paralelamente às fitas. Nas condições em que as aplicações foram realizadas, verificou-se que nas faixas sobrepostas de 20 m, a recuperação foi de 44,5%,60% da qual se perde no solo de modo que, no final, apenas 18% do que foi aplicado efetivamente se deposita sobre a massa vegetal da cana. Portanto, se for realizada uma aplicação do entomopatógeno nas condições do ensaio, ela deverá apresentar uma deposição efetiva de aproximadamente 1/5 do total dos esporos aplicados por unidade de área.Biological control of spitthebug, Mahanarva posticata (Stal in sugarcane crop has been demonstrated possible and effective. Particular conditions in Northeastern of Brazil, where this pest causes severe damage, contribute to make aerial spraying suitable. Nevertheless, some good results in pest control are alternated with unsatisfactory ones. Some doubts on aerial spray application technology used have arisen, since technical information obtained in this Field are scarce. This trial was carried out in Alagoas State, Brazil, in 30-7-1985 with the aim of improving the efficiency of aerial application of the above biological pesticide mentioned. This paper presents some spray deposit patterns obtained with the Brazilian aircraft, namely IPANEMA EMB 201-A. The aerial spray application using this Brazilian aircraft and lane separations of 20 m, gave recovery of 44.5%, while 60% of it was lost in the

  15. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application.

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2014-11-15

    Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic

  16. Numerical Analysis of the Effects of Wind and Sprayer Type on Spray Distribution in Different Orchard Training Systems

    Science.gov (United States)

    Duga, Ashenafi T.; Dekeyser, Donald; Ruysen, Kris; Bylemans, Dany; Nuyttens, David; Nicolai, Bart M.; Verboven, Pieter

    2015-12-01

    A computational fluid dynamics (CFD) model of airflow and spray application in orchards was validated using field trials and used to assess the effect of wind and sprayer type on spray distribution in different orchard training systems. Three air-assisted orchard sprayer designs (a cross-flow sprayer, an axial sprayer and a sprayer with individual spouts) and four different training systems of apple and pear trees were used for this analysis. The CFD model integrates the tree architecture into the model geometry, rather than using a generalized canopy profile approach. Predicted vertical on-tree deposition profiles agreed well with measurements. The lower airflow rate generated by the sprayer with individual spouts resulted in a significantly larger deflection of the spray particles under the same wind conditions. A detailed assessment was made on the most common axial sprayer. An increase in the magnitude of the wind speed for flow across the tree row resulted in an increase in the amount of spray detected in the air around the trees and in the ground deposition in front of the tree row. Environmental airflow in the direction of spraying gave the largest deposition on the tree, constraining the spray in the canopy region. A wind direction opposite to the spraying direction, however, resulted in an increase of the ground deposition and the amount of spray remaining in air. The model can be used to analyze the effects of implementation of more sustainable spray application procedures taking into account wind conditions, tree and machine characteristics.

  17. Relieving thermal discomfort: Effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat.

    Science.gov (United States)

    Barwood, M J; Corbett, J; Thomas, K; Twentyman, P

    2015-06-01

    L-menthol stimulates cutaneous thermoreceptors and induces cool sensations improving thermal comfort, but has been linked to heat storage responses; this could increase risk of heat illness during self-paced exercise in the heat. Therefore, L-menthol application could lead to a discrepancy between behavioral and autonomic thermoregulatory drivers. Eight male participants volunteered. They were familiarized and then completed two trials in hot conditions (33.5 °C, 33% relative humidity) where their t-shirt was sprayed with CONTROL-SPRAY or MENTHOL-SPRAY after 10 km (i.e., when they were hot and uncomfortable) of a 16.1-km cycling time trial (TT). Thermal perception [thermal sensation (TS) and comfort (TC)], thermal responses [rectal temperature (Trec ), skin temperature (Tskin )], perceived exertion (RPE), heart rate, pacing (power output), and TT completion time were measured. MENTHOL-SPRAY made participants feel cooler and more comfortable and resulted in lower RPE (i.e., less exertion) yet performance was unchanged [TT completion: CONTROL-SPRAY 32.4 (2.9) and MENTHOL-SPRAY 32.7 (3.0) min]. Trec rate of increase was 1.40 (0.60) and 1.45 (0.40) °C/h after CONTROL-SPRAY and MENTHOL-SPRAY application, which were not different. Spraying L-menthol toward the end of self-paced exercise in the heat improved perception, but did not alter performance and did not increase heat illness risk.

  18. Lidocaine spray as a local analgesic for intravenous cannulation: a randomized clinical trial.

    Science.gov (United States)

    Datema, Joris; Veldhuis, Jeroen; Bekhof, Jolita

    2017-08-10

    Lidocaine spray is an effective analgesic of mucous membranes. Lidocaine spray is also used during intravenous (i.v.) cannulation, especially in children. However, the analgesic effect of lidocaine spray during i.v. cannulation has not been studied. We aimed to assess the analgesic effectiveness of lidocaine spray during i.v. cannulation. We conducted a randomized, double-blinded, placebo-controlled trial in seventeen healthy adults who received an i.v. cannulation in the right and left elbow, respectively, where the order of application of 60 mg lidocaine spray (Xylocaine 10% pump spray) or placebo spray (chlorhexidine gluconate 0.5% in 70% alcohol base) before i.v. cannulation was randomized. Thus, each participant had an i.v. cannulation in both arms: one with lidocaine spray and the other with placebo spray. The primary outcome was pain intensity assessed by a 100 mm Visual Analogue Scale. The secondary outcomes were adverse events, success rate of i.v. cannulation and the degree of difficulty of i.v. cannulation as estimated by the nurse performing the i.v cannulation. The pain score (Visual Analogue Scale) during i.v. cannulation was 18.0 mm (interquartile range: 5.0-34.5 mm) after lidocaine application and 21.0 mm (interquartile range: 11.0-30.5) after placebo application. These scores were not significantly different (95% confidence interval: -9.0-11.0, P=0.698). No adverse events occurred and all i.v. cannulations were successful at first attempt. Local administration of lidocaine is not effective in reducing pain during i.v. cannulation.

  19. Novel Approach to Repeated Arterial Blood Sampling in Small Animal PET : Application in a Test-Retest Study with the Adenosine A1 Receptor Ligand [C-11]MPDX

    NARCIS (Netherlands)

    Sijbesma, Jürgen W A; Zhou, Xiaoyun; Vállez García, David; Houwertjes, Martin C; Doorduin, Janine; Kwizera, Chantal; Maas, Bram; Meerlo, Peter; Dierckx, Rudi A; Slart, Riemer H J A; Elsinga, Philip H; van Waarde, Aren

    2016-01-01

    Small animal positron emission tomography (PET) can be used to detect small changes in neuroreceptor availability. This often requires rapid arterial blood sampling. However, current catheterization procedures do not allow repeated blood sampling. We have developed a procedure which allows arterial

  20. Study on Application of Tri-sodium Phosphate in Containment Spray System%磷酸三钠在安全壳喷淋系统中的应用研究

    Institute of Scientific and Technical Information of China (English)

    王琳; 段永强; 崔怀明

    2011-01-01

    固体磷酸三钠(TSP)属于强碱弱酸盐,具有较强的碱性和较高的溶解度,化学性质稳定,能够长期保存.在安全壳喷淋系统(EAS)的喷淋水中添加TSP替代NaOH,能够调节喷淋液的pH值,有效地除去从泄漏的冷却水中释放至安全壳中的碘气体,避免强碱对工作人员的伤害,易于事故后的清理.本文对TSP在EAS系统中的应用进行了分析研究,计算了TSP的用量、pH值调节能力和溶解时间,初步确定了化学物贮存箱的结构、设置方式.在安全壳地坑旁安装TSP贮存箱,使用TSP替代氢氧化钠(NaOH)溶液是可行的.%Trisodium phosphate (TSP) belongs to strong acid-weak base salt, having the strong alkalescence, good solubility and steady chemical property. It can be preserved for a long time. In order to provide the effective trapping of iodine in the water and to prevent the stress corrosion cracking of the metal material, it is necessary to buffer the acid and raise the pH by the addition of trisodium phosphate in the spray water. We have studied TSP application in EAS system through the calculation of TSP quantity, and the ability to adjust pH and dissolution time. The structure and the layout of TSP storage tank could be confirmed. It is concluded that the setting of TSP container beside the containment sump, sodium hydroxide could be replaced by trisodium phosphate.

  1. Venturi easy ambient sonic-spray ionization.

    Science.gov (United States)

    Santos, Vanessa G; Regiani, Thaís; Dias, Fernanda F G; Romão, Wanderson; Jara, Jose Luis Paz; Klitzke, Clécio F; Coelho, Fernando; Eberlin, Marcos N

    2011-02-15

    The development and illustrative applications of an ambient ionization technique termed Venturi easy ambient sonic-spray ionization (V-EASI) is described. Its dual mode of operation with Venturi self-pumping makes V-EASI applicable to the direct mass spectrometric analysis of both liquid (V(L)-EASI) and solid (V(S)-EASI) samples. V-EASI is simple and easy to assemble, operating solely via the assistance of a sonic stream of nitrogen or air. The sonic gas stream causes two beneficial and integrated effects: (a) the self-pumping of solutions via the Venturi effect and (b) sonic-spray ionization (SSI) of analytes either in solution or resting on solid surfaces. In its liquid mode, V(L)-EASI is applicable to analytes in solution, forming negatively and/or positively charged intact molecular species in a soft fashion with little or no fragmentation. In its solid mode, V(S)-EASI relies on Venturi self-pumping of a proper SSI solvent solution in combination with SSI to form a stream of bipolar charged droplets that bombard the sample surface, causing desorption and ionization of the analyte molecules. As for its precursor technique (EASI), V-EASI generates bipolar droplets with considerably lower average charging, which increases selectivity for ionization with high signal-to-noise ratios and clean spectra dominated by single molecular species with minimal solvent ions. V-EASI also operates in a voltage-, heat-, and radiation-free fashion and is therefore free of thermal, electrical, or discharge interferences.

  2. Development of a Paper Spray Mass Spectrometry Cartridge with Integrated Solid Phase Extraction for Bioanalysis.

    Science.gov (United States)

    Zhang, Chengsen; Manicke, Nicholas E

    2015-06-16

    A novel paper spray cartridge with an integrated solid phase extraction (SPE) column is described. The cartridge performs extraction and pre-concentration, as well as sample ionization by paper spray, from complex samples such as plasma. The cartridge allows for selective enrichment of target molecules from larger sample volumes and removal of the matrix, which significantly improved the signal intensity of target compounds in plasma samples by paper spray ionization. Detection limits, quantitative performance, recovery, ionization suppression, and the effects of sample volume were evaluated for five drugs: carbamazepine, atenolol, sulfamethazine, diazepam, and alprazolam. Compared with direct paper spray analysis of dried plasma spots, paper spray analysis using the integrated solid phase extraction improved the detection limits significantly by a factor of 14-70, depending on the drug. The improvement in detection limits was, in large part, due to the capability of analyzing larger sample volumes. In addition, ionization suppression was found to be lower and recovery was higher for paper spray with integrated SPE, as compared to direct paper spray analysis. By spiking an isotopically labeled internal standard into the plasma sample, a linear calibration curve for the drugs was obtained from the limit of detection (LOD) to 1 μg/mL, indicating that this method can be used for quantitative analysis. The paper spray cartridge with integrated SPE could prove valuable for analytes that ionize poorly, in applications where lower detection limits are required, or on portable mass spectrometers. The improved performance comes at the cost of requiring a more complex paper spray cartridge and requiring larger sample volumes than those used in typical direct paper spray ionization.

  3. Application and Prospect of Inter-simple Sequence Repeat (ISSR) in Silkworm Genetics%ISSR分子标记技术在家蚕遗传研究上的应用进展

    Institute of Scientific and Technical Information of China (English)

    吴凡; 李德臣; 赵春晓; 陈登松

    2015-01-01

    The basic principle and characteristics of Inter-simple Sequence Repeat (ISSR) was described. The application of ISSR in silkworm genetics was summarized. The application future in the study of silkworm was prospected.%概括了ISSR 分子标记技术的基本原理和特点,综述了其在家蚕相关领域中应用的研究进展,并展望了其在家蚕遗传研究上的应用前景。

  4. Mechanical, In Vitro Antimicrobial and Biological Properties of Plasma Sprayed Silver-Doped Hydroxyapatite Coating

    OpenAIRE

    Roy, Mangal; Fielding, Gary A.; BEYENAL, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-01-01

    Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decompos...

  5. Residual stress in sprayed Ni+5%Al coatings determined by neutron diffraction

    CERN Document Server

    Matejicek, J; Gnaeupel-Herold, T; Prask, H J

    2002-01-01

    Coatings of nickel-based alloys are used in numerous high-performance applications. Their properties and lifetimes are influenced by factors such as residual stress. Neutron diffraction is a powerful tool for nondestructive residual stress determination. In this study, through-thickness residual stress profiles in Ni+5%Al coatings on steel substrates were determined. Two examples of significantly different spraying techniques - plasma spraying and cold spraying - are highlighted. Different stress-generation mechanisms are discussed with respect to process parameters and material properties. (orig.)

  6. Coating by the Cold Spray Process: a state of the art

    Directory of Open Access Journals (Sweden)

    Mario Guagliano

    2009-04-01

    Full Text Available A brief description of cold spray coating process is presented. This paper intends to review some the previous works which are mostly about the influences of the cold spray parameters, mostly the surface ofthe substrate, on the deposition efficiency (DE. Almost all the important parameters, with more focus on the roughness of the substrate, on increasing the DE are briefly studied; this review also includes a description of application of cold spray and of some important effect of this method on substrate properties.On this basis, some possible development in this field of research are drawn and discussed.

  7. Spray-coated nanoscale conductive patterns based on in situ sintered silver nanoparticle inks

    Science.gov (United States)

    2014-01-01

    Nanoscale patterns with high conductivity based on silver nanoparticle inks were fabricated using spray coating method. Through optimizing the solution content and spray operation, accurate nanoscale patterns consisting of silver nanoparticles with a square resistance lower than 1 Ω /cm2 were obtained. By incorporating in situ sintering to substitute the general post sintering process, the time consumption could be significantly reduced to one sixth, qualifying it for large-scale and cost-effective fabrication of printed electronics. To testify the application of spray-coated silver nanoparticle inks, an inverted polymer solar cell was also fabricated, which exhibited a power conversion efficiency of 2.76%. PMID:24666992

  8. Reconfigurable multiport EPON repeater

    Science.gov (United States)

    Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio

    2009-11-01

    An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.

  9. Revisiting the TALE repeat.

    Science.gov (United States)

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  10. Effects of Chitosan Spraying on Physiological Characteristics of Ferula flabelliloba (Apiaceae Under Drought Stress

    Directory of Open Access Journals (Sweden)

    Gh. Taheri

    2016-02-01

    with different concentrations were investigated. The main objective of this study was to examine the potential benefits of chitosan by reducing damage to F. flabelliloba at the seedling stages under water-deficit conditions. Materials and Methods In order to evaluate the effects of chitosan spraying and drought stress on physiological characteristics of F. felabelliloba, a factorial experiment in a completely randomized design with three replications was conducted in laboratory. The experimental treatments included drought stress (irrigated in Field capacity, depletion of soil water content up to 35% and 65% of FC condition and foliar chitosan spray (Zero, 0.2, 0.4, 0.6 and 0.8 mg l-1. Seeds of F. flabelliloba were harvested in June-July of 2012 from natural habitat in Binalood mountain and kept in laboratory condition until the study started. F. flabelliloba seeds were germinated and grown in soils at light/dark temperature cycle of 20-16 degree centigrade and photoperiod of 16-8 h. Irrigation treatments were performed after 20 days, when seedling established and chitosan sprayed simultaneous and repeated one month later. The shoot from 60-day-old plants were taken and used for analysis the physiological parameters. Shoot dry weight was measured in oven at 70 ºC for 24 hours. Enzyme activity was determined from the extract prepared according to the method of Sairam and Saxena (2000. Catalase and Peroxidase activities were determined according to Weydert and Cullen (2010 and Superoxide dismutase activity assayed as described by Beauchamp and Fridovich (1971. Lipid peroxidation was estimated by measuring spectrophotometrically malondialdehyde (MDA content of plant based on Jiang and Hung (2001. Total phenolic content was determined according to Ebrahimzadeh and Bahramian (2009. Data from the experiment was analyzed using SPSS ver. 17 and MSTAT-C software and mean comparison was carried out using Duncan´s multiple range test at the 95% of probability. Results and

  11. Efeito da intensidade do vento, da pressão e de pontas de pulverização na deriva de aplicações de herbicidas em pré-emergência Effect of wind intensity, pressure and nozzles on spray drift from preemergence herbicide applications

    Directory of Open Access Journals (Sweden)

    A.G.F. Costa

    2007-03-01

    Full Text Available Objetivou-se com este trabalho avaliar o efeito de pontas de pulverização, pressão e intensidade do vento na deriva gerada em aplicações simuladas de herbicidas aplicados em pré-emergência. Os modelos de pontas de pulverização e as respectivas pressões testadas foram: SF 11002 (207 e 310 kPa, JA-2 (345 e 655 kPa e AVI 11002 (207 e 414 kPa. As aplicações foram realizadas em dois períodos, em dias com condições de velocidade de vento distintas, em uma área de 1.200 m², localizada na Fazenda Experimental da FCA/UNESP. Um pulverizador com barra de 12 m, 24 bicos e tanque de 600 L foi utilizado nas aplicações. A calda de aplicação foi composta por água e o corante alimentício FDC-1 foi usado como traçador. A deriva foi amostrada por coletores ativos fixados sobre a barra de pulverização. As velocidades mínimas, médias e máximas de vento registradas no primeiro e segundo períodos das aplicações foram de 7, 14 e 23 km h-1 e 1, 5 e 18 km h-1, respectivamente. Nas duas ocasiões de aplicação, as pontas de pulverização com indução de ar AVI 11002 e de jato cônico vazio JA-2 a 655 kPa resultaram nas menores e maiores quantidades de depósito de líquido detectadas, respectivamente. A maior intensidade do vento incrementou a deriva. A redução na pressão pode ser utilizada para controle de deriva, mas a seleção adequada de uma ponta mostrou ser mais eficiente para esse propósito.The aim of this work was to evaluate the effect of nozzles, spray pressure and wind intensity on spray drift generated in simulated preemergence herbicide applications. The nozzle designs and respective pressures tested were: SF 11002 (207 and 310 kPa, JA-2 (345 and 655 kPa and AVI 11002 (207and 414 kPa. The applications were performed during two periods, on days with different wind conditions, in an area with 1,200 m², in the Experimental Farm of the FCA/UNESP. A sprayer with a 12 m boom, 24 nozzles and tank with 600 L was used for the

  12. Cold Spray Forming of Inconel 718

    Science.gov (United States)

    Wong, W.; Irissou, E.; Vo, P.; Sone, M.; Bernier, F.; Legoux, J.-G.; Fukanuma, H.; Yue, S.

    2013-03-01

    Inconel 718 was cold spray formed to a 6-mm thickness on an 8-cm diameter aluminum alloy tube using Sulzer Amdry 1718 powder and the Plasma Giken PCS-1000 cold spray system. The effects of spray particle velocity and post-spray heat treatment were studied. Post-spray annealing was performed from 950 to 1250 °C for 1-2 h. The resulting microstructures as well as the corresponding mechanical properties were characterized. As-sprayed coatings exhibited very low ductility. The tensile strength and ductility of the heat-treated coatings were improved to varying levels depending on the heat-treatment and spray conditions. For coatings sprayed at higher particle velocity and heat treated at 1250 °C for 1 h, an elongation of 24% was obtained. SEM micrographs showed a higher fraction of interparticle metallurgical bonds due to some sintering effect. Corresponding fracture surfaces also revealed a higher fraction of dimple features, typically associated with ductile fracture, in the annealed coatings. The results demonstrate that cold spray forming of Inconel 718 is feasible, and with appropriate heat treatment, metallurgical bonding can be increased. The ductility of the spray-formed samples was comparable to that of the bulk material.

  13. The Application of Overdispersion and Generalized Estimating Equations in Repeated Categorical Data Related to the Sexual Behaviour Traits of Farm Animals

    Science.gov (United States)

    Yesilova, Abdullah; Yilmaz, Ayhan

    In this study, the Poison regression, negative binomial regression and generalized estimating equations were applied to the repeated measurements based on count data obtained from the sexual behaviors of ram lambs. Negative binomial regression was more effective to handle the over dispersion that causes bias in parameter estimations in Poison regression. The generalized estimating equations were used for analyzing repeated categorical data. GEE estimates were obtained by using the exchangeable working correlation. As a result of GEE analyses, it was concluded that flehmen lip curl response, tail raising, mount duration, vocalization and weight of the ram lamb were statistically important (p<0.05) for mount frequent. However, the anogenital sniff found be not significant.

  14. Aplicação aérea de fungicidas na cultura do arroz irrigado com diferentes bicos de pulverização Aerial fungicide application on irrigated lowland rice with varying spraying nozzles

    Directory of Open Access Journals (Sweden)

    Tânia Bayer

    2012-12-01

    Full Text Available Na safra agrícola 2007/2008, foi realizado um estudo com o objetivo de avaliar a deposição e penetração de gotas através de cartões hidrossensíveis e análise cromatográfica. Para isso, utilizaram-se o bico eletrostático, bico hidráulico e atomizadores rotativos de discos com diferentes volumes de calda. As pulverizações foram realizadas no estádio R3 da cultura, com aeronave Ipanema EMB-202, aplicando-se fungicida trifloxistrobina + propiconazole. Através da leitura de cartões hidrossensíveis, determinou-se a densidade de gotas, o diâmetro médio numérico, diâmetro médio volumétrico, amplitude relativa e a penetração de gotas no dossel (%. Também foi utilizada a análise cromatográfica para determinar a penetração do produto no alvo biológico. O bico hidráulico, com taxa de aplicação de 20L ha-1 e 30L ha-1, e o bico eletrostático, com taxa de aplicação de 10L ha-1, obtiveram maior densidade de gotas no terço superior. O uso de atomizadores rotativos de disco com volume de calda de 15L ha-1 apresentou maior densidade de gotas no terço médio e inferior. Para diâmetro médio volumétrico, os bicos eletrostáticos juntamente com os atomizadores rotativos de discos apresentaram os menores valores. A maior homogeneidade de gotas no terço superior foi obtida com atomizadores rotativos de disco com taxa de aplicação de 6L ha-1 e 10L ha-¹. A análise cromatográfica mostrou que a maior quantidade de produto foi retida com bicos eletrostáticos com taxa de aplicação de 10L ha- ¹ no extrato inferior da planta.In the harvest year of 2007/2008 a study was carried to evaluate the droplets deposition and penetration throughout water sensible cards and gas chromatographic analysis. Were used the hydraulic nozzle, electrostatic nozzle and rotary-disk atomizer spraying systems, with different volumes of spray solution. Aerial applications were performed at R3 stage using the aircraft Ipanema EMB-202 and the fungicide

  15. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    Science.gov (United States)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2016-12-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  16. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    Science.gov (United States)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  17. Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters

    Science.gov (United States)

    Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel

    2013-08-01

    Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.

  18. Spray drying of nanoparticles to form fast dissolving glipizide

    Directory of Open Access Journals (Sweden)

    Ghasemian Elham

    2015-01-01

    Full Text Available Poor water solubility of pharmaceutical candidates creates a big barrier to development and clinical applications. In this study, glipizide as a poorly water soluble drug was precipitated as nanoparticles and processed by spray drying to produce fast dissolving powders. Nanosuspensions of glipizide were prepared using the sonoprecipitation technique in the presence of selected stabilizers. Sorbitol, mannitol, and microcrystalline cellulose (Avicel were involved in the formulations as the carrier of drug nanoparticles for spray drying process. Physicochemical characteristics of nano and microparticles were determined as well as maximum saturation solubility and dissolution profile of processed powders. The screening data introduced the sodium lauryl sulfate as the better nanosuspension stabilizer. Particle size and yield of nanosuspension formulations were in the range of 262.2-498.8 nm and 65.50-95.21%, respectively. The particle sizes of spray dried powders were between 2.27 μm and 29.25 μm and dissolution of the drug from these micropaticles 58.45-81.65% during the first 5 min. Spray drying of glipizide nanosuspension would be a promising approach to enhance drug solubility as well as physicochemical properties.

  19. Eye-safe lidar system for pesticide spray drift measurement.

    Science.gov (United States)

    Gregorio, Eduard; Rocadenbosch, Francesc; Sanz, Ricardo; Rosell-Polo, Joan R

    2015-02-04

    Spray drift is one of the main sources of pesticide contamination. For this reason, an accurate understanding of this phenomenon is necessary in order to limit its effects. Nowadays, spray drift is usually studied by using in situ collectors which only allow time-integrated sampling of specific points of the pesticide clouds. Previous research has demonstrated that the light detection and ranging (lidar) technique can be an alternative for spray drift monitoring. This technique enables remote measurement of pesticide clouds with high temporal and distance resolution. Despite these advantages, the fact that no lidar instrument suitable for such an application is presently available has appreciably limited its practical use. This work presents the first eye-safe lidar system specifically designed for the monitoring of pesticide clouds. Parameter design of this system is carried out via signal-to-noise ratio simulations. The instrument is based on a 3-mJ pulse-energy erbium-doped glass laser, an 80-mm diameter telescope, an APD optoelectronic receiver and optomechanically adjustable components. In first test measurements, the lidar system has been able to measure a topographic target located over 2 km away. The instrument has also been used in spray drift studies, demonstrating its capability to monitor the temporal and distance evolution of several pesticide clouds emitted by air-assisted sprayers at distances between 50 and 100 m.

  20. Multi-source/component spray coating for polymer solar cells.

    Science.gov (United States)

    Chen, Li-Min; Hong, Ziruo; Kwan, Wei Lek; Lu, Cheng-Hsueh; Lai, Yi-Feng; Lei, Bao; Liu, Chuan-Pu; Yang, Yang

    2010-08-24

    A multi-source/component spray coating process to fabricate the photoactive layers in polymer solar cells is demonstrated. Well-defined domains consisting of polymer:fullerene heterojunctions are constructed in ambient conditions using an alternating spray deposition method. This approach preserves the integrity of the layer morphology while forming an interpenetrating donor (D)/acceptor (A) network to facilitate charge transport. The formation of multi-component films without the prerequisite of a common solvent overcomes the limitations in conventional solution processes for polymer solar cells and enables us to process a wide spectrum of materials. Polymer solar cells based on poly(3-hexylthiophene):[6,6]-phenyl C(61) butyric acid methyl ester spray-coated using this alternating deposition method deliver a power conversion efficiency of 2.8%, which is comparable to their blend solution counterparts. More importantly, this approach offers the versatility to independently select the optimal solvents for the donor and acceptor materials that will deliver well-ordered nanodomains. This method also allows the direct stacking of multiple photoactive polymers with controllable absorption in a tandem structure even without an interconnecting junction layer. The introduction of multiple photoactive materials through multisource/component spray coating offers structural flexibility and tenability of the photoresponse for future polymer solar cell applications.