WorldWideScience

Sample records for repeated load triaxial

  1. Cyclic Triaxial Loading of Cohesionless Silty Sand

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2015-01-01

    To engineer efficient structures offshore, we need to extend our knowledge of soil response. Cyclic loading and high water pressure encountered offshore greatly influence cohesionless soil performance. Silty sand from Frederikshavn wind turbine farm was tested using single diameter height samples...

  2. Fatigue Properties of Plain Concrete Under Triaxial Compressive Cyclic Loading

    Institute of Scientific and Technical Information of China (English)

    曹伟; 宋玉普; 刘海成

    2004-01-01

    Experiments were made on plain concrete subjected to triaxial static loading and constant-amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was O, 0. 1fc, 0.25fc andO. 4fc, respectively, for the static test, and 0. 1fc and 0.25fc for the fatigue test. Based on the triaxial compressive constitutive behavior of concrete, the inflexion of confining pressure evolution was chosen to be the fatigue damage criterion during the test. The rule of evolution of longitudinal maximum and minimum strains, longitudinal cyclic modulus and damage were recorded and analyzed. According to the Fardis-Chen criterion model and the concept of equivalent fatigue life and equivalent stress level, a unified S-N curve for multi-axial compressive fatigue loading was proposed. Thus, the fatigue strength factors for different fatigue loading cases can be obtained. The present investigation provides information for the fatigue design of concrete structures.

  3. Repeated loading of fine grained soils for pavement design

    OpenAIRE

    Loach, Simon C.

    1987-01-01

    The primary aim of this research was to investigate the behaviour of a clay subjected to a loading regime similar to that experienced by a road subgrade under traffic loading in Great Britain. The material used was Keuper Marl. The samples were anisotropically consolidated in a triaxial apparatus from a slurry which allowed careful control over the stress history and produced uniform samples. The samples were fully instrumented and the apparatus was capable of applying repeated axial and radi...

  4. Developing the phenomenological equations triaxial deformation of concrete under dynamic loads

    Directory of Open Access Journals (Sweden)

    Berlinov Mikhail

    2017-01-01

    Full Text Available The basic assumptions and hypotheses construction of the computational model studies, taking into account the peculiarities of the work force imperfections of materials under dynamic loading, based on the phenomenological laws of nonlinear rheology and deformable elastic-creeping body. The values for the coefficient vibrocreep computational model under triaxial stress-strain state on the basis of the hypothesis of central symmetry of the hysteresis loop. The basic phenomenological equations allow the calculation of concrete elements in the conditions of triaxial stress-strain state under dynamic impacts and taking into account the non-linearity of the rheology of deformation.

  5. Fatigue Properties of Plain Concrete under Triaxial Constant-Amplitude Tension-Compression Cyclic Loading

    Institute of Scientific and Technical Information of China (English)

    宋玉普; 曹伟; 孟宪宏

    2005-01-01

    Fatigue tests were conducted on tapered plain concrete prism specimens under triaxial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2fc and the upper stress ranged from 0.20ft to 0.65ft. Three constant lateral pressures were 0.1fc, 0.2fc and 0.3fc respectively. Based on the results, the three-stage evolution nile of the fatigue stiffness, maximttm(minimum) longitudinal strain and damage were analyzed, and a unified S-N curve to calculate fatigue strength factors was worked out. The results show that the fatigue strength and fatigue life under triaxial constant-amplitude tension-compression cyclic loading are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing their relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures.

  6. Loading and Boundary Condition Influences in a Poroelastic Finite Element Model of Cartilage Stresses in a Triaxial Compression Bioreactor

    Science.gov (United States)

    Kallemeyn, Nicole A; Grosland, Nicole M; Pedersen, Doug R; Martin, James A; Brown, Thomas D

    2006-01-01

    Background: We developed a poroelastic finite element (FE) model of cartilage in dynamic triaxial compression to parametrically analyze the effects of loading and boundary conditions on a baseline model. Conventional mechanical tests on articular cartilage such as confined and unconfined compression, indentation, etc., do not fully allow for modulation of compression and shear at physiological levels whereas triaxial compression does. A Triaxial Compression Bioreactor, or TRIAX, has been developed to study chondrocyte responses to multi-axial stress conditions under cyclic loading. In the triaxial setting, however, a cartilage explant's physical testing environment departs from the ideal homogeneous stress state that would occur from strict linear superposition of the applied axial and transverse pressure. Method of Approach: An axisymmetric poroelastic FE model of a cartilage explant (4 mm diameter, 1.5 mm thick) in cyclic triaxial compression was created. Axial and transverse loads (2 MPa at 1 Hz.) were applied via a platen and containment sheath. Parameters of interest included the rise time and magnitude of the applied load, in addition to the containment sheath modulus and the friction coefficient at the cartilage/platen interfaces. Metrics of interest in addition to whole explant axial strain included axial (surface normal) stress, shear stress, pore pressure, and the fluid load carriage fraction within the explant. Results: Strain results were compared to experimental data from explants tested in the TRIAX under conditions similar to the baseline model. Explant biomechanics varied considerably over numbers of load cycles and parameter values. Cyclic loading caused an increase in accumulated strain for the various loading and boundary conditions. Conclusions: Unlike what would be expected from linear superposition of the homogeneous stresses from the applied axial and transverse pressure, we have shown that the stress state within the TRIAX is considerably

  7. Reliability of Triaxial Accelerometry for Measuring Load in Men's Collegiate Ice-Hockey.

    Science.gov (United States)

    Van Iterson, Erik H; Fitzgerald, John S; Dietz, Calvin C; Snyder, Eric M; Peterson, Ben J

    2016-08-18

    Wearable microsensor technology incorporating triaxial accelerometry is used to quantify an index of mechanical stress associated with sport-specific movements termed PlayerLoad™. The test-retest reliability of PlayerLoad™ in the environmental-setting of ice-hockey is unknown. The primary aim of this study was to quantify the test-retest reliability of PlayerLoad™ in ice-hockey players during performance of tasks simulating game-conditions. Division I collegiate male ice-hockey players (N=8) wore Catapult Optimeye S5 monitors during repeat performance of 9 ice-hockey tasks simulating game-conditions. Ordered ice-hockey tasks during repeated bouts included: acceleration (forward/backward), 60% top-speed, top-speed (forward/backward), repeated shift circuit, ice-coasting, slap-shot, and bench-sitting. Coefficient of variation (CV), intraclass correlation coefficient (ICC), and minimum differences (MD) were used to assess PlayerLoad™ reliability. Test-retest CVs and ICCs of PlayerLoad™ were: Forward (8.6, 0.54) or backward (13.8, 0.78) acceleration, 60% top-speed (2.2, 0.96), forward (7.5, 0.79) or backwards (2.8, 0.96) top-speed, repeated-shift test (26.6, 0.95), slap-shot (3.9, 0.68), coasting (3.7, 0.98), and bench-sitting (4.1, 0.98), respectively. Raw differences between bouts were not significant for ice-hockey tasks (P>0.05). For each task, between bout raw differences were lower versus MD: Forward (0.06 vs. 0.35) or backward (0.07 vs. 0.36) acceleration, 60% top-speed (0.00 vs. 0.06), forward (0.03 vs. 0.20) or backwards (0.02 vs. 0.09) top-speed, repeated-shift test (0.18 vs. 0.64), slap-shot (0.02 vs. 0.10), coasting (0.00 vs. 0.10), and bench-sitting (0.01 vs. 0.11), respectively. These data suggest PlayerLoad™ demonstrates moderate-to-large test-retest reliability in the environmental-setting of male Division I collegiate ice-hockey. Without previously testing reliability, these data are important as PlayerLoad™ is routinely quantified in

  8. Influence of the Saturation Ratio on Concrete Behavior under Triaxial Compressive Loading

    Directory of Open Access Journals (Sweden)

    Xuan-Dung Vu

    2015-01-01

    Full Text Available When a concrete structure is subjected to an impact, the material is subjected to high triaxial compressive stresses. Furthermore, the water saturation ratio in massive concrete structures may reach nearly 100% at the core, whereas the material dries quickly on the skin. The impact response of a massive concrete wall may thus depend on the state of water saturation in the material. This paper presents some triaxial tests performed at a maximum confining pressure of 600 MPa on concrete representative of a nuclear power plant containment building. Experimental results show the concrete constitutive behavior and its dependence on the water saturation ratio. It is observed that as the degree of saturation increases, a decrease in the volumetric strains as well as in the shear strength is observed. The coupled PRM constitutive model does not accurately reproduce the response of concrete specimens observed during the test. The differences between experimental and numerical results can be explained by both the influence of the saturation state of concrete and the effect of deviatoric stresses, which are not accurately taken into account. The PRM model was modified in order to improve the numerical prediction of concrete behavior under high stresses at various saturation states.

  9. Chloride permeability of concrete under static and repeated compressive loading

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Mitsuru; Ishimori, Hiroshi [Kanazawa Inst. of Technology, Ishikawa (Japan)

    1995-05-01

    The chloride permeability of normal weight concrete subjected to static and repeated compressive loading was evaluated by using the AASHTO T277 test method. The results of concrete under static loading showed that the application of loads up to 90% of the ultimate strength had little effect on the chloride permeability. It was found from the results of concrete under repeated loading that load repetitions at the maximum stress levels of 60% or more caused the chloride permeability to increase significantly. The test results also indicated that the chloride permeability of concrete subjected to static and repeated loading increased at an increasing rate with its residual strain. The relation between the chloride permeability obtained and the cracking behavior of concrete previously reported was discussed.

  10. Analysis of permanent deformations of railway embankments under repeated vehicle loadings in permafrost regions

    Institute of Scientific and Technical Information of China (English)

    Wei Ma; Tuo Chen

    2015-01-01

    By large-scale dynamic tests carried out on a traditional sand-gravel embankment at the Beilu River section along the Qinghai-Tibet Railroad, we collected the acceleration waveforms close to the railway tracks when trains passed. The dynamic train loading was converted into an equivalent creep stress, using an equivalent static force method. Also, the creep equation of frozen soil was introduced according to the results of frozen soil rheological triaxial tests. A coupled creep model based on a time-hardening power function rule and the Druker-Prager yield and failure criterion was estab-lished to analyze the creep effects of a plain fill embankment under repeated train loads. The temperature field of the embankment in the permafrost area was set at the current geothermal conditions. As a result, the permanent deformation of the embankment under train loading was obtained, and the permanent deformation under the train loads to the total em-bankment deformation was also analyzed.

  11. Manual for Cyclic Triaxial Test

    DEFF Research Database (Denmark)

    Shajarati, Amir; Sørensen, Kris Wessel; Nielsen, Søren Kjær

    /dynamic triaxial cell is overall constructed in the same way as the static triaxial cell at Aalborg University, but with the ability to apply any kind of load sequence to the test sample. When conducting cyclic triaxial tests, it is recommended that the manual is followed very tediously since there are many steps...... and if they are done improperly or in the wrong order there is a risk of destroying the test sample or obtaining invalid results.......This manual describes the different steps that is included in the procedure for conducting a cyclic triaxial test at the geotechnical Laboratory at Aalborg University. Furthermore it contains a chapter concerning some of the background theory for the static triaxial tests. The cyclic...

  12. Failure characteristics of two porous sandstones subjected to true triaxial stresses: Applied through a novel loading path

    Science.gov (United States)

    Ma, Xiaodong; Rudnicki, John W.; Haimson, Bezalel C.

    2017-04-01

    We performed an extensive suite of true triaxial experiments in two porous sandstones, Bentheim (porosity ≈ 24%) and Coconino (17%). The experiments were conducted using a novel loading path, which maintains constant Lode angle (Θ) throughout the test. This path enabled the examination of the effects of Lode angle and mean stress on failure (σoct,f). Our tests covered σ3 magnitudes between 0 and 150 MPa and of Θ at -30° (axisymmetric extension), -16°, 0°, +11°, +21°, and +30° (axisymmetric compression). Test results revealed the respective contribution of each of the two stress invariants to failure stress, failure plane angle, and failure mode. In both sandstones, the shear stress required for failure increases with mean stress but decreases with Θ when shear failure mode dominates. However, the dependence of failure stress on mean stress and Θ is reversed when the compactive failure mode is in control. The compactive failure mode was evident in Bentheim sandstone when compaction bands were observed under high mean stress. The Coconino sandstone did not reach the compactive failure regime within the maximum confinement applied. The failure plane angle monotonically decreases with increasing mean stress and Θ. For Coconino sandstone, failure plane angle varies between 80° and 50° for σoct,f between 50 and 450 MPa whereas it drops to 0° as σoct,f, approaches 250 MPa in Bentheim sandstone. We employed the bifurcation theory to relate the stress conditions at failure to the development of failure planes. The theory is in qualitative agreement with the experimental data.

  13. Time dependence of mesoscopic strain distribution for triaxial woven carbon-fiber-reinforced polymer under creep loading measured by digital image correlation

    Science.gov (United States)

    Koyanagi, Jun; Nagayama, Hideo; Yoneyama, Satoru; Aoki, Takahira

    2016-06-01

    This paper presents the time dependence of the mesoscopic strain of a triaxial woven carbon-fiber-reinforced polymer under creep loading measured using digital image correlation (DIC). Two types of DIC techniques were employed for the measurement: conventional subset DIC and mesh DIC. Static tensile and creep tests were carried out, and the time dependence of the mesoscopic strain distribution was investigated by applying these techniques. The ultimate failure of this material is dominated by inter-bundle decohesion caused by relative rigid rotation and relating shear stress. Therefore, these were focused on in the present study. During the creep tests, the fiber directional strain, shear strain, and rotation were monitored using the DIC, and the mechanism for the increase in the specimen's macro-strain over time was investigated based on the results obtained by the DIC measurement.

  14. Drained Triaxial Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Praastrup, U.; Jakobsen, Kim Parsberg

    In the process of understanding and developing models for geomaterials, the stress-strain behaviour is commonly studied by performing triaxial tests. In the present study static triaxial tests have been performed to gain knowledge of the stress-strain behaviour of frictional materials during...... monotonic loading. The tests reported herein are all drained tests, starting from different initial states of stress and following various stress paths. AIl the tests are performed on reconstituted medium dense specimens of Eastern Scheldt Sand....

  15. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine.

    Science.gov (United States)

    Wilson, Derek C; Niosi, Christina A; Zhu, Qingan A; Oxland, Thomas R; Wilson, David R

    2006-01-01

    We assessed the repeatability and accuracy of a relatively new, resistance-based sensor (Tekscan 6900) for measuring lumbar spine facet loads, pressures, and contact areas in cadaver specimens. Repeatability of measurements in the natural facet joint was determined for five trials of four specimens loaded in pure moment (+/- 7.5 N m) flexibility tests in axial rotation and flexion-extension. Accuracy of load measurements in four joints was assessed by applying known compressive loads of 25, 50, and 100 N to the natural facet joint in a materials testing machine and comparing the known applied load to the measured load. Measurements of load were obtained using two different calibration approaches: linear and two-point calibrations. Repeatability for force, pressure, and area (average of standard deviation as a percentage of the mean for all trials over all specimens) was 4-6% for axial rotation and 7-10% for extension. Peak resultant force in axial rotation was 30% smaller when calculated using the linear calibration method. The Tekscan sensor overestimated the applied force by 18 +/- 9% (mean+/-standard deviation), 35 +/- 7% and 50 +/- 9% for compressive loads of 100, 50, and 25 N, respectively. The two-point method overestimated the loads by 35 +/- 16%, 45 +/- 7%, and 56 +/- 10% for the same three loads. Our results show that the Tekscan sensor is repeatable. However, the sensor measurement range is not optimal for the small loads transmitted by the facets and measurement accuracy is highly dependent on calibration protocol.

  16. Repeated load relaxations of type 316 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, S.P.; Li, C.Y.

    1984-03-01

    Several experiments have shown that the shape of the load relaxation curve after reloading in a logarithmic stress vs. logarithmic strain rate plot may differ from that after the initial loading. In a recent study Korhonen and Li showed that the apparent kink in a log sigma versus log epsilon plot of the stress relaxation data, after mainly elastic and anelastic loading, is due to change of the deformation mode from an anelasticity dominated one to a plasticity dominated one. According to the state variable model by Hart, the relaxation curve in reloading should overlap with the original one after this transition in the absence of structural changes. Therefore, the crossing of stress relaxation curves after an initial plastic loading and subsequent elastic and anelastic reloadings in commercially pure aluminum at room temperature was accounted for by thermally induced effects. In the same study, consecutive stress relaxation runs were conducted on 316 SS, and no cross-over behavior was observed, which was associated with the lack of thermal effects in 316 SS at room temperature. The results demonstrate that strain aging has an effect on relaxation behavior even at room temperature, the effect being more pronounced at high strains. The phenomena can be accounted for according to a state variable model by modifying the rate constant, which is affected by the amount of mobile dislocations as well as dislocation mobility.

  17. 混凝土三轴等幅拉-压疲劳性能试验研究%Fatigue Properties of Plain Concrete under Triaxial Constant-Amplitude Tension-Compression Cyclic Loading

    Institute of Scientific and Technical Information of China (English)

    宋玉普; 曹伟; 孟宪宏

    2005-01-01

    Fatigue tests were conducted on tapered plain concrete prism specimens under triaxial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2fc and the upper stress ranged from 0.20ft to 0.65ft. Three constant lateral pressures were 0.1fc, 0.2fc and 0.3fc respectively. Based on the results, the three-stage evolution rule of the fatigue stiffness, maximum(minimum) longitudinal strain and damage were analyzed, and a unified S-N curve to calculate fatigue strength factors was worked out. The results show that the fatigue strength and fatigue life under triaxial constant-amplitude tension-compression cyclic loading are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing their relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures.

  18. Bauschinger effect on API 5L B and X56 steel plates under repeating bending load

    Science.gov (United States)

    Chandra, Icho Y.; Korda, Akhmad A.

    2017-01-01

    During steel pipe fabrication, hot rolled coil steel will undergo coiling and uncoiling process, where the steel plate is bent repeatedly. When cyclic loading is imposed on steel, tensile and compressive stress will occur in it resulting in softening caused by Bauschinger effect. This research is focused on Bauschinger effect and cyclic loading during coiling and uncoiling process on API 5L B and API 5L X56 steel. Both types of steel were given repeated bend loading with variation in loading cycle and the curvature radius. The steel's response was then observed by using tensile testing, microhardness testing, and microstructure observation. A decrease in yield strength is observed during lower cycles and on smaller radii. After higher loading cycle, the yield strength of the steel was increased. Microhardness testing also reported similar results on the subsurface part of the steel where loading is at its highest.

  19. Quasi-nano wear mechanism under repeated impact contact loading

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new quasi-nano wear mechanism (QNWM) has been proposed in this paper based on the facts of wear curve turning under high energy impact contact loading.Its characteristic is that the wear rate of QNWM is only 1/10-1/3 that of delamination mechanism at the same energy density.The diameters of wear debris and pits on the worn surfaces fall into the quasi-nanometer scale (about 50-120 nm).The necessary and sufficient conditions,which bring about the QNWM,are:(i) the nano-structure (nano-crystalline + amorphous phase) in impact contact surface layer has formed by the intensive impact strain;(ii) the delamination wear cracking in sub-surface layer must be restrained;(iii) the microcracks of QNWM are produced in amorphous phase of surface nano-structure layer rather than in nano-crystalline.

  20. STRESS-STRAIN STATE IN EMBEDMENT OF REINFORCEMENT IN CASE OF REPEATED LOADINGS

    Directory of Open Access Journals (Sweden)

    Mirsayapov Ilshat Talgatovich

    2016-05-01

    Full Text Available The author offer transforming the diagram of ideal elastic-plastic deformations for the description of the stress-strain state of embedment of reinforcement behind a critical inclined crack at repeatedly repeating loadings. The endurance limit of the adhesion between concrete and reinforcement and its corresponding displacements in case of repeated loadings are accepted as the main indicators. This adhesion law is the most appropriate for the description of physical and mechanical phenomena in the contact zone in case of cyclic loading, because it simply and reliably describes the adhesion mechanism and the nature of the deformation, and greatly simplifies the endurance calculations compared to the standard adhesion law. On the basis of this diagram the author obtained the equations for the description of the distribution of pressures and displacements after cyclic loading with account for the development of deformations of cyclic creep of the concrete under the studs of reinforcement.

  1. Force response of the fingertip pulp to repeated compression--effects of loading rate, loading angle and anthropometry.

    Science.gov (United States)

    Serina, E R; Mote, C D; Rempel, D

    1997-10-01

    Repeated loading of the fingertips has been postulated to contribute to tendon and nerve disorders at the wrist during activities associated with prolonged fingertip loading such as typing. To fully understand the pathomechanics of these soft tissue disorders, the role of the fingertip pulp in attenuating the applied dynamic forces must be known. An experiment was conducted to characterize the response of the in vivo fingertip pulp under repeated, dynamic, compressive loadings, to identify factors that influence pulp dynamics, and to better understand the force modulation by the pulp. Twenty subjects tapped repeatedly on a flat plate with their left index finger, while the contact force and pulp displacement were measured simultaneously. Tapping trials were conducted at three fingertip contact angles from the horizontal plane (0 degree, 45 degrees, and 90 degrees) and five tapping rates (0.25, 0.5, 1, 2, and 3 Hz). The fingertip pulp responds as a viscoelastic material, exhibiting rate-dependence, hysteresis, and a nonlinear force-displacement relationship. The pulp was relatively compliant at forces less than 1 N, but stiffened rapidly with displacement at higher forces for all loading conditions. This suggests that high-frequency forces of a small magnitude (< 1 N) are attenuated by the nonlinearly stiffening pulp while these forces of larger magnitude are transmitted to the bone. Pulp response was significantly influenced by the angle of loading. Fingertip dimensions, gender, and subject age had little to no influence on pulp parameters.

  2. Undrained Triaxial Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    In the process of understanding and developing models for geomaterials, the stress-strain behaviour is commonly studied by performing triaxial tests. In the present study, several types of static triaxial tests have been performed to gain knowledge of the undrained stress-strain behaviour...... of frictional materials during monotonic loading. The tests conducted includes undrained and constant volume tests, starting from different initial states of stress and following various stress paths. All the tests are performed on reconstituted loose to medium dense specimens of Eastern Scheldt Sand....

  3. TRIAXIAL COMPRESSIVE STRENGTH OF ULTRA HIGH PERFORMANCE CONCRETE

    Directory of Open Access Journals (Sweden)

    Radoslav Sovják

    2013-12-01

    Full Text Available The aim of this work is to describe the strength of Ultra High Performance Concrete (UHPC under triaxial compression. The main goal is to find a trend in the triaxial compressive strength development under various values of confinement pressure. The importance of triaxial tests lies in the spatial loading of the sample, which simulates the real loading of the material in the structure better than conventional uniaxial strength tests. In addition, the authors describe a formulation process for UHPC that has been developed without using heat treatment, pressure or a special mixer. Only ordinary materials available commercially in the Czech Republic were utilized throughout the material design process.

  4. Characteristics of dynamic triaxial testing of asphalt mixtures

    Science.gov (United States)

    Ulloa Calderon, Alvaro

    Due to the increasing traffic loads and tire pressures, a serious detrimental impact has occurred on flexible pavements in the form of excessive permanent deformation once the critical combination of loading and environmental conditions are reached. This distress, also known as rutting, leads to an increase in road roughness and ultimately jeopardizes the road users' safety. The flow number (FN) simple performance test for asphalt mixtures was one of the final three tests selected for further evaluation from the twenty-four test/material properties initially examined under the NCHRP 9-19 project. Currently, no standard triaxial testing conditions in terms of the magnitude of the deviator and confining stresses have been specified. In addition, a repeated haversine axial compressive load pulse of 0.1 second and a rest period of 0.9 second are commonly used as part of the triaxial testing conditions. The overall objective of this research was to define the loading conditions that created by a moving truck load in the hot mixed asphalt (HMA) layer. The loading conditions were defined in terms of the triaxial stress levels and the corresponding loading time. Dynamic mechanistic analysis with circular stress distribution was used to closely simulate field loading conditions. Extensive mechanistic analyses of three different asphalt pavement structures subjected to moving traffic loads at various speeds and under braking and non-braking conditions were conducted using the 3D-Move model. Prediction equations for estimating the anticipated deviator and confining stresses along with the equivalent deviator stress pulse duration as a function of pavement temperature, vehicle speed, and asphalt mixture's stiffness have been developed. The magnitude of deviator stress, sigmad and confining stress, sigmac, were determined by converting the stress tensor computed in the HMA layer at 2" below pavement surface under a moving 18-wheel truck using the octahedral normal and shear

  5. Viscoelastic properties of gussasphalt under repeated load%重复荷载作用下浇注式沥青混合料黏弹特性

    Institute of Scientific and Technical Information of China (English)

    杨宇明; 钱振东; 胡靖

    2014-01-01

    对浇注式沥青混合料进行了3种温度和3种荷载水平下的三轴重复荷载试验,利用B ur-gers模型推导了浇注式沥青混合料在重复荷载作用下的总应变公式。对理论应变公式和实验数据进行非线性拟合得到了浇注式沥青混合料在3种温度下的黏弹性参数,并分析了浇注式沥青混合料的永久变形和黏弹性变形的发展特性。研究结果表明:在半正弦重复荷载作用下,浇注式沥青混合料的变形规律与Burgers模型变形公式吻合较好,其永久变形随荷载作用呈线性增长,黏弹性变形先增长后趋于稳定,永久变形比例逐步上升;流动黏度随温度上升而迅速下降,延迟时间随温度上升而增加。%The triaxial repeated load test is conducted on gussasphalt under three stress levels at three temperatures.The Burgers model is used to deduce the deformation formulae of gussasphalt under re-peated load.The values of viscoelastic parameters at three temperatures are obtained by nonlinear re-gression analysis between theoretical formulae and experimental data.The characteristics of perma-nent deformation and viscoelastic deformation of gussasphalt are then analyzed.The research results show that the deformation law of gussasphalt under half sine repeated load agrees well with the de-formation formula of the Burgers model.The permanent deformation grows linearly with the increase of load times while the viscoelastic deformation increases at first and then becomes stable.The per-centage of permanent deformation keeps increasing under repeated load.And with the increase of temperature,the flow viscosity decreases rapidly while the retardation time increases.

  6. Triaxial Ellipsoidal Quantum Billiards

    NARCIS (Netherlands)

    Waalkens, Holger; Wiersig, Jan; Dullin, Holger R.

    1999-01-01

    The classical mechanics, exact quantum mechanics and semiclassical quantum mechanics of the billiard in the triaxial ellipsoid are investigated. The system is separable in ellipsoidal coordinates. A smooth description of the motion is given in terms of a geodesic flow on a solid torus, which is a fo

  7. Influence of Repeated Loading and Geosynthetic Reinforcement on Base Course Thickness over Soft Soil

    Directory of Open Access Journals (Sweden)

    Slamet Widodo

    2012-01-01

    Full Text Available Vehicle wheels at surface of pavement will pass through it many times. Pavement or base course over soft soil always needs a reinforcement.  Influence of repeated loading to thickness of base course and base course reinforced by geosynthetic is presented. Several existing methods as Giroud-Han, USA Corps of Engineers and DuPont Typar method respectively to calculate thickness of base course over soft soil using reinforcement material either geotextile or geogrid is presented and the influence of repeated loading will be compared. Results from calculation and analysis indicate that Giroud-Han method gives thickness of base course higher than other methods when CBR values of subgrade at least 2 %.

  8. Triaxial rotation in atomic nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Shou; GAO Zao-Chun

    2009-01-01

    The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.

  9. The 2.5-minute loaded repeated jump test: evaluating anaerobic capacity in alpine ski racers with loaded countermovement jumps.

    Science.gov (United States)

    Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter

    2014-09-01

    The purposes of this study were to test the reproducibility of the 2.5-minute loaded repeated jump test (LRJT) and to test the effectiveness of general preparation period (GPP) training on anaerobic fitness of elite alpine ski racers with the LRJT. Thirteen male volunteers completed 2 LRJTs to examine reliability. Nine male Austrian elite junior racers were tested in June and October 2009. The LRJT consisted of 60 loaded countermovement jumps (LCMJs) with a loaded barbell equivalent to 40% bodyweight. Before the LRJT, the power (P) of a single LCMJ was determined. Power was calculated from ground reaction forces. The mean P was calculated for the complete test and for each 30-second interval. The interclass correlation coefficients (between 0.88 and 0.99) for main variables of the LRJT demonstrated a high reliability. A repeated-measures analysis of variance indicated that anaerobic capacity was significantly higher in October (p ≤ 0.05). The ski racers' single LCMJ P increased from 37.0 ± 1.2 W·kg to 39.0 ± 1.4 W·kg. The mean P of the total test improved from 33.6 ± 1.2 W·kg to 35.8 ± 1.3 W·kg, but relative effect of fatigue did not change. The GPP training improved the athletes' ability to produce and maintain muscular power. The LRJT is a reliable anaerobic test suitable for all alpine ski racing events because the 60 jumps simulate the approximate number of gates in slalom and giant slalom races and the 2.5 minutes is equivalent to the duration of the longest downhill race.

  10. Experimental Study on Excavation Characteristics of Rockmass by Triaxial Test

    Institute of Scientific and Technical Information of China (English)

    谢红强; 姚勇; 何川; 杨庆

    2004-01-01

    Applying MTS rock stiffness test machine, tests under triaxial condition were carried out for rockmass under loading and unloading. By measuring and analyzing such mechanical properties as stress, strain, elastic modulus, Poisson ratio and elastic wave velocity during the whole test process, the differences of mechanical characteristics under loading and unloading conditions were revealed, to provide some useful references for excavation.

  11. Experimental artefacts in undrained triaxial testing

    CERN Document Server

    Ghabezloo, Siavash

    2010-01-01

    For evaluation of the undrained thermo-poro-elastic properties of saturated porous materials in conventional triaxial cells, it is important to take into account the effect of the dead volume of the drainage system. The compressibility and the thermal expansion of the drainage system along with the dead volume of the fluid filling this system, influence the measured pore pressure and volumetric strain during undrained thermal or mechanical loading in a triaxial cell. A correction method is presented in this paper to correct these effects during an undrained isotropic compression test or an undrained heating test. A parametric study has demonstrated that the porosity and the drained compressibility of the tested material and the ratio of the vol-ume of the drainage system to the one of the tested sample are the key parameters which influence the most the error induced on the measurements by the drainage system.

  12. Manual for Dynamic Triaxial Cell

    DEFF Research Database (Denmark)

    Pedersen, Thomas Schmidt; Ibsen, Lars Bo

    This report is a test report that describes the test setup for a dynamic triaxial cell at the Laboratory for Geotechnique at Aalborg University.......This report is a test report that describes the test setup for a dynamic triaxial cell at the Laboratory for Geotechnique at Aalborg University....

  13. Detection and Use of Load and Gage Output Repeats of Wind Tunnel Strain-Gage Balance Data

    Science.gov (United States)

    Ulbrich, N.

    2017-01-01

    Criteria are discussed that may be used for the detection of load and gage output repeats of wind tunnel strain-gage balance data. First, empirical thresholds are introduced that help determine if the loads or electrical outputs of a pair of balance calibration or check load data points match. A threshold of 0.01 percent of the load capacity is suggested for the identification of matching loads. Similarly, a threshold of 0.1 microV/V is recommended for the identification of matching electrical outputs. Two examples for the use of load and output repeats are discussed to illustrate benefits of the implementation of a repeat point detection algorithm in a balance data analysis software package. The first example uses the suggested load threshold to identify repeat data points that may be used to compute pure errors of the balance loads. This type of analysis may reveal hidden data quality issues that could potentially be avoided by making calibration process improvements. The second example uses the electrical output threshold for the identification of balance fouling. Data from the calibration of a six-component force balance is used to illustrate the calculation of the pure error of the balance loads.

  14. Swarms of repeating stick-slip glacierquakes triggered by snow loading at Mount Rainier volcano

    Science.gov (United States)

    Allstadt, K.; Malone, S. D.; Shean, D. E.; Fahnestock, M. A.; Vidale, J. E.

    2013-12-01

    We have detected over 150,000 low-frequency (~1-5 Hz) repeating earthquakes over the past decade at Mount Rainier volcano by scanning continuous seismic data from the permanent seismic network. Most of these were previously undetected due to their small size (M3000 m) on the glacier-covered part of the edifice. They occur primarily in week- to month-long swarms of activity that strongly correlate with precipitation, namely snowfall, with a lag of about 1-2 days. Furthermore, there is a linear relationship between inter-event repeat time and the size of the subsequent event - consistent with slip-predictable stick-slip behavior. This pattern suggests that the additional load imparted by the sudden added weight of snow during winter storms triggers a temporary change from smooth aseismic sliding to seismic stick-slip basal sliding in locations where basal conditions are close to frictional instability. This sensitivity is analogous to the triggering of repeating earthquakes due to tiny overall stress changes in more traditional tectonic environments (e.g., tremor modulated by tides, dynamic triggering of repeating earthquakes). Using codawave interferometry on stacks of the repeating waveforms of the families with the most events, we found that the sources move at speeds of ~1 m/day. Using a GAMMA ground based radar interferometer, we collected spatially continuous line-of-sight velocities of several glaciers at Mount Rainier in both summer and late fall. We found that the faster parts of the glaciers also move at ~1 m/day or faster, even in late fall. Movement of the sources of these repeating earthquakes at glacial speeds indicates that the asperities are dirty patches that move with the ice rather than stationary bedrock bumps. The reappearance of some event families up to several years apart suggests that certain areas at the base of certain glaciers are prodigious producers of conditions favorable to this behavior. Stick-slip basal sliding of glaciers is

  15. Swarms of repeating stick-slip icequakes triggered by snow loading at Mount Rainier volcano

    Science.gov (United States)

    Allstadt, Kate; Malone, Stephen D.

    2014-05-01

    We have detected over 150,000 small (M 3000 m) on the glacier-covered edifice and occur primarily in weeklong to monthlong swarms composed of simultaneous distinct families of events. Each family contains up to thousands of earthquakes repeating at regular intervals as often as every few minutes. Mixed polarity first motions, a linear relationship between recurrence interval and event size, and strong correlation between swarm activity and snowfall suggest the source is stick-slip basal sliding of glaciers. The sudden added weight of snow during winter storms triggers a temporary change from smooth aseismic sliding to seismic stick-slip sliding in locations where basal conditions are favorable to frictional instability. Coda wave interferometry shows that source locations migrate over time at glacial speeds, starting out fast and slowing down over time, indicating a sudden increase in sliding velocity triggers the transition to stick-slip sliding. We propose a hypothesis that this increase is caused by the redistribution of basal fluids rather than direct loading because of a 1-2 day lag between snow loading and earthquake activity. This behavior is specific to winter months because it requires the inefficient drainage of a distributed subglacial drainage system. Identification of the source of these frequent signals offers a view of basal glacier processes, discriminates against alarming volcanic noises, documents short-term effects of weather on the cryosphere, and has implications for repeating earthquakes, in general.

  16. The effect of camera viewing angle on posture assessment repeatability and cumulative spinal loading.

    Science.gov (United States)

    Sutherland, C A; Albert, W J; Wrigley, A T; Callaghan, J P

    2007-06-01

    Video-based task analysis in the workplace is often limited by equipment location and production line arrangement, therefore making it difficult to capture the motion in a single plane. The purpose of this study was to investigate the effects of camera placement on an observer's ability to accurately assess working postures in three dimensions and the resultant influence on the reliability and repeatability of calculated cumulative loading variables. Four video cameras were placed at viewing angles of 0 degrees, 45 degrees, 60 degrees and 90 degrees to the frontal plane, enabling the simultaneous collection of views of four lifting tasks (two symmetric and two asymmetric). A total of 11 participants were trained in the use of the 3DMatch 3-D posture matching software package (developed at the University of Waterloo) and were required to analyse 16 lifting trials. Four of the participants were randomly selected to return within 72 h and repeat the analysis protocol to test intra-observer repeatability. Posture matching agreement between camera views was higher when the body segments had a minimal range of motion during the task. There was no significant participant main effect; however, there was a significant (p 0.75). Joint anterior shear and joint posterior shear both provided fair to good reliability (0.4 > ICC camera viewing angle on an observer's ability to match working postural exposure was found to be small.

  17. A Low Protein Diet Alters Bone Material Level Properties and the Response to In Vitro Repeated Mechanical Loading

    Directory of Open Access Journals (Sweden)

    Victor Dubois-Ferrière

    2014-01-01

    Full Text Available Low protein intake is associated with an alteration of bone microstructure and material level properties. However, it remains unknown whether these alterations of bone tissue could influence the response to repeated mechanical loading. The authors investigated the in vitro effect of repeated loading on bone strength in humeri collected from 20 6-month-old female rats pair-fed with a control (15% casein or an isocaloric low protein (2.5% casein diet for 10 weeks. Bone specimens were cyclically loaded in three-point bending under load control for 2000 cycles. Humeri were then monotonically loaded to failure. The load-displacement curve of the in vitro cyclically loaded humerus was compared to the contralateral noncyclically loaded humerus and the influence of both protein diets. Material level properties were also evaluated through a nanoindentation test. Cyclic loading decreased postyield load and plastic deflection in rats fed a low protein diet, but not in those on a regular diet. Bone material level properties were altered in rats fed a low protein diet. This suggests that bone biomechanical alterations consequent to cyclic loading are more likely to occur in rats fed a low protein diet than in control animals subjected to the same in vitro cyclic loading regimen.

  18. Self-consistent triaxial models

    CERN Document Server

    Sanders, Jason L

    2015-01-01

    We present self-consistent triaxial stellar systems that have analytic distribution functions (DFs) expressed in terms of the actions. These provide triaxial density profiles with cores or cusps at the centre. They are the first self-consistent triaxial models with analytic DFs suitable for modelling giant ellipticals and dark haloes. Specifically, we study triaxial models that reproduce the Hernquist profile from Williams & Evans (2015), as well as flattened isochrones of the form proposed by Binney (2014). We explore the kinematics and orbital structure of these models in some detail. The models typically become more radially anisotropic on moving outwards, have velocity ellipsoids aligned in Cartesian coordinates in the centre and aligned in spherical polar coordinates in the outer parts. In projection, the ellipticity of the isophotes and the position angle of the major axis of our models generally changes with radius. So, a natural application is to elliptical galaxies that exhibit isophote twisting....

  19. Effects of sodium phosphate and caffeine loading on repeated-sprint ability.

    Science.gov (United States)

    Buck, Christopher; Guelfi, Kym; Dawson, Brian; McNaughton, Lars; Wallman, Karen

    2015-01-01

    The effects of sodium phosphate and caffeine supplementation were assessed on repeated-sprint ability. Using a randomised, double-blind, Latin-square design, 12 female, team-sport players participated in four trials: (1) sodium phosphate and caffeine, (2) sodium phosphate and placebo (for caffeine), (3) caffeine and placebo (for sodium phosphate) and (4) placebo (for sodium phosphate and caffeine), with ~21 days separating each trial. After each trial, participants performed a simulated team-game circuit (4 × 15 min quarters) with 6 × 20-m repeated-sprints performed once before (Set 1), at half-time (Set 2), and after end (Set 3). Total sprint times were faster after sodium phosphate and caffeine supplementation compared with placebo (Set 1: P = 0.003; Set 2: d = -0.51; Set 3: P sprint times were faster after sodium phosphate supplementation compared with placebo (Set 1: d = -0.52; Set 3: d = -0.58). Best sprint results were faster after sodium phosphate and caffeine supplementation compared with placebo (Set 3: P = 0.007, d = -0.90) and caffeine (Set 3: P = 0.024, d = -0.73). Best sprint times were also faster after sodium phosphate supplementation compared with placebo (d = -0.54 to -0.61 for all sets). Sodium phosphate and combined sodium phosphate and caffeine loading improved repeated-sprint ability.

  20. On the design of a triaxial accelerometer

    NARCIS (Netherlands)

    Lotters, Joost Conrad; Lötters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1995-01-01

    Up to now, mainly uniaxial accelerometers are described in most publications concerning this subject. However, triaxial accelerometers are needed in the biomedical field. Commercially available triaxial accelerometers consisting of three orthogonally positioned uniaxial devices do not meet all

  1. Triaxial tests in Fontainebleau sand

    DEFF Research Database (Denmark)

    Latini, Chiara; Zania, Varvara

    2016-01-01

    The purpose of this internal report is to examine the influence of relative density on the strength and deformation characteristics of Fontainebleau sand. Compression triaxial tests were performed on saturated sand samples with different densities and initial confining pressure. Note that the tes......The purpose of this internal report is to examine the influence of relative density on the strength and deformation characteristics of Fontainebleau sand. Compression triaxial tests were performed on saturated sand samples with different densities and initial confining pressure. Note...... that the testing procedure and the data processing were carried out according to the specifications of ETCS-F1.97....

  2. Effects of acute creatine loading with or without carbohydrate on repeated bouts of maximal swimming in high-performance swimmers.

    Science.gov (United States)

    Theodorou, Apostolos S; Havenetidis, Konstantinos; Zanker, Cathy L; O'Hara, John P; King, Roderick F G J; Hood, Colin; Paradisis, Giorgios; Cooke, Carlton B

    2005-05-01

    The addition of carbohydrate (CHO) to an acute creatine (Cr) loading regimen has been shown to increase muscle total creatine content significantly beyond that achieved through creatine loading alone. However, the potential ergogenic effects of combined Cr and CHO loading have not been assessed. The purpose of this study was to compare swimming performance, assessed as mean swimming velocity over repeated maximal intervals, in high-performance swimmers before and after an acute loading regimen of either creatine alone (Cr) or combined creatine and carbohydrate (Cr + CHO). Ten swimmers (mean +/- SD of age and body mass: 17.8 +/- 1.8 years and 72.3 +/- 6.8 kg, respectively) of international caliber were recruited and were randomized to 1 of 2 groups. Each swimmer ingested five 5 g doses of creatine for 4 days, with the Cr + CHO group also ingesting approximately 100 g of simple CHO 30 minutes after each dose of creatine. Performance was measured on 5 separate occasions: twice at "baseline" (prior to intervention, to assess the repeatability of the performance test), within 48 hours after intervention, and then 2 and 4 weeks later. All subjects swam faster after either dietary loading regimen (p swimmers continued to produce faster swim times for up to 4 weeks after intervention. Our findings suggest that no performance advantage was gained from the addition of carbohydrate to a creatine-loading regimen in these high-caliber swimmers.

  3. Experimental Assessment on the Flexural Bonding Performance of Concrete Beam with GFRP Reinforcing Bar under Repeated Loading

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2015-01-01

    Full Text Available This study intends to investigate the flexural bond performance of glass fiber-reinforced polymer (GFRP reinforcing bar under repeated loading. The flexural bond tests reinforced with GFRP reinforcing bars were carried out according to the BS EN 12269-1 (2000 specification. The bond test consisted of three loading schemes: static, monotonic, and variable-amplitude loading to simulate ambient loading conditions. The empirical bond length based on the static test was 225 mm, whereas it was 317 mm according to ACI 440 1R-03. Each bond stress on the rib is released and bonding force is enhanced as the bond length is increased. Appropriate level of bond length may be recommended with this energy-based analysis. For the monotonic loading test, the bond strengths at pullout failure after 2,000,000 cycles were 10.4 MPa and 6.5 MPa, respectively: 63–70% of the values from the static loading test. The variable loading test indicated that the linear cumulative damage theory on GFRP bonding may not be appropriate for estimating the fatigue limit when subjected to variable-amplitude loading.

  4. Mechanical properties of gold twinned nanocubes under different triaxial tensile rates

    Science.gov (United States)

    Yang, Zailin; Zhang, Guowei; Luo, Gang; Sun, Xiaoqing; Zhao, Jianwei

    2016-08-01

    The gold twinned nanocubes under different triaxial tensile rates are explored by molecular dynamics simulation. Hydrostatic stress and Mises stress are defined in order to understand triaxial stresses. Twin boundaries prevent dislocations between twin boundaries from developing and dislocation angles are inconspicuous, which causes little difference between triaxial stresses. The mechanical properties of the nanocubes under low and high tensile rates are different. The curves of nanocubes under high tensile rates are more abrupt than those under low tensile rates. When the tensile rate is extremely big, the loadings are out of the nanocubes and there are not deformation and fracture in the internal nanocubes.

  5. Simulation of triaxial response of granular materials by modified DEM

    Science.gov (United States)

    Wang, XiaoLiang; Li, JiaChun

    2014-12-01

    A modified discrete element method (DEM) with rolling effect taken into consideration is developed to examine macroscopic behavior of granular materials in this study. Dimensional analysis is firstly performed to establish the relationship between macroscopic mechanical behavior, mesoscale contact parameters at particle level and external loading rate. It is found that only four dimensionless parameters may govern the macroscopic mechanical behavior in bulk. The numerical triaxial apparatus was used to study their influence on the mechanical behavior of granular materials. The parametric study indicates that Poisson's ratio only varies with stiffness ratio, while Young's modulus is proportional to contact modulus and grows with stiffness ratio, both of which agree with the micromechanical model. The peak friction angle is dependent on both inter-particle friction angle and rolling resistance. The dilatancy angle relies on inter-particle friction angle if rolling stiffness coefficient is sufficiently large. Finally, we have recommended a calibration procedure for cohesionless soil, which was at once applied to the simulation of Chende sand using a series of triaxial compression tests. The responses of DEM model are shown in quantitative agreement with experiments. In addition, stress-strain response of triaxial extension was also obtained by numerical triaxial extension tests.

  6. Application of a Reinforced Self-Compacting Concrete Jacket in Damaged Reinforced Concrete Beams under Monotonic and Repeated Loading

    Directory of Open Access Journals (Sweden)

    Constantin E. Chalioris

    2013-01-01

    Full Text Available This paper presents the findings of an experimental study on the application of a reinforced self-compacting concrete jacketing technique in damaged reinforced concrete beams. Test results of 12 specimens subjected to monotonic loading up to failure or under repeated loading steps prior to total failure are included. First, 6 beams were designed to be shear dominated, constructed by commonly used concrete, were initially tested, damaged, and failed in a brittle manner. Afterwards, the shear-damaged beams were retrofitted using a self-compacting concrete U-formed jacket that consisted of small diameter steel bars and U-formed stirrups in order to increase their shear resistance and potentially to alter their initially observed shear response to a more ductile one. The jacketed beams were retested under the same loading. Test results indicated that the application of reinforced self-compacting concrete jacketing in damaged reinforced concrete beams is a promising rehabilitation technique. All the jacketed beams showed enhanced overall structural response and 35% to 50% increased load bearing capacities. The ultimate shear load of the jacketed beams varied from 39.7 to 42.0 kN, whereas the capacity of the original beams was approximately 30% lower. Further, all the retrofitted specimens exhibited typical flexural response with high values of deflection ductility.

  7. Repeated Load Permanent Deformation Behavior of Mixes With and Wihtout Modified Bituments

    Directory of Open Access Journals (Sweden)

    Imran Hafeez

    2011-01-01

    Full Text Available Premature rutting in flexible pavement structure is being observed on most of the road network of Pakistan. It initiates primarily due to uncontrolled axle loading and high ambient temperatures. NHA (National Highway Authority, Pakistan has continuously been modifying aggregate gradations and penetration grade of bitumen, without any prior investigation of the mix behaviour under the prevailing axle load and environmental conditions of the country. A comprehensive laboratory investigation was carried out on six mixes ranging from finer to coarser. Specimens were subjected to cyclic loading on UTM-5P (Universal Testing Machine to study the resistance against permanent deformation of the mixes at 25, 40 and 550C. At low temperatures and stress levels, both coarse and fine graded mixes showed less accumulated strain, whereas at higher temperatures and stress levels, coarse graded mix with PMB (Polymer Modified Bitumen showed good resistance to permanent deformation.

  8. Determine the effect of repeated dynamic loading on the performance of tunnel support systems

    CSIR Research Space (South Africa)

    Güler, G

    2001-03-01

    Full Text Available (foreground) (Gürtunca and Haile, 1999). ...............................................7 Figure 2.4. Relationship between accumulated impact kinetic energy and deformation for contained simulated rock mass system (Stacey and Ortlepp, 1997...-level mining (DME, 1996) indicate the necessity for yielding tendons, particularly under dynamic loading conditions associated with major seismic events, to ensure sufficient energy absorption capacity. However, throughout numerous case studies...

  9. Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test

    Institute of Scientific and Technical Information of China (English)

    Ashok Kumar Gupta

    2016-01-01

    Rockfill dams are mostly constructed using blasted rockfill materials obtained by blasting rocks or al-luvial rockfill materials collected from the riverbeds. Behaviors of rockfill materials and their charac-terization significantly depend on breakage factor observed during triaxial loading. In this paper, two modeled rockfill materials are investigated by using medium triaxial cell. Drained triaxial tests are conducted on various sizes of modeled rockfill materials used in the two dams, and test data are analyzed accordingly. Breakage factor of rockfill material is studied and the effects of particle size and confining pressure on breakage factor are investigated using medium triaxial cell as many researchers have already conducted investigation using large triaxial cell.

  10. Effect of repeated vertical loads on microleakage of IRM and calcium sulfate-based temporary fillings.

    Science.gov (United States)

    Liberman, R; Ben-Amar, A; Frayberg, E; Abramovitz, I; Metzger, Z

    2001-12-01

    Temporary fillings are commonly used to seal endodontic access cavities between visits. IRM and Cavidentin were selected to represent two widely used groups of temporary filling materials. The first is a reinforced zinc oxide-eugenol preparation that is mixed at chairside, whereas the second is a ready-to-use calcium sulfate-based material that gained popularity due to its convenience of application. The seal provided by the aforementioned materials was studied using a radioactive tracer quantitative assay. When compared as passive temporary filling, the two provided a similar quality of seal. However, when subjected to repetitive "occlusal" cyclic loading of 4 kg, IRM was clearly superior to the calcium sulfate-based material. Whereas IRM maintained a reasonable seal, the calcium sulfate-based fillings deteriorated and lost the ability to seal. These results suggest that even though calcium sulfate-based materials may be useful when not subjected to any occlusal forces, IRM should be preferred whenever occlusal loads may be applied. Furthermore it is demonstrated that testing such materials for microleakage with no reference to mastication forces may be of limited value.

  11. A Triaxial Failure Diagram to predict the forming limit of 3D sheet metal parts subjected to multiaxial stresses

    Science.gov (United States)

    Rastellini, F.; Socorro, G.; Forgas, A.; Onate, E.

    2016-08-01

    Accurate prediction of failure and forming limits is essential when modelling sheet metal forming processes. Since traditional Forming Limit Curves (FLCs) are not valid for materials subjected to triaxial loading, a new failure criterion is proposed in this paper based on the stress triaxility and the effective plastic strain accumulated during the history of material loading. Formability zones are identified inside the proposed Triaxial Failure Diagram (TFD). FLCs may be mapped into the TFD defining a new Triaxial Failure Curve, or it can be defined by triaxial failure experiments. Several TFD examples are validated and constrasted showing acceptable accuracy in the numerical prediction of forming failure/limit of 3D thick sheet parts.

  12. Simulation of a true-triaxial deformation test on anisotropic gneiss using FLAC3D

    Science.gov (United States)

    Ye, Shenghua; Sehizadeh, Mehdi; Nasseri, Mohammad; Young, Paul

    2016-04-01

    A series of true-triaxial experiments have been carried out at the University of Toronto's Rock Fracture Dynamics Laboratory. Isotropic pegmatite and gneiss have been used to systematically study the effect of anisotropy on the strength, behaviour and seismic response. Samples were loaded under true-triaxial stress conditions and subjected to complex loading and unloading histories associated with rock deformation around underground openings. The results show expected patterns of weakness from preferentially oriented samples and highlight the importance of unloading history under true-triaxial conditions on the deformation and seismic response of the samples. These tests have been used to validate a synthetic simulation using the Itasca FLAC3D numerical code. The paper describes the FLAC3D simulations of the complex true-triaxial loading and unloading history of the different anisotropic samples. Various parameters were created to describe the physico-mechanical properties of the synthetic rock samples. Foliation planes of preferential orientations with respect to the primary loading direction were added to the synthetic rock samples to reflect the anisotropy of the gneiss. These synthetic rock samples were subjected to the same loading and unloading paths as the real rock samples, and failed in the same mechanism as what was observed from the experiments, and thus it proved the validity of this numerical simulation with FLAC3D.

  13. Multiple void interaction of pipeline steel in triaxial stress fields

    Institute of Scientific and Technical Information of China (English)

    Bao-wen QIU; Ze-xi YUAN; Gui-feng ZHOU

    2008-01-01

    Three-dimensional unit cell models were developed to study the damage induced by void growth in ductile materials. Special emphasis is given to the influence of the void shape and random spatial void arrangements. The periodical void arrays of body cen-tered cubic are investigated by analyzing representative unit cells. The isotropic behavior of the matrix material is modeled using v. Mises plasticity. The cell models are analyzed by the large strain finite element method under monotonic loading while keeping the constant stress triaxiality. Results showed that when void density increased, effects of void aspects on void growth gradu-ally diminished.

  14. Triaxial Swirler Liquid Injector Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sierra Engineering Inc. (Sierra) believes that the subject triaxial liquid propellant swirl injector has the potential to meet many of NASA's Earth-to-Orbit (ETO)...

  15. Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance

    Science.gov (United States)

    Du, Kun; Tao, Ming; Li, Xi-bing; Zhou, Jian

    2016-09-01

    Slabbing/spalling and rockburst are unconventional types of failure of hard rocks under conditions of unloading and various dynamic loads in environments with high and complex initial stresses. In this study, the failure behaviors of different rock types (granite, red sandstone, and cement mortar) were investigated using a novel testing system coupled to true-triaxial static loads and local dynamic disturbances. An acoustic emission system and a high-speed camera were used to record the real-time fracturing processes. The true-triaxial unloading test results indicate that slabbing occurred in the granite and sandstone, whereas the cement mortar underwent shear failure. Under local dynamically disturbed loading, none of the specimens displayed obvious fracturing at low-amplitude local dynamic loading; however, the degree of rock failure increased as the local dynamic loading amplitude increased. The cement mortar displayed no failure during testing, showing a considerable load-carrying capacity after testing. The sandstone underwent a relatively stable fracturing process, whereas violent rockbursts occurred in the granite specimen. The fracturing process does not appear to depend on the direction of local dynamic loading, and the acoustic emission count rate during rock fragmentation shows that similar crack evolution occurred under the two test scenarios (true-triaxial unloading and local dynamically disturbed loading).

  16. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel

    2014-07-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.

  17. Do triaxial supramassive compact stars exist?

    CERN Document Server

    Uryu, Koji; Baiotti, Luca; Galeazzi, Filippo; Sugiyama, Noriyuki; Taniguchi, Keisuke; Yoshida, Shin'ichirou

    2016-01-01

    We study quasiequilibrium solutions of triaxially deformed rotating compact stars -- a generalization of Jacobi ellipsoids under relativistic gravity and compressible equations of state (EOS). For relatively stiff (piecewise) polytropic EOSs, we find supramassive triaxial solutions whose masses exceed the maximum mass of the spherical solution, but are always lower than those of axisymmetric equilibriums. The difference in the maximum masses of triaxial and axisymmetric solutions depends sensitively on the EOS. If the difference turns out to be only about 10%, it will be strong evidence that the EOS of high density matter becomes substantially softer in the core of neutron stars. This finding opens a novel way to probe phase transitions of high density nuclear matter using detections of gravitational waves from new born neutron stars or magnetars under fallback accretion.

  18. Superdeformed and Triaxial States in ^{42}Ca.

    Science.gov (United States)

    Hadyńska-Klȩk, K; Napiorkowski, P J; Zielińska, M; Srebrny, J; Maj, A; Azaiez, F; Valiente Dobón, J J; Kicińska-Habior, M; Nowacki, F; Naïdja, H; Bounthong, B; Rodríguez, T R; de Angelis, G; Abraham, T; Anil Kumar, G; Bazzacco, D; Bellato, M; Bortolato, D; Bednarczyk, P; Benzoni, G; Berti, L; Birkenbach, B; Bruyneel, B; Brambilla, S; Camera, F; Chavas, J; Cederwall, B; Charles, L; Ciemała, M; Cocconi, P; Coleman-Smith, P; Colombo, A; Corsi, A; Crespi, F C L; Cullen, D M; Czermak, A; Désesquelles, P; Doherty, D T; Dulny, B; Eberth, J; Farnea, E; Fornal, B; Franchoo, S; Gadea, A; Giaz, A; Gottardo, A; Grave, X; Grȩbosz, J; Görgen, A; Gulmini, M; Habermann, T; Hess, H; Isocrate, R; Iwanicki, J; Jaworski, G; Judson, D S; Jungclaus, A; Karkour, N; Kmiecik, M; Karpiński, D; Kisieliński, M; Kondratyev, N; Korichi, A; Komorowska, M; Kowalczyk, M; Korten, W; Krzysiek, M; Lehaut, G; Leoni, S; Ljungvall, J; Lopez-Martens, A; Lunardi, S; Maron, G; Mazurek, K; Menegazzo, R; Mengoni, D; Merchán, E; Mȩczyński, W; Michelagnoli, C; Mierzejewski, J; Million, B; Myalski, S; Napoli, D R; Nicolini, R; Niikura, M; Obertelli, A; Özmen, S F; Palacz, M; Próchniak, L; Pullia, A; Quintana, B; Rampazzo, G; Recchia, F; Redon, N; Reiter, P; Rosso, D; Rusek, K; Sahin, E; Salsac, M-D; Söderström, P-A; Stefan, I; Stézowski, O; Styczeń, J; Theisen, Ch; Toniolo, N; Ur, C A; Vandone, V; Wadsworth, R; Wasilewska, B; Wiens, A; Wood, J L; Wrzosek-Lipska, K; Ziȩbliński, M

    2016-08-01

    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time.

  19. Superdeformed and Triaxial States in 42Ca

    Science.gov (United States)

    Hadyńska-KlÈ©k, K.; Napiorkowski, P. J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J. J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; Bounthong, B.; Rodríguez, T. R.; de Angelis, G.; Abraham, T.; Anil Kumar, G.; Bazzacco, D.; Bellato, M.; Bortolato, D.; Bednarczyk, P.; Benzoni, G.; Berti, L.; Birkenbach, B.; Bruyneel, B.; Brambilla, S.; Camera, F.; Chavas, J.; Cederwall, B.; Charles, L.; Ciemała, M.; Cocconi, P.; Coleman-Smith, P.; Colombo, A.; Corsi, A.; Crespi, F. C. L.; Cullen, D. M.; Czermak, A.; Désesquelles, P.; Doherty, D. T.; Dulny, B.; Eberth, J.; Farnea, E.; Fornal, B.; Franchoo, S.; Gadea, A.; Giaz, A.; Gottardo, A.; Grave, X.; GrÈ©bosz, J.; Görgen, A.; Gulmini, M.; Habermann, T.; Hess, H.; Isocrate, R.; Iwanicki, J.; Jaworski, G.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Kmiecik, M.; Karpiński, D.; Kisieliński, M.; Kondratyev, N.; Korichi, A.; Komorowska, M.; Kowalczyk, M.; Korten, W.; Krzysiek, M.; Lehaut, G.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lunardi, S.; Maron, G.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Merchán, E.; MÈ©czyński, W.; Michelagnoli, C.; Mierzejewski, J.; Million, B.; Myalski, S.; Napoli, D. R.; Nicolini, R.; Niikura, M.; Obertelli, A.; Özmen, S. F.; Palacz, M.; Próchniak, L.; Pullia, A.; Quintana, B.; Rampazzo, G.; Recchia, F.; Redon, N.; Reiter, P.; Rosso, D.; Rusek, K.; Sahin, E.; Salsac, M.-D.; Söderström, P.-A.; Stefan, I.; Stézowski, O.; Styczeń, J.; Theisen, Ch.; Toniolo, N.; Ur, C. A.; Vandone, V.; Wadsworth, R.; Wasilewska, B.; Wiens, A.; Wood, J. L.; Wrzosek-Lipska, K.; ZiÈ©bliński, M.

    2016-08-01

    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42Ca were determined from E 2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 02+ has been obtained and the role of triaxiality in the A ˜40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time.

  20. Relations of complete creep processes and triaxial stress-strain curves of rock

    Institute of Scientific and Technical Information of China (English)

    李云鹏; 王芝银; 唐明明; 王怡

    2008-01-01

    Based on the results of triaxial compressive creep tests for five kinds of rock under the different stress loading,unloading and cycle-loading-unloading conditions,the creep deformation is not only a function of stress and time,but also it has the corresponding relations to the triaxial stress-strain curves of rock.The deformation properties of soften-strain,harden-strain and ideal plasticity presented by conventional triaxial compressive test curves under the different stress states were utilized,and the creep characteristics,the creep starting stress and the different entire creep process curves of rock were studied systematically according to creep experiment results,and the relations of the triaxial stress-strain curves to the creeping starting stress,the terminating curve,the different creep processes,and the different creep fracture properties were established.The relations presented in this paper were verified partially by the creep experiment results of five types of rock.

  1. Analysis of a Liquid Nitrogen-Cooled Tri-Axial High-Temperature Superconducting Cable System

    Science.gov (United States)

    Demko, J. A.; Lue, J. W.; Gouge, M. J.; Fisher, P. W.; Lindsay, D.; Roden, M.

    2004-06-01

    This tri-axial high-temperature superconducting (HTS) cable design uses three concentric superconducting layers for the phase conductors, separated by a cold dielectric material. The design offers an efficient HTS cable configuration by reducing the amount of superconductor needed and places all three phases in a single cryostat. The tri-axial cable cooling circuit analyzed includes heat loads at the ends for the cable terminations and cable heat loads due to ac, dielectric, and thermal losses. The HTS cable critical current and ac loss are functions of the local temperature that must be determined by the analysis. The radial heat transfer also has an influence on these parameters due to the relatively low thermal conductivity of the dielectric material separating the HTS phases. The study investigates whether the tri-axial cable must be cooled both inside the former and outside of the cable. In this study, the range of operating parameters for a tri-axial HTS cable system and refrigeration requirements are determined based on expected HTS tape performance.

  2. True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress

    Science.gov (United States)

    Li, Xibing; Du, Kun; Li, Diyuan

    2015-11-01

    True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n < 1.0) are almost located in the same range as expected by Al-Ajmi and Zimmerman (Int J Rock Mech Min Sci 563 42(3):431-439, 2005). It indicates that the end effect caused by the height-to-width ratio of the cubic specimens will not significantly affect the testing results under true triaxial tests. Both the strength and failure modes of cubic rock specimens under true triaxial unloading condition are affected by the intermediate principal stress. When σ 2 increases to a critical value for the strong and hard rocks (R4, R5 and R6), the rock failure mode may change from shear to slabbing. However, for medium strong and weak rocks (R3 and R2), even with a relatively high intermediate principal stress, they tend to fail in shear after a large amount of plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.

  3. Standing balance evaluation using a triaxial accelerometer

    NARCIS (Netherlands)

    Mayagoitia, R.E.; Mayagoitia, Ruth E.; Lotters, Joost Conrad; Lötters, Joost Conrad; Veltink, Petrus H.; Hermens, Hermanus J.

    2002-01-01

    This paper presents a new inherently triaxial accelerometer-based system for determining the ability to maintain balance while standing. In this study, the accelerometer was placed at the back of the subject at the approximate height of the centre of mass. The data were processed to obtain five

  4. Extension of recovery time from fatigue by repeated rest with short-term sleep during continuous fatigue load: Development of chronic fatigue model.

    Science.gov (United States)

    Kanzaki, Akinori; Okauchi, Takashi; Hu, Di; Shingaki, Tomotaka; Katayama, Yumiko; Koyama, Hidenori; Watanabe, Yasuyoshi; Cui, Yilong

    2016-05-01

    Homeostasis is known to be involved in maintaining the optimal internal environment, helping to achieve the best performance of biological functions. At the same time, a deviation from optimal conditions often attenuates the performance of biological functions, and such restricted performance could be considered as individual fatigue, including physical and mental fatigue. The present study seeks to develop an animal model of chronic or subacute fatigue in which the recovery time is extended through the gradual disruption of homeostasis. We show that repeated short-term rest periods with certain lengths of sleep during continuous fatigue loading extend recovery from spontaneous nighttime activity but not physical performance in comparison with a continuous fatigue-loading procedure. Furthermore, the immobility time in a forced swimming test was extended by repeated short-term rests. These results suggest that repeated short-term rest with certain lengths of sleep during continuous fatigue loading is able to extend the recovery from mental fatigue but not from physical fatigue and that this effect might occur via the disruption of a homeostatic mechanism that is involved in restoring the optimal internal environment.

  5. An Analysis of the Tvergaard Parameters at Low Initial Stress Triaxiality for S235JR Steel

    Directory of Open Access Journals (Sweden)

    G. Kossakowski Paweł

    2015-01-01

    Full Text Available This paper discusses the influence of the Tvergaard parameters, qi, which are basic constants of the Gurson-Tvergaard-Needleman (GTN material model, on the numerically simulated load-carrying capacity of tensile elements made of S235JR steel. The elements were considered to be under static tension at low initial stress triaxiality σm/σe = 1/3. Two sets of the Tvergaard parameters qi were analyzed: those typical of structural steels and those dependent on material strength properties. The results showed that the Tvergaard parameters, qi, had influence on the load-carrying capacity of tensile elements at low initial stress triaxiality. They affected the strength curves and the changes in the void volume fractions determined for S235JR steel elements

  6. On-sample water content measurement for a complete local monitoring in triaxial testing of unsaturated soils

    CERN Document Server

    Munoz-Castelblanco, José; Pereira, Jean-Michel; Cui, Yu-Jun

    2013-01-01

    To provide a complete local monitoring of the state of an unsaturated soil sample during triaxial testing, a local water content measurement device was adapted to a triaxial device comprising the measurement of local displacements (Hall effect transducers) and suction (High capacity transducer). Water content was locally monitored by means of a resistivity probe. The water content/resistivity calibration curves of an intact natural unsaturated loess from Northern France extracted by block sampling at two depths (1 and 3.3 m) were carefully determined, showing good accuracy and repeatability. The validity of two models giving the resistivity of unsaturated soils with respect to their water content was examined.

  7. Procedure of Forecasting Operational and Extremal State of Critical Systems of the Rocket Technique Under Repeated Thermo-Force Loading

    Directory of Open Access Journals (Sweden)

    Shevchenko Yu.M.

    2015-09-01

    Full Text Available The mathematical model for investigation of the thermoelastoplastic stress-strain state and the strength of the rocket technique systems under the repeated starting is proposed. The thermal conductivity equation and constitutive equations of thermoplasticity for the repeated elastic-plastic deformation processes of isotropic materials along small-curvature paths, the strength and low-cyclic fatigue criteria, numerical methods for solving the boundary-value heat conduction problems and corresponding computer software are used.

  8. On the pairing effects in triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Oudih, M. R. [Laboratoire de Physique Théorique, Faculté de Physique,USTHB BP 32, El Alia, 16111 Bab Ezzouar, Algiers (Algeria); Fellah, M.; Allal, N. H. [Centre de Recherche Nucléaire d' Alger, 2 Bd. Frantz Fanon, BP. 399 Alger-Gare, Algiers, Algeria and Laboratoire de Physique Théorique, Faculté de Physique,USTHB BP 32, El Alia, 16111 Bab Ezzouar, Algiers (Algeria)

    2014-03-05

    Triaxial deformation effect on the pairing correlations is studied in the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Quantities such as binding energy, gap parameter and particle-number fluctuation are considered in neutron-rich Mo isotopes. The results are compared with those of axially symmetric calculation and with available experimental data. The role played by the particle-number projection is outlined.

  9. Repeated-High-Intensity-Running Activity and Internal Training Load of Elite Rugby Sevens Players During International Matches: A Comparison Between Halves.

    Science.gov (United States)

    Suarez-Arrones, Luis; Núñez, Javier; Sáez de Villareal, Eduardo; Gálvez, Javier; Suarez-Sanchez, Gabriel; Munguía-Izquierdo, Diego

    2016-05-01

    To describe the repeated-high-intensity activity and internal training load of rugby sevens players during international matches and to compare the differences between the 1st and 2nd halves. Twelve international-level male rugby sevens players were monitored during international competitive matches (n = 30 match files) using global positioning system technology and heart-rate monitoring. The relative total distance covered by the players throughout the match was 112.1 ± 8.4 m/ min. As a percentage of total distance, 35.0% (39.2 ± 9.0 m/min) was covered at medium speed and 17.1% (19.2 ± 6.8 m/min) at high speed. A substantial decrease in the distance covered at >14.0 km/h and >18.0 km/h, the number of accelerations of >2.78 m/s and >4.0 m/s, repeated-sprint sequences interspersed with ≤60 s rest, and repeated-acceleration sequences interspersed with ≤30 s or ≤60 s rest was observed in the 2nd half compared with the 1st half. A substantial increase in the mean heart rate (HR), HRmax, percentage of time at >80% HRmax and at >90% HRmax, and Edwards training load was observed in the 2nd half compared with the 1st half. This study provides evidence of a pronounced reduction in high-intensity and repeated-high-intensity activities and increases in internal training load in rugby sevens players during the 2nd half of international matches.

  10. A Novel Mogi Type True Triaxial Testing Apparatus and Its Use to Obtain Complete Stress-Strain Curves of Hard Rocks

    Science.gov (United States)

    Feng, Xia-Ting; Zhang, Xiwei; Kong, R.; Wang, G.

    2016-05-01

    A true triaxial apparatus (TTA) was designed and fabricated at Northeastern University, Shenyang, China, by modifying the original Mogi type testing apparatus to emulate three-dimensional stress paths in deep mining and tunneling excavations. Such an apparatus can be used to investigate deformation and brittle failure behaviors of hard rocks as well as the cause of rockbursts. The novel TTA can capture the post-peak behavior of a 50 × 50 × 100 mm3 specimen. Technical improvements such as a considerable increase of the stiffness of the loading frames were implemented to deal with difficulties in TTA testing. The accuracy of the volume change measurement was improved and a combined pneumatic and hydraulic technique was applied to create a "floating" vertical loading frame. The end friction effect and the loading gap effect were evaluated using a series of tests. Repeatability tests, brittle failure tests in a loading stress path and an unloading stress path (unloading of σ 3) were carried out on granite specimens to verify the performance of the TTA. The test results show that the apparatus achieves its original design goal.

  11. 3D Anisotropic Velocity Tomography of a Water Saturated Rock under True-Triaxial Stress in the Laboratory

    Science.gov (United States)

    Ghofrani Tabari, M.; Goodfellow, S. D.; Nasseri, M. B.; Young, R.

    2013-12-01

    A cubic specimen of water saturated Fontainebleau Sandstone is tested in the laboratory under true-triaxial loading where three different principal stresses are applied under drained conditions. Due to the loading arrangement, closure and opening of the pre-existing cracks in the rock, as well as creation and growth of the aligned cracks cause elliptical anisotropy and distributed heterogeneities. A Geophysical Imaging Cell equipped with an Acoustic Emission monitoring system is employed to image velocity structure of the sample during the experiment through repeated transducer to transducer non-destructive ultrasonic surveys. Apparent P-wave velocities along the rock body are calculated in different directions and shown in stereonet plots which demonstrate an overall anisotropy of the sample. The apparent velocities in the main three orthogonal cubic directions are used as raw data for building a mean spatial distribution model of anisotropy ratios. This approach is based on the concept of semi-principal axes in an elliptical anisotropic model and appointing two ratios between the three orthogonal velocities in each of the cubic grid cells. The spatial distribution model of anisotropy ratios are used to calculate the anisotropic ray-path segment matrix elements (Gij). These contain segment lengths of the ith ray in the jth cell in three dimensions where, length of each ray in each cell is computed for one principal direction based on the dip and strike of the ray and these lengths differ from the ones in an isotropic G Matrix. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in the ray-path segment matrix. A Singular Value Decomposition (SVD) method is used for inversion from the data space of apparent velocities to the model space of P-wave propagation velocities in the three principal directions. Finally, spatial variation and temporal evolution of induced damages in the rock, representing uniformly distributed or

  12. Ductile fracture of metals under triaxial states of stress

    Science.gov (United States)

    Schrems, Karol Krumrey

    Silver interlayers between maraging steel base metal were examined to evaluate mechanisms leading to ductile failure in constrained thin metals. The constraint of the maraging steel base metal during uniaxial testing of constrained thin silver results in a large hydrostatic tension component, a small von Mises effective stress, and negligible far-field plasticity. The failure theory proposed by Rice and Tracey predicts uniform cavity wall expansion as a result of high triaxiality, in which an increase in plastic strain drives an increase in cavity size. The Rice and Tracey theory predicts significantly greater plastic strain than is experimentally observed. The theory developed by Huang, Hutchinson, and Tvergaard states that a cavitation limit exists at which a cavity continues to grow without an increase in elastic or plastic strain. This occurs when the energy stored in the elastic region is sufficient to drive continued cavity expansion. Inherent in both theories is the assumption of a single cavity in an infinite solid, which implies non-interacting cavities. Modifications have been developed to allow for multiple cavities, but assume pre-existing cavities. By examining silver interlayers previously loaded to various times at a fraction of the tensile strength where time-dependent failure is observed, it was found that some cavities were initially present in the as-bonded samples. Some of the initial cavities were spaced close enough to suggest localized interacting stress fields. This indicates that a failure model should be able to accommodate cavity spacing. The results suggest that cavities are continuously nucleating (from at least the 20 nanometers detectability limit) and grow, sometimes to over 500 nm in diameter. This thesis evaluates the number, size, shape and spacing of cavities in the silver interlayers and uses these results to evaluate ductile failure theories for metals subjected to high triaxial states of stress such as in constrained

  13. Triaxial superdeformed bands in {sup 86}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.; LaFosse, D.R.; Devlin, M.; Lerma, F. [Chemistry Department, Washington University, St. Louis, Missouri 63130 (United States); Wood, V.Q.; Saladin, J.X.; Winchell, D.F. [Physics Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Baktash, C.; Yu, C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; MacLeod, R.W. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Afanasjev, A.V.; Ragnarsson, I. [Department of Mathematical Physics, Lund Institute of Technology, Box 118, S-22100 Lund (Sweden)

    1998-01-01

    Four new superdeformed bands have been found in the nucleus {sup 86}Zr. The good agreement between experiment and configuration-dependent shell correction calculations suggests that three of the bands have triaxial superdeformed shapes. Such unique features in mass A{approximately}80 superdeformed bands have been predicted, but not observed experimentally until now. A fourth band in {sup 86}Zr is interesting due to a fairly constant and unusually high dynamic moment of inertia. Possible interpretations of this structure are discussed. {copyright} {ital 1998} {ital The American Physical Society}

  14. Drained True Triaxial Tests on Aalborg University Sand No 0

    DEFF Research Database (Denmark)

    Praastrup, U.

    The paper presents the first series of true triaxial tests carried out on air-pluviated unfrozen and frozen specimens of Aalborg University Sand No O. The specimens have been tested in the newly improved version of the Danish rigid boundary true triaxial apparatus to optimise the preparation and ...

  15. Resistance and resilience of removal efficiency and bacterial community structure of gas biofilters exposed to repeated shock loads.

    Science.gov (United States)

    Cabrol, Léa; Malhautier, Luc; Poly, Franck; Roux, Xavier Le; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis

    2012-11-01

    Since full-scale biofilters are often operated under fluctuating conditions, it is critical to understand their response to transient states. Four pilot-scale biofilters treating a composting gas mixture and undergoing repeated substrate pulses of increasing intensity were studied. A systematic approach was proposed to quantify the resistance and resilience capacity of their removal efficiency, which enabled to distinguish between recalcitrant (ammonia, DMDS, ketones) and easily degradable (esters and aldehyde) compounds. The threshold of disturbing shock intensity and the influence of disturbance history depended on the contaminant considered. The spatial and temporal distribution of the bacterial community structure in response to the perturbation regime was analysed by Denaturing Gradient Gel Electrophoresis (DGGE). Even if the substrate-pulses acted as a driving force for some community characteristics (community stratification), the structure-function relationships were trickier to evidence: the distributions of resistance and composition were only partially coupled, with contradictory results depending on the contaminant considered.

  16. A Novel True Triaxial Apparatus to Study the Geomechanical and Fluid Flow Aspects of Energy Exploitations in Geological Formations

    Science.gov (United States)

    Li, Minghui; Yin, Guangzhi; Xu, Jiang; Li, Wenpu; Song, Zhenlong; Jiang, Changbao

    2016-12-01

    Fluid-solid coupling investigations of the geological storage of CO2, efficient unconventional oil and natural gas exploitations are mostly conducted under conventional triaxial stress conditions ( σ 2 = σ 3), ignoring the effects of σ 2 on the geomechanical properties and permeability of rocks (shale, coal and sandstone). A novel multi-functional true triaxial geophysical (TTG) apparatus was designed, fabricated, calibrated and tested to simulate true triaxial stress ( σ 1 > σ 2 > σ 3) conditions and to reveal geomechanical properties and permeability evolutions of rocks. The apparatus was developed with the capacity to carry out geomechanical and fluid flow experiments at high three-dimensional loading forces and injection pressures under true triaxial stress conditions. The control and measurement of the fluid flow with effective sealing of rock specimen corners were achieved using a specially designed internally sealed fluid flow system. To validate that the apparatus works properly and to recognize the effects of each principal stress on rock deformation and permeability, stress-strain and permeability experiments and a hydraulic fracturing simulation experiment on shale specimens were conducted under true triaxial stress conditions using the TTG apparatus. Results show that the apparatus has advantages in recognizing the effects of σ 2 on the geomechanical properties and permeability of rocks. Results also demonstrate the effectiveness and reliability of the novel TTG apparatus. The apparatus provides a new method of studying the geomechanical properties and permeability evolutions of rocks under true triaxial stress conditions, promoting further investigations of the geological storage of CO2, efficient unconventional oil and gas exploitations.

  17. Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    Science.gov (United States)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.

  18. High Voltage Testing of a 5-meter Prototype Triaxial HTS Cable

    Energy Technology Data Exchange (ETDEWEB)

    Sauers, Isidor [ORNL; James, David Randy [ORNL; Ellis, Alvin R [ORNL; Tuncer, Enis [ORNL; Pace, Marshall O [ORNL; Gouge, Michael J [ORNL; Demko, Jonathan A [ORNL; Lindsay, David T [ORNL

    2007-01-01

    High voltage tests were performed on a 5-m long prototype triaxial HTS cable (supplied by Ultera) at ORNL in preparation for installation of a 200-m HTS cable of the same design at the AEP utility substation in Columbus, Ohio. The triaxial design comprises three concentric phases and shield around a common former with the phase to phase dielectric at cryogenic temperature. Advantages of this design include increased current density, a reduced amount of HTS tape needed, and reduced heat load. The phase to phase voltage will be 13.2 kVrms (7.6 kVrms to ground). Preliminary testing was done on half-scale and full-scale terminations which successfully passed AC withstand, partial discharge, and impulse tests. High voltage tests conducted on the 5-m cable with the cable straight and after bending 90 degrees were ac withstand to 39 kVrms, partial discharge inception, and a minimum of 10 positive and 10 negative lightning waveform impulses at 110 kV. Phase to phase insulation was tested by applying high voltage to each phase one at a time with all the other phases grounded. Partial discharge data will be presented. The 5-m prototype triaxial HTS cable passed all the HV tests performed, with a PD inception voltage significantly above the required voltage.

  19. Low Noise Borehole Triaxial Seismometer Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  20. Global dynamics and diffusion in triaxial galactic models

    Science.gov (United States)

    Papaphilippou, Y.

    We apply the Frequency Map Analysis method to the 3--dimensional logarithmic galactic potential in order to clarify the dynamical behaviour of triaxial power--law galactic models. All the fine dynamical details are displayed in the complete frequency map, a direct representation of the system's Arnol'd web. The influence of resonant lines and the extent of the chaotic zones are directly associated with the physical space of the system. Some new results related with the diffusion of galactic orbits are also discussed. This approach reveals many unknown dynamical features of triaxial galactic potentials and provides strong indications that chaos should be an innate characteristic of triaxial configurations.

  1. Stress Drop as a Result of Splitting, Brittle and Transitional Faulting of Rock Samples in Uniaxial and Triaxial Compression Tests

    Directory of Open Access Journals (Sweden)

    Cieślik Jerzy

    2015-03-01

    Full Text Available Rock samples can behave brittle, transitional or ductile depending on test pressure, rate of loading and temperature. Axial stiffness and its changes, relative and absolute dilatancy, yield, and fracture thresholds, residual strength are strongly pressure dependent. In this paper the stress drop as an effect of rock sample strength loss due to failure was analyzed. Uniaxial and triaxial experiments on three types of rock were performed to investigate the stress drop phenomenon. The paper first introduces short background on rock behavior and parameters defining a failure process under uniaxial and triaxial loading conditions. Stress drop data collected with experiments are analyzed and its pressure dependence phenomenon is described. Two methods for evaluation of stress drop value are presented.

  2. The Evolution of Cuspy Triaxial Galaxies Harboring Central Black Holes

    CERN Document Server

    Holley-Bockelmann, K; Sigurdsson, S; Hernquist, L E; Norman, C; Holley-Bockelmann, Kelly; Sigurdsson, Steinn; Hernquist, Lars; Norman, Colin

    2002-01-01

    We use numerical simulations to study the evolution of triaxial elliptical galaxies with central black holes. In contrast to earlier numerical studies which used galaxy models with central density ``cores,'' our galaxies have steep central cusps, like those observed in real ellipticals. As a black hole grows in these cuspy triaxial galaxies, the inner regions become rounder owing to chaos induced in the orbit families which populate the model. At larger radii, however, the models maintain their triaxiality, and orbital analyses show that centrophilic orbits there resist stochasticity over many dynamical times. While black hole induced evolution is strong in the inner regions of these galaxies, and reaches out beyond the nominal ``sphere of influence'' of a black hole, our simulations do not show evidence for a rapid {\\it global} transformation of the host. The triaxiality of observed elliptical galaxies is therefore not inconsistent with the presence of supermassive black holes at their centers.

  3. Systematic Study on Triaxial Superdeformed Bands of Hf Isotopes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Li; DING Bin-Gang

    2009-01-01

    Properties of the triaxial superdeformed (TSD) bands of Hf isotopes are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the γ-ray energies, the dynamical moments of inertia,and the spin of the TSD bands in Hf isotopes are obtained. It shows that this approach is quite powerful in describing the properties of the triaxial superdeformation in Hf isotopes.

  4. Self-consistent triaxial de Zeeuw-Carollo Models

    CERN Document Server

    Thakur, Parijat; Das, Mousumi; Chakraborty, D K; Ann, H B

    2007-01-01

    We use the usual method of Schwarzschild to construct self-consistent solutions for the triaxial de Zeeuw & Carollo (1996) models with central density cusps. ZC96 models are triaxial generalisations of spherical $\\gamma$-models of Dehnen whose densities vary as $r^{-\\gamma}$ near the center and $r^{-4}$ at large radii and hence, possess a central density core for $\\gamma=0$ and cusps for $\\gamma > 0$. We consider four triaxial models from ZC96, two prolate triaxials: $(p, q) = (0.65, 0.60)$ with $\\gamma = 1.0$ and 1.5, and two oblate triaxials: $(p, q) = (0.95, 0.60)$ with $\\gamma = 1.0$ and 1.5. We compute 4500 orbits in each model for time periods of $10^{5} T_{D}$. We find that a large fraction of the orbits in each model are stochastic by means of their nonzero Liapunov exponents. The stochastic orbits in each model can sustain regular shapes for $\\sim 10^{3} T_{D}$ or longer, which suggests that they diffuse slowly through their allowed phase-space. Except for the oblate triaxial models with $\\gamma ...

  5. Latitudinal libration driven flows in triaxial ellipsoids

    CERN Document Server

    Vantieghem, S; Noir, J

    2015-01-01

    Motivated by understanding the liquid core dynamics of tidally deformed planets and moons, we present a study of incompressible flow driven by latitudinal libration within rigid triaxial ellipsoids. We first derive a laminar solution for the inviscid equations of motion under the assumption of uniform vorticity flow. This solution exhibits a res- onance if the libration frequency matches the frequency of the spin-over inertial mode. Furthermore, we extend our model by introducing a reduced model of the effect of viscous Ekman layers in the limit of low Ekman number (Noir and C\\`ebron 2013). This theoretical approach is consistent with the results of Chan et al. (2011) and Zhang et al. (2012) for spheroidal geometries. Our results are validated against systematic three-dimensional numerical simulations. In the second part of the paper, we present the first linear sta- bility analysis of this uniform vorticity flow. To this end, we adopt different methods (Lifschitz and Hameiri 1991; Gledzer and Ponomarev 1977)...

  6. Stability of rings around a triaxial primary

    CERN Document Server

    Lehébel, Antoine

    2015-01-01

    Generally, the oblateness of a planet or moon is what causes rings to settle into its equatorial plane. However, the recent suggestion that a ring system might exist (or have existed) about Rhea, a moon whose shape includes a strong prolate component pointed toward Saturn, raises the question of whether rings around a triaxial primary can be stable. We study the role of prolateness in the behavior of rings around Rhea and extend our results to similar problems such as possible rings around exoplanets. Using a Hamiltonian approach, we point out that the dynamical behavior of ring particles is governed by three different time scales: the orbital period of the particles, the rotation period of the primary, and the precession period of the particles' orbital plane. In the case of Rhea, two of these are well separated from the third, allowing us to average the Hamiltonian twice. To study the case of slow rotation of the primary, we also carry out numerical simulations of a thin disk of particles undergoing secular...

  7. The Effect of Exercise-Induced Muscle Damage After a Bout of Accentuated Eccentric Load Drop Jumps and the Repeated Bout Effect.

    Science.gov (United States)

    Bridgeman, Lee A; Gill, Nicholas D; Dulson, Deborah K; McGuigan, Michael R

    2017-02-01

    Bridgeman, LA, Gill, ND, Dulson, DK, and McGuigan, MR. The effect of exercise induced muscle damage after a bout of accentuated eccentric load drop jumps and the repeated bout effect. J Strength Cond Res 31(2): 386-394, 2017-Although previous studies have investigated exercise-induced muscle damage (EIMD) after a bout of unloaded drop jumps (DJs), none have investigated the effects of accentuated eccentric load (AEL) DJs on EIMD. The purpose of this study was to investigate the effects of 30 and 50 AEL DJs on strength, jump performance, muscle soreness, and blood markers. Eight resistance trained athletes participated in this study. In week 1, baseline countermovement jump (CMJ), squat jump (SJ), concentric and eccentric peak force (PF), creatine kinase, and muscle soreness were assessed. Subjects then completed 30 AEL DJs and baseline measures were retested immediately postintervention, 1, 24, and 48 hours later. Two weeks later, the subjects completed the same protocol with an increase in AEL DJ volume (50). Subjects' SJ height was reduced in week 1 compared with week 3, postintervention, 1, 24, and 48 hours later (ES = -0.34, -0.44, -0.38, and -0.40). Subjects' CMJ height was reduced in week 1 compared with week 3, postintervention, 1, and 24 hours later (ES = -0.37, -0.29, and -0.39). Concentric PF was reduced in week 1 compared with week 3, postintervention and 24 and 48 hours later (ES = -0.02, -0.23, and -0.32). Eccentric PF was reduced in week 1 compared with week 3, postintervention, 24, and 48 hours later (ES = -0.24, -0.16, and -0.50). In this sample, 30 AEL DJs attenuated the effects of EIMD following which 50 AEL DJs completed 2 weeks later.

  8. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    Science.gov (United States)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  9. Development of a Subcell Based Modeling Approach for Modeling the Architecturally Dependent Impact Response of Triaxially Braided Polymer Matrix Composites

    Science.gov (United States)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.; Kohlman, Lee W.

    2016-01-01

    Understanding the high velocity impact response of polymer matrix composites with complex architectures is critical to many aerospace applications, including engine fan blade containment systems where the structure must be able to completely contain fan blades in the event of a blade-out. Despite the benefits offered by these materials, the complex nature of textile composites presents a significant challenge for the prediction of deformation and damage under both quasi-static and impact loading conditions. The relatively large mesoscale repeating unit cell (in comparison to the size of structural components) causes the material to behave like a structure rather than a homogeneous material. Impact experiments conducted at NASA Glenn Research Center have shown the damage patterns to be a function of the underlying material architecture. Traditional computational techniques that involve modeling these materials using smeared homogeneous, orthotropic material properties at the macroscale result in simulated damage patterns that are a function of the structural geometry, but not the material architecture. In order to preserve heterogeneity at the highest length scale in a robust yet computationally efficient manner, and capture the architecturally dependent damage patterns, a previously-developed subcell modeling approach where the braided composite unit cell is approximated as a series of four adjacent laminated composites is utilized. This work discusses the implementation of the subcell methodology into the commercial transient dynamic finite element code LS-DYNA (Livermore Software Technology Corp.). Verification and validation studies are also presented, including simulation of the tensile response of straight-sided and notched quasi-static coupons composed of a T700/PR520 triaxially braided [0deg/60deg/-60deg] composite. Based on the results of the verification and validation studies, advantages and limitations of the methodology as well as plans for future work

  10. Design of triaxial test with controlled suction: measure of strain; Conception d'un essai triaxial a succion controlee: mesure des deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gasc-Barbier, M.; Cosenza, Ph.; Ghoreychi, M.; Chanchole, S. [Ecole Polytechnique, 91 - Palaiseau (France); Cosenza, Ph. [Paris-6 Univ., 75 (France); Tessier, D. [Institut National de Recherches Agronomiques (INRA), Unite de Sciences du Sol, 78 - Versailles (France)

    2000-01-01

    Experimental study of mechanical behavior of clayey materials under hygrometric condition is usually performed either on unloaded samples or by means of classical odometer tests used in soil mechanics. Such methods are not well adapted to hard deep clayey rocks with little deformability, porosity and permeability. Moreover, stress and strain tensors having a significant effect on hygro-mechanical behaviour and properties cannot be measured and investigated appropriately by classical tests. This is why a specific triaxial test was designed in which the sample is surrounded by a fiber glass tissue allowing air circulation and then by silicon on which confining pressure is applied. Thus, equilibrium between air and sample was reduced. Stress and strain tensors were also measured in time on the sample subjected to a mechanical loading and to a controlled suction. After presentation of the test, preliminary results are given. (authors)

  11. Evolution of triaxial shapes at large isospin: Rh isotopes

    Science.gov (United States)

    Navin, A.; Rejmund, M.; Bhattacharyya, S.; Palit, R.; Bhat, G. H.; Sheikh, J. A.; Lemasson, A.; Bhattacharya, S.; Caamaño, M.; Clément, E.; Delaune, O.; Farget, F.; de France, G.; Jacquot, B.

    2017-04-01

    The rotational response as a function of neutron-proton asymmetry for the very neutron-rich isotopes of Rh (116-119Rh) has been obtained from the measurement of prompt γ rays from isotopically identified fragments, produced in fission reactions at energies around the Coulomb barrier. The measured energy ;signature; splitting of the yrast bands, when compared with the Triaxial Projected Shell Model (TPSM) calculations, shows the need for large, nearly constant, triaxial deformations. The present results are compared with global predictions for the existence of non axial shapes in the periodic table in the case of very neutron-rich nuclei Rh isotopes. The predicted trend of a second local maximum for a triaxial shape around N ∼ 74 is not found.

  12. Coexisting normal and triaxial superdeformed structures in {sup 165}Lu

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwasser, G.; Nenoff, N.; Huebel, H. E-mail: hubel@iskp.uni-bonn.de; Hagemann, G.B.; Bednarczyk, P.; Benzoni, G.; Bracco, A.; Bringel, P.; Chapman, R.; Curien, D.; Domscheit, J.; Herskind, B.; Jensen, D.R.; Leoni, S.; Lo Bianco, G.; Ma, W.C.; Maj, A.; Neusser, A.; Oedegaard, S.W.; Petrache, C.M.; Rossbach, D.; Ryde, H.; Singh, A.K.; Spohr, K.H

    2004-05-03

    High-spin states in {sup 165}Lu were populated in the {sup 139}La({sup 30}Si,4n) reaction at a beam energy of 152 MeV and {gamma}-ray coincidences were measured with the EUROBALL spectrometer array. Nine new rotational bands were discovered, known band structures were considerably extended and many inter-band transitions were found. Structures with normal deformation coexist with bands associated with the strongly deformed triaxial energy minima found in calculations. Three of these triaxial bands form a family of wobbling excitations with phonon quanta n{sub w}=0, 1 and 2. The wobbling mode is a unique signature of nuclear triaxiality. Configuration assignments are discussed for the observed band structures. An exchange of configuration between two of the new bands due to mixing is observed, resulting in different signature partnerships at low and high spins.

  13. Evolution of triaxial shapes at large isospin: Rh isotopes

    Directory of Open Access Journals (Sweden)

    A. Navin

    2017-04-01

    Full Text Available The rotational response as a function of neutron–proton asymmetry for the very neutron-rich isotopes of Rh (116–119Rh has been obtained from the measurement of prompt γ rays from isotopically identified fragments, produced in fission reactions at energies around the Coulomb barrier. The measured energy “signature” splitting of the yrast bands, when compared with the Triaxial Projected Shell Model (TPSM calculations, shows the need for large, nearly constant, triaxial deformations. The present results are compared with global predictions for the existence of non axial shapes in the periodic table in the case of very neutron-rich nuclei Rh isotopes. The predicted trend of a second local maximum for a triaxial shape around N∼74 is not found.

  14. Triaxiality near the 110Ru ground state from Coulomb excitation

    Science.gov (United States)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  15. Triaxial and Torsional Shear Test Results for Sand

    Science.gov (United States)

    1994-06-01

    densest and loosest packing of particles without crushing the grains. The standard test methods ASTM D4253-83 and D4254-83 were used to determine the...desired value of J (J = = I( j.2/+ 2 was reached. The sample was then sheared with a constant value of J. The mean norma stress p was held constant while oz...Triaxial Testing System", Advanced Triaxial Testing of Soil and Rock, ASTM , STP77, 1988, PP95-106. Miura, K, Miura, S. and Told, S., "Deformation Behavior

  16. Mechanical behavior of New Mexico rock salt in triaxial compression up to 200/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Wawersik, W. R.; Hannum, D. W.

    1978-01-01

    An extensive experimental program is being conducted to determine the mechanical behavior of New Mexico rock salt in support of the structural design of a Radioactive Waste Isolation Pilot Plant (WIPP). In this initial report, three groups of tests are discussed to identify the relative and site-specific importance of deviator stress, confining pressure (mean stress), temperature, time (loading rate), and stress path. The three groups of experiments consist of (1) hydrostatic loading, (2) conventional triaxial compression tests (sigma/sub 1/ > sigma/sub 2/ = sigma/sub 3/ = const.), and (3) variable stress path tests including experiments at approximately constant sigma/sub 1/ and at constant mean stress. All data were generated on 100 mm diameter specimens. The rock salt exhibited nonlinear response under all loading conditions, practically zero initial elastic limit and an apparent inseparability of permanent deformations into time-independent and time-dependent components. Pressure and temperature did not alter the elastic constants but affected the principal strain ratio, the ratio volumetric strain/shear strain, rock salt ductility, and the ultimate stress. In particular, low pressure and temperature permitted pronounced dilatancy and loss in load bearing ability. Under such conditions the volumetric strains reach sizable fractions of the shear strains. Pressure remained important even at high temperature because it influenced the rate of shearing. Load path and stress history may be significant under deviatoric loading conditions and for large variations in pressure.

  17. New testing plausibilities of the danish triaxial apparatus

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    The Danish triaxial apparatus can test soil specimens with isotropic stress states. Isotropic stress produces isotropic yielding - the shear zone is distributed equally across the whole volume of a specimen. This prevents localized fracture cracking) and bulging. As the soil specimen remain intact...

  18. Triaxial Testing of First-Year Sea Ice,

    Science.gov (United States)

    1986-12-01

    sheet varied from 2.0 to 2.05 in. southwesterly winds during the latter part of Octo- ber. This storm caused the young sheet of fast ice Structure to...confined compression tests performed with the ex- confinement ratios (Or/Ga), strain ".. tensometers mounted on the shaft of the triaxial rates and

  19. Triaxial MEMS accelerometer with screen printed PZT thick film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard

    2010-01-01

    . In this work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction...

  20. Spins of Triaxial Superdeformed Bands in 86Zr

    Institute of Scientific and Technical Information of China (English)

    LIU Zu-Hua; YANG Chun-Xiang

    2000-01-01

    Transition energies of three triaxial superdeformed bands in 86Zr were fitted by the power-series expansion of spin I in odd powers of rotationalfrequeney ψ and by the two-parameter expression for rotational spectra. Level spins of these bands were assigned by means of the least-squares fits

  1. A fast algorithm for estimating actions in triaxial potentials

    Science.gov (United States)

    Sanders, Jason L.; Binney, James

    2015-03-01

    We present an approach to approximating rapidly the actions in a general triaxial potential. The method is an extension of the axisymmetric approach presented by Binney, and operates by assuming that the true potential is locally sufficiently close to some Stäckel potential. The choice of Stäckel potential and associated ellipsoidal coordinates is tailored to each individual input phase-space point. We investigate the accuracy of the method when computing actions in a triaxial Navarro-Frenk-White potential. The speed of the algorithm comes at the expense of large errors in the actions, particularly for the box orbits. However, we show that the method can be used to recover the observables of triaxial systems from given distribution functions to sufficient accuracy for the Jeans equations to be satisfied. Consequently, such models could be used to build models of external galaxies as well as triaxial components of our own Galaxy. When more accurate actions are required, this procedure can be combined with torus mapping to produce a fast convergent scheme for action estimation.

  2. A Fiber Bragg Grating Sensing Based Triaxial Vibration Sensor.

    Science.gov (United States)

    Li, Tianliang; Tan, Yuegang; Liu, Yi; Qu, Yongzhi; Liu, Mingyao; Zhou, Zude

    2015-09-18

    A fiber Bragg grating (FBG) sensing based triaxial vibration sensor has been presented in this paper. The optical fiber is directly employed as elastomer, and the triaxial vibration of a measured body can be obtained by two pairs of FBGs. A model of a triaxial vibration sensor as well as decoupling principles of triaxial vibration and experimental analyses are proposed. Experimental results show that: sensitivities of 86.9 pm/g, 971.8 pm/g and 154.7 pm/g for each orthogonal sensitive direction with linearity are separately 3.64%, 1.50% and 3.01%. The flat frequency ranges reside in 20-200 Hz, 3-20 Hz and 4-50 Hz, respectively; in addition, the resonant frequencies are separately 700 Hz, 40 Hz and 110 Hz in the x/y/z direction. When the sensor is excited in a single direction vibration, the outputs of sensor in the other two directions are consistent with the outputs in the non-working state. Therefore, it is effectively demonstrated that it can be used for three-dimensional vibration measurement.

  3. Silicon nanowire-based ring-shaped tri-axial force sensor for smart integration on guidewire

    Science.gov (United States)

    Han, Beibei; Yoon, Yong-Jin; Hamidullah, Muhammad; Tsu-Hui Lin, Angel; Park, Woo-Tae

    2014-06-01

    A ring-shaped tri-axial force sensor with a 200 µm × 200 µm sensor area using silicon nanowires (SiNWs) as piezoresistive sensing elements is developed and characterized. The sensor comprises a suspended ring structure located at the center of four suspended beams that can be integrated on the distal tip of a guidewire by passing through the hollow core of the sensor. SiNWs with a length of 6 µm and a cross section of 90 nm × 90 nm are embedded at the anchor of each silicon bridge along direction as the piezoresistive sensing element. Finite element analysis has been used to determine the location of maximum stress and the simulation results are verified with the experimental measurements. Taking advantage of the high sensitivity of SiNWs, the fabricated ring-shaped sensor is capable of detecting small displacement in nanometer ranges with a sensitivity of 13.4 × 10-3 µm-1 in the z-direction. This tri-axial force sensor also shows high linearity (>99.9%) to the applied load and no obvious hysteresis is observed. The developed SiNW-based tri-axial force sensor provides new opportunities to implement sensing capability on medical instruments such as guidewires and robotic surgical grippers, where ultra-miniaturization and high sensitivity are essential.

  4. Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling

    Science.gov (United States)

    Selles, Nathan; King, Andrew; Proudhon, Henry; Saintier, Nicolas; Laiarinandrasana, Lucien

    2017-08-01

    Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction ( Vf) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of Vf were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.

  5. 重复荷载作用下钢筋混凝土锚固端黏结性能试验研究%Test study on bonding performance of reinforced concrete anchorage zone under repeated loads

    Institute of Scientific and Technical Information of China (English)

    蒋德稳; 邱洪兴

    2012-01-01

    通过对23个钢筋混凝土试件的静载和重复荷载作用下拔出试验,研究了重复荷载作用下钢筋峰值应变和残余应变、自由端和加载端滑移发展特征,得到了重复荷载作用下黏结应力-滑移滞回曲线变化规律。运用试验测定的钢筋应变,计算了静载和重复荷载作用下锚固端黏结应力分布曲线,总结了重复荷载作用下峰值黏结应力、残余黏结应力变化特征,分析了锚固端黏结应力分布机理。研究结果表明:重复荷载作用后黏结强度并不受重复次数影响;重复荷载作用下,自由端、加载端峰值滑移量和残余滑移量发展均符合疲劳破坏的三阶段特征;当滑移量累积到静载作用下破坏时的峰值滑移量时,发生黏结疲劳破坏;随着重复次数的增加,黏结应力沿锚固长度的分布出现明显的双峰现象,最大黏结应力位于距离加载端和自由端约1/4锚固长度位置处。研究结果可为深入研究混凝土结构疲劳性能提供依据。%23 reinforced concrete Rebar' s peak and residual stress, pull-out specimens were tested under monotonic loading and repeated loading peak slip and residual slip at the loading end and free end were inspected in this test. The bonding stress-slip hysteretic curve was obtained. According to the rebar stress data, the distribution curve in the anchorage was calculated under monotonic loading and repeated loading. Variation characteristics of peak and residual bonding stress under repeated loads were summarized, and bonding stress distribution mechanism was analyzed. Research result shows that bonding strength is not influenced much by repeated loading. The peak slip and residual slip follow the three stage rule of fatigue failure. Bonding fatigue failure occurs when the rebar slippage under repeated loading reaches the maximum slippage under monotonic loading. With the increase of repeating times, the obvious double peak phenomenon was shown in

  6. A Table-Shaped Tactile Sensor for Detecting Triaxial Force on the Basis of Strain Distribution

    Science.gov (United States)

    Lee, Jeong Il; Kim, Min-Gyu; Shikida, Mitsuhiro; Sato, Kazuo

    2013-01-01

    A slim and flexible tactile sensor applicable to the interaction of human and intelligent robots is presented. In particular, a simple sensing principle for decoupling of three-dimensional force is proposed. Sensitivity of the proposed tactile sensor is tested experimentally. To improve the sensitivity of the sensor, a table-shaped sensing element was designed. Table-shaped structure can convert an external acting force into concentrated internal stress. A “triaxial force decoupling algorithm” was developed by combining two-dimensional mapping data calculated by finite element analysis. The sensor was calibrated under normal and tangential forces. The external loads applied to the sensor could be decoupled independently as a function of the strain-gauge responses. PMID:24287546

  7. Numerical Simulation of Rock Fracturing under Laboratory True-Triaxial Stress Conditions

    Science.gov (United States)

    Ghofrani Tabari, Mehdi; Hazzard, Jim; Young, R. Paul

    2016-04-01

    A True-triaxial test (TTT) also known as polyaxial test was carried out on saturated Fontainebleau sandstone to elevate our knowledge about the role of the intermediate principal stress on deformation, fracturing and failure patterns of the rock using acoustic emission (AE) monitoring. The induced AE activities were studied by location of the AE events and mapping them on the captured features in the post-mortem CT scan images of the failed sample. The time-lapse monitoring of the velocity structure and AE activity in the sample portrayed a deformational path which led to propagation of fractures and formation of failure patterns in the rock. Having these experimental results, we aimed at running a numerical model of our true-triaxial testing system using an Itasca software based on three-dimensional explicit finite-difference method called FLAC3D. The loads were applied at the end of each platen while the steel platens transferred the stress to the surface of the cubic specimen. In order to simulate the failure, randomly distributed strength demonstrated by Mohr-Columb failure criterion was implemented in the spatial elements of the model representing the random distribution of the micro-cracks. During the experiment, pseudo-boundary surfaces were formed along the minimum and intermediate principal stress axes in the rock due to non-uniform distribution of stress as a result of geometrical constraints including the corner effects and friction on the platen-rock surfaces. Both the real AE data as well as the numerical simulation verified that coalescence of micro-cracks mainly occurred around these pseudo-boundaries with highest stress gradients as well as highest velocity gradients in the rock specimen and formed curvi-planar fractures. The rock specimen strength and brittleness in the macro-scale was also obtained from the stress-strain curve which was consistent with the experimental laboratory measurements. Eventually, the failure of the rock specimen was

  8. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  9. Identification of animal movement patterns using tri-axial magnetometry.

    Science.gov (United States)

    Williams, Hannah J; Holton, Mark D; Shepard, Emily L C; Largey, Nicola; Norman, Brad; Ryan, Peter G; Duriez, Olivier; Scantlebury, Michael; Quintana, Flavio; Magowan, Elizabeth A; Marks, Nikki J; Alagaili, Abdulaziz N; Bennett, Nigel C; Wilson, Rory P

    2017-01-01

    Accelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. Another sensor commonly used in animal-attached loggers is the magnetometer, which has been primarily used in dead-reckoning or inertial measurement tags, but little outside that. We examine the potential of magnetometers for helping elucidate the behaviour of animals in a manner analogous to, but very different from, accelerometers. The particular responses of magnetometers to movement means that there are instances when they can resolve behaviours that are not easily perceived using accelerometers. We calibrated the tri-axial magnetometer to rotations in each axis of movement and constructed 3-dimensional plots to inspect these stylised movements. Using the tri-axial data of Daily Diary tags, attached to individuals of number of animal species as they perform different behaviours, we used these 3-d plots to develop a framework with which tri-axial magnetometry data can be examined and introduce metrics that should help quantify movement and behaviour.. Tri-axial magnetometry data reveal patterns in movement at various scales of rotation that are not always evident in acceleration data. Some of these patterns may be obscure until visualised in 3D space as tri-axial spherical plots (m-spheres). A tag-fitted animal that rotates in heading while adopting a constant body attitude produces a ring of data around the pole of the m-sphere that we define as its Normal Operational Plane (NOP). Data that do not lie on this ring are created by postural rotations of the animal as it pitches and/or rolls. Consequently, stereotyped behaviours appear as specific trajectories on the sphere (m-prints), reflecting conserved sequences of postural changes (and/or angular velocities), which result from the precise relationship between body attitude and heading. This novel

  10. Self-consistent massive disks in triaxial dark matter halos

    CERN Document Server

    Bailin, Jeremy; Bolatto, Alberto D; Gibson, Brad K; Power, Chris

    2007-01-01

    Galactic disks in triaxial dark matter halos become deformed by the elliptical potential in the plane of the disk in such a way as to counteract the halo ellipticity. We develop a technique to calculate the equilibrium configuration of such a disk in the combined disk-halo potential, which is based on the method of Jog (2000) but accounts for the radial variation in both the halo potential and the disk ellipticity. This crucial ingredient results in qualitatively different behavior of the disk: the disk circularizes the potential at small radii, even for a reasonably low disk mass. This effect has important implications for proposals to reconcile cuspy halo density profiles with low surface brightness galaxy rotation curves using halo triaxiality. The disk ellipticities in our models are consistent with observational estimates based on two-dimensional velocity fields and isophotal axis ratios.

  11. Experimental and Analytical Characterization of the Macromechanical Response for Triaxial Braided Composite Materials

    Science.gov (United States)

    Littell, Justin D.

    2013-01-01

    Increasingly, carbon composite structures are being used in aerospace applications. Their highstrength, high-stiffness, and low-weight properties make them good candidates for replacing many aerospace structures currently made of aluminum or steel. Recently, many of the aircraft engine manufacturers have developed new commercial jet engines that will use composite fan cases. Instead of using traditional composite layup techniques, these new fan cases will use a triaxially braided pattern, which improves case performance. The impact characteristics of composite materials for jet engine fan case applications have been an important research topic because Federal regulations require that an engine case be able to contain a blade and blade fragments during an engine blade-out event. Once the impact characteristics of these triaxial braided materials become known, computer models can be developed to simulate a jet engine blade-out event, thus reducing cost and time in the development of these composite jet engine cases. The two main problems that have arisen in this area of research are that the properties for these materials have not been fully determined and computationally efficient computer models, which incorporate much of the microscale deformation and failure mechanisms, are not available. The research reported herein addresses some of the deficiencies present in previous research regarding these triaxial braided composite materials. The current research develops new techniques to accurately quantify the material properties of the triaxial braided composite materials. New test methods are developed for the polymer resin composite constituent and representative composite coupons. These methods expand previous research by using novel specimen designs along with using a noncontact measuring system that is also capable of identifying and quantifying many of the microscale failure mechanisms present in the materials. Finally, using the data gathered, a new hybrid

  12. Lifetime measurements of Triaxial Strongly Deformed bands in $^{163}$Tm

    CERN Document Server

    wang, X; Moore, E F; Garg, U; Gu, Y; Frauendorf, S; Carpenter, M P; Ghugre, S S; Hammond, N J; Lauritsen, T; Li, T; Mukherjee, G; Pattabiraman, N S; Seweryniak, D; Zhu, S

    2007-01-01

    With the Doppler Shift Attenuation Method, quadrupole transition moments, $Q_t$, were determined for the two recently proposed Triaxial Strongly Deformed (TSD) bands in $^{163}$Tm. The measured $Q_t$ moments indicate that the deformation of these bands is larger than that of the yrast, signature partners. However, the measured values are smaller than those predicted by theory. This observation appears to be valid for TSD bands in several nuclei of the region

  13. Recommendation of a triaxial failure theory for graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, P.Y.

    1979-05-01

    An extensive literature search has been conducted on the application of triaxial failure theories to an anisotropic brittle solid. This study leads to the conclusion that the strength tensor theory of Tsai and Wu appears most promising for HTGR structural graphites. The reduction of this theory to model the transversely isotropic nature of HTGR structural graphites is presented. The extensions to the ongoing biaxial stress experimental program, needed to provide the additional data required to verify this theory, are defined.

  14. Structure and symmetries of odd-odd triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Colaba, Mumbai (India); Bhat, G.H. [University of Kashmir, Department of Physics, Srinagar (India); Govt. Degree College Kulgam, Department of Physics, Kulgam (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India); Cluster University of Srinagar, Srinagar, Jammu and Kashmir (India)

    2017-05-15

    Rotational spectra of odd-odd Rh and Ag isotopes are investigated with the primary motivation to search for the spontaneous chiral symmetry breaking phenomenon in these nuclei. The experimental results obtained on the degenerate dipole bands of some of these isotopes using a large array of gamma detectors are discussed and studied using the triaxial projected shell (TPSM) approach. It is shown that, first of all, to reproduce the odd-even staggering of the known yrast bands of these nuclei, large triaxial deformation is needed. This large triaxial deformation also gives rise to doublet band structures in many of these studied nuclei. The observed doublet bands in these isotopes are shown to be reproduced reasonably well by the TPSM calculations. Further, the TPSM calculations for neutron-rich nuclei indicate that the ideal manifestation of the chirality can be realised in {sup 106}Rh and {sup 112}Ag, where the doublet bands have similar electromagnetic properties along with small differences in excitation energies. (orig.)

  15. Global dynamics of triaxial galactic models through frequency map analysis

    Science.gov (United States)

    Papaphilippou, Y.; Laskar, J.

    1998-01-01

    In a previous article (Papaphilippou & Laskar 1996), we used the frequency map analysis for studying the dynamics of the axisymmetric softened version of the logarithmic potential. The method is now applied to its 3-dimensional generalisation in order to deepen our knowledge regarding the dynamics of triaxial power-law galactic models. The principal dynamical features of the system are reviewed within the appropriate Hamiltonian frame of reference. The quasi-periodic approximations furnished by the method permit to clarify the dynamics of the principal types of orbits and their connection with perturbations of integrable cases of the general Hamiltonian. All the fine details of the dynamics associated with the addition of the third degree of freedom are displayed in the complete frequency map, a direct representation of the system's Arnol'd web. The influence of resonant lines and the extent of the chaotic zones are directly visualized in the physical space of the system. This approach reveals many unknown dynamical features of triaxial galactic potentials and gives strong indications that chaos should be an innate characteristic of triaxial configurations. The impact of these results in the construction of self-consistent galactic models are finally discussed.

  16. Effect of Anisotropic Velocity Structure on Acoustic Emission Source Location during True-Triaxial Deformation Experiments

    Science.gov (United States)

    Ghofrani Tabari, Mehdi; Goodfellow, Sebastian; Young, R. Paul

    2016-04-01

    Although true-triaxial testing (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity due to the existence of several loading boundary effects is not usually accounted for and simplified anisotropic models are used. This study focuses on the enhanced anisotropic velocity structure to improve acoustic emission (AE) analysis for an enhanced interpretation of induced fracturing. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate the methodology. At different stages of the experiment the True-Triaxial Geophysical Imaging Cell (TTGIC), armed with an ultrasonic and AE monitoring system, performed several velocity surveys to image velocity structure of the sample. Going beyond a hydrostatic stress state (poro-elastic phase), the rock sample went through a non-dilatational elastic phase, a dilatational non-damaging elasto-plastic phase containing initial AE activity and finally a dilatational and damaging elasto-plastic phase up to the failure point. The experiment was divided into these phases based on the information obtained from strain, velocity and AE streaming data. Analysis of the ultrasonic velocity survey data discovered that a homogeneous anisotropic core in the center of the sample is formed with ellipsoidal symmetry under the standard polyaxial setup. Location of the transducer shots were improved by implementation of different velocity models for the sample starting from isotropic and homogeneous models going toward anisotropic and heterogeneous models. The transducer shot locations showed a major improvement after the velocity model corrections had been applied especially at the final phase of the experiment. This location improvement validated our velocity model at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. The ellipsoidal anisotropic velocity model was also verified at the core of the cubic rock specimen by AE event location of

  17. Magnetic field uniformity of the practical tri-axial Helmholtz coils systems.

    Science.gov (United States)

    Beiranvand, R

    2014-05-01

    In this paper, effects of the assembly misalignments and the manufacturing mismatches on the magnetic field uniformity of a practical tri-axial Helmholtz coils system have been modeled mathematically. These undesired effects regularly occur in any practical tri-axial Helmholtz coils system. To confirm the mathematical calculations, a tri-axial Helmholtz coils system has been constructed and the uniformity of its magnetic field has been measured under different conditions. The experimental results are in good agreement with the mathematical analyses.

  18. Diabetic Foot Prevention: Repeatability of the Loran Platform Plantar Pressure and Load Distribution Measurements in Nondiabetic Subjects during Bipedal Standing—A Pilot Study

    Directory of Open Access Journals (Sweden)

    Martha Zequera

    2011-01-01

    Full Text Available This study was designed to assess the repeatability of the Loran Platform and evaluate the variability of plantar pressure and postural balance, during barefoot standing in nondiabetic subjects, for future diabetic foot clinical evaluation. Measurements were taken for eight nondiabetic subjects (4 females, 4 males, aged 47±7.2 years who had no musculoskeletal symptoms. Five variables were measured with the platform in the barefoot standing position. Ten measurements were taken using two different techniques for feet and posture positioning, during three sessions, once a week. For most measurements, no significant effect over time was found with Student's t-test (P<.000125. The ANOVA test of statistical significance confirmed that measurement differences between subjects showed higher variations than measurements taken from the same subject (P<.001. The measurements taken by the Loran Platform system were found to be repeatable.

  19. Repeatability of measurements of packed cell volume and egg count as indicators of endoparasite load and their relationship with sheep productivity.

    Science.gov (United States)

    Bekele, T; Kasali, O B; Rege, J E

    1991-12-01

    Monthly measurements of packed cell volume (PCV) and nematode and trematode eggs per gram (EPG) were made in Ethiopian highland sheep at Debre Berhan, Dejen, Deneba, Tulu Meko and Wereilu from June 1988 to December 1989. High frequencies of low PCV, high nematode EPG and high trematode EPG were found at Tulu Meko. Among the productivity traits examined, body condition scores and live-weights were significantly (P less than 0.05) associated with differences in PCV and nematode and trematode EPG levels at most sites. The lambing interval was, however, not significantly (P greater than 0.05) affected by these variables. Monthly repeatabilities of PCV, body weight and body condition scores were 0.44 +/- 0.01, 0.71 +/- 0.01 and 0.35 +/- 0.01, respectively, while those of nematode (0.09 +/- 0.01) and trematode EPGs (0.20 +/- 0.02) were much lower. The high repeatability for PCV indicates that it was less affected by the variable factors influencing egg output, and hence it could be utilized in conjunction with nematode and trematode EPG levels for endoparasite monitoring. Repeatability of the lambing interval across parities was 0.43 +/- 0.14.

  20. Parametric design of tri-axial nested Helmholtz coils.

    Science.gov (United States)

    Abbott, Jake J

    2015-05-01

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  1. Ensayos triaxiales de rocas en celula de gran capacidad

    OpenAIRE

    Casellas Ferrer, Javier

    2013-01-01

    El trabajo realizado en esta tesina se centra en la realización de una serie de ensayos a probetas de roca para poder determinar sus características mecánicas principales. Se realizan ensayos destinados a estudiar los fenómenos de fractura en el campo de lo smateriales cuasi-frágiles, ensayo Wedge Splitting Test. Adicionalmente en esta tesina serealizarán ensayos de compresión, tanto compresión simple como compresión triaxial en una celda de confinamiento de alta capacidad utilizando una pren...

  2. A generalized Nadai failure criterion for both crystalline and clastic rocks based on true triaxial tests

    Science.gov (United States)

    Haimson, Bezalel; Chang, Chandong; Ma, Xiaodong

    2016-04-01

    The UW true triaxial testing system enables the application of independent compressive loads to cuboidal specimens (19×19×38 mm) along three principal directions. We used the apparatus to conduct extensive series of experiments in three crystalline rocks (Westerly granite, KTB amphibolite, and SAFOD granodiorite) and three clastic rocks of different porosities [TCDP siltstone (7%), Coconino sandstone (17%), and Bentheim sandstone (24%)]. For each rock, several magnitudes of σ3 were employed, between 0 MPa and 100-160 MPa, and for every σ3, σ2 was varied from test to test between σ2 = σ3 and σ2=(0.4 to 1.0) σ1.Testing consisted of keeping σ2and σ3constant, and raising σ1to failure (σ1,peak). The results, plotted as σ1,peakvs. σ2for each σ3 used, highlight the undeniable effect of σ2on the compressive failure of rocks. For each level of σ3, the lowest σ2 tested (σ2 = σ3) yielded the data point used for conventional-triaxial failure criterion. However, for the same σ3 and depending on σ2 magnitude, the maximum stress bringing about failure (σ1,peak) may be considerably higher, by as much as 50% in crystalline rocks, or 15% in clastic rocks, over that in a conventional triaxial test. An important consequence is that use of a Mohr-type criterion leads to overly conservative predictions of failure. The true triaxial test results demonstrate that a criterion in terms of all (three principal stresses is necessary to characterize failure. Thus, we propose a 'Generalized Nadai Criterion' (GNC) based on Nadai (1950), i.e. expressed in terms of the two stress invariants at failure (f), τoct,f = βσoct,f, where τoct,f = 1/3[(σ1,peak -σ2)2+(σ2 -σ3)2+(σ3 -σ1,peak)2]0.5 and σoct,f = (σ1,peak + σ2 + σ3)/3, and β is a function that varies from rock to rock. Moreover, the criterion depends also on the relative magnitude of σ2, represented by a parameter b [= (σ2 - σ3)/(σ1,peak - σ3)]. For each octahedral shear stress at failure (

  3. A laboratory study on the MSW mechanical behavior in triaxial apparatus.

    Science.gov (United States)

    Karimpour-Fard, Mehran; Machado, Sandro Lemos; Shariatmadari, Nader; Noorzad, Ali

    2011-08-01

    Shear strength characterization of MSW materials is a mandatory task when performing analyses related to landfill design and landfill geometry improvements. Despite the considerable amount of research focusing on MSW mechanical behavior there remain certain aspects which are not completely understood and deserve attention in particular the case of the undrained behavior of MSW. This paper presents the results of a comprehensive laboratory testing program using a large-scale triaxial apparatus at the Federal University of Bahia, Salvador, Brazil. The effect of factors such as confining pressure, unit weight, fiber content, rate of loading and over-consolidation on the MSW mechanical response were investigated. Tested samples presented typical MSW shear/strain curves (concave upward) in all the tests, despite the pore water pressure reaching levels almost equal to the confining pressure. The obtained results show that increasing confining stress, unit weight, loading rate, fiber content and over-consolidation lead to an increase in the MSW shear strength. The importance of the fibrous components in the waste behavior is highlighted and graphs showing the variation of the MSW shear strength with fiber content in different drainage conditions are shown. The authors believe these results could be of interest to many companies, especially considering the new trend of plastic material recycling (prior landfilling) for energy recovery purposes.

  4. Analyses of axial, lateral and circumferential deformations of rock specimen in triaxial compression

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-bin

    2008-01-01

    The axial, lateral and circumferential strains were analyzed for a rock specimen subjected to shear failure in the form of a shear band bisecting the specimen in triaxial compression. Plastic deformation of the specimen stemmed from shear strain localization initiated at the peak shear stress. Beyond the onset of strain localization, the axial, lateral and circumferential strains were decomposed into two parts, respectively. One is the elas-tic strain described by general Hooke's law. The other is attributable to the plastic shear slips along shear band with a certain thickness dependent on the internal length of rock.The post-peak circumferential strain-axial strain curve of longer specimen is steeper than that of shorter specimen, as is consistent with the previous experiments. In elastic stage,the circumferential strain-axial strain curve exhibits nonlinear characteristic, as is in agreement with the previous experiment since confining pressure is loaded progressively until a certain value is reached. When the confining pressure is loaded completely, the circumferential strain-axial strain curve is linear in elastic and strain-softening stages. The predicted circumferential strain-axial strain curve in elastic and strain- softening stages agrees with the previous experiment.

  5. Analysis of the mechanic characteristics of the damage propagation of rock under triaxial stress condition

    Institute of Scientific and Technical Information of China (English)

    Yang Geng-She

    2001-01-01

    The advanced computerized tomography is applied to study the damage propagaation of rock. The real-time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The demage propegation constitutive relation of rock under triaxial stress condition is analyzed at last.

  6. Design, fabrication and characterization of a highly symmetrical capacitive triaxial accelerometer

    NARCIS (Netherlands)

    Lotters, Joost Conrad; Bomer, Johan G.; Verloop, A.J.; Droog, Adriaan; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1998-01-01

    A highly symmetrical cubic capacitive triaxial accelerometer for biomedical applications has been designed, fabricated and characterized. The outer dimensions of the sensors are 5 mm × 5 mm × 5 mm. The devices are mounted on a standard IC package for easy testing. Features of the triaxial

  7. Design, realization and characterization of a symmetrical triaxial capacitive accelerometer for medical applications

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Lotters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1997-01-01

    Small triaxial accelerometers are needed in the medical field for the monitoring of mobility. For this purpose, a new highly symmetrical inherently triaxial capacitive accelerometer has been designed. The basic structure of the device consists of six capacitors surrounding a central mass which is

  8. Instruction manual for the use of CSIR triaxial rock stress measuring equipment

    CSIR Research Space (South Africa)

    Coetzer, SJ

    1998-08-01

    Full Text Available This is an updated version of CSIR Report no ME 1763 entitled "Instruction manual for the use for the CSIR triaxial rock stress measuring equipment" by F A Vreede. The manual contains a detailed description of CSIR Triaxial rock stress measuring...

  9. Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions

    Science.gov (United States)

    Tumer, Irem Y.; Huff, Edward M.

    2001-01-01

    Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.

  10. Models of cuspy triaxial stellar systems. IV: Rotating systems

    CERN Document Server

    Carpintero, D D

    2016-01-01

    We built two self-consistent models of triaxial, cuspy, rotating stellar systems adding rotation to non-rotating models presented in previous papers of this series. The final angular velocity of the material is not constant and varies with the distance to the center and with the height over the equator of the systems, but the figure rotation is very uniform in both cases. Even though the addition of rotation to the models modifies their original semiaxes ratios, the final rotating models are considerably flattened and triaxial. An analysis of the orbital content of the models shows that about two thirds of their orbits are chaotic yet the models are very stable over intervals of the order of one Hubble time. The bulk of regular orbits are short axis tubes, while long axis tubes are replaced by tubes whose axes lie on the short-long axes plane, but do not coincide with the major axis. Other types of regular orbits that do not appear in non-rotating systems, like horseshoes and orbits that cross themselves, are...

  11. Triaxial HTS Cable for the AEP Bixby Project

    Energy Technology Data Exchange (ETDEWEB)

    Demko, Jonathan A [ORNL; Gouge, Michael J [ORNL; Lindsay, David T [ORNL; Roden, Mark L [ORNL; Tolbert, Jerry Carlton [ORNL

    2007-01-01

    Ultera has installed a single 200-meter long high temperature superconducting (HTS) 3-phase triaxial design cable at the American Electric Power (AEP) Bixby substation in Columbus, Ohio. The cable connects a 132/13.8 kV transformer to the distribution switchgear serving seven outgoing circuits. It was designed to carry 3000 Arms. Testing of 3- to 5-meter length prototype cables, including a 5-meter prototype with full scale terminations tested at ORNL was conducted prior to the manufacture and installation of the AEP triaxial cable. These prototypes were used to demonstrate the crucial operating conditions including steady state operation at the 3000 Arms design current, high voltage operation, high voltage withstand and 110 kV impulse, and overcurrent fault capability. A summary of the results from the thermal analysis and testing conducted by Ultera and ORNL will be presented. Some analysis of the cable thermal-hydraulic response based on the testing that were used to determine some of the cable cryogenic system requirements are also presented.

  12. Design and analysis of miniature tri-axial fluxgate magnetometer

    Science.gov (United States)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-02-01

    The detection technology of weak magnetic field is widely used in Earth resource survey and geomagnetic navigation. Useful magnetic field information can be obtained by processing and analyzing the measurement data from magnetic sensors. A miniature tri-axial fluxgate magnetometer is proposed in this paper. This miniature tri-axial fluxgate magnetometer with ring-core structure has a dynamic range of the Earth’s field ±65,000 nT, resolution of several nT. It has three independent parts placed in three perpendicular planes for measuring three orthogonal magnetic field components, respectively. A field-programmable gate array (FPGA) is used to generate stimulation signal, analog-to-digital (A/D) convertor control signal, and feedback digital-to-analog (D/A) control signal. Design and analysis details are given to improve the dynamic range, sensitivity, resolution, and linearity. Our prototype was measured and compared with a commercial standard Magson fluxgate magnetometer as a reference. The results show that our miniature fluxgate magnetometer can follow the Magson’s change trend well. When used as a magnetic compass, our prototype only has ± 0.3∘ deviation compared with standard magnetic compass.

  13. Single particle calculations for a Woods-Saxon potential with triaxial deformations, and large Cartesian oscillator basis (TRIAXIAL 2014, Third version of the code Triaxial)

    Science.gov (United States)

    Mohammed-Azizi, B.; Medjadi, D. E.

    2014-11-01

    Theory and FORTRAN program of the first version of this code (TRIAXIAL) have already been described in detail in Computer Physics Comm. 156 (2004) 241-282. A second version of this code (TRIAXIAL 2007) has been given in CPC 176 (2007) 634-635. The present FORTRAN program is the third version (TRIAXIAL 2014) of the same code. Now, It is written in free format. As the former versions, this FORTRAN program solves the same Schrodinger equation of the independent particle model of the atomic nucleus with the same method. However, the present version is much more convenient. In effect, it is characterized by the fact that the eigenvalues and the eigenfunctions can be given by specific subroutines. The latters did not exist in the old versions (2004 and 2007). In addition, it is to be noted that in the previous versions, the eigenfunctions were only given by their coefficients of their expansion onto the harmonic oscillator basis. This method is needed in some cases. But in other cases, it is preferable to treat the eigenfunctions directly in configuration space. For this reason, we have implemented an additional subroutine for this task. Some other practical subroutines have also been implemented. Moreover, eigenvalues and eigenfunctions are recorded onto several files. All these new features of the code and some important aspects of its structure are explained in the document ‘Triaxial2014 use.pdf’. Catalogue identifier: ADSK_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSK_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 13672 No. of bytes in distributed program, including test data, etc.: 217598 Distribution format: tar.gz Programming language: FORTRAN 77/90 (double precision). Computer: PC. Pentium 4, 2600MHz and beyond. Operating system: WINDOWS XP

  14. Plastic cap evolution law derived from induced transverse isotropy in dilatational triaxial compression.

    Energy Technology Data Exchange (ETDEWEB)

    Macon, David James; Brannon, Rebecca Moss; Strack, Otto Eric

    2014-02-01

    Mechanical testing of porous materials generates physical data that contain contributions from more than one underlying physical phenomenon. All that is measurable is the (3z(Bensemble(3y (Bhardening modulus. This thesis is concerned with the phenomenon of dilatation in triaxial compression of porous media, which has been modeled very accurately in the literature for monotonic loading using models that predict dilatation under triaxial compression (TXC) by presuming that dilatation causes the cap to move outwards. These existing models, however, predict a counter-intuitive (and never validated) increase in hydrostatic compression strength. This work explores an alternative approach for modeling TXC dilatation based on allowing induced elastic anisotropy (which makes the material both less stiff and less strong in the lateral direction) with no increase in hydrostatic strength. Induced elastic anisotropy is introduced through the use of a distortion operator. This operator is a fourth-order tensor consisting of a combination of the undeformed stiffness and deformed compliance and has the same eigenprojectors as the elastic compliance. In the undeformed state, the distortion operator is equal to the fourth-order identity. Through the use of the distortion operator, an evolved stress tensor is introduced. When the evolved stress tensor is substituted into an isotropic yield function, a new anisotropic yield function results. In the case of the von Mises isotropic yield function (which contains only deviatoric components), it is shown that the distortion operator introduces a dilatational contribution without requiring an increase in hydrostatic strength. In the thesis, an introduction and literature review of the cap function is given. A transversely isotropic compliance is presented, based on a linear combination of natural bases constructed about a transverse-symmetry axis. Using a probabilistic distribution of cracks constructed for the case of transverse isotropy

  15. Preliminary Investigations of Creep Strain of Neogene Clay from Warsaw in Drained Triaxial Tests Assisted by Computed Microtomography

    Science.gov (United States)

    Kaczmarek, Łukasz Dominik; Dobak, Paweł Józef; Kiełbasiński, Kamil

    2017-06-01

    The study concerns soil creep deformation in multistage triaxial stress tests under drained conditions. High resolution X-ray computed microtomography (XμCT) was involved in structure recognition before and after triaxial tests. Undisturbed Neogene clay samples, which are widespread in central Poland, were used in this study. XμCT was used to identify representative sample series and informed the detection and rejection of unreliable ones. Maximum deviatoric stress for in situ stress confining condition was equal 95.1 kPa. This result helped in the design of further multistage investigations. The study identified the rheological strain course, which can be broken down into three characterizations: decreasing creep strain rate, transitional constant creep velocity, and accelerating creep deformation. The study found that due to multistage creep loading, the samples were strengthened. Furthermore, there is a visibly "brittle" character of failure, which may be the consequence of the microstructure transformation as a function of time as well as collapse of voids. Due to the glacial tectonic history of the analyzed samples, the reactivation of microcracks might also serve as an explanation. The number of the various sizes of shear planes after failure is confirmed by XμCT overexposure.

  16. True triaxial strength and deformability of crystalline rocks

    Science.gov (United States)

    Chang, Chandong

    A fundamental laboratory study was conducted in the deformation and strength of Westerly granite and KTB amphibolite subjected to true triaxial compressive stress conditions (sigma1 > sigma2 > sigma 3) with a particular attention to sigma2 effect on rock failure process. It was found that sigma2 strongly affects the criteria of strength for these rocks, contrary to the assumption contained in commonly accepted Mohr-type failure criteria. Under true triaxial stress conditions, crystalline rocks fail along a steeply inclined throughgoing shear fracture striking to the sigma2 direction. Stress-induced microcracks also develop mainly parallel to sigma2 direction, as the intermediate stress grows beyond sigma3, localizing along the plane that eventually becomes the throughgoing fracture. A general strength criterion can be expressed in terms of the octahedral shear stress and the mean normal stress acting on the failure plane. In a separate series of tests, failure of KTB amphibolite under borehole wall condition was simulated by leaving one pair of the prismatic specimens faces unjacketed and in direct contact with the confining fluid through which sigma 3 is applied. These tests reveal that brittle fracture occurs at a considerably lower stress level than that in dry amphibolite, and results from the development of a swarm of densely spaced extensile fractures subparallel and adjacent to one of the unjacketed faces. It is inferred that upon dilatancy onset, confining fluid intrudes microcracks, which are predominantly subparallel to the unjacketed faces, and promotes their elongation into throughgoing fractures. A true triaxial strength criterion of the unjacketed amphibolite can be expressed in terms of the octahedral shear stress as a function of the octahedral normal stress. The magnitudes of the maximum horizontal in situ stresses at the KTB hole, Germany, were computed based on the strength criterion of the unjacketed KTB amphibolite together with all the other

  17. Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator.

    Science.gov (United States)

    Fei, Juntao; Zhou, Jian

    2012-12-01

    In this paper, a robust adaptive control strategy using a fuzzy compensator for MEMS triaxial gyroscope, which has system nonlinearities, including model uncertainties and external disturbances, is proposed. A fuzzy logic controller that could compensate for the model uncertainties and external disturbances is incorporated into the adaptive control scheme in the Lyapunov framework. The proposed adaptive fuzzy controller can guarantee the convergence and asymptotical stability of the closed-loop system. The proposed adaptive fuzzy control strategy does not depend on accurate mathematical models, which simplifies the design procedure. The innovative development of intelligent control methods incorporated with conventional control for the MEMS gyroscope is derived with the strict theoretical proof of the Lyapunov stability. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive fuzzy control scheme and demonstrate the satisfactory tracking performance and robustness against model uncertainties and external disturbances compared with conventional adaptive control method.

  18. Rotations of small, inertialess triaxial ellipsoids in isotropic turbulence

    CERN Document Server

    Pujara, Nimish

    2016-01-01

    The statistics of rotational motion of small, inertialess triaxial ellipsoids are computed along Lagrangian trajectories extracted from direct numerical simulations of homogeneous isotropic turbulence. The particle angular velocity and its components along the three principal axes of the particle are considered, expanding on the results presented by \\citet{ChevillardMeneveau13}. The variance of the particle angular velocity, referred to as the particle enstrophy, is found to increase for particles with elongated shapes. This trend is explained by considering the contributions of vorticity and strain-rate to particle rotation. It is found that the majority of particle enstrophy is due to fluid vorticity. Strain-rate-induced rotations, which are sensitive to shape, are mostly cancelled by strain-vorticity interactions. The remainder of the strain-rate-induced rotations are responsible for weak variations in particle enstrophy. For particles of all shapes, the majority of the enstrophy is in rotations about the ...

  19. Improving energy expenditure estimation by using a triaxial accelerometer.

    Science.gov (United States)

    Chen, K Y; Sun, M

    1997-12-01

    In our study of 125 subjects (53 men and 72 women) for two 24-h periods, we validated energy expenditure (EE), estimated by a triaxial accelerometer (Tritrac-R3D), by using a whole-room indirect calorimeter under close-to-normal living conditions. The estimated EE was correlated with the measured total EE for the 2 days (r = 0. 925 and r = 0.855; P linear and a nonlinear model to predict EE by using the acceleration components from the Tritrac. Predicted EE was significantly improved with both models in estimating total EE, total EE for physical activities, EE in low-intensity activities, minute-by-minute averaged relative difference, and minute-by-minute SEE (all P acceleration, EE can be estimated with higher accuracy (averaged SEE = 0.418 W/kg) than with the Tritrac model.

  20. Triaxial coreflood study of the hydraulic fracturing of Utica Shale

    Science.gov (United States)

    Carey, J. W.; Frash, L.; Viswanathan, H. S.

    2015-12-01

    One of the central questions in unconventional oil and gas production research is the cause of limited recovery of hydrocarbon. There are many hypotheses including: 1) inadequate penetration of fractures within the stimulated volume; 2) limited proppant delivery; 3) multiphase flow phenomena that blocks hydrocarbon migration; etc. Underlying any solution to this problem must be an understanding of the hydrologic properties of hydraulically fractured shale. In this study, we conduct triaxial coreflood experiments using a gasket sealing mechanism to characterize hydraulic fracture development and permeability of Utica Shale samples. Our approach also includes fracture propagation with proppants. The triaxial coreflood experiments were conducted with an integrated x-ray tomography system that allows direct observation of fracture development using x-ray video radiography and x-ray computed tomography at elevated pressure. A semi-circular, fracture initiation notch was cut into an end-face of the cylindrical samples (1"-diameter with lengths from 0.375 to 1"). The notch was aligned parallel with the x-ray beam to allow video radiography of fracture growth as a function of injection pressure. The proppants included tungsten powder that provided good x-ray contrast for tracing proppant delivery and distribution within the fracture system. Fractures were propagated at injection pressures in excess of the confining pressure and permeability measurements were made in samples where the fractures propagated through the length of the sample, ideally without penetrating the sample sides. Following fracture development, permeability was characterized as a function of hydrostatic pressure and injection pressure. X-ray video radioadiography was used to study changes in fracture aperture in relation to permeability and proppant embedment. X-ray tomography was collected at steady-state conditions to fully characterize fracture geometry and proppant distribution.

  1. DEFORMATION BEHAVIOR OF STEEL FIBER REINFORCED CONCRETE BEAMS WITH BASALT FRP BARS UNDER REPEATED LOAD AFTER SUSTAINED LOADING%长期持荷后玄武岩纤维增强聚合物筋钢纤维高强混凝土梁在重复荷载下的变形性能

    Institute of Scientific and Technical Information of China (English)

    韩全吉; 王守恒; 朱海堂; 高丹盈; 崔海波

    2014-01-01

    为了研究经历长期持荷后的玄武岩纤维增强聚合物( BFRP)筋钢纤维高强混凝土梁在重复荷载作用下的变形性能,进行了7根BFRP筋钢纤维高强混凝土梁的受弯试验,分析BFRP筋配筋率、钢纤维体积率以及加载水平等因素对梁的变形性能的影响。结果表明:经过10次卸载、加载循环后,受力BFRP筋与混凝土之间的黏结性能没有发生退化;荷载水平、钢纤维掺量及BFRP筋配筋率对BFRP筋钢纤维高强混凝土梁的加载-卸载挠度曲线及挠度恢复能力有不同程度的影响;BFRP筋钢纤维高强混凝土梁具有较高的变形恢复能力和良好的抗重复荷载性能。%In order to study the deformation performance of steel fiber reinforced high-strength concrete beams with BFRP rebars, the bending test of 7 beams under repeated load after suffering long-term sustaining load were carried out.The effects of reinforcement ratio of BFRP bars , fraction of steel fiber by volume and loading level on deformation performance of beams were analyzed .The results shown that the bonding behavior between BFRP rebars and concrete is not degradative after 10 loading-unloading cycles;the factors,including loading level , the dosage of steel fiber and the reinforcement ratio of BFRP , express the different levels of influence on the load-deflection curve and the deflection recovery capability of test beams;and steel fiber reinforced high-strength concrete beams with BFRP rebars possess higher deflection recovery capability and better repeated load resistance .

  2. Hydromechanical Behaviour of Unconsolidated Granular Materials under Proportional Triaxial Compression Tests

    Science.gov (United States)

    Nguyen, V.; Gland, N. F.; Dautriat, J.; Guelard, J.; David, C.

    2010-12-01

    During the production of petroleum reservoirs, compaction due to depletion (pore fluid pressure reduction) can lead to emphasis of natural permeability anisotropy and significant permeability reduction. Under such effective stress increase, weakly consolidated reservoirs will undergo strong deformation inducing important modifications of the transport properties, which control the fluid flows in the reservoir and the productivity of the wells. Classically the mechanical loadings applied in the laboratory are either hydrostatic or deviatoric at constant confining pressure; however the 'in-situ' stress paths experienced by the reservoirs differ; it is thus important to perform loading tests with more appropriate conditions such as ‘proportional triaxial’ and ‘oedometric’. This study focuses on the elastoplatic behaviour of non to weakly consolidated reservoir rocks (analogues) and the influence of the stress path (K=ΔσH/ΔσV) on the evolutions of porosity and permeability. Generally, permeability of pourous rocks evolves in three stages: (1) initial decrease related to compaction (soft rocks) or closing of pre-existing microflaws (compact rocks), (2) small reduction associated to the 'linear' deformation regime, (3) drop due to a strong compaction linked to porosity collapse and grain crushing mechanisms. The intensity of this reduction depends on the stress path coefficient, the grain sharpness and the granular texture. We use a triaxial cell (maximum axial load of 80kN and maximum confinement of 69MPa) to perform proportional triaxial compression tests (0elastoplastic properties. Our loading protocol combines compaction at imposed stress rates and creep phases at constant load. Yield surfaces (and hardening parameter) are determined on the basis of the Modified Cam-Clay model to delimit elastic and plastic regions. For the studied glass beads (analogue for rounded sands) the critical pressure at failure for K=1 is P*=30MPa and the critical state line

  3. Design of triaxial test with controlled suction: measure of strainConception d'un essai triaxial à succion contrôlée : mesure des déformations

    Science.gov (United States)

    Gasc-Barbier, Muriel; Cosenza, Philippe; Ghoreychi, Mehdi; Chanchole, Serge; Tessier, Daniel

    2000-01-01

    Experimental study of mechanical behaviour of clayey materials under hygrometric condition is usually performed either on unloaded samples or by means of classical oedometer tests used in soil mechanics. Such methods are not well adapted to hard deep clayey rocks with little deformability, porosity and permeability. Moreover, stress and strain tensors having a significant effect on hygro-mechanical behaviour and properties cannot be measured and investigated appropriately by classical tests. This is why a specific triaxial test was designed in which the sample is surrounded by a fiber glass tissue allowing air circulation and then by silicon on which confining pressure is applied. Thus, equilibrium between air and sample was reduced. Stress and strain tensors were also measured in time on the sample subjected to a mechanical loading and to a controlled suction. After presentation of the test, preliminary results are given.

  4. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    Science.gov (United States)

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  5. Study on triaxial test method and failure criterion of asphalt mixture

    Directory of Open Access Journals (Sweden)

    Jianlong Zheng

    2015-04-01

    Full Text Available Asphalt mixture is the most widely used pavement material all over the world. In China, more than 90% of service expressways are asphalt pavement. However, current asphalt pavement design method still has irrationality. Even though maximum tensile stress theory is used as failure criterion, pavement structure under the effects of wheel load is in three-dimensional complex stress state. Obviously, one-dimensional strength theory cannot reflect the failure characteristics and the resistance of pavement structure. So it is necessary to study the failure criterion of asphalt mixture under three-dimensional complex stress state. Due to limitations of test equipment, there are almost no studies in related area. Under this background, this paper develops a new triaxial test method, according to the investigation of strength characteristics of asphalt mixture under complex stress state through plane isobaric/axial tensile test, plane isobaric/axial compression test, plane tensile and compression/axial tensile test, to reveal the general rules of asphalt mixture's strength failure. The failure mode is divided into three types: tensile failure, shear failure and rheological failure. The tensile meridian and compression meridian in the stress space and strength envelope in the π plane where hydrostatic pressure is greater than zero are obtained, and the failure criterion of asphalt mixture under complex stress state is established, providing theoretical method and scientific basis for structure design as well as strength check of asphalt pavement under three-dimensional stress state.

  6. COMPORTAMIENTO DE UN MATERIAL GRANULAR NO TRATADO EN ENSAYOS TRIAXIALES CÍCLICOS CON PRESIÓN DE CONFINAMIENTO CONSTANTE Y VARIABLE BEHAVIOR OF AN UNBOUND GRANULAR MATERIAL IN CYCLIC TRIAXIAL TESTS WITH CONSTANT AND VARIABLE CONFINING PRESSURE

    Directory of Open Access Journals (Sweden)

    Hugo Alexander Rondón Quintana

    2008-12-01

    Full Text Available En un pavimento, cada una de las capas de la estructura experimenta bajo una carga vehicular ciclos de esfuerzo con componentes vertical, horizontal y de corte. Para el estudio de materiales granulares no tratados (utilizados para conformar capas de base y subbase, la mayor parte de las investigaciones se realizan empleando equipos triaxiales cíclicos en donde sólo la carga vertical es cíclica y la presión de confinamiento permanece constante durante el ensayo. Un ensayo que reproduce mejor la forma como se distribuyen los esfuerzos en estas capas es el ensayo triaxial cíclico con presión de confinamiento variable. En este ensayo se pueden modelar las componentes cíclicas tanto en el sentido vertical como horizontal. A pesar que son ensayos distintos, la ingeniería de pavimentos supone que la respuesta que experimentan estos materiales en estos ensayos es similar, lo anterior basado en algunos estudios realizados en la década de los setenta. En la presente investigación se diseña y desarrolla un programa experimental más detallado, para comparar el comportamiento que desarrolla un material granular no tratado en estos ensayos. De los resultados se evidencia que sólo para algunas trayectorias de esfuerzo, la dirección y la acumulación de la deformación vertical y volumétrica es similar.In a pavement structure, passing wheel loads impose cyclic stresses consisting of vertical, horizontal and shear components. Studies of the behavior of unbound granular materials (UGM, used for base and sub-base layers under cyclic loading are mostly performed using the axisymmetric triaxial test with constant confining pressure (CCP test and a cyclic variation of the axial stress. However, in this type of test only the vertical component of the cyclic stress path is considered. The oscillation of the horizontal stress can be reproduced by an additional cyclic variation of the confining pressure (VCP test. CCP and VCP tests are sometimes assumed to

  7. Deployment Repeatability

    Science.gov (United States)

    2016-04-01

    controlled to great precision, but in a Cubesat , there may be no attitude determination at all. Such a Cubesat might treat sun angle and tumbling rates as...could be sensitive to small differences in motor controller timing. In these cases, the analyst might choose to model the entire deployment path, with...knowledge of the material damage model or motor controller timing precision. On the other hand, if many repeated and environmentally representative

  8. Testing a coupled hydro-thermo-chemo-geomechanical model for gas hydrate bearing sediments using triaxial compression lab experiments

    CERN Document Server

    Gupta, Shubhangi; Haeckel, Matthias; Helmig, Rainer; Wohlmuth, Barbara

    2015-01-01

    The presence of gas hydrates influences the stress-strain behavior and increases the load-bearing capacity of sub-marine sediments. This stability is reduced or completely lost when gas hydrates become unstable. Since natural gas hydrate reservoirs are considered as potential resources for gas production on industrial scales, there is a strong need for numerical production simulators with geomechanical capabilities. To reliably predict the mechanical behavior of gas hydrate-bearing sediments during gas production, numerical tools must be sufficiently calibrated against data from controlled experiments or field tests, and the models must consider thermo-hydro-chemo-mechanical process coupling in a suitable manner. In this study, we perform a controlled triaxial volumetric strain test on a sediment sample in which methane hydrate is first formed under controlled isotropic effective stress and then dissociated via depressurization under controlled total stress. Sample deformations were kept small, and under thes...

  9. PWSCC Growth Assessment Model Considering Stress Triaxiality Factor for Primary Alloy 600 Components

    Directory of Open Access Journals (Sweden)

    Jong-Sung Kim

    2016-08-01

    Full Text Available We propose a primary water stress corrosion cracking (PWSCC initiation model of Alloy 600 that considers the stress triaxiality factor to apply to finite element analysis. We investigated the correlation between stress triaxiality effects and PWSCC growth behavior in cold-worked Alloy 600 stream generator tubes, and identified an additional stress triaxiality factor that can be added to Garud's PWSCC initiation model. By applying the proposed PWSCC initiation model considering the stress triaxiality factor, PWSCC growth simulations based on the macroscopic phenomenological damage mechanics approach were carried out on the PWSCC growth tests of various cold-worked Alloy 600 steam generator tubes and compact tension specimens. As a result, PWSCC growth behavior results from the finite element prediction are in good agreement with the experimental results.

  10. Seepage properties of a single rock fracture subjected to triaxial stresses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Coupled properties of seepage and stress fields of rock fractures greatly influence the safety of geotechnical engineering work.Based on the closing defomation principle of a single rock fracture,equations describing relationships of aperture and triaxial stresses are developed,and coupled models of seepage and triaxial stresses are proposed.Seepage tests are conducted under triaxial stress conditions by adopting hard granite specimens with an artificial fracture.The results show that the normal stress,lateral stress and seepage pressure significantly affect the flow behavior of rock fractures,and that hydraulic conductivity decreases with increasing normal.stress,but increases with rising lateral stress or seepage pressure.In addition,an exponential function provides a good representation of the seepage characteristics of a single rock fracture subjected to triaxial stresses.

  11. Fabrication of Tri-axially Oriented RE-Ba-Cu-O Ceramics by Magnetic Alignment

    Science.gov (United States)

    Yamaki, M.; Furuta, M.; Doi, T.; Shimoyama, J.; Horii, S.

    Magnetic alignment is a new crystal alignment process which enables tri-axial orientation without epitaxial growth at room temperature. In order to investigate the effectiveness of this magnetic tri-axial alignment process, we attempted to fabricate tri-axially oriented ErBa2Cu4O8 (Er124) ceramics by a slip-casting technique under two different modulated rotation magnetic fields (MRFs); uni-directional rotation type and oscillation type. For improvement of the degrees of tri-axial orientation in the Er124 green compacts slip-casted under MRFs, appropriate choice of sample-rotation method, magnetic field condition, control of mean diameter of source powders, and viscosity of slurry was found to be important in the case of MRFs induced by the sample-rotation. At the current stage, the degree of inplane orientation with ∼10̊ in Er124 was achieved.

  12. PWSCC growth assessment model considering stress triaxiality factor for primary alloy 600 components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung [Dept. of Nuclear Engineering, Sejong University, Seoul (Korea, Republic of); Kim, Ji Soo; Jeon, Jun Young; Kim, Yun Jae [Dept. of of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2016-08-15

    We propose a primary water stress corrosion cracking (PWSCC) initiation model of Alloy 600 that considers the stress triaxiality factor to apply to finite element analysis. We investigated the correlation between stress triaxiality effects and PWSCC growth behavior in cold-worked Alloy 600 stream generator tubes, and identified an additional stress triaxiality factor that can be added to Garud's PWSCC initiation model. By applying the proposed PWSCC initiation model considering the stress triaxiality factor, PWSCC growth simulations based on the macroscopic phenomenological damage mechanics approach were carried out on the PWSCC growth tests of various cold-worked Alloy 600 steam generator tubes and compact tension specimens. As a result, PWSCC growth behavior results from the finite element prediction are in good agreement with the experimental results.

  13. Cone Factors from Field Vane and Triaxial Tests in Danish Soils

    DEFF Research Database (Denmark)

    Luke, Kirsten

    1996-01-01

    Six Danish cohesive soils are investigated using Cone Penetration Test (CPT) to estimate the undrained shear strength, cu. Field vane tests and consolidated triaxial tests are used to estimate cu for the six soils. The tested soils all come up with cone factors very close to 10 when using cu from...... the triaxial tests whereas cone factors ranging from 7 to 11 are estimated by using measurements from field vane tests. A strong correlation between the cone factor, Nkt and the friction ratio, fR is obtained when the cone factor is estimated from vane tests. This relation, which is obtained using only the six...... thoroughly investigated soils, is tested on data from other Danish and international sites. Likewise the constant cone factor of Nkt = 10 obtained from the triaxial tests is evaluated and compared with cone factors obtained from triaxial tests in other countries....

  14. A triaxial creep model for coal containing gas and its stability analysis

    Institute of Scientific and Technical Information of China (English)

    YIN Guang-zhi; WANG Deng-ke; HUANG Gun; ZHANG Dong-ming; WANG Wei-zhong

    2009-01-01

    Triaxial creep tests on CCG specimens were systematically performed using a self-made creep seepage experimental apparatus for determining the creep law of CCG. An improved triaxial creep model of CCG was established on the basis of a Nishihara model and another visco-elasto-plastic model, parameters of which were fitted on test data. Furthermore, the creep model is validated according to the result of triaxial creep experi-ments, and the outcome shows that the proposed triaxial creep model can properly char-acterize the properties of various creep deformation phases of CCG, especially the accel-erating creep phase. At the same time, the instability conditions of CCG were presented based on the discussion of the improved model's stability in terms of stability theories of differential equation solution.

  15. Triaxial projected shell model study of chiral rotation in odd-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Palit, R., E-mail: palit@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005 (India)

    2012-01-20

    Chiral rotation observed in {sup 128}Cs is studied using the newly developed microscopic triaxial projected shell model (TPSM) approach. The observed energy levels and the electromagnetic transition probabilities of the nearly degenerate chiral dipole bands in this isotope are well reproduced by the present model. This demonstrates the broad applicability of the TPSM approach, based on a schematic interaction and angular-momentum projection technique, to explain a variety of low- and high-spin phenomena in triaxial rotating nuclei.

  16. Theoretical Calculation of Rotational Bands of 179Pt in the Particle-Triaxial-Rotor Model

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-Jie; SONG Hui-Chao; LIU Yu-Xin

    2005-01-01

    Theoretical calculations have been performed for nucleus 179Pt in the particle-triaxial-rotor model with variable moment of inertia. The obtained energy spectrum agrees with the experimental data quite well. The calculated results indicate that the bands 1/2- and 7/2+ are triaxial deformation bands and originate mainly from the v[521]1/2- and v[633]7/2+ configurations respectively.

  17. Anatomical Directional Dissimilarities in Tri-axial Swallowing Accelerometry Signals.

    Science.gov (United States)

    Movahedi, Faezeh; Kurosu, Atsuko; Coyle, James L; Perera, Subashan; Sejdic, Ervin

    2017-05-01

    Swallowing accelerometry is a noninvasive approach currently under consideration as an instrumental screening test for swallowing difficulties, with most current studies focusing on the swallowing vibrations in the anterior-posterior (A-P) and superior-inferior (S-I) directions. However, the displacement of the hyolaryngeal structure during the act of swallowing in patients with dysphagia involves declination of the medial-lateral (M-L), which suggests that the swallowing vibrations in the M-L direction have the ability to reveal additional details about the swallowing function. With this motivation, we performed a broad comparison of the swallowing vibrations in all three anatomical directions. Tri-axial swallowing accelerometry signals were concurrently collected from 72 dysphagic patients undergoing videofluoroscopic evaluation of swallowing (mean age: 63.94 ± 12.58 years period). Participants swallowed one or more thickened liquids with different consistencies including thin-thick liquids, nectar-thick liquids, and pudding-thick liquids with either a comfortable self-selected volume from a cup or a controlled volume by the examiner from a 5-ml spoon. Swallows were grouped based on the viscosity of swallows and the participant's stroke history. Then, a comprehensive set of features was extracted in multiple signal domains from 881 swallows. The results highlighted inter-axis dissimilarities among tri-axial swallowing vibrations including the extent of variability in the amplitude of signals, the degree of predictability of signals, and the extent of disordered behavior of signals in time-frequency domain. First, the upward movement of the hyolaryngeal structure, representing the S-I signals, were actually more variable in amplitude and showed less predictable behavior than the sideways and forward movements, representing the A-P and M-L signals, during swallowing. Second, the S-I signals, which represent the upward movement of the hyolaryngeal structure

  18. Triaxial Accelerometer Error Coefficients Identification with a Novel Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Yanbin Gao

    2015-01-01

    Full Text Available Artificial fish swarm algorithm (AFSA is one of the state-of-the-art swarm intelligence techniques, which is widely utilized for optimization purposes. Triaxial accelerometer error coefficients are relatively unstable with the environmental disturbances and aging of the instrument. Therefore, identifying triaxial accelerometer error coefficients accurately and being with lower costs are of great importance to improve the overall performance of triaxial accelerometer-based strapdown inertial navigation system (SINS. In this study, a novel artificial fish swarm algorithm (NAFSA that eliminated the demerits (lack of using artificial fishes’ previous experiences, lack of existing balance between exploration and exploitation, and high computational cost of AFSA is introduced at first. In NAFSA, functional behaviors and overall procedure of AFSA have been improved with some parameters variations. Second, a hybrid accelerometer error coefficients identification algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS approaches. This combination leads to maximum utilization of the involved approaches for triaxial accelerometer error coefficients identification. Furthermore, the NAFSA-identified coefficients are testified with 24-position verification experiment and triaxial accelerometer-based SINS navigation experiment. The priorities of MCS-NAFSA are compared with that of conventional calibration method and optimal AFSA. Finally, both experiments results demonstrate high efficiency of MCS-NAFSA on triaxial accelerometer error coefficients identification.

  19. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    Science.gov (United States)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  20. Dynamic triaxial compression experiments on Cor-Tuf specimens

    Science.gov (United States)

    Mondal, Alex B.

    A set of dynamic triaxial compression experiments at 50 MPa, 100 MPa, and 200 MPa confinement have been conducted with a modified Kolsky bar on cylindrical ultra high strength concrete Cor-Tuf specimens of diameter 19 mm and length of 12.7 mm. The experiment is composed of a hydrostatic phase which occurs at a quasi-static strain rate followed by a dynamic shear phase which occurs at a high strain rate. A set of 28 experiments were conducted at strain rates of 100 s-1 and 200 s-1. The experiments show that the fracture strength of the material increases under the test conditions. The specimens showed higher strength in the dynamic confined experiments than both the quasi-static TXC tests and the unconfined dynamic tests. The strength increase was attributed to specimen size difference and not a strain rate or confinement effect. Although the trend towards brittle ductile transition is observed the specimens were not tested in a high enough confinement for the phase change to occur.

  1. Mesoscale Phase Field Modeling of Glass Strengthening Under Triaxial Compression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Sun, Xin

    2016-09-30

    Recent hydraulic bomb and confined sleeve tests on transparent armor glass materials such as borosilicate glass and soda-lime glass showed that the glass strength was a function of confinement pressure. The measured stress-strain relation is not a straight line as most brittle materials behave under little or no confinement. Moreover, borosilicate glass exhibited a stronger compressive strength when compared to soda-lime glass, even though soda-lime has higher bulk and shear moduli as well as apparent yield strength. To better understand these experimental findings, a mesoscale phase field model is developed to simulate the nonlinear stress versus strain behaviors under confinement by considering heterogeneity formation under triaxial compression and the energy barrier of a micro shear banding event (referred to as pseudo-slip hereafter) in the amorphous glass. With calibrated modeling parameters, the simulation results demonstrate that the developed phase field model can quantitatively predict the pressure-dependent strength, and it can also explain the difference between the two types of glasses from the perspective of energy barrier associated with a pseudo-slip event.

  2. Physical Activity in Hemodialysis Patients Measured by Triaxial Accelerometer

    Directory of Open Access Journals (Sweden)

    Edimar Pedrosa Gomes

    2015-01-01

    Full Text Available Different factors can contribute to a sedentary lifestyle among hemodialysis (HD patients, including the period they spend on dialysis. The aim of this study was to evaluate characteristics of physical activities in daily life in this population by using an accurate triaxial accelerometer and to correlate these characteristics with physiological variables. Nineteen HD patients were evaluated using the DynaPort accelerometer and compared to nineteen control individuals, regarding the time spent in different activities and positions of daily life and the number of steps taken. HD patients were more sedentary than control individuals, spending less time walking or standing and spending more time lying down. The sedentary behavior was more pronounced on dialysis days. According to the number of steps taken per day, 47.4% of hemodialysis patients were classified as sedentary against 10.5% in control group. Hemoglobin level, lower extremity muscle strength, and physical functioning of SF-36 questionnaire correlated significantly with the walking time and active time. Looking accurately at the patterns of activity in daily life, HDs patients are more sedentary, especially on dialysis days. These patients should be motivated to enhance the physical activity.

  3. Models of cuspy triaxial stellar systems. II. Regular orbits

    CERN Document Server

    Muzzio, J C; Zorzi, A F

    2012-01-01

    In the first paper of this series we used the N--body method to build a dozen cuspy (gamma ~ 1) triaxial models of stellar systems, and we showed that they were highly stable over time intervals of the order of a Hubble time, even though they had very large fractions of chaotic orbits (more than 85 per cent in some cases). The models were grouped in four sets, each one comprising models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. The three models within each set, although different, had the same global properties and were statistically equivalent. In the present paper we use frequency analysis to classify the regular orbits of those models. The bulk of those orbits are short axis tubes (SATs), with a significant fraction of long axis tubes (LATs) in the E2 models that decreases in the E3 and E4 models to become negligibly small in the E5 models. Most of the LATs in the E2 and E3 models are outer LATs, but the situation reverses in the E4 and E5 models where the few LATs are mainly inn...

  4. Tidal spin down rates of homogeneous triaxial viscoelastic bodies

    CERN Document Server

    Quillen, Alice C; Frouard, Julien; Ragozzine, Darin

    2016-01-01

    We use simulations to measure the sensitivity of the tidal spin down rate of a homogeneous triaxial ellipsoid to its axis ratios by comparing the drift rate in orbital semi-major axis to that of a spherical body with the same mass, volume and simulated rheology. We use a mass-spring model approximating a viscoelastic body spinning around its shortest body axis, with spin aligned with orbital spin axis, and in circular orbit about a point mass. The torque or drift rate can be estimated from that predicted for a sphere with equivalent volume if multiplied by $0.5 (1 + b^4/a^4)(b/a)^{-4/3} (c/a)^{-\\alpha_c}$ where $b/a$ and $c/a$ are the body axis ratios and index $\\alpha_c \\approx 1.1$ is consistent with the random lattice mass spring model simulations but $\\alpha_c \\sim 4/3$ suggested by scaling estimates. A homogeneous body with axis ratios 0.5 and and 0.8, like Haumea, has orbital semi-major axis drift rate about twice as fast as a spherical body with the same mass, volume and material properties. A simulati...

  5. Star Streams in Triaxial Isochrone Potentials with Sub-Halos

    CERN Document Server

    Carlberg, Raymond G

    2015-01-01

    The velocity, position, and action variable evolution of a tidal stream drawn out of a star cluster in a triaxial isochrone potential containing a sub-halo population reproduces many of the orbital effects of more general cosmological halos but allows easy calculation of orbital actions. We employ a spherical shell code which we show accurately reproduces the results of a tree gravity code for a collisionless star cluster. Streams from clusters on high eccentricity orbits, $e\\gtrsim 0.6$, can spread out so much that the amount of material at high enough surface density to stand out on the sky may be only a few percent of the stream's total mass. Low eccentricity streams remain more spatially coherent, but sub-halos both broaden the stream and displace the centerline with details depending on the orbits allowed within the potential. Overall, the majority of stream particles have changes in their total actions of only 1-2\\%, leaving the mean stream relatively undisturbed. A halo with 1\\% of the mass in sub-halo...

  6. Comparing the 7-Day PAR with a Triaxial Accelerometer for Measuring Time in Exercise

    Science.gov (United States)

    Sloane, Richard; Snyder, Denise Clutter; Demark-Wahnefried, Wendy; Lobach, David; Kraus, William E.

    2009-01-01

    Purpose The primary study aim was to evaluate associations of estimated weekly minutes of moderate-to-vigorous intensity exercise from self-reports of the telephone-administered 7-Day Physical Activity Recall (PAR) with data captured by the RT3 triaxial accelerometer. Methods This investigation was undertaken as part of the FRESH START study, a randomized clinical trial that tested an iteratively-tailored diet and exercise mailed print intervention among newly diagnosed breast and prostate cancer survivors. A convenience sample of 139 medically-eligible subjects living within a 60-mile radius of the study center provided both 7-Day PAR and accelerometer data at enrollment. Ultimately n=115 substudy subjects were found eligible for the FRESH START study and randomized to one of two study treatment arms. Follow-up assessments at Year 1 (n=103) and Year 2 (n=99) provided both the 7-Day PAR and accelerometer data. Results There was moderate agreement between the 7-Day PAR and the accelerometer with longitudinal serial correlation coefficients of .54 (baseline), .24 (Year 1) and .53 (Year 2), all P-values < .01, though the accelerometer estimates for weekly time in moderate-to-vigorous physical activity were much higher than those of the 7-Day PAR at all time points. The two methods were poorly correlated in assessing sensitivity to change from baseline to Year 1 (rho=.11, P=.30). Using mixed models repeated measures analysis, both methods exhibited similar non-significant treatment arm X time interaction P-values (7-Day PAR=.22, accelerometer=.23). Conclusions The correlations for three serial time points were in agreement with findings of other studies that compared self-reported time in exercise with physical activity captured by accelerometry. However, these methods capture somewhat different dimensions of physical activity and provide differing estimates of change over time. PMID:19461530

  7. Frictional behaviour of sandstone: A sample-size dependent triaxial investigation

    Science.gov (United States)

    Roshan, Hamid; Masoumi, Hossein; Regenauer-Lieb, Klaus

    2017-01-01

    Frictional behaviour of rocks from the initial stage of loading to final shear displacement along the formed shear plane has been widely investigated in the past. However the effect of sample size on such frictional behaviour has not attracted much attention. This is mainly related to the limitations in rock testing facilities as well as the complex mechanisms involved in sample-size dependent frictional behaviour of rocks. In this study, a suite of advanced triaxial experiments was performed on Gosford sandstone samples at different sizes and confining pressures. The post-peak response of the rock along the formed shear plane has been captured for the analysis with particular interest in sample-size dependency. Several important phenomena have been observed from the results of this study: a) the rate of transition from brittleness to ductility in rock is sample-size dependent where the relatively smaller samples showed faster transition toward ductility at any confining pressure; b) the sample size influences the angle of formed shear band and c) the friction coefficient of the formed shear plane is sample-size dependent where the relatively smaller sample exhibits lower friction coefficient compared to larger samples. We interpret our results in terms of a thermodynamics approach in which the frictional properties for finite deformation are viewed as encompassing a multitude of ephemeral slipping surfaces prior to the formation of the through going fracture. The final fracture itself is seen as a result of the self-organisation of a sufficiently large ensemble of micro-slip surfaces and therefore consistent in terms of the theory of thermodynamics. This assumption vindicates the use of classical rock mechanics experiments to constrain failure of pressure sensitive rocks and the future imaging of these micro-slips opens an exciting path for research in rock failure mechanisms.

  8. Tidal spin down rates of homogeneous triaxial viscoelastic bodies

    Science.gov (United States)

    Quillen, Alice C.; Kueter-Young, Andrea; Frouard, Julien; Ragozzine, Darin

    2016-12-01

    We use numerical simulations to measure the sensitivity of the tidal spin-down rate of a homogeneous triaxial ellipsoid to its axis ratios by comparing the drift rate in orbital semimajor axis to that of a spherical body with the same mass, volume and simulated rheology. We use a mass-spring model approximating a viscoelastic body spinning around its shortest body axis, with spin aligned with orbital spin axis, and in circular orbit about a point mass. The torque or drift rate can be estimated from that predicted for a sphere with equivalent volume if multiplied by 0.5 (1 + b^4/a^4)(b/a)^{-4/3} (c/a)^{-α _c} where b/a and c/a are the body axis ratios and index αc ≈ 1.05 is consistent with the random lattice mass-spring model simulations but αc = 4/3 suggested by scaling estimates. A homogeneous body with axis ratios 0.5 and 0.8, like Haumea, has orbital semimajor axis drift rate about twice as fast as a spherical body with the same mass, volume and material properties. A simulation approximating a mostly rocky body but with 20 per cent of its mass as ice concentrated at its ends has a drift rate 10 times faster than the equivalent homogeneous rocky sphere. However, this increase in drift rate is not enough to allow Haumea's satellite, Hi'iaka, to have tidally drifted away from Haumea to its current orbital semimajor axis.

  9. Effect of titania on fired characteristics of triaxial porcelain

    Indian Academy of Sciences (India)

    Sunipa Bhattacharyya; Swapan Kumar Das; Nirendra Krishna Mitra

    2005-08-01

    Titania was progressively added in the range 3–9 wt% into a triaxial porcelain body consisting of clay, quartz and feldspar. The composed bodies were heated at five different temperatures in the range 1200–1400°C and their fired properties as well as phases evolved were studied. The results revealed that beyond 1300°C, formation of more liquid phases caused bloating in samples which led to generation of pores. This effect is more pronounced in TiO2 containing samples. In the present system, 1300°C appeared to be the optimum temperature at which porosity was almost negligible and strength was maximum (45 MPa), particularly in presence of TiO2. From the results of XRD studies, it was revealed that quartz content primarily decreased with increase in TiO2 content due to excess glass formation and its subsequent dissolution. Mullite content increased with increase in TiO2 content. No significant effect was observed beyond 6 wt% addition. Microstructure primarily showed the presence of quartz grain and cluster of smaller sized primary mullite crystals in both the samples without and with TiO2. Very few secondary mullite crystals were also observed. SEM picture of sample containing 9 wt% TiO2 showed some grain boundary crack due to cooling stress generated in the glassy phase. The drastic reduction of residual strength after 8 cycles of heating at 800°C and cooling particularly in TiO2 containing samples suggests controlled heat treatment of the vitrified samples necessary to promote secondary crystallization process for the enhancement of strength. Attempts have also been made to correlate the constitutional parameters with the properties.

  10. Improved Iterative Calibration for Triaxial Accelerometers Based on the Optimal Observation

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2012-06-01

    Full Text Available This paper presents an improved iterative nonlinear calibration method in the gravitational field for both low-grade and high-grade triaxial accelerometers. This calibration method assumes the probability density function of a Gaussian distribution for the raw outputs of triaxial accelerometers. A nonlinear criterion function is derived as the maximum likelihood estimation for the calibration parameters and inclination vectors, which is solved by the iterative estimation. First, the calibration parameters, including the scale factors, misalignments, biases and squared coefficients are estimated by the linear least squares method according to the multi-position raw outputs of triaxial accelerometers and the initial inclination vectors. Second, the sequence quadric program method is utilized to solve the nonlinear constrained optimization to update the inclination vectors according to the estimated calibration parameters and raw outputs of the triaxial accelerometers. The initial inclination vectors are supplied by normalizing raw outputs of triaxial accelerometers at different positions without any a priori knowledge. To overcome the imperfections of models, the optimal observation scheme is designed according to some maximum sensitivity principle. Simulation and experiments show good estimation accuracy for calibration parameters and inclination vectors.

  11. Increased rigidly triaxial deformations in neutron-rich Mo, Ru isotopes

    Science.gov (United States)

    Liang, WuYang; Jiao, ChangFeng; Xu, FuRong; Fu, XiMing

    2016-09-01

    Pairing-deformation-frequency self-consistent crankingWoods-Saxon model is employed to investigate the triaxiality in the ground states of the neutron-rich even-even Mo, Ru isotopes. Deformation evolutions and transition probabilities have been studied, giving the triaxial shapes in their ground states. The kinematic moments of inertia have been calculated to illustrate the gradually rigid deformation. To understand the origin of the asymmetry shape in this region, we analyze the evolution of single-particle orbits with changing γ deformation. The present calculations reveal the importance of the triaxial deformation in describing not only static property, but also rotational behaviors in this mass region, providing significant probes into the shell structure around.

  12. Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor

    CERN Document Server

    Zhang, S Q; Qi, B; Wang, S Y

    2007-01-01

    A particle rotor model (PRM) with a quasi-proton and a quasi-neutron coupled with a triaxial rotor is developed and applied to study chiral doublet bands with configurations of a $h_{11/2}$ proton and a $h_{11/2}$ quasi-neutron. With pairing treated by the BCS approximation, the present quasi-particle PRM is aimed at simulating one proton and many neutron holes coupled with a triaxial rotor. After a detailed analysis of the angular momentum orientations, energy separation between the partner bands, and behavior of electromagnetic transitions, for the first time we find aplanar rotation or equivalently chiral geometry beyond the usual one proton and one neutron hole coupled with a triaxial rotor.

  13. A microcomputer-based data acquisition and control system for the direct shear, ring shear, triaxial shear, and consolidation tests

    Science.gov (United States)

    Powers, Philip S.

    1983-01-01

    This report is intended to provide internal documentation for the U.S. Geological Survey laboratory's automatic data acquisition system. The operating procedures for each type of test are designed to independently lead a first-time user through the various stages of using the computer to control the test. Continuing advances in computer technology and the availability of desktop microcomputers with a wide variety of peripheral equipment at a reasonable cost can create an efficient automated geotechnical testing environment. A geotechnical testing environment is shown in figure 1. Using an automatic data acquisition system, laboratory test data from a variety of sensors can be collected, and manually or automatically recorded on a magnetic device at the same apparent time. The responses of a test can be displayed graphically on a CRT in a matter of seconds, giving the investigator an opportunity to evaluate the test data, and to make timely, informed decisions on such matters as whether to continue testing, abandon a test, or modify procedures. Data can be retrieved and results reported in tabular form, or graphic plots, suitable for publication. Thermistors, thermocouples, load cells, pressure transducers, and linear variable differential transformers are typical sensors which are incorporated in automated systems. The geotechnical tests which are most practical to automate are the long-term tests which often require readings to be recorded outside normal work hours and on weekends. Automation applications include incremental load consolidation tests, constant-rate-of-strain consolidation tests, direct shear tests, ring shear tests, and triaxial shear tests.

  14. Stellar Bar Evolution in Cuspy and Flat-cored Triaxial CDM Halos

    Science.gov (United States)

    Berentzen, Ingo; Shlosman, Isaac; Jogee, Shardha

    2006-02-01

    We analyze the formation and evolution of stellar bars in galactic disks embedded in mildly triaxial cold dark matter (CDM) halos that have density distributions ranging from large flat cores to cuspy profiles. We have applied tailored numerical simulations of analytical and live halos that include the feedback from disk/bar system onto the halo in order to test and extend earlier work by El-Zant and Shlosman. The latter employed the method of Liapunov exponents to analyze the fate of bars in analytical asymmetric halos. We find the following: (1) The bar growth is very similar in all rigid axisymmetric and triaxial halos. (2) Bars in live models experience vertical buckling instability and the formation of a pseudobulge with a boxy/peanut shape, while bars in rigid halos do not buckle. (3) In live axisymmetric halos, the bar strength varies by a factor of chaos over continuous zones, sometimes leaving behind a weak oval distortion. The onset of chaos is related to the halo triaxiality, the fast-rotating bar, and the halo cuspiness. Before the bar dissolves, the region outside it develops strong spiral structures, especially in the live triaxial halos. (4) More angular momentum is absorbed (fractionally) by the triaxial halos than in the axisymmetric models. The disk-halo angular momentum exchange is mediated by the lower resonances in the latter models. (5) Cuspy halos are more susceptible than flat-core halos to having their prolateness washed out by the action of the bar. The subsequent evolution is then similar to the case of cuspy axisymmetric halos. We analyze the above results on disk and bar evolution in terms of the stability of trajectories and development of chaos in the system. We set important constraints on the triaxiality of dark matter (DM) halos by comparing our predictions to recent observational results on the properties of bars out to intermediate redshifts z~1.

  15. Response of Triaxial State of Stress to Creep Rupture Life and Ductility of 316 LN Austenitic Stainless Steel

    Science.gov (United States)

    Goyal, Sunil; Laha, K.; Bhaduri, A. K.

    2016-12-01

    In the present investigation, the effect of triaxial state of stress on creep rupture life and ductility of 316 LN stainless steel has been assessed. The creep tests were carried out on both smooth and notched specimens of the steel at 873 K in the stress range of 270-340 MPa. The notched specimens had root radius ranging from 0.83 mm to 5 mm. The detailed finite element analysis has been carried out to assess the triaxial state of stress across the notch incorporating Norton's law as creep deformation governing mechanism. The creep rupture life of the steel increased in presence of triaxial stresses and extent of which was more at lower net applied stresses and higher triaxiality (sharper notch). The reduction in effective stress in presence of notch resulted in higher creep rupture life of the steel under triaxial stresses. The fracture surfaces revealed mixed mode failure consisting of dimple ductile and intergranular creep cavitation for all testing conditions, however, extent of cavitation was higher for relatively higher triaxialities and lower net applied stresses. The creep ductility of the steel was found to decrease drastically under triaxial state of stress. The triaxial rupture life and creep ductility of the steel have been assessed based on different models on incorporating different components of stresses at the skeletal point.

  16. Response of Triaxial State of Stress to Creep Rupture Life and Ductility of 316 LN Austenitic Stainless Steel

    Science.gov (United States)

    Goyal, Sunil; Laha, K.; Bhaduri, A. K.

    2017-02-01

    In the present investigation, the effect of triaxial state of stress on creep rupture life and ductility of 316 LN stainless steel has been assessed. The creep tests were carried out on both smooth and notched specimens of the steel at 873 K in the stress range of 270-340 MPa. The notched specimens had root radius ranging from 0.83 mm to 5 mm. The detailed finite element analysis has been carried out to assess the triaxial state of stress across the notch incorporating Norton's law as creep deformation governing mechanism. The creep rupture life of the steel increased in presence of triaxial stresses and extent of which was more at lower net applied stresses and higher triaxiality (sharper notch). The reduction in effective stress in presence of notch resulted in higher creep rupture life of the steel under triaxial stresses. The fracture surfaces revealed mixed mode failure consisting of dimple ductile and intergranular creep cavitation for all testing conditions, however, extent of cavitation was higher for relatively higher triaxialities and lower net applied stresses. The creep ductility of the steel was found to decrease drastically under triaxial state of stress. The triaxial rupture life and creep ductility of the steel have been assessed based on different models on incorporating different components of stresses at the skeletal point.

  17. Undrained Behaviour of Silt under Static and Cyclic Loading

    Institute of Scientific and Technical Information of China (English)

    YANG Shaoli; ROLF Sandven; LARS Grande

    2002-01-01

    In this study, the undrained behaviour of silt under low stress level is studied. An effective preparation methodfor built in silt samples in the triaxial test was firstly developed. By triaxial testing of samples at low confining pressures itwas found that silt easily loses stability and liquefies. Loose silt may show temporary liquefaction under static loading, anddevelop full liquefaction under cyclic loading. The most important factors influencing the silt behaviour are porosity, confin-ing pressure, consolidation state, cyclic loading level and number of cycles. The maximum obtainable shear stress is primarilya function of the confining pressure and the internal frictional angle. The actual structure of the silt material is the key factorin controlling its behaviour.

  18. Titania doped triaxial porcelain: Enhancement of strength by controlled heat treatment

    Indian Academy of Sciences (India)

    Sunipa Bhattacharyya; Swapan Kumar Das; Kausik Dana; Nirendra Krishna Mitra

    2007-06-01

    Titania doped vitrified triaxial porcelain samples were subjected to controlled heat treatment at different temperatures of 600, 800 and 1000°C with a specific heating schedule. The results revealed that flexural strength of 800°C heat treated sample was significantly enhanced to 60 MPa from its original value of 40 MPa. XRD pattern revealed the formation of mullite in the system both before and after heat treatment and the differences in their growth was ascertained through SEM analysis. The present heat treatment process may be useful to produce high strength porcelain body from a common triaxial system.

  19. First triaxial superdeformed band in sup 1 sup 7 sup 0 Hf

    CERN Document Server

    Neusser, A; Bringel, P; Domscheit, J; Mergel, E; Nenoff, N; Singh, A K; Hagemann, G B; Jensen, D R; Bhattacharya, S; Curien, D; Dorvaux, O; Hannachi, F; López-Martens, A

    2002-01-01

    First evidence is presented for triaxial superdeformation in sup 1 sup 7 sup 0 Hf. High-spin states in this nucleus have been investigated in a gamma-ray coincidence measurement using the EUROBALL spectrometer array. A new band was discovered which has moments of inertia that are very similar to the ones of triaxial superdeformed bands in neighbouring Hf and Lu nuclei. The intensities with which these bands are populated are different from what may be expected from calculated potential-energy minima. (orig.)

  20. A high-precision triaxial fluxgate sensor for space applications: Layout and choice of materials

    DEFF Research Database (Denmark)

    Nielsen, Otto V; Brauer, Peter; Primdahl, Fritz;

    1997-01-01

    The construction of a triaxial fluxgate sensor with very high axis stability and low temperature coefficients is described. The axis orthogonalities change less than 2.1 s of are in the whole testing temperature range +20 to -10 degrees C. The temperature coefficients for the sensitivities of the...

  1. Theory, technology and assembly of a highly symmetrical capacitive triaxial accelerometer

    NARCIS (Netherlands)

    Lotters, Joost Conrad; Lötters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1997-01-01

    A highly symmetrical cubic easy-to-assemble capacitive triaxial accelerometer for biomedical applications has been designed, realized and tested. The outer dimensions of the sensor are 5×5×5 mm 3 and the device is mounted on a standard IC package. New aspects of the sensor are an easy assembly

  2. Wood-based Tri-Axial Sandwich Composite Materials: Design, Fabrication, Testing, Modeling and Application

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2014-01-01

    As the demand for sustainable materials increases, there are unique challenges and opportunities to develop light-weight green composites materials for a wide range of applications. Thus wood-based composite materials from renewable forests may provide options for some niche applications while helping to protect our environment. In this paper, the wood-based tri-axial...

  3. Experimental Study on Properties of Methane Diffusion of Coal Block under Triaxial Compressive Stress

    Directory of Open Access Journals (Sweden)

    Hong-Bao Zhao

    2014-01-01

    Full Text Available Taking the standard size coal block samples defined by ISRM as research objects, both properties of methane diffusion of coal block under triaxial compressive stress and characteristic influences caused by methane pressure were systematically studied with thermo-fluid-solid coupling with triaxial servocontrolled seepage equipment of methane-containing coal. The result shows the methane diffusion property of coal block under triaxial compressive stress was shown in four-stage as follow, first is sharply reduce stage, second is hyperbolic reduce stage, third is close to a fixed value stage, fourth stage is 0. There is a special point making the reduced rate of characteristic curve of methane diffusion speed become sharply small; the influences of shape of methane diffusion speed characteristic curve caused by methane pressure are not obvious, which only is shown in numerical size of methane diffusion speed. Test time was extended required by appear of the special point makes the reduce rate of methane diffusion speed become sharply small. The fitting four-phase relation of methane diffusion of coal block under triaxial compressive stress was obtained, and the idea is proposed that influences of the fitting four-phase relation caused by methane pressure were only shown in value of fitting parameters.

  4. Development of Pore Pressure in Cohesionless Soils with Initial Shear Stresses during Cyclic Loading

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Jacobsen, H. Moust

    1989-01-01

    A number of triaxial tests with the loading harmonically oscillating around an initial and anisotropic stress state have been performed. Hereby the influence of the initial shear stress on the development of pore pressure in a cohesionless  sand specimen have been clarified. A simple theory descr...

  5. Repeat-until-success quantum repeaters

    Science.gov (United States)

    Bruschi, David Edward; Barlow, Thomas M.; Razavi, Mohsen; Beige, Almut

    2014-09-01

    We propose a repeat-until-success protocol to improve the performance of probabilistic quantum repeaters. Conventionally, these rely on passive static linear-optics elements and photodetectors to perform Bell-state measurements (BSMs) with a maximum success rate of 50%. This is a strong impediment for entanglement swapping between distant quantum memories. Every time a BSM fails, entanglement needs to be redistributed between the corresponding memories in the repeater link. The key ingredients of our scheme are repeatable BSMs. Under ideal conditions, these turn probabilistic quantum repeaters into deterministic ones. Under realistic conditions, our protocol too might fail. However, using additional threshold detectors now allows us to improve the entanglement generation rate by almost orders of magnitude, at a nominal distance of 1000 km, compared to schemes that rely on conventional BSMs. This improvement is sufficient to make the performance of our scheme comparable to the expected performance of some deterministic quantum repeaters.

  6. Thermographic studies on IMI-834 titanium alloy during tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jalaj [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)], E-mail: k_jalaj@yahoo.com; Baby, Sony; Kumar, Vikas [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2008-11-25

    To study the material deformation kinetics under monotonic loading conditions, infrared radiation thermography (IRT) has been used in the present investigation. Studies were performed on IMI-834 titanium alloy, which is used in the compressor module of an aeroengine. The compressor has variable states of stress triaxialities at different locations. The effect of stress triaxiality on material deformation was investigated with the use of smooth and axisymmetrically notched round tensile specimens of the alloy. Instantaneous surface temperatures were measured on specimens during tensile deformation through IRT technique. The notched specimen exhibited localized and higher rate of temperature evolution during loading. Using surface temperature evolution curves, thermoelastic and inelastic regions were identified for smooth and notched specimens. With the help of Lord Kelvin's equation, stresses were predicted for thermoelastic region. A good correlation was found between the predicted and experimental stresses for this region.

  7. Triaxial deformation and asynchronous rotation of rocky planets in the habitable zone of low-mass stars

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2017-08-01

    Rocky planets orbiting M-dwarf stars in the habitable zone tend to be driven to synchronous rotation by tidal dissipation, potentially causing difficulties for maintaining a habitable climate on the planet. However, the planet may be captured into asynchronous spin-orbit resonances, and this capture may be more likely if the planet has a sufficiently large intrinsic triaxial deformation. We derive the analytic expression for the maximum triaxiality of a rocky planet, with and without a liquid envelope, as a function of the planet's radius, density, rigidity and critical strain of fracture. The derived maximum triaxiality is consistent with the observed triaxialities for terrestrial planets in the Solar system, and indicates that rocky planets in the habitable zone of M-dwarfs can in principle be in a state of asynchronous spin-orbit resonances.

  8. Effects of thermal aging and stress triaxiality on PWSCC initiation susceptibility of nickel-based Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Tae Ho; Kim, Ji Hyun [Dept. of Nuclear Science and Engineering, School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    In present study, effects of thermal aging and triaxial stress were investigated in terms of primary water stress corrosion cracking susceptibility. The thermal aging was applied via heat treatment at 400°C and triaxial stress was applied via notched tensile test specimen. The crack initiation time of each specimen were then measured by direct current potential drop method during slow strain rate test at primary water environment. Alloys with 10 years thermal aging exhibited the highest susceptibility to stress corrosion cracking and asreceived specimen shows lowest susceptibility. The trend was different with triaxial stress applied; 20 years thermal aging specimen shows highest susceptibility and as-received specimen shows lowest. It would be owing to change of precipitate morphology during thermal aging and different activated slip system in triaxial stress state.

  9. Rotational Bands of Some Neutron Deficient Odd-A Pt Isotopes in Particle-Triaxial-Rotor Model

    Institute of Scientific and Technical Information of China (English)

    WU Xian-Ming; LIU Yu-Xin

    2008-01-01

    Theoretical calculations are performed for neutron deficient Pt isotopes 177pt and 175,173,171pt in the particle-triaxial-rotor model with variable moment of inertia. The obtained energy spectra agree with experimental data quite well. The calculated results indicate that all these nuclei are in triaxial rotation with 177pt being in prolate and 175,173,171pt in oblate. Several levels are predicted for the 13/2+ band in 169pt.

  10. Design and fabrication of multi-walled hollow nanofibers by triaxial electrospinning as reinforcing agents in nanocomposites

    OpenAIRE

    2015-01-01

    Multi-walled triaxial hollow fibers with two different outer wall materials are fabricated by core-sheath electrospinning process and integrated into epoxy matrix with or without primary glass fiber reinforcement to produce composites with enhanced mechanical properties. The morphologies of multi-walled hollow fibers are tailored by controlling the materials and processing parameters such as polymer and solvent types. The triaxial hollow fiber fabrication is achieved through using a nozzle co...

  11. Infinitesimal cranking for triaxial angular-momentum-projected configuration-mixing calculation and its application to the gamma vibrational band

    OpenAIRE

    Tagami, Shingo; Shimizu, Yoshifumi R.

    2016-01-01

    Inclusion of time-odd components into the wave function is important for reliable description of rotational motion by the angular-momentum-projection method; the cranking procedure with infinitesimal rotational frequency is an efficient way to realize it. In the present work we investigate the effect of this infinitesimal cranking for triaxially deformed nucleus, where there are three independent cranking axes. It is found that the effects of cranking about three axes on the triaxial energy s...

  12. A micromechanical damage model for rocks and concretes under triaxial compression

    Institute of Scientific and Technical Information of China (English)

    Zhong-jun REN; Xiang-he PENG; Ning HU; Chun-he YANG

    2009-01-01

    Based on analysis of deformation in an infinite isotropic elastic matrix con-taining an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion are obtained by using an energy bal-ance approach. The additional compliance tensor induced by a single closed elliptic microcrack in a representative volume element and its in-plane growth is derived. The additional compliance tensor induced by the kinked growth of the elliptic microcrack is also obtained. The effect of the microcracks, randomly distributed both in geometric characteristics and orientations, is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes under triaxial compression is obtained and experimentally verified.

  13. Molecular dynamics simulations of void effect of the copper nanocubes under triaxial tensions

    Science.gov (United States)

    Yang, Zailin; Zhang, Guowei; Zhao, Jianwei

    2016-02-01

    The isotropic copper nanocubes with different size cubic voids under triaxial tensions are investigated by the molecular dynamics method. For accuracy we present the hydrostatic stress, Mises stress, true stress, logarithmic strain and relationship between each other. In the simulation the number of model atoms is formulized and the hydrostatic stresses can replace triaxial stresses of model. We demonstrate that the yielding strengths will decrease with increase of void, particularly when the void percentage is reaching 0.2%. The models are breaking at 45 angle dislocation with tiny differences. Also, the Gurson model cannot well describe the trend of damage; instead the authors propose a modified model by relationship between Mises stress and hydrostatic stress.

  14. Coexisting wobbling and quasiparticle excitations in the triaxial potential well of {sup 163}Lu

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.R.; Hagemann, G.B.; Herskind, B.; Sletten, G.; Wilson, J.N. [Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Hamamoto, I. [Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Department of Mathematical Physics, LTH, University of Lund, Lund (Sweden); Oedegaard, S.W. [Department of Physics, University of Oslo, PB 1048 Blindern, N-0316, Oslo (Norway); Spohr, K. [Department of Electronic Engineering and Physics, University of Paisley (United Kingdom); Huebel, H.; Bringel, P.; Neusser, A.; Schoenwasser, G.; Singh, A.K. [Helmholtz-Institut fuer Strahlen- und Kernphysik, University of Bonn, Nussallee 14-16, D-53115, Bonn (Germany); Ma, W.C.; Amro, H. [Mississippi State University, MS 39762, Mississippi State (United States); Bracco, A.; Leoni, S.; Benzoni, G. [Dipartimento di Fisica and INFN, Sezione di Milano, Milano (Italy); Maj, A. [Niewodniczanski Insitute of Nuclear Physics, Krakow (Poland); Petrache, C.M. [Dipartimento di Fisica and INFN, Sezione di Padova, Padova (Italy); Dipartimento di Matematica e Fisica, Universita di Camerino, Camerino (Italy); Lo Bianco, G.; Bednarczyk, P.; Curien, D.

    2004-02-01

    High-spin states of the nucleus {sup 163}Lu have been populated through the fusion-evaporation reaction {sup 139}La({sup 29}Si,5n) with a beam energy of 157 MeV. In addition to the two lowest excited triaxial strongly deformed (TSD) bands, recently interpreted as one- and two-phonon wobbling excitations, a third excited TSD band has been firmly established decaying to the yrast TSD band. The assignment of this band as a three-quasiparticle band shows together with the normal deformed (ND) level scheme the presence not only of shape coexistence between ND and TSD structures, but also an interplay of wobbling and quasiparticle excitations in the triaxial strongly deformed potential well of {sup 163}Lu. (orig.)

  15. Study on constitutive relationship of coal based on conventional triaxial compression test

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-jie; CHU Jun; YAN Xiang-hong

    2007-01-01

    Constitutive relationship of coal under triaxial compression must be determined during solving the theoretical calculation and numerical simulation about coal body failure.This paper carried out conventional triaxial compression test on No.3 coal of Baodian Colliery using MTS815.03 servo-controlled rock mechanical test system. The results indicate that the failure process of coal can be divided into 5 stages: densification stage, apparent linear elastic deformation stage, accelerated inelastic deformation stage, fracture and developing stage and plasticity flow stage. Combined with the test results, the constitutive relationship model of coal can be simplified as the four segments of straight line model of elastic-plastic hardening-plastic softening-residual perfectly plastic. Through fitting calculation of test data, the segmented constitutive equation of coal can be obtained.

  16. Study on the Constitutive Model of Marble Based on the Conventional Triaxial Compression Test

    Institute of Scientific and Technical Information of China (English)

    Tian Sheng-li; Lu Yun-de; Ge Xiu-run

    2004-01-01

    The RMB-150B rock mechanics test system was employed to obtain the complete stress-strain test curves under confining pressures of 0-30MPa for marble samples from Ya'an ,Sichuan province. On the basis of former study and the convention triaxial pressure test results ,the complete procedures curves which described the relationships between yielding strength、 peak strength、 residual strength and confining pressure was obtained. Taking the strain softening of rock into account, the bilinear elastic-linear softening-residual perfect plasticity four-linear model was put forward in this paper on the basis of the test results and theory of plasticity. This model was adopted to describe the behaviors of marble in different phases under triaxial compression with the constitutive equation of strain softening phase as focus. The results indicated that the theoretic model fitted in well with the test results.

  17. Permeability Changes of Coal Cores and Briquettes under Tri-Axial Stress Conditions

    Science.gov (United States)

    Wierzbicki, Mirosław; Konečný, Pavel; Kožušníková, Alena

    2014-12-01

    The paper is dealing with the permeability of coal in triaxial state of stress. The permeability of coal, besides coal's methane capacity, is the main parameter determining the quantity of methane inflow into underground excavations. The stress in a coal seam is one of the most important factors influencing coal permeability therefore the permeability measurements were performed in tri-axial state of stress. The hydrostatic three-axial state of stress was gradually increased from 5 MPa with steps of 5 MPa up to a maximum of 30 MPa. Nitrogen was applied as a gas medium in all experiments. The results of the permeability measurements of coal cores from the "Zofiówka" mine, Poland, and three mines from the Czech Republic are presented in this paper. As a "reference", permeability measurements were also taken for coal briquettes prepared from coal dust with defined porosity. It was confirmed that the decreasing porosity of coal briquettes affects the decreasing permeability. The advantage of experimentation on coal briquettes is its good repeatability. From the experimental results, an empirical relation between gas permeability and confining pressure has also been identified. The empirical relation for coal briquettes is in good correspondence with published results. However, for coal cores, the character of change differs. The influence of confining pressure has a different character and the decrease in permeability is stronger due to the increasing confining pressure Przepuszczalność węgla, oprócz pojemności sorpcyjnej względem metanu jest głównym parametrem określającym dopływ metanu do podziemnych wyrobiskach górniczych. W warunkach naturalnych wartość przepuszczalności jest ściśle związana ze stanem naprężenia w pokładzie węgla. W pracy przedstawiono wyniki pomiarów przepuszczalności wykonanych w trójosiowym stanie naprężenia. Hydrostatyczny trójosiowy stan naprężenia stopniowo zwiększano od 5 MPa do maksymalnie 30 MPa z krokiem

  18. Influence of feldspar containing lithium in the sintering of triaxial ceramics; Sinterizacao de uma massa ceramica triaxial com feldspato contendo litio

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Camila Felippe de; Strecker, Kurt, E-mail: camilaufsj@yahoo.com.br [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil)

    2011-07-01

    In this work, the properties of a ceramic material based on a triaxial mass composed of clay, quartz and 15 to 30% feldspar, albite or spodumene, has been investigated. Specimen were prepared by uniaxial pressing under 28.5MPa and sintering at temperatures of 1000, 1100 and 1200 deg C, for 1h. The samples were characterized by their linear shrinkage, apparent porosity, apparent density and flexural strength, as well as analysis of the microstructure. The best results were obtained for samples prepared with 30% spodumene and sintered at 1200 deg C, with a shrinkage of 6.4%, density of 2.01g/cm{sup 3}, porosity of 14.3% and flexural strength of 13.4MPa, while samples prepared with albite exhibited shrinkage of 5.8%, density of 1.9g/cm{sup 3}, porosity of 18.9% and strength of 9.8MPa. Therefore, by the substitution of albite by spodumene in the ceramic triaxial mass, lower sintering temperatures may be employed, thus reducing production costs by the lesser energy consumption. (author)(.

  19. Lifetime measurements of triaxial strongly deformed bands in {sup 163}Tm.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Janssens, R. V. F.; Moore, E. F.; Garg, U.; Gu, Y.; Frauendorf, S.; Carpenter, M. P.; Ghugre, S. S.; Hammond, N. J.; Lauritsen, T.; Li, T.; Mukherjee, G.; Pattabiraman, N. S.; Seweryniak, D.; Zhu, S.; Physics; Univ. of Notre Dame; Kolkata Center

    2007-06-21

    With the Doppler Shift Attenuation Method, quadrupole transition moments Qt were determined for the two recently proposed triaxial strongly deformed (TSD) bands in {sup 163}Tm. The measured Qt values indicate that the deformation of these bands is larger than that of the yrast signature partners. However, the measured values are smaller than those predicted by theory. This observation appears to be valid for TSD bands in several nuclei of the region.

  20. Experimental observation of dynamic ductile damage development under various triaxiality conditions - description of the principle

    Science.gov (United States)

    Pillon, L.

    2012-08-01

    The Gurson model has been extended by Perrin to describe damage evolution in ductile viscoplastic materials. The so-called Gurson-Perrin model allows representing damage development with respect to strain-rate conditions. In order to fill a lack in current experimental procedures, we propose an experimental project able to test and validate the Gurson-Perrin model under various dynamic conditions and for different stress triaxiality levels.

  1. Experimental observation of dynamic ductile damage development under various triaxiality conditions - description of the principle

    Directory of Open Access Journals (Sweden)

    Pillon L.

    2012-08-01

    Full Text Available The Gurson model has been extended by Perrin to describe damage evolution in ductile viscoplastic materials. The so-called Gurson-Perrin model allows representing damage development with respect to strain-rate conditions. In order to fill a lack in current experimental procedures, we propose an experimental project able to test and validate the Gurson-Perrin model under various dynamic conditions and for different stress triaxiality levels.

  2. Measurement of conversion coefficients in normal and triaxial strongly deformed bands in {sup 167}Lu.

    Energy Technology Data Exchange (ETDEWEB)

    Gurdal, G.; Beausang, C. W.; Brenner, D. S.; Ai, H.; Casten, R. F.; Crider, B.; Heinz, A.; Williams, E.; Hartley, D. J.; Carpenter, M. P.; Hecht, A. A.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Raabe, R.; Seweryniak, D.; Zhu, S.; Saladin, J. X.; Physics; Yale Univ.; Clark Univ.; Univ. of Richmond; United States Naval Academy; Univ. of Maryland; Univ. of Pittsburgh

    2008-01-01

    Internal conversion coefficients have been measured for transitions in both normal deformed and triaxial strongly deformed bands in {sup 167}Lu using the Gammasphere and ICE Ball spectrometers. The results for all in-band transitions are consistent with E2 multipolarity. Upper limits are determined for the internal conversion coefficients for linking transitions between TSD Band 2 and TSD Band 1, the n{sub w} = 1 and n{sub w} = 0 wobbling bands, respectively.

  3. Effect of different sources of alumina on the microstructure and mechanical properties of the triaxial porcelain

    OpenAIRE

    Gralik,G.; Chinelattot,A. L.; A. S. A. Chinelatto

    2014-01-01

    Porcelains composed of kaolin-quartz-feldspar are called triaxial porcelains. The use of alumina as a substitute for quartz in porcelains has been developed for some time. The results show a significant improvement in their mechanical properties, but alumina has a high cost. The possibility of using alternative materials as a source of alumina with lower cost was investigated. In this work, alternative raw materials were used as a source of alumina: refractory bauxite, primary aluminum hydrox...

  4. Confined Tension and Triaxial Extension Tests on Eglin High-Strength Concrete

    Science.gov (United States)

    2014-10-17

    AFRL-RW-EG-TR-2014-120 Confined Tension and Triaxial Extension Tests on Eglin High-Strength Concrete Lance...EXTENSION TESTS ON EGLIN HIGH-STRENGTH CONCRETE FA8651-12-D-0309, Task 005 N/A 2502 9210 W0DT (1) Lance Besaw, Applied Research Associates, Inc. (2...models. All concretes exhibit higher strength in compression than in tension, therefore it is critical to understand the tensile properties of such

  5. Electromagnetic receiver with capacitive electrodes and triaxial induction coil for tunnel exploration

    Science.gov (United States)

    Kai, Chen; Sheng, Jin; Wang, Shun

    2017-09-01

    A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.

  6. Calculation of Energy Levels of Nucleus 127I in the Particle-Triaxial-Rotor Model

    Institute of Scientific and Technical Information of China (English)

    SONG Hui-Chao; LIU Yu-Xin; ZHANG Yu-Hu

    2004-01-01

    @@ Theoretical calculations have been performed for nucleus 127 I in the framework of the particle-triaxial-rotor model.The calculated results indicate that both the 5+2 and 7+2 bands are oblate deformed bands. Their configurations are associated with the πd5/2 [402] 52 and πg7/2[404] 72 orbitals and the strong mixing between them. Meanwhile a possible explanation of the strong mixing is given.

  7. Lower cervical spine loading in frontal sled tests using inverse dynamics: potential applications for lower neck injury criteria.

    Science.gov (United States)

    Pintar, Frank A; Yoganandan, Narayan; Maiman, Dennis J

    2010-11-01

    Lower cervical spine injuries are more common in survivors of motor vehicle crashes sustaining neck trauma. Injury criteria are determined using upper neck loads in dummies although a lower neck load cell exists. Due to a paucity of lower neck data from post mortem human subject (PMHS) studies, this research was designed to determine the head-neck biomechanics with a focus on lower neck metrics and injuries. Sixteen frontal impact tests were conducted using five belted PMHS. Instrumentation consisted of a pyramid shaped nine accelerometer package on the head, tri-axial accelerometer on T1, and uniaxial accelerometer on the sled. Three-dimensional kinematics of the head-neck complex were obtained using a 20- camera high-speed motion analysis system. Testing sequence was: low (3.6 m/s), medium (6.9 m/s), repeat low, and high (15.8 m/s) velocities. Trauma evaluations were made between tests. Testing was terminated upon confirmation of injuries. Autopsy was conducted, and geometric and inertial properties of the head were determined. Using inverse dynamics, upper and lower neck loads were determined, along with head and T1 kinematics. Lower cervical injuries occurred in four specimens during the loading phase and were attributed to the flexion mechanism. Peak upper and lower neck loading magnitudes and head-neck and T1 kinematics are given for each test. Sagittal plane head center of gravity and T1 kinematic data along with upper and lower neck forces and moments, hitherto not reported in literature, may be used to determine the biofidelity responses of frontal impact dummies and establish lower neck injury criteria.

  8. A unified framework for the orbital structure of bars and triaxial ellipsoids

    CERN Document Server

    Valluri, Monica; Abbott, Caleb G; Debattista, Victor P

    2015-01-01

    We examine a large random sample of orbits in self-consistent simulations of N-body bars. Orbits in the bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However only a small fraction of bar orbits ~4% have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame making them equivalent to box orbits in rotating triaxial potentials. A small fraction of bar orbits (~7%) are long axis tubes that behave exactly like those in triaxial ellipsoids:they are tipped about the intermediate-axis due to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny populatio...

  9. Experimental observation of dynamic ductile damage development under various triaxiality conditions

    Science.gov (United States)

    Pillon, Laurianne; Adolf, Lise-Marie

    2015-06-01

    Fracture in ductile materials finds its origin in microscopic mechanisms: the nucleation of voids that grow and coalesce in order to form a crack. The most popular of these models, proposed by Gurson, aims at describing the damage development with respect to the plastic behavior of porous material. The Gurson model has been extended by Perrin to describe damage evolution in ductile viscoplastic porous materials. The Gurson-Perrin model (GPm) allows representing damage development with respect to the stress triaxiality and strain-rate conditions. We propose a new experimental design able to test and validate the GPm under various dynamic conditions and for different triaxiality levels. The experimental project will be detailed. A notch is drawn in the Cu cylindrical target where damage develops and the local failure occurs. A variation of the notch radius enables a variation in the triaxiality level. Three notch radii have been tested. Observations with numerical cameras allow following the shape of the notch, a characteristic of damage development. Several PDV measurements have been performed around the target. A first analysis of this experimental process will be shown and comparisons with numerical simulations will be presented.

  10. A high performance sensor for triaxial cutting force measurement in turning.

    Science.gov (United States)

    Zhao, You; Zhao, Yulong; Liang, Songbo; Zhou, Guanwu

    2015-04-03

    This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%-0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz), which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  11. Modeling of Stress- Strain Curves of Drained Triaxial Test on Sand

    Directory of Open Access Journals (Sweden)

    Awad A. Karni

    2006-01-01

    Full Text Available This paper presents a hyperbolic mathematical model to predict the complete stress-strain curve of drained triaxial tests on uniform dense sand. The model was formed in one equation with many parameters. The main parameters that are needed to run the model are the confining pressure, angle of friction and the relative density. The other parameters, initial and final slopes of the stress strain curve, the reference stress and the curve-shape parameter are determined as functions of the confining pressure, angle of friction and the relative density using best fitting curve technique from the experimental tests results. Drained triaxial tests were run on clean white uniform sand to utilize and verify this model. These tests were carried out at four levels of confining pressure of 100, 200, 300 and 400 kPa. This model was used to predict the stress-strain curves for drained triaxial tests on quartz sand at different relative density using the data of Kouner[1]. The model predictions were compared with the experimental results and showed good agreements of the predicted results with the experimental results at all levels of applied confining pressures and relative densities.

  12. A High Performance Sensor for Triaxial Cutting Force Measurement in Turning

    Directory of Open Access Journals (Sweden)

    You Zhao

    2015-04-01

    Full Text Available This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz, which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  13. Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.

    Science.gov (United States)

    Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing

    2015-04-01

    On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.

  14. Tri-Axial MRI Compatible Fiber-optic Force Sensor

    Science.gov (United States)

    Tan, U-Xuan; Yang, Bo; Gullapalli, Rao; Desai, Jaydev P.

    2011-01-01

    Magnetic resonance imaging (MRI) has been gaining popularity over standard imaging modalities like ultrasound and CT because of its ability to provide excellent soft-tissue contrast. However, due to the working principle of MRI, a number of conventional force sensors are not compatible. One popular solution is to develop a fiber-optic force sensor. However, the measurements along the principal axes of a number of these force sensors are highly cross-coupled. One of the objectives of this paper is to minimize this coupling effect. In addition, this paper describes the design of elastic frame structures that are obtained systematically using topology optimization techniques for maximizing sensor resolution and sensor bandwidth. Through the topology optimization approach, we ensure that the frames are linked from the input to output. The elastic frame structures are then fabricated using polymers materials, such as ABS and Delrin®, as they are ideal materials for use in MRI environment. However, the hysteresis effect seen in the displacement-load graph of plastic materials is known to affect the accuracy. Hence, this paper also proposes modeling and addressing this hysteretic effect using Prandtl-Ishlinskii play operators. Finally, experiments are conducted to evaluate the sensor’s performance, as well as its compatibility in MRI under continuous imaging. PMID:21666783

  15. Travel Times of Later Phases for Transmitting Waves through a Fracturing Westerly Granite Sample under a Triaxial Compressive Condition

    Science.gov (United States)

    Imahori, A.; Kawakata, H.; Hirano, S.; Yoshimitsu, N.; Takahashi, N.

    2015-12-01

    In laboratory, it is well-known that the elastic wave speed varies prior to compression fracture of the rock (e.g., Lockner et al., 1977, JGR). Using an enough number of travel times of elastic wave paths in a sample, we can estimate internal structure of the sample. However, the number of the elastic wave transducers is limited, and only the travel times of the first arrival are available in most experiments. Employing broadband transducers (Yoshimitsu et al., 2014, GRL), later phases become available to be analyzed. In the present study, we conduct a triaxial compressive test at room temperature under a dry condition and a confining pressure of 50 MPa, using a cylindrical Westerly granite sample of 100 mm long by 50 mm in diameter. Eight transducers are attached on the sample surface. One of the transducers is used as a wave source and voltage steps are repeatedly applied to it. The elastic waves passing through the sample are sensed by the other broadband transducers, and recorded at a sampling rate of 20 Msps. P-wave speed is estimated from the travel time of the direct P, and Vp/Vs value is assumed to be the √3 to give S-wave speed. We assume that all wave paths never bend except at the top and bottom surface of the sample. We calculate the travel times of later phases reflected at the top and/or bottom surfaces within 3 times. We collate the calculated travel times with observed waveforms. We can identify the travel time of two phases: single reflection from both top and bottom of the sample. On the other hand, some other observed and calculated phase arrivals do not match with each other. Then, we try to identify some remarkable phases using the calculated travel times of PS and SP converted waves and interfacial waves, taking into consideration of wave speed anisotropy.

  16. Initial Study on Triaxiality of Human Settlements—In the Case of 10 Districts (Counties of Dalian

    Directory of Open Access Journals (Sweden)

    Shenzhen Tian

    2014-10-01

    Full Text Available For a long time, the traditional pattern of urban-rural human settlements has been shaped in reference to the existence of the urban-rural dual structure. In this paper, we put forward the notion of triaxiality of human settlements, and used the standards conversion entropy weight method to measure and calculate degrees of livability of human settlements, so as to prove the existence of triaxiality of human settlements within the same unit at the micro-scale level, and conduct an empirical study on the spatial-temporal evolution, system attributes and formation mechanisms of the triaxiality of human settlements in 10 districts (counties of Dalian (Years 2002–2011. Results showed that: (1 Spatial evolution of human settlements presents triaxiality. Administrative divisions do not play a full and predominant role in the unit division of human settlements. The number of distribution districts (counties within different units of human settlements tends to be balanced, there is spatial variation of tertiary units in the human settlements of Dalian, and the transition area of human settlements occupies the leading position in the unit division of human settlements; (2 Human settlements also exhibit triaxiality at different development stages during the period of evolution. The fluctuation changes of degrees of livability of the human settlements of Dalian within the past 10 years have been relatively stable, with a trend of small scale decline and obvious manifestations of stage differences; (3 The system attributive characters of human settlements presents triaxiality. There also exists differentiations of system and area in human settlements within the same unit; (4 Industrialization and urbanization have led to the collapse of part of the urban-rural dual structure, while the differentiation of ternary structure of the economic and social structure, and living environment and life style leads to the triaxiality of human settlements.

  17. Experimental Study of Remotely Triggered Rockburst Induced by a Tunnel Axial Dynamic Disturbance Under True-Triaxial Conditions

    Science.gov (United States)

    Su, Guoshao; Feng, Xiating; Wang, Jinhuan; Jiang, Jianqing; Hu, Lihua

    2017-08-01

    During deep underground excavation, dynamic ejection failure of a highly stressed rock mass near an excavated boundary is easily triggered by a dynamic disturbance in the tunnel axial direction, induced by blasting on the tunnel face. Such a dynamic ejection failure is usually called remotely triggered rockburst, and it poses a threat to underground construction. To clarify the characteristics of remotely triggered rockburst, the development of remotely triggered rockbursts of granite rock specimens was investigated using an improved true-triaxial test system. Experimental results show that with increasing static Z-direction stress (i.e., in situ tangential stress on the cross section of the tunnel), rockburst is triggered more easily and the kinetic energy of ejected fragments increases. Under other constant static stresses and dynamic disturbance, with increasing horizontal stress including X-direction stress (i.e., in situ axial stress) or Y-direction stress (i.e., in situ radial stress on the cross section of the tunnel), rockburst is more difficult to trigger and the kinetic energy of the ejected fragments decreases. Under constant static stresses, once the amplitude and frequency of the dynamic loading exceed their thresholds, the rockburst intensity increases rapidly and the rockburst can be triggered much more easily with small increments of the amplitude and frequency. Furthermore, Z-direction strain increases during the dynamic disturbance process, indicating that the ultimate energy-storage capacity of the specimen decreases with increasing damage. When the elastic strain energy is greater than the ultimate energy-storage capacity of the damaged specimen, part of the residual elastic energy is converted into kinetic energy of the ejected fragments.

  18. Simulation-aided constitutive law development - Assessment of low triaxiality void nucleation models via extended finite element method

    Science.gov (United States)

    Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob

    2017-05-01

    In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.

  19. Quantum repeated games revisited

    CERN Document Server

    Frackiewicz, Piotr

    2011-01-01

    We present a scheme for playing quantum repeated 2x2 games based on the Marinatto and Weber's approach to quantum games. As a potential application, we study twice repeated Prisoner's Dilemma game. We show that results not available in classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games.

  20. Comparison of gait symmetry between poststroke fallers and nonfallers during level walking using triaxial accelerometry

    Science.gov (United States)

    Lien, Wei-Chih; Cheng, Yung-Heng; Kuan, Ta-Shen; Zheng, Yu-Lun; Hsieh, Chao-Hsien; Wang, Wen-Fong

    2017-01-01

    Abstract To compare the degree of gait symmetry of chronic poststroke fallers with that of nonfallers during level walking using triaxial accelerometry. In this cross-sectional study, a total of 14 patients with chronic stroke were recruited from a community hospital from February 2015 to July 2016. Patient characteristics, including the number of falls in the previous 12 months, were obtained from medical records. The Berg Balance Scale (BBS) and timed up and go (TUG) test were used at the onset of the study. Triaxial accelerometers were attached to the back and bilateral lower extremities of each subject with sampling rates of 120 Hz. The cross-correlation between the acceleration signals of the affected and unaffected feet was measured to assess the degree of gait symmetry. The triaxial acceleration signals of the 5 consecutive and bilateral strides from the middle of each trial were processed to measure the cross-correlation and time delay (Ts) between the magnitude of the acceleration vector of the affected and unaffected foot. After controlling for possible confounding factors, the mixed-effect models showed that cross-correlation was significantly higher among nonfallers than fallers (β = −0.093; standard error [SE] = 0.029; P-value = 0.002), and that the Ts was significantly longer among fallers than nonfallers (β = −1.900; SE = 0.719; P-value = 0.011). Cross-correlation and Ts between the affected and unaffected lower extremities may be useful indicators to distinguish poststroke fallers from nonfallers. PMID:28248856

  1. Influence of dynamical equatorial flattening and orientation of a triaxial core on prograde diurnal polar motion

    Science.gov (United States)

    Sun, Rong; Shen, WenBin

    2016-04-01

    The noise floor of empirical models of diurnal Earth Rotation could reach as low as 1μas as shown by several recent studies. In another aspect, the differences between these empirical models with the theoretical model predictions given by IERS Convention (2010) for certain diurnal frequencies are more than 10 μas (e.g. K1). The traxiality of the core is ignored in the theoretical model given by IERS Convention (2010) because it is highly uncertain. To explain the difference between the empirical model and theoretical model, we consider the possible influence of a triaxial core. We use the difference between empirical models and theoretical model predictions given by IERS Convention (2010) as input to invert the traxiality parameter of the core. In the inversion, we assume the ocean tide response obeys the admittance theory. So extra six admittance parameters are introduced to model the difference between smooth responses inferred from empirical models and that given by theoretical model predictions from IERS Convention (2010). The results show that adding core triaxiality into the theoretical model could narrow the difference between empirical model and theoretical model at diurnal frequencies. The residual of amplitude becomes smaller. For a set of tide components consisting of seven diurnal frequencies (Q1, O1, M1, P1, K1, J1, Oo1), the root mean square of the residual of this set have decreased from more than 10μas to 2˜3μas for most of the empirical models. As for the dynamical equatorial flattening of the core, estimates inverted based on different empirical models are consistent within standard deviation. The results also suggest that the principal axes of the triaxial core does not coincidence with the principal axes of the whole Earth. This study is supported by National 973 Project China (grant No. 2013CB733305), NSFC (grant Nos. 41174011, 41210006, 41504019).

  2. Interband B (E2) ratios in the rigid triaxial model, a review

    Science.gov (United States)

    Gupta, J. B.; Sharma, S.

    1989-01-01

    Uptodate accurate extensive data on γ-g B(E2) ratios for even-even rare-earth nuclei is compared with the predictions of the rigid triaxial model of collective rotation to search for a correlation between the nuclear structure variation with Z, N and the γ0 parameter of the model. The internal consistency in the predictions of the model is investigated and the spectral features vis-a-vis the γ-soft and the γ-rigid potential are discussed.

  3. Level set discrete element method for three-dimensional computations with triaxial case study

    Science.gov (United States)

    Kawamoto, Reid; Andò, Edward; Viggiani, Gioacchino; Andrade, José E.

    2016-06-01

    In this paper, we outline the level set discrete element method (LS-DEM) which is a discrete element method variant able to simulate systems of particles with arbitrary shape using level set functions as a geometric basis. This unique formulation allows seamless interfacing with level set-based characterization methods as well as computational ease in contact calculations. We then apply LS-DEM to simulate two virtual triaxial specimens generated from XRCT images of experiments and demonstrate LS-DEM's ability to quantitatively capture and predict stress-strain and volume-strain behavior observed in the experiments.

  4. Collapse of triaxial bright solitons in atomic Bose-Einstein condensates

    Science.gov (United States)

    Mazzarella, G.; Salasnich, L.

    2009-12-01

    We study triaxial bright solitons made of attractive Bose-condensed atoms characterized by the absence of confinement in the longitudinal axial direction but trapped by an anisotropic harmonic potential in the transverse plane. By numerically solving the three-dimensional Gross-Pitaevskii equation we investigate the effect of the transverse trap anisotropy on the critical interaction strength above which there is the collapse of the condensate. The comparison with previous predictions [A. Gammal, L. Tomio, T. Frederico, Phys. Rev. A 66 (2002) 043619] shows significant differences for large anisotropies.

  5. Esfuerzo triaxial ideal de Ti, Zr y Hf con estructura fcc: un estudio de primeros principios

    OpenAIRE

    A. Bautista Hernández; J.H. Camacho García; M. Salazar Villanueva; E. Chigo Anota; A. Macias Cervantes

    2011-01-01

    A temperatura y presión ambiente el Ti, Zr y Hf cristalizan en la fase hexagonal compacta. Recientemente se ha reportado que estos elementos son élasticamente metaestables [14] en la estructura cúbica centrada en las caras (fcc). En este trabajo presentamos el esfuerzo triaxial ideal de los metales Ti, Zr y Hf con estructura fcc, obtenido mediante cálculos de primeros principios usando la teoría del funcional de la densidad. Se usó la aproximación de gradiente generalizado y local de la densi...

  6. Role of triaxiality in 76Ge and 76Se nuclei studied with Gogny energy density functionals

    Science.gov (United States)

    Rodríguez, Tomás R.

    2017-03-01

    The structure of the nuclei 76Ge and 76Se is studied with symmetry conserving configuration mixing methods based on the Gogny D1S interaction. These two nuclei are of key importance in the search for neutrinoless double-beta decay. The energy density functionals used here include symmetry restorations (particle number and angular momentum) and shape mixing within the generator coordinate method. The comparison with the experimental data shows a good qualitative agreement when triaxial shapes are included, revealing the important role played by this degree of freedom in these two nuclei.

  7. Bohr Hamiltonian with Hulthen plus ring-shaped potential for triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chabab, M.; Lahbas, A.; Oulne, M. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Department of Physics, Faculty of Sciences Semlalia, P. O. B. 2390, Marrakesh (Morocco)

    2015-10-15

    In this paper, we solve the eigenvalues and eigenvectors problem with the Bohr collective Hamiltonian for triaxial nuclei. The β-part of the collective potential is taken to be equal to the Hulthen potential while the γ-part is defined by a new generalized potential obtained from a ring-shaped one. Analytical expressions for spectra and wave functions are derived by means of a recent version of the asymptotic iteration method and the usual approximations. The calculated energies and B(E2) transition rates are compared with experimental data and the available theoretical results in the literature. (orig.)

  8. Bohr Hamiltonian with Hulth?en plus Ring shaped potential for triaxial nuclei

    CERN Document Server

    Chabab, M; Oulne, M

    2015-01-01

    In this paper, we solve the eigenvalues and eigenvectors problem with Bohr collective Hamil- tonian for triaxial nuclei. The ? beta part of the collective potential is taken to be equal to Hulth?en potential while the gamma part is de?ned by a new generalized potential obtained from a ring shaped one. Analytical expressions for spectra and wave functions are derived by means of a recent version of the asymptotic iteration method and the usual approximations. The calculated energies and B(E2) transition rates are compared with experimental data and the available theoretical results in the literature.

  9. Nonlinear Constitutive Equation for Green Sand Considering the Tri-axial Compression Behavior

    Institute of Scientific and Technical Information of China (English)

    曾攀; 孔劲

    2004-01-01

    The compression characteristics of green sand were investigated experimentally, including the squeezing and yielding during deformation. An expression was developed for the transient compression modulus of sand during compression. Based on the hypothesis put forward of the compression state, the differential equation for the nonlinear constitutive equation was deduced by introducing a move-yield potential function. The state constitutive equation under the tri-axial experiment is further studied according to the sand attributes, considering the differential form of Hooke's law and the Mohr-Coulomb condition. The related experiment data are applied to verify the proposed constitutive model of sand.

  10. Method for Predicting Void Ratio and Triaxial Friction Angle from Laboratory CPT at Shallow Depths

    DEFF Research Database (Denmark)

    Larsen, Kim André; Ibsen, Lars Bo

    In this report an investigation of the relationship between the tip resistance, qc of a laboratory CPT-probe versus the relative density, Dr and friction angle, ∏ of Aalborg University Sand No. 0 is carried out. A method for estimating the relative density and the triaxial friction angle from...... the cone resistance of the laboratory probe is proposed. The suggested method deals with the fact that the friction angle is depended of the stress level especially at low stresses. The method includes a calibration of the cone resistance from the laboratory CPT at shallow depths i.e. low values of d...

  11. True Triaxial Strength and Brittle Fracture of the Granodiorite at the SAFOD Drillhole Wall, and the Potential for Estimating the Maximum Horizontal Principal Stress

    Science.gov (United States)

    Lee, H.; Haimson, B.

    2007-12-01

    Salinian granodiorite core from the 1462-1470m segment of the SAFOD drillhole was used to derive its critical mechanical properties under true triaxial stress conditions, analyze shear localization and brittle fracture characteristics, and establish the strength criterion under dry conditions (Eos Trans. AGU, 87/52, Abstract T32C- 03). Here we report on a series of true triaxial tests on 'unjacketed' specimens simulating stress conditions prevailing at the drillhole wall and responsible for borehole failure in the form of breakouts. Owing to numerous random cracks inherent in the core, only 11 rectangular prismatic specimens (19×19×38 mm3) were successfully tested, employing the University of Wisconsin polyaxial cell. The two larger principal stresses, σ1 and σ2, were transmitted through metal pistons, while σ3 was applied by confining fluid pressure. Specimen sides facing σ3 were left 'unjacketed', i.e. in direct contact with the confining fluid, to simulate the condition of drilling-mud pressure applying the principal radial stress (σ3) to the exposed borehole wall. The loading path called for first bringing σ2 and σ3 to preset levels and then increasing σ1 at a constant strain rate (5x10-6/sec) until brittle failure occurred. Invariably, failure occurred at σ1 levels that were only about half as high as those in previously tested dry samples under the same σ2 and σ3 magnitudes. Instead of a shear fracture, or fault, steeply inclined in the direction of σ3, as previously observed in the dry specimens, brittle failure took the form of a localized cluster of through-going extensile cracks parallel and adjacent to the faces subjected to σ3. Since failure occurred at σ1 values close to those at dilatancy onset in dry specimens, we infer that as soon as microcracks reopened, confining fluid rushed into those daylighting at the σ3 faces and extended them along a path of least resistance, i.e. along a plane normal to σ3. Thus brittle failure under

  12. PASSIVE DETECTION OF VEHICLE LOADING

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  13. Application of the triaxial quadrupole-octupole rotor to the ground and negative-parity levels of actinide nuclei

    CERN Document Server

    Nadirbekov, M S; Strecker, M; Scheid, W

    2016-01-01

    In this work we examine the possibility to describe yrast positive- and negative-parity excitations of deformed even-even nuclei through a collective rotation model in which the nuclear surface is characterized by triaxial quadrupole and octupole deformations. The nuclear moments of inertia are expressed as sums of quadrupole and octupole parts. By assuming an adiabatic separation of rotation and vibration degrees of freedom we suppose that the structure of the positive- and negative- parity bands may be determined by the triaxial-rigid-rotor motion of the nucleus. By diagonalizing the Hamiltonian in a symmetrized rotor basis with embedded parity we obtain a model description for the yrast positive- and negative-parity bands in several actinide nuclei. We show that the energy displacement between the opposite-parity sequences can be explained as the result of the quadrupole-octupole triaxiality.

  14. Triaxial shapes in the ground states of even-even neutron-rich Ru isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Partial level schemes for {sup 108,110,112}Ru, and {sup 114}Ru about which nothing was previously known, were determined from the measurement of prompt, triple-gamma coincidences in {sup 248}Cm fission fragments. A 5-mg {sup 249}Cm source, mixed with 65-mg KCl and pressed in the form of a 7-mm diameter pellet, was used for the experiment. Prompt {gamma} rays emitted from the fission fragments were detected with the Eurogam array at Daresbury, which at that time consisted of 45 Compton suppressed Ge detectors and 5 LEPS spectrometers. Transitions in Ru were identified by gating on {gamma} rays in the complementary Te fragments. Figure I-25 shows the technique used to identify the previously unknown transitions in {sup 114}Ru and its partial level scheme. High spin states up to spin 10 h were observed and the {gamma}-ray branching ratios were determined. The ratios of electric quadrupole transition probabilities deduced from the experimental branching ratios were found to be in good agreement with the predictions of a simple model of rigid triaxial rotor. Our analysis shows that gamma deformation in Ru isotopes is increasing with the neutron number and the gamma value for {sup 112}Ru and {sup 114}Ru is {approximately} 25 degrees. This is one of the highest gamma values encountered in nuclei, suggesting soft triaxial shapes for {sup 112}Ru and {sup 114}Ru. The results of this investigation were published.

  15. Effective detection method for falls according to the distance between two tri-axial accelerometers

    Science.gov (United States)

    Kim, Jae-Hyung; Park, Geun-Chul; Kim, Soo-Hong; Kim, Soo-Sung; Lee, Hae-Rim; Jeon, Gye-Rok

    2016-04-01

    Falls and fall-related injuries are a significant problem in the elderly population. A number of different approaches for detecting falls and activities of daily living (ADLs) have been conducted in recent years. However, distinguishing between real falls and certain fall-like ADL is often difficult. The aim of this study is to discriminate falls from fall-like ADLs such as jogging, jumping, and jumping down. The distance between two tri-axial accelerometers attached to the abdomen and the sternum was increased from 10 to 30 cm in 10-cm intervals. Experiments for falls and ADLs were performed to investigate the feasibility of the detection system for falls developed in this study. When the distances between the two tri-axial electrometers were 20 and 30 cm, fall-like ADLs were effectively distinguished from falls. The thresholds for three parameters — SVM, Diff Z, and Sum_diff_Z — were set; falls could be distinguished from ADL action sequences when the SVM value was larger than 4 g (TH1), the Diff_Z parameter was larger than 1.25 g (TH2), and the Sum_diff_Z parameter was larger than 15 m/s (TH3). In particular, when the SVM, Diff_Z, and Sum_diff_Z parameter were sequentially applied to thresholds (TH1, TH2, and TH3), fall-like ADL action sequences were accurately discriminated from falls.

  16. Test Results and Comparison of Triaxial Strength Testing of Waste Isolation Pilot Plant Clean Salt

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Stuart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    This memorandum documents laboratory thermomechanical triaxial strength testing of Waste Isolation Pilot Plant (WIPP) clean salt. The limited study completed independent, adjunct laboratory tests in the United States to assist in validating similar testing results being provided by the German facilities. The testing protocol consisted of completing confined triaxial, constant strain rate strength tests of intact WIPP clean salt at temperatures of 25°C and 100°C and at multiple confining pressures. The stratigraphy at WIPP also includes salt that has been labeled “argillaceous.” The much larger test matrix conducted in Germany included both the so-called clean and argillaceous salts. When combined, the total database of laboratory results will be used to develop input parameters for models, assess adequacy of existing models, and predict material behavior. These laboratory studies are also consistent with the goals of the international salt repository research program. The goal of this study was to complete a subset of a test matrix on clean salt from the WIPP undertaken by German research groups. The work was performed at RESPEC in Rapid City, South Dakota. A rigorous Quality Assurance protocol was applied, such that corroboration provides the potential of qualifying all of the test data gathered by German research groups.

  17. The dual cycle bridge detection of piezoresistive triaxial accelerometer based on MEMS technology

    Science.gov (United States)

    Juanting, Zhang; Changde, He; Hui, Zhang; Yuping, Li; Yongping, Zhang; Chunhui, Du; Wendong, Zhang

    2014-06-01

    A cycle bridge detection method, which uses a piezoresistive triaxial accelerometer, has been described innovatively. This method just uses eight resistors to form a cycle detection bridge, which can detect the signal of the three directions for real time. It breaks the law of the ordinary independent Wheatstone bridge detection method, which uses at least 12 resistors and each four resistors connected as a Wheatstone bridge to detect the output signal from a specific direction. In order to verify the feasibility of this method, the modeling and simulating of the sensor structure have been conducted by ANSYS, then the dual cycle bridge detection method and independent Wheatstone bridge detection method are compared, the result shows that the former method can improve the sensitivity of the sensor effectively. The sensitivity of the x, y-axis used in the former method is two times that of the sensor used in the latter method, and the sensitivity of the z-axis is four times. At the same time, it can also reduce the cross-axis coupling degree of the sensor used in the dual cycle bridge detection method. In addition, a signal amplifier circuit and adder circuit have been provided. Finally, the test result of the “eight-beams/mass” triaxial accelerometer, which is based on the dual cycle bridge detection method and the related circuits, have been provided. The results of the test and the theoretical analysis are consistent, on the whole.

  18. Study on GMZ bentonite-sand mixture by undrained triaxial tests

    Directory of Open Access Journals (Sweden)

    Sun Wen-jing

    2016-01-01

    Full Text Available It is particularly necessary to study the deformation, strength and the changes of pore water pressure of bentonite-based buffer/backfill materials under the undrained condition. A series of isotropic compression tests and triaxial shear tests under undrained conditions were conducted on the compacted saturated/unsaturated GMZ bentonite-sand mixtures with dry mass ratio of bentonite/sand of 30:70. During the tests, the images of the sample were collected by photographic equipment and subsequently were cropped, binarized and centroids marked by image processing technique. Based on identification of the variation of the position of marked centroids, the deformation of the sample can be determined automatically in real-time. Finally, the hydro-mechanical behaviour of saturated and unsaturated bentonite-sand mixtures under the undrained condition can be obtained. From results of triaxial shear tests on unsaturated samples under constant water content, inflated volumetric deformation transforms to contractive volumetric deformation due to the increase of the confining pressure and lateral expansion deformation are observed due to the increase in the shearing stress. Moreover, the net mean stress affects the initial stiffness, undrained shear strength and deformation of the sample during the undrained shear tests.

  19. Effect of substitution of sand stone dust for quartz and clay in triaxial porcelain composition

    Indian Academy of Sciences (India)

    M K Haldar; S K Das

    2012-10-01

    Quartz and kaolin were partially substituted by sand stone dust (a siliceous byproduct of Indian stone cutting and polishing industries) in a traditional triaxial porcelain composition consisting of kaolin, quartz and feldsper. The effect of substitution upon heating at different temperatures (1050–1150°C) were studied by measuring the linear shrinkage, bulk density, porosity and flexural strength. Qualititative phase and microstructural analysis on selected samples were carried out using XRD and SEM/EDX technique. The results show that the samples of all the batches achieved higher density (2.50 g/cc) and almost full vitrification (<0.1% apparent porosity) at around 1115°C compared to around 1300°C for traditional triaxial porcelain composition. As high as 70 MPa flexural strength was obtained in most of the vitrified samples. No significant variation in physico-mechanical properties was observed in between the composition. XRD studies on selected samples show presence of mainly quartz phase both at low and high temperatures. SEM photomicrographs of the 1115°C heated specimen show presence of quartz grain and glassy matrix. Few quartz grains (20–40m) are associated with circumferential cracks around them.

  20. Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning.

    Science.gov (United States)

    Yang, Guang-Zhi; Li, Jiao-Jiao; Yu, Deng-Guang; He, Mei-Feng; Yang, Jun-He; Williams, Gareth R

    2017-01-27

    Nanoscale drug depots, comprising a drug reservoir surrounded by a carrier membrane, are much sought after in contemporary pharmaceutical research. Using cellulose acetate (CA) as a filament-forming polymeric matrix and ferulic acid (FA) as a model drug, nanoscale drug depots in the form of core-shell fibers were designed and fabricated using a modified tri-axial electrospinning process. This employed a solvent mixture as the outer working fluid, as a result of which a robust and continuous preparation process could be achieved. The fiber-based depots had a linear morphology, smooth surfaces, and an average diameter of 0.62±0.07μm. Electron microscopy data showed them to have clear core-shell structures, with the FA encapsulated inside a CA shell. X-ray diffraction and IR spectroscopy results verified that FA was present in the crystalline physical form. In vitro dissolution tests revealed that the fibers were able to provide close to zero-order release over 36h, with no initial burst release and minimal tailing-off. The release properties of the depot systems were much improved over monolithic CA/FA fibers, which exhibited a significant burst release and also considerable tailing-off at the end of the release experiment. Here we thus demonstrate the concept of using modified tri-axial electrospinning to design and develop new types of heterogeneous nanoscale biomaterials.

  1. A novel portable energy dispersive X-ray fluorescence spectrometer with triaxial geometry

    Science.gov (United States)

    Pessanha, S.; Alves, M.; Sampaio, J. M.; Santos, J. P.; Carvalho, M. L.; Guerra, M.

    2017-01-01

    The X-ray fluorescence technique is a powerful analytical tool with a broad range of applications such as quality control, environmental contamination by heavy metals, cultural heritage, among others. For the first time, a portable energy dispersive X-ray fluorescence spectrometer was assembled, with orthogonal triaxial geometry between the X-ray tube, the secondary target, the sample and the detector. This geometry reduces the background of the measured spectra by reducing significantly the Bremsstrahlung produced in the tube through polarization in the secondary target and in the sample. Consequently, a practically monochromatic excitation energy is obtained. In this way, a better peak-background ratio is obtained compared to similar devices, improving the detection limits and leading to superior sensitivity. The performance of this setup is compared with the one of a benchtop setup with triaxial geometry and a portable setup with planar geometry. Two case studies are presented concerning the analysis of a 18th century paper document, and the bone remains of an individual buried in the early 19th century.

  2. Nuclear triaxiality in the $A \\tilde$ 160–170 mass region: the story so far

    Indian Academy of Sciences (India)

    S Mukhopadhyay; W C Ma

    2014-11-01

    Research in nuclear triaxial deformation has revealed many exciting facts and figures over the last one and a half-decades. Although wobbling motion of nuclei was experimentally discovered at the beginning of the last decade, after almost 25 years of its prediction by Bohr and Mottelson, efforts are still being put to understand this rare nuclear phenomenon in greater detail. The concept of transverse wobbling is one such recent attempt which successfully explains the evolution of experimentally observed wobbling frequency with spin. The population of triaxial strongly deformed (TSD) bands in the $A \\tilde$160–170 region is favoured for which neutron number ( = 92 or 94) is a topic of current debate. Experimental efforts are being put following Bengtsson’s calculations which indicate that the elevated yrast lines for = 92 isotones favour TSD population. In $A\\tilde$170 mass region, the ambiguity over the real character of certain strongly deformed bands has recently been removed by extensive experimental and theoretical efforts, and the bands have now been firmly established as either enhanced deformed (ED) or superdeformed (SD).

  3. A Modeling Technique and Representation of Failure in the Analysis of Triaxial Braided Carbon Fiber Composites

    Science.gov (United States)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Quasi-static tests have been performed on triaxially braided carbon fiber composite materials with large unit cell sizes. The effects of different fibers and matrix materials on the failure mode were investigated. Simulations of the tests have been performed using the transient dynamic finite element code, LS-DYNA. However, the wide range of failure modes observed for the triaxial braided carbon fiber composites during tests could not be simulated using composite material models currently available within LS-DYNA. A macroscopic approach has been developed that provides better simulation of the material response in these materials. This approach uses full-field optical measurement techniques to measure local failures during quasi-static testing. Information from these experiments is then used along with the current material models available in LS-DYNA to simulate the influence of the braided architecture on the failure process. This method uses two-dimensional shell elements with integration points through the thickness of the elements to represent the different layers of braid along with a new analytical method for the import of material stiffness and failure data directly. The present method is being used to examine the effect of material properties on the failure process. The experimental approaches used to obtain the required data will be described, and preliminary results of the numerical analysis will be presented.

  4. Coexistence of triaxial and prolate shapes in sup 1 sup 7 sup 1 Ir

    CERN Document Server

    Bark, R A; Baeck, T; Cederwall, Bo; Oedegaard, S W; Cocks, J F C; Helariutta, K; Jones, P; Julin, R; Juutinen, S; Kankaanpaeae, H; Kettunen, H; Kuusiniemi, P; Leino, M; Muikku, M; Rahkila, P; Savelius, A; Bergström, M H; Ingebretsen, F; Maj, A; Mattiuzzi, M; Müller, W; Riedinger, L L; Saitoh, T R; Tjøm, P O

    1999-01-01

    Excited states in sup 1 sup 7 sup 1 Ir have been observed for the first time. Gamma-rays were assigned to the nucleus by the recoil-decay tagging method. The ground-state band has a structure consistent with an h sub ( sub 1 sub 1 sub ( sub 2 sub ) sub ) proton coupled to a core of large triaxial deformation. At high spins, a bandcrossing occurs which is interpreted as a change in shape to a prolate deformation. Band-mixing calculations are performed for sup 1 sup 7 sup 1 sup - sup 1 sup 7 sup 5 Ir. These show that shape-coexistence between triaxial and prolate states in these nuclei follows the same systematics found in their Pt and Os neighbours. The systematics are also compared with deformations calculated for sup 1 sup 7 sup 1 sup - sup 1 sup 7 sup 9 Ir using the code 'Ultimate Cranker'. Dipole bands were also observed, but tilted axis cranking calculations suggest that they are associated with a collective rotation.

  5. Triaxial nuclear models and the outer crust of nonaccreting cold neutron stars

    CERN Document Server

    Guo, L; Schaffner-Bielich, J; Maruhn, J A; Guo, Lu

    2007-01-01

    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by the higher order corrections for the atomic binding, screening, exchange and zero-point energies, and taking into account for the first time triaxial deformations of nuclei. Experimental data of the atomic mass table from Audi, Wapstra and Thibault of 2003 are used together with two different theoretical nuclear models: the SLy6 parametrization for a Skyrme-Hartree-Fock model with BCS pairing and the parametrization D1S for a Hartree-Fock-Bogolyubov calculation with a finite-range Gogny interaction. The nuclear masses in both theoretical models were calculated under consideration of 3D triaxial deformations. The two models are compared concerning their neutron drip line, magic neutron numbers and the sequence of nuclei up to the neutron drip in the outer crust of nonaccreting cold neutron stars, with special emphasis on the effect of tria...

  6. In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer.

    Science.gov (United States)

    Fang, Jiancheng; Qin, Jie

    2012-10-01

    The spin-exchange-relaxation-free (SERF) atomic magnetometer is an ultra-high sensitivity magnetometer, but it must be operated in a magnetic field with strength less than about 10 nT. Magnetic field compensation is an effective way to shield the magnetic field, and this paper demonstrates an in situ triaxial magnetic field compensation system for operating the SERF atomic magnetometer. The proposed hardware is based on optical pumping, which uses some part of the SERF atomic magnetometer itself, and the compensation method is implemented by analyzing the dynamics of the atomic spin. The experimental setup for this compensation system is described, and with this configuration, a residual magnetic field of strength less than 2 nT (±0.38 nT in the x axis, ±0.43 nT in the y axis, and ±1.62 nT in the z axis) has been achieved after compensation. The SERF atomic magnetometer was then used to verify that the residual triaxial magnetic fields were coincident with what were achieved by the compensation system.

  7. Stellar Bar Evolution in Cuspy and Flat-Cored Triaxial CDM Halos

    CERN Document Server

    Berentzen, I; Jogee, S; Berentzen, Ingo; Shlosman, Isaac; Jogee, Shardha

    2006-01-01

    We analyze the formation and evolution of stellar bars in galactic disks embedded in mildly triaxial CDM halos that have density distributions ranging from large flat cores to cuspy profiles. We use tailored numerical simulations of analytical and live halos which include the feedback from disk/bar system onto the halo in order to test and extend earlier work by El-Zant & Shlosman (2002). The latter employed the method of Liapunov exponents to analyze the fate of bars in analytical asymmetric halos. We find that (1) The bar growth is very similar in all rigid axisymmetric and triaxial halos. (2) Bars in live models experience vertical buckling instability and the formation of a pseudo-bulges, while bars in rigid halos do not buckle. (3) In live axisymmetric halos, the bar strength shows only marginal secular evolution. In such halos, the bar strength is larger for smaller disk-to-halo mass ratios D/H, the bar size correlates with the halo core sizes, and the bar pattern speeds correlate with the halo cent...

  8. Reconfigurable multiport EPON repeater

    Science.gov (United States)

    Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio

    2009-11-01

    An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.

  9. Revisiting the TALE repeat.

    Science.gov (United States)

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  10. The calculation of soil-water pressure based on triaxial Test%基于三轴试验的水-土压力计算

    Institute of Scientific and Technical Information of China (English)

    王保光; 沈雪; 沈扬

    2015-01-01

    支挡结构物设计时水-土压力的计算方法一直存在争议,分算方法理论机理明确,但孔压难以实测,合算方法适应某些工况,但机理不明. 针对运营期内支挡结构物后填土表面短时间施加临时荷载的特殊工况,根据室内三轴UU试验和CU试验间内在联系, 提出了通过CU强度包线判定不排水条件下土体所处状态的方法,利用CU强度包线得出骤加荷载时主应力和超孔压计算公式,为特殊工况下支挡结构物上水-土压力计算提供一种新的探讨思路.%There has been controversy on the calculation method of soil -water pressure in the design of the supporting structure.There are two methods to calculate soil-water pressure, soil-water pres-sure calculated separately and soil-water pressure calculated jointly.The theoretical mechanism of the former is very clear and definite, but pore pressure is difficult to measure.The latter can be suit-ably applied to some engineering, but the theoretical mechanism is not clear and definite.There is a special condition in retaining structures during operation period, temporary load is imposed on the sur-face of the soil.For the special condition, according to the CU strength envelope the method of deter-mining the soil' s state under the condition of undrained condition.It is based on the intrinsic connec-tion between unconsolidated undrained triaxial tests and consolidated undrained triaxial tests.The principal stress and the excess pore pressure are calculated which are coursed by the increase of load, it is based on the CU strength envelope.A new approach is provided on the calculation of soil-water pressure for retaining structures under special conditions.

  11. Recursive quantum repeater networks

    CERN Document Server

    Van Meter, Rodney; Horsman, Clare

    2011-01-01

    Internet-scale quantum repeater networks will be heterogeneous in physical technology, repeater functionality, and management. The classical control necessary to use the network will therefore face similar issues as Internet data transmission. Many scalability and management problems that arose during the development of the Internet might have been solved in a more uniform fashion, improving flexibility and reducing redundant engineering effort. Quantum repeater network development is currently at the stage where we risk similar duplication when separate systems are combined. We propose a unifying framework that can be used with all existing repeater designs. We introduce the notion of a Quantum Recursive Network Architecture, developed from the emerging classical concept of 'recursive networks', extending recursive mechanisms from a focus on data forwarding to a more general distributed computing request framework. Recursion abstracts independent transit networks as single relay nodes, unifies software layer...

  12. Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer

    Science.gov (United States)

    Pérez-López, Carlos; Català, Andreu; Moreno Arostegui, Joan M.; Cabestany, Joan; Bayés, Àngels; Alcaine, Sheila; Mestre, Berta; Prats, Anna; Crespo, M. Cruz; Counihan, Timothy J.; Browne, Patrick; Quinlan, Leo R.; ÓLaighin, Gearóid; Sweeney, Dean; Lewy, Hadas; Azuri, Joseph; Vainstein, Gabriel; Annicchiarico, Roberta; Costa, Alberto; Rodríguez-Molinero, Alejandro

    2017-01-01

    Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy. PMID:28199357

  13. Three-Dimensional Numerical Simulation on Triaxial Failure Mechanical Behavior of Rock-Like Specimen Containing Two Unparallel Fissures

    Science.gov (United States)

    Huang, Yan-Hua; Yang, Sheng-Qi; Zhao, Jian

    2016-12-01

    A three-dimensional particle flow code (PFC3D) was used for a systematic numerical simulation of the strength failure and cracking behavior of rock-like material specimens containing two unparallel fissures under conventional triaxial compression. The micro-parameters of the parallel bond model were first calibrated using the laboratory results of intact specimens and then validated from the experimental results of pre-fissured specimens under triaxial compression. Numerically simulated stress-strain curves, strength and deformation parameters and macro-failure modes of pre-fissured specimens were all in good agreement with the experimental results. The relationship between stress and the micro-crack numbers was summarized. Crack initiation, propagation and coalescence process of pre-fissured specimens were analyzed in detail. Finally, horizontal and vertical cross sections of numerical specimens were derived from PFC3D. A detailed analysis to reveal the internal damage behavior of rock under triaxial compression was carried out. The experimental and simulated results are expected to improve the understanding of the strength failure and cracking behavior of fractured rock under triaxial compression.

  14. Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, E T; Belak, J; Rudd, R E

    2003-10-07

    The effect of stress-triaxiality on growth of a void in a three dimensional single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular dynamics (MD) simulations using an embedded-atom (EAM) potential for copper have been performed at room temperature and using strain controlling with high strain rates ranging from 10{sup 7}/sec to 10{sup 10}/sec. Strain-rates of these magnitudes can be studied experimentally, e.g. using shock waves induced by laser ablation. Void growth has been simulated in three different conditions, namely uniaxial, biaxial, and triaxial expansion. The response of the system in the three cases have been compared in terms of the void growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant, but the stress-triaxiality increases rapidly together with exponential growth of the void; saturation of the stress-triaxiality; and finally the failure.

  15. Infinitesimal cranking for triaxial angular-momentum-projected configuration-mixing calculations and its application to the γ vibrational band

    Science.gov (United States)

    Tagami, Shingo; Shimizu, Yoshifumi R.

    2016-02-01

    Inclusion of time-odd components into the wave function is important for a reliable description of rotational motion by the angular-momentum-projection method; the cranking procedure with infinitesimal rotational frequency is an efficient way to realize it. In the present work we investigate the effect of this infinitesimal cranking for a triaxially deformed nucleus, where there are three independent cranking axes. It is found that the effects of cranking about three axes on the triaxial energy spectrum are quite different and inclusion of all of them considerably modifies the resultant spectrum from the one obtained without cranking. Employing the Gogny D1S force as an effective interaction, we apply the method to the calculation of the multiple γ vibrational bands in 164Er as a typical example, where the angular-momentum-projected configuration mixing with respect to the triaxial shape degree of freedom is performed. With this method, both the K =0 and the K =4 two-phonon γ vibrational bands are obtained with considerable anharmonicity. Reasonably good agreement, though not perfect, is obtained for both the spectrum and transition probabilities with rather small average triaxial deformation γ ≈9∘ for the ground-state rotational band. The relation to the wobbling motion at high-spin states is also briefly discussed.

  16. Stress-In-Motion (SIM) system for capturing tri-axial tyre-road interaction in the contact patch

    CSIR Research Space (South Africa)

    De Beer, Morris

    2013-08-01

    Full Text Available A unique measuring system for the quantification of tri-axial (3-D) tyre contact force (or stress) distributions was designed, developed and used in several studies since 1994. The uniqueness of the system is defined by a textured measuring surface...

  17. An Experimental Method to Determine the Elastic Properties of Transversely Isotropic Rocks by a Single Triaxial Test

    Science.gov (United States)

    Togashi, Yota; Kikumoto, Mamoru; Tani, Kazuo

    2017-01-01

    A novel method is proposed for determining the deformation anisotropy of rocks by a single triaxial test using a single specimen sampled from an arbitrary direction. Transversely isotropic elasticity is assumed for the purpose of application of the test method to sedimentary and metamorphic rocks, and the non-axial symmetric stress-strain relationships of anisotropic rocks are determined by triaxial testing by means of a simple improvement to the cap in the triaxial testing apparatus. Both the elastic parameters and the directions of the transversely isotropic elasticity can be obtained by measuring the shear deformations that occur under triaxial stress conditions. An overview of the method for determining transversely isotropic elasticity is presented in this paper, along with the results of a sensitivity analysis performed assuming simulated strains with random measurement errors. The results show that the directions of anisotropy can be determined precisely using the directions of the principal strains measured during isotropic compression and that the elastic parameters can be determined uniquely from the stress-strain relationships observed during both the isotropic and axial compression processes.

  18. Modeling the triaxial behavior of riverbed and blasted quarried rockfill materials using hardening soil model

    Directory of Open Access Journals (Sweden)

    N.P. Honkanadavar

    2016-06-01

    Full Text Available Riverbed modeled rockfill material from Noa Dehing dam project, Arunachal Pradesh, India and blasted quarried modeled rockfill material from Kol dam project, Himachal Pradesh, India were considered for this research. Riverbed rockfill material is rounded to sub-rounded and quarried rockfill material is angular to sub-angular in shape. Prototype rockfill materials were modeled into maximum particle size (dmax of 4.75 mm, 10 mm, 19 mm, 25 mm, 50 mm and 80 mm for testing in the laboratory. Consolidated drained triaxial tests were conducted on modeled rockfill materials with a specimen size of 381 mm in diameter and 813 mm in height to study the stress–strain–volume change behavior for both rockfill materials. Index properties, i.e. uncompacted void content (UVC and uniaxial compressive strength (UCS, were determined for both rockfill materials in association with material parameters. An elastoplastic hardening soil (HS constitutive model was used to predict the behavior of modeled rockfill materials. Comparing the predicted and observed stress–strain–volume change behavior, it is found that both observed and predicted behaviors match closely. The procedures were developed to predict the shear strength and elastic parameters of rockfill materials using the index properties, i.e. UCS, UVC and relative density (RD, and predictions were made satisfactorily. Comparing the predicted and experimentally determined shear strengths and elastic parameters, it is observed that both values match closely. Then these procedures were used to predict the elastic and shear strength parameters of large-size prototype rockfill materials. Correlations were also developed between index properties and material strength parameters (dilatancy angle, ψ, and initial void ratio, einit, required for HS model of modeled rockfill materials and the same correlations were used to predict the strength parameters for the prototype rockfill materials. Using the

  19. A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS

    Energy Technology Data Exchange (ETDEWEB)

    Valluri, Monica; Abbott, Caleb [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shen, Juntai [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Debattista, Victor P., E-mail: mvalluri@umich.edu, E-mail: calebga@umich.edu, E-mail: jshen@shao.ac.cn, E-mail: vpdebattista@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

    2016-02-20

    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (∼4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotating triaxial potentials. In these simulations a small fraction of bar orbits (∼7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (∼2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.

  20. Modeling the triaxial behavior of riverbed and blasted quarried rockfill materials using hardening soil model

    Institute of Scientific and Technical Information of China (English)

    N.P. Honkanadavar; K.G. Sharma

    2016-01-01

    Riverbed modeled rockfill material from Noa Dehing dam project, Arunachal Pradesh, India and blasted quarried modeled rockfill material from Kol dam project, Himachal Pradesh, India were considered for this research. Riverbed rockfill material is rounded to sub-rounded and quarried rockfill material is angular to sub-angular in shape. Prototype rockfill materials were modeled into maximum particle size (dmax) of 4.75 mm, 10 mm, 19 mm, 25 mm, 50 mm and 80 mm for testing in the laboratory. Consolidated drained triaxial tests were conducted on modeled rockfill materials with a specimen size of 381 mm in diameter and 813 mm in height to study the stressestrainevolume change behavior for both rockfill materials. Index properties, i.e. uncompacted void content (UVC) and uniaxial compressive strength (UCS), were determined for both rockfill materials in association with material parameters. An elasto-plastic hardening soil (HS) constitutive model was used to predict the behavior of modeled rockfill materials. Comparing the predicted and observed stressestrainevolume change behavior, it is found that both observed and predicted behaviors match closely. The procedures were developed to predict the shear strength and elastic parameters of rockfill materials using the index properties, i.e. UCS, UVC and relative density (RD), and predictions were made satisfactorily. Comparing the predicted and experi-mentally determined shear strengths and elastic parameters, it is observed that both values match closely. Then these procedures were used to predict the elastic and shear strength parameters of large-size prototype rockfill materials. Correlations were also developed between index properties and ma-terial strength parameters (dilatancy angle, j, and initial void ratio, einit, required for HS model) of modeled rockfill materials and the same correlations were used to predict the strength parameters for the prototype rockfill materials. Using the predicted material parameters

  1. Repeated administration of the noradrenergic neurotoxin N-(2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4 modulates neuroinflammation and amyloid plaque load in mice bearing amyloid precursor protein and presenilin-1 mutant transgenes

    Directory of Open Access Journals (Sweden)

    Richardson Jill C

    2007-02-01

    Full Text Available Abstract Background Data indicates anti-oxidant, anti-inflammatory and pro-cognitive properties of noradrenaline and analyses of post-mortem brain of Alzheimer's disease (AD patients reveal major neuronal loss in the noradrenergic locus coeruleus (LC, the main source of CNS noradrenaline (NA. The LC has projections to brain regions vulnerable to amyloid deposition and lack of LC derived NA could play a role in the progression of neuroinflammation in AD. Previous studies reveal that intraperitoneal (IP injection of the noradrenergic neurotoxin N-(2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4 can modulate neuroinflammation in amyloid over-expressing mice and in one study, DSP-4 exacerbated existing neurodegeneration. Methods TASTPM mice over-express human APP and beta amyloid protein and show age related cognitive decline and neuroinflammation. In the present studies, 5 month old C57/BL6 and TASTPM mice were injected once monthly for 6 months with a low dose of DSP-4 (5 mg kg-1 or vehicle. At 8 and 11 months of age, mice were tested for cognitive ability and brains were examined for amyloid load and neuroinflammation. Results At 8 months of age there was no difference in LC tyrosine hydroxylase (TH across all groups and cortical NA levels of TASTPM/DSP-4, WT/Vehicle and WT/DSP-4 were similar. NA levels were lowest in TASTPM/Vehicle. Messenger ribonucleic acid (mRNA for various inflammatory markers were significantly increased in TASTPM/Vehicle compared with WT/Vehicle and by 8 months of age DSP-4 treatment modified this by reducing the levels of some of these markers in TASTPM. TASTPM/Vehicle showed increased astrocytosis and a significantly larger area of cortical amyloid plaque compared with TASTPM/DSP-4. However, by 11 months, NA levels were lowest in TASTPM/DSP-4 and there was a significant reduction in LC TH of TASTPM/DSP-4 only. Both TASTPM groups had comparable levels of amyloid, microglial activation and astrocytosis and mRNA for

  2. Prediction of Settlements of Soft Clay Subjected to Long-Term Dynamic Load

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    -Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stress FEM method. The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay is used to predict the wave induced excess pore water pressure and residual strain of soft clay. The settlements of two types of breakwaters on the soft clay under ocean wave load, a low embankment subjected to traffic load and the tunnel surrounded by soft clay in Shanghai subjected to locomotive load are calculated as examples.

  3. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...... the fatigue loads, the rotor, blades and tower moments are presented. The fatigue loads are evaluated using rainflow counting described in detail in Ref. [1]. The 1Hz equivalent load ranges are calculated at different wind speeds. All information regarding the instrumentation is collected in [ref 4] and [ref...

  4. Application of OpenMP to Wireline Triaxial Induction Logging in 1D Layered Anisotropic Medium

    Directory of Open Access Journals (Sweden)

    Zhijuan Zhang

    2012-01-01

    Full Text Available Efficient and accurate forward modeling of logging tool responses is essential for data inversion in the log data interpretation in both real time and postprocessing. With the aggressive advancement of various high-performance computing techniques and computer hardware technology, it is possible to significantly improve the efficiency of the forward modeling. In this paper, we apply OpenMP to parallelize the simulation of triaxial induction logging tools in 1D multilayered anisotropic formation. The parallel process is explained in detail and numerical examples are presented to demonstrate the effect of the parallel programming. Comparison of the original code and the parallel code shows that the latter is much faster without loss of accuracy, which is very promising for future real-time inversion.

  5. Robust Adaptive Neural Sliding Mode Approach for Tracking Control of a MEMS Triaxial Gyroscope

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2012-05-01

    Full Text Available In this paper, a neural network adaptive sliding mode control is proposed for an MEMS triaxial gyroscope with unknown system nonlinearities. An input‐output linearization technique is incorporated into the neural adaptive tracking control to cancel the nonlinearities, and the neural network whose parameters are updated from the Lyapunov approach is used to perform the linearization control law. The sliding mode control is utilized to\tcompensate the neural network’s approximation errors. The stability of the closed‐loop system can be guaranteed with the proposed adaptive neural sliding mode control. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive neural sliding mode control scheme.

  6. The effects of compressive sensing on extracted features from tri-axial swallowing accelerometry signals

    Science.gov (United States)

    Sejdić, Ervin; Movahedi, Faezeh; Zhang, Zhenwei; Kurosu, Atsuko; Coyle, James L.

    2016-05-01

    Acquiring swallowing accelerometry signals using a comprehensive sensing scheme may be a desirable approach for monitoring swallowing safety for longer periods of time. However, it needs to be insured that signal characteristics can be recovered accurately from compressed samples. In this paper, we considered this issue by examining the effects of the number of acquired compressed samples on the calculated swallowing accelerometry signal features. We used tri-axial swallowing accelerometry signals acquired from seventeen stroke patients (106 swallows in total). From acquired signals, we extracted typically considered signal features from time, frequency and time-frequency domains. Next, we compared these features from the original signals (sampled using traditional sampling schemes) and compressively sampled signals. Our results have shown we can obtain accurate estimates of signal features even by using only a third of original samples.

  7. Impact of triaxiality on the rotational structure of neutron-rich rhenium isotopes

    Directory of Open Access Journals (Sweden)

    M.W. Reed

    2016-01-01

    Full Text Available A number of 3-quasiparticle isomers have been found and characterised in the odd-mass, neutron-rich, 187Re, 189Re and 191Re nuclei, the latter being four neutrons beyond stability. The decay of the isomers populates states in the rotational bands built upon the 9/2−[514] Nilsson orbital. These bands exhibit a degree of signature splitting that increases with neutron number. This splitting taken together with measurements of the M1/E2 mixing ratios and with the changes observed in the energy of the gamma-vibrational band coupled to the 9/2−[514] state, suggests an increase in triaxiality, with γ values of 5°, 18° and 25° deduced in the framework of a particle-rotor model.

  8. Onset of Crack Initiation in Uniaxial and Triaxial Compression Tests of Dolomite Samples

    Directory of Open Access Journals (Sweden)

    Cieślik Jerzy

    2014-03-01

    Full Text Available The paper presents results of laboratory investigation and analysis of crack initiation threshold identification of dolomite samples. First, selected methods for determining crack initiation thresholds are briefly described with special attention paid to four methods: crack volume strain method [14], change in Poisson’s ratio [8], lateral strain response method [16], and dilatancy method [4]. The investigation performed on dolomite samples shows that for the uniaxial and conventional triaxial compression tests, the above mentioned methods give quite similar values, except for the crack volume strain method. Crack initiation threshold determined by this method has a distinctively lower value than that obtained by the other methods. The aim of the present paper was to review and assess these methods for identifying crack initiation threshold based on laboratory tests of dolomite samples.

  9. Effect of a triaxial nuclear shape on proton tunneling: the decay and structure of 145Tm.

    Science.gov (United States)

    Seweryniak, D; Blank, B; Carpenter, M P; Davids, C N; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Robinson, A; Scholey, C; Sinha, S; Shergur, J; Starosta, K; Walters, W B; Woehr, A; Woods, P J

    2007-08-24

    Gamma rays deexciting states in the proton emitter 145Tm were observed using the recoil-decay tagging method. The 145Tm ground-state rotational band was found to exhibit the properties expected for an h{11/2} proton decoupled band. In addition, coincidences between protons feeding the 2{+} state in 144Er and the 2{+}-->0{+} gamma-ray transition were detected, the first measurement of this kind, leading to a more precise value for the 2{+} excitation energy of 329(1) keV. Calculations with the particle-rotor model and the core quasiparticle coupling model indicate that the properties of the pi{11/2} band and the proton-decay rates in 145Tm are consistent with the presence of triaxiality with an asymmetry parameter gamma approximately 20 degrees .

  10. Water-permeability measurement of high performance concrete using a high-pressure triaxial cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Dieb, A.S. [Ain Shams Univ., Cairo (Egypt). Dept. of Civil Engineering; Hooton, R.D. [Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering

    1995-08-01

    Water permeability of concrete is used to indicate its durability. Accurate and reproducible measurement of water permeability is difficult and becomes more difficult as the quality of concrete increases. When high-performance concrete (HPC) is tested, these concerns become more pronounced. HPC is used widely to improve the durability and performance of structures but there are few test procedures able to evaluate its permeability-related properties. In this study the water permeabilities of concretes including HPC were measured using a high-pressure triaxial cell with a sensitive and automated measurement capability. Special analysis procedures were developed to obtain useful data from the extremely low volume of water being measured. This method was able to measure a wide range of permeability values from 10{sup {minus}12} m/s to 10{sup {minus}16} m/s, with reproducible measurements on replicates.

  11. The effects of compressive sensing on extracted features from tri-axial swallowing accelerometry signals.

    Science.gov (United States)

    Sejdić, Ervin; Movahedi, Faezeh; Zhang, Zhenwei; Kurosu, Atsuko; Coyle, James L

    2016-04-17

    Acquiring swallowing accelerometry signals using a comprehensive sensing scheme may be a desirable approach for monitoring swallowing safety for longer periods of time. However, it needs to be insured that signal characteristics can be recovered accurately from compressed samples. In this paper, we considered this issue by examining the effects of the number of acquired compressed samples on the calculated swallowing accelerometry signal features. We used tri-axial swallowing accelerometry signals acquired from seventeen stroke patients (106 swallows in total). From acquired signals, we extracted typically considered signal features from time, frequency and time-frequency domains. Next, we compared these features from the original signals (sampled using traditional sampling schemes) and compressively sampled signals. Our results have shown we can obtain accurate estimates of signal features even by using only a third of original samples.

  12. Simple solutions of fireball hydrodynamics for rotating and expanding triaxial ellipsoids and final state observables

    CERN Document Server

    Nagy, M I

    2016-01-01

    We present a class of analytic solutions of non-relativistic fireball hydrodynamics for a fairly general class of equation of state. The presented solution describes the expansion of a triaxial ellipsoid that rotates around one of the principal axes. We calculate the hadronic final state observables such as single-particle spectra, directed, elliptic and third flows, as well as HBT correlations and corresponding radius parameters, utilizing simple analytic formulas. We call attention to the fact that the final tilt angle of the fireball, an important observable quantity, is not independent on the exact definition of it: one gets different angles from the single-particle spectra and from HBT measurements. Taken together, it is pointed out that these observables may be sufficient for the determination of the magnitude of the rotation of the fireball. We argue that observing this rotation and its dependence on collision energy would reveal the softness of the equation of state. Thus determining the rotation may ...

  13. Order and chaos in a triaxial galaxy model with a dark halo component

    CERN Document Server

    Caranicolas, Nicolaos D

    2012-01-01

    We study the regular or chaotic nature of orbits in a 3D potential describing a triaxial galaxy surrounded by a spherical dark halo component. Our numerical calculations show, that the percentage of chaotic orbits decreases exponentially, as the mass of the dark halo increases. A linear increase of the percentage of the chaotic orbits was observed, as the scale length of the dark halo component increases. In order to distinguish between regular and chaotic character of orbits, we use the total angular momentum Ltot, as a new indicator. Comparison of this new dynamical parameter, with other, previously used chaos indicators, shows that the Ltot gives very fast and reliable results in order to detect the character of orbits in galactic potentials.

  14. Speed estimation from a tri-axial accelerometer using neural networks.

    Science.gov (United States)

    Song, Yoonseon; Shin, Seungchul; Kim, Seunghwan; Lee, Doheon; Lee, Kwang H

    2007-01-01

    We propose a speed estimation method with human body accelerations measured on the chest by a tri-axial accelerometer. To estimate the speed we segmented the acceleration signal into strides measuring stride time, and applied two neural networks into the patterns parameterized from each stride calculating stride length. The first neural network determines whether the subject walks or runs, and the second neural network with different node interactions according to the subject's status estimates stride length. Walking or running speed is calculated with the estimated stride length divided by the measured stride time. The neural networks were trained by patterns obtained from 15 subjects and then validated by 2 untrained subjects' patterns. The result shows good agreement between actual and estimated speeds presenting the linear correlation coefficient r=0.9874. We also applied the method to the real field and track data.

  15. Finite Element Model for Failure Study of Two-Dimensional Triaxially Braided Composite

    Science.gov (United States)

    Li, Xuetao; Binienda, Wieslaw K.; Goldberg, Robert K.

    2010-01-01

    A new three-dimensional finite element model of two-dimensional triaxially braided composites is presented in this paper. This meso-scale modeling technique is used to examine and predict the deformation and damage observed in tests of straight sided specimens. A unit cell based approach is used to take into account the braiding architecture as well as the mechanical properties of the fiber tows, the matrix and the fiber tow-matrix interface. A 0 deg / plus or minus 60 deg. braiding configuration has been investigated by conducting static finite element analyses. Failure initiation and progressive degradation has been simulated in the fiber tows by use of the Hashin failure criteria and a damage evolution law. The fiber tow-matrix interface was modeled by using a cohesive zone approach to capture any fiber-matrix debonding. By comparing the analytical results to those obtained experimentally, the applicability of the developed model was assessed and the failure process was investigated.

  16. Dark halos acting as chaos controllers in asymmetric triaxial galaxy models

    CERN Document Server

    Caranicolas, Nicolaos D; 10.1088/1674-4527/11/7/006

    2012-01-01

    We study the regular or chaotic character of orbits in a 3D dynamical model, describing a triaxial galaxy surrounded by a spherical dark halo component. Our numerical experiments suggest that the percentage of chaotic orbits decreases exponentially as the mass of the dark halo increases. A linear increase of the percentage of the chaotic orbits was observed as the scale length of the halo component increases. In order to distinguish between regular and chaotic motion, we chose to use the total angular momentum Ltot of the 3D orbits as a new indicator. Comparison with other, previously used, dynamical indicators, such as the Lyapunov Characteristic Exponent or the P(f) spectral method, shows that the Ltot indicator gives very fast and reliable results for characterizing the nature of orbits in galactic dynamical models.

  17. A POSSIBLE LOCAL DIAGNOSTIC FOR THE MILKY WAY DARK MATTER HALO TRIAXIALITY

    Directory of Open Access Journals (Sweden)

    A. Rojas-Niño

    2011-01-01

    Full Text Available En este estudio proponemos restringir a través de la cinemática estelar local la forma global del halo de materia oscura de la Vía Láctea. El principio utilizado es que la forma del halo implica la existencia de familias de órbitas periódicas que sostienen la forma triaxial. Estas aparecerían como grupos cinemáticos co-móviles de estrellas en el halo de la Galaxia. Nuestro análisis utiliza simulaciones de la estructura orbital en halos oscuros con diferentes estructuras. Discutiremos cómo distinguirlos de grupos móviles creados por eventos de acreción en el pasado de la Galaxia.

  18. Comparison with Tilted Axis Cranking and particle rotor model for triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, Shin-ichi; Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    An extension of the cranking model in such a way to allow a rotation axis to deviate from the principal axes of the deformed mean-field is a promising tool for the spectroscopic study of rapidly rotating nuclei. We have applied such a `Tilted Axis Cranking` (TAC) method to a simple system of one-quasiparticle coupled to a triaxial rotor and compared it with a particle-rotor coupling calculation in order to check whether the spin-orientation degrees of freedom can be well described within the mean-field approximation. The result shows that the TAC method gives a good approximation to observable quantities and it is a suitable method to understand the dynamical interplay between the collective and single-particle angular momenta. (author)

  19. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Buenos Aires (Argentina); Suarez, G.; Aglietti, E.F.; Rendtorff, N.M., E-mail: rendtorff@cetmic.unlp.edu.ar [Universidad Nacional de La Plata (UNLP), Buenos Aires (Argentina). Fac. de Ciencias Exactas. Dept. de Quimica

    2014-10-15

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  20. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Directory of Open Access Journals (Sweden)

    M. S. Conconi

    2014-12-01

    Full Text Available The firing transformations of traditional (clay based ceramics are of technological and archeological interest, and are usually reported qualitatively or semiquantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite, the low crystalline (metakaolinite and/or spinel type pre-mullite and glassy phases evolution of a triaxial (clay-quartz-feldspar ceramic fired in a wide temperature range between 900 and 1300 ºC. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 ºC spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and

  1. 3D controlled electrorotation of conducting tri-axial ellipsoidal nanoparticles

    Science.gov (United States)

    Weis Goldstein, Ben; Miloh, Touvia

    2017-05-01

    We present a theoretical study of 3D electrorotation of ideally polarizable (metallic) nano∖micro-orthotropic particles that are freely suspended in an unbounded monovalent symmetric electrolyte. The metallic tri-axial ellipsoidal particle is subjected to three independent uniform AC electric fields acting along the three principal axes of the particle. The analysis of the electrokinetic problem is carried under the Poisson-Nernst-Planck approximation and the standard "weak" field assumption. For simplicity, we consider the electric double layer as thin and the Dukhin number to be small. Both nonlinear phenomena of dielectrophoresis induced by the dipole-moment within the particle and the induced-charge electrophoresis caused by the Coulombic force density within the Debye layer in the solute surrounding the conducting particle are analytically analyzed by linearization, constructing approximate expressions for the total dipolophoresis angular particle motion for various geometries. The analytical expressions thus obtained are valid for an arbitrary tri-axial orthotropic (exhibiting three planes of symmetry) particle, excited by an arbitrary ambient three-dimensional AC electric field of constant amplitude. The present study is general in the sense that by choosing different geometric parameters of the ellipsoidal particle, the corresponding nonlinear electrostatic problem governed by the Robin (mixed-type) boundary condition can be reduced to common nano-shapes including spheres, slender rods (needles), prolate and oblate spheroids, as well as flat disks. Furthermore, by controlling the parameters (amplitudes and phases) of the forcing electric field, one can reduce the present general 3D electrokinetic model to the familiar planar electro-rotation (ROT) and electro-orientation (EOR) cases.

  2. The Pentapeptide Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  3. Load Measurements

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regardi...

  4. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...

  5. Repeating the Past

    Science.gov (United States)

    Moore, John W.

    1998-05-01

    As part of the celebration of the Journal 's 75th year, we are scanning each Journal issue from 25, 50, and 74 years ago. Many of the ideas and practices described are so similar to present-day "innovations" that George Santayana's adage (1) "Those who cannot remember the past are condemned to repeat it" comes to mind. But perhaps "condemned" is too strong - sometimes it may be valuable to repeat something that was done long ago. One example comes from the earliest days of the Division of Chemical Education and of the Journal.

  6. All-optical repeater.

    Science.gov (United States)

    Silberberg, Y

    1986-06-01

    An all-optical device containing saturable gain, saturable loss, and unsaturable loss is shown to transform weak, distorted optical pulses into uniform standard-shape pulses. The proposed device performs thresholding, amplification, and pulse shaping as required from an optical repeater. It is shown that such a device could be realized by existing semiconductor technology.

  7. Bidirectional Manchester repeater

    Science.gov (United States)

    Ferguson, J.

    1980-01-01

    Bidirectional Manchester repeater is inserted at periodic intervals along single bidirectional twisted pair transmission line to detect, amplify, and transmit bidirectional Manchester 11 code signals. Requiring only 18 TTL 7400 series IC's, some line receivers and drivers, and handful of passive components, circuit is simple and relatively inexpensive to build.

  8. Damage localisation and fracture propagation in granite: 4D synchrotron x-ray microtomographic observations from an in-situ triaxial deformation experiment at SOLEIL

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Fusseis, Florian; Butler, Ian; Flynn, Michael; King, Andrew

    2017-04-01

    To date, most studies of damage localisation and failure have utilised indirect techniques to visualise the pathway to failure. The advent of synchrotron tomography and x-ray transparent experimental cells provides for the first time the opportunity to image localisation and fracture propagation in-situ, in real time with spatial resolutions of a few microns. We present 4D x-ray microtomographic data collected during a triaxial deformation experiment carried out at the imaging beamline PSICHE at the French Synchrotron SOLEIL. The data document damage localisation and fracture propagation in a microgranite. The sample was deformed at 15 MPa confining pressure and 3x10-5 s-1 strain rate, in a novel, miniature, x-ray transparent, triaxial deformation apparatus, designed and built at the University of Edinburgh. We used a 2.97 mm diameter x 9.46 mm long cylindrical sample of Ailsa Craig microgranite, heat treated to 600 ˚ C to introduce flaws in the form of pervasive crack damage. As the sample was loaded to failure, 21 microtomographic volumes were acquired in intervals of 5-20 MPa (decreasing as failure approached), including one scan at peak differential stress of 200 MPa (1.4 kN end load) and three post-failure scans. The scan at peak stress contained the incipient fault, and the sample failed immediately when loading continued afterwards. During scanning, a constant stress level was maintained. Individual datasets were collected in ˜10 minutes using a white beam with an energy maximum at 66 keV in a spiral configuration. Reconstructions yielded image stacks with a dimension of 1700x1700x4102 voxels with a voxel size of 2.7 μm. We analysed damage localisation and fracture propagation in the time series data. Fractures were segmented from the image data using a Multiscale Hessian fracture filter [1] and analysed for their orientations, dimensions and spatial distributions and changes in these properties during loading. Local changes in volumetric and shear

  9. A constitutive model for unsaturated cemented soils under cyclic loading

    CERN Document Server

    Yang, C; Pereira, Jean-Michel; Huang, M S

    2008-01-01

    On the basis of plastic bounding surface model, the damage theory for structured soils and unsaturated soil mechanics, an elastoplastic model for unsaturated loessic soils under cyclic loading has been elaborated. Firstly, the description of bond degradation in a damage framework is given, linking the damage of soil's structure to the accumulated strain. The Barcelona Basic Model (BBM) was considered for the suction effects. The elastoplastic model is then integrated into a bounding surface plasticity framework in order to model strain accumulation along cyclic loading, even under small stress levels. The validation of the proposed model is conducted by comparing its predictions with the experimental results from multi-level cyclic triaxial tests performed on a natural loess sampled beside the Northern French railway for high speed train and about 140 km far from Paris. The comparisons show the capabilities of the model to describe the behaviour of unsaturated cemented soils under cyclic loading.

  10. Some like it triaxial: the universality of dark matter halo shapes and their evolution along the cosmic time

    CERN Document Server

    Despali, Giulia; Tormen, Giuseppe

    2014-01-01

    We present a detailed analysis of dark matter halo shapes, studying how the distributions of ellipticity, prolateness and axial ratios evolve as a function of time and mass. With this purpose in mind, we analysed the results of three cosmological simulations, running an ellipsoidal halo finder to measure triaxial halo shapes. The simulations have different scales, mass limits and cosmological parameters, which allows us to ensure a good resolution and statistics in a wide mass range, and to investigate the dependence of halo properties on the cosmological model. We confirm the tendency of haloes to be prolate at all times, even if they become more triaxial going to higher redshifts. Regarding the dependence on mass, more massive haloes are also less spherical at all redshifts, since they are the most recent forming systems and so still retain memory of their original shape at the moment of collapse. We then propose a rescaling of the shape-mass relations, using the variable $\

  11. Taguchi design and flower pollination algorithm application to optimize the shrinkage of triaxial porcelain containing palm oil fuel ash

    Science.gov (United States)

    Zainudin, A.; Sia, C. K.; Ong, P.; Narong, O. L. C.; Nor, N. H. M.

    2017-01-01

    In the preparation of triaxial porcelain from Palm Oil Fuel Ash (POFA), a new parameter variable must be determined. The parameters involved are the particle size of POFA, percentage of POFA in triaxial porcelain composition, moulding pressure, sintering temperature and soaking time. Meanwhile, the shrinkage is the dependent variable. The optimization process was investigated using a hybrid Taguchi design and flower pollination algorithm (FPA). The interaction model of shrinkage was derived from regression analysis and found that the shrinkage is highly dependent on the sintering temperature followed by POFA composition, moulding pressure, POFA particle size and soaking time. The interaction between sintering temperature and soaking time highly affects the shrinkage. From the FPA process, targeted shrinkage approaching zero values were predicted for 142 μm particle sizes of POFA, 22.5 wt% of POFA, 3.4 tonne moulding pressure, 948.5 °C sintering temperature and 264 minutes soaking time.

  12. Triaxial ellipsoid models of the Moon based on the laser altimetry data of Chang’E-1

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Lunar geodetic parameters, which play an important role in lunar exploration, can be calculated from the gravity and topography data. With the CE-1 altimetry data and LP gravity model, we calculate such geodetic parameters as the principle moment of inertia, the principle inertia axes, equatorial radius, polar radius, mean radius, flattening and offset between center of mass and center of figure (DCOM-COF). According to the CE-1 altimetry data and the above geodetic parameters, a tri-axial ellipsoid (CE-1-LAM-GEO) and a tri-axial level ellipsoid (CE-1-LAM-LEVEL) are calculated individually, providing mass center and figure center offset (DCOM-COF) and parameters more reliable in direction and magnitude.

  13. On the life time prediction of repeatedly impacted thermoplastic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Mustafa Ozguer [Kocaeli University, Mechanical Engineering Department, Veziroglu Campus, 41040 Izmit (Turkey)], E-mail: ozgur_bora@yahoo.com; Coban, Onur [Kocaeli University, Mechanical Engineering Department, Veziroglu Campus, 41040 Izmit (Turkey); Sinmazcelik, Tamer [Kocaeli University, Mechanical Engineering Department, Veziroglu Campus, 41040 Izmit (Turkey); TUBITAK-MAM, Materials Institute, P.O. Box 21, 41470 Gebze (Turkey); Cuerguel, Ismail [Kocaeli University, Mechanical Engineering Department, Veziroglu Campus, 41040 Izmit (Turkey); Guenay, Volkan [TUBITAK-MAM, Materials Institute, P.O. Box 21, 41470 Gebze (Turkey)

    2009-01-15

    Impact-fatigue properties of unidirectional carbon fibre reinforced polyetherimide (PEI) composites were investigated. Low velocity repeated impacts were performed by using pendulum type instrumented impact tester (Ceast, Resil 25) at energy levels ranging 0.54-0.94 J. Samples were prepared according to ISO 180 and subjected to repeated low velocity impacts up to fracture by the hammer. Results of repeated impact study are reported in terms of peak load (F{sub max}), absorbed energy (E{sub max}) and number of repeated impacts. An analytical model to describe the life time of composite materials subjected to repeated impact loadings was presented.

  14. Repeated load relaxations of Type 316 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, S.P.; Li, C.Y.

    1983-10-01

    Results demonstrate that strain aging has a clear effect on the relaxation behavior of 316 SS even at room temperature, the effect being more pronounced at high strains. It is suggested that the phenomena can be accounted for according to a state variable model by modifying the rate constant a*, which is affected by the amount of mobile dislocations as well as the dislocation mobility.

  15. Duct Leakage Repeatability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  16. A high pressure triaxial cell with improved measurement sensitivity for saturated water permeability of high performance concrete

    Energy Technology Data Exchange (ETDEWEB)

    El-Dieb, A.S.; Hooton, R.D. (Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering)

    1994-01-01

    The measurement of the saturated water permeability of concrete is of great interest, but with the rapid improvements in properties of high performance concretes, the most common problem is the ability and accuracy of measuring the very small flow volumes. A high pressure triaxial cell with improved measurement sensitivity, capable of continuously measuring saturated water permeability of the order of < 10[sup [minus]15] m/s, is presented in this paper.

  17. Infinitesimal cranking for triaxial angular-momentum-projected configuration-mixing calculation and its application to the gamma vibrational band

    CERN Document Server

    Tagami, Shingo

    2016-01-01

    Inclusion of time-odd components into the wave function is important for reliable description of rotational motion by the angular-momentum-projection method; the cranking procedure with infinitesimal rotational frequency is an efficient way to realize it. In the present work we investigate the effect of this infinitesimal cranking for triaxially deformed nucleus, where there are three independent cranking axes. It is found that the effects of cranking about three axes on the triaxial energy spectrum are quite different and inclusion of all of them considerably modify the resultant spectrum from the one obtained without cranking. Employing the Gogny D1S force as an effective interaction, we apply the method to the calculation of the multiple gamma vibrational bands in $^{164}$Er as a typical example, where the angular-momentum-projected configuration-mixing with respect to the triaxial shape degree of freedom is performed. With this method, both the $K=0$ and $K=4$ two-phonon gamma vibrational bands are obtain...

  18. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS. II. DEPENDENCE ON NATURE DARK MATTER AND GRAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., Universitaria, D.F., México (Mexico); Martínez-Medina, Luis A., E-mail: barbara@astro.unam.mx, E-mail: octavio@astro.unam.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F., México (Mexico)

    2015-05-20

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.

  19. The Triaxial Ellipsoid Diameters and Rotational Pole of Asteroid (9) Metis from AO at Gemini and Keck

    Science.gov (United States)

    Drummond, Jack D.; Merline, W. J.; Conrad, A.; Dumas, C.; Tamblyn, P.; Christou, J.; Carry, B.; Chapman, C.

    2012-10-01

    From Adaptive Optics (AO) images of (9) Metis at 14 epochs over 2008 December 8 and 9 at Gemini North, triaxial ellipsoid diameters of 218x175x112 km are derived with fitting uncertainties of 3x3x47 km. However, by including just two more AO images from Keck-II in June and August of 2003 in a global fit, the fitting uncertainty of the small axis drops by more than a third because of the lower sub-Earth latitude afforded in 2003 (-28°) compared to 2008 (+47°), and the triaxial ellipsoid diameters become 218x175x129 km with fitting uncertainties of 3x3x14 km. We have estimated the systematic uncertainty of our method to be 4.1, 2.7, and 3.8%, respectively, for the three diameters. These values were recently derived (Drummond et al., in prep) from a comparison of KOALA (Carry et al, Planetary and Space Science 66, 200-212) and our triaxial ellipsoid analysis of four asteroids. Quadratically adding this systematic error with the fitting error, the total uncertainty for Metis becomes 9x5x15 km. Concurrently, we find an EQJ2000 rotational pole at [RA; Dec]=[185° +19°] or in ecliptic coordinates, [λ ; β ]=[176° +20°] (ECJ2000).

  20. Dynamic Behaviours of a Single Soft Rock-Socketed Shaft Subjected to Axial Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Ben-jiao Zhang

    2016-01-01

    Full Text Available The soft rock was simulated by cement, plaster, sand, water, and concrete hardening accelerator in this paper. Meanwhile, uniaxial compressive strength tests and triaxial compression tests were conducted to study the mechanical properties of simulated soft rock samples. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted by using a device which combined test apparatus with a GCTS dynamic triaxial system. Test results show that the optimal mix ratio is cement : plaster : medium sand : water : concrete hardening accelerator = 4.5% : 5.0% : 84.71% : 4.75% : 1.04%. The static load ratio (SLR, cyclic load ratio (CLR, and the number of cycles affect the accumulated deformation and cyclic secant modulus of the pile head. The accumulated deformation increases with increasing numbers of cycles. However, the cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles and finally remains stable after 50 cycles. According to the test results, the development of accumulated settlement was analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio, and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to traffic loading.

  1. True Triaxial Failure of Granite: Implications for Deep Borehole Waste Disposal

    Science.gov (United States)

    Williams, M.; Ingraham, M. D.; Cheung, C.; Haimson, B. C.

    2016-12-01

    A series of tests have been completed to determine the failure of Sierra White Granite under a range of true triaxial stress conditions ranging from axisymmetric compression to axisymmetric extension. Tests were performed under constant mean stress conditions. Results show a significant difference in failure due to the intermediate principal stress. Borehole breakout, a significant issue for deep borehole disposal, occurs in line with the least principal stress, which in the United States at great depth is almost certainly a horizontal stress. This means that any attempt to dispose of waste in deep boreholes will have to overcome this phenomenon. This work seeks to determine the full 3D failure surface for granite such that it can be applied to determining the likelihood of borehole breakout occurring under different stress conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  3. Extremely Low-Stress Triaxiality Tests in Calibration of Fracture Models in Metal-Cutting Simulation

    Science.gov (United States)

    Šebek, František; Kubík, Petr; Petruška, Jindřich; Hůlka, Jiří

    2016-11-01

    The cutting process is now combined with machining, milling, or drilling as one of the widespread manufacturing operations. It is used across various fields of engineering. From an economical point of view, it is desirable to maintain the process in the most effective way in terms of the fracture surface quality or minimizing the burr. It is not possible to manage this experimentally in mass production. Therefore, it is convenient to use numerical computation. To include the crack initiation and propagation in the computations, it is necessary to implement a suitable ductile fracture criterion. Uncoupled ductile fracture models need to be calibrated first from fracture tests when the test selection is crucial. In the present article, there were selected widespread uncoupled ductile fracture models calibrated with, among others, an extremely low-stress triaxiality test realized through the compression of a cylinder with a specific recess. The whole experimental program together with the cutting process experiment were carried out on AISI 1045 carbon steel. After the fracture models were calibrated and the cutting process was simulated with their use, fracture surfaces and force responses from computations were compared with those experimentally obtained and concluding remarks were made.

  4. Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments

    Institute of Scientific and Technical Information of China (English)

    Yihui Pang; Guofa Wang; Ziwei Ding

    2014-01-01

    In order to study the mechanism of confined water inrush from coal seam floor, the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiments, theoretical analysis and mechanical model calculation. The crack extension rule and the ultimate destruction form of the rock specimens were obtained. The mechanism of water inrush was explained reasonably from mechanical point of view. The practical criterion of water inrush was put forward. The results show that the rock permeability ‘‘mutation’’ phe-nomenon reflects the differences of stress state and cracks extension rate when the rock internal crack begins to extend in large-scale. The rock ultimate destruction form is related to the rock lithology and the angle between crack and principal stress. The necessary condition of floor water inrush is that the mining pressure leads to the extension and transfixion of the crack. The sufficient condition of floor water inrush is that the confined water’s expansionary stress in normal direction and shear stress in tangential direction must be larger than the internal stress in the crack. With the two conditions satisfied at the same time, the floor water inrush accident will occur.

  5. Dilatancy equation of rockfill material under the true triaxial stress condition

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Rockfill material is widely used for construction of high rockfill dam due to its facility,economical cost,high strength and effective aseismatic property.It is provoked profoundly to propose a suitable constitutive model for a better application of this material.The dilatancy equation of rockfill material plays a significant role in the constitutive model.For the sake of simplicity,a dilatancy equation is established by the linear least square method on the basis of the rearranged data of rockfill material in the true triaxial tests.Based on the fact that the rearranged data at different initial confining pressures are aligned in a narrow band,the dilatancy behavior of rockfill material is independent of the initial confining pressure.However,different from the initial confining pressure,both the intermediate principal stress ratio and the specimen density exhibit a remarkable influence on the dilatancy behaviors of rockfill material.Furthermore,the predictions of the proposed dilatancy equation are in a good agreement with the rearranged test data of rockfill material at different specimen densities and stress paths.

  6. Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Triaxial Braid Composites

    Science.gov (United States)

    Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary D.; Goldberg, Robert K.

    2010-01-01

    The reliability of impact simulations for aircraft components made with triaxial-braided carbon-fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined.

  7. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  8. Effects of stress conditions on rheological properties of granular soil in large triaxial rheology laboratory tests

    Institute of Scientific and Technical Information of China (English)

    陈晓斌; 张家生; 刘宝琛; 唐孟雄

    2008-01-01

    In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,the rheological tests were carried out.These experiment results showed that the stress conditions,especially the stress level were the critical influencing factors of the rheological deformation properties.Under the low stress level(S=0.1),the granular soil showed the elastic properties,and there was no obvious rheological deformation.Under the middle stress level(0.20.8) creep curves showed the non-linear viscous plastic rheological properties.Especially,under the stress level of S=1.0,the accelerated rheological phase of creep curves occurred at early time with a trend of failure.The stress level had obvious effects on the final rheological deformation of the soil sample,and the final rheological deformation increments nonlinearly increased with stress level.The final rheological deformation increment and step was little under low stress level,while it became large under high stress level,which showed the nonlinearly rheological properties of the granular soil.The confining pressure also had direct effects on final rheological deformation,and the final rheological deformation linearly increased with confining pressure increments.

  9. Fractal Characteristics of Rock Fracture Surface under Triaxial Compression after High Temperature

    Directory of Open Access Journals (Sweden)

    X. L. Xu

    2016-01-01

    Full Text Available Scanning Electron Microscopy (SEM test on 30 pieces of fractured granite has been researched by using S250MK III SEM under triaxial compression of different temperature (25~1000°C and confining pressure (0~40 MPa. Research results show that (1 the change of fractal dimension (FD of rock fracture with temperature is closely related to confining pressure, which can be divided into two categories. In the first category, when confining pressure is in 0~30 MPa, FD fits cubic polynomial fitting curve with temperature, reaching the maximum at 600°C. In the second category, when confining pressure is in 30~40 MPa, FD has volatility with temperature. (2 The FD of rock fracture varies with confining pressure and is also closely related to the temperature, which can be divided into three categories. In the first category, FD has volatility with confining pressure at 25°C, 400°C, and 800°C. In the second category, it increases exponentially at 200°C and 1000°C. In the third category, it decreases exponentially at 600°C. (3 It is found that 600°C is the critical temperature and 30 MPa is the critical confining pressure of granite. The rock transfers from brittle to plastic phase transition when temperature exceeds 600°C and confining pressure exceeds 30 MPa.

  10. Simple solutions of fireball hydrodynamics for rotating and expanding triaxial ellipsoids and final state observables

    Science.gov (United States)

    Nagy, M. I.; Csörgő, T.

    2016-12-01

    We present a class of analytic solutions of nonrelativistic fireball hydrodynamics for a fairly general class of equation of state. The presented solution describes the expansion of a triaxial ellipsoid that rotates around one of its principal axes. We calculate the hadronic final state observables such as single-particle spectra, directed, elliptic, and third flows, as well as two-particle Bose-Einstein (also named HBT) correlations and corresponding radius parameters, utilizing simple analytic formulas. The final tilt angle of the fireball, an important observable quantity, is shown to be not independent of its exact definition: one gets different tilt angles from the geometrical anisotropies, from the single-particle spectra, and from HBT measurements. Taken together, the tilt angle in the momentum space and in the relative momentum or HBT variable may be sufficient for the determination of the magnitude of the rotation of the fireball. We argue that observing this rotation and its dependence on collision energy could characterize the softest point of the equation of state. Thus determining the rotation may be a powerful tool for the experimental search for the critical point in the phase diagram of strongly interacting matter.

  11. Experimental and Numerical Investigation of Permeability Evolution with Damage of Sandstone Under Triaxial Compression

    Science.gov (United States)

    Chen, Xu; Yu, Jin; Tang, Chun'an; Li, Hong; Wang, Shanyong

    2017-06-01

    A series of triaxial compression tests with permeability measurements was carried out under different confining pressure and pore pressure difference coupling conditions to investigate some mechanical properties and permeability evolution with damage of sandstone. It is found that the shapes of stress-strain curves, permeability evolution curves, and failure patterns are significantly affected by the confining pressure but are only slightly affected by the pore pressure difference. In addition, the corresponding numerical simulations of the experiments were then implemented based on the two-dimensional Realistic Failure Process Analysis-Flow (RFPA2D-Flow) code. In this simulator, the heterogeneity of rock is considered by assuming the material properties of the mesoscopic elements conform to a Weibull distribution and a statistical damage constitutive model based on elastic damage mechanics and the flow-stress-damage (FSD) coupling model. The numerical simulations reproduced the failure processes and failure patterns in detail, and the numerical results about permeability-strain qualitatively agree with the experimental results by assigning different parameters in the FSD model. Finally, the experimental results about relationship between permeability evolution and volumetric strain are discussed.

  12. Triaxial shear behavior of a cement-treated sand–gravel mixture

    Directory of Open Access Journals (Sweden)

    Younes Amini

    2014-10-01

    Full Text Available A number of parameters, e.g. cement content, cement type, relative density, and grain size distribution, can influence the mechanical behaviors of cemented soils. In the present study, a series of conventional triaxial compression tests were conducted on a cemented poorly graded sand–gravel mixture containing 30% gravel and 70% sand in both consolidated drained and undrained conditions. Portland cement used as the cementing agent was added to the soil at 0%, 1%, 2%, and 3% (dry weight of sand–gravel mixture. Samples were prepared at 70% relative density and tested at confining pressures of 50 kPa, 100 kPa, and 150 kPa. Comparison of the results with other studies on well graded gravely sands indicated more dilation or negative pore pressure in poorly graded samples. Undrained failure envelopes determined using zero Skempton's pore pressure coefficient (A¯=0 criterion were consistent with the drained ones. Energy absorption potential was higher in drained condition than undrained condition, suggesting that more energy was required to induce deformation in cemented soil under drained state. Energy absorption increased with increase in cement content under both drained and undrained conditions.

  13. Classification of physical exercises using a triaxial accelerometer in a smartphone and an artificial neural network

    Directory of Open Access Journals (Sweden)

    Cakić Nikola

    2017-01-01

    Full Text Available The prevalence of smartphones and their adequate computer skills can be used for detecting everyday physical exercises. Acquired information on performed exercises can be used in the field of Health Informatics. For identification of particular physical activity a number of sensors and their repositioning during exercises are needed. This paper presents a way to classify the type of exercise using only triaxial built-in accelerometric sensor in the smartphone. The smartphone itself is free to move inside the subject pocket. The problem of using a number of sensors and their repositioning during exercise is solved by raw signal filtering and by defining a set of signal descriptors. Nine characteristic exercises have been analyzed for different programs and levels of exercise. To filter the raw accelerometer signal a low-pass 10-th order Butterworth filter is used. The filtered signals are described in terms of five descriptors which are used to train an artificial neural network (ANN. Classification of the type of exercise is performed using ANN with an error of 0.7%. Some exercises can be performed with only left or right leg. The classification accuracy of proposed approach is tested in a way that the smartphone was always in the subject's right pocket even when the exercise is performed using left leg only.

  14. Effect of different sources of alumina on the microstructure and mechanical properties of the triaxial porcelain

    Directory of Open Access Journals (Sweden)

    G. Gralik

    2014-12-01

    Full Text Available Porcelains composed of kaolin-quartz-feldspar are called triaxial porcelains. The use of alumina as a substitute for quartz in porcelains has been developed for some time. The results show a significant improvement in their mechanical properties, but alumina has a high cost. The possibility of using alternative materials as a source of alumina with lower cost was investigated. In this work, alternative raw materials were used as a source of alumina: refractory bauxite, primary aluminum hydroxide, reprecipitated aluminum hydroxide. Compositions with commercial alumina and quartz were also formulated to better understand the effects of adding these alternative materials. The raw materials were milled, dried, and characterized by analysis of the particle size distribution, X-ray diffraction, and X-ray fluorescence. The compositions were formulated by replacing the different sources of alumina in the formulation of porcelain. The compositions studied were shaped by pressing and sintered at different temperatures (1150-1400 ºC. The results showed that the use of bauxite and aluminum hydroxide as an alternative source of Al2O3 is viable. The impurities contained in refractory bauxite contributed to the lower values of flexural strength found in compositions having refractory bauxite as a source of alumina. The compositions with reprecipitated aluminum hydroxide showed a high mechanical resistance at low sintering temperatures, while compositions with aluminum hydroxide obtained by the Bayer process achieved good results of mechanical strength in a wide temperature range.

  15. Effects of preform architecture on modulus and strength of 2-D triaxially braided textile composites

    Science.gov (United States)

    Masters, John E.; Naik, Rajiv; Minguet, Pierre J.

    1995-01-01

    Laminates formed using braided fibrous preforms have been extensively investigated during the course of the past few years as alternatives to unidirectional prepreg tape systems. This paper focused on one aspect of that work. It defined the role of the fibrous preform architecture in controlling a laminate's mechanical properties. The presentation was divided into four sections as the outline listed above illustrates. The presentation began with a brief introduction which defined the objectives of the study and detailed the materials studied. This was followed by a review of empirical test results. The materials' moduli and strengths were measured in both tension and compression. Their shear moduli were also experimentally determined. The review of the empirical data comprised the bulk of the presentation. A comparison of the experimental data to results predicted analytically was then presented. The presentation concluded with a few summary remarks. The specimens studied in this investigation featured 2-D triaxially braided AS4 graphite fiber preforms impregnated with Shell 1895 epoxy resin.

  16. Using tri-axial accelerometers to identify wild polar bear behaviors

    Science.gov (United States)

    Pagano, Anthony M.; Rode, Karyn D.; Cutting, A.; Owen, M.A.; Jensen, S.; Ware, J.V.; Robbins, C.T.; Durner, George M.; Atwood, Todd C.; Obbard, M.E.; Middel, K.R.; Thiemann, G.W.; Williams, T.M.

    2017-01-01

    Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.

  17. ASSESSMENT OF POSTURAL INSTABILITY IN PATIENTS WITH A NEUROLOGICAL DISORDER USING A TRI-AXIAL ACCELEROMETER

    Directory of Open Access Journals (Sweden)

    Lenka Hanakova

    2015-08-01

    Full Text Available Current techniques for quantifying human postural stability during quiet standing have several limitations. The main problem is that only two movement variables are evaluated, though a better description of complex three-dimensional (3-D movements can be provided with the use of three variables. A single tri-axial accelerometer placed on the trunk was used to measure 3-D data.We are able to evaluate 3-D movements using a method based on the volume of confidence ellipsoid (VE of the set of points obtained by plotting three accelerations against each other. Our method was used to identify and evaluate pathological balance control. In this study, measurements were made of patients with progressive cerebellar ataxia, and also control measurements of healthy subjects, and a statistical analysis was performed. The results show that the VEs of the neurological disorder patients are significantly larger than the VEs of the healthy subjects. It can be seen that the quantitative method based on VE is very sensitive for identifying changes in stability, and that it is able to distinguish between neurological disorder patients and healthy subjects.

  18. Evaluation of Test Methods for Triaxially Braided Composites using a Meso-Scale Finite Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao

    2015-10-01

    The characterization of triaxially braided composite is complicate due to the nonuniformity of deformation within the unit cell as well as the possibility of the freeedge effect related to the large size of the unit cell. Extensive experimental investigation has been conducted to develop more accurate test approaches in characterizing the actual mechanical properties of the material we are studying. In this work, a meso-scale finite element model is utilized to simulate two complex specimens: notched tensile specimen and tube tensile specimen, which are designed to avoid the free-edge effect and free-edge effect induced premature edge damage. The full field strain data is predicted numerically and compared with experimental data obtained by Digit Image Correlation. The numerically predicted tensile strength values are compared with experimentally measured results. The discrepancy between numerically predicted and experimentally measured data, the capability of different test approaches are analyzed and discussed. The presented numerical model could serve as assistance to the evaluation of different test methods, and is especially useful in identifying potential local damage events.

  19. Acoustoelastic effects on mode waves in a fluid-filled pressurized borehole in triaxially stressed formations

    Institute of Scientific and Technical Information of China (English)

    Ping'en Li; Youquan Yin; Xianyue Su

    2006-01-01

    Based on the nonlinear theory of acoustoelasticity,considering the triaxial terrestrial stress,the fluid static pressure in the borehole and the fluid nonlinear effect jointly,the dispersion curves of the monopole Stoneley wave and dipole flexural wave propagating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method.The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed.The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant.The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction.The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress,the superimposed stress and the fluid static pressure.The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy.This makes the intersection of flexural wave dispersion curves not distinguishable.The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.

  20. Structure Formation Inside Triaxial Dark Matter Halos: Galactic Disks, Bulges and Bars

    CERN Document Server

    Heller, Clayton; Athanassoula, Lia

    2007-01-01

    We investigate the formation and co-evolution of galactic disks immersed in assembling live DM halos. Disk/halo components were evolved from the cosmological initial conditions and represent the collapse of an isolated density perturbation. The baryons include (mutually convertible) stars and gas, and the feedback from the stellar energy release onto the ISM has been implemented. We find that (1) The growing triaxial halo figure tumbling is insignificant and the angular momentum (J) is channeled into the internal circulation; (2) Response of the disk is out of phase with the DM, thus diluting the inner halo flatness and washing out its prolateness; (3) The total J is neathly conserved, even in models accounting for feedback; (4) The specific J for the DM is nearly constant, while that for baryons is decreasing; (5) Early stage of disk formation resembles the cat's cradle -- a small amorphous disk fueled via radial string patterns; (6) The initially puffed up gas component in the disk narrows when the star for...

  1. Gallery of melt textures developed in Westerly Granite during high-pressure triaxial friction experiments

    Science.gov (United States)

    Moore, Diane E.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2016-09-23

    IntroductionMelting occurred during stick-slip faulting of granite blocks sheared at room-dry, room-temperature conditions in a triaxial apparatus at 200–400 megapascals (MPa) confining pressure. Petrographic examinations of melt textures focused largely on the 400-MPa run products. This report presents an overview of the petrographic data collected on those samples, followed by brief descriptions of annotated versions of all the images.Scanning electron microscope (SEM) images of the starting materials and the three examined 400-MPa samples are presented in this report. Secondary-electron (SE) and backscattered-electron (BSE) imaging techniques were used on different samples. The SE images look down on the sawcut surfaces, yielding topographic and three-dimensional textural information. The BSE imaging was done on samples cut to provide cross-sectional views of the glass-filled shear band (or zone) that developed along the sawcut. Brightness in the BSE images increases with increasing mean atomic number of the material. Additional chemical information about the quenched melt and adjoining minerals was obtained using the energy dispersive system of the SEM during BSE examinations. However, the very narrow shear-band thicknesses and common occurrence of very fine lamellar compositional layering limited the usefulness of this technique for estimating melt chemistry.

  2. Use of E2 matrix elements to determine the centroids and fluctuation widths for triaxial quadrupole collective motion

    Science.gov (United States)

    Cline, Douglas; Wu, Ching-Yen

    2001-10-01

    Measured E2 properties are a sensitive and unambiguous probe of the collective shape parameters for quadrupole collective motion in nuclei. Collective motion produces strong correlations of the measured E2 matrix elements that can be related to the E2 properties in the principal axis frame of the rotating nucleus. By analogy with Bohr's quadrupole shape parameters (β,γ), the instantaneous principal axis frame E2 tensor can be expressed in terms of two parameters, Q,δ where E2(2,0)=Q\\cosδ, and E2(2,± 2)=fracQ√2sinδ. The E2 properties can be used to extract the E2 triaxiality parameter δ which can be related to γ by use of a geometrical collective model. The 1965 measurement [1] of the Q_2^+ state in ^114Cd provoked considerable interest in collective triaxial deformation in nuclei and stimulated measurement of Q_2^+ values in many other nuclei in order to probe the centroid of the E2 triaxial deformation. The heavy-ion Coulomb excitation experimental technique, plus the Coulomb excitation least-squares search code GOSIA, made it possible to measure rather complete sets of E2 matrix elements adding a new dimension to the study of triaxiality in nuclear collective motion [2]. This development also made it possible to exploit the rotational invariant technique [3-6] to extract directly from the measured E2 matrix elements, the expectation values of the centroids and fluctuation widths of principal axis E2 parameters for any state. The usefulness, range of validity, and results of this technique for determining the centroids and fluctuation widths for the triaxiality degree of freedom δ in a range of nuclei will be presented. The completeness required is a disadvantage of the rotational invariant technique. A comparison will be made of the use of the full rotational invariant technique with results obtained using restricted E2 data in conjunction with model-dependent analyses or truncation schemes. [1] J. de Boer et al, Phys. Rev. Lett. 14 (1965) 564; [2] D

  3. Failure Characteristic of Laser Cladding Samples on Repeated Impact

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-hong; ZHENG Qi-guang; FU Ge-yan; ZHANG Jin-ping

    2004-01-01

    Using self-made impact fatigue test instruments and related analytic devices,the mechanical components with laser cladding layer have been attempted.It is found that,on repeated impact force,several failure modes of the components include the surface cracks,surface plastic deformation,corrosive pitting and coat collapse,etc.The paper reported the test method and initial analysis conclusions about the unique failure characteristics of the mechanical components on repeated impact load.

  4. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-01-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between multiple identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five GRC provided coupons with 25 layers was shown to be +/- 8.4 whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0. A second group of 10 coupons have been fabricated by Yetispace and tested by Florida State University, through the first 4 tests, the repeatability has been shown to be +/- 16. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  5. Non extensive statistical physics applied in fracture-induced electric signals during triaxial deformation of Carrara marble

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    We have conducted room-temperature, triaxial compression experiments on samples of Carrara marble, recording concurrently acoustic and electric current signals emitted during the deformation process as well as mechanical loading information and ultrasonic wave velocities. Our results reveal that in a dry non-piezoelectric rock under simulated crustal pressure conditions, a measurable electric current (nA) is generated within the stressed sample. The current is detected only in the region beyond (quasi-)linear elastic deformation; i.e. in the region of permanent deformation beyond the yield point of the material and in the presence of microcracking. Our results extend to shallow crustal conditions previous observations of electric current signals in quartz-free rocks undergoing uniaxial deformation and support the idea of a universal electrification mechanism related to deformation. Confining pressure conditions of our slow strain rate (10-6 s-1) experiments range from the purely brittle regime (10 MPa) to the semi-brittle transition (30-100MPa) where cataclastic flow is the dominant deformation mechanism. Electric current is generated under all confining pressures,implying the existence of a current-producing mechanism during both microfracture and frictional sliding. Some differences are seen in the current evolution between these two regimes, possibly related to crack localisation. In all cases, the measured electric current exhibits episodes of strong fluctuations over short timescales; calm periods punctuated by bursts of strong activity. For the analysis, we adopt an entropy-based statistical physics approach (Tsallis, 1988), particularly suited to the study of fracture related phenomena. We find that the probability distribution of normalised electric current fluctuations over short time intervals (0.5 s) can be well described by a q-Gaussian distribution of a form similar to that which describes turbulent flows. This approach yields different entropic

  6. Frequency Bandwidth of Half-Wave Impedance Repeater

    Directory of Open Access Journals (Sweden)

    Marek Dvorsky

    2012-01-01

    Full Text Available This article brings in the second part general information about half-wave impedance repeater. The third part describes the basic functional principles of the half-wave impedance repeater using Smith chart. The main attention is focused in part four on the derivation of repeater frequency bandwidth depending on characteristics and load impedance of unknown feeder line. Derived dependences are based on the elementary features of the feeder lines with specific length. The described functionality is proved in part 4.3 by measurement of transformed impedance using vector several unbalanced feeder lines and network analyzer VNWA3+.

  7. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  8. New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength

    Institute of Scientific and Technical Information of China (English)

    Rennie Kaunda

    2014-01-01

    Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types;(b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type;(c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects.

  9. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.

    Science.gov (United States)

    Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming

    2014-12-18

    Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions.

  10. Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults.

    Science.gov (United States)

    Hartmann, Antonia; Luzi, Susanna; Murer, Kurt; de Bie, Rob A; de Bruin, Eling D

    2009-04-01

    The aim of this study was (1) to determine the concurrent validity of a trunk tri-axial accelerometer system (DynaPort) with the GAITRite system for spatio-temporal gait parameters at preferred, slow and fast self-selected walking speed that were recorded for averaged and individual step data in an older adult population and (2) to compare the levels of agreement for averaged step data from different walking distances and individual step data. The levels of agreement between the two systems for averaged step data was excellent for walking speed, cadence, step duration and step length (intraclass correlation coefficients (ICCs) between 0.99 and 1.00, ratios limits of agreement (RLOA) between 0.7% and 3.3%), moderate for variability of step duration (ICCs between 0.88 and 0.98 and RLOAs between 19% and 34%) and low for variability of step length (ICCs between 0.24 and 0.33 and RLOAs between 73% and 87%). The levels of agreement for individual step duration and step length were moderate with ICCs between 0.81 and 0.89 and with RLOAs between 9% and 13%. Comparing RLOAs from averaged step data across the different walking distances and individual step data, the RLOAs decreased with increased number of steps. The results of this study demonstrate that the DynaPort system, which allows measurements in real life conditions, is a highly valid tool for assessment of spatio-temporal gait parameters for averaged step data across a walkway length of approximately 20m in independent living elderly. Gait variability measures and individual step data need to be viewed with caution because of the moderate to low levels of agreement between the two systems.

  11. Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses.

    Science.gov (United States)

    DuBois, C; Zakrajsek, E; Haley, D B; Merkies, K

    2015-01-01

    Examining the characteristics of an animal's lying behaviour, such as frequency and duration of lying bouts, has become increasingly relevant for animal welfare research. Triaxial accelerometers have the advantage of being able to continuously monitor an animal's standing and lying behaviour without relying on live observations or video recordings. Multiple models of accelerometers have been validated for use in monitoring dairy cattle; however, no units have been validated for use in equines. This study tested Onset Pendant G data loggers attached to the hind limb of each of two mature Standardbred horses for a period of 5 days. Data loggers were set to record their position every 20 s. Horses were monitored via live observations during the day and by video recordings during the night to compare activity against accelerometer data. All lying events occurred overnight (three to five lying bouts per horse per night). Data collected from the loggers was converted and edited using a macro program to calculate the number of bouts and the length of time each animal spent lying down by hour and by day. A paired t-test showed no significant difference between the video observations and the output from the data loggers (P=0.301). The data loggers did not distinguish standing hipshot from standing square. Predictability, sensitivity, and specificity were all >99%. This study has validated the use of Onset Pendant G data loggers to determine the frequency and duration of standing and lying bouts in adult horses when set to sample and register readings at 20 s intervals.

  12. MEMS inertial sensors for load monitoring of wind turbine blades

    Science.gov (United States)

    Cooperman, Aubryn M.; Martinez, Marcias J.

    2015-03-01

    Structural load monitoring of wind turbines is becoming increasingly important due increasing turbine size and offshore deployment. Rotor blades are key components that can be monitored by continuously measuring their deflection and thereby determining strain and loads on the blades. In this paper, a method is investigated for monitoring blade deformation that utilizes micro-electromechanical systems (MEMS) comprising triaxial accelerometers, magnetometers and gyroscopes. This approach is demonstrated using a cantilever beam instrumented with 5 MEMS and 4 strain gauges. The measured changes in angles obtained from the MEMS are used to determine a deformation surface which is used as an input to a finite element model in order to estimate the strain throughout the beam. The results are then verified by comparison with strain gauge measurements.

  13. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.

    Directory of Open Access Journals (Sweden)

    Kurt H Schütte

    Full Text Available Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18-25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS to the resultant vector RMS, step and stride regularity (autocorrelation procedure, and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05, decreased the anteroposterior step regularity (p < .05, and increased the anteroposterior sample entropy (p < .05 of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments.

  14. Evaluation of impacts of stress triaxiality on plastic deformability of RAFM steel using various types of tensile specimen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Taichiro, E-mail: kato.taichiro@jaea.go.jp [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan); Ohata, Mitsuru [Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Nogami, Shuhei [Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166, Obuchi-omotedate, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • The fracture ductility is lower as the stress triaxiality is higher. • Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. • Voids of interrupted R0.2 specimen were rounded shape than those of RB1. • The fracture surface of specimens were observed the elongated and the equiaxed dimples. • The decrease of plastic deformability of the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch. - Abstract: A case study on a fusion blanket design such as DEMO indicated that there could be some sections with high stress triaxiality, a parameter to evaluate the magnitude of plastic constraint, in the case of plasma disruption or coolant loss accident. Therefore, it is necessary to accurately understand the ductility loss limit of structural material in order to conduct the structural design assessment of the irradiated and embrittled fusion reactor blanket. Tensile tests were conducted by using three kinds of tensile specimen shapes to investigate of the plastic deformability of F82H. From the results, the fracture ductility is lower as the stress triaxiality is higher. Voids of the interrupted RB1 specimen were observed along grain boundaries and expanded parallel to the tensile axis. That of interrupted R0.2 specimen was rounded shape compared with those of RB1. The fracture surface of RB1 and R0.2 specimens were observed the elongated dimples and the equiaxed dimples without so much elongation, respectively. It is considered that the decrease of plastic deformability for the notched specimen was caused by the process of voids formation and crack growth due to the effect of plastic constraint of the notch.

  15. Location and stability of L1 for the elliptic restricted three-body problem with oblate and triaxial primaries

    Science.gov (United States)

    Masoud, Akram; Rahoma, Walid Ali; Abd El-Salam, Fawzy

    2016-07-01

    My subject of study is the point L1 with oblate and triaxial primaries in the elliptic restricted three-body problem (ERTBP). The study contains a mathematical determination of the location of this point in the form of a power series in the mass ratio and a discussion of its stability. The difference between the location of L1 in the perturbed ERTBP and in the classical circular restricted three-body problem (CRTBP) is graphically represented versus the mass ratio. To study the effect of a small displacement, a test particle is assumed to be subjected in the location of L1.

  16. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    Science.gov (United States)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-08-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments.

  17. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  18. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  19. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder for

  20. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  1. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  2. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.

    Science.gov (United States)

    Wang, Jingjing; Redmond, Stephen J; Voleno, Matteo; Narayanan, Michael R; Wang, Ning; Cerutti, Sergio; Lovell, Nigel H

    2012-11-01

    Energy expenditure (EE) is an important parameter in the assessment of physical activity. Most reliable techniques for EE estimation are too impractical for deployment in unsupervised free-living environments; those which do prove practical for unsupervised use often poorly estimate EE when the subject is working to change their altitude by walking up or down stairs or inclines. This study evaluates the augmentation of a standard triaxial accelerometry waist-worn wearable sensor with a barometric pressure sensor (as a surrogate measure for altitude) to improve EE estimates, particularly when the subject is ascending or descending stairs. Using a number of features extracted from the accelerometry and barometric pressure signals, a state space model is trained for EE estimation. An activity classification algorithm is also presented, and this activity classification output is also investigated as a model input parameter when estimating EE. This EE estimation model is compared against a similar model which solely utilizes accelerometry-derived features. A protocol (comprising lying, sitting, standing, walking, walking up stairs, walking down stairs and transitioning between activities) was performed by 13 healthy volunteers (8 males and 5 females; age: 23.8 ± 3.7 years; weight: 70.5 ± 14.9 kg), whose instantaneous oxygen uptake was measured by means of an indirect calorimetry system (K4b(2), COSMED, Italy). Activity classification improves from 81.65% to 90.91% when including barometric pressure information; when analyzing walking activities alone the accuracy increases from 70.23% to 98.54%. Using features derived from both accelerometry and barometry signals, combined with features relating to the activity classification in a state space model, resulted in a VO(2) estimation bias of -0.00 095 and precision (1.96SD) of 3.54 ml min(-1) kg(-1). Using only accelerometry features gives a relatively worse performance, with a bias of -0.09 and precision (1.96SD) of 5

  3. Comparison of uniaxial and triaxial accelerometry in the assessment of physical activity among adolescents under free-living conditions: the HELENA study

    Directory of Open Access Journals (Sweden)

    Vanhelst Jérémy

    2012-03-01

    Full Text Available Abstract Background Different types of devices are available and the choice about which to use depends on various factors: cost, physical characteristics, performance, and the validity and intra- and interinstrument reliability. Given the large number of studies that have used uniaxial or triaxial devices, it is of interest to know whether the different devices give similar information about PA levels and patterns. The aim of this study was to compare physical activity (PA levels and patterns obtained simultaneously by triaxial accelerometry and uniaxial accelerometry in adolescents in free-living conditions. Methods Sixty-two participants, aged 13-16 years, were recruited in this ancillary study, which is a part of the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA. All participants wore a uniaxial accelerometer (ActiGraph GT1M®, Pensacola, FL and a triaxial accelerometer (RT3®, Stayhealthy, Monrovia, CA simultaneously for 7 days. The patterns were calculated by converting accelerometer data output as a percentage of time spent at sedentary, light, moderate, and vigorous PA per day. Analysis of output data from the two accelerometers were assessed by two different tests: Equivalence Test and Bland & Altman method. Results The concordance correlation coefficient between the data from the triaxial accelerometer and uniaxial accelerometer at each intensity level was superior to 0.95. The ANOVA test showed a significant difference for the first three lower intensities while no significant difference was found for vigorous intensity. The difference between data obtained with the triaxial accelerometer and the uniaxial monitor never exceeded 2.1% and decreased as PA level increased. The Bland & Altman method showed good agreement between data obtained between the both accelerometers (p Conclusions Uniaxial and triaxial accelerometers do not differ in their measurement of PA in population studies, and either could be used in such

  4. DWI Repeaters and Non-Repeaters: A Comparison.

    Science.gov (United States)

    Weeber, Stan

    1981-01-01

    Discussed how driving-while-intoxicated (DWI) repeaters differed signigicantly from nonrepeaters on 4 of 23 variables tested. Repeaters were more likely to have zero or two dependent children, attend church frequently, drink occasionally and have one or more arrests for public intoxication. (Author)

  5. To Repeat or Not to Repeat a Course

    Science.gov (United States)

    Armstrong, Michael J.; Biktimirov, Ernest N.

    2013-01-01

    The difficult transition from high school to university means that many students need to repeat (retake) 1 or more of their university courses. The authors examine the performance of students repeating first-year core courses in an undergraduate business program. They used data from university records for 116 students who took a total of 232…

  6. Statistical Characterization of the Mechanical Parameters of Intact Rock Under Triaxial Compression: An Experimental Proof of the Jinping Marble

    Science.gov (United States)

    Jiang, Quan; Zhong, Shan; Cui, Jie; Feng, Xia-Ting; Song, Leibo

    2016-12-01

    We investigated the statistical characteristics and probability distribution of the mechanical parameters of natural rock using triaxial compression tests. Twenty cores of Jinping marble were tested under each different levels of confining stress (i.e., 5, 10, 20, 30, and 40 MPa). From these full stress-strain data, we summarized the numerical characteristics and determined the probability distribution form of several important mechanical parameters, including deformational parameters, characteristic strength, characteristic strains, and failure angle. The statistical proofs relating to the mechanical parameters of rock presented new information about the marble's probabilistic distribution characteristics. The normal and log-normal distributions were appropriate for describing random strengths of rock; the coefficients of variation of the peak strengths had no relationship to the confining stress; the only acceptable random distribution for both Young's elastic modulus and Poisson's ratio was the log-normal function; and the cohesive strength had a different probability distribution pattern than the frictional angle. The triaxial tests and statistical analysis also provided experimental evidence for deciding the minimum reliable number of experimental sample and for picking appropriate parameter distributions to use in reliability calculations for rock engineering.

  7. Validation of the Geant4 Monte Carlo package for X-ray fluorescence spectroscopy in triaxial geometry

    Science.gov (United States)

    Amaro, Pedro; Santos, José Paulo; Samouco, Ana; Adão, Ricardo; Martins, Luís Souto; Weber, Sebastian; Tashenov, Stanislav; Carvalho, Maria Luisa; Pessanha, Sofia

    2017-04-01

    In this study, we investigated the potential of the Geant4 Monte Carlo simulation package for retrieving accurate elemental concentrations from energy dispersive X-ray fluorescence spectra. For this purpose, we implemented a Geant4 code that simulates an energy dispersive X-ray fluorescence spectrometer in a triaxial geometry. In parallel, we also performed measurements in a spectrometer with the same geometry, for validation of the present code. This spectrometer allows low limits of detection and permits an effective comparison of elemental concentrations down to tens of part-per-million. Several standard reference materials of both light, medium and heavy matrices were employed in order to attest the validity of simulations for several values of averaged atomic number. We observed good agreement of better than 25% for most fluorescence lines of interest, and for all materials. Discrepancies were observed at the multiple Compton scattering tail. We thus concluded from this experimental and theoretical study that the present Geant4 code can be incorporated in a quantitative method for the determination of trace elements in a triaxial-type spectrometer.

  8. Effect of open hole on tensile failure properties of 2D triaxial braided textile composites and tape equivalents

    Science.gov (United States)

    Norman, Timothy L.; Anglin, Colin; Gaskin, David; Patrick, Mike

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to triaxial braided textile composite materials. Four fiber architectures were considered with different combinations of braid angle, longitudinal and braider yam size, and percentage of longitudinal yarns. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yams cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Longitudinal yarn splitting occurred in three of four architectures that were longitudinally fiber dominated. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch stress between measured and predicted stress were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  9. Triaxial strong-lensing analysis of the z > 0.5 MACS clusters: the mass-concentration relation

    CERN Document Server

    Sereno, M

    2011-01-01

    The high concentrations derived for several strong-lensing clusters present a major inconsistency between theoretical LambdaCDM expectations and measurements. Triaxiality and orientation biases might be at the origin of this disagreement, as clusters elongated along the line-of-sight would have a relatively higher projected mass density, boosting the resulting lensing properties. Analyses of statistical samples can probe further these effects and crucially reduce biases. In this work we perform a fully triaxial strong-lensing analysis of the 12 MACS clusters at z > 0.5, a complete X-ray selected sample, and fully account for the impact of the intrinsic 3D shapes on their strong lensing properties. We first construct strong-lensing mass models for each cluster based on multiple-images, and fit projected ellipsoidal Navarro-Frenk-White halos with arbitrary orientations to each mass distribution. We then invert the measured surface mass densities using Bayesian statistics. Although the Einstein radii of this sam...

  10. Stability of triangular equilibrium points in the elliptic restricted problem of three bodies with radiating and triaxial primaries

    Science.gov (United States)

    Narayan, A.; Usha, T.

    2014-05-01

    This paper studies the stability of infinitesimal motions about the triangular equilibrium points in the elliptic restricted three body problem assuming bigger primary as a source of radiation and the smaller one a triaxial rigid body. The perturbation technique developed by Bennet (Icarus 4:177, 1965b) has been used for determination of characteristic exponents. This technique is based on Floquet's Theory for determination of characteristic exponents in the system with periodic coefficients. The results of the study are analytical and numerical expressions are simulated for the transition curves bounding the region of stability in the μ-e plane, accurate to O( e 2). The unstable region is found to be divided into three parts. The effect of radiation parameter is significant. For small values of e, the results are in favor with the numerical analysis of Danby (Astron. J. 69:166, 1964), Bennet (Icarus 4:177, 1965b), Alfriend and Rand (AIAA J. 6:1024, 1969). The effect of radiation pressure is significant than the oblateness and triaxiality of the primaries.

  11. Modification of a Macromechanical Finite-Element Based Model for Impact Analysis of Triaxially-Braided Composites

    Science.gov (United States)

    Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.

    2010-01-01

    A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. For the current analytical approach, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The constitutive model requires stiffness and strength properties of an equivalent unidirectional composite. Simplified micromechanics methods are used to determine the equivalent stiffness properties, and results from coupon level tests on the braided composite are utilized to back out the required strength properties. Simulations of quasi-static coupon tests of several representative braided composites are conducted to demonstrate the correlation of the model. Impact simulations of a represented braided composites are conducted to demonstrate the capability of the model to predict the penetration velocity and damage patterns obtained experimentally.

  12. Nifty Nines and Repeating Decimals

    Science.gov (United States)

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  13. Nifty Nines and Repeating Decimals

    Science.gov (United States)

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  14. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  15. Using Tri-Axial Accelerometers to Assess the Dynamic Control of Head Posture During Gait

    Science.gov (United States)

    Lawrence, John H., III

    2003-01-01

    Long duration spaceflight is known to cause a variety of biomedical stressors to the astronaut. One of the more functionally destabilizing effects of spaceflight involves microgravity-induced changes in vestibular or balance control. Balance control requires the integration of the vestibular, visual, and proprioceptive systems. In the microgravity environment, the normal gravity vector present on Earth no longer serves as a reference for the balance control system. Therefore, adaptive changes occur to the vestibular system to affect control of body orientation with altered, or non-present, gravity and/or proprioceptive inputs. Upon return to a gravity environment, the vestibular system must re-incorporate the gravity vector and gravity-induced proprioceptive inputs into the balance control regime. The result is often a period of postural instability, which may also be associated with space motion sickness (oscillopsia, nausea, and vertigo). Previous studies by the JSC Neuroscience group have found that returning astronauts often employ alterations in gait mechanics to maintain postural control during gait. It is believed that these gait alterations are meant to decrease the transfer of heel strike shock energy to the head, thus limiting the contradictory head and eye movements that lead to gait instability and motion sickness symptoms. We analyzed pre- and post-spaceflight tri-axial accelerometer data from the NASA/MIR long duration spaceflight missions to assess the heel to head transfer of heel strike shock energy during locomotion. Up to seven gait sessions (three preflight, four postflight) of head and shank (lower leg) accelerometer data was previously collected from six astronauts who engaged in space flights of four to six months duration. In our analysis, the heel to head transmission of shock energy was compared using peak vertical acceleration (a), peak jerk (j) ratio, and relative kinetic energy (a). A host of generalized movement variables was produced

  16. Investigation on the Permeability Evolution of Gypsum Interlayer Under High Temperature and Triaxial Pressure

    Science.gov (United States)

    Tao, Meng; Yechao, You; Jie, Chen; Yaoqing, Hu

    2017-08-01

    The permeability of the surrounding rock is a critical parameter for the designing and assessment of radioactive waste disposal repositories in the rock salt. Generally, in the locations that are chosen for radioactive waste storage, the bedded rock salt is a sedimentary rock that contains NaCl and Na2SO4. Most likely, there are also layers of gypsum ( {CaSO}_{ 4} \\cdot 2 {H}_{ 2} {O)} present in the salt deposit. Radioactive wastes emit a large amount of heat and hydrogen during the process of disposal, which may result in thermal damage of the surrounding rocks and cause a great change in their permeability and tightness. Therefore, it is necessary to investigate the permeability evolution of the gypsum interlayer under high temperature and high pressure in order to evaluate the tightness and security of the nuclear waste repositories in bedded rock salt. In this study, a self-designed rock triaxial testing system by which high temperature and pressure can be applied is used; the μCT225kVFCB micro-CT system is also employed to investigate the permeability and microstructure of gypsum specimens under a constant hydrostatic pressure of 25 MPa, an increasing temperature (ranging from 20 to 650 °C), and a variable inlet gas pressure (1, 2, 4, 6 MPa). The experimental results show: (a) the maximum permeability measured during the whole experiment is less than 10-17 m2, which indicates that the gypsum interlayer has low permeability under high temperature and pressure that meet the requirements for radioactive waste repository. (b) Under the same temperature, the permeability of the gypsum specimen decreases at the beginning and then increases as the pore pressure elevates. When the inlet gas pressure is between 0 and 2 MPa, the Klinkenberg effect is very pronounced. Then, as the pore pressure increases, the movement behavior of gas molecules gradually changes from free motion to forced directional motion. So the role of free movement of gas molecules gradually

  17. Long-term elastic durability of polymer matrix composite materials after repeated steam sterilization.

    Science.gov (United States)

    Chong, Alexander C M; Fischer, Gustav; Dart, Bradley R; Wooley, Paul H

    2015-11-01

    We compared the durability of 3 different selected composite materials that underwent repeated steam sterilization with the durability of traditional metal materials. Composite materials Tepex, CFR-PPS (carbon-fiber-reinforced polyphenylene sulfide), and HTN-53 (Zytel HTN53G50HSLR NC010) were evaluated for durability and water retention after repeated steam sterilization. These composites were compared with stainless steel and aluminum. The structural properties of these materials were measured (short-beam load-to-failure and cyclic compression loading tests) before, during, and after repeated steam sterilization. The relative radiographic density of these materials was also compared. There was no significant difference in the moisture retention of these composite materials before and after repeated sterilization. The composite materials were significantly more radiolucent than the metals. For all the composite materials, load to failure deteriorated after repeated sterilization. The cyclic compression loading tests showed HTN-53 had the poorest performance, with complete failure after 400 cycles of repeated sterilization. CFR-PPS performed slightly better, with 33% failure at final testing. Tepex had no failures at final testing. Although HTN-53 has shown promise in other orthopedic applications, its performance after repeated sterilization was relatively poor. Tepex showed the most potential for durability after repeated sterilization. Further study is needed to identify specific applications for these materials in the orthopedic industry.

  18. Effect of repeated morphine withdrawal on spatial learning, memory and serum cortisol level in mice

    OpenAIRE

    Mahdieh Matinfar; Mahsa Masjedi Esfahani; Neda Aslany; Seyyed Hamid Reza Davoodi; Pouya Parsaei; Ghasem Zarei; Parham Reisi

    2013-01-01

    Background: One of the serious problems that opioid addicted people are facing is repeated withdrawal syndrome that is accompanying with a significant stress load for addicts. Therefore, the aim of this study was to evaluate the effects of repeated withdrawal on spatial learning, memory and serum cortisol levels in morphine-dependent mice. Materials and Methods: Male NMRI mice received morphine as daily increasing doses for 3 days. After that, the mice underwent one time or repeated spont...

  19. Analysis of repeated measures data

    CERN Document Server

    Islam, M Ataharul

    2017-01-01

    This book presents a broad range of statistical techniques to address emerging needs in the field of repeated measures. It also provides a comprehensive overview of extensions of generalized linear models for the bivariate exponential family of distributions, which represent a new development in analysing repeated measures data. The demand for statistical models for correlated outcomes has grown rapidly recently, mainly due to presence of two types of underlying associations: associations between outcomes, and associations between explanatory variables and outcomes. The book systematically addresses key problems arising in the modelling of repeated measures data, bearing in mind those factors that play a major role in estimating the underlying relationships between covariates and outcome variables for correlated outcome data. In addition, it presents new approaches to addressing current challenges in the field of repeated measures and models based on conditional and joint probabilities. Markov models of first...

  20. Effect of a triaxial nuclear shape on proton tunneling : the decay and structure of {sup 145}Tm.

    Energy Technology Data Exchange (ETDEWEB)

    Seweryniak, D.; Blank, B.; Carpenter, M. P.; Davids, C. N.; Davinson, T.; Freeman, S. J.; Hammond, N.; Hoteling, N.; Janssens, R. V. F.; Khoo, T. L.; Liu, Z.; Mukherjee, G.; Robinson, A.; Scholey, C.; Sinha, S.; Shergur, J.; Starosta, K.; Walters, W. B.; Woehr, A.; Woods, P. J.; Physics; Centre d' Etudes Nucleaires de Bordeaux-Gradignan; Univ. of Edinburgh; Univ. of Manchester; Univ. of Maryland; Univ. of Jyvaskyla; Michigan State Univ.; Univ. of Notre Dame

    2007-08-24

    Gamma rays deexciting states in the proton emitter {sup 145}Tm were observed using the recoil-decay tagging method. The {sup 145}Tm ground-state rotational band was found to exhibit the properties expected for an h{sub 11/2} proton decoupled band. In addition, coincidences between protons feeding the 2{sup +} state in {sup 144}Er and the 2{sup +} {yields} 0{sup +} {gamma}-ray transition were detected the first measurement of this kind, leading to a more precise value for the 2+ excitation energy of 329(1) keV. Calculations with the particle-rotor model and the core quasiparticle coupling model indicate that the properties of the {pi}h{sub 11/2} band and the proton-decay rates in {sup 145}Tm are consistent with the presence of triaxiality with an asymmetry parameter {gamma} {approx} 20 degrees.

  1. Multi-phonon gamma-vibrational bands in odd-mass nuclei studied by triaxial projected shell model approach

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Sun, Y., E-mail: sunyang@sjtu.edu.c [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Palit, R. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai (India)

    2010-05-10

    Inspired by the recent experimental data [J.-G. Wang, et al., Phys. Lett. B 675 (2009) 420], we extend the triaxial projected shell model approach to study the gamma-band structure in odd-mass nuclei. As a first application of the new development, the gamma-vibrational structure of {sup 103}Nb is investigated. It is demonstrated that the model describes the ground-state band and multi-phonon gamma-vibrations quite satisfactorily, supporting the interpretation of the data as one of the few experimentally-known examples of simultaneous occurrence of one- and two-gamma-phonon vibrational bands. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei built on the ground-state in even-even systems to gamma-bands based on quasiparticle configurations in odd-mass systems.

  2. Triaxial projected shell model description of high-spin band-structures in {sup 103,105}Rh isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Sheikh, J.A., E-mail: sjaphysics@gmail.com [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Dar, W.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Jehangir, S. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Department of Physics, National Institute of Technology, Srinagar 190 006 (India); Palit, R., E-mail: palit@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai (India); Ganai, P.A. [Department of Physics, University of Kashmir, Srinagar 190 006 (India); Department of Physics, National Institute of Technology, Srinagar 190 006 (India)

    2014-11-10

    High-spin band structures in odd-proton {sup 103,105}Rh are investigated using the microscopic triaxial projected shell model approach. It is demonstrated that the observed band structures built on one- and three-quasiparticle states are reproduced reasonably well in the present work. Further, it is evident from the analysis of the projected wavefunctions that side-band in the low-spin regime is the normal γ-band built on the ground-state configuration. However, in the high-spin regime, the side band is shown to be highly mixed and ceases to be a γ-band. We provide a complete set of electromagnetic transition probabilities for the two bands and the experimental measurements are desirable to test the predictions of the present work.

  3. Bioinspired Electronic White Cane Implementation Based on a LIDAR, a Tri-Axial Accelerometer and a Tactile Belt

    Directory of Open Access Journals (Sweden)

    Jordi Palacin

    2010-12-01

    Full Text Available This work proposes the creation of a bioinspired electronic white cane for blind people using the whiskers principle for short-range navigation and exploration. Whiskers are coarse hairs of an animal's face that tells the animal that it has touched something using the nerves of the skin. In this work the raw data acquired from a low-size terrestrial LIDAR and a tri-axial accelerometer is converted into tactile information using several electromagnetic devices configured as a tactile belt. The LIDAR and the accelerometer are attached to the user’s forearm and connected with a wire to the control unit placed on the belt. Early validation experiments carried out in the laboratory are promising in terms of usability and description of the environment.

  4. Critical study of the method of calculating virgin rock stresses from measurement results of the CSIR triaxial strain cell

    Science.gov (United States)

    Vreede, F. A.

    1981-05-01

    The manual of instructions for the user of the CSIR triaxial rock stress measuring equipment is critically examined. It is shown that the values of the rock stresses can be obtained from the strain gauge records by means of explicit formulae, which makes the manual's computer program obsolete. Furthermore statistical methods are proposed to check for faulty data and inhomogeneity in rock properties and virgin stress. The possibility of non-elastic behavior of the rock during the test is also checked. A new computer program based on the explicit functions and including the check calculations is presented. It is much more efficient than the one in the manual since it does not require computer sub-routines, allowing it to be used directly on any modern computer. The output of the new program is in a format suitable for direct inclusion in the report of an investigation using strain cell results.

  5. Triaxial-Stress-Induced Homogeneous Hysteresis-Free First-Order Phase Transformations with Stable Intermediate Phases

    Science.gov (United States)

    Levitas, Valery I.; Chen, Hao; Xiong, Liming

    2017-01-01

    Starting with thermodynamic predictions and following with molecular dynamics simulations, special triaxial compression-tension states were found for which the stresses for the instability of the crystal lattice of silicon (Si) are the same for direct and reverse phase transformations (PTs) between semiconducting Si I and metallic Si II phases. This leads to unique homogeneous and hysteresis-free first-order PTs, for which each intermediate crystal lattice along the transformation path is in indifferent thermodynamic equilibrium and can be arrested and studied by fixing the strain in one direction. By approaching these stress states, a traditional two-phase system continuously transforms to homogenous intermediate phases. Zero hysteresis and homogeneous transformations are the optimal property for various PT applications, which drastically reduce damage and energy dissipation.

  6. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    CERN Document Server

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  7. Determining the direction of a geometrical/optical reference axis in the coordinate system of a triaxial magnetometer sensor

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Brauer, Peter; Merayo, José M.G.

    2002-01-01

    The reference coordinate axes of a magnetic vector field sensor are related to the instrument digital output vector (U) over bar by the calibration matrix C and the offset vector (O) over bar. In addition, this reference coordinate system must be related to (at least) two externally accessible...... optical or geometrical axes in order to be able to determine the precise orientation of the magnetic coordinate axes in an external reference system. Two methods for determining a reference axis in the sensor coordinates are discussed: (1) using a triaxial coil facility to measure the sensor orientation...... for two different positions, rotated about a fixed reference axis; (2) in the Earth's field the magnetometer sensor is rotated about a fixed axis into a number of (at least three) positions....

  8. Three Dimensional Stress-Strain Behavior of Soils Tested in the Danish Rigid Boundary True Triaxial Apparatus

    DEFF Research Database (Denmark)

    Praastrup, U.

    of scientific papers, which has been published by the author (in cooperation with the co-authors) during the period of studies and while working with the apparatus. The purpose of this report is to explain how the papers are related and to outline the more important conclusions that can be drawn from the work...... carried out. Obviously, the papers are related to the true triaxial apparatus, but they should actually be seen as steps towards the development of a cross-anisotropic constitutive model. The constitutive model has not been fully developed and it has not been published in any papers. The constitutive...... model is, therefore, conceptual and future research is needed to obtain a complete formulation. The report will explain the ideas behind this conceptual model and it is the author's hope that the report will form the basis for future research in this area. The report will relate the published papers...

  9. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    Science.gov (United States)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  10. Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

    Directory of Open Access Journals (Sweden)

    T. Inoue

    2016-10-01

    Full Text Available Complex stresses, which occur on the mechanical surfaces of transport machinery in service, bring a drastic degradation in fatigue life. However, it is hard to reproduce such complex stress states for evaluating the fatigue life with conventional multiaxial fatigue machines. We have developed a fatigue testing machine that enables reproduction of such complex stresses. The testing machine can reproduce arbitrary in-plane stress states by applying three independent loads to the test specimen using actuators which apply loads in the 0, 45, and 90 degree directions. The reproduction was tested with complex stress data obtained from the actual operation of transport machinery. As a result, it was found that the reproduced stress corresponded to the measured stress with an error range of less than 10 %. Then, we made a comparison between measured fatigue lives under random non-proportional loading conditions and predicted fatigue lives. It was found that predicted fatigue lives with cr, stress on critical plane, were over a factor of 10 against measured fatigue lives. On the other hand, predicted fatigue lives with ma, stress in consideration of a non-proportional level evaluated by using amplitude and direction of principal stress, were within a factor of 3 against measured fatigue lives

  11. Deformation Behavior of Recycled Concrete Aggregate during Cyclic and Dynamic Loading Laboratory Tests

    Directory of Open Access Journals (Sweden)

    Wojciech Sas

    2016-09-01

    Full Text Available Recycled concrete aggregate (RCA is a relatively new construction material, whose applications can replace natural aggregates. To do so, extensive studies on its mechanical behavior and deformation characteristics are still necessary. RCA is currently used as a subbase material in the construction of roads, which are subject to high settlements due to traffic loading. The deformation characteristics of RCA must, therefore, be established to find the possible fatigue and damage behavior for this new material. In this article, a series of triaxial cyclic loading and resonant column tests is used to characterize fatigue in RCA as a function of applied deviator stress after long-term cyclic loading. A description of the shakedown phenomenon occurring in the RCA and calculations of its resilient modulus (Mr as a function of fatigue are also presented. Test result analysis with the stress-life method on the Wohler S-N diagram shows the RCA behavior in accordance with the Basquin law.

  12. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  13. Limitations on quantum key repeaters.

    Science.gov (United States)

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  14. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    Energy Technology Data Exchange (ETDEWEB)

    Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Della Torre, Edward; Bennett, Lawrence H. [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052 (United States); ElBidweihy, Hatem, E-mail: Hatem@gwmail.gwu.edu [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052 (United States)

    2014-02-15

    The Gd{sub 5}Ge{sub 2}Si{sub 2} alloy and the off-stoichiometric Ni{sub 50}Mn{sub 35}In{sub 15} Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd{sub 5}Ge{sub 2}Si{sub 2} and Ni{sub 50}Mn{sub 35}In{sub 15} alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  15. 湛江强结构性黏土的三轴排水蠕变特征%CREEP BEHAVIOR OF ZHANJIANG STRONG STRUCTURED CLAY BY DRAINED TRIAXIAL TEST

    Institute of Scientific and Technical Information of China (English)

    孔令伟; 张先伟; 郭爱国; 蔡羽

    2011-01-01

    利用GDS应力路径三轴试验系统,开展不同围压下湛江强结构性黏土的三轴固结排水剪切蠕变试验,获得其轴向应变、体应变与应力和时间的关系,分析蠕变性状的结构性效应,建立相应的蠕变模型.结果表明,湛江黏土的蠕变变形演化特征受其强结构性制约,其蠕变特性的敏感干程度与结构性强弱相关联.在低偏应力下,其蠕变变形和变形速率均较小;偏应力超过临界值后,土体在短时间内发生破坏.湛江黏土在σ3<σk时,其体变性状总体上表现为剪缩,但随时间变化出现一定的剪缩和剪胀交替性,即存在回弹现象;而当σ3≥σk时,则表现为剪缩.蠕变引起的强度衰减主要表现为黏聚力的降低,且C∞/Cj=77.63%.采用6元件扩展Burgers模型能较好地描述湛江黏土的瞬时弹性应变、衰减蠕变和稳定蠕变3个阶段.在实际工程中,必须对土的结构性给予充分的认识,在较低应力范围内,可以利用其结构性的有利因素,但设计荷载严禁超出结构屈服应力.%The drained triaxial shear creep tests for Zhanjiang strong structured clay under different confining pressures by GDS triaxial testing system are performed.The relationships of axial strain and volumetric strain with stress and time are obtained.The effect of soil structural property on its creep behavior is analyzed; and the corresponding creep model is established.The results show that the evolution characteristics of creep deformation of Zhanjiang clay are restricted by its poorly structural property; and its sensitivity is related to the structural property of soil.The creep deformation and deformation rate of Zhanjiang clay are small in the range of low deviatoric stress; when the deviatoric stress exceeds a critical value, the soil mass failure occurs in a short time.The overall behavior of volumetric strain of Zhanjiang clay in the process of drained triaxial shear creep presents shear contraction, while

  16. Oscillating load-induced acoustic emission in laboratory experiment

    Science.gov (United States)

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  17. Loads and loads and loads: The influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2015-06-01

    Full Text Available In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of prospective load on costs in the ongoing task for categorical targets (Experiment 2, but not for specific targets (Experiment 1. Retrospective load and ongoing task load both affected remembering the retrospective component of the prospective memory task. We suggest that prospective load can enhance costs in the ongoing task due to additional monitoring requirements. Retrospective load and ongoing task load seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  18. EAMJ Dec. Repeatability.indd

    African Journals Online (AJOL)

    2008-12-12

    Dec 12, 2008 ... Results:Kappa values for four-week repeatability for the wheeze and asthma questions were 0.61 ... for logistic, cultural and ethical reasons, to use ... individual with baseline forced expiratory volume in .... period is likely to also include the effects of true ... data, the writing of the manuscript or the decision.

  19. Predicting the Structural Performance of Composite Structures Under Cyclic Loading

    NARCIS (Netherlands)

    Kassapoglou, C.

    2012-01-01

    The increased use of advanced composite materials on primary aircraft structure has brought back to the forefront the question of how such structures perform under repeated loading. In particular, when damage or other stress risers are present, tests have shown that the load to cause failure after

  20. The Influence of Triaxiality Parameter γ on the Chiral Doublet Bands with (πg9/2)-1 (vh11/2)2 Configuration

    Institute of Scientific and Technical Information of China (English)

    亓斌; 王守宇; 赵兴言; 祝笑颖; 孙大鹏; 刘晨; 徐长江

    2012-01-01

    The chiral doublet bands with three-quasiparticle configuration (πg9/2)-1 (vh11/2)2 are studied by the fully quantal triaxial particle rotor model. The energy spectra and B(M1)/B(E2) ratios of the doublet bands with different triaxiality parameter γ are systematically analyzed. It is found that γ is a sensitive parameter for the properties of these doublet bands.

  1. Analysis of the triaxial, strongly deformed bands in odd-odd nucleus 164Lu with the tops-on-top model

    Science.gov (United States)

    Sugawara-Tanabe, Kazuko; Tanabe, Kosai; Yoshinaga, Naotaka

    2014-06-01

    The top-on-top model with angular-momentum-dependent moments of inertia is extended to the tops-on-top model for an odd-odd nucleus, where one proton and one neutron in each single-j orbital are coupled to the triaxial rotor. For a pure rotor case, an explicit algebraic formula for the triaxial, strongly deformed (TSD) band levels is given, and its stability problem is discussed. Both positive and negative parity TSD bands are well reproduced by taking account of attenuation factors in the Coriolis interaction and the proton-neutron interaction in the recoil term. Difference in quantum numbers between the yrast and yrare TSD bands is confirmed by direct estimation of spin alignments. The electromagnetic transition rates of B(M1) are much reduced because of the different sign of g-factors in comparison with the odd-A case, while B(E2) are in the same order.

  2. Electrical load detection aparatus

    DEFF Research Database (Denmark)

    2010-01-01

    A load detection technique for a load comprising multiple frequency-dependant sub-loads comprises measuring a representation of the impedance characteristic of the load; providing stored representations of a multiplicity of impedance characteristics of the load; each one of the stored representat...

  3. Investigation of the interface characteristics of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions

    Science.gov (United States)

    Shi, Li-Bin; Liu, Xu-Yang; Dong, Hai-Kuan

    2016-09-01

    We investigate the interface behaviors of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions. This study is performed by first principles calculations based on density functional theory (DFT). First of all, the biaxial strain is realized by changing the lattice constants in ab plane. Averaged electrostatic potential (AEP) is aligned by establishing Y2O3 and GaAs (110) surfaces. The band offsets of Y2O3/GaAs interface under biaxial strain are investigated by generalized gradient approximation and Heyd-Scuseria-Ernzerhof (HSE) functionals. The interface under biaxial strain is suitable for the design of metal oxide semiconductor (MOS) devices because the valence band offsets (VBO) and conduction band offsets (CBO) are larger than 1 eV. Second, the triaxial strain is applied to Y2O3/GaAs interface by synchronously changing the lattice constants in a, b, and c axis. The band gaps of Y2O3 and GaAs under triaxial strain are investigated by HSE functional. We compare the VBO and CBO under triaxial strain with those under biaxial strain. Third, in the absence of lattice strain, the formation energies, charge state switching levels, and migration barriers of native defects in Y2O3 are assessed. We investigate how they will affect the MOS device performance. It is found that VO+2 and Oi-2 play a very dangerous role in MOS devices. Finally, a direct tunneling leakage current model is established. The model is used to analyze current and voltage characteristics of the metal/Y2O3/GaAs.

  4. Effects of Triaxiality, Oblateness and Gravitational Potential from a Belt on the Linear Stability of 4,5 in the Restricted Three-Body Problem

    Indian Academy of Sciences (India)

    Jagadish Singh; Joel John Taura

    2014-12-01

    In this paper we have considered the restricted three body problem (R3BP) in which the more massive primary is triaxial, the less massive primary and infinitesimal body are oblate spheroids, and are encompassed by a belt of homogenous material points. Analytically and numerically, we have studied the effects of triaxiality of the more massive primary, oblateness of both the less massive primary and infinitesimal body and the gravitational potential generated by the belt on the location of the triangular libration points 4,5 and their linear stability. 4,5 do not form equilateral triangles with the primaries in the presence of all or any of the aforementioned perturbations. Due to triaxiality of the more massive primary and oblateness of the infinitesimal body the triangular libration points are seen to move away from the line linking the primaries, whereas they shift closer to the line owing to the oblateness of the less massive primary and the potential from the belt. The range 0 < < c of stability of the triangular points is reduced in the presence of any of the perturbations, except when considering the potential from the belt the range increases, where c is the critical mass ratio. The oblateness of a test particle (of infinitesimal mass) shifts the location of its libration positions away from the primaries and reduces its range of stability.

  5. Directionality switchable gain stabilized linear repeater

    Science.gov (United States)

    Ota, Takayuki; Ohmachi, Tadashi; Aida, Kazuo

    2004-10-01

    We propose a new approach to realize a bidirectional linear repeater suitable for future optical internet networks and fault location in repeater chain with OTDR. The proposed approach is the linear repeater of simple configuration whose directionality is rearranged dynamically by electrical control signal. The repeater is composed of a magneto-optical switch, a circulator, a dynamically gain stabilized unidirectional EDFA, and control circuits. The repeater directionality is rearranged as fast as 0.1ms by an electrical control pulse. It is experimentally confirmed that OTDR with the directionality switchable repeater is feasible for repeater chain. The detailed design and performance of the repeater are also discussed, including the multi-pass interference (MPI) which may arise in the proposed repeater, the effect of the MPI on SNR degradation of the repeater chain and the feed-forward EDFA gain control circuit.

  6. Measurement-based quantum repeaters

    CERN Document Server

    Zwerger, M; Briegel, H J

    2012-01-01

    We introduce measurement-based quantum repeaters, where small-scale measurement-based quantum processors are used to perform entanglement purification and entanglement swapping in a long-range quantum communication protocol. In the scheme, pre-prepared entangled states stored at intermediate repeater stations are coupled with incoming photons by simple Bell-measurements, without the need of performing additional quantum gates or measurements. We show how to construct the required resource states, and how to minimize their size. We analyze the performance of the scheme under noise and imperfections, with focus on small-scale implementations involving entangled states of few qubits. We find measurement-based purification protocols with significantly improved noise thresholds. Furthermore we show that already resource states of small size suffice to significantly increase the maximal communication distance. We also discuss possible advantages of our scheme for different set-ups.

  7. A Repeating Fast Radio Burst

    CERN Document Server

    Spitler, L G; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-01-01

    Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events. Here we report the detection of ten additional bursts from the direction of FRB121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and wh...

  8. Distribution load estimation (DLE)

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A.; Lehtonen, M. [VTT Energy, Espoo (Finland)

    1998-08-01

    The load research has produced customer class load models to convert the customers` annual energy consumption to hourly load values. The reliability of load models applied from a nation-wide sample is limited in any specific network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to find improvements to the load models or, in general, improvements to the load estimates. In Distribution Load Estimation (DLE) the measurements from the network are utilized to improve the customer class load models. The results of DLE will be new load models that better correspond to the loading of the distribution network but are still close to the original load models obtained by load research. The principal data flow of DLE is presented

  9. Repeatability of Harris Corner Detector

    Institute of Scientific and Technical Information of China (English)

    HU Lili

    2003-01-01

    Interest point detectors are commonly employed to reduce the amount of data to be processed. The ideal interest point detector would robustly select those features which are most appropriate or salient for the application and data at hand. This paper shows that interest points are geometrically stable under different transformations.This property makes interest points very successful in the context of image matching. To measure this property quantatively, we introduce a evaluation criterion: repeatability rate.

  10. Hydraulic properties of siliciclastic geothermal reservoir rocks under triaxial stress conditions, a multidisciplinary approach.

    Science.gov (United States)

    Bakker, Richard; Gholizadeh Doonechaly, Nima; Bruhn, David

    2017-04-01

    Cretaceous Sandstone bodies in the subsurface of western Netherlands are already used for heating some of the greenhouses in that area. The reservoirs used are typically at depths between 1500 and 3000m, with temperatures generally conditions of failure. Secondly, the experiment is repeated using relatively strong jackets which remain sealing after sample failure, allowing for permeability measurements. Preliminary results show that an increase of confining pressure leads to a decrease of permeability by three orders of magnitude, from 1e-13 to 1e-16 m2. Anisotropy results in permeability parallel to bedding to be roughly one order of magnitude higher than perpendicular to it. Based on the collected data, the validity of the available exponential permeability-porosity-stress relationship is assessed and the model parameters with the best fitting characteristic is chosen for the selected formation. The established relationship is then used as an input for field scale numerical simulation of cold fluid circulation in Buntsandstein formation to predict the reservoir behavior over longer term of fluid circulation. The Finite Element Method is used to evaluate the reservoir behaviour during injection/production of the cold/hot fluid in a fully coupled poro-thermo-elastic environment. Weighted residual method is used for deriving the weak formulation of the mass-, momentum- and energy balance equations. Consequently the standard Galerkin approach is used for spatial discretization of the weak formulas. Temporal discretization is also carried out in a fully implicit manner to avoid the time-stepping limitation. The preliminary results of this study show a promising capacity of heat extraction from the Buntsandstein formation as a geothermal reservoir within western Netherlands.

  11. The Evolution of the Globular Cluster System in a Triaxial Galaxy Can a Galactic Nucleus Form by Globular Cluster Capture?

    CERN Document Server

    Capuzzo-Dolcetta, R

    1993-01-01

    Dynamical friction due to field stars and tidal disruption caused by a central nucleus are crucial in determining the evolution of the globular cluster system in an elliptical galaxy. In this paper I examine the possibility that some of galactic nuclei have been formed by frictionally decayied globular clusters moving in a triaxial potential. The initial rapid growth of the nucleus, due mainly to massive clusters on box orbits falling in a short time scale into the galactic centre, is found to be later slowed by tidal disruption induced by the nucleus itself on less massive clusters in the way described by Ostriker, Binney & Saha. The efficiency of dynamical friction is such to carry to the centre of the galaxy enough globular cluster mass available to form a compact nucleus, but the actual modes of its collisionless formation remains to be investigated. The mass of the resulting nucleus is determined by the mutual feedback of the two mentioned processes, together with the knowlegde of the initial spatial...

  12. Understanding differences between healthy swallows and penetration-aspiration swallows via compressive sensing of tri-axial swallowing accelerometry signals.

    Science.gov (United States)

    Sejdić, Ervin; Dudik, Joshua M; Kurosu, Atsuko; Jestrović, Iva; Coyle, James L

    2014-05-23

    Swallowing accelerometry is a promising tool for non-invasive assessment of swallowing difficulties. A recent contribution showed that swallowing accelerometry signals for healthy swallows and swallows indicating laryngeal penetration or tracheal aspiration have different time-frequency structures, which may be problematic for compressive sensing schemes based on time-frequency dictionaries. In this paper, we examined the effects of different swallows on the accuracy of a compressive sensing scheme based on modulated discrete prolate spheroidal sequences. We utilized tri-axial swallowing accelerometry signals recorded from four patients during routinely schedule videofluoroscopy exams. In particular, we considered 77 swallows approximately equally distributed between healthy swallows and swallows presenting with some penetration/aspiration. Our results indicated that the swallow type does not affect the accuracy of a considered compressive sensing scheme. Also, the results confirmed previous findings that each individual axis contributes different information. Our findings are important for further developments of a device which is to be used for long-term monitoring of swallowing difficulties.

  13. Numerical simulation of triaxial compression test for brittle rock sample using a modified constitutive law considering degradation and dilation behavior

    Institute of Scientific and Technical Information of China (English)

    谭鑫

    2015-01-01

    The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression tests were carried out on Eibenstock (Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for the modified constitutive model was deduced and implemented into the numerical code FLAC3D. The good agreement between numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical behavior of brittle rock especially in the post-failure region.

  14. Validity of using tri-axial accelerometers to measure human movement - Part I: Posture and movement detection.

    Science.gov (United States)

    Lugade, Vipul; Fortune, Emma; Morrow, Melissa; Kaufman, Kenton

    2014-02-01

    A robust method for identifying movement in the free-living environment is needed to objectively measure physical activity. The purpose of this study was to validate the identification of postural orientation and movement from acceleration data against visual inspection from video recordings. Using tri-axial accelerometers placed on the waist and thigh, static orientations of standing, sitting, and lying down, as well as dynamic movements of walking, jogging and transitions between postures were identified. Additionally, subjects walked and jogged at self-selected slow, comfortable, and fast speeds. Identification of tasks was performed using a combination of the signal magnitude area, continuous wavelet transforms and accelerometer orientations. Twelve healthy adults were studied in the laboratory, with two investigators identifying tasks during each second of video observation. The intraclass correlation coefficients for inter-rater reliability were greater than 0.95 for all activities except for transitions. Results demonstrated high validity, with sensitivity and positive predictive values of greater than 85% for sitting and lying, with walking and jogging identified at greater than 90%. The greatest disagreement in identification accuracy between the algorithm and video occurred when subjects were asked to fidget while standing or sitting. During variable speed tasks, gait was correctly identified for speeds between 0.1m/s and 4.8m/s. This study included a range of walking speeds and natural movements such as fidgeting during static postures, demonstrating that accelerometer data can be used to identify orientation and movement among the general population.

  15. Gait Analysis of Conventional Total Knee Arthroplasty and Bicruciate Stabilized Total Knee Arthroplasty Using a Triaxial Accelerometer

    Science.gov (United States)

    Saito, Hidetomo; Aizawa, Toshiaki; Miyakoshi, Naohisa; Shimada, Yoichi

    2016-01-01

    One component of conventional total knee arthroplasty is removal of the anterior cruciate ligament, and the knee after total knee arthroplasty has been said to be a knee with anterior cruciate ligament dysfunction. Bicruciate stabilized total knee arthroplasty is believed to reproduce anterior cruciate ligament function in the implant and provide anterior stability. Conventional total knee arthroplasty was performed on the right knee and bicruciate stabilized total knee arthroplasty was performed on the left knee in the same patient, and a triaxial accelerometer was fitted to both knees after surgery. Gait analysis was then performed and is reported here. The subject was a 78-year-old woman who underwent conventional total knee arthroplasty on her right knee and bicruciate stabilized total knee arthroplasty on her left knee. On the femoral side with bicruciate stabilized total knee arthroplasty, compared to conventional total knee arthroplasty, there was little acceleration in the x-axis direction (anteroposterior direction) in the early swing phase. Bicruciate stabilized total knee arthroplasty may be able to replace anterior cruciate ligament function due to the structure of the implant and proper anteroposterior positioning. PMID:27648328

  16. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations......Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...

  17. Distribution load estimation - DLE

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A. [VTT Energy, Espoo (Finland)

    1996-12-31

    The load research project has produced statistical information in the form of load models to convert the figures of annual energy consumption to hourly load values. The reliability of load models is limited to a certain network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to make improvements in the load models. Distribution load estimation (DLE) is the method developed here to improve load estimates from the load models. The method is also quite cheap to apply as it utilises information that is already available in SCADA systems

  18. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations......Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...

  19. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...... martensite and the carbides M6C,V8C7 and M23C6. In the as heat treated condition the stress state is triaxial. The primary carbides M6C and V8C7 experience a compressive state of stress. Exposure to an alternating mechanical load, changes the states of stress of V8C7 and tempered martensite, but does...... not appear to change the state of stress in M6C....

  20. Origin and fate of repeats in bacteria.

    Science.gov (United States)

    Achaz, G; Rocha, E P C; Netter, P; Coissac, E

    2002-07-01

    We investigated 53 complete bacterial chromosomes for intrachromosomal repeats. In previous studies on eukaryote chromosomes, we proposed a model for the dynamics of repeats based on the continuous genesis of tandem repeats, followed by an active process of high deletion rate, counteracted by rearrangement events that may prevent the repeats from being deleted. The present study of long repeats in the genomes of Bacteria and Archaea suggests that our model of interspersed repeats dynamics may apply to them. Thus the duplication process might be a consequence of very ancient mechanisms shared by all three domains. Moreover, we show that there is a strong negative correlation between nucleotide composition bias and the repeat density of genomes. We hypothesise that in highly biased genomes, non-duplicated small repeats arise more frequently by random effects and are used as primers for duplication mechanisms, leading to a higher density of large repeats.

  1. Improving repeatability by improving quality

    Energy Technology Data Exchange (ETDEWEB)

    Ronen, Shuki; Ackers, Mark; Schlumberger, Geco-Prakla; Brink, Mundy

    1998-12-31

    Time lapse (4-D) seismic is a promising tool for reservoir characterization and monitoring. The method is apparently simple: to acquire data repeatedly over the same reservoir, process and interpret the data sets, then changes between the data sets indicate changes in the reservoir. A problem with time lapse seismic data is that reservoirs are a relatively small part of the earth and important reservoir changes may cause very small differences to the time lapse data. The challenge is to acquire and process economical time lapse data such that reservoir changes can be detected above the noise of varying acquisition and environment. 7 refs., 9 figs.

  2. Coordinated hybrid automatic repeat request

    KAUST Repository

    Makki, Behrooz

    2014-11-01

    We develop a coordinated hybrid automatic repeat request (HARQ) approach. With the proposed scheme, if a user message is correctly decoded in the first HARQ rounds, its spectrum is allocated to other users, to improve the network outage probability and the users\\' fairness. The results, which are obtained for single- and multiple-antenna setups, demonstrate the efficiency of the proposed approach in different conditions. For instance, with a maximum of M retransmissions and single transmit/receive antennas, the diversity gain of a user increases from M to (J+1)(M-1)+1 where J is the number of users helping that user.

  3. Crowding by a repeating pattern.

    Science.gov (United States)

    Rosen, Sarah; Pelli, Denis G

    2015-01-01

    Theinability to recognize a peripheral target among flankers is called crowding. For a foveal target, crowding can be distinguished from overlap masking by its sparing of detection, linear scaling with eccentricity, and invariance with target size.Crowding depends on the proximity and similarity of the flankers to the target. Flankers that are far from or dissimilar to the target do not crowd it. On a gray page, text whose neighboring letters have different colors, alternately black and white, has enough dissimilarity that it might escape crowding. Since reading speed is normally limited by crowding, escape from crowding should allow faster reading. Yet reading speed is unchanged (Chung & Mansfield, 2009). Why? A recent vernier study found that using alternating-color flankers produces strong crowding (Manassi, Sayim, & Herzog, 2012). Might that effect occur with letters and reading? Critical spacing is the minimum center-to-center target-flanker spacing needed to correctly identify the target. We measure it for a target letter surrounded by several equidistant flanker letters of the same polarity, opposite polarity, or mixed polarity: alternately white and black. We find strong crowding in the alternating condition, even though each flanker letter is beyond its own critical spacing (as measured in a separate condition). Thus a periodic repeating pattern can produce crowding even when the individual elements do not. Further, in all conditions we find that, once a periodic pattern repeats (two cycles), further repetition does not affect critical spacing of the innermost flanker.

  4. Repeatability of feather mite prevalence and intensity in passerine birds.

    Directory of Open Access Journals (Sweden)

    Javier Diaz-Real

    Full Text Available Understanding why host species differ so much in symbiont loads and how this depends on ecological host and symbiont traits is a major issue in the ecology of symbiosis. A first step in this inquiry is to know whether observed differences among host species are species-specific traits or more related with host-symbiont environmental conditions. Here we analysed the repeatability (R of the intensity and the prevalence of feather mites to partition within- and among-host species variance components. We compiled the largest dataset so far available: 119 Paleartic passerine bird species, 75,944 individual birds, ca. 1.8 million mites, seven countries, 23 study years. Several analyses and approaches were made to estimate R and adjusted repeatability (R(adj after controlling for potential confounding factors (breeding period, weather, habitat, spatial autocorrelation and researcher identity. The prevalence of feather mites was moderately repeatable (R = 0.26-0.53; R(adj = 0.32-0.57; smaller values were found for intensity (R = 0.19-0.30; R(adj = 0.18-0.30. These moderate repeatabilities show that prevalence and intensity of feather mites differ among species, but also that the high variation within species leads to considerable overlap among bird species. Differences in the prevalence and intensity of feather mites within bird species were small among habitats, suggesting that local factors are playing a secondary role. However, effects of local climatic conditions were partially observed for intensity.

  5. Automatization and familiarity in repeated checking

    NARCIS (Netherlands)

    Dek, Eliane C P; van den Hout, Marcel A.; Giele, Catharina L.; Engelhard, Iris M.

    2014-01-01

    Repeated checking paradoxically increases memory uncertainty. This study investigated the underlying mechanism of this effect. We hypothesized that as a result of repeated checking, familiarity with stimuli increases, and automatization of the checking procedure occurs, which should result in decrea

  6. CDC Vital Signs: Preventing Repeat Teen Births

    Science.gov (United States)

    ... file Error processing SSI file Preventing Repeat Teen Births Recommend on Facebook Tweet Share Compartir On this ... Too many teens, ages 15–19, have repeat births. Nearly 1 in 5 births to teens, ages ...

  7. A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning

    Science.gov (United States)

    Peng, Chaoyong; Chen, Yang; Chen, Quansheng; Yang, Jiansi; Wang, Hongti; Zhu, Xiaoyi; Xu, Zhiqiang; Zheng, Yu

    2017-03-01

    Earthquake Early Warning System (EEWS) has shown its efficiency for earthquake damage mitigation. As the progress of low-cost Micro Electro Mechanical System (MEMS), many types of MEMS-based accelerometers have been developed and widely used in deploying large-scale, dense seismic networks for EEWS. However, the noise performance of these commercially available MEMS is still insufficient for weak seismic signals, leading to the large scatter of early-warning parameters estimation. In this study, we developed a new type of tri-axial accelerometer based on high dynamic range MEMS with low noise level using for EEWS. It is a MEMS-integrated data logger with built-in seismological processing. The device is built on a custom-tailored Linux 2.6.27 operating system and the method for automatic detecting seismic events is STA/LTA algorithms. When a seismic event is detected, peak ground parameters of all data components will be calculated at an interval of 1 s, and τc-Pd values will be evaluated using the initial 3 s of P wave. These values will then be organized as a trigger packet actively sent to the processing center for event combining detection. The output data of all three components are calibrated to sensitivity 500 counts/cm/s2. Several tests and a real field test deployment were performed to obtain the performances of this device. The results show that the dynamic range can reach 98 dB for the vertical component and 99 dB for the horizontal components, and majority of bias temperature coefficients are lower than 200 μg/°C. In addition, the results of event detection and real field deployment have shown its capabilities for EEWS and rapid intensity reporting.

  8. Measurement of jerk-cost using a triaxial piezoelectric accelerometer for the evaluation of jaw movement smoothness.

    Science.gov (United States)

    Minami, I; Oogai, K; Nemoto, T; Nakamura, T; Igarashi, Y; Wakabayashi, N

    2010-08-01

    Jerk-cost as a measure of jaw movement smoothness has been used to evaluate the masticatory function of patients with tooth loss and malocclusion. Jerk-cost measuring systems have thus far been unable to determine the jerk-cost of each chewing phase over time. The purposes of this study were (i) to develop a new method for measuring momentary jerk-cost of the jaw movement using a small triaxial piezoelectric accelerometer and (ii) to test the hypothesis that the lowest smoothness is seen during jaw-opening phase. The accelerometer was attached to the skin of the mentum of each subject. Vertical jaw displacement, acceleration, the jerk, and the time differential of jerk-cost during gum chewing were analysed as a function of time in five normal dentate subjects (n = 5). The system revealed intra-class correlation coefficients of intra-examiner, inter-examiner, and test-retest consistency of substantially high values (0.80-0.88). In all subjects, the highest jerk-cost was observed in the opening phase of each chewing cycle when the gum was parting from the teeth; the lowest jerk-cost was observed in the intercuspal phase throughout the chewing cycle, thus confirming the hypothesis. Significant differences were observed between the opening, closing, and intercuspal chewing phases (N = 5, P = 0.007). The smoothness measurement system used in this study evaluated the momentary smoothness of each chewing phase in the masticatory cycle. The system may serve as a diagnostic tool to evaluate the smoothness of the jaw movement in general dental practice.

  9. Relationship between electrical conductivity anisotropy and fabric anisotropy in granular materials during drained triaxial compressive tests: a numerical approach

    Science.gov (United States)

    Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing

    2017-07-01

    The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy

  10. Expanded complexity of unstable repeat diseases

    OpenAIRE

    Polak, Urszula; McIvor, Elizabeth; Dent, Sharon Y.R.; Wells, Robert D.; Napierala, Marek.

    2012-01-01

    Unstable Repeat Diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly expansion, of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequen...

  11. 47 CFR 97.205 - Repeater station.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Repeater station. 97.205 Section 97.205... SERVICE Special Operations § 97.205 Repeater station. (a) Any amateur station licensed to a holder of a Technician, General, Advanced or Amateur Extra Class operator license may be a repeater. A holder of...

  12. 47 CFR 22.1015 - Repeater operation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Repeater operation. 22.1015 Section 22.1015... Offshore Radiotelephone Service § 22.1015 Repeater operation. Offshore central stations may be used as repeater stations provided that the licensee is able to maintain control of the station, and in...

  13. 三轴式无人旋翼飞行器及自适应飞行控制系统设计%A Design of Triaxial Unmanned Rotor Aircraft and Its Adaptive Flight Control System

    Institute of Scientific and Technical Information of China (English)

    夏青元; 徐锦法

    2013-01-01

    A tri-axial unmanned rotor aircraft consisting of three sets of coaxial rotors is designed. The control mechanism of the unmanned rotor aircraft is very much simplified. The rotors are directly driven by DC motors. The speed of each motor is the only regulating variable which could control the attitude and trajectory of the aircraft. In order to verify the design of the flight control system for the triaxial unmanned rotor aircraft, a nonlinear dynamic model of the aircraft is investigated. A computing method of the rotor aerodynamic loads is established by means of the blade element momentum theory. The effect of the rotor inflow characteristics on the rotor aerodynamic load is analyzed. The validity of the rotor aerodynamic load model for the co-axial rotor is tested by experiments. Due to the influence of nonlinearity and un-modeled dynamics, it is quite difficult to establish a very accurate mathematical model, which makes it a challenge to design a flight control system. In this paper, a rotational dynamical model inverse controller and translational dynamical model inverse controller are deduced according to the nonlinear model of the aircraft. The model inverse error is adaptively compensated with an online neural network. The command following error is regulated with a PD/PI controller. A combined maneuver flight mission task element is applied to simulation validation, which included pirouette and vertical maneuvers. A demonstration is conducted to validate the flight control system of the tri-axial unmanned rotor aircraft. Simulation results including an imitation of gust disturbance are provided. The demonstration shows clearly that the designed flight control system has adaptability and robustness, and that it can implement accurate command following control.%设计了一种操控简便的三轴式无人旋翼飞行器,由三组共轴双旋翼组成,各旋翼由直流电机直接驱动,只需调节各电机转速就能控制旋翼飞行器运动姿态

  14. ProtRepeatsDB: a database of amino acid repeats in genomes

    Directory of Open Access Journals (Sweden)

    Chauhan Virander S

    2006-07-01

    Full Text Available Abstract Background Genome wide and cross species comparisons of amino acid repeats is an intriguing problem in biology mainly due to the highly polymorphic nature and diverse functions of amino acid repeats. Innate protein repeats constitute vital functional and structural regions in proteins. Repeats are of great consequence in evolution of proteins, as evident from analysis of repeats in different organisms. In the post genomic era, availability of protein sequences encoded in different genomes provides a unique opportunity to perform large scale comparative studies of amino acid repeats. ProtRepeatsDB http://bioinfo.icgeb.res.in/repeats/ is a relational database of perfect and mismatch repeats, access to which is designed as a resource and collection of tools for detection and cross species comparisons of different types of amino acid repeats. Description ProtRepeatsDB (v1.2 consists of perfect as well as mismatch amino acid repeats in the protein sequences of 141 organisms, the genomes of which are now available. The web interface of ProtRepeatsDB consists of different tools to perform repeat s; based on protein IDs, organism name, repeat sequences, and keywords as in FASTA headers, size, frequency, gene ontology (GO annotation IDs and regular expressions (REGEXP describing repeats. These tools also allow formulation of a variety of simple, complex and logical queries to facilitate mining and large-scale cross-species comparisons of amino acid repeats. In addition to this, the database also contains sequence analysis tools to determine repeats in user input sequences. Conclusion ProtRepeatsDB is a multi-organism database of different types of amino acid repeats present in proteins. It integrates useful tools to perform genome wide queries for rapid screening and identification of amino acid repeats and facilitates comparative and evolutionary studies of the repeats. The database is useful for identification of species or organism specific

  15. Pentatricopeptide repeat proteins in plants.

    Science.gov (United States)

    Barkan, Alice; Small, Ian

    2014-01-01

    Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.

  16. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  17. General benchmarks for quantum repeaters

    CERN Document Server

    Pirandola, Stefano

    2015-01-01

    Using a technique based on quantum teleportation, we simplify the most general adaptive protocols for key distribution, entanglement distillation and quantum communication over a wide class of quantum channels in arbitrary dimension. Thanks to this method, we bound the ultimate rates for secret key generation and quantum communication through single-mode Gaussian channels and several discrete-variable channels. In particular, we derive exact formulas for the two-way assisted capacities of the bosonic quantum-limited amplifier and the dephasing channel in arbitrary dimension, as well as the secret key capacity of the qubit erasure channel. Our results establish the limits of quantum communication with arbitrary systems and set the most general and precise benchmarks for testing quantum repeaters in both discrete- and continuous-variable settings.

  18. Hungarian repeat station survey, 2010

    Directory of Open Access Journals (Sweden)

    Péter Kovács

    2013-03-01

    Full Text Available The last Hungarian repeat station survey was completed between October 2010 and February 2011. Declination, inclination and the total field were observed using one-axial DMI fluxgate magnetometer mounted on Zeiss20A theodolite and GSM 19 Overhauser magnetometer. The magnetic elements of the sites were reduced to the epoch of 2010.5 on the basis of the continuous recordings of Tihany Geophysical Observatory. In stations located far from the reference observatory, the observations were carried out in the morning and afternoon in order to decrease the effect of the distant temporal correction. To further increase the accuracy, on-site dIdD variometer has also been installed near the Aggtelek station, in the Baradla cave, during the survey of the easternmost sites. The paper presents the technical details and the results of our last campaign. The improvement of the accuracy of the temporal reduction by the use of the local variometer is also reported.

  19. Quality control during repeated fryings

    Directory of Open Access Journals (Sweden)

    Cuesta, C.

    1998-08-01

    Full Text Available Most of the debate ¡s about how the slow or frequent turnover of fresh fat affects the deterioration, of fat used in frying. Then, the modification of different oils used in repeated fryings of potatoes without or with turnover of fresh oil, under similar frying conditions, was evaluated by two criteria: by measuring the total polar component isolated by column chromatography and by the evaluation of the specific compounds related to thermoxidative and hydrolytic alteration by High Performance Size Exclusion Chromatography (HPSEC. The results indicate that with frequent turnover of fresh oil, the critical level of 25% of polar material is rarely reached, and there are fewer problems with fat deterioration because the frying tended to increase the level of polar material and thermoxidative compounds (polymers and dimers of triglycerides and oxidized triglycerides in the fryer oil during the first fryings, followed by minor changes and a tendency to reach a near-steady state in successive fryings. However, in repeated frying of potatoes using a null turnover the alteration rate was higher being linear the relationship found between polar material or the different thermoxidative compounds and the number of fryings. On the other hand chemical reactions produced during deep-fat frying can be minimized by using proper oils. In addition the increased level of consumers awareness toward fat composition and its impact on human health could had an impact on the selection of fats for snacks and for industry. In this way monoenic fats are the most adequate from a nutritional point of view and for its oxidative stability during frying.

  20. High Power Disk Loaded Guide Load

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  1. Effects of repeated Valsalva maneuver straining on cardiac and vasoconstrictive baroreflex responses.

    Science.gov (United States)

    Convertino, Victor A; Ratliff, Duane A; Doerr, Donald F; Ludwig, David A; Muniz, Gary W; Benedetti, Erik; Chavarria, Jose; Koreen, Susan; Nguyen, Claude; Wang, Jeff

    2003-03-01

    We hypothesized that repeated respiratory straining maneuvers (repeated SM) designed to elevate arterial BPs (arterial baroreceptor loading) would acutely increase baroreflex responses. We tested this hypothesis by measuring cardiac baroreflex responses to carotid baroreceptor stimulation (neck pressures), and changes in heart rate and diastolic BP after reductions in BP induced by a 15-s Valsalva maneuver in 10 female and 10 male subjects at 1, 3, 6, and 24 h after performing repeated SM. Baroreflex responses were also measured in each subject at 1, 3, 6, and 24 h at the same time on a separate day without repeated SM (control) in a randomized, counter-balanced cross-over experimental design. There was no statistical difference in carotid-cardiac and peripheral vascular baroreflex responses measured across time following repeated SM compared with the control condition. Integrated cardiac baroreflex response (deltaHR/ deltaSBP) measured during performance of a Valsalva maneuver was increased by approximately 50% to 1.1 +/- 0.2 bpm x mm Hg(-1) at 1 h and 1.0 +/- 0.1 bpm x mm Hg(-1) at 3 h following repeated SM compared with the control condition (0.7 +/- 0.1 bpm x mm Hg(-1) at both 1 and 3 h, respectively). However, integrated cardiac baroreflex response after repeated SM returned to control levels at 6 and 24 h after training. These responses did not differ between men and women. Our results are consistent with the notion that arterial baroreceptor loading induced by repeated SM increased aortic, but not carotid, cardiac baroreflex responses for as long as 3 h after repeated SM. We conclude that repeated SM increases cardiac baroreflex responsiveness which may provide patients, astronauts, and high-performance aircraft pilots with protection from development of orthostatic hypotension.

  2. Growth of (Y1-x Ca x )Ba2Cu4O8 in ambient pressure and its tri-axial magnetic alignment

    Science.gov (United States)

    Horii, S.; Yamaki, M.; Shimoyama, J.; Kishio, K.; Doi, T.

    2015-10-01

    We report the growth of single crystals in ambient pressure and tri-axial orientation under modulated rotation magnetic fields (MRFs) for (Y1-x Ca x )Ba2Cu4O8 [(Y1-x Ca x )124] with x ≤ 0.1. Rectangular (Y1-x Ca x )124 crystals approximately 50 μm in size have been successfully grown for x ≤ 0.1 in a growth temperature region from 650 °C to 750 °C. Their critical temperatures increased with x and exhibited approximately 91 K for x = 0.1. By applying an MRF of 10 T, pulverised powders of (Y1-x Ca x )124 were tri-axially aligned in epoxy resin at room temperature in a whole x region below x = 0.1. The magnitude relationship of the magnetic susceptibilities (χ) along crystallographic directions for (Y1-x Ca x )124 was χ c > χ a > χ b at room temperature and was unchanged with a change in x. From changes in the degrees of the c-axis and the in-plane orientation (Δω) for the (Y1-x Ca x )124 powder samples aligned under three different MRF conditions, it was found that MRFs above at least 1 T were required to achieve almost complete tri-axial alignment with Δω introduction of magnetic alignment without using single crystalline samples. The present study indicates that magnetic alignment is a useful process for the fabrication of quasi-single-crystals from the perspective of solid-state physics and the production of cuprate superconducting materials.

  3. Lightening the Load

    OpenAIRE

    Remington, Anna M.; Swettenham, John G.; Lavie, Nilli

    2012-01-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enh...

  4. Effects of multiaxial cyclic loading conditions on the evolution of porous defects

    Directory of Open Access Journals (Sweden)

    Mbiakop Armel

    2014-06-01

    Full Text Available Multiaxial loading conditions are one of the important parameters in estimating the lifetime of structure both in high and low cycle fatigue ([1 3]. In order to understand the coupling between the macroscopic multiaxial loading and the microscopic defects, we propose to investigate the evolution of an elasto-plastic porous material up to failure under low cycle fatigue conditions. The analysis is performed numerically, using finite elements, on a periodic 3D unit-cell under the assumption of finite strains and subjected to various stress triaxialities, translated as ratios between deviatoric, hydrostatic stress and Lode angles. The present discussion introduces several novel factors in the analysis: (i 3D geometry in cyclic loading (ii finite strains (iii free evolving void shape (iiii different hardening laws. That one of the important factors is the void shape and that its evolution during cyclic loading depends on its multiaxiality. Moreover, these factors will equally influence the apparent macroscopic hardening or softening of the material and the initiation of localized shear zones at the microscopic level. The Lode angle has a significant impact on the evolution of the aspect ratios and the ellipsoidicity of the pores, but has only a weak influence on the evolution of macroscopic variables such as the stress or the porosity. As a consequence, the results show that multiaxiality of the loading have an important on the evolution and growth of defects, pores in the present case problem, but are less important in the definition of the yield surface.

  5. Player Load, Acceleration, and Deceleration During Forty-Five Competitive Matches of Elite Soccer.

    Science.gov (United States)

    Dalen, Terje; Ingebrigtsen, Jørgen; Ettema, Gertjan; Hjelde, Geir Havard; Wisløff, Ulrik

    2016-02-01

    The use of time-motion analysis has advanced our understanding of position-specific work rate profiles and the physical requirements of soccer players. Still, many of the typical soccer activities can be neglected, as these systems only examine activities measured by distance and speed variables. This study used triaxial accelerometer and time-motion analysis to obtain new knowledge about elite soccer players' match load. Furthermore, we determined acceleration/deceleration profiles of elite soccer players and their contribution to the players' match load. The data set includes every domestic home game (n = 45) covering 3 full seasons (2009, 2010, and 2011) for the participating team (Rosenborg FC), and includes 8 central defenders (n = 68), 9 fullbacks (n = 83), 9 central midfielders (n = 70), 7 wide midfielders (n = 39), and 5 attackers (A, n = 50). A novel finding was that accelerations contributed to 7-10% of the total player load for all player positions, whereas decelerations contributed to 5-7%. Furthermore, the results indicate that other activities besides the high-intensity movements contribute significantly to the players' total match workload. Therefore, motion analysis alone may underestimate player load because many high-intensity actions are without a change in location at the pitch or they are classified as low-speed activity according to current standards. This new knowledge may help coaches to better understand the different ways players achieve match load and could be used in developing individualized programs that better meet the "positional physical demands" in elite soccer.

  6. Taking a Load Off.

    Science.gov (United States)

    Kenny, John

    1995-01-01

    Discusses the snow -load capacity of school roofs and how understanding this data aids in planning preventive measures and easing fear of roof collapse. Describes how to determine snow-load capacity, and explains the load-bearing behavior of flat versus sloped roofs. Collapse prevention measures are highlighted. (GR)

  7. Automatic Adaptive Control of Full-Flow Hydrostatic Transmission for Tri-axial All-Wheel Drive Vehicle

    Directory of Open Access Journals (Sweden)

    A. V. Lepeshkin

    2015-01-01

    Full Text Available The article presents the research results aimed at theoretical justification of requirements for automatic adaptive control systems (AACS to be the basis of developed intelligent transmissions of multi-drive wheeled all-terrain vehicles.To conduct studies was used a specially developed mathematical model of motion of triaxial all-wheel drive vehicle “Gidrohod-49061”, equipped with CVT full flow hydrostatic transmission (HST on a non-deformable support surface. This mathematical model is to simulate different operating conditions of the vehicle, which are a consequence both of disturbances from the road and of control actions from the driver and AACS.The article presents some results of theoretical and experimental studies to prove the adequacy of the developed mathematical model.The results analysis of mathematical modeling proved conclusively that one of the main tasks to be solved owing to developed AACS of intelligent transmission of multi-drive wheeled vehicle is to reduce the mismatch value in operation of drive wheels.It is shown that the reasons for these mismatches can be either AACS error when processing control signals or other factors that characterize operating conditions of the drive wheels. Therefore, the paper proposes to develop a tracking control system of HST of the considered vehicle using the output parameters characterizing operation conditions of its drive wheels rather than the values of control parameters of hydraulic working volumes. As output parameters, it is proposed to use the speed of the drive wheels (hydro-motor shafts and pressure drop in the main pump hydraulic drives, coming to HST.Therefore it is proposed to develop HST AACS of the vehicle under consideration, as a system of two-level regulation, including the kinematic (main level and power (level of correction circuits. The former provides, at the first approximation, the required values of the drive wheel speeds in the given conditions, and the latter

  8. 高温三轴应力下气煤蠕变特征及本构模型%Creep characteristics and constitutive model of gas coal mass under high temperature and triaxial stress

    Institute of Scientific and Technical Information of China (English)

    周长冰; 万志军; 张源; 刘渝; 张博

    2012-01-01

    Utilizing the 20 MN servo-controlled triaxial rock testing machine with high temperature and high pressure developed by China University of Mining and Technology,experimental study was carried out on the creep properties of large size gas coal specimens of 200 mm×400 mm under two temperature points of triaxial stress at 200 ℃ and 400 ℃.The research results indicate that the gas coal experiences the first and second phases of creep at 200 ℃,but without acceleration of creep;and phase that creep accelerates appears after a short time at 400 ℃.In the joint action of temperature and stress,the gas coal specimens show typical sticky-elastic-plastic deformation;because of the moment and subsequent deformation in the loading process,coal specimens are always accompanied by significant plastic deformation.By the analysis of the permeability and porosity of gas coal under different temperatures,it was initially judged that 300 ℃ is the critical temperature of the change of creep characteristics about gas coal.On the basis of high-temperature creep characteristics of gas coal,a new type of nonlinear dashpots was introduced,and a creep constitutive model under high temperature aimed at gas coal was built,which theoretical curves of axial creep could agree well with the experimental curves,which indicating that this constitutive model can preferably simulate the creep characteristics of the gas coal under high temperature.%采用中国矿业大学研制的"600℃20 MN伺服控制高温高压岩体三轴试验机",对尺寸为200 mm×400 mm的山东兴隆庄气煤进行了200℃和400℃两个温度点的三轴应力下的蠕变实验。实验表明:200℃时,气煤蠕变具有明显的第1,2阶段,但未出现加速蠕变阶段,而400℃时,气煤在很短时间内就进入加速蠕变阶段;在温度和应力共同作用下,气煤在加载瞬间及后续变形过程中,始终伴随着显著的塑性变形,煤体变形为典型的黏弹塑性变形。通过

  9. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  10. Strengthening concept learning by repeated testing.

    Science.gov (United States)

    Wiklund-Hörnqvist, Carola; Jonsson, Bert; Nyberg, Lars

    2014-02-01

    The aim of this study was to examine whether repeated testing with feedback benefits learning compared to rereading of introductory psychology key-concepts in an educational context. The testing effect was examined immediately after practice, after 18 days, and at a five-week delay in a sample of undergraduate students (n = 83). The results revealed that repeated testing with feedback significantly enhanced learning compared to rereading at all delays, demonstrating that repeated retrieval enhances retention compared to repeated encoding in the short- and the long-term. In addition, the effect of repeated testing was beneficial for students irrespectively of working memory capacity. It is argued that teaching methods involving repeated retrieval are important to consider by the educational system.

  11. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    Science.gov (United States)

    Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  12. Repeat concussions in the national football league.

    Science.gov (United States)

    Casson, Ira R; Viano, David C; Powell, John W; Pellman, Elliot J

    2011-01-01

    Repeat concussion is an important issue in the National Football League (NFL). An initial description of repeat injuries was published for 6 years (1996-2001). The characteristics and frequency of repeat concussion in the NFL have not changed in the subsequent 6 years (2002-2007). Case control. From 1996 to 2007, concussions were reported using a standardized form documenting signs and symptoms, loss of consciousness and medical action taken. Data on repeat concussions were analyzed for the 12 years and compared between the 2 periods. In 2002-2007, 152 players had repeat concussions (vs 160 in 1996-2001); 44 had 3+ head injuries (vs 52). The positions most often associated with repeat concussion in 2002-2007 were the defensive secondary, kick unit, running back, and linebacker. The odds for repeat concussion were elevated for wide receivers, tight ends, and linebackers but lower than in the earlier period. During 2002-2007, over half of players with repeat concussion were removed from play, and fewer immediately returned (vs 1996-2001). The average duration between concussions was 1.25 years for 2002-2007 and 1.65 years for the 12-year period. Over 12 years, 7.6% of all repeat concussions occurred within 2 weeks of the prior concussion. The defensive secondary, kick unit, running back, and linebacker have the highest incidence of repeat concussion. During 2002-2007, more than half of players with repeat concussion were removed from play, and only a fraction immediately returned. Although concussion was managed more conservatively by team physicians in the recent 6 years, repeat concussions occurred at similar rates during both periods.

  13. Automated quality checks on repeat prescribing.

    OpenAIRE

    Rogers, Jeremy E; Wroe, Christopher J; Roberts, Angus; Swallow, Angela; Stables, David; Cantrill, Judith A; Rector, Alan L.

    2003-01-01

    BACKGROUND: Good clinical practice in primary care includes periodic review of repeat prescriptions. Markers of prescriptions that may need review have been described, but manually checking all repeat prescriptions against the markers would be impractical. AIM: To investigate the feasibility of computerising the application of repeat prescribing quality checks to electronic patient records in United Kingdom (UK) primary care. DESIGN OF STUDY: Software performance test against benchmark manual...

  14. Short Tandem Repeat DNA Internet Database

    Science.gov (United States)

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  15. Duration of load revisited

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Sørensen, John Dalsgaard

    2007-01-01

    were formed. Four groups were subjected to short-term strength tests, and four groups were subjected to long-term tests. Creep and time to failure were moni-tored. Time to failure as a function of stress level was established and the reliability of stress level assessment was discussed. A significant...... mechanosorptive effect was demonstrated both in terms of increased creep and shortening of time to failure. The test results were employed for the calibration of four existing duration of load models. The effect of long-term loading was expressed as the stress level SL50 to cause failure after 50 years of loading...... and of the short-term and long-term strengths. For permanent and imposed library loads, reliability-based estimation of the load duration factor gave almost the same results as direct, deterministic calibration. Keywords: Creep, damage models, duration of load, equal rank assumption, load duration factor, matched...

  16. Evolution of Determinant Factors of Repeated Sprint Ability.

    Science.gov (United States)

    Pareja-Blanco, Fernando; Suarez-Arrones, Luis; Rodríguez-Rosell, David; López-Segovia, Manuel; Jiménez-Reyes, Pedro; Bachero-Mena, Beatriz; González-Badillo, Juan José

    2016-12-01

    The aim of this study was to investigate the changes in the relationships between repeated sprint ability (RSA) and anthropometric measures as well as fitness qualities in soccer players. Twenty-one professional soccer players performed several anthropometric and physical tests including countermovement vertical jumps (CMJs), a straight-line 30 m sprint (T30), an RSA test (6 x 20 + 20 m with 20 s recovery), a progressive isoinertial loading test in a full squat, a Yo-Yo Intermittent Recovery Test Level-1 (YYIRT-1) and a 20 m shuttle run test (20mSRT). The mean (RSAmean), the fastest (RSAbest), each single sprint time, and the percentage in a sprint decrease (%Dec) in the RSA test were calculated. RSAbest correlated significantly with RSAmean (r = .82) and with all single sprints (p sprints performed increased. No significant relationship was observed between the %Dec and RSA performance. CMJs and the T30 also showed a correlation with RSA performance, whereas lower limb strength did not show any relationship with RSA performance. RSAmean showed significant (p repeated sprints increased. The 20mSRT showed minimal relationships with RSA performance. In conclusion, maximal sprint capacity seems to be relevant for the RSA performance, mainly in the first sprints. However, high intermittent endurance capacity and low adiposity might help enhance the RSA performance when increasing the number of repeated sprints.

  17. Microscopic changes of Longxi loess during triaxial shear process%陇西黄土三轴剪切过程微观变化研究

    Institute of Scientific and Technical Information of China (English)

    李识博; 王常明; 马建全; 王钢城

    2013-01-01

    为了解黄土三轴剪切过程中的微观变化,采用PFC3D建立黄土三轴试验模型,模拟围压分别为0、50、150、300 kPa的三轴剪切试验,并与室内试验进行对比分析。分析结果表明:PFC3D能够较好地模拟出不同围压下从开始到破坏到残余变形整个过程中应力-应变的变化规律,且位移场及接触应力场的变化规律与室内三轴试验宏观现象较一致;发现弹性模量、泊松比及峰值强度与数值模型中微观参数有着密切的联系,如法向刚度 kn控制试样宏观弹性模量,kn/ks值控制泊松比,摩擦系数控制峰值强度;通过体应变-轴向应变曲线发现,随着围压的增加应变能增大,试样呈现出由体积膨胀到体积减缩的变化规律。其研究结果为进一步探究黄土的应力-应变性状及抗剪强度特性提供参考。%In order to research microscopic changes of loess during triaxial shear process, the loess triaxial test model is established with PFC3D (particle flow code in 3 dimensions) software. And the triaxial shear tests are simulated under different confining pressures of 0 kPa, 50 kPa, 150 kPa and 300 kPa. Compared with the results of laboratory triaxial shear tests, the microscopic changes of particles from the beginning then to the peak and at last to the residual deformation of the stress-strain curve are simulated by PFC3D. And the variations of displacement field and contact stress field are more consistent with the macroscopic phenomena of laboratory triaxial tests. The researches indicate that some closely links are existed between the macroscopic parameters (elastic modulus, Poisson's ratio, peak strength) of laboratory model and microscopic parameters (normal stiffness, shear stiffness, friction coefficient) of numerical model. For example, the elastic modulus is controlled by the normal stiffness; the Poisson’s ratio is controlled by the ratio of normal stiffness and shear stiffness

  18. Triaxial Permeability Device

    Science.gov (United States)

    1988-01-01

    closing valves #16 and 19. Valves #11, 12, and 13 are then opened. The three way valves #5 and 8 should be set so flow is directed to the mercury manometer . The...in the influent mercury manometer leg to the maximum height using air pressure from the backpres- sure regulator. This drives much of the water out

  19. Experimental and numerical analysis concerning the behaviour of OL50 steel grade specimens coated with polyurea layer under dynamics loadings

    Science.gov (United States)

    Bucur, Florina; Trana, Eugen; Rotariu, Adrian; Gavrus, Adinel; Barbu, Cristian; Guines, Dominique

    2015-09-01

    This study refers to an experimental and numerical evaluation of a polyurea coating layer influence on the dynamic behaviour of OL50 specimens. Mechanical quasi-static and dynamic tensile tests were performed in axial loading conditions, for 2 mm steel plate specimens. Several metallic specimens have been previously coated with 1.5 mm and 3 mm respectively thickness polyurea layer and tested in traction. The findings results indicate that the presence of polyurea changes the loading pattern of metallic material in the necking area. In terms of polyurea coated metal specimens fracture, there was clearly observed a change of fracture limit. One possible explanation of this phenomenon is the modification of triaxiality state in the necking zone, fact proven by the numerical simulations. Test results indicate that the presence of polyurea layer delays the necking onset phenomenon which precedes the OL50 metallic specimen fracture.

  20. Experimental and numerical analysis concerning the behaviour of OL50 steel grade specimens coated with polyurea layer under dynamics loadings

    Directory of Open Access Journals (Sweden)

    Bucur Florina

    2015-01-01

    Full Text Available This study refers to an experimental and numerical evaluation of a polyurea coating layer influence on the dynamic behaviour of OL50 specimens. Mechanical quasi-static and dynamic tensile tests were performed in axial loading conditions, for 2 mm steel plate specimens. Several metallic specimens have been previously coated with 1.5 mm and 3 mm respectively thickness polyurea layer and tested in traction. The findings results indicate that the presence of polyurea changes the loading pattern of metallic material in the necking area. In terms of polyurea coated metal specimens fracture, there was clearly observed a change of fracture limit. One possible explanation of this phenomenon is the modification of triaxiality state in the necking zone, fact proven by the numerical simulations. Test results indicate that the presence of polyurea layer delays the necking onset phenomenon which precedes the OL50 metallic specimen fracture.

  1. Characterisation of steel components under monotonic loading by means of image-based methods

    Science.gov (United States)

    Xavier, J.; Pereira, J. C. R.; de Jesus, A. M. P.

    2014-02-01

    Ductile damage behaviour of S185 structural steel is determined by coupling numerical and experimental analyses. Monotonic experimental tests are carried out in five different specimen configurations. These mechanical tests are coupled with image-based methods for assessing displacement and strain fields over the gauge section. Three different ductile damage models proposed in the literature for monotonic loading are analysed. Their governing parameters are determined by comparing experimental and numerical mechanical responses. Measurements provided by digital image correlation and feature-tracking methods are used for calibrating and validating non-linear finite element modelling. Numerical analyses built in ANSYS are carried out to compute the necessary parameters (stress-strain and triaxiality histories) to calibrate Johnson-Cook (JC) and Kanvinde-Deierlein (KD) fracture criteria. Also, a calibration of the Gurson-Tvergaard-Needleman (GTN) model is performed based on an explicit finite element analysis in ABAQUS.

  2. Optimisation of load control

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, P. [VTT Energy, Espoo (Finland)

    1998-08-01

    Electricity cannot be stored in large quantities. That is why the electricity supply and consumption are always almost equal in large power supply systems. If this balance were disturbed beyond stability, the system or a part of it would collapse until a new stable equilibrium is reached. The balance between supply and consumption is mainly maintained by controlling the power production, but also the electricity consumption or, in other words, the load is controlled. Controlling the load of the power supply system is important, if easily controllable power production capacity is limited. Temporary shortage of capacity causes high peaks in the energy price in the electricity market. Load control either reduces the electricity consumption during peak consumption and peak price or moves electricity consumption to some other time. The project Optimisation of Load Control is a part of the EDISON research program for distribution automation. The following areas were studied: Optimization of space heating and ventilation, when electricity price is time variable, load control model in power purchase optimization, optimization of direct load control sequences, interaction between load control optimization and power purchase optimization, literature on load control, optimization methods and field tests and response models of direct load control and the effects of the electricity market deregulation on load control. An overview of the main results is given in this chapter

  3. The reliability of the Extra Load Index as a measure of relative load carriage economy.

    Science.gov (United States)

    Hudson, Sean; Cooke, Carlton; Lloyd, Ray

    2017-02-01

    The aim of this study was to measure the reliability of the extra load index (ELI) as a method for assessing relative load carriage economy. Seventeen volunteers (12 males, 5 females) performed walking trials at 3 km·h(-1), 6 km·h(-1) and a self-selected speed. Trial conditions were repeated 7 days later to assess test-retest reliability. Trials involved four 4-minute periods of walking, each separated by 5 min of rest. The initial stage was performed unloaded followed in a randomised order by a second unloaded period and walking with backpacks of 7 and 20 kg. Results show ELI values did not differ significantly between trials for any of the speeds (p = 0.46) with either of the additional loads (p = 0.297). The systematic bias, limits of agreement and coefficients of variation were small in all trial conditions. We conclude the ELI appears to be a reliable measure of relative load carriage economy. Practitioner Summary: This paper demonstrates that the ELI is a reliable measure of load carriage economy at a range of walking speeds with both a light and heavy load. The ELI, therefore, represents a useful tool for comparing the relative economy associated with different load carriage systems.

  4. Ambiguity of the critical load for spherical shells with shear damageability of the material

    Science.gov (United States)

    Babich, D. V.; Dorodnykh, T. I.

    2016-06-01

    The structural-probabilistic approach to the modeling of combined crack formation and material deformation processes is used to develop a technique for solving bifurcation stability problems for thin-walled structural members made of damageable materials under single and repeated loadings. The example of a uniformly compressed spherical shell is used to show that, under repeated loading, thin-walled structural members made of shear damageable materials can lose stability under loads smaller than the upper critical loads. The ambiguity of the critical loads for various damage accumulation processes in the material of thin-walled structures depends on the level and character of loading. This phenomenon can be one possible cause of the experimental data spread and the discrepancy between theoretical and experimental results used to determine the critical loads for spherical and cylindrical shells.

  5. Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits.

    Science.gov (United States)

    Piazza, Ilaria; Rutkowska, Anna; Ori, Alessandro; Walczak, Marta; Metz, Jutta; Pelechano, Vicent; Beck, Martin; Haering, Christian H

    2014-06-01

    Condensin complexes have central roles in the three-dimensional organization of chromosomes during cell divisions, but how they interact with chromatin to promote chromosome segregation is largely unknown. Previous work has suggested that condensin, in addition to encircling chromatin fibers topologically within the ring-shaped structure formed by its SMC and kleisin subunits, contacts DNA directly. Here we describe the discovery of a binding domain for double-stranded DNA formed by the two HEAT-repeat subunits of the Saccharomyces cerevisiae condensin complex. From detailed mapping data of the interfaces between the HEAT-repeat and kleisin subunits, we generated condensin complexes that lack one of the HEAT-repeat subunits and consequently fail to associate with chromosomes in yeast and human cells. The finding that DNA binding by condensin's HEAT-repeat subunits stimulates the SMC ATPase activity suggests a multistep mechanism for the loading of condensin onto chromosomes.

  6. Semantic relations cause interference in spoken language comprehension when using repeated definite references, not pronouns

    Directory of Open Access Journals (Sweden)

    Sara ePeters

    2016-03-01

    Full Text Available The choice and processing of referential expressions depend on the referents’ status within the discourse, such that pronouns are generally preferred over full repetitive references when the referent is salient. Here we report two visual-world experiments showing that: (1 in spoken language comprehension, this preference is reflected in delayed fixations to referents mentioned after repeated definite references compared with after pronouns; (2 repeated references are processed differently than new references; (3 long-term semantic memory representations affect the processing of pronouns and repeated names differently. Overall, these results support the role of semantic discourse representation in referential processing and reveal important details about how pronouns and full repeated references are processed in the context of these representations. The results suggest the need for modifications to current theoretical accounts of reference processing such as Discourse Prominence Theory and the Informational Load Hypothesis.

  7. Semantic Relations Cause Interference in Spoken Language Comprehension When Using Repeated Definite References, Not Pronouns.

    Science.gov (United States)

    Peters, Sara A; Boiteau, Timothy W; Almor, Amit

    2016-01-01

    The choice and processing of referential expressions depend on the referents' status within the discourse, such that pronouns are generally preferred over full repetitive references when the referent is salient. Here we report two visual-world experiments showing that: (1) in spoken language comprehension, this preference is reflected in delayed fixations to referents mentioned after repeated definite references compared with after pronouns; (2) repeated references are processed differently than new references; (3) long-term semantic memory representations affect the processing of pronouns and repeated names differently. Overall, these results support the role of semantic discourse representation in referential processing and reveal important details about how pronouns and full repeated references are processed in the context of these representations. The results suggest the need for modifications to current theoretical accounts of reference processing such as Discourse Prominence Theory and the Informational Load Hypothesis.

  8. Unexpectedly frequent occurrence of very small repeating earthquakes (5.1=Mw=3.6) in a South African gold mine: Implications for monitoring intraplate faults

    CSIR Research Space (South Africa)

    Naoi, M

    2015-12-01

    Full Text Available loaded by the surrounding aseismic slip (background creep). Application of the Nadeau and Johnson (1998) empirical formula (NJ formula), which relates the amount of background creep and repeater activity and is well established for plate boundary faults...

  9. Repeatability & Workability Evaluation of SIGMOD 2009

    KAUST Repository

    Manegold, Stefan

    2010-12-15

    SIGMOD 2008 was the first database conference that offered to test submitters\\' programs against their data to verify the repeatability of the experiments published [1]. Given the positive feedback concerning the SIGMOD 2008 repeatability initiative, SIGMOD 2009 modified and expanded the initiative with a workability assessment.

  10. Reward modulation of contextual cueing: Repeated context overshadows repeated target location.

    Science.gov (United States)

    Sharifian, Fariba; Contier, Oliver; Preuschhof, Claudia; Pollmann, Stefan

    2017-08-07

    Contextual cueing can be enhanced by reward. However, there is a debate if reward is associated with the repeated target-distractor configurations or with the repeated target locations that occur in both repeated and new displays. Based on neuroimaging evidence, we hypothesized that reward becomes associated with the target location only in new displays, but not in repeated displays, where the repeated target location is overshadowed by the more salient repeated target-distractor configuration. To test this hypothesis, we varied the reward value associated with the same target location in repeated and new displays. The results confirmed the overshadowing hypothesis in that search facilitation in repeated target-distractor configurations was modulated by the variable value associated with the target location. This effect was observed mainly in early learning.

  11. Childhood experiences and repeated suicidal behavior

    DEFF Research Database (Denmark)

    Krarup, Gertrud; Nielsen, Bent; Rask, P

    1991-01-01

    The aim of this study was to elucidate the influence of various events in childhood on suicidal behavior in adult age. For this purpose, 99 patients admitted to the Department of Psychiatry of Odense University Hospital after making a suicide attempt were followed for 5 years, to register repeated...... suicidal behavior. The results showed that three fourths of the patients attempted suicide more than once (62% nonfatal and 14% fatal outcome). The sex distribution was about the same among the first-evers as among the repeaters. Most repeaters were younger people in their twenties and thirties......, and the first-evers on average were past the age of 40. Somewhat unexpectedly, significantly more repeaters than first-evers had grown up with both their parents. However, the results also showed that significantly more repeaters than first-evers had had an unhappy childhood. This indicates...

  12. UK 2009-2010 repeat station report

    Directory of Open Access Journals (Sweden)

    Thomas J.G. Shanahan

    2013-03-01

    Full Text Available The British Geological Survey is responsible for conducting the UK geomagnetic repeat station programme. Measurements made at the UK repeat station sites are used in conjunction with the three UK magnetic observatories: Hartland, Eskdalemuir and Lerwick, to produce a regional model of the local field each year. The UK network of repeat stations comprises 41 stations which are occupied at approximately 3-4 year intervals. Practices for conducting repeat station measurements continue to evolve as advances are made in survey instrumentation and as the usage of the data continues to change. Here, a summary of the 2009 and 2010 UK repeat station surveys is presented, highlighting the measurement process and techniques, density of network, reduction process and recent results.

  13. Anchor Loads on Pipelines

    OpenAIRE

    Wei, Ying

    2015-01-01

    Anchor hooking on a subsea pipeline has been investigated in this thesis. Anchor loads on pipelines is in general a rarely occurring event, however, the severity when it occurs could easily jeopardize the integrity of any pipeline. It is considered as an accidental load in the design of pipelines. Pipeline Loads, limit state criteria and anchor categories are defined by the DNV standards. For pipeline, DNV-OS-F101 (08.2012), Submarine Pipeline Systems is adopted. Offshore standard DNV-RP...

  14. Load induced blindness

    OpenAIRE

    Macdonald, J. S. P.; Lavie, N.

    2008-01-01

    Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied oil indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005. for a review). Here we varied the level of perceptual load in a letter-search task and assessed its effect oil the conscious perception of a search-irrelevant shape stimulus appearing in the pe...

  15. Experimental study of seismic cyclic loading effects on small strain shear modulus of saturated sands

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-guo; CHEN Yun-min; HUANG Bo

    2005-01-01

    The seismic loading on saturated soil deposits induces a decrease in effective stress and a rearrangement of the soil-particle structure, which may both lead to a degradation in undrained stiffness and strength of soils. Only the effective stress influence on small strain shear modulus Gmax is considered in seismic response analysis nowadays, and the cyclic shearing induced fabric changes of the soil-particle structure are neglected. In this paper, undrained cyclic triaxial tests were conducted on saturated sands with the shear wave velocity measured by bender element, to study the influences of seismic loading on Gmax. And Gmax of samples without cyclic loading effects was also investigated for comparison. The test results indicated that Gmax under cyclic loading effects is lower than that without such effects at the same effective stress, and also well correlated with the effective stress variation. Hence it is necessary to reinvestigate the determination of Gmax in seismic response analysis carefully to predict the ground responses during earthquake more reasonably.

  16. Construction of homogeneous loading functions for elastoplastic damage models for concrete

    Science.gov (United States)

    Zhang, Ji; Li, Jie

    2014-03-01

    Over the past 2 decades, tight restriction has been imposed on strength criteria of concrete by the combination of plasticity and damage in one theory. The present study aims at constructing plastic/damage loading functions for elastoplastic damage models for concrete that can perform more satisfactorily in 3D stress states. Numerous strength criteria of concrete are reorganized according to their simplest representations as Cartesian, cylindrical, mixed cylindrical-Cartesian, and other forms, and the homogeneity of loading functions discussed. It is found that under certain supplementary conditions from physical meanings, an unambiguous definition of the cohesion in a strength criterion, which is demanded in an elastoplastic damage model, is usually available in an explicit or implicit form, and in each case the loading function is still homogeneous. To apply and validate the presented theory, we construct the respective homogeneous damage and plastic loading functions and implant them into some widely used elastoplastic damage models for concrete, and their performances in triaxial compression prove to have improved significantly.

  17. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  18. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  19. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  20. Electrical load modeling

    Energy Technology Data Exchange (ETDEWEB)

    Valgas, Helio Moreira; Pinto, Roberto del Giudice R.; Franca, Carlos [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Lambert-Torres, Germano; Silva, Alexandre P. Alves da; Pires, Robson Celso; Costa Junior, Roberto Affonso [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    Accurate dynamic load models allow more precise calculations of power system controls and stability limits, which are critical mainly in the operation planning of power systems. This paper describes the development of a computer program (software) for static and dynamic load model studies using the measurement approach for the CEMIG system. Two dynamic load model structures are developed and tested. A procedure for applying a set of measured data from an on-line transient recording system to develop load models is described. (author) 6 refs., 17 figs.

  1. Estimation of lateral deformation of monopile foundations by use of cyclic triaxial tests%用循环三轴试验分析海上风力发电机单桩基础侧向位移

    Institute of Scientific and Technical Information of China (English)

    郭玉樹; 亚克慕斯·马丁; 阿布达雷赫曼·哈里

    2009-01-01

    In order to develop renewable energy, the offshore wind energy technology has been a main research field in Europe. A foundation with sufficient stiffness to resist long-term wind and wave load to insure the serviceability of wind energy converter is needed. The monopile foundation, the steel pipe pile with a large diameter, is one of well adopted foundations in the existing and planned offshore wind parks. The usually used design method, p-y curves method, is unsuitable for estimating the deformation response of the large-diameter monopile under long-term cyclic lateral load. This paper aims to present a calculation method for estimating the lateral deformation response of a single pile in sandy soil under cyclic lateral load based on the cyclic triaxial test results. The degradation of secant soil stiffness due to the accumulation of plastic strain under cyclic loading is formulated. Through this degradation stiffness model, the accumulated deformation of a single pile can be quantified using a finite element model with three calculation steps. The proposed method is applicable for uniform or layered subsoil in a preliminary design.%为了开发洁净的再生能源,海上风力发电已成为欧洲各国积极研究的重点.一个足以承受长期波浪及风力的基础设施是让风力发电设施在使用年限内正常运转的必要条件.目前欧洲海上风力发电设计案例中,大口径的钢管桩是一种最常被运用的海上风力发电机基础型式.然而,目前工程界普遍使用的p-y曲线分析法并不适用于评估此种大口径单桩受长期侧向力的行为.特别针对砂性土壤,提出了应用室内三轴循环试验的结果评估单桩在单向循环侧向力下的变形方法.应用室内循环三轴试验所得的塑性应变增加量推求土壤的割线衰减刚度,再导入三维有限元素数值模型的方法,可以得到桩身在循环侧向力下的位移.此种方法非常适用于海上风力发电机单

  2. Prototipo de dispositivo de medida de rendimiento en deportes de contacto basado en un acelerómetro triaxial y comunicación a dispositivo móvil

    OpenAIRE

    ARÁNDIGA MARTÍNEZ, ADRIÁN LUIS

    2016-01-01

    Arándiga Martínez, AL. (2016). Prototipo de dispositivo de medida de rendimiento en deportes de contacto basado en un acelerómetro triaxial y comunicación a dispositivo móvil. http://hdl.handle.net/10251/75671. TFGM

  3. Experimental Investigation on the Basic Law of the Fracture Spatial Morphology for Water Pressure Blasting in a Drillhole Under True Triaxial Stress

    Science.gov (United States)

    Huang, Bingxiang; Li, Pengfeng

    2015-07-01

    The present literature on the morphology of water pressure blasting fractures in drillholes is not sufficient and does not take triaxial confining stress into account. Because the spatial morphology of water pressure blasting fractures in drillholes is not clear, the operations lack an exact basis. Using a large true triaxial water pressure blasting experimental system and an acoustic emission 3-D positioning system, water pressure blasting experiments on cement mortar test blocks (300 mm × 300 mm × 300 mm) were conducted to study the associated basic law of the fracture spatial morphology. The experimental results show that water pressure blasting does not always generate bubble pulsation. After water pressure blasting under true triaxial stress, a crushed compressive zone and a blasting fracture zone are formed from the inside, with the blasting section of the naked drillhole as the center, to the outside. The shape of the outer edges of the two zones is ellipsoidal. The range of the blasting fracture is large in the radial direction of the drillhole, where the surrounding pressure is large, i.e., the range of the blasting fracture in the drillhole radial cross-section is approximately ellipsoidal. The rock near the drillhole wall is affected by a tensile stress wave caused by the test block boundary reflection, resulting in more flake fractures appearing in the fracturing crack surface in the drillhole axial direction and parallel to the boundary surface. The flake fracture is thin, presenting a small-range flake fracture. The spatial morphology of the water pressure blasting fracture in the drillhole along the axial direction is similar to a wide-mouth Chinese bottle: the crack extent is large near the drillhole orifice, gradually narrows inward along the drillhole axial direction, and then increases into an approximate ellipsoid in the internal naked blasting section. Based on the causes of the crack generation, the blasting cracks are divided into three

  4. Effect of ship motion on spinal loading during manual lifting

    NARCIS (Netherlands)

    Faber, G.S.; Kingma, I.; Delleman, N.; Dieën, J. van

    2008-01-01

    This study investigated the effects of ship motion on peak spinal loading during lifting. All measurements were done on a ship at sea. In 1-min trials, which were repeated over a wide range of sailing conditions, subjects lifted an 18 kg box five times. Ship motion, whole body kinematics, ground rea

  5. Effect of ship motion on spinal loading during manual lifting

    NARCIS (Netherlands)

    Faber, G.S.; Kingma, I.; Delleman, N.; Dieën, J. van

    2008-01-01

    This study investigated the effects of ship motion on peak spinal loading during lifting. All measurements were done on a ship at sea. In 1-min trials, which were repeated over a wide range of sailing conditions, subjects lifted an 18 kg box five times. Ship motion, whole body kinematics, ground

  6. Physiological and metabolic responses of gestating Brahman cows to repeated transportation.

    Science.gov (United States)

    Price, D M; Lewis, A W; Neuendorff, D A; Carroll, J A; Burdick Sanchez, N C; Vann, R C; Welsh, T H; Randel, R D

    2015-02-01

    This study characterized physiological responses to repeated transportation (TRANS) of gestating cows of differing temperaments. Cows were classified as Calm (C; = 10), Intermediate (I; = 28), or Temperamental (T; = 10). Based on artificial insemination date and pregnancy confirmation, cows were TRANS for 2 h on d 60 (TRANS1), 80 (TRANS2), 100 (TRANS3), 120 (TRANS4), and 140 (TRANS5) ± 5 d of gestation. Indwelling vaginal temperature (VT) monitoring devices were inserted 24 h before each TRANS with VT recorded from 2 h before TRANS and averaged into 5-min intervals through 30 min after TRANS. Serum samples were collected before loading and on unloading from the trailer to determine concentrations of cortisol, glucose, and nonesterified fatty acids (NEFA). Data were analyzed by repeated measures analysis in SAS. Serum cortisol concentrations were affected by temperament ( 0.10) with repeated TRANS events. Serum glucose concentrations were affected ( Brahman cows. Although repeated transport in our study is confounded with day of gestation, seasonal changes, and learning from repeated handling and transport, repeated transport is a useful model of repeated stress in studying the effects of temperament.

  7. Behavior of nonplastic silty soils under cyclic loading.

    Science.gov (United States)

    Ural, Nazile; Gunduz, Zeki

    2014-01-01

    The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.

  8. Behavior of Nonplastic Silty Soils under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Nazile Ural

    2014-01-01

    Full Text Available The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.

  9. Information Contents of a Signal at Repeated Positioning Measurements of the Coordinate Measuring Machine (CMM by Laser Interferometer

    Directory of Open Access Journals (Sweden)

    Stejskal Tomáš

    2016-10-01

    Full Text Available The input of this paper lies in displaying possibilities how to determine the condition of a coordinate measuring machine (CMM based on a large number of repeated measurements. The number of repeated measurements exceeds common requirements for determining positioning accuracy. The total offset in the accuracy of spatial positioning consists of partial inaccuracies of individual axes. 6 basic errors may be defined at each axis. In a triaxial set, that translates into 18 errors, to which an offset from the perpendicularity between the axial pairs must be added. Therefore, the combined number of errors in a single position is 21. These errors are systemic and stem from the machine’s geometry. In addition, there are accidental errors to account for as well. Accidental errors can be attributed to vibrations, mass inertness, passive resistance, and in part to fluctuations in temperature. A peculiar set of systemic errors are time-varying errors. The nature of those errors may be reversible, for instance if they result from influence of temperature or elastic deformation. They can be also irreversible, for example as a result of wear and tear or line clogging, due to loosened connection or permanent deformation of a part post collision. A demonstration of thermal equalizing of the machine’s parts may also be observed in case of failure to adhere to a sufficient time interval from the moment the air-conditioning is turned on. Repeated measurements done on a selected axis with linear interferometer can provide complex information on the CMM condition and also on the machine’s interaction with the given technical environment.

  10. Combination of external loads

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, S.; Tarp Johansen, N.J.; Joergensen, H. [Forskningscenter Risoe, Roskilde (Denmark); Gravesen, H.; Soerensen, S.L. [Carl Bro, Glostrup (Denmark); Pedersen, J. [Elsam Engineering, Fredericia (Denmark); Zorn, R.; Hvidberg Knudsen, M. [DHI Water and Environment, Hoersholm (Denmark); Voelund, P. [Energi E2, Koebenhavn (Denmark)

    2003-09-01

    The project onbectives have been: To improve and consequently opimise the basis for design of offshore wind turbines. This is done through 1) mapping the wind, wave ice and current as well as correlations of these, and 2) by clarifyring how these external conditions transform into loads. A comprehensive effort has been made to get a thorough understanding of the uncertainties that govern the reliability of wind turbines with respect to wind and wave loading. One of the conclusions is that the reliability of wind turbines is generally lower, than the average reliability of building structures that are subject not only to environmental loads, which are very uncertain, but also imposed loads and self weight, which are less uncertain than the environmental loads. The implication is that, at the moment lower load partial safety factors for onshore wind turbines cannot be recommended. For the combination of wind and wave design loads the problem is twofold: 1). A very conservative design will be generated by simply adding the individual wind and wave design loads disregarding the independence of the short-term fluctuations of wind and wave loads. 2). Characteristic values and partial safety factors for wind and wave loads are not defined similarly. This implies that the reliability levels of turbine support structures subject to purely aerodynamic loads and subject to purely hydrodynamic loads are not identical. For the problem of combining aerodynamic design loads and hydrodynamic design loads two results have been obtained in the project: 1). By simple means a site specific wave load safety factor rendering the same safety level for hydrodynamic loads as for aerodynamic loads is derived, and next, by direct square summation of extreme fluctuations, the wind and wave load safety factors are weighted. 2). Under the assumptions that a deep water site is considered and that the wave loading is a fifty-fifty mix of drag and inertia the same wind and wave load safety factor

  11. Load Induced Blindness

    Science.gov (United States)

    Macdonald, James S. P.; Lavie, Nilli

    2008-01-01

    Although the perceptual load theory of attention has stimulated a great deal of research, evidence for the role of perceptual load in determining perception has typically relied on indirect measures that infer perception from distractor effects on reaction times or neural activity (see N. Lavie, 2005, for a review). Here we varied the level of…

  12. Direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact.

    Science.gov (United States)

    Yeow, C H; Lee, P V S; Goh, J C H

    2010-01-19

    Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70 degrees flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8 degrees . There was a moderate linear relationship (Y=0.16X; R(2)=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior-posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.

  13. Macro-scale deformation behavior and characterization of deformation mechanisms below µm-scale in experimentally deformed Boom Clay by using the combination of triaxial compression, X-ray µ-CT imaging, DIC, BIB cross sectioning, and SEM

    Science.gov (United States)

    Oelker, Anne; Desbois, Guillaume; Urai, Janos L.; Bésuelle, Pierre; Viggiani, Gioacchino; Levasseur, Séverine

    2017-04-01

    Boom Clay is one formation being studied in Belgium as a potential host rock for deep geological disposal of radioactive waste. This poorly indurated clay presents in its natural state favorable properties against the migration of radionuclides: low permeability, low solute diffusion rates, good retention and sorption capacity for many radionuclides and good self-sealing capacity. During construction of disposal galleries, stress redistribution will lead to perturbation of the clay and the formation around galleries of the so-called "Excavation disturbed Zone" (EdZ). The study of deformation mechanisms and evolution of Boom Clay properties at macro but also micro scale allows to assess in a more mechanistic way the evolution of Boom Clay properties in this EdZ. In this work, we show microstructural investigations of Boom Clay deformed in undrained triaxial compression by linking conventional stress/strain curves with Digital Image Correlation (DIC) and scanning electron microscopy (SEM) imaging of broad-ion-beam (BIB) milled cross-sections to deduce deformation mechanisms based on microstructures at sub-micron resolution. Two specimens, collected in Mol (Belgium) at the European Underground Laboratories (URL) on HADES level, were analyzed: The major principal stress σ1 was applied parallel as well as perpendicular to the bedding direction with an initial mean normal effective stress of 4.5 MPa and an initial pore water pressure of 2.3 MPa, which are equal to the in-situ values. Linking the resulting DIC-derived maps of incremental strains with the corresponding stress/strain curve give not only information about the moment of the shear band development, but also on the way strain evolves within the specimen throughout the rest. Incremental DIC analysis of X-ray tomographic scans performed during loading tests give a time evolution of the strain field, and subsequently allow to detect strain localization which appears close to the stress peak. Regions with a

  14. The child accident repeater: a review.

    Science.gov (United States)

    Jones, J G

    1980-04-01

    The child accident repeater is defined as one who has at least three accidents that come to medical attention within a year. The accident situation has features in common with those of the child who has a single accident through simple "bad luck", but other factors predispose him to repeated injury. In the child who has a susceptible personality, a tendency for accident repetition may be due to a breakdown in adjustment to a stressful environment. Prevention of repeat accidents should involve the usual measures considered appropriate for all children as well as an attempt to provide treatment of significant maladjustment and modification of a stressful environment.

  15. Investigation of doublet-bands in {sup 124,126,130,132}Cs odd–odd nuclei using triaxial projected shell model approach

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, G.H.; Ali, R.N. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Palit, R. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005 (India)

    2014-02-15

    Doublet bands observed in {sup 124,126,130,132}Cs isotopes are studied using the recently developed multi-quasiparticle microscopic triaxial projected shell model (TPSM) approach. It is shown that TPSM results for energies and transition probabilities are in good agreement with known energies and the recently measured extensive data on transition probabilities for the bands in {sup 126}Cs. In particular, it is demonstrated that characteristics transition probabilities expected for the doublet bands to originate from the chiral symmetry breaking are well reproduced in the present work. The calculated energies for {sup 124,130,132}Cs are also shown to be in reasonable agreement with the available experimental data. Furthermore, a complete set of the calculated transition probabilities is provided for the doublet bands in {sup 124,130,132}Cs isotopes.

  16. A Nonsingular Terminal Sliding Mode Approach Using Adaptive Disturbance Observer for Finite-Time Trajectory Tracking of MEMS Triaxial Vibratory Gyroscope

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-01-01

    Full Text Available This paper develops a nonsingular terminal sliding mode controller (NTSMC with adaptive disturbance observer (ADOB for finite-time trajectory tracking of a MEMS triaxial vibratory gyroscope, which has parameter variations and external high-amplitude disturbance. A novel sliding mode controller with adaptive disturbance observer is designed to reconfigure the parameter variations and external high-amplitude disturbance and reduce the chattering phenomenon on the sliding surface greatly through setting the switching gain in control signal as a smaller value. The disturbance adaptive law is derived to guarantee the stability of the closed-loop adaptive control system via the Lyapunov criterion. The simulation results are performed to verify the effectiveness of the presented schemes.

  17. Simulación de ensayos triaxiales cíclicos con presión de confinamiento constante y variable empleando ecuaciones empíricas

    Directory of Open Access Journals (Sweden)

    Hugo Alexander Rondón Quintana

    2009-01-01

    para intentar predecir la acumulación de las deformaciones permanentes que experimentan materiales granulares no tratados (GNT en ensayos triaxiales cíclicos con presión de confinamiento constante (PCC y variable (PCV. Con base en el análisis de dichas ecuaciones, se escogieron las más utilizadas en el mundo con el fin de simular el comportamiento que experimentó un GNT en ensayos tipo PCC y PCV. Las simulaciones realizadas demuestran que la mayor parte de las ecuaciones empíricas que se utilizan para predecir la acumulación de la deformación permanente de un material granular bajo carga cíclica no pueden reproducir su comportamiento en ensayos PCC y PCV. Adicionalmente, los parámetros que emplean dichas ecuaciones no son constantes del material.

  18. Desenvolvimento de uma cerâmica triaxial utilizando vidro como fundente e relação entre microestrutura e propriedades tecnológicas

    OpenAIRE

    Saulo Roca Braganca

    2002-01-01

    O uso de pó de vidro soda-cálcico reciclado de embalagens transparentes foi investigado em uma formulação de cerâmica branca triaxial. As propriedades técnicas, enfatizando-se a resistência mecânica e a microestrutura, foram estudadas, correlacionando-as com a influência da temperatura de queima. A fim de se melhor avaliar estes parâmetros foi confeccionada uma formulação de porcelana tradicional. Assim, a formulação Pó de vidro (PV) é de 50% de caulim, 25% de quartzo e 25% de pó de vidro, en...

  19. Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bobbili, Ravindranadh, E-mail: ravindranadh@dmrl.drdo.in; Madhu, Vemuri

    2016-06-14

    In this study, Split hopkinson tension bar (SHTB) has been employed to investigate the dynamic tensile flow behavior of Ti-10-2-3 alloy at high strain rates and elevated temperatures. The combined effect of stress triaxiality, strain rate and temperature and on the tensile behavior of the alloy was evaluated. Johnson-Cook (J-C) constitutive and fracture models were developed based on high strain rate tensile data. A modified Johnson–Cook model was established and proved to have high accuracy. A comparative assessment has been done to confirm the accuracy of modified J–C model based on finite element method (FEM). The improved model provides better description on the influence of equivalent plastic strain rate and temperature on the plastic flow. The simulation results proved to be in good agreement with the experimental data. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  20. Indentation load relaxation test

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, S.P.; Stone, D.; Li, C.Y. (Cornell Univ., Ithaca, NY (USA))

    Most of the models that are used to describe the nonelastic behavior of materials utilize stress-strain rate relations which can be obtained by a load relaxation test. The conventional load relaxation test, however, cannot be performed if the volume of the material to be tested is very small. For such applications the indentation type of test offers an attractive means of obtaining data necessary for materials characterization. In this work the feasibility of the indentation load relaxation test is studied. Experimental techniques are described together with results on Al, Cu and 316 SS. These results are compared to those of conventional uniaxial load relaxation tests, and the conversion of the load-indentation rate data into the stress-strain rate data is discussed.

  1. The impact of emotion on the perception of graded magnitudes of respiratory resistive loads.

    Science.gov (United States)

    Tsai, Hsiu-Wen; Chan, Pei-Ying; von Leupoldt, Andreas; Davenport, Paul W

    2013-04-01

    Emotional state can modulate the perception of respiratory loads but the range of respiratory load magnitudes affected by emotional state is unknown. We hypothesized that viewing pleasant, neutral and unpleasant affective pictures would modulate the perception of respiratory loads of different load magnitudes. Twenty-four healthy adults participated in the study. Five inspiratory resistive loads of increasing magnitude (5, 10, 15, 20, 45 cm H(2)O/L/s) were repeatedly presented for one inspiration while participants viewed pleasant, neutral and unpleasant affective picture series. Participants rated how difficult it was to breathe against the load immediately after each presentation. Only at the lowest load, magnitude estimation ratings were greater when subjects viewed the unpleasant series compared to the neutral and pleasant series. These results suggest that negative emotional state increases the sense of respiratory effort for single presentations of a low magnitude resistive load but high magnitude loads are not further modulated by emotional state.

  2. Concurrent Validity of Accelerations Measured Using a Tri-Axial Inertial Measurement Unit while Walking on Firm, Compliant and Uneven Surfaces

    Science.gov (United States)

    Cole, Michael H.; van den Hoorn, Wolbert; Kavanagh, Justin K.; Morrison, Steven; Hodges, Paul W.; Smeathers, James E.; Kerr, Graham K.

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments. PMID:24866262

  3. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    Directory of Open Access Journals (Sweden)

    Michael H Cole

    Full Text Available Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i subtraction of the best linear fit from the data (detrending; and ii use of orientation information (quaternions from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12 using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s(-2. Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2, whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2. The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  4. A study on the performance of ductile failure models under different range of stress triaxiality states with experimental validation

    Science.gov (United States)

    Amaral, Rui; Teixeira, Pedro; Azinpour, Erfan; Santos, Abel D.; César de Sá, J.

    2016-08-01

    In this work, experimental tests were carried out, under different loading conditions, in order to assess different ductile failure criteria, namely based on GTN, Johnson-Cook or Lemaitre models and to establish new proposals for improvement. Corresponding characterization for damage parameters is performed by an inverse analysis procedure, using reference experimental tests. Numerical simulations of a cross-shaped component are considered for the damage models, and results show a similar trend related with the experimental fracture evidence.

  5. Pilot study: Assessing repeatability of the EcoWalk platform resistive pressure sensors to measure plantar pressure during barefoot standing

    Science.gov (United States)

    Zequera, Martha; Perdomo, Oscar; Wilches, Carlos; Vizcaya, Pedro

    2013-06-01

    Plantar pressure provides useful information to assess the feet's condition. These systems have emerged as popular tools in clinical environment. These systems present errors and no compensation information is presented by the manufacturer, leading to uncertainty in the measurements. Ten healthy subjects, 5 females and 5 males, were recruited. Lateral load distribution, antero-posterior load distribution, average pressure, contact area, and force were recorded. The aims of this study were to assess repeatability of the EcoWalk system and identify the range of pressure values observed in the normal foot. The coefficient of repeatability was less than 4% for all parameters considered.

  6. The Moral Maturity of Repeater Delinquents.

    Science.gov (United States)

    Petronio, Richard J.

    1980-01-01

    Differences in moral development (as conceived by Kohlberg) were examined in a sample of delinquent teenagers. The repeater group was not found, as had been hypothesized, to be lower on moral maturity than those who engaged in less delinquency. (GC)

  7. Full Scale Test SSP 34m blade, edgewise loading LTT. Extreme load and PoC_InvE Data report

    DEFF Research Database (Denmark)

    Nielsen, Magda; Roczek-Sieradzan, Agnieszka; Jensen, Find Mølholt

    stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risø load and the results applicable for the investigation of the influence of the invention on the profile...... in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risø load, where 80% Risø load corresponds to 100......% certification load. These pulls at 80% Risø load were repeated and the results from these pulls were compared. The blade was reinforced according to a Risø DTU invention, where the trailing edge panels are coupled. The coupling is implemented to prevent the out of plane deformations and to reduce peeling...

  8. Star repeaters for fiber optic links.

    Science.gov (United States)

    McMahon, D H; Gravel, R L

    1977-02-01

    A star repeater combines the functions of a passive star coupler and a signal regenerating amplifier. By more effectively utilizing the light power radiated by a light emitting diode, the star repeater can, when used with small diameter channels, couple as much power to all receivers of a multiterminal link as would be coupled to the single receiver of a simple point-to-point link.

  9. Load Balancing Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, Olga Tkachyshyn [Texas A & M Univ., College Station, TX (United States)

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  10. Experimental Snap Loading of Synthetic Ropes

    Directory of Open Access Journals (Sweden)

    C.M. Hennessey

    2005-01-01

    Full Text Available Large tensile forces, known as snap loads, can occur when a slack rope becomes taut. Such forces may damage the rope or masses connected to it. Experiments are described in which one end of a rope is attached to the top of a drop tower and the bottom end is attached to a weight. The weight is raised to a certain height and then released. The force at the top of the rope and the acceleration of the weight are recorded during the first snap load that occurs. Repeated drop tests are performed on each rope. The effects of the type of rope, drop height, drop weight, whether the rope has been subjected to static precycling, and the number of previous dynamic tests are examined. A mathematical model is proposed for the rope force as a function of the displacement and velocity of the weight.

  11. Digital repeat analysis; setup and operation.

    Science.gov (United States)

    Nol, J; Isouard, G; Mirecki, J

    2006-06-01

    Since the emergence of digital imaging, there have been questions about the necessity of continuing reject analysis programs in imaging departments to evaluate performance and quality. As a marketing strategy, most suppliers of digital technology focus on the supremacy of the technology and its ability to reduce the number of repeats, resulting in less radiation doses given to patients and increased productivity in the department. On the other hand, quality assurance radiographers and radiologists believe that repeats are mainly related to positioning skills, and repeat analysis is the main tool to plan training needs to up-skill radiographers. A comparative study between conventional and digital imaging was undertaken to compare outcomes and evaluate the need for reject analysis. However, digital technology still being at its early development stages, setting a credible reject analysis program became the major task of the study. It took the department, with the help of the suppliers of the computed radiography reader and the picture archiving and communication system, over 2 years of software enhancement to build a reliable digital repeat analysis system. The results were supportive of both philosophies; the number of repeats as a result of exposure factors was reduced dramatically; however, the percentage of repeats as a result of positioning skills was slightly on the increase for the simple reason that some rejects in the conventional system qualifying for both exposure and positioning errors were classified as exposure error. The ability of digitally adjusting dark or light images reclassified some of those images as positioning errors.

  12. Quantum Key Distribution over Probabilistic Quantum Repeaters

    CERN Document Server

    Amirloo, Jeyran; Majedi, A Hamed

    2010-01-01

    A feasible route towards implementing long-distance quantum key distribution (QKD) systems relies on probabilistic schemes for entanglement distribution and swapping as proposed in the work of Duan, Lukin, Cirac, and Zoller (DLCZ) [Nature 414, 413 (2001)]. Here, we calculate the conditional throughput and fidelity of entanglement for DLCZ quantum repeaters, by accounting for the DLCZ self-purification property, in the presence of multiple excitations in the ensemble memories as well as loss and other sources of inefficiency in the channel and measurement modules. We then use our results to find the generation rate of secure key bits for QKD systems that rely on DLCZ quantum repeaters. We compare the key generation rate per logical memory employed in the two cases of with and without a repeater node. We find the cross-over distance beyond which the repeater system outperforms the non-repeater one. That provides us with the optimum inter-node distancing in quantum repeater systems. We also find the optimal exci...

  13. Remarkable selective constraints on exonic dinucleotide repeats.

    Science.gov (United States)

    Haasl, Ryan J; Payseur, Bret A

    2014-09-01

    Long dinucleotide repeats found in exons present a substantial mutational hazard: mutations at these loci occur often and generate frameshifts. Here, we provide clear and compelling evidence that exonic dinucleotides experience strong selective constraint. In humans, only 18 exonic dinucleotides have repeat lengths greater than six, which contrasts sharply with the genome-wide distribution of dinucleotides. We genotyped each of these dinucleotides in 200 humans from eight 1000 Genomes Project populations and found a near-absence of polymorphism. More remarkably, divergence data demonstrate that repeat lengths have been conserved across the primate phylogeny in spite of what is likely considerable mutational pressure. Coalescent simulations show that even a very low mutation rate at these loci fails to explain the anomalous patterns of polymorphism and divergence. Our data support two related selective constraints on the evolution of exonic dinucleotides: a short-term intolerance for any change to repeat length and a long-term prevention of increases to repeat length. In general, our results implicate purifying selection as the force that eliminates new, deleterious mutants at exonic dinucleotides. We briefly discuss the evolution of the longest exonic dinucleotide in the human genome--a 10 x CA repeat in fibroblast growth factor receptor-like 1 (FGFRL1)--that should possess a considerably greater mutation rate than any other exonic dinucleotide and therefore generate a large number of deleterious variants. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  14. Dynamic combinatorial libraries of artificial repeat proteins.

    Science.gov (United States)

    Eisenberg, Margarita; Shumacher, Inbal; Cohen-Luria, Rivka; Ashkenasy, Gonen

    2013-06-15

    Repeat proteins are found in almost all cellular systems, where they are involved in diverse molecular recognition processes. Recent studies have suggested that de novo designed repeat proteins may serve as universal binders, and might potentially be used as practical alternative to antibodies. We describe here a novel chemical methodology for producing small libraries of repeat proteins, and screening in parallel the ligand binding of library members. The first stage of this research involved the total synthesis of a consensus-based three-repeat tetratricopeptide (TPR) protein (~14 kDa), via sequential attachment of the respective peptides. Despite the effectiveness of the synthesis and ligation steps, this method was found to be too demanding for the production of proteins containing variable number of repeats. Additionally, the analysis of binding of the individual proteins was time consuming. Therefore, we designed and prepared novel dynamic combinatorial libraries (DCLs), and show that their equilibration can facilitate the formation of TPR proteins containing up to eight repeating units. Interestingly, equilibration of the library building blocks in the presence of the biologically relevant ligands, Hsp90 and Hsp70, induced their oligomerization into forming more of the proteins with large recognition surfaces. We suggest that this work presents a novel simple and rapid tool for the simultaneous screening of protein mixtures with variable binding surfaces, and for identifying new binders for ligands of interest.

  15. A Novel Method for Repeatable Failure Testing of Annulus Fibrosus.

    Science.gov (United States)

    Werbner, Benjamin; Zhou, Minhao; O'Connell, Grace

    2017-11-01

    Tears in the annulus fibrosus (AF) of the intervertebral disk can result in disk herniation and progressive degeneration. Understanding AF failure mechanics is important as research moves toward developing biological repair strategies for herniated disks. Unfortunately, failure mechanics of fiber-reinforced tissues, particularly tissues with fibers oriented off-axis from the applied load, is not well understood, partly due to the high variability in reported mechanical properties and a lack of standard techniques ensuring repeatable failure behavior. Therefore, the objective of this study was to investigate the effectiveness of midlength (ML) notch geometries in producing repeatable and consistent tissue failure within the gauge region of AF mechanical test specimens. Finite element models (FEMs) representing several notch geometries were created to predict the location of bulk tissue failure using a local strain-based criterion. FEM results were validated by experimentally testing a subset of the modeled specimen geometries. Mechanical testing data agreed with model predictions (∼90% agreement), validating the model's predictive power. Two of the modified dog-bone geometries ("half" and "quarter") effectively ensured tissue failure at the ML for specimens oriented along the circumferential-radial and circumferential-axial directions. The variance of measured mechanical properties was significantly lower for notched samples that failed at the ML, suggesting that ML notch geometries result in more consistent and reliable data. In addition, the approach developed in this study provides a framework for evaluating failure properties of other fiber-reinforced tissues, such as tendons and meniscus.

  16. Evolution of Determinant Factors of Repeated Sprint Ability

    Directory of Open Access Journals (Sweden)

    Pareja-Blanco Fernando

    2016-12-01

    Full Text Available The aim of this study was to investigate the changes in the relationships between repeated sprint ability (RSA and anthropometric measures as well as fitness qualities in soccer players. Twenty-one professional soccer players performed several anthropometric and physical tests including countermovement vertical jumps (CMJs, a straight-line 30 m sprint (T30, an RSA test (6 x 20 + 20 m with 20 s recovery, a progressive isoinertial loading test in a full squat, a Yo-Yo Intermittent Recovery Test Level-1 (YYIRT-1 and a 20 m shuttle run test (20mSRT. The mean (RSAmean, the fastest (RSAbest, each single sprint time, and the percentage in a sprint decrease (%Dec in the RSA test were calculated. RSAbest correlated significantly with RSAmean (r = .82 and with all single sprints (p < 0.05, showing a downward trend as the number of sprints performed increased. No significant relationship was observed between the %Dec and RSA performance. CMJs and the T30 also showed a correlation with RSA performance, whereas lower limb strength did not show any relationship with RSA performance. RSAmean showed significant (p < 0.05 relationships with body mass (r = .44, adiposity (r = .59 and the YYIRT-1 (r = -.62, increasing as the number of repeated sprints increased. The 20mSRT showed minimal relationships with RSA performance. In conclusion, maximal sprint capacity seems to be relevant for the RSA performance, mainly in the first sprints. However, high intermittent endurance capacity and low adiposity might help enhance the RSA performance when increasing the number of repeated sprints.

  17. Site and Orbit Repeatabilities using Adaptive Mapping Functions

    Science.gov (United States)

    Desjardins, Camille; Gegout, Pascal; Soudarin, Laurent; Biancale, Richard; Perosanz, Felix

    2015-04-01

    The electromagnetic signals emitted by the satellite positioning systems travel at the speed of light in a straight line in a vacuum but are modified in their propagation through the neutral atmosphere by temporal and spatial changes of density, and composition and refractivity. These waves are slowed down and their trajectories are bent. This presentation summarizes the performances of the modeling of the tropospheric propagation by the ray tracing technique through the assimilations of the European Meteorological Centre (ECMWF) in the framework of realizing the geodetic reference frame. This goal is achieved by modeling the spatial variability of the propagation using the time variable three-dimensional physical parameters of the atmosphere. The tropospheric delays obtained by ray tracing in all directions throughout the meteorological model surrounding the geodetic site, are fitted by Adaptive Mapping Functions (AMF) parameterized by several tens of coefficients. The delays produced by the Horizon software are then experimented, kept unchanged or adjusted, when recovering a reference frame based on hundred sites using the GINS software. Without any adjustments of the tropospheric modeling, the subcentimetric performances of the AMF are demonstrated by the repeatability of sites positions and GPS satellites orbits. When some AMF coefficients are adjusted, the accuracy of orbits recovery in term of quadratic mean is 7 to 8 millimeters. This limit is imposed by the lack or deficiency of other models, such as non-tidal and tidal loading respectively. Hence the repeatability of the vertical position is not enhanced by changing the propagation model. At the contrary, the repeatability of the horizontal position of geodetic sites is greatly enhanced by accounting for the azimuthal variability provided by the realistic 3D shapes of the Atmosphere and the Earth and the rigorous interpolations of atmospheric parameters included in Adaptive Mapping Functions with respect

  18. Omega 3 Chia seed loading as a means of carbohydrate loading.

    Science.gov (United States)

    Illian, Travis G; Casey, Jason C; Bishop, Phillip A

    2011-01-01

    The purpose of this study was to determine if Omega 3 Chia seed loading is a viable option for enhancing sports performance in events lasting >90 minutes and allow athletes to decrease their dietary intake of sugar while increasing their intake of Omega 3 fatty acids. It has been well documented that a high dietary carbohydrate (CHO) intake for several days before competition is known to increase muscle glycogen stores resulting in performance improvements in events lasting >90 minutes. This study compared performance testing results between 2 different CHO-loading treatments. The traditional CHO-loading treatment served as the control (100% cals from Gatorade). The Omega 3 Chia drink (50% of calories from Greens Plus Omega 3 Chia seeds, 50% Gatorade) served as the Omega 3 Chia loading drink. Both CHO-loading treatments were based on the subject's body weight and were thus isocaloric. Six highly trained male subjects V(O2)max 47.8-84.2 ml · kg(-1); mean (SD) of V(O2)max 70.3 ml · kg(-1) (13.3) performed a 1-hour run at ∼65% of their V(O2)max on a treadmill, followed by a 10k time trial on a track. There were 2 trials in a crossover counterbalanced repeated-measures design with a 2-week washout between testing sessions to allow the participants to recover from the intense exercise and any effects of the treatment. There was no statistical difference (p = 0.83) between Omega 3 Chia loading (mean 10k time = 37 minutes 49 seconds) and CHO loading (mean = 37 minutes 43 seconds). Under our conditions, Omega 3 Chia loading appears a viable option for enhancing performance for endurance events lasting >90 minutes and allows athletes to decrease their dietary intake of sugar while increasing their intake of Omega 3 fatty acids but offered no performance advantages.

  19. Lumbriculus variegatus loading study

    Data.gov (United States)

    U.S. Environmental Protection Agency — Results from sediment bioaccumulation tests with Lumbriculus variegatus with evaluating the effects of organism loading density. This dataset is associated with the...

  20. Carbohydrate-Loading Diet

    Science.gov (United States)

    ... Grape juice (12 ounces) 55 225 Lunch Milk, chocolate, reduced fat (12 ounces) 45 285 4 slices ... of carb-loading for sports performance. Academy of Nutrition and Dietetics. http://www.eatright.org/resource/fitness/ ...