WorldWideScience

Sample records for repeated forced swim

  1. B-type natriuretic peptide (BNP serum levels in rats after forced repeated swimming stress

    Directory of Open Access Journals (Sweden)

    Almira Hadžovic-Džuvo

    2011-02-01

    Full Text Available Aim To estimate the effects of forced repeated swimming stress on BNP serum levels in rats. Methods Adult male Wistar rats weighting between 280-330 g were divided into two groups: control group (n =8 and stress group (n =8. Rats in the stress group were exposed to forced swimming stress daily, for 7 days. The rats were forced to swim in plastic tanks (90 cm wide, 120 cm deep containing tap water (temperature ca. 25°C. The depth of water was 40 cm. Duration of each swimming session progressively increased from 10 minutes on the irst day to 40 minutes on days 6 and 7. Rats were sacriiced and blood was drawn from abdominal aorta for BNP analysis immediately after the last swimming session. B-type natriuretic serum level was determined by ELISA method using RAT BNP-32 kit (Phoenix Pharmaceutical Inc.. Results There was no statistically signiicant difference between mean BNP serum level in the stress group after the swimming period (0.81±0.14 ng/ml as compared to the unstressed group of rats (0.8 ±0.08ng/ml. After the swimming period mean body weight slightly decreased in the stress group in comparison with values before stress period (296.3 g vs.272.8 g, but this difference was not statistically signiicant. The stress period had no inluence on food intake in the stress rat group. Conclusion The workload consisting of 40-minutes long swimming session is not suficient to provoke BNP release from myocardium in rats.

  2. Adaptation of the pituitary-adrenal axis to daily repeated forced swim exposure in rats is dependent on the temperature of water.

    Science.gov (United States)

    Rabasa, Cristina; Delgado-Morales, Raúl; Gómez-Román, Almudena; Nadal, Roser; Armario, Antonio

    2013-11-01

    Comparison of exposure to certain predominantly emotional stressors reveals a qualitatively similar neuroendocrine response profile as well as a reduction of physiological responses after daily repeated exposure (adaptation). However, particular physical components of the stressor may interfere with adaptation. As defective adaptation to stress can enhance the probability to develop pathologies, we studied in adult male rats (n = 10/group) swimming behavior (struggling, immobility and mild swim) and physiological responses (ACTH, corticosterone and rectal temperature) to daily repeated exposure to forced swim (20 min, 13 d) at 25 or 36 °C (swim25 or swim36). Rats were repeatedly blood-sampled by tail-nick and hormones measured by radioimmunoassay. Some differences were observed between the two swim temperature groups after the first exposure to forced swim: (a) active behaviors were greater in swim25 than swim36 groups; (b) swim25 but not swim36 caused hypothermia; and (c) swim36 elicited the same ACTH response as swim25, but plasma corticosterone concentration was lower for swim36 at 30 min post-swim. After daily repeated exposure, adaptation in ACTH secretion was observed with swim36 already on day 4, whereas with swim25 adaptation was not observed until day 13 and was of lower magnitude. Nevertheless, after repeated exposure to swim25 a partial protection from hypothermia was observed and the two swim conditions resulted in progressive reduction of active behaviors. Thus, daily repeated swim at 25 °C impairs adaptation of the hypothalamic-pituitary-adrenal axis as compared to swim at 36 °C, supporting the hypothesis that certain physical components of predominantly emotional stressors can interfere with the process of adaptation.

  3. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    Science.gov (United States)

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-01

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  4. The hydrophobic dipeptide Leu-Ile inhibits immobility induced by repeated forced swimming via the induction of BDNF.

    Science.gov (United States)

    Furukawa-Hibi, Yoko; Nitta, Atsumi; Ikeda, Takeshi; Morishita, Koji; Liu, Wenting; Ibi, Daisuke; Alkam, Tursun; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2011-07-01

    Depression has recently become a serious problem in society worldwide. However, we lack appropriate therapeutic tools, since the causes of depression remain unclear. Degeneration of neuronal cells and a decrease in neurogenesis have been suggested recently as two of the factors responsible for depression-like behavior. Furthermore, brain-derived neurotrophic factor (BDNF) is also suggested to be an important factor in recovering from such behavior. We have previously demonstrated that the hydrophobic dipeptide leucyl-isoleucine (Leu-Ile) induces BDNF in cultured neuronal cells. We therefore investigated possible antidepressant-like effects of Leu-Ile in an animal model using the repeated forced swim test (FST). Mice were forced to swim for 6 min once a day in a cylinder containing water. The mice were treated with Leu-Ile s.c. or p.o. immediately after each FST. Five-day repeated Leu-Ile treatment significantly increased BDNF mRNA levels and activated the BDNF/Akt/mTOR signaling pathway in the hippocampi of the mice. While 2-week repeated FST increased immobility time, Leu-Ile treatment for 2 weeks offset this increase. In C57BL/6J-BDNF heterozygous knockout (BDNF(+/-)) mice, Leu-Ile failed to reduce the immobility time increased by repeated FST. We next investigated the extent of cell proliferation in the hippocampus as 5-bromo-2'-deoxy-uridine (BrdU) uptake into hippocampal cells. Repeated FST significantly reduced the number of BrdU-positive cells in the hippocampal dentate gyrus, while this deficit was prevented by repeated Leu-Ile treatment. These results suggest that Leu-Ile has an antidepressant-like effect, at least in part by supporting cell proliferation through the BDNF signaling pathway.

  5. Influence of enrichment on behavioral and neurogenic effects of antidepressants in Wistar rats submitted to repeated forced swim test.

    Science.gov (United States)

    Possamai, Fernanda; dos Santos, Juliano; Walber, Thais; Marcon, Juliana C; dos Santos, Tiago Souza; Lino de Oliveira, Cilene

    2015-04-01

    Repeated forced swimming test (rFST) may detect gradual effects of antidepressants in adult rats. Antidepressants, as enrichment, affected behavior and neurogenesis in rats. However, the influence of enrichment on behavioral and neurogenic effects of antidepressants is unknown. Here, effects of antidepressants on rFST and hippocampal neurogenesis were investigated in rats under enriched conditions. Behaviors of male Wistar rats, housed from weaning in standard (SE) or enriched environment (EE), were registered during rFST. The rFST consisted of 15min of swimming (pretest) followed by 5min of swimming in the first (test), seventh (retest 1) and fourteenth (retest 2) days after pretest. One hour before the test, rats received an intraperitoneal injection of saline (1ml/kg), fluoxetine (2.5mg/kg) or imipramine (2.5 or 5mg/kg). These treatments were performed daily until the day of the retest 2. After retest 2, rats were euthanized for the identification of markers for neurogenesis in the hippocampus. Fluoxetine or imipramine decreased immobility in retests 1 and 2, as compared to saline. EE abolished these differences. In EE, fluoxetine or imipramine (5mg/kg) reduced immobility time in retest 2, as compared to the test. Independent of the housing conditions, fluoxetine and imipramine (5mg/kg) increased the ratio of immature neurons per progenitor cell in the hippocampus. In summary, antidepressants or enrichment counteracted the high immobility in rFST. Enrichment changed the effects of antidepressants in rFST depending on the type, and the dose of a substance but failed to change neurogenesis in control or antidepressant treated-rats. Effects of antidepressants and enrichment on rFST seemed neurogenesis-independent.

  6. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains.

    Science.gov (United States)

    Jennings, Elaine M; Okine, Bright N; Olango, Weredeselam M; Roche, Michelle; Finn, David P

    2016-01-01

    Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.

  7. Chronic exercise prevents repeated restraint stress-provoked enhancement of immobility in forced swimming test in ovariectomized mice.

    Science.gov (United States)

    Han, Tae-Kyung; Lee, Jang-Kyu; Leem, Yea-Hyun

    2015-06-01

    We assessed whether chronic treadmill exercise attenuated the depressive phenotype induced by restraint stress in ovariectomized mice (OVX). Immobility of OVX in the forced swimming test was comparable to that of sham mice (CON) regardless of the postoperative time. Immobility was also no difference between restrained mice (exposure to periodic restraint for 21 days; RST) and control mice (CON) on post-exposure 2nd and 9th day, but not 15th day. In contrast, the immobility of ovariectomized mice with repeated stress (OVX + RST) was profoundly enhanced compared to ovariectomized mice-alone (OVX), and this effect was reversed by chronic exercise (19 m/min, 60 min/day, 5 days/week for 8 weeks; OVX + RST + Ex) or fluoxetine administration (20 mg/kg, OVX + RST + Flu). In parallel with behavioral data, the immunoreactivity of Ki-67 and doublecortin (DCX) in OVX was significantly decreased by repeated stress. However, the reduced numbers of Ki-67- and DCX-positive cells in OVX + RST were restored in response to chronic exercise (OVX + RST + Ex) and fluoxetine (OVX + RST + Flu). In addition, the expression pattern of cAMP response element-binding protein (CREB) and calcium-calmodulin-dependent kinase IV (CaMKIV) was similar to that of the hippocampal proliferation and neurogenesis markers (Ki-67 and DCX, respectively). These results suggest that menopausal depression may be induced by an interaction between repeated stress and low hormone levels, rather than a deficit in ovarian secretion alone, which can be improved by chronic exercise.

  8. Repeated electroconvulsive stimuli have long-lasting effects on hippocampal BDNF and decrease immobility time in the rat forced swim test.

    Science.gov (United States)

    Li, Bingjin; Suemaru, Katsuya; Cui, Ranji; Araki, Hiroaki

    2007-03-27

    Electroconvulsive therapy is considered an effective treatment for severe depression. However, the mechanisms for its long-lasting antidepressant efficacy are poorly understood. In the present study, we investigated changes of the immobility time in the forced swim test and brain-derived neurotrophic factor (BDNF) protein after withdrawal from 14-day repeated electroconvulsive stimuli (ECS, 50 mA, 0.2 s) in rats. Immobility time in the forced swim test was markedly decreased 6 h after withdrawal following 14-day ECS treatment. Thereafter, prolongation of the withdrawal period gradually diminished the decreasing effect of immobility time, but significant effects persisted for up to 3 days after the withdrawal. Locomotor activity in the open-field test increased 6 h after withdrawal from the ECS treatment, and the enhanced effect persisted for at least 7 days. The BDNF protein level in the hippocampus was markedly increased 6 h after the withdrawal, and remained high for at least 7 days. These findings provide further evidence that repeated ECS has long-lasting effect on increase in BDNF and locomotor activity and decrease in immobility time in the forced swim test.

  9. Repeated Forced Swim Exacerbates Methamphetamine-Induced Neurotoxicity: Neuroprotective Effects of Nanowired Delivery of 5-HT3-Receptor Antagonist Ondansetron.

    Science.gov (United States)

    Lafuente, José Vicente; Sharma, Aruna; Muresanu, Dafin F; Ozkizilcik, Asya; Tian, Z Ryan; Patnaik, Ranjana; Sharma, Hari S

    2017-08-31

    The possibility that stress associated with chronic forced swim (FS) may exacerbate methamphetamine (METH) neurotoxicity was examined in a rat model. Rats were subjected to FS in a pool (30 °C) for 15 min daily for 8 days. Control rats were kept at room temperature. METH was administered (9 mg/kg, s.c.) in both control and FS rats and allowed to survive 4 h after the drug injection. METH in FS rats exacerbated BBB breakdown to Evans blue albumin (EBA) by 150 to 220% and ([131])-Iodine by 250 to 380% as compared to naive rats after METH. The METH-induced BBB leakage was most pronounced in the cerebral cortex followed by the hippocampus, cerebellum, thalamus, and hypothalamus in both FS and naive rats. The regional BBB changes were associated with a reduction in the local cerebral blood flow (CBF). Brain edema was also higher by 2 to 4% in FS rats after METH than in naive animals. Neuronal and glial cell injuries were aggravated by threefold to fivefold after METH in FS than the control group. Pretreatment with ondansetron (1 mg/kg, i.p.) 30 min before METH injection in naive rats reduced the brain pathology and improved the CBF. However, TiO2-nanowired delivery of ondansetron (1 mg/kg, i.p.) was needed to reduce METH-induced brain damage, BBB leakage, reduction in CBF, and edema formation in FS. Taken together, these observations are the first to show that METH exacerbates BBB breakdown leading to neurotoxicity in FS animals. This effect of METH-induced BBB breakdown and brain pathology in naive and FS rats is attenuated by ondansetron treatment indicating an involvement of 5-HT3 receptors, not reported earlier.

  10. The mouse forced swim test.

    Science.gov (United States)

    Can, Adem; Dao, David T; Arad, Michal; Terrillion, Chantelle E; Piantadosi, Sean C; Gould, Todd D

    2012-01-29

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed.

  11. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  12. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex.

    Science.gov (United States)

    Imbe, H; Kimura, A; Donishi, T; Kaneoke, Y

    2014-02-14

    Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via the descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and c-Fos in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in the rats with stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced an increase in the expression of pCREB and c-Fos in the anterior IC (AIC). CFA injection into the hindpaw after the FS shows significantly enhanced thermal hyperalgesia and induced a decrease in the expression of c-Fos in the AIC and the posterior IC (PIC). Quantitative image analysis showed that the numbers of c-Fos-immunoreactive neurons in the left AIC and PIC were significantly lower in the FS+CFA group (L AIC, 95.9±6.8; L PIC, 181.9±23.1) than those in the naive group (L AIC, 151.1±19.3, pthermal hyperalgesia through dysfunction of the descending pain modulatory system.

  13. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance.

    Science.gov (United States)

    Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C

    2014-11-01

    The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.

  14. Repeatability of arm pull patterns in front crawl swimming

    Science.gov (United States)

    Su, Lester K.; Kegelman, John C.

    2009-11-01

    The arm pull in human swimming has seen extensive study, particularly involving the front crawl stroke. This work has primarily been aimed either at clarifying the mechanisms of thrust generation by the arm and hand, or at comparing the relative performance of different canonical pulling patterns. In this work we investigate the degree to which swimmers adjust their arm and hand trajectories in response to instantaneous ambient conditions. Video imaging data from competitive swimmers indicates that there may be wide stroke-to-stroke variations in pull trajectories. This suggests that optimal stroking form may be less about a swimmer's ability to repeat idealized pull patterns, than about the swimmer's ability to respond to local flow conditions, or what is referred to in the swimming vernacular as the ``feel'' for the water.

  15. Forced swim test behavior in postpartum rats.

    Science.gov (United States)

    Craft, R M; Kostick, M L; Rogers, J A; White, C L; Tsutsui, K T

    2010-10-01

    This study was undertaken to determine whether depression-like behavior can be observed in gonadally intact females that have experienced normal pregnancy. When tested on the forced swim test (FST) on postpartum days 1-7, previously pregnant rats spent slightly more time immobile, significantly less time swimming and diving, and defecated more than virgin controls. Subchronic treatment with nomifensine (DA reuptake inhibitor, 2.5mg/kg) but not sertraline (serotonin reuptake inhibitor, 10mg/kg) or desipramine (norepinephrine reuptake inhibitor, 10mg/kg) significantly decreased immobility on postpartum day 2. In rats pre-exposed to the FST in mid-pregnancy, neither subchronic nor chronic treatment with desipramine or sertraline decreased immobility on postpartum day 2; in contrast, chronic desipramine significantly decreased immobility in virgin controls. These results indicate that postpartum female rats, compared to virgin controls, show a reduction in some "active coping behaviors" but no significant increase in immobility when tested during the early postpartum period, unlike ovariectomized females that have undergone hormone-simulated pregnancy (HSP). Additionally, immobility that is increased by FST pre-exposure is not readily prevented by treatment with standard antidepressant medications in postpartum females. Depression-like behaviors previously observed in females that have undergone HSP may result from the more dramatic changes in estradiol, prolactin or corticosterone that occur during the early "postpartum" period, compared to the more subtle changes in these hormones that occur in actual postpartum females. (c) 2010 Elsevier Inc. All rights reserved.

  16. Forced swim test: What about females?

    Science.gov (United States)

    Kokras, Nikolaos; Antoniou, Katerina; Mikail, Hudu G; Kafetzopoulos, Vasilios; Papadopoulou-Daifoti, Zeta; Dalla, Christina

    2015-12-01

    In preclinical studies screening for novel antidepressants, male and female animals should be used. However, in a widely used antidepressant test, the forced swim test (FST), sex differences between males and females are not consistent. These discrepancies may discourage the inclusion of females in FST studies. In order to overcome this problem and provide a detailed insight regarding the use of female animals in the FST, we designed the following experiment and we performed a thorough analysis of the relevant literature. Male and female Wistar adult rats were subjected to the FST and sertraline was used as an antidepressant in two doses (10 mg/kg and 40 mg/kg, 3 injections in 24 h). Rodents were subjected in the two FST sessions during all possible combinations of the estrous cycle stages. We found that females exhibited higher levels of immobility than males and this sex difference was alleviated following antidepressant treatment. Sertraline at both doses enhanced swimming in both sexes, but females appeared more responsive to lower sertraline doses regarding immobility levels. Surprisingly, the high sertraline dose enhanced climbing particularly in proestrous and diestrous. Marked sex differences were also observed in the frequency of head swinging, with females exhibiting lower counts than males. Conclusively, when screening for new antidepressants, it is recommended to use standard FST procedures and if possible to include females in all phases of the cycle. Using only one dose of an investigational drug in females in certain phases of the cycle could result to false negative results.

  17. Effect of forced swim stress on wistar albino rats in various behavioral parameters

    Directory of Open Access Journals (Sweden)

    Ambareesha Kondam, Nilesh N Kate, Gaja Lakshmi, Suresh M, Chandrashekar M.

    2012-09-01

    Full Text Available Introduction: Stress is an important factor of depression that causes the changes in various body systems. The forced swim test is a commonly used stressor test where rats are forced to swim in specially constructed tanks for a particular period where there is behavioral activation characterized by vigorous swimming and diving to search for alternate routes of escape. Animal health including human has been shown to be affected by the stressful events of life inducing situation which alters cognition, learning memory and emotional responses, causing mental disorders like depression and anxiety and stress in rats. Methods: The experiment was carried out with 12 healthy albino Wistar female rats weighing about 150-180gms. The animals were randomly divided into two groups of six animals each. Group – I (control, Group – II (Stressed Group. Group –II rats are placed in plastic tanks for 45minutes for15 days. Temperature of water was maintained at 20˚C. During stress phase, the animals will be trained for forced swim test, behavioral changes observed by open field apparatus for emotions, and eight arm maze for memory & leaning, elevated plus maze for anxiety. Results: Forced swim stress causes to a significant change (p<0.05 on cognitive functions: motivation, learning and memory. Forced swim stress is the factor damaging the hippocampus causes repeated immobilization and produce atrophy of dendrites of pyramidal neurons and neuroendocrinological disturbances, controlled by the hypothalamo-pituitary-adrenal axis (HPA. Repeated stress in the form of forced swimming activates the free radical processes leading to an increase in lipid peroxidation in many tissues. Conclusion: This study reveals the effect of repeated forced swim stress causes wide range of adaptive changes in the central nervous system including the elevation of serotonin (5-HT metabolism and an increased susceptibility to affective disorders. The earlier findings have reported

  18. Glucocorticoids facilitate the retention of acquired immobility during forced swimming

    NARCIS (Netherlands)

    Veldhuis, H D; De Korte, C C; De Kloet, E R

    1985-01-01

    The adrenalectomy-induced decrease in the level of immobility during a 5 min retest period in the Porsolt swimming test could be reversed by glucocorticoids administered s.c. 15 min after the initial forced swimming exposure. The synthetic glucocorticoids dexamethasone and RU 28362 were active in

  19. Relationship between tethered forces and the four swimming techniques performance.

    Science.gov (United States)

    Morouço, Pedro; Keskinen, Kari L; Vilas-Boas, Joao Paulo; Fernandes, Ricardo Jorge

    2011-05-01

    The purpose of the current study was to identify the relationships between competitive performance and tether forces according to distance swam, in the four strokes, and to analyze if relative values of force production are better determinants of swimming performance than absolute values. The subjects (n = 32) performed a 30 s tethered swimming all-out effort. The competitive swimming velocities were obtained in the distances 50, 100 and 200 m using official chronometric values of competitions within 25 days after testing protocol. Mean force and velocity (50 m event) show significant correlations for front crawl (r = .92, p competitive performance than relative values (normalized to body mass). Tethered swimming test seems to be a reliable protocol to evaluate the swimmer stroking force production and a helpful estimator of competitive performance in short distance competitive events.

  20. The relationship between short- and long-distance swimming performance and repeated sprint ability.

    Science.gov (United States)

    Meckel, Yoav; Bishop, David J; Rabinovich, Moran; Kaufman, Leonid; Nemet, Dan; Eliakim, Alon

    2012-12-01

    The purpose of this study was to determine indices of repeated sprint ability (RSA) during a repeated sprint swimming test (RST), to compare these with previous similar running and cycling RST, and to correlate these indices with the best short (100 m, as an index of anaerobic performance) and long (2,000 m, as an index of aerobic performance) distance swimming times in 20 elite, national team level, male swimmers. Indices of RSA included the ideal sprint time (IS), the total sprint time (TS), and the performance decrement (PD) recorded during an 8 × 15-m swimming RST. The PD during the present swimming RST (4.7 ± 2.3%) was similar to that in previous running or cycling RSTs. However, the physiological responses after the swimming RST (heart rate 168 ± 7 b·min(-1) and blood lactate concentration 5.5 ± 2.0 mmol·L(-1)) were lower than typical responses after running or cycling RSTs. There was no significant relationship between any of the RST performance indices and either the 100-m or 2,000-m swimming results. Multiple regression analysis indicated that the 3 RST indices (IS, TS, and PD), contributed 36% of the variance of the 2,000-m, but not the 100-m, swimming time. A strong correlation was found between the 100- and 2,000-m swim times (r = 0.74, p 100- and 2,000-m swim times is unique for swimming.

  1. Forces and energetics of intermittent swimming

    Science.gov (United States)

    Floryan, Daniel; Van Buren, Tyler; Smits, Alexander J.

    2017-08-01

    Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry (PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.

  2. Diet influences cocaine withdrawal behaviors in the forced swimming test.

    Science.gov (United States)

    Loebens, M; Barros, H M T

    2003-01-01

    The effects of drugs of abuse might depend on several environmental factors, among them the individual's feeding habits. It was our objective to study the influence of the diet on cocaine acute behavioral effects and during the first 5 days of withdrawal after prolonged treatment. Rats were fed a balanced diet, high-protein diet, high-carbohydrate diet or high-fat diet from weaning to adulthood. Adult rats were injected with 15 mg/kg cocaine 24, 5 and 1 h before the forced swimming retest or the drug was administered daily during 15 days and the animals were evaluated in the forced swimming test on five daily occasions after drug withdrawal. Diets alone did not induce significant behavioral differences in locomotion, immobility, swimming, climbing or head shakes. Acute cocaine reduced immobility during the forced swimming test and increased locomotion demonstrating a nonspecific antiimmobility effect related to hyperactivity. Acute cocaine reduced head shakes of rats fed high-protein and high-carbohydrate diets. After cocaine withdrawal, head shakes were decreased for rats fed any of the diets and rats were more immobile if fed a high-fat diet and were less immobile if fed a high-protein or high-carbohydrate diet. In conclusion, differences in the amounts of macronutrients in the diet may cause different behavioral outcomes after acute cocaine and during cocaine withdrawal.

  3. Structure of the rat behaviour in the forced swimming test.

    Science.gov (United States)

    Lino-de-Oliveira, Cilene; De Lima, Thereza C M; de Pádua Carobrez, Antonio

    2005-03-30

    Forced swimming test (FST) or 'behavioural despair' test is a useful screening for antidepressant drugs. The FST predictability has been improved by a number of procedural modifications. Description of the behavioural microstructure in FST may help to delineate innovative protocols. Thus, counts of all behaviours emitted during FST in rats (four-month-old Wistar male, n = 63) were recorded and examined by Markovian sequential analysis (MSA) and principal components analysis (PCA). In a second experiment, rats (n = 28) were tested in an open field test (OFT) followed a week later by FST; behaviours in both tests were recorded and analysed by two correlation methods (Pearson's test and sliding window correlation). The descriptive ethological analysis displayed counts of swimming and immobility increased over the course of the test, whereas climbing behaviour decreased. The MSA revealed the occurrence of immobility was predicted by swimming, climbing, and diving behaviours whereas the immobility predicted the occurrence of swimming behaviour and headshakes. The PCA showed duration of immobility and climbing loaded into one component and duration of immobility and swimming loaded into another one. Low as well high levels of climbing behaviour were positively correlated with motor activity in the OFT. In brief, the present data suggest there are at least two different factors that grouped variables related to the behavioural despair in the FST. In addition, altered motor activity could be predicted by the frequency of climbing behaviour recorded in the FST.

  4. Attenuation of pCREB and Egr1 expression in the insular and anterior cingulate cortices associated with enhancement of CFA-evoked mechanical hypersensitivity after repeated forced swim stress.

    Science.gov (United States)

    Imbe, Hiroki; Kimura, Akihisa

    2017-09-01

    The perception and response to pain are severely impacted by exposure to stressors. In some animal models, stress increases pain sensitivity, which is termed stress-induced hyperalgesia (SIH). The insular cortex (IC) and anterior cingulate cortex (ACC), which are typically activated by noxious stimuli, affect pain perception through the descending pain modulatory system. In the present study, we examined the expression of phospho-cAMP response element-binding protein (pCREB) and early growth response 1 (Egr1) in the IC and ACC at 3h (the acute phase of peripheral tissue inflammation) after complete Freund's adjuvant (CFA) injection in naïve rats and rats preconditioned with forced swim stress (FS) to clarify the effect of FS, a stressor, on cortical cell activities in the rats showing SIH induced by FS. The CFA injection into the hindpaw induced mechanical hypersensitivity and increased the expression of the pCREB and Egr1 in the IC and ACC at 3h after the injection. FS (day 1, 10min; days 2-3, 20min) prior to the CFA injection enhanced the CFA-induced mechanical hypersensitivity and attenuated the increase in the expression of pCREB and Egr1 in the IC and ACC. These findings suggested that FS modulates the CFA injection-induced neuroplasticity in the IC and ACC to enhance the mechanical hypersensitivity. These findings are thought to signify stressor-induced dysfunction of the descending pain modulatory system. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Influence of imipramine on the duration of immobility in chronic forced-swim-stressed rats.

    Directory of Open Access Journals (Sweden)

    Kitamura,Yoshihisa

    2004-12-01

    Full Text Available

    We studied the influence of imipramine on the duration of immobility in chronic forced-swim-stressed rats. Both single and chronic administration of imipramine potently shortened immobility in naive rats during forced-swim testing. However, chronic, 14-day forced-swim stress testing blocked the immobility-decreasing effect induced by a single administration of imipramine. When imipramine was administered for 14 days concurrently with forced-swim stress testing, immobility was shortened significantly. From the viewpoint of imipramine's effect, these findings suggest that chronic forced-swim stress testing in rats may be an effective animal model for depression.

  6. Influence of imipramine on the duration of immobility in chronic forced-swim-stressed rats.

    Science.gov (United States)

    Kitamura, Yoshihisa; Araki, Hiroaki; Nagatani, Tadashi; Takao, Katsuyuki; Shibata, Kazuhiko; Gomita, Yutaka

    2004-12-01

    We studied the influence of imipramine on the duration of immobility in chronic forced-swim-stressed rats. Both single and chronic administration of imipramine potently shortened immobility in naive rats during forced-swim testing. However, chronic, 14-day forced-swim stress testing blocked the immobility-decreasing effect induced by a single administration of imipramine. When imipramine was administered for 14 days concurrently with forced-swim stress testing, immobility was shortened significantly. From the viewpoint of imipramine's effect, these findings suggest that chronic forced-swim stress testing in rats may be an effective animal model for depression.

  7. A2 noradrenergic neurons regulate forced swim test immobility.

    Science.gov (United States)

    Nam, Hyungwoo; Kerman, Ilan A

    2016-10-15

    The Wistar-Kyoto (WKY) rat is a widely used animal model of depression, which is characterized by dysregulation of noradrenergic signaling. We previously demonstrated that WKY rats show a unique behavioral profile on the forced swim test (FST), characterized by high levels of immobility upon initial exposure and a greater learning-like response by further increasing immobility upon re-exposure than the genetically related Wistar rats. In the current study we aimed to determine whether altered activation of brainstem noradrenergic cell groups contributes to this behavioral profile. We exposed WKY and Wistar rats, to either 5min of forced swim or to the standard two-day FST (i.e. 15min forced swim on Day 1, followed by 5min on Day 2). We then stained their brains for FOS/tyrosine hydroxylase double-immunocytochemistry to determine potential differences in the activation of the brainstem noradrenergic cell groups. We detected a relative hyperactivation in the locus coeruleus of WKY rats when compared to Wistars in response to both one- and two-day forced swim. In contrast, within the A2 noradrenergic cell group, WKY rats exhibited diminished levels of FOS across both days of the FST, suggesting their lesser activation. We followed up these observations by selectively lesioning the A2 neurons, using anti-dopamine-β-hydroxylase-conjugated saporin, in Wistar rats, which resulted in increased FST immobility on both days of the test. Together these data indicate that the A2 noradrenergic cell group regulates FST behavior, and that its hypoactivation may contribute to the unique behavioral phenotype of WKY rats.

  8. Veratrine blocks the lamotrigine-induced swimming increase and immobility decrease in the modified forced swimming test.

    Science.gov (United States)

    Codagnone, F T; Consoni, F T; Rodrigues, A L S; Vital, M A B F; Andreatini, R

    2007-08-15

    Lamotrigine exhibits an anti-immobility effect in the modified forced swimming test, increasing swimming and climbing, behaviors that are related to serotonergic and noradrenergic effects, respectively. However, these effects could be secondary to lamotrigine blockade of Na(+) sensitive channel. Thus, this study investigated the influence of veratrine (0.1 mg/kg, ip, 10 min before each lamotrigine administration), an Na(+) channel activator, in the effect of lamotrigine (20 mg/kg, ip, 24, 5, 1 h before the test session) in the modified forced swimming test. Veratrine pre-treatment blocked lamotrigine-induced immobility decrease and swimming increase but it did not change the effect of lamotrigine on climbing. These results suggest that the serotonergic effect of lamotrigine in the modified forced swimming test is dependent on Na(+) voltage sensitive channel blockade, whereas its noradrenergic effect is not.

  9. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Directory of Open Access Journals (Sweden)

    Amneet Pal Singh Bhalla

    Full Text Available A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming or by forces imparted by the surrounding fluid ("passive" swimming, is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  10. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E; Patankar, Neelesh A

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  11. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  12. Physical forces shape group identity of swimming Pseudomonas putida cells

    Directory of Open Access Journals (Sweden)

    David Rodriguez-Espeso

    2016-09-01

    Full Text Available The often striking macroscopic patterns developed by motile bacterial populations on agar plates are a consequence of the environmental conditions where the cells grow and spread. Parameters such as medium stiffness and nutrient concentration have been reported to alter cell swimming behavior, while mutual interactions among populations shape collective patterns. One commonly observed occurrence is the mutual inhibition of clonal bacteria when moving towards each other, which results in a distinct halt at a finite distance on the agar matrix before having direct contact. The dynamics behind this phenomenon (i.e. intolerance to mix in time and space with otherwise identical others has been traditionally explained in terms of cell-to-cell competition/cooperation regarding nutrient availability. In this work, the same scenario has been revisited from an alternative perspective: the effect of the physical mechanics that frame the process, in particular the consequences of collisions between moving bacteria and the semi-solid matrix of the swimming medium. To this end we set up a simple experimental system in which the swimming patterns of Pseudomonas putida were tested with different geometries and agar concentrations. A computational analysis framework that highlights cell-to-medium interactions was developed to fit experimental observations. Simulated outputs suggested that the medium is compressed in the direction of the bacterial front motion. This phenomenon generates what was termed a compression wave that goes through the medium preceding the swimming population and that determines the visible high-level pattern. Taken together, the data suggested that the mechanical effects of the bacteria moving through the medium created a factual barrier that impedes to merge with neighboring cells swimming from a different site. The resulting divide between otherwise clonal bacteria is thus brought about by physical forces –not genetic or metabolic

  13. Ultrasonic vocalizations during intermittent swim stress forecasts resilience in subsequent forced swim and spatial learning tests.

    Science.gov (United States)

    Drugan, Robert C; Warner, Timothy A; Papallo, Tristan A; Castracane, Laura L; Stafford, Nathaniel P

    2014-02-01

    The examination of stress resilience has substantially increased in recent years. However, current paradigms require multiple behavioral procedures, which themselves may serve as secondary stressors. Therefore, a novel predictor of stress resilience is needed to advance the field. Ultrasonic vocalizations (USVs) have been observed as a behavioral correlate of stress in various rodent species. It was recently reported that rats that emitted ultrasonic vocalizations during intermittent swim stress (ISS) later showed resilience when tested on an instrumental swim escape test. In the current study, we extend this earlier observation on two additional behavioral endpoints. Rats were subjected to ISS, and USVs were recorded. Twenty-four hours later, behavioral performance was evaluated in either the forced swim test or Morris water maze. Rats that emitted ultrasonic vocalizations were resilient to the effects of ISS as indicated by performance similar to controls on both measures. These results extend the original findings that ISS-induced USVs are associated with resilience and are related to subsequent aversively motivated behavior. Such a non-invasive forecast of stress responsivity will allow future work to utilize USVs to examine the neural correlates of initial stress resistance/resilience, thereby eliminating potential confounds of further behavioral testing. Future studies can utilize USVs to target potentially unappreciated neural systems to provide novel pharmacotherapeutic strategies for treatment-resistant depression.

  14. Swimming propulsion forces are enhanced by a small finger spread.

    Science.gov (United States)

    Marinho, Daniel A; Barbosa, Tiago M; Reis, Victor M; Kjendlie, Per L; Alves, Francisco B; Vilas-Boas, João P; Machado, Leandro; Silva, António J; Rouboa, Abel I

    2010-02-01

    The main aim of this study was to investigate the effect of finger spread on the propulsive force production in swimming using computational fluid dynamics. Computer tomography scans of an Olympic swimmer hand were conducted. This procedure involved three models of the hand with differing finger spreads: fingers closed together (no spread), fingers with a small (0.32 cm) spread, and fingers with large (0.64 cm) spread. Steady-state computational fluid dynamics analyses were performed using the Fluent code. The measured forces on the hand models were decomposed into drag and lift coefficients. For hand models, angles of attack of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, and 90 degrees, with a sweep back angle of 0 degrees, were used for the calculations. The results showed that the model with a small spread between fingers presented higher values of drag coefficient than did the models with fingers closed and fingers with a large spread. One can note that the drag coefficient presented the highest values for an attack angle of 90 degrees in the three hand models. The lift coefficient resembled a sinusoidal curve across the attack angle. The values for the lift coefficient presented few differences among the three models, for a given attack angle. These results suggested that fingers slightly spread could allow the hand to create more propulsive force during swimming.

  15. Maternal forced swimming reduces cell proliferation in the postnatal dentate gyrus of mouse offspring

    OpenAIRE

    Wasinski, Frederick; Estrela, Gabriel R.; Arakaki, Aline M.; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Ronaldo C Araújo

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mot...

  16. The Relationship Between Propulsive Force in Tethered Swimming and 200-m Front Crawl Performance.

    Science.gov (United States)

    Santos, Karini B; Bento, Paulo C B; Pereira, Gleber; Rodacki, André L F

    2016-09-01

    Santos, KB, Bento, PCB, Pereira, G, and Rodacki, ALF. The relationship between propulsive force in tethered swimming and 200-m front crawl performance. J Strength Cond Res 30(9): 2500-2507, 2016-The aims of this study were to determine whether propulsive force (peak force, mean force, impulse, and rate of force development) and stroke rate change during 2 minutes of front crawl tethered swimming and to correlate them with the stroke rate and swimming velocity in 200-m front crawl swimming. Twenty-one swimmers (21.6 ± 4.8 years, 1.78 ± 0.06 m, 71.7 ± 8.1 kg), with 200-m front crawl swimming performance equivalent to 78% of the world record (140.4 ± 10.1 seconds), were assessed during 2 minutes of maximal front crawl tethered swimming (propulsive forces and stroke rate) and 200-m front crawl swimming (stroke rate and clean velocity). Propulsive forces decreased between the beginning and the middle instants (∼20%; p ≤ 0.05) but remained stable between the middle and the end instants (∼6%; p > 0.05). The peak force was positively correlated with the clean velocity in the 200-m front crawl swimming (mean r = 0.61; p rates of the tethered swimming and 200-m front crawl swimming were positively correlated (r = 45; p≤ 0.01) at the middle instant. Therefore, the propulsive force and stroke rate changed throughout the 2 minutes of tethered swimming, and the peak force is the best propulsive force variable tested that correlated with 200-m front crawl swimming performance.

  17. Severe brain hypothermia as a factor underlying behavioral immobility during cold-water forced swim.

    Science.gov (United States)

    Taltavull, J F; Chefer, V I; Shippenberg, T S; Kiyatkin, E A

    2003-06-13

    Behavioral immobility during forced swim is usually considered a consequence of inescapable stress, and is used to screen antidepressant drugs. However, immobility in this test may also result from inhibition of neural functions because of brain hypothermia due to body cooling. To explore this possibility, we measured brain temperature dynamics during a 10-min forced swim in cold (25 degrees C) and warm (37 degrees C) water and correlated brain temperatures with behavioral changes. Cold water forced swim resulted in significant brain hypothermia (-6-7 degrees C) and immobility, while no immobility was observed during warm water forced swim, when brain temperature transiently increased (0.5 degrees C) then decreased below baseline in the post-swim period. These data suggest that immobility, which rapidly develops during forced swim in cold water, may result from dramatic inhibition of neural functions because of severe brain hypothermia.

  18. Antidepressant effect of Melissa officinalis in the forced swimming test

    Directory of Open Access Journals (Sweden)

    M Emamghoreishi

    2009-03-01

    Full Text Available ABSTRACT Background: In Iranian and other traditional medicines, an antidepressant effect has been indicated for Melissa officinalis (Lamiaceae. However, studies showing its antidepressant effect is lacking. Therefore, the present study was undertaken to examine whether the aqueous extract and essential oil from leaves of Melissa officinalis have an antidepressant-like activity in mice.  Materials and Methods: The effect of subchronic administration of different doses of the aqueous extract (25, 75, 150, 300 mg/kg or water; n=9-10 and the essential oil (10, 25, 75, 150, 300 mg/kg or almond oil; n=9-10 on immobility, climbing, and swimming behaviors were evaluated in the forced swimming test. Fluoxetine (20mg/kg and imipramine (15 mg/kg were used as reference drugs. Additionally, the effect of both plant preparations on spontaneous activity was examined. Results: All doses of the aqueous extract, used in this study, produced a significant reduction in immobility along with an increase in climbing behavior which is similar to those which have been observed with imipramine. Essential oil caused a dose-dependent reduction in immobility and an increase in climbing at all studied doses, compared to control group. Only the highest dose (300mg/kg of essential oil showed a significant increase in swimming behavior. The aqueous extract, but not the essential oil, decreased spontaneous activity in a dose dependent manner. Conclusion: The results of this study suggests that the Melissa officinalis possess an antidepressant-like activity similar to imipramine which may have a potential clinical value for treatment of depression.

  19. Factors influencing behavior in the forced swim test.

    Science.gov (United States)

    Bogdanova, Olena V; Kanekar, Shami; D'Anci, Kristen E; Renshaw, Perry F

    2013-06-13

    The forced swim test (FST) is a behavioral test in rodents which was developed in 1978 by Porsolt and colleagues as a model for predicting the clinical efficacy of antidepressant drugs. A modified version of the FST added the classification of active behaviors into swimming and climbing, in order to facilitate the differentiation between serotonergic and noradrenergic classes of antidepressant drugs. The FST is now widely used in basic research and the pharmaceutical screening of potential antidepressant treatments. It is also one of the most commonly used tests to assess depressive-like behavior in animal models. Despite the simplicity and sensitivity of the FST procedure, important differences even in baseline immobility rates have been reported between different groups, which complicate the comparison of results across studies. In spite of several methodological papers and reviews published on the FST, the need still exists for clarification of factors which can influence the procedure. While most recent reviews have focused on antidepressant effects observed with the FST, this one considers the methodological aspects of the procedure, aiming to summarize issues beyond antidepressant action in the FST. The previously published literature is analyzed for factors which are known to influence animal behavior in the FST. These include biological factors, such as strain, age, body weight, gender and individual differences between animals; influence of preconditioning before the FST: handling, social isolation or enriched environment, food manipulations, various kinds of stress, endocrine manipulations and surgery; schedule and routes of treatment, dosage and type of the drugs as well as experimental design and laboratory environmental effects. Consideration of these factors in planning experiments may result in more consistent FST results.

  20. Effects of various Eleutherococcus senticosus cortex on swimming time, natural killer activity and corticosterone level in forced swimming stressed mice.

    Science.gov (United States)

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2004-12-01

    The cortex of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. has been used extensively in Russia, China, Korea and Japan as an adaptogen whose properties are the ability to increase as non-specific body resistance to stress and fatigue. Although it has been reported that Eleutherococcus senticosus has anti-fatigue and anti-stress actions, their actions are still unclear on the relationship between immune system, especially natural killer (NK) activity and endocrine system (corticosterone level). We compared the effects of the water extracts (A, B, C, D and E) of five Eleutherococcus senticosus cortex on the swimming time, NK activity and blood corticosterone level using forced swimming stressed mice. Among five kinds, C, D and E extracts significantly prolonged the swimming time. C and D extracts inhibited the reduction of NK activity and the corticosterone elevation induced by forced swimming. The contents of eleutheroside E, isoflaxidin and eleutherosides B plus E were in the order C > D > E > B > A and C > E > D > A > B extracts, respectively. Therefore, it is suggested that eleutheroside E may be contributed to the anti-fatigue action, the recovery of the reduction of NK activity and the inhibition of corticosterone elevation induced by swimming stress.

  1. Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, Dicentrarchus labrax.

    Science.gov (United States)

    Marras, S; Claireaux, G; McKenzie, D J; Nelson, J A

    2010-01-01

    Studies of inter-individual variation in fish swimming performance may provide insight into how selection has influenced diversity in phenotypic traits. We investigated individual variation and short-term repeatability of individual swimming performance by wild European sea bass in a constant acceleration test (CAT). Fish were challenged with four consecutive CATs with 5 min rest between trials. We measured maximum anaerobic speed at exhaustion (U(CAT)), gait transition speed from steady aerobic to unsteady anaerobic swimming (U(gt)), routine metabolic rate (RMR), post-CAT maximum metabolic rate (MMR), aerobic scope and recovery time from the CATs. Fish achieved significantly higher speeds during the first CAT (U(CAT)=170 cm s(-1)), and had much more inter-individual variation in performance (coefficient of variation, CV=18.43%) than in the subsequent three tests (U(CAT)=134 cm s(-1); CV=7.3%), which were very repeatable among individuals. The individual variation in U(CAT) in the first trial could be accounted for almost exclusively by variation in anaerobic burst-and-coast performance beyond U(gt). The U(gt) itself varied substantially between individuals (CV=11.4%), but was significantly repeatable across all four trials. Individual RMR and MMR varied considerably, but the rank order of post-CAT MMR was highly repeatable. Recovery rate from the four CATs was highly variable and correlated positively with the first U(CAT) (longer recovery for higher speeds) but negatively with RMR and aerobic scope (shorter recovery for higher RMR and aerobic scope). This large variation in individual performance coupled with the strong correlations between some of the studied variables may reflect divergent selection favouring alternative strategies for foraging and avoiding predation.

  2. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi)

    NARCIS (Netherlands)

    Palstra, A.P.; Mes, D.; Kusters, K.; Roques, J.A.C.; Flik, G.; Kloet, K.; Blonk, R.J.W.

    2015-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U-opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and

  3. Maternal forced swimming reduces cell proliferation in the postnatal dentate gyrus of mouse offspring

    Directory of Open Access Journals (Sweden)

    Frederick Wasinski

    2016-08-01

    Full Text Available Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring’s neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring.

  4. Maternal Forced Swimming Reduces Cell Proliferation in the Postnatal Dentate Gyrus of Mouse Offspring.

    Science.gov (United States)

    Wasinski, Frederick; Estrela, Gabriel R; Arakaki, Aline M; Bader, Michael; Alenina, Natalia; Klempin, Friederike; Araújo, Ronaldo C

    2016-01-01

    Physical exercise positively affects the metabolism and induces proliferation of precursor cells in the adult brain. Maternal exercise likewise provokes adaptations early in the offspring. Using a high-intensity swimming protocol that comprises forced swim training before and during pregnancy, we determined the effect of maternal swimming on the mouse offspring's neurogenesis. Our data demonstrate decreased proliferation in sublayers of the postnatal dentate gyrus in offspring of swimming mother at postnatal day (P) 8 accompanied with decreased survival of newly generated cells 4 weeks later. The reduction in cell numbers was predominantly seen in the hilus and molecular layer. At P35, the reduced amount of cells was also reflected by a decrease in the population of newly generated immature and mature neurons of the granule cell layer. Our data suggest that forced maternal swimming at high-intensity has a negative effect on the neurogenic niche development in postnatal offspring.

  5. Swimming

    Science.gov (United States)

    ... going out on a boat, always wear a life jacket. (Again, the life jacket should be Coast Guard-approved.) Even if you ... are other water park safety tips: Wear a life jacket if you don't know how to swim ...

  6. Possible contributory role of the central histaminergic system in the forced swimming model.

    Science.gov (United States)

    Noguchi, S; Fukuda, Y; Inukai, T

    1992-05-01

    Forced swimming is considered to bring about a depressive or despair state in experimental animals, usually manifested as immobility. Levoprotiline (CAS 76496-68-9), a new antidepressant, clearly reduced the duration of immobility in the forced swimming model in mice. As levoprotiline does not inhibit noradrenaline or serotonin reuptake, this effect did not seem to have been brought about through central monoaminergic systems. Histamine and tele-methylhistamine levels, the main metabolite of histamine in the cerebral cortex, were found to be significantly increased in the forced swimming model. Since the only significant known effect of levoprotiline on the neurotransmitter system is its histamine H1 receptor antagonism, a possible contribution of the central histaminergic system to the forced swimming model is proposed. The action of mepyramine, a histamine H1 receptor antagonist in reducing the duration of immobility seemed to support this proposition. It should be noted that antihistaminergic properties are shared by many antidepressant drugs.

  7. The effects of oral creatine supplementation on performance in single and repeated sprint swimming.

    Science.gov (United States)

    Peyrebrune, M C; Nevill, M E; Donaldson, F J; Cosford, D J

    1998-04-01

    We studied the effects of oral creatine supplementation on sprint swimming performance in 14 elite competitive male swimmers. The subjects performed a single sprint (1 x 50 yards [45.72 m]) and repeated sprint set (8 x 50 yards at intervals of 1 min 30 s) before and after a 5 day period of either creatine (9 g creatine + 4.5 g maltodextrin + 4.5 g glucose day(-1)) or placebo (18 g glucose day(-1); double-blind protocol) supplementation. Venous and capillary blood samples were taken for the determination of plasma ammonia, blood pH and lactate. Mean times recorded for the single 50 yard sprint were unchanged as a result of supplementation (creatine vs control, N.S.). During the repeated sprint test, mean times increased (Pcreatine supplementation (sprints 1-8: control pre-, 23.35+/-0.68 to 26.32+/-1.34 s; control post-, 23.59+/-0.66 to 26.19+/-1.48 s; creatine pre-, 23.20+/-0.67 to 26.85+/-0.42 s; creatine post-, 23.39+/-0.54 to 25.73+/-0.26 s; P creatine supplementation (control, 12.7+/-5.7% vs 11.0+/-5.5%; creatine, 15.7+/-4.3% vs 10.0+/-2.5%; Pcreatine in this group of swimmers after an identical supplementation regimen. In summary, our results suggest that ingesting 9 g creatine per day for 5 days can improve swimming performance in elite competitors during repeated sprints, but appears to have no effect on a single 50 yard sprint.

  8. A biomechanical review of the techniques used to estimate or measure resistive forces in swimming.

    Science.gov (United States)

    Sacilotto, Gina B D; Ball, Nick; Mason, Bruce R

    2014-02-01

    Resistive or drag forces encountered during free swimming greatly influence the swim performance of elite competitive swimmers. The benefits in understanding the factors which affect the drag encountered will enhance performance within the sport. However, the current techniques used to experimentally measure or estimate drag values are questioned for their consistency, therefore limiting investigations in these factors. This paper aims to further understand how the resistive forces in swimming are measured and calculated. All techniques outlined demonstrate both strengths and weaknesses in the overall assessment of free swimming. By reviewing all techniques in this area, the reader should be able to select which one is best depending on what researchers want to gain from the testing.

  9. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    Science.gov (United States)

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  10. The effect of temperature on repeat swimming performance in juvenile qingbo (Spinibarbus sinensis).

    Science.gov (United States)

    Pang, Xu; Yuan, Xing-Zhong; Cao, Zhen-Dong; Zhang, Yao-Guang; Fu, Shi-Jian

    2015-02-01

    To investigate the effect of temperature on the repeat constant acceleration swimming performance and on the metabolic recovery capacity in juvenile qingbo (Spinibarbus sinensis), their constant acceleration test speed (U(CAT)) and excess post-exercise oxygen consumption (EPOC) recovery process were measured twice with 1-h intervals at different acclimation temperatures (10, 15, 20, 25 and 30 °C). Temperature significantly affected U(CAT), the pre-exercise metabolic rate (MO(2)), metabolic peak values (MO(2peak)), the metabolic scope (MS, MO(2peak)--pre-exercise MO(2)) and the magnitude of the EPOC (P EPOC magnitude) or did not change (MO(2peak) and MS) when the temperature increased from 25 to 30 °C in the first test (P EPOC magnitude) in the first test were as follows: U(CAT) = 62.14/{1 + [(T - 25.1)/21.1](2)} (r = 0.847, P EPOC = 195.42/{1 + [(T - 25.6)/8.7](2)} (r = 0.752, P EPOC magnitude in juvenile qingbo were 25.1, 29.2, 27.1 and 28.6 °C, respectively. Repeat exercise had different effect on U(CAT) and EPOC magnitude at different temperature (interaction effect, P EPOC magnitude between the first and second tests at low temperatures (10-20 °C). However, both U(CAT) and EPOC magnitude decreased significantly during the second test compared with the first test at high temperatures (25 and 30 °C) (P < 0.05). The present study showed that the recovery of the constant acceleration swimming performance was poorer at higher temperatures than at low temperatures in juvenile qingbo. These differences may be related to larger anaerobic metabolism, a lower pH value in the blood, larger ionic fluids and/or higher levels of hormones present at high temperatures.

  11. Dry-land bilateral hand-force production and swimming performance in paralympic swimmers.

    Science.gov (United States)

    Dingley, A A; Pyne, D; Burkett, B

    2014-10-01

    The effectiveness of human movement is the culmination of several musculoskeletal factors; asymmetry in movement could reduce optimal performance. The aims of this study were to quantify relationships between bilateral hand-force production, swimming performance, and the influence of fatigue. Paralympic swimmers (n=21, aged 20.9 ± 4.7 yr) were categorised into no, high- and low-range physical disability groups and performed two 100 m time trials to measure swimming performance. Bilateral hand-force was measured over two 60 s maximal tests on a swim-bench ergometer to quantify the degree of asymmetry. Large relationships between mean force and swimming velocity were seen for both the high- (r=0.62, ±0.45; r-value, ±90% confidence limits) and low-range (r=0.62, ±0.50) groups. Asymmetry was related to level of disability, with the smallest difference of 6.7, ±2.6 N in the no-musculoskeletal disability group. This difference increased to 13.1, ±10.0 N and 13.5, ±16.2 N in the high- and low-range groups. Between the first and last 15 s of the swim-bench test, reductions in mean force were small for the physical disabilities groups. Similarly, changes in asymmetry were small for both the no-physical and low-range groups. Paralympic swimmers with a more severe physical impairment typically generate substantially lower force and velocity.

  12. Effect of Eight Weeks Forced Swimming Training with Methadone Supplementation on Aspartate Aminotransferase, Alanine Aminotransferase, and Alkaline Phosphatase of Rats

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hoseini

    2016-12-01

    Full Text Available Background & Objective: Narcotics abuse can induce liver disorders; nevertheless, exercises improve liver disorders. The present research aimed to review the effect of eight weeks forced swimming training with methadone supplementation on liver enzymes of rats. Material & Method: In this experimental research, 48 rats were selected, and after one week adaptation to lab environment, they were randomly divided into four groups of 12 rats including (1 forced swimming training, (2 methadone supplementation, (3 forced swimming training with methadone supplementation, and (4 control. Groups 2 and 3 used 2 mg/kg methadone daily for 8 weeks. Also, groups 1 and 3 swam for 8 weeks, three sessions per week and each session for 30 minutes. For statistical analysis of data, one way ANOVA and Tukey post hoc tests were used (α≤0.05. Results: Findings showed that forced swimming training, methadone supplementation, and forced swimming training with methadone supplementation had no significant effect on AST (P=0.90 and ALT (P=0.99 enzymes; forced swimming training had significant effect on increase of ALP (P=0.001; also, forced swimming training, compared with methadone supplementation and combination of forced swimming training with methadone supplementation, had significant effect on increase of ALP (P=0.001. Conclusion: Accordingly, 8 weeks of forced swimming training with methadone has possibly no significant effect on liver enzymes.

  13. Immobility in the forced swim test is adaptive and does not reflect depression.

    Science.gov (United States)

    Molendijk, Marc L; de Kloet, E Ronald

    2015-12-01

    The forced swim test is based on the progressive immobility a rodent displays when immersed in a beaker filled with water from where no escape is possible. While the test was originally designed to identify the antidepressant potential of drugs, over the past decade a rapidly growing number of publications (more than 2000) portray this immobility response anthropomorphically as a measure for depression and despair. This is incorrect. The response to the forced swim stressor should be considered for what it shows: a switch from active to passive behavior in the face of an acute stressor, aligned to cognitive functions underlying behavioral adaptation and survival.

  14. Effects of chronic dietary selenomethionine exposure on repeat swimming performance, aerobic metabolism and methionine catabolism in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Thomas, Jith K; Wiseman, Steve; Giesy, John P; Janz, David M

    2013-04-15

    In a previous study we reported impaired swimming performance and greater stored energy in adult zebrafish (Danio rerio) after chronic dietary exposure to selenomethionine (SeMet). The goal of the present study was to further investigate effects of chronic exposure to dietary SeMet on repeat swimming performance, oxygen consumption (MO2), metabolic capacities (standard metabolic rate [SMR], active metabolic rate [AMR], factorial aerobic scope [F-AS] and cost of transport [COT]) and gene expression of energy metabolism and methionine catabolism enzymes in adult zebrafish. Fish were fed SeMet at measured concentrations of 1.3, 3.4, 9.8 or 27.5 μg Se/g dry mass (d.m.) for 90 d. At the end of the exposure period, fish from each treatment group were divided into three subgroups: (a) no swim, (b) swim, and (c) repeat swim. Fish from the no swim group were euthanized immediately at 90 d and whole body triglycerides, glycogen and lactate, and gene expression of energy metabolism and methionine catabolism enzymes were determined. Individual fish from the swim group were placed in a swim tunnel respirometer and swimming performance was assessed by determining the critical swimming speed (U(crit)). After both Ucrit and MO2 analyses, fish were euthanized and whole body energy stores and lactate were determined. Similarly, individual fish from the repeat swim group were subjected to two U(crit) tests (U(crit-1) and U(crit-2)) performed with a 60 min recovery period between tests, followed by determination of energy stores and lactate. Impaired swim performance was observed in fish fed SeMet at concentrations greater than 3 μg Se/g in the diet. However, within each dietary Se treatment group, no significant differences between single and repeat U(crits) were observed. Oxygen consumption, SMR and COT were significantly greater, and F-AS was significantly lesser, in fish fed SeMet. Whole body triglycerides were proportional to the concentration of SeMet in the diet. While

  15. Repeated sprint swimming performance after low- or high-intensity active and passive recoveries.

    Science.gov (United States)

    Toubekis, Argyris G; Adam, Georgios V; Douda, Helen T; Antoniou, Panagiotis D; Douroundos, Ioannis I; Tokmakidis, Savvas P

    2011-01-01

    The purpose of this study was to examine the effects on sprint swimming performance after low- and high-intensity active recovery (AR) as compared to passive recovery. Ten male competitive swimmers (age: 17.9 ± 2.3 years; body mass: 73.2 ± 4.0 kg; height: 1.81 ± 0.04 m, 100-m best time: 54.90 ± 1.96 seconds) performed 8 × 25-m sprints with 120-second rest intervals followed by a 50-m sprint 6 minutes later. During the 120-second and the 6-minute interval periods swimmers rested passively (PAS) or swam at an intensity of 40% (ACT40; 36 ± 8% of the V(O2)max) and 60% (ACT60; 59 ± 7% of the V(O2)max) of their individual 100-m velocity. Performance time of the 8 × 25-m after ACT60 was slower compared with PAS and ACT40, but no difference was observed between ACT40 and PAS conditions (PAS: 12.15 ± 0.48, ACT40: 12.23 ± 0.54, ACT60: 12.35 ± 0.57 seconds, p sprint was no different between conditions (PAS: 26.45 ± 0.91; ACT40: 26.30 ± 1.18; ACT60: 26.21 ± 1.19 seconds; p > 0.05). Blood lactate concentration was not different between PAS, ACT40, and ACT60 after the 8 × 25-m and the 50-m sprints (p > 0.05). Passive recovery, or low intensity of AR (40% of the 100-m velocity), is advised to maintain repeated 25-m sprint swimming performance when a 2-minute interval period is provided. Active recovery at an intensity corresponding to 60% of the 100-m velocity decreases performance during the 25-m repeated sprints without affecting the performance time on a subsequent longer duration sprint (i.e., 50 m).

  16. Conditioned ethanol aversion in rats induced by voluntary wheel running, forced swimming, and electric shock: an implication for aversion therapy of alcoholism.

    Science.gov (United States)

    Nakajima, Sadahiko

    2004-01-01

    This study was planned to demonstrate rats' acquisition of aversion to ethanol solution consumed before voluntary running, forced swimming, or electric shock delivery. Wistar rats under water deprivation were allotted to four groups of eight rats each, and all rats were allowed to drink 5% ethanol solution for 15 min. Immediately after the ethanol drinking, rats of Group Run were put into the individual running wheels for 15 min, those of Group Swim were put into the individual swimming pools for 15 min, those of Group Shock received electric shocks for 15 min (15 0.45-mA shocks of 0.7s with the intershock interval of 1 min) in the individual small chambers, and those of Group Control were directly returned back to the home cages. This procedure was repeated for six days, followed by a two-day choice test of ethanol aversion where a bottle containing 5% ethanol solution and a bottle of tap water were simultaneously presented for 15 min. In the test, Groups Run, Swim, and Shock drank ethanol solution significantly less than tapwater, while Group Control drank both fluids equally. The effects of running, swimming, and shock were equivalent. The successful demonstration of acquired ethanol aversion induced by exercise (running and swimming) or shock in rats suggests an avenue for clinical application of exercise and shock treatments for human alcoholics, though there are many issues to be resolved before the practical use.

  17. Effect of thioperamide on modified forced swimming test-induced oxidative stress in mice.

    Science.gov (United States)

    Akhtar, Mohd; Pillai, K K; Vohora, Divya

    2005-10-01

    This study was designed i) to investigate the role of histamine H3-receptor ligands on mouse modified forced swimming test, a method that distinguishes the catecholaminergic behaviour with that of serotonergic compounds and ii) to evaluate the role of free radicals in mediation of such effects. Swiss strain albino mice were treated with different doses of histamine H3-receptor antagonist thioperamide (3.75, 7.5 and 15 mg/kg intraperitoneally) and agonist (R)-alpha-methylhistamine (5 microg intracerebroventricularly). The climbing, swimming and immobility times were recorded for 6 min. Immediately after modified forced swimming test, the animals were sacrificed and parameters of oxidative stress were assessed in the brain by measuring the thiobarbituric acid reactive substance (TBARS), glutathione (GSH) and catalase levels. Thioperamide (7.5 and 15 mg/kg intraperitoneally) dose-dependently decreased immobility time and increased swimming time but not climbing time. The behaviour of mice treated with (R)-alpha-methylhistamine was similar to that of control mice. A significant reduction in GSH and an increase in catalase levels were observed in brains of mice exposed to modified forced swimming test. Thioperamide pretreatment dose-dependently reversed such an alteration in oxidative stress parameters. (R)-alpha-methylhistamine caused a reversal of altered catalase but not GSH levels. Thioperamide shows antidepressant effects in the modified forced swimming test and causes a reversal of the test-induced oxidative stress indicating its antioxidant potential. The antidepressant effect of thioperamide appears to be mediated via serotonergic and/or antioxidant mechanisms.

  18. Aerobic and Anaerobic Swimming Force Evaluation in One Single Test Session for Young Swimmers.

    Science.gov (United States)

    de Barros Sousa, Filipe Antônio; Rodrigues, Natalia Almeida; Messias, Leonardo Henrique Dalcheco; Queiroz, Jair Borges; Manchado-Gobatto, Fulvia Barros; Gobatto, Claudio Alexandre

    2017-05-01

    This study aims to propose and validate the tethered swimming lactate minimum test (TSLacmin) estimating aerobic and anaerobic capacity in one single test session, using force as measurement parameter. 6 male and 6 female young swimmers (age=15.7±1.1 years; height=173.3±9.5 cm; weight=66.1±9.5 kg) performed 4 sessions comprising i) an all-out 30 s test and incremental test (TSLacmin); ii) 30 min of tethered swimming at constant intensity (2 sessions); iii) free-swimming time trials used to calculate critical velocity. Tethered swimming sessions used an acquisition system enabling maximum (Fmax) and mean (Fmean) force measurement and intensity variation. The tethered all-out test lasting 30 s resulted in hyperlactatemia of 7.9±2.0 mmol·l(-1). TSLacmin presented a 100% success applicability rate, which is equivalent to aerobic capacity in 75% of cases. TSLacmin intensity was 37.7±7.3 N, while maximum force in the all-out test was 105±27 N. Aerobic and anaerobic TSLacmin parameters were significantly related to free-swimming performance (r=-0.67 for 100 m and r=-0.80 for 200 m) and critical velocity (r=0.80). TSLacmin estimates aerobic capacity in most cases, and both aerobic and anaerobic force parameters are well related to critical velocity and free swimming performance. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Using the rat forced swim test to assess antidepressant-like activity in rodents.

    Science.gov (United States)

    Slattery, David A; Cryan, John F

    2012-05-03

    The forced swim test (FST) is one of the most commonly used animal models for assessing antidepressant-like behavior. This protocol details using the FST in rats, which takes place over 48 h and is followed by the video analysis of the behavior. The swim test involves the scoring of active (swimming and climbing) or passive (immobility) behavior when rodents are forced to swim in a cylinder from which there is no escape. There are two versions that are used, namely the traditional and modified FSTs, which differ in their experimental setup. For both versions, a pretest of 15 min (although a number of laboratories have used a 10-min pretest with success) is included, as this accentuates the different behaviors in the 5-min swim test following drug treatment. Reduction in passive behavior is interpreted as an antidepressant-like effect of the manipulation, provided it does not increase general locomotor activity, which could provide a false positive result in the FST.

  20. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent

  1. Performance Level Differences in Swimming: A Meta-Analysis of Passive Drag Force

    Science.gov (United States)

    Havriluk, Rod

    2005-01-01

    The streamline is a basic position for competitive swimming starts mid turns and has been used in many studies on resistive forces. However, there is a wide yahweh, of theoretical interpretations in these studies, leading to diverse and questionable conclusions. The purpose of this study was to determine performance level differences in the…

  2. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent sign

  3. Role of amygdala MAPK activation on immobility behavior of forced swim rats.

    Science.gov (United States)

    Huang, Tung-Yi; Lin, Chih-Hung

    2006-10-01

    The role of amygdala mitogen-activated protein kinase (MAPK) in rats during a forced swim test was investigated. The variation of amygdala MAPK level was studied in control rats and early-life maternally deprived rats. A forced swim test was carried out to estimate the immobility level. The data showed that the immobility time of rats that received maternal deprivation in early life was longer than that of control rats and Western blot analysis also showed that the amygdala phospho-MAPK level in maternally deprived rats was almost two times higher than in control rats. Intra-amygdala infusion of PD098059 or U0126, MEK inhibitors, suppressed immobility behavior during the forced swim test in both rats. Western blot analysis also showed that the amygdala MAPK activities in both rats infused with MEK inhibitors were also suppressed in parallel with expression of immobility behavior. The suppressed MAPK activities as well as the restoration of immobility time returned to the original level 48 h later. These results suggest that amygdala MAPK activation might play a role in the regulation of immobility behavior in rats during the forced swim test. Moreover, it could provide a hint that amygdala MAPK activation might be involved in the formation of depression-like behavior.

  4. Beta-Alanine Supplementation Improves Throwing Velocities in Repeated Sprint Ability and 200-m Swimming Performance in Young Water Polo Players.

    Science.gov (United States)

    Claus, Gabriel Machado; Redkva, Paulo Eduardo; Brisola, Gabriel Mota Pinheiro; Malta, Elvis Sousa; de Araujo Bonetti de Poli, Rodrigo; Miyagi, Willian Eiji; Zagatto, Alessandro Moura

    2017-05-01

    The purpose of this study was to investigate the effects of beta-alanine supplementation on specific tests for water polo. Fifteen young water polo players (16 ± 2 years) underwent a 200-m swimming performance, repeated-sprint ability test (RSA) with free throw (shooting), and 30-s maximal tethered eggbeater kicks. Participants were randomly allocated into two groups (placebo × beta-alanine) and supplemented with 6.4g∙day(-1)of beta-alanine or a placebo for six weeks. The mean and total RSA times, the magnitude based inference analysis showed a likely beneficial effect for beta-alanine supplementation (both). The ball velocity measured in the throwing performance after each sprint in the RSA presented a very like beneficial inference in the beta-alanine group for mean (96.4%) and percentage decrement of ball velocity (92.5%, likely beneficial). Furthermore, the percentage change for mean ball velocity was different between groups (beta-alanine=+2.5% and placebo=-3.5%; p = .034). In the 30-s maximal tethered eggbeater kicks the placebo group presented decreased peak force, mean force, and fatigue index, while the beta-alanine group maintained performance in mean force (44.1%, possibly beneficial), only presenting decreases in peak force. The 200-m swimming performance showed a possibly beneficial effect (68.7%). Six weeks of beta-alanine supplementation was effective for improving ball velocity shooting in the RSA, maintaining performance in the 30-s test, and providing possibly beneficial effects in the 200-m swimming performance.

  5. Effect of citalopram in the modified forced swim test in rats.

    Science.gov (United States)

    Kuśmider, Maciej; Solich, Joanna; Pałach, Paulina; Dziedzicka-Wasylewska, Marta

    2007-01-01

    The present study examined the effect of citalopram (7.5 and 15 mg/kg) in the modified forced swim test (FST) in Wistar rats, in comparison to the effect of desipramine at the same doses. The citalopram at both doses increased swimming behavior, at the cost of climbing and immobility. The administration of desipramine increased climbing behavior while immobility counts were decreased. The modified FST is indeed more sensitive than the conventional FST in describing precisely the behavioral effects of antidepressant drugs, allowing to roughly estimate the contribution of individual neurotransmitter system to the mechanism of action of the studied drug.

  6. The effect of recording interval length on behavioral assessment using the forced swimming test

    Directory of Open Access Journals (Sweden)

    Paloma Álvarez-Suárez

    2015-07-01

    Full Text Available The forced swimming test is a method used in the assessment of depressive-like behavior in rodents. Changes in the original forced swimming test procedure developed by Porsolt et al. and their influence in the results is a controversial issue and has been discussed in many studies. Animal’s behavior is usually recorded by partial interval recording, dividing the total recording time into equal intervals and manually recording the predominant behavior. Despite the influence of the recording method in the subsequent results, this issue has not been further studied nor normalized. The aim of this study was to assess whether the representativeness of the data is influenced by the recording interval length, by recording behaviors (immobility, swim and climbing in the same subjects at 3, 5 and 10 s recording intervals. We used a non-pathological sample of male and female adult Wistar rats. Our results show no differences in the use of these three recording intervals in the registration method of the forced swimming test, for the main three behaviors measured.

  7. Right-but not left-paw use in female rats provides advantage in forced swim tests.

    Science.gov (United States)

    Soyman, Efe; Tunckol, Elcin; Lacin, Emre; Canbeyli, Resit

    2015-10-15

    Left- and right-pawed adult female Wistar rats were subjected to forced swimming on two consecutive days. Compared to the right-pawed group, left- pawed rats displayed significantly increased immobility from the first to the second swim test and remained significantly more immobile in the second swim test. Both groups performed similarly in spatial learning in the Morris water maze suggesting that left- pawed rats are differentially and specifically susceptible to depressogenic treatment.

  8. Omega-3 fatty acids have antidepressant activity in forced swimming test in Wistar rats.

    Science.gov (United States)

    Lakhwani, Lalit; Tongia, Sudheer K; Pal, Veerendra S; Agrawal, Rajendra P; Nyati, Prem; Phadnis, Pradeep

    2007-01-01

    Forced swimming test is used to induce a characteristic behavior of immobility in rats, which resembles depression in humans to some extent. We evaluated the effect of omega-3 fatty acids alone as well as compared it with the standard antidepressant therapy with fluoxetine in both acute and chronic studies. In both the studies, rats were divided into 4 groups and subjected to the following drug interventions - Group 1- control: Group 2- fluoxetine in dose of 10 mg/kg subcutaneously 23.5, 5 and 1 h before the test: Group 3- omega-3 fatty acids in dose of 500 mg/kg orally; Group 4- fluoxetine plus omega-3 fatty acids both. In acute study, omega-3 fatty acids were given in single dose 2 h prior to the test while in chronic study omega-3 fatty acids were given daily for a period of 28 days. All animals were subjected to a 15-min pretest followed 24 h later by a 5-min test. A time sampling method was used to score the behavioral activity in each group. The results revealed that in acute study, omega-3 fatty acids do not have any significant effect in forced swimming test. However, in chronic study, omega-3 fatty acids affect the immobility and swimming behavior significantly when compared with control (p climbing behavior and the efficacy of combination of omega-3 fatty acids and fluoxetine is significantly more than that of fluoxetine alone in changing the behavioral activity of rats in forced swimming test. It leads to the conclusion that omega-3 fatty acids have antidepressant activity per se, and the combination of fluoxetine and omega-3 fatty acids has more antidepressant efficacy than fluoxetine alone in forced swimming test in Wistar rats.

  9. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.

    Science.gov (United States)

    Polidori, G; Taïar, R; Fohanno, S; Mai, T H; Lodini, A

    2006-01-01

    This study deals with skin-friction drag analysis in underwater swimming. Although lower than profile drag, skin-friction drag remains significant and is the second and only other contribution to total drag in the case of underwater swimming. The question arises whether varying the thermal gradient between the underwater swimmer and the pool water may modify the surface shear stress distribution and the resulting skin-friction drag acting on a swimmer's body. As far as the authors are aware, such a question has not previously been addressed. Therefore, the purpose of this study was to quantify the effect of this thermal gradient by using the integral formalism applied to the forced convection theory. From a simplified model in a range of pool temperatures (20-30 degrees C) it was demonstrated that, whatever the swimming speeds, a 5.3% reduction in the skin-friction drag would occur with increasing average boundary-layer temperature provided that the flow remained laminar. However, as the majority of the flow is actually turbulent, a turbulent flow analysis leads to the major conclusion that friction drag is a function of underwater speed, leading to a possible 1.5% reduction for fast swimming speeds above 1m/s. Furthermore, simple correlations between the surface shear stress and resulting skin-friction drag are derived in terms of the boundary-layer temperature, which may be readily used in underwater swimming situations.

  10. Effect of Polysaccharide from Cordyceps militaris (Ascomycetes) on Physical Fatigue Induced by Forced Swimming.

    Science.gov (United States)

    Xu, Yan-Feng

    2016-01-01

    Cordyceps militaris is the one of the most important medicinal mushrooms, widely used in East Asian countries. Polysaccharide is considered to be the principal active component in C. militaris and has a wide range of biological and pharmacological properties. This study was undertaken to investigate the effect of polysaccharide from C. militaris (PCM) on physical fatigue induced in animals through a forced swimming test. The mice were divided into 4 groups receiving 28 days' treatment with drinking water (exercise control) or low-, medium-, and high-dose PCM (40, 80, and 160 mg/kg/day, respectively). After 28 days, the mice were subjected to the forced swimming test; the exhaustive swimming time was measured and fatigue-related biochemical parameters, including serum lactic acid, urea nitrogen, creatine kinase, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, glutathi- one peroxidase, catalase, malondialdehyde, liver glycogen, and muscle glycogen, were analyzed. The results showed that PCM could significantly prolong the exhaustive swimming time of mice; decrease concentrations of serum lactic acid, urea nitrogen, creatine kinase, aspartate aminotransferase, alanine aminotransferase, and malondialdehyde; and increase liver and muscle glycogen contents and the concentrations of serum superoxide dismutase, glutathione per- oxidase, and catalase. The data suggest that PCM has an antifatigue effect, and it might become a new functional food or medicine for fatigue resistance.

  11. Effects of acute creatine loading with or without carbohydrate on repeated bouts of maximal swimming in high-performance swimmers.

    Science.gov (United States)

    Theodorou, Apostolos S; Havenetidis, Konstantinos; Zanker, Cathy L; O'Hara, John P; King, Roderick F G J; Hood, Colin; Paradisis, Giorgios; Cooke, Carlton B

    2005-05-01

    The addition of carbohydrate (CHO) to an acute creatine (Cr) loading regimen has been shown to increase muscle total creatine content significantly beyond that achieved through creatine loading alone. However, the potential ergogenic effects of combined Cr and CHO loading have not been assessed. The purpose of this study was to compare swimming performance, assessed as mean swimming velocity over repeated maximal intervals, in high-performance swimmers before and after an acute loading regimen of either creatine alone (Cr) or combined creatine and carbohydrate (Cr + CHO). Ten swimmers (mean +/- SD of age and body mass: 17.8 +/- 1.8 years and 72.3 +/- 6.8 kg, respectively) of international caliber were recruited and were randomized to 1 of 2 groups. Each swimmer ingested five 5 g doses of creatine for 4 days, with the Cr + CHO group also ingesting approximately 100 g of simple CHO 30 minutes after each dose of creatine. Performance was measured on 5 separate occasions: twice at "baseline" (prior to intervention, to assess the repeatability of the performance test), within 48 hours after intervention, and then 2 and 4 weeks later. All subjects swam faster after either dietary loading regimen (p swimmers continued to produce faster swim times for up to 4 weeks after intervention. Our findings suggest that no performance advantage was gained from the addition of carbohydrate to a creatine-loading regimen in these high-caliber swimmers.

  12. [Unpredictable chronic mild stress effects on antidepressants activities in forced swim test].

    Science.gov (United States)

    Kudryashov, N V; Kalinina, T S; Voronina, T A

    2015-02-01

    The experiments has been designed to study unpredictable chronic mild stress effect on anti-depressive activities of amitriptyline (10 mg/kg) and fluoxetine (20 mg/kg) in forced swim test in male outbred mice. It is shown that acute treatment with fluoxetine does not produce any antidepressant effects in mice following stress of 14 days while the sub-chronic injections of fluoxetine result in more deep depressive-like behavior. In 28 daily stressed mice, antidepressant effect of fluoxetine is observed independently of the injection rates. Amitriptyline demonstrates the antidepressant activity regardless of the duration of stress or administration scheduling, but at the same time the severity of anti-immobilization effect of amitriptyline in stressed mice is weaker in compare to non-stressed trails. Thus, the injection rates and duration of unpredictable mild chronic stress are the parameters that determine the efficiency of antidepressants in the mouse forced swimming test.

  13. The effect of hydrolyzed Spirulina by malted barley on forced swimming test in ICR mice.

    Science.gov (United States)

    Kim, Na-Hyung; Jeong, Hyun-Ja; Lee, Ju-Young; Go, Hoyeon; Ko, Seong-Gyu; Hong, Seung-Heon; Kim, Hyung-Min; Um, Jae-Young

    2008-11-01

    Spirulina is a true puree of a filamentous, spiral-shaped blue alga and exerts the useful properties as a source of many biochemicals. This study investigated the antidepressant-like effect of hydrolyzed Spirulina by malted barley on the forced swimming test in mice. After the forced swimming test, we examined the levels of several blood biochemical parameters in mice. The effect of the hydrolyzed Spirulina by malted barley-treated group for 2 weeks on the immobility time was significantly reduced in comparison with the control group (p Spirulina by malted barley-treated group compared with the control group (p Spirulina by malted barley might be a candidate among antidepressant agents.

  14. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis)

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Jessie L.; McGeer, James C., E-mail: jmcgeer@wlu.ca

    2016-04-15

    Highlights: • Exposure to 18 nM waterborne Cd induced plasma Ca loss that recovered by day 30 for lake whitefish but not brown trout. • Ucrit measured after an initial swim to 85% of Ucrit and a 30 min rest period was reduced in 18 nM Cd exposed fish compared to controls. • Swimming to 85% of Ucrit resulted in decreased muscle glycogen and increased lactate that was not recovered in the 30 min recovery period. • Second swim impairment is not related to metabolic processes in white muscle. - Abstract: This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18 nM) in moderately hard water (120 mg L{sup −1} CaCO{sub 3}) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (U{sub crit}) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the U{sub crit} of control fish, a 30 min recovery period and finally a second swim challenge to determine U{sub crit}. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim U{sub crit} and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure

  15. Frequency of climbing behavior as a predictor of altered motor activity in rat forced swimming test.

    Science.gov (United States)

    Vieira, Cíntia; De Lima, Thereza C M; Carobrez, Antonio de Pádua; Lino-de-Oliveira, Cilene

    2008-11-14

    Previous work has shown that the frequency of climbing behavior in rats submitted to the forced swimming test (FST) correlated to the section's crosses in the open field test, which suggest it might be taken as a predictor of motor activity in rat FST. To investigate this proposal, the frequency, duration, as well as the ratio duration/frequency for each behavior expressed in the FST (immobility, swimming and climbing) were compared in animals treated with a motor stimulant, caffeine (CAF), and the antidepressant, clomipramine (CLM). Male Wistar rats were submitted to 15min of forced swimming (pre-test) and 24h later received saline (SAL, 1ml/kg, i.p.) or CAF (6.5mg/kg, i.p.) 30min prior a 5-min session (test) of FST. To validate experimental procedures, an additional group of rats received three injections of SAL (1ml/kg, i.p.) or clomipramine (CLM, 10mg/kg, i.p.) between the pre-test and test sessions. The results of the present study showed that both drugs, CLM and CAF, significantly reduced the duration of immobility and significantly increased the duration of swimming. In addition, CAF significantly decreased the ratio of immobility, and CLM significantly increased the ratio of swimming and climbing. Moreover, CLM significantly increased the duration of climbing but only CAF increased the frequency of climbing. Thus, it seems that the frequency of climbing could be a predictor of altered motor activity scored directly in the FST. Further, we believe that this parameter could be useful for fast and reliable discrimination between antidepressant drugs and stimulants of motor activity.

  16. Novel insights into the behavioral analysis of mice subjected to the forced-swim test.

    Science.gov (United States)

    Chen, L; Faas, G C; Ferando, I; Mody, I

    2015-04-14

    The forced-swim test (FST) is one of the most widely used rodent behavioral assays, in which the immobility of animals is used to assess the effectiveness of antidepressant drugs. However, the existing, and mostly arbitrary, criteria used for quantification could lead to biased results. Here we believe we uncovered new confounding factors, revealed new indices to interpret the behavior of mice and propose an unbiased means for quantification of the FST.

  17. To evaluate and compare antidepressant activity of Rosa damascena in mice by using forced swimming test

    Directory of Open Access Journals (Sweden)

    Hemapriya Tirupathi

    2016-10-01

    Conclusions: Antidepressant activity of R. damascena was studied by forced swimming test in mice in the doses of 20 mg/kg and 40 mg/kg .This test shows that R. damascena significantly decreased the immobility time in mice. The results suggest that R. damascena has dose dependent antidepressant activity comparable with imipramine. [Int J Basic Clin Pharmacol 2016; 5(5.000: 1949-1952

  18. Individual differences in the elevated plus-maze and the forced swim test.

    Science.gov (United States)

    Estanislau, Celio; Ramos, Anna Carolina; Ferraresi, Paula Daniele; Costa, Naiara Fernanda; de Carvalho, Heloisa Maria Cotta Pires; Batistela, Silmara

    2011-01-01

    The elevated plus-maze is an apparatus composed of enclosed and open (elevated) arms and time spent in the open arms by a rat can be increased/decreased by anxiolytic/anxiogenic agents. In the forced swim test, floating behavior is used as an index of behavioral despair and can be decreased by antidepressant agents. As the comorbidity between anxiety and depression is a remarkable issue in human behavioral disorders, a possible relationship between the behaviors seen in the cited tests is of great relevance. In the present study, fifty-four male rats (Rattus norvegicus) were submitted to a plus-maze session and to a 2-day forced swim protocol. According to their time in the open arms, they were divided into three groups: Low Open, Medium Open and High Open. Some plus-maze measures were found to be coherent with time in the open arms and are suggested to also be reliable anxiety indexes. In the forced swim test, the Low Open group showed decreases in floating duration from forced swim Session 1 to Session 2, an alteration opposite to that observed in the other groups (particularly, the Medium Open group). The Low Open group also showed increases in floating latency, again in sharp contrast with the alteration found in the other groups. Accordingly, positive and negative correlation were found between time in the open arms and floating duration and latency, respectively. Results are compared to previous studies and mediation of the effect by reactivity to aversive stimulation or alterations induced by open arm exposure is discussed.

  19. Clonidine as a sensitizing agent in the forced swimming test for revealing antidepressant activity.

    OpenAIRE

    1991-01-01

    The forced swimming test (FST) in mice has failed to predict antidepressant activity for drugs having beta adrenoreceptor agonist activity and for serotonin uptake inhibitors. We investigated the potential for clonidine to render the FST sensitive to antidepressants by using a behaviorally inactive dose of this agent (0.1 mg/kg). All antidepressants studied (tricyclics, 5-HT uptake inhibitors, iprindole, mianserin, viloxazine, trazodone) showed either activity at lower doses or activity at pr...

  20. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism

    Directory of Open Access Journals (Sweden)

    E. R. de Kloet

    2016-01-01

    Full Text Available In the forced swim test (FST rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving behavioural style. In the past decade however the switch from active to passive “coping” was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000 stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR and glucocorticoid receptors (GR in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent’s behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation.

  1. Inhibition of Progesterone Metabolism Mimics the Effect of Progesterone Withdrawal on Forced Swim Test Immobility

    OpenAIRE

    Beckley, Ethan H.; Finn, Deborah A.

    2007-01-01

    Withdrawal from high levels of progesterone in rodents has been proposed as a model for premenstrual syndrome or postpartum depression. Forced swim test (FST) immobility, used to model depression, was assessed in intact female DBA/2J mice following progesterone withdrawal (PWD) or treatment with the 5α-reductase inhibitor finasteride. Following 5 daily progesterone injections (5 mg/kg IP) FST immobility increased only in mice withdrawn for 3 days (p < .05). In another experiment, 3 days of PW...

  2. Effects of Viscosity on the Gravi-kinesis Responses of Swimming Paramecia Studied Using Manetic Force Buoyancy Variation

    Science.gov (United States)

    Jung, Ilyong; Valles, James M.

    2013-03-01

    Previous studies have shown that paramecia exhibit negative gravi-kinesis. They exert a stronger propulsive force when swimming up than when swimming down. This behavior is very surprising since it suggests they sense their tiny apparent weight of only ~ 80pN. In an effort to understand the mechanism of this sensing, we are testing how the viscosity of the swimming medium influences their gravi-kinetic response. We employ the technique of magnetic force buoyancy variation to simulate different effective gravity levels on swimming Paramecia. We are analyzing their swimming response employing a phenomenological model that relates the parameters describing their helical trajectories to the beating of their cilia. This work was supported by NSF PHY0750360 and at the NHMFL by NSF DMR-0084173

  3. Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV.

    Science.gov (United States)

    Fish, Frank E; Legac, Paul; Williams, Terrie M; Wei, Timothy

    2014-01-15

    Attempts to measure the propulsive forces produced by swimming dolphins have been limited. Previous uses of computational hydrodynamic models and gliding experiments have provided estimates of thrust production by dolphins, but these were indirect tests that relied on various assumptions. The thrust produced by two actively swimming bottlenose dolphins (Tursiops truncatus) was directly measured using digital particle image velocimetry (DPIV). For dolphins swimming in a large outdoor pool, the DPIV method used illuminated microbubbles that were generated in a narrow sheet from a finely porous hose and a compressed air source. The movement of the bubbles was tracked with a high-speed video camera. Dolphins swam at speeds of 0.7 to 3.4 m s(-1) within the bubble sheet oriented along the midsagittal plane of the animal. The wake of the dolphin was visualized as the microbubbles were displaced because of the action of the propulsive flukes and jet flow. The oscillations of the dolphin flukes were shown to generate strong vortices in the wake. Thrust production was measured from the vortex strength through the Kutta-Joukowski theorem of aerodynamics. The dolphins generated up to 700 N during small amplitude swimming and up to 1468 N during large amplitude starts. The results of this study demonstrated that bubble DPIV can be used effectively to measure the thrust produced by large-bodied dolphins.

  4. Reduction in the level of immobilization in forced swim test and ethanol intake in rats by oxygen therapy.

    Science.gov (United States)

    Kampov-Polevoy, A B; Dubtchenko, V V; Crosby, R D; Halikas, J A

    1993-01-01

    Experiments replicated the previous finding that rats with high immobilization time in the forced swim test (passive rats) consumed more 15% ethanol solution in a free choice situation with tap water than rats with active behavior (active rats). Exposure of passive rats to oxygen under normal and elevated (2 ata) pressure resulted in the decrease in immobilization scores in the forced swim test as well as reduction in alcohol consumption and preference.

  5. Antithrombotic Protective Effects of Arg-Pro-Gly-Pro Peptide during Emotional Stress Provoked by Forced Swimming Test in Rats.

    Science.gov (United States)

    Grigor'eva, M E; Lyapina, L A

    2017-01-01

    Blood coagulation was enhanced and all factors (total, enzyme, and non-enzyme) of the fibrinolytic system were suppressed in rats in 60 min after forced swimming test. Argininecontaining tetrapeptide glyproline Arg-Pro-Gly-Pro administered prior to this test activated fibrinolysis and prevented hypercoagulation. Administration of this peptide in 5 min after swimming test also enhanced anticoagulant, fibrinolytic, and antithrombotic activity of the blood. Therefore, glyproline Arg-Pro-Gly-Pro exerted both preventive and curative effects on the hemostasis system and prevented enhancement of blood coagulation provoked by emotional stress modeled by forced swimming test.

  6. Antidepressant-like actions of pregnancy, and progesterone in Wistar rats forced to swim.

    Science.gov (United States)

    Molina-Hernández, M; Téllez-Alcántara, N P

    2001-07-01

    In rats, some behavioral changes occurring during pregnancy related to the presence of progesterone may be analyzed in the forced swimming task (FST), which is designed to test the antidepressant profile of drugs. The present study was aimed to analyze in pregnant rats, in rats after delivery, or in rats after receiving progesterone those behavioral changes displayed in the FST. We hypothesize that pregnancy and progesterone will produce antidepressant-like effects in rats forced to swim. Therefore, pregnant rats (14th, 17th, and 20th days), or rats after delivery (3rd, and 7th days) were tested in the FST. Ovariectomized rats receiving saline (0.9%; i.p.), clomipramine (1.25 mg/kg; i.p.), or desipramine (2.14 mg/kg; i.p.) for 28 days were also tested in the FST. In a second series of experiments, ovariectomized rats receiving vehicle or progesterone (0.5 mg/kg; or 2.0 mg/kg; sc.) were tested in the FST. Locomotion was evaluated in the open field test. Results showed that in the FST: 1) pregnancy (P swimming; 3) rats tested after delivery displayed similar behavior than control rats. A lower locomotion was observed only at the end of pregnancy. In conclusion, results suggest that during pregnancy, a reproductive process characterized by its high levels of progesterone, antidepressant-like effects can be found.

  7. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi

    Directory of Open Access Journals (Sweden)

    Arjan P. Palstra

    2015-01-01

    Full Text Available Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (Uopt in m s-1 or body lengths s-1, BL s-1 were assessed and then applied to determine the effects of long-term forced and sustained swimming at Uopt on growth performance of juvenile yellowtail kingfish. Uopt was quantified in Blazka-type swim-tunnels for 145 mm, 206 mm and 311 mm juveniles resulting in values of: 1 0.70 m s-1 or 4.83 BL s-1, 2 0.82 m s-1 or 3.25 BL s-1 and 3 0.85 m s-1 or 2.73 BL s-1. Combined with literature data from larger fish, a relation of Uopt (BL s-1 = 234.07(BL-0.779 (R2= 0.9909 was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s-1 (‘swimmers’ or allowed to perform spontaneous activity at low water flow (‘resters’ in a newly designed 3,600 L oval flume (with flow created by an impeller driven by an electric motor, were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n= 23 showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n= 23. As both groups were fed equal rations, feed conversion ratio (FCR for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31% in the ventral aorta of swimmers vs. resters (44 ± 3 mL min-1 vs. 34 ± 3 mL min-1, respectively, under anesthesia. Thus growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  8. Estimate of propulsive force in front crawl swimming in young athletes

    Directory of Open Access Journals (Sweden)

    Santos MA

    2012-09-01

    Full Text Available Marcos André Moura dos Santos,1 Marcos Lira Barbosa Junior,1 Wilson Viana de Castro Melo,1 Adalberto Veronese da Costa,2,3 Manoel da Cunha Costa11Evaluation of Human Performance Laboratory, Faculty of Physical Education, University of Pernambuco (LAPH/ESEF/UPE, Recife, Brazil; 2Biosciences Laboratory of Human Kinetics, Faculty of Physical Education, University Rio Grande do Norte (LABIMH/FAEF/UERN, Rio Grande do Norte, Brazil; 3PhD program, Sport Science, Trás-os-Montes and Alto Douro University (CIDESD / UTAD, Vila Real. PortugalBackground: Improvement in swimming performance involves the dynamic alignment of the body in liquid, technical skill, anthropometric characteristics of athletes, and the ability to develop propulsive force. The aim of this study was to assess the relationships between the propulsive force during swimming and arm muscle area (AMA and propose an equation to estimate the propulsive force in young swimmers by measuring their AMA.Methods: Study participants were 28 male swimmers (14 ± 1.28 years registered in the Brazilian Federation of Aquatic Sports. Their AMA was estimated by anthropometry and skinfold measurement, and the propulsive force of their arm (PFA was assessed by the tied swimming test. The Durbin–Watson (DW test was used to verify residual independence between variables (PFA and AMA. A Pearson correlation investigated potential associations between the variables and then a linear regression analysis was established. The Bland–Altman method was used to compare the values found between PFA and propulsive force–estimated (PFE. A paired Student's t-test was used to analyze the difference in PFE with and without the constant and the coefficient of variation (CV to estimate the magnitude of a real change between these forces.Results: There was a significant positive correlation between the variables AMA and PFA (r = 0.68, P < 0.001. The linear regression showed a value of R² = 0.470. There were no

  9. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis).

    Science.gov (United States)

    Cunningham, Jessie L; McGeer, James C

    2016-04-01

    This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18nM) in moderately hard water (120mgL(-1) CaCO3) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (Ucrit) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the Ucrit of control fish, a 30min recovery period and finally a second swim challenge to determine Ucrit. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim Ucrit and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure where 31% and 38% reductions were observed for brown trout and lake whitefish respectively. Swimming to 85% Ucrit resulted in metabolic expenditure with little recovery after 30min. Few differences were observed between control and Cd exposed fish with the exception of a reduction in resting white muscle ATP stores of Cd exposed fish after 1 week of exposure. The results show that chronic sublethal Cd exposure results in an impairment of swimming ability in repeat swim challenges but this impairment is generally not related to metabolic processes

  10. Region- and sex-specific changes in CART mRNA in rat hypothalamic nuclei induced by forced swim stress.

    Science.gov (United States)

    Balkan, Burcu; Gozen, Oguz; Koylu, Ersin O; Keser, Aysegul; Kuhar, Michael J; Pogun, Sakire

    2012-10-15

    Cocaine and amphetamine regulated transcript (CART) mRNA and peptides are highly expressed in the paraventricular (PVN), dorsomedial (DMH) and arcuate (ARC) nuclei of the hypothalamus. It has been suggested that these nuclei regulate the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system activity, and feeding behavior. Our previous studies showed that forced swim stress augmented CART peptide expression significantly in whole hypothalamus of male rats. In another study, forced swim stress increased the number of CART-immunoreactive cells in female PVN, whereas no effect was observed in male PVN or in the ARC nucleus of either sex. In the present study, we evaluated the effect of forced swim stress on CART mRNA expression in PVN, DMH and ARC nuclei in both male and female rats. Twelve male (stressed and controls, n=6 each) and 12 female (stressed and controls, n=6 each) Sprague-Dawley rats were used. Control animals were only handled, whereas forced swim stress procedure was applied to the stressed groups. Brains were dissected and brain sections containing PVN, DMH and ARC nuclei were prepared. CART mRNA levels were determined by in situ hybridization. In male rats, forced swim stress upregulated CART mRNA expression in DMH and downregulated it in the ARC. In female rats, forced swim stress increased CART mRNA expression in PVN and DMH, whereas a decrease was observed in the ARC nucleus. Our results show that forced swim stress elicits region- and sex-specific changes in CART mRNA expression in rat hypothalamus that may help in explaining some of the effects of stress.

  11. Effect of bacoside extract from Bacopa monniera on physical fatigue induced by forced swimming.

    Science.gov (United States)

    Anand, T; Phani Kumar, G; Pandareesh, M D; Swamy, M S L; Khanum, Farhath; Bawa, A S

    2012-04-01

    The antifatigue effect of bacoside extract (BME) from Bacopa monniera (L.) Wettst. was investigated. Rats were subjected to weight-loaded forced swim test (WFST) every alternate day for 3 weeks. The BME at a dosage of 10 mg/kg body weight was administered orally to rats for 2 weeks in order to evaluate the following biomarkers of physical fatigue: swimming time, change in body weight, lipid peroxidation, lactic acid (LA), glycogen, antioxidant enzyme activities such as superoxide dismutase (SOD) and catalase (CAT) and blood parameters, namely blood urea nitrogen (BUN) and creatine kinase (CK). The exhaustive swimming time was increased by 3-fold in the BME supplemented group compared with that of the control group on day 13. The BME treatment lowered malondialdehyde (MDA) levels in brain, liver and muscle tissues by 11.2%, 16.2% and 37.7%, respectively, compared with the control exercised group (p < 0.05). The BME also reduced the LA, serum BUN and CK activities significantly compared with that of the control. Administration of BME significantly protected the depletion of SOD and CAT activities. The HSP-70 expression studies by western blot also confirmed the antifatigue property of BME. The present study thus indicates that BME ameliorates the various impairments associated with physical fatigue.

  12. Antidepressant-like effect of different estrogenic compounds in the forced swimming test.

    Science.gov (United States)

    Estrada-Camarena, Erika; Fernández-Guasti, Alonso; López-Rubalcava, Carolina

    2003-05-01

    The present study evaluated the possible antidepressant-like action of the natural estrogen 17beta-estradiol (E(2), 2.5-10 microg/rat), the synthetic steroidal estrogen ethinyl-estradiol (EE(2), 1.25-10.0 microg/rat), and the nonsteroidal synthetic estrogen, diethyl-stilbestrol (DES, 0.25-1.0 mg/rat) in ovariectomized adult female Wistar rats using the forced swimming test (FST). The behavioral profile induced by the estrogens was compared with that induced by the antidepressants fluoxetine (FLX, 2.5-10 mg/kg) and desipramine (DMI, 2.5-10 mg/kg). In addition, the temporal course of the antidepressant-like action of the estrogenic compounds was analyzed. FLX and DMI induced an antidepressant-like effect characterized by a reduced immobility and increased swimming for FLX and decreased immobility and increased climbing for DMI. Both E(2) and EE(2) produced a decrease in immobility and an increase in swimming, suggesting an antidepressant-like action. DES did not affect the responses in this animal model of depression at any dose tested. The time course analysis of the actions of E(2) (10 microg/rat) and EE(2) (5 microg/rat) showed that both compounds induced an antidepressant-like effect observed 1 h after their injection lasting for 2-3 days.

  13. Granular resistive force theory explains the neuromechanical phase lag during sand-swimming

    Science.gov (United States)

    Ding, Yang; Sharpe, Sarah; Goldman, Daniel

    2012-11-01

    Undulatory locomotion is a common gait used by a diversity of animals in a range of environments. This mode of locomotion is characterized by the propagation of a traveling wave of body bending, which propels the animal in the opposite direction of the wave. Previous studies of undulatory locomotion in fluids, on land, and even within sand revealed that the wave of muscle activation progresses faster than the traveling wave of curvature. This leads to an increasing phase lag between activation and curvature at more posterior segments, known as the neuromechanical phase lag. In this study, we compare biological measurements of phase lag during the sand-swimming of the sandfish lizard to predictions of a simple model of undulatory swimming that consists of prescribed kinematics and granular resistive forces. The neuromechanical phase lag measured using electromyography (EMG) quantitatively matches the predicted phase lag between the local body curvature and torque exerted by granular resistive forces. Two effects are responsible for the phase lag in this system: the yaw motion of the body and different integration length over a traveling force pattern for different positions along the body.

  14. [Study of long-lasting effects of acute prenatal stress induced forced swimming].

    Science.gov (United States)

    Volodina, M A; Sebentsova, E A; Levitskaia, N G; Kamenskiĭ, A A

    2010-01-01

    The aim of the present work was to assess long-lasting effects of acute prenatal stress in white rats. Forced swimming in cold water on the 7th or the 14th gestational day was used as a prenatal stressor. The prenatal stress led to low birthweight of offspring and their delayed growth rate during the second month of life. Prenatally stressed animals showed abnormalities in exploratory behavior and anxiety, increased emotionality and impaired learning capabilities at the age of 1-2 month. Consequently, acute stress on the 7th and at the 14th day of pregnancy induced long-lasting negative behavioral changes in offspring of stressed white rats.

  15. Antidepressant activity of some Hypericum reflexum L. fil. extracts in the forced swimming test in mice.

    Science.gov (United States)

    Sánchez-Mateo, C C; Bonkanka, C X; Prado, B; Rabanal, R M

    2007-05-30

    We previously reported that oral administration of the methanol extract obtained from the aerial part in blossom of Hypericum reflexum L. fil. was active in the tetrabenazine and forced swimming test. In the present study, the effect of the aqueous, butanol and chloroform fractions obtained from the methanol extract of this species on the central nervous system was investigated in mice, particularly in animal models of depression. Antidepressant activity was detected in the butanol and chloroform fractions of this species using the forced swimming test since both fractions induced a significant reduction of the immobility time, producing no effects or only a slight depression on spontaneous motor activity when assessed in a photocell activity meter. Moreover, these fractions did not alter significantly the pentobarbital-induced sleeping time. On the other hand, the chloroform fraction produced a slight but significant hypothermia and was also effective in antagonizing the ptosis induced by tetrabenazine. Furthermore, the butanol fraction produced a slight potentiation of the head twitches and syndrome induced by 5-HTP. Taken together, these data indicate that the butanol and chloroform fractions from Hypericum reflexum possess antidepressant-like effects in mice, providing further support for the traditional use of these plants in the Canary Islands folk medicine against central nervous disorders.

  16. Commercially available Hypericum perforatum extracts do not decrease immobility of rats in the forced swimming test.

    Science.gov (United States)

    Guilhermano, Luiz G; Ortiz, Luciana; Ferigolo, Maristela; Barros, Helena M T

    2004-01-01

    There are controversial results of clinical trials on the antidepressant effects of Hypericum perforatum, while several preclinical studies describe antidepressant properties for Hypericum extracts. This study evaluates the antidepressant effect of two commercially available hydroalcoholic extracts of H. perforatum standardized to contain 0.3% hypericin in comparison to imipramine (IMI), in the forced swimming test (FST). Wistar rats were treated with different doses of two Hypericum extracts, of hypericin or of IMI and submitted to the FST. The experiments were videotape recorded to detail immobile and active behaviors of rats during the procedures. The imported extract tested and hypericin did not modify rats' behaviors in the test, while IMI, a classical antidepressant, significantly shortened immobility and prolonged climbing behavior during forced swimming. The locally produced Hypericum extract significantly increased immobility duration as compared to the controls at the same time as climbing efforts were decreased. Therefore, the two different commercially available Brazilian hydroalcoholic H. perforatum extracts did not show the expected effects in a screening test for antidepressant agents, on the contrary, one of the extracts promoted a depressant-like effect in rats. Therefore, these extracts available to the population differ from other Hypericum extracts. At which step of the production or commercialization chain these extracts probably lost their therapeutic potential remains to be evaluated.

  17. Effects of BNST lesions in female rats on forced swimming and navigational learning.

    Science.gov (United States)

    Pezuk, Pinar; Aydin, Elif; Aksoy, Ayla; Canbeyli, Resit

    2008-09-01

    The bed nucleus of the stria terminalis (BNST) in the forebrain shows sexual dimorphism in its neuroanatomical connectivity and neurochemical characteristics. The structure is involved in many behavioral and motivational phenomena particularly related to coping with stress. Female rats differ from males in responding to stressful situations such as forced swimming and navigational learning in the water maze. It was previously shown that bilateral damage to the BNST in male Wistar rats aggravated depression as measured by forced swim tests, but did not impair navigational learning in the water maze. The present study extended the findings to female rats demonstrating that bilateral electrolytic lesions of the BNST increased immobility and decreased climbing compared to sham-operated controls, but failed to affect performance in the water maze. Additionally, lesions did not alter behavior in the open field and the elevated plus-maze tests suggesting not only that the modulation of depression by BNST lesions is specific, but also providing support for the view that the BNST may not necessarily be critically involved in anxiety.

  18. Orchiectomy modifies the antidepressant-like response of nicotine in the forced swimming test.

    Science.gov (United States)

    Bonilla-Jaime, H; Limón-Morales, O; Arteaga-Silva, M; Hernández-González, M; Guadarrama-Cruz, G; Alarcón-Aguilar, F; Vázquez-Palacios, G

    2010-11-01

    Several studies have demonstrated that nicotine (NIC) exhibits antidepressant-like effects. In addition, it has been suggested that sexual hormones participate in the antidepressant actions of antidepressives. The present study was designed to analyze the effect of orchiectomy and the supplementation of testosterone propionate (TP) or 17β-estradiol (E(2)) on the antidepressant properties of NIC using the forced swimming test (FST), as well as to determine possible changes in the FST during different time periods after orchiectomy. In order to evaluate the influences of orchiectomy on the effects of NIC, the study first evaluated the effects of different time periods on orchiectomized rats (15, 21, 30, 45 and 60 days) that were subjected to the FST. Then, different doses of NIC (0.2, 0.4, 0.8, 1.6 mg/kg, sc) were administered for 14 days to both intact and orchiectomized rats (after 21 day) which were then also subjected to the FST. Finally, the influence of the TP or E(2) supplementation on the antidepressant-like effect of NIC on orchiectomized rats (after 21 days) was also analyzed. Results reveal that orchiectomy significantly increased immobility behavior and decreased swimming and climbing up to 60 days after castration. In contrast, NIC decreased immobility behavior and increased swimming in intact rats; whereas orchiectomy suppressed this antidepressant effect of NIC. Only with E(2) supplementation was it possible to restore the sensitivity of the castrated rats to NIC. These results suggest that E(2) was able to facilitate the antidepressant response of NIC in orchiectomized rats.

  19. Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test.

    Science.gov (United States)

    Cryan, John F; Page, Michelle E; Lucki, Irwin

    2002-02-01

    The novel antidepressant reboxetine is a selective norepinephrine reuptake inhibitor. In this study, the antidepressant-like effects of reboxetine were characterized in a modified rat forced swim test. Further, in order to investigate the role of the locus coeruleus and lateral tegmental noradrenergic systems in the mediation of reboxetine's effects, the impact of different chemical lesions of these two pathways was examined on the behavioral responses induced by reboxetine in the forced swim test. Reboxetine (5-20 mg/kg, s.c.) dose-dependently decreased immobility and swimming behavior in the forced swim test while it simultaneously increased climbing behavior. These effects were similar to those previously demonstrated with tricyclic antidepressants and are indicative of reboxetine's effects on the noradrenergic system. Discrete local injections of the neurotoxin 6-hydroxydopamine were employed to lesion the ventral noradrenergic bundle arising from cells located in the lateral tegmentum. This resulting lesion completely prevented reboxetine (10 mg/kg, s.c.)-induced decreases in immobility and increases in climbing behavior, demonstrating that an intact ventral noradrenergic bundle is required for the manifestation of reboxetine-induced antidepressant-like behavior in the test. In contrast, lesions of the dorsal noradrenergic bundle which consists of neurons arising from the nucleus locus coereleus, were achieved by systemic pretreatment with the selective noradrenergic neurotoxin N-(2-chloroethyl)-N-2-bromobenzylamine (DSP-4; 50 mg/kg, i.p.). The ability of reboxetine (10 mg/kg, s.c.) to increase climbing and decrease immobility was augmented by DSP-4 pretreatment. Furthermore, neither lesions of the dorsal noradrenergic bundle nor the ventral noradrenergic bundle altered baseline immobility scores in the forced swim test. Taken together, these data suggest that forebrain regions innervated by these two distinct noradrenergic pathways exert opposing influences

  20. A proposal for refining the forced swim test in Swiss mice.

    Science.gov (United States)

    Costa, Ana Paula Ramos; Vieira, Cintia; Bohner, Lauren O L; Silva, Cristiane Felisbino; Santos, Evelyn Cristina da Silva; De Lima, Thereza Christina Monteiro; Lino-de-Oliveira, Cilene

    2013-08-01

    The forced swim test (FST) is a preclinical test to the screening of antidepressants based on rats or mice behaviours, which is also sensitive to stimulants of motor activity. This work standardised and validated a method to register the active and passive behaviours of Swiss mice during the FST in order to strength the specificity of the test. Adult male Swiss mice were subjected to the FST for 6 min without any treatment or after intraperitoneal injection of saline (0.1 ml/10 g), antidepressants (imipramine, desipramine, or fluoxetine, 30 mg/kg) or stimulants (caffeine, 30 mg/kg or apomorphine, 10mg/kg). The latency, frequency and duration of behaviours (immobility, swimming, and climbing) were scored and summarised in bins of 6, 4, 2 or 1 min. Parameters were first analysed using Principal Components Analysis generating components putatively related to antidepressant (first and second) or to stimulant effects (third). Antidepressants and stimulants affected similarly the parameters grouped into all components. Effects of stimulants on climbing were better distinguished of antidepressants when analysed during the last 4 min of the FST. Surprisingly, the effects of antidepressants on immobility were better distinguished from saline when parameters were scored in the first 2 min. The method proposed here is able to distinguish antidepressants from stimulants of motor activity using Swiss mice in the FST. This refinement should reduce the number of mice used in preclinical evaluation of antidepressants.

  1. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test.

    Science.gov (United States)

    Cryan, John F; Valentino, Rita J; Lucki, Irwin

    2005-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressant class today and exert their antidepressant-like effects by increasing synaptic concentrations of serotonin (5-HT). The rat forced swim test (FST) is the most widely used animal test predictive of antidepressant action. Procedural modifications recently introduced by our laboratory have enabled SSRI-induced behavioral responses to be measured in the modified FST. The use of this model to understand the pharmacological and physiological mechanisms underlying the role of 5-HT in the behavioral effects of antidepressant drugs is reviewed. Although all antidepressants reduced behavioral immobility, those antidepressants that increase serotonergic neurotransmission predominantly increase swimming behavior whereas those that increase catacholaminergic neurotransmission increase climbing behavior. The 5-HT(1A), 5-HT(1B/1D) and 5-HT(2C) receptors are the 5-HT receptors most important to the therapeutic effects of SSRIs, based on extensive evaluation of agonists and antagonists of individual 5-HT receptor subtypes. Studies involving chronic administration have shown that the effects of antidepressants are augmented following chronic treatment. Other studies have demonstrated strain differences in the response to serotonergic compounds. Finally, a physiological model of performance in the rat FST has been proposed involving the regulation of 5-HT transmission by corticotropin releasing factor (CRF).

  2. Cotinine reduces depressive-like behavior and hippocampal vascular endothelial growth factor downregulation after forced swim stress in mice.

    Science.gov (United States)

    Grizzell, J Alex; Mullins, Michelle; Iarkov, Alexandre; Rohani, Adeeb; Charry, Laura C; Echeverria, Valentina

    2014-12-01

    Cotinine, the predominant metabolite of nicotine, appears to act as an antidepressant. We have previously shown that cotinine reduced immobile postures in Porsolt's forced swim (FS) and tail suspension tests while preserving the synaptic density in the hippocampus as well as prefrontal and entorhinal cortices of mice subjected to chronic restraint stress. In this study, we investigated the effect of daily oral cotinine (5 mg/kg) on depressive-like behavior induced by repeated, FS stress for 6 consecutive days in adult, male C57BL/6J mice. The results support our previous report that cotinine administration reduces depressive-like behavior in mice subjected or not to high salience stress. In addition, cotinine enhanced the expression of the vascular endothelial growth factor (VEGF) in the hippocampus of mice subjected to repetitive FS stress. Altogether, the results suggest that cotinine may be an effective antidepressant positively influencing mood through a mechanism involving the preservation of brain homeostasis and the expression of critical growth factors such as VEGF. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  3. Persistence of behaviours in the Forced Swim Test in 3xTg-AD mice at advanced stages of disease.

    Science.gov (United States)

    Torres-Lista, Virginia; Giménez-Llort, Lydia

    2014-07-01

    Forced Swimming Test (FST) models behavioural despair in animals by loss of motivation to respond or the refusal to escape. The present study characterizes the behavioural responses of 12-month-old male 3xTg-AD mice in FST as compared to age-matched no-transgenic (NTg) mice. Paradoxical results were consistently found from what would be expected from their BPSD (Behavioural and Psychological Symptoms of Dementia)-like profile. The comprehensive analysis of the ethogram shown in the FST considered the intervals of the test (0-2 and 2-6min), all the elicited behavioural responses (immobility, swimming and climbing) and their features (total duration, frequency of episodes and mean duration). Both genotypes showed equal number of swimming episodes and climbing attempts during the first interval, that resulted in high swimming times, short climbing and scarce immobility. Thereafter, the NTg mice showed a behavioural shift over time and the immobility response showed up. In contrast, all the measures consistently evidenced that 3xTg-AD persisted with the previous behavioural pattern. Genotype differences consisted in less number of episodes of immobility and swimming, and a low immobility time in favour of swimming. No differences were found in 'climbing' attempts. The behavioural response observed is discussed as a lack of ability of 3xTg-AD mice to shift behaviour over time that may result of poorest cognitive flexibility and copying with stress strategies more than behavioural despair per se.

  4. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L. in the mouse forced swimming test

    Directory of Open Access Journals (Sweden)

    Katsunori Yamaura

    2012-01-01

    Full Text Available Background: Young green barley leaf is one of the richest sources of antioxidants and has been widely consumed for health management in Japan. In this study, we examined whether oral administration of young green barley leaf has an antidepressant effect on the forced swimming test in mice. Materials and Methods: Mice were individually forced to swim in an open cylindrical container, one hour after oral administration of young green barley leaf (400 or 1000 mg / kg or imipramine (100 mg / kg. Expression of mRNA for nerve growth factor (NGF, brain-derived neurotrophic factor, and glucocorticoid receptor in the brain was analyzed using real-time quantitative polymerase chain reaction (PCR. Results: There was a significant antidepressant-like effect in the forced swimming test; both 400 and 1000 mg / kg young green barley leaves, as well as the positive control imipramine (100 mg / kg, reduced the immobility duration compared to the vehicle group. The expression of mRNA for NGF detected in the hippocampus immediately after the last swimming test was higher than that in the non-swimming group (Nil. Oral administration of imipramine suppressed this increase to the level of the Nil group. Young green barley leaf (400 and 1000 mg / kg also showed a moderate decrease in the expression of mRNA for NGF, in a dose-dependent manner. Conclusion: Oral administration of young green barley leaf is able to produce an antidepressant-like effect in the forced swimming test. Consequently it is possible that the antidepressant-like effects of the young green barley leaf are, at least in part, mediated by an inhibition of the increase in the hippocampus levels of NGF.

  5. Inhibition of progesterone metabolism mimics the effect of progesterone withdrawal on forced swim test immobility.

    Science.gov (United States)

    Beckley, Ethan H; Finn, Deborah A

    2007-10-01

    Withdrawal from high levels of progesterone in rodents has been proposed as a model for premenstrual syndrome or postpartum depression. Forced swim test (FST) immobility, used to model depression, was assessed in intact female DBA/2J mice following progesterone withdrawal (PWD) or treatment with the 5alpha-reductase inhibitor finasteride. Following 5 daily progesterone injections (5 mg/kg IP) FST immobility increased only in mice withdrawn for 3 days (pimmobility. PWD and finasteride treatment, both of which reduce allopregnanolone levels, were associated with increased FST immobility in female DBA/2J mice. These findings suggest that decreased levels of the GABAergic neurosteroid allopregnanolone contribute to symptoms of PWD. Future studies of PWD may provide information about human conditions that are associated with hormone changes such as premenstrual syndrome or postpartum depression.

  6. Neural responses of rats in the forced swimming test: [F-18]FDG micro PET study.

    Science.gov (United States)

    Jang, Dong-Pyo; Lee, So-Hee; Lee, Sang-Yoon; Park, Chan-Woong; Cho, Zang-Hee; Kim, Young-Bo

    2009-10-12

    The forced swimming test (FST) is a widely used tool in the assessment of behavioral despair and prediction of response to antidepressants. However, the neural mechanisms underlying behavioral changes between pretest and test sessions of the FST remain unclear. In this study, we investigated changes in rat brain activity during the FST using [F-18]Fluorodeoxyglucose micro PET. In both pretest and test sessions, the activity of the cerebellum and striatum increased, whereas significant deactivation was observed in the hippocampus, inferior colliculus, orbital cortex, and insula. The periaqueductal gray (PAG) region activated markedly in the pretest session, but did not activate in the test session. There was a significant increase in immobility and a decrease in climbing during the behavioral analysis test session. These results suggest that the PAG region may play an important role in the modulation of FST coping strategies subsequent to failure of the escape response during the pretest session.

  7. The effects of resveratrol on rat behaviour in the forced swim test

    Directory of Open Access Journals (Sweden)

    Samardžić Janko

    2013-01-01

    Full Text Available Introduction. The trans-isomer of resveratrol is the active ingredient of Poligonum cuspidatum, known for its medicinal properties and traditionally used in the treatment of neuropsychiatric disorders. It is also found abundantly in the skin of red grapes and red wine. Previous studies have suggested that trans-resveratrol demonstrates a variety of pharmacological activities including antioxidant, anti-inflammatory, as well as neuroprotective properties and procognitive effects. Objective. The goal of the present study was to examine the influence of trans-resveratrol on behavior in rats and its antidepressant properties. Methods. Male Wistar rats were treated intraperitoneally (i.p. with the increasing doses of trans-resveratrol (5, 10 and 20 mg/kg or vehicle (dimethyl sulfoxide - DMSO, 30 minutes before testing of the spontaneous locomotor activity or forced swimming. For the experiments, the behavior of the animals was recorded by a digital camera, and the data were analyzed by one-way ANOVA, followed by Tukey post-hoc test. Results. Testing of spontaneous locomotor activity, after the application of vehicle or increasing doses of trans-resveratrol, showed no statistically significant difference between groups (p>0.05. In the forced swim test, one-way ANOVA indicated statistically significant effects of trans-resveratrol (p0.05. Conclusion. The results from our study suggest that trans-resveratrol produces significant effects in the central nervous system. After single application, it has acute antidepressant effects, but without influence on locomotor activity. [Projekat Ministarstva nauke Republike Srbije, br. TR31020 i br. 175076

  8. Chromatin alterations in response to forced swimming underlie increased prodynorphin transcription.

    Science.gov (United States)

    Reed, B; Fang, N; Mayer-Blackwell, B; Chen, S; Yuferov, V; Zhou, Y; Kreek, M J

    2012-09-18

    Antagonism of the kappa opioid receptor (KOR) has been reported to have anti-depressant-like properties. The dynorphin/KOR system is a crucial neurochemical substrate underlying the pathologies of addictive diseases, affective disorders and other disease states. However, the molecular underpinnings and neuroanatomical localization of the dysregulation of this system have not yet been fully elucidated. Utilizing the Porsolt Forced Swim Test (FST), an acute stressor commonly used as in rodent models measuring antidepressant efficacy, male Sprague-Dawley rats were subject to forced swimming for 15 min, treated 1h with vehicle or norbinaltorphimine (nor-BNI) (5 or 10mg/kg), and then 1 day later subject to FST for 5 min. In accordance with previous findings, nor-BNI dose dependently increased climbing time and reduced immobility. In comparison to control animals not exposed to FST, we observed a significant elevation in prodynorphin (pDyn) mRNA levels following FST using real-time optical polymerase chain reaction (PCR) in the caudate putamen but not in the nucleus accumbens, hypothalamus, amygdala, frontal cortex, or hippocampus. nor-BNI treatment did not affect pDyn mRNA levels in comparison to animals that received vehicle. The corresponding brain regions from the opposite hemisphere were analyzed for underlying chromatin modifications of the prodynorphin gene promoter region using chromatin immunoprecipitation with antibodies against specifically methylated histones H3K27Me2, H3K27Me3, H3K4Me2, and H3K4Me3, as well as CREB-1 and MeCP2. Significant alterations in proteins bound to DNA in the Cre-3, Cre-4, and Sp1 regions of the prodynorphin promoter were found in the caudate putamen of the FST saline-treated animals compared to control animals, with no changes observed in the hippocampus. Epigenetic changes resulting in elevated dynorphin levels specifically in the caudate putamen may in part underlie the enduring effects of stress.

  9. Chromatin Alterations in Response to Forced Swimming Underlie Increased Prodynorphin Transcription

    Science.gov (United States)

    Reed, Brian; Fang, Nancy; Blackwell-Mayer, Brandan; Chen, Shasha; Yuferov, Vadim; Zhou, Yan; Kreek, Mary Jeanne

    2012-01-01

    Antagonism of the kappa opioid receptor (KOR) has been reported to have anti-depressant-like properties. The dynorphin/KOR system is a crucial neurochemical substrate underlying the pathologies of addictive diseases, affective disorders and other disease states. However, the molecular underpinnings and neuroanatomical localization of the dysregulation of this system have not yet been fully elucidated. Utilizing the Porsolt Forced Swim Test (FST), an acute stressor commonly used as in rodent models measuring antidepressant efficacy, male Sprague-Dawley rats were subject to forced swimming for 15 minutes, treated 1 hour with vehicle or nor-BNI (5 or 10 mg/kg), and then 1 day later subject to FST for five minutes. In accordance with previous findings, nor-BNI dose dependently increased climbing time and reduced immobility. In comparison to control animals not exposed to FST, we observed a significant elevation in prodynorphin (pDyn) mRNA levels following FST using real-time optical PCR in the caudate putamen but not in the nucleus accumbens, hypothalamus, amygdala, frontal cortex, or hippocampus. Nor-BNI treatment did not affect pDyn mRNA levels in comparison to animals that received vehicle. The corresponding brain regions from the opposite hemisphere were analyzed for underlying chromatin modifications of the prodynorphin gene promoter region using chromatin immunoprecipitation with antibodies against specifically methylated histones H3K27Me2, H3K27Me3, H3K4Me2, and H3K4Me3, as well as CREB-1 and MeCP2. Significant alterations in proteins bound to DNA in the Cre-3, Cre-4, and Sp1 regions of the prodynorphin promoter were found in the caudate putamen of the FST saline-treated animals compared to control animals, with no changes observed in the hippocampus. Epigenetic changes resulting in elevated dynorphin levels specifically in the caudate putamen may in part underlie the enduring effects of stress. PMID:22698692

  10. Enhancement of the anti-immobility action of antidepressants by risperidone in the forced swimming test in mice.

    Science.gov (United States)

    Rogóż, Zofia; Kabziński, Marcin

    2011-01-01

    The aim of the present study was to examine the effect of antidepressants (ADs) belonging to different pharmacological groups and risperidone (an atypical antipsychotic drug), given separately or jointly, on immobility time in the forced swimming test in male C57BL/6J mice. The antidepressants: citalopram, fluvoxamine, sertraline, reboxetine, milnacipran (5 and 10 mg/kg), or risperidone in low doses (0.05 and 0.1 mg/kg) given alone did not change the immobility time of mice in the forced swimming test. Co-treatment with reboxetine or milnacipran (10 mg/kg) and risperidone in a lower dose of 0.05 mg/kg or with sertraline, reboxetine (5 and 10 mg/kg), citalopram, fluvoxamine, milnacipran (10 mg/kg) and risperidone in a higher dose of 0.1 mg/kg produced antidepressant-like effect in the forced swimming test. WAY100635 (a 5-HT(1A) receptor antagonist) inhibited the effects induced by co-administration of ADs and risperidone. Active behavior in the forced swimming test was not a consequence of an increased general activity, since the combined treatment with ADs and risperidone failed to enhance the locomotor activity of mice. The obtained results indicate that a low dose of risperidone enhances the activity of ADs in an animal model of depression, and that, among other mechanisms, 5-HT(1A) receptors may play a role in these effects.

  11. The modified forced-swim test in rats: influence of rope- or straw-suspension on climbing behavior.

    Science.gov (United States)

    Nishimura, H; Tsuda, A; Ida, Y; Tanaka, M

    1988-01-01

    We modified Porsolt's forced-swim test by suspending ropes or straws above the water in order to investigate a possible relationship between immobility and perceived escape responses from water. In this modified test, it was demonstrated clearly that rats reduced their duration of immobility and attempted to climb up the suspended ropes or straws. Most rats which had remained immobile during a 5-min test period in the forced-swim test, exhibited such climbing responses within 5-10 min of rope-suspension. Despite the suspension of ropes, however, some rats showed immobile postures and did not respond to the rope. On the other hand, straws were used in order to produce sliding and prevent climbing when the animals attempted to climb. There were no differences in immobility during either rope- or straw-suspension. It seems that the climbing behavior displayed by forced-swimming rats is due to a "pseudo-escape" effect produced by the suspension of an object above the water. The present findings were interpreted as further evidence for the notion that immobility in forced-swimming rats does not necessarily imply "behavioral despair," but rather an emotional reaction to an inescapable stressor.

  12. NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test.

    Science.gov (United States)

    Zhang, Lin; Xu, Tianyuan; Wang, Shuang; Yu, Lanqing; Liu, Dexiang; Zhan, Renzhi; Yu, Shu Yan

    2013-01-10

    The antidepressant-like effect of curcumin, a major active component of Curcuma longa, has been previously demonstrated in the forced swimming test. However, the mechanism of this beneficial effect on immobility scores, which is used to evaluate antidepressants, remains largely uncharacterized. The present study attempts to investigate the effects of curcumin on depressive-like behavior with a focus upon the possible contribution of N-methyl-D-aspartate (NMDA) subtype glutamate receptors in this antidepressant-like effect of curcumin. Male mice were pretreated with specific receptor antagonists to different NMDA receptor subtypes such as CPP, NVP-AAM077 and Ro25-6981 as well as to a partial NMDA receptor agonist, D-cycloserine (DCS), prior to administration of curcumin to observe the effects on depressive behavior as measured by immobility scores in the forced swim test. We found that pre-treatment of mice with CPP, a broad-spectrum competitive NMDA receptor antagonist, blocked the anti-immobility effect of curcumin, suggesting the involvement of the glutamate-NMDA receptors. While pretreatment with NVP-AAM077 (the GluN2A-preferring antagonist) did not affect the anti-immobility effect of curcumin, Ro25-6981 (the GluN2B-preferring antagonist) was found to prevent the effect of curcumin in the forced swimming test. Furthermore, pre-treatment with a sub-effective dose of DCS potentiated the anti-immobility effect of a sub-effective dose of curcumin in the forced swimming test. Taken together, these results suggest that curcumin shows antidepressant-like effects in mice and the activation of GluN2B-containing NMDARs is likely to play a predominate role in this beneficial effect. Therefore, the antidepressant-like effect of curcumin in the forced swim test may be mediated, at least in part, by the glutamatergic system.

  13. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test.

    Science.gov (United States)

    Patel, Jignesh G; Bartoszyk, Gerd D; Edwards, Emmeline; Ashby, Charles R

    2004-04-01

    We examined the effect of the highly selective 5-hydroxytryptamine (5-HT)(2A) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) in congenital learned helpless male rats in the forced swim test. The administration of EMD-281014 (0.3-30 mg/kg i.p.) to congenital learned helpless rats dose-dependently and significantly (at 10 and 30 mg/kg) decreased immobility and increased swimming compared to vehicle-treated animals. Thus, EMD 281014 produces effects in the forced swim test resembling those of antidepressants.

  14. Ketamine-enhanced immobility in forced swim test: a possible animal model for the negative symptoms of schizophrenia.

    Science.gov (United States)

    Chindo, Ben A; Adzu, Bulus; Yahaya, Tijani A; Gamaniel, Karniyus S

    2012-08-01

    Schizophrenia is a chronic and highly complex psychiatric disorder characterised by cognitive dysfunctions, negative and positive symptoms. The major challenge in schizophrenia research is lack of suitable animal models that mimic the core behavioural aspects and symptoms of this devastating psychiatric disorder. In this study, we used classical and atypical antipsychotic drugs to examine the predictive validity of ketamine-enhanced immobility in forced swim test (FST) as a possible animal model for the negative symptoms of schizophrenia. We also evaluated the effects of a selective serotonin reuptake inhibitor (SSRI) on the ketamine-enhanced immobility in FST. Repeated administration of a subanaesthetic dose of ketamine (30 mg kg(-1), i.p., daily for 5 days) enhanced the duration of immobility in FST 24 h after the final injection. The effect, which persisted for at least 21 days after withdrawal of the drug, was neither observed by single treatment with ketamine (30 mg kg(-1) i.p.) nor repeated treatment with amphetamine (1 and 2 mg kg(-1) i.p., daily for 5 days). The enhancing effects of ketamine (30 mg kg(-1) day(-1) i.p.) on the duration of immobility in the FST were attenuated by clozapine (1, 5 and 10 mg kg(-1) i.p.), risperidone (0.25 and 0.5 mg kg(-1) i.p.) and paroxetine (1 and 5 mg kg(-1) i.p.). Haloperidol (0.25 and 0.50 mg kg(-1) day(-1) i.p.) failed to attenuate the ketamine-enhanced immobility in the FST. The repeated ketamine administration neither affects locomotor activity nor motor coordination in rats under the same treatment conditions with the FST, suggesting that the effects of ketamine on the duration of immobility in this study was neither due to motor dysfunction nor peripheral neuromuscular blockade. Our results suggest that repeated treatment with subanaesthetic doses of ketamine enhance the duration of immobility in FST, which might be a useful animal model for the negative symptoms (particularly the depressive features) of

  15. Individual differences in the forced swimming test and neurochemical kinetics in the rat brain.

    Science.gov (United States)

    Sequeira-Cordero, Andrey; Mora-Gallegos, Andrea; Cuenca-Berger, Patricia; Fornaguera-Trías, Jaime

    2014-04-10

    Individual differences in the forced swimming test (FST) could be associated with differential temporal dynamics of gene expression and neurotransmitter activity. We tested juvenile male rats in the FST and classified the animals into those with low and high immobility according to the amount of immobility time recorded in FST. These groups and a control group which did not undergo the FST were sacrificed either 1, 6 or 24 h after the test. We analyzed the expression of the CRF, CRFR1, BDNF and TrkB in the prefrontal cortex, hippocampus and nucleus accumbens as well as norepinephrine, dopamine, serotonin, glutamate, GABA and glutamine in the hippocampus and nucleus accumbens. Animals with low immobility showed significant reductions of BDNF expression across time points in both the prefrontal cortex and the nucleus accumbens when compared with non-swim control. Moreover, rats with high immobility only showed a significant decrease of BDNF expression in the prefrontal cortex 6h after the FST. Regarding neurotransmitters, only accumbal dopamine turnover and hippocampal glutamate content showed an effect of individual differences (i.e. animals with low and high immobility), whereas nearly all parameters showed significant differences across time points. Correlational analyses suggest that immobility in the FST, probably reflecting despair, is related to prefrontal cortical BDNF and to the kinetics observed in several other neurochemical parameters. Taken together, our results suggest that individual differences observed in depression-like behavior can be associated not only with changes in the concentrations of key neurochemical factors but also with differential time courses of such factors.

  16. The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test.

    Science.gov (United States)

    Szewczyk, Bernadeta; Poleszak, Ewa; Wlaź, Piotr; Wróbel, Andrzej; Blicharska, Eliza; Cichy, Agnieszka; Dybała, Małgorzata; Siwek, Agata; Pomierny-Chamioło, Lucyna; Piotrowska, Anna; Brański, Piotr; Pilc, Andrzej; Nowak, Gabriel

    2009-03-17

    Recent preclinical data indicated the antidepressant-like activity of zinc in different tests and models of depression. The present study investigates the involvement of the serotonergic system in zinc activity in the forced swim test (FST) in mice and rats. The combined treatment of sub-effective doses of zinc (hydroaspartate, 2.5 mg Zn/kg) and citalopram (15 mg/kg), fluoxetine (5 mg/kg) but not with reboxetine (2.5 mg/kg) significantly reduces the immobility time in the FST in mice. These treatments had no influence on the spontaneous locomotor activity. Moreover, while the antidepressant-like effect of zinc (5 mg/kg) in the FST was significantly blocked by pretreatment with inhibitor of serotonin synthesis, p-chlorophenylalanine (pCPA, 3x200 mg/kg), 5HT-2(A/C) receptor antagonist, ritanserin (4 mg/kg) or 5HT-1A receptor antagonist, WAY 1006335 (0.1 mg/kg), the zinc-induced reduction in the locomotor activity was not affected by these serotonin modulator agents. These results indicate the specific involvement of the serotonergic system in antidepressant but not the motion behavior of zinc in mice. Also, an increase in the swimming but not climbing parameter of the rat FST observed following zinc administration (2.5 and 5 mg Zn/kg) indicates the serotonin pathway participation. This present data indicates that the antidepressant-like activity of zinc observed in the FST involves interaction with the serotonergic system.

  17. Antidepressant-like effects of psoralidin isolated from the seeds of Psoralea Corylifolia in the forced swimming test in mice.

    Science.gov (United States)

    Yi, Li-Tao; Li, Yu-Cheng; Pan, Ying; Li, Jian-Mei; Xu, Qun; Mo, Shi-Fu; Qiao, Chun-Feng; Jiang, Fu-Xin; Xu, Hong-Xi; Lu, Xiao-Bo; Kong, Ling-Dong; Kung, Hsiang-Fu

    2008-02-15

    The antidepressant-like effects of psoralidin isolated from the seeds of Psoralea corylifolia were investigated in the forced swimming test (FST) in ICR strain of male mice. Psoralidin significantly decreased immobility time and increased swimming behavior without altering climbing behavior in the mouse FST after oral administration for 1 h or 3 consecutive days. Psoralidin did not affect locomotor activity in the open-field test. After a 3-day treatment, psoralidin significantly increased 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in various brain regions, as well as, changed dopamine (DA) levels in striatum in mice exposed to FST. Psoralidin also ameliorated the elevations in serum corticotropin-releasing factor (CRF), adrenal corticotropin-releasing hormone (ACTH) and corticosterone concentrations induced by swimming stress in mice. These results suggested that psoralidin possessed potent antidepressant-like properties that were mediated via the monoamine neurotransmitter and the hypothalamic-pituitary-adrenal (HPA) axis systems.

  18. Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats.

    Science.gov (United States)

    Kitamura, Yoshihisa; Yagi, Takahiko; Kitagawa, Kouhei; Shinomiya, Kazuaki; Kawasaki, Hiromu; Asanuma, Masato; Gomita, Yutaka

    2010-08-01

    The dopamine reuptake inhibitor bupropion has clinically been proven to improve depression and treatment-resistant depression. We examined its influence on the duration of immobility during the forced swim test in adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which bupropion acts in this model was explored specifically in relation to the site of action through the use of microinjections into the medial prefrontal cortex and nucleus accumbens. Bupropion significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by D2 and D3 receptor antagonists in normal rats. Furthermore, infusions of bupropion into the nucleus accumbens, but not medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Bupropion treatment plus repeated ACTH treatment significantly increased the extracellular dopamine concentration. These findings suggest the antidepressant-like effect of bupropion to be related to levels of dopamine in the rat nucleus accumbens.

  19. Antioxidant and Antifatigue Properties of the Aqueous Extract of Moringa oleifera in Rats Subjected to Forced Swimming Endurance Test.

    Science.gov (United States)

    Lamou, Bonoy; Taiwe, Germain Sotoing; Hamadou, André; Abene; Houlray, Justin; Atour, Mahamat Mey; Tan, Paul Vernyuy

    2016-01-01

    The effects of the aqueous extract of Moringa oleifera on swimming performance and related biochemical parameters were investigated in male Wistar rats (130-132 g). Four groups of rats (16 per group) were fed a standard laboratory diet and given distilled water, 100, 200, or 400 mg/kg of extract, respectively, for 28 days. On day 28, 8 rats from each group were subjected to the forced swimming test with tail load (10% of body weight). The remaining 8 rats per group were subjected to the 90-minute free swim. Maximum swimming time, glycemia, lactamia, uremia, triglyceridemia, hepatic and muscle glycogen, hematological parameters, and oxidative stress parameters (superoxide dismutase, catalase, reduced glutathione, and malondialdehyde) were measured. Results. M. oleifera extract increased maximum swimming time, blood hemoglobin, blood glucose, and hepatic and muscle glycogen reserves. The extract also increased the activity of antioxidant enzymes and decreased the blood concentrations of malondialdehyde. Furthermore, it decreased blood concentrations of lactate, triglycerides, and urea. In conclusion, the antifatigue properties of M. oleifera extract are demonstrated by its ability to improve body energy stores and tissue antioxidant capacity and to reduce the tissue build-up of lactic acid.

  20. Antioxidant and Antifatigue Properties of the Aqueous Extract of Moringa oleifera in Rats Subjected to Forced Swimming Endurance Test

    Science.gov (United States)

    Lamou, Bonoy; Taiwe, Germain Sotoing; Hamadou, André; Abene; Houlray, Justin; Atour, Mahamat Mey; Tan, Paul Vernyuy

    2016-01-01

    The effects of the aqueous extract of Moringa oleifera on swimming performance and related biochemical parameters were investigated in male Wistar rats (130–132 g). Four groups of rats (16 per group) were fed a standard laboratory diet and given distilled water, 100, 200, or 400 mg/kg of extract, respectively, for 28 days. On day 28, 8 rats from each group were subjected to the forced swimming test with tail load (10% of body weight). The remaining 8 rats per group were subjected to the 90-minute free swim. Maximum swimming time, glycemia, lactamia, uremia, triglyceridemia, hepatic and muscle glycogen, hematological parameters, and oxidative stress parameters (superoxide dismutase, catalase, reduced glutathione, and malondialdehyde) were measured. Results. M. oleifera extract increased maximum swimming time, blood hemoglobin, blood glucose, and hepatic and muscle glycogen reserves. The extract also increased the activity of antioxidant enzymes and decreased the blood concentrations of malondialdehyde. Furthermore, it decreased blood concentrations of lactate, triglycerides, and urea. In conclusion, the antifatigue properties of M. oleifera extract are demonstrated by its ability to improve body energy stores and tissue antioxidant capacity and to reduce the tissue build-up of lactic acid. PMID:26904162

  1. Fatigue-induced dissociation between rate of force development and maximal force across repeated rapid contractions.

    Science.gov (United States)

    Boccia, Gennaro; Dardanello, Davide; Tarperi, Cantor; Festa, Luca; La Torre, Antonio; Pellegrini, Barbara; Schena, Federico; Rainoldi, Alberto

    2017-08-01

    We examined whether the presence of fatigue induced by prolonged running influenced the time courses of force generating capacities throughout a series of intermittent rapid contractions. Thirteen male amateur runners performed a set of 15 intermittent isometric rapid contractions of the knee extensor muscles, (3s/5s on/off) the day before (PRE) and immediately after (POST) a half marathon. The maximal voluntary contraction force, rate of force development (RFDpeak), and their ratio (relative RFDpeak) were calculated. At POST, considering the first (out of 15) repetition, the maximal force and RFDpeak decreased (p<0.0001) at the same extent (by 22±6% and 24±22%, respectively), resulting in unchanged relative RFDpeak (p=0.6). Conversely, the decline of RFDpeak throughout the repetitions was more pronounced at POST (p=0.02), thus the decline of relative RFDpeak was more pronounced (p=0.007) at POST (-25±13%) than at PRE (-3±13%). The main finding of this study was that the fatigue induced by a half-marathon caused a more pronounced impairment of rapid compared to maximal force in the subsequent intermittent protocol. Thus, the fatigue-induced impairment in rapid muscle contractions may have a greater effect on repeated, rather than on single, attempts of maximal force production. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Orbitofrontal cortex action of 5-hydroxytryptamine and its receptor in an acute forced swimming stress-induced depression model

    Institute of Scientific and Technical Information of China (English)

    Huipeng Li; Fengli An; Shucheng An

    2009-01-01

    BACKGROUND: The orbitofrontal cortex (OFC) is a brain region closely associated with emotion.5-hydroxytryptamine (5-HT) has been shown to be involved in human depression.OBJECTIVE: To investigate OFC actions and mechanisms of 5-HT and 5-HT1A receptor (5-HT1AR)in stress-induced depression.DESIGN, TIME AND SEI-rlNG: A randomized, controlled, animal experiment was performed at Laboratory of Neurobiology, College of Life Science, Shaanxi Normal University between May 2006 and March 2008.MATERIALS: 5-HT, p-chlorophenylalanine (PCPA, an inhibitor to tryptophan hydroxylase) andspiperone (5-HT1AR antagonist) were provided by Sigma, USA; rabbit anti-rat 5-HT1AR antibody was provided by Tlanjin Haoyang Biological Manufacture.METHODS: A total of 40 male Sprague Dawley rats, aged 3 months, were randomly divided into five groups: control, model, 5-HT, spiperone+5-HT, and PCPA, with 8 rats in each group. Except for control group, rats in the other four groups were used to establish depression models by forced swimming for 15 minutes. At 30 minutes before forced swimming test, 0.5μL of 5-HT (12.5μg/pL),PCPA (20μg/μL), spiperone (1.3 μg/μL)+5-HT (12.5μg/μL, 10 minutes later), and saline were respectively injected into the OFC of 5-HT, PCPA, spiperone+5-HT, and model groups, respectively.The control group received a saline microinjection into the OFC.MAIN OUTCOME MEASURES: Forced swimming and open field tests were employed to measure animal behaviors, and immunohistochemistry was used to analyze 5-HT1AR expression in the OFC,cingulate cortex, and piriform cortex.RESULTS: (1) Compared with the model group, 5-HT microinjection into the OFC prominently reduced immobility time in the forced swimming test and rearing in open field test (P0.05). Furthermore, following PCPA microinjection into the OFC (PCPA + forced swimming stress),immobility time in forced swimming test increased dramatically (P<0.01), locomotion and rearing inopen field test declined (P<0.05 and P<0

  3. Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry.

    Science.gov (United States)

    Drucker; Lauder

    1999-01-01

    Quantifying the locomotor forces experienced by swimming fishes represents a significant challenge because direct measurements of force applied to the aquatic medium are not feasible. However, using the technique of digital particle image velocimetry (DPIV), it is possible to quantify the effect of fish fins on water movement and hence to estimate momentum transfer from the animal to the fluid. We used DPIV to visualize water flow in the wake of the pectoral fins of bluegill sunfish (Lepomis macrochirus) swimming at speeds of 0.5-1.5 L s(-)(1), where L is total body length. Velocity fields quantified in three perpendicular planes in the wake of the fins allowed three-dimensional reconstruction of downstream vortex structures. At low swimming speed (0.5 L s(-)(1)), vorticity is shed by each fin during the downstroke and stroke reversal to generate discrete, roughly symmetrical, vortex rings of near-uniform circulation with a central jet of high-velocity flow. At and above the maximum sustainable labriform swimming speed of 1.0 L s(-)(1), additional vorticity appears on the upstroke, indicating the production of linked pairs of rings by each fin. Fluid velocity measured in the vicinity of the fin indicates that substantial spanwise flow during the downstroke may occur as vortex rings are formed. The forces exerted by the fins on the water in three dimensions were calculated from vortex ring orientation and momentum. Mean wake-derived thrust (11.1 mN) and lift (3.2 mN) forces produced by both fins per stride at 0.5 L s(-)(1) were found to match closely empirically determined counter-forces of body drag and weight. Medially directed reaction forces were unexpectedly large, averaging 125 % of the thrust force for each fin. Such large inward forces and a deep body that isolates left- and right-side vortex rings are predicted to aid maneuverability. The observed force balance indicates that DPIV can be used to measure accurately large-scale vorticity in the wake of

  4. Propulsive force calculations in swimming frogs I. A momentum-impulse approach

    NARCIS (Netherlands)

    Nauwelaerts, S; Stamhuis, EJ; Aerts, P

    Frogs are animals that are capable of locomotion in two physically different media, aquatic and terrestrial. A comparison of the kinematics of swimming frogs in a previous study revealed a difference in propulsive impulse between jumping and swimming. To explore this difference further, we

  5. Antidepressant-like effects of Acorus calamus in forced swimming and tail suspension test in mice

    Institute of Scientific and Technical Information of China (English)

    Pawar Vinod S; Anup Akhade; Shrikrishna Baokar; Shivakumar H

    2011-01-01

    Objective: To evaluate the antidepressant activity of methanolic extract of rhizomes of Acoruscalamus (A. calamus). Methods: Tail suspension test (TST) and forced swimming test (FST) in mice were used to evaluate the antidepressant activity of methanolic extract of rhizomes of A. calamus. Methanolic extracts (50 and 100 mg/kg i.p.) were administered daily for 7 days. Imipramine 5 mg/kg was used as standard antidepressant agent throughout the study. Results: Test extracts of A. calamus decreased immobility periods significantly in a dose dependent manner in both TST and FST. The observed results were also comparable with known standard drug i.e. imipramine. The flavonoid apigenin, which selectively binds with high affinity to the central benzodiazepines receptor, possesses important anxiolytic and antidepressant activities. The review of literature reveals that the A. calamus contains saponin, glycosides, tannin and flavonoid. Conclusions:Methanolic extract of A. calamus rhizomes shows antidepressant activity probably through interaction with adrenergic, dopaminergic serotonergic and γ-aminobutyric acid (GABA) nergic system. Both the models have been proved to be equally valuable for demonstration of substances with a potential antidepressant activity.

  6. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice.

    Science.gov (United States)

    Castagné, Vincent; Moser, Paul; Roux, Sylvain; Porsolt, Roger D

    2011-04-01

    The development of antidepressants requires simple rodent behavioral tests for initial screening before undertaking more complex preclinical tests and clinical evaluation. Presented in the unit are two widely used screening tests used for antidepressants, the forced swim (also termed behavioral despair) test in the rat and mouse, and the tail suspension test in the mouse. These tests have good predictive validity and allow rapid and economical detection of substances with potential antidepressant-like activity. The behavioral despair and the tail suspension tests are based on the same principle: measurement of the duration of immobility when rodents are exposed to an inescapable situation. The majority of clinically used antidepressants decrease the duration of immobility. Antidepressants also increase the latency to immobility, and this additional measure can increase the sensitivity of the behavioral despair test in the mouse for certain classes of antidepressant. Testing of new substances in the behavioral despair and tail suspension tests allows a simple assessment of their potential antidepressant activity by the measurement of their effect on immobility.

  7. Intracerebroventricular administration of neuronostatin induces depression-like effect in forced swim test of mice.

    Science.gov (United States)

    Yang, Ai-min; Ji, Yue-ke; Su, Shu-fang; Yang, Shao-bin; Lu, Song-song; Mi, Ze-yun; Yang, Qing-zhen; Chen, Qiang

    2011-09-01

    Neuronostatin is a recently discovered endogenous bioactive peptide that is encoded by pro-mRNA of somatostatin. In the present study, we investigated the effect of neuronostatin on mood regulation in the forced swim test of mice. Our results showed intracerebroventricular (i.c.v.) administration of neuronostatin produced an increase in the immobility time, suggesting that neuronostatin induced depression-like effect. In order to rule out the possibility that neuronostatin had increased immobility time by a non-specific reduction in general activity, the effect of neuronostatin on locomotor activity was examined. Neuronostatin had no influence on locomotor activity in mice. In addition, the depression-like effect of neuronostatin was completely reversed by melanocortin 3/4 receptor antagonist SHU9119 or GABAA receptor antagonist bicuculline, but not by opioid receptor antagonist naloxone. These data suggested that the depression-like effect induced by i.c.v. administered neuronostatin was dependent upon the central melanocortin system and GABAA receptor. In conclusion, the results of this study report that neuronostatin induces depression-like effect. These findings reveal that neuronostatin is a new neuropeptide with an important role in regulating depressive behavior.

  8. Orally administered whole egg demonstrates antidepressant-like effects in the forced swimming test on rats.

    Science.gov (United States)

    Nagasawa, Mao; Otsuka, Tsuyoshi; Ogino, Yumi; Yoshida, Junki; Tomonaga, Shozo; Yasuo, Shinobu; Furuse, Mitsuhiro

    2014-08-01

    Several studies have reported that vegetarian diets are associated with a higher prevalence of major depression. Therefore, we hypothesised that the consumption of animal products, especially eggs, may have positive effects on mental health, especially on major depression, because a previous study reported that egg consumption produces numerous beneficial effects in humans. The purpose of the present study was to evaluate the effects of chronic whole-egg treatment on depression-like behaviours in Wistar rats, a control strain, and Wistar Kyoto rats, an animal model of depression. In both the rats, either whole-egg solution (5 ml/kg) or distilled water (5 ml/kg) was orally administrated for 35 days. During these periods, the open-field test (OFT) was conducted on the 21st day, and a forced swimming test (FST) was enforced on the 27th and 28th days. On the 36th day, the plasma and brain were collected. Chronic whole-egg treatment did not affect line crossing in the OFT, whereas it reduced the total duration of immobility in the FST on both strains. Furthermore, interestingly, the results indicated the possibility that whole-egg treatment elevated the incorporation of tryptophan into the brain, and the tryptophan concentration in the prefrontal cortex was actually increased by the treatment. This study demonstrated that whole-egg treatment exerts an antidepressant-like effect in the FST. It is suggested that whole egg may be an excellent food for preventing and alleviating the conditions of major depression.

  9. Stressors can affect immobility time and response to imipramine in the rat forced swim test.

    Science.gov (United States)

    Gutiérrez-García, Ana G; Contreras, Carlos M

    2009-02-01

    We subjected Wistar rats to the forced swim test (FST) to compare the effects of two doses of imipramine in physically stressed rats (P: unavoidable electric footshocks), emotionally stressed rats (E: odors), or non-stressed rats (C). Stress or control sessions lasted 35 days. Drug treatments began on day 21 and continued for the next 14 days. E rats were placed for 10 min, once per day for 35 days, in a small non-movement-restricting cage impregnated with urine collected from a P rat. E and P rats exhibited opposite changes in locomotion. After 21 days of stress sessions, P rats displayed the longest immobility times in the FST, followed by E rats. In the P group, on day 7 of treatment (day 28 of the study), imipramine (2.5 mg/kg) reduced immobility time to baseline values. In the E group, immobility time decreased only after 14 days of treatment with the low imipramine dose. The high dose of imipramine (5.0 mg/kg) reduced immobility time at day 7 of treatment in all groups. In conclusion, physical and emotional stress similarly increased immobility time in the FST, but emotional stress appears to be more resistant to imipramine treatment.

  10. Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim test.

    Science.gov (United States)

    Kotagale, Nandkishor R; Tripathi, Sunil J; Aglawe, Manish M; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G

    2013-06-01

    Although bupropion has been widely used in the treatment of depression, the precise mechanism of its therapeutic actions is not fully understood. The present study investigated the role of agmatine in an antidepressant like effect of bupropion in mouse forced swim test. The antidepressant like effect of bupropion was potentiated by pretreatment with agmatine (10-20mg/kg, ip) and by the drugs known to increase endogenous agmatine levels in brain viz., l-arginine (40 μg/mouse, icv), an agmatine biosynthetic precursor, ornithine decarboxylase inhibitor, dl-α-difluoromethyl ornithine hydrochloride, DFMO (12.5 μg/mouse, icv), diamine oxidase inhibitor, aminoguanidine (6.5 μg/mouse, icv) and agmatinase inhibitor, arcaine (50 μg/mouse, icv) as well as imidazoline I1 receptor agonists, moxonidine (0.25mg/kg, ip) and clonidine (0.015 mg/kg, ip) and imidazoline I2 receptor agonist, 2-(2-benzofuranyl)-2-imidazoline hydrochloride, 2-BFI (5mg/kg, ip). Conversely, prior administration of I1 receptor antagonist, efaroxan (1mg/kg, ip) and I2 receptor antagonist, idazoxan (0.25mg/kg, ip) blocked the antidepressant like effect of bupropion and its synergistic combination with agmatine. These results demonstrate involvement of agmatine in the antidepressant like effect of bupropion and suggest agmatine and imidazoline receptors as a potential therapeutic target for the treatment of depressive disorders.

  11. Sensitivity during the forced swim test is a key factor in evaluating the antidepressant effects of abscisic acid in mice.

    Science.gov (United States)

    Qi, Cong-Cong; Shu, Yu-Mian; Chen, Fang-Han; Ding, Yu-Qiang; Zhou, Jiang-Ning

    2016-03-01

    Abscisic acid (ABA), a crucial phytohormone, is distributed in the brains of mammals and has been shown to have antidepressant effects in the chronic unpredictable mild stress test. The forced swim test (FST) is another animal model that can be used to assess antidepressant-like behavior in rodents. Here, we report that the antidepressant effects of ABA are associated with sensitivities to the FST in mice. Based on mean immobility in the 5-min forced swim pre-test, ICR mice were divided into short immobility mice (SIM) and long immobility mice (LIM) substrains. FST was carried out 8 days after drug administration. Learned helplessness, as shown by increased immobility, was only observed in SIM substrain and could be prevented by an 8-day ABA treatment. Our results show that ABA has antidepressant effects in SIM substrain and suggest that mice with learned helplessness might be more suitable for screening potential antidepressant drugs.

  12. Antidepressant-like effect of centrally acting non-narcotic antitussive caramiphen in a forced swimming test.

    Science.gov (United States)

    Kawaura, Kazuaki; Miki, Risa; Shima, Eriko; Honda, Sokichi; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2010-09-13

    Recently, we reported that a centrally acting non-narcotic antitussive (cough suppressant drug), tipepidine produces an antidepressant-like effect in the forced swimming test in rats. Because pharmacological properties of tipepidine apparently differ from those of typical antidepressants developed to date, we speculated that caramiphen, another centrally acting antitussive, has an antidepressant-like effect. That effect of caramiphen was studied in rats using the forced swimming test. Caramiphen at 20 and 40mg/kg i.p. significantly reduced immobility. At 40mg/kg i.p., it increased climbing behavior. Even at 40mg/kg, this drug had no effect on locomotor activity. Results suggest that a centrally acting antitussive possessing inhibition of GIRK channels has an antidepressant-like effect.

  13. Computer assisted video analysis of swimming performance in a forced swim test: simultaneous assessment of duration of immobility and swimming style in mice selected for high and low swim-stress induced analgesia.

    Science.gov (United States)

    Juszczak, Grzegorz R; Lisowski, Paweł; Sliwa, Adam T; Swiergiel, Artur H

    2008-10-20

    In behavioral pharmacology, two problems are encountered when quantifying animal behavior: 1) reproducibility of the results across laboratories, especially in the case of manual scoring of animal behavior; 2) presence of different behavioral idiosyncrasies, common in genetically different animals, that mask or mimic the effects of the experimental treatments. This study aimed to develop an automated method enabling simultaneous assessment of the duration of immobility in mice and the depth of body submersion during swimming by means of computer assisted video analysis system (EthoVision from Noldus). We tested and compared parameters of immobility based either on the speed of an object (animal) movement or based on the percentage change in the object's area between the consecutive video frames. We also examined the effects of an erosion-dilation filtering procedure on the results obtained with both parameters of immobility. Finally, we proposed an automated method enabling assessment of depth of body submersion that reflects swimming performance. It was found that both parameters of immobility were sensitive to the effect of an antidepressant, desipramine, and that they yielded similar results when applied to mice that are good swimmers. The speed parameter was, however, more sensitive and more reliable because it depended less on random noise of the video image. Also, it was established that applying the erosion-dilation filtering procedure increased the reliability of both parameters of immobility. In case of mice that were poor swimmers, the assessed duration of immobility differed depending on a chosen parameter, thus resulting in the presence or lack of differences between two lines of mice that differed in swimming performance. These results substantiate the need for assessing swimming performance when the duration of immobility in the FST is compared in lines that differ in their swimming "styles". Testing swimming performance can also be important in the

  14. Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus.

    Science.gov (United States)

    de Groote, L; Linthorst, A C E

    2007-09-07

    In the hippocampus, a brain structure critically important in the stress response, GABA controls neuronal activity not only via synaptic inhibition, but also via tonic inhibition through stimulation of extrasynaptic GABA receptors. The extracellular level of GABA may represent a major determinant for tonic inhibition and, therefore, it is surprising that its responsiveness to stress has hardly been investigated. To clarify whether hippocampal extracellular GABA levels change in response to acute stress, we conducted an in vivo microdialysis study in rats. We found that dialysate GABA levels respond to various neuropharmacological manipulations such as reuptake inhibition, elevated concentrations of K(+), tetrodotoxin and baclofen, indicating that a large proportion of hippocampal extracellular GABA depends on neuronal release and that GABA re-uptake plays a role in determining the extracellular levels of this neurotransmitter. Next, rats were exposed to a novel cage or to forced swimming in 25 degrees C water. Interestingly, these two stressors resulted in opposite effects. Novelty caused a fast increase in GABA (120% of baseline), whereas forced swimming resulted in a profound decrease (70% of baseline). To discriminate between the psychological and physical aspects (i.e. the effects on body temperature) of forced swimming, another group of animals was forced to swim at 35 degrees C. This stressor, like novelty, caused an increase in hippocampal GABA, suggesting a stimulatory effect of psychological stress. The effects of novelty could not be blocked by the corticotropin-releasing factor receptor antagonist D-Phe-CRF(12-41). These results are the first to demonstrate stressor-dependent changes in hippocampal extracellular GABA; an observation which may be of particular significance for GABAergic tonic inhibition of hippocampal neurons.

  15. Effect of forced swimming stress on count, motility and fertilization capacity of the sperm in adult rats

    Directory of Open Access Journals (Sweden)

    Ghasem Saki

    2009-01-01

    Full Text Available Aims: The purpose of this study was to determine whether 50 days of forced swimming stress applied to adult male rats affects count, motility and fertilization capacity of sperm. Settings and Design: It is a prospective study designed in vitro. Materials and Methods: A total 30 adult male wistar rats were used in this study. All rats were divided into two equal groups (n = 15: (1 control group and (2 experimental group. Animals of the experimental group were submitted to force swimming stress for 3 min in water at 32°C daily for 50 days. Then, all male rats were sacrificed, the right epididymides were removed and sperm concentration and motility were determined. The sperm suspension was added to the ova. Fertilization capacity was assessed by counting two-cell embryos 24-26 h after completion of fertilization in vitro. Statistical Analysis Used: Data are reported as mean ± SD and percentage. The difference between the control and experimental groups was determined by the unpaired t-test. Results: The mean and standard deviation of sperm concentration in the control and experimental groups were 60.8 ± 9.3 10 6 /ml and 20.4 ± 5.3 10 6 /ml, respectively. There was a statistical difference of P < 0.05 between the two groups in terms of sperm concentration. The percentage of motility in the experimental group was significantly different ( P < 0.05. The same results were obtained in case of fertility ( P < 0.05. Stress caused by forced swimming was observed by a significant increase in the latency of the pain response in the hot-plate test ( P < 0.05. Conclusions: These results suggest that forced swimming stress in time course equal or more than spermatogenesis period, i.e. 48-50 days in the rat will be significantly effective to reduce the number and motility of sperms as well as the fertilization capacity.

  16. The centrally acting non-narcotic antitussive tipepidine produces antidepressant-like effect in the forced swimming test in rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Ogata, Yukino; Inoue, Masako; Honda, Sokichi; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2009-12-14

    The antidepressant-like effect of tipepidine was studied in rats. Tipepidine at 20 and 40 mg/kg i.p. reduced immobility in the forced swimming test and tipepidine at 40 mg/kg, i.p. increased climbing in the test. The drug at 40 mg/kg, i.p. had no effect on the locomotor activity and motor coordination. These results suggest that tipepidine may be a novel drug with antidepressant-like activity.

  17. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    Science.gov (United States)

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  18. Comparison of time-dependent effects of (+-methamphetamine or forced swim on monoamines, corticosterone, glucose, creatine, and creatinine in rats

    Directory of Open Access Journals (Sweden)

    Gudelsky Gary A

    2008-05-01

    Full Text Available Abstract Background Methamphetamine (MA use is a worldwide problem. Abusers can have cognitive deficits, monoamine reductions, and altered magnetic resonance spectroscopy findings. Animal models have been used to investigate some of these effects, however many of these experiments have not examined the impact of MA on the stress response. For example, numerous studies have demonstrated (+-MA-induced neurotoxicity and monoamine reductions, however the effects of MA on other markers that may play a role in neurotoxicity or cell energetics such as glucose, corticosterone, and/or creatine have received less attention. In this experiment, the effects of a neurotoxic regimen of (+-MA (4 doses at 2 h intervals on brain monoamines, neostriatal GFAP, plasma corticosterone, creatinine, and glucose, and brain and muscle creatine were evaluated 1, 7, 24, and 72 h after the first dose. In order to compare MA's effects with stress, animals were subjected to a forced swim test in a temporal pattern similar to MA administration [i.e., (30 min/session 4 times at 2 h intervals]. Results MA increased corticosterone from 1–72 h with a peak 1 h after the first treatment, whereas glucose was only increased 1 h post-treatment. Neostriatal and hippocampal monoamines were decreased at 7, 24, and 72 h, with a concurrent increase in GFAP at 72 h. There was no effect of MA on regional brain creatine, however plasma creatinine was increased during the first 24 h and decreased by 72 h. As with MA treatment, forced swim increased corticosterone more than MA initially. Unlike MA, forced swim reduced creatine in the cerebellum with no change in other brain regions while plasma creatinine was decreased at 1 and 7 h. Glucose in plasma was decreased at 7 h. Conclusion Both MA and forced swim increase demand on energy substrates but in different ways, and MA has persistent effects on corticosterone that are not attributable to stress alone.

  19. Sex-Specific Diurnal Immobility Induced by Forced Swim Test in Wild Type and Clock Gene Deficient Mice

    OpenAIRE

    Ningyue Li; Yanhua Xu; Xiaojuan Chen; Qing Duan; Mei Zhao

    2015-01-01

    Objective: The link between alterations in circadian rhythms and depression are well established, but the underlying mechanisms are far less elucidated. We investigated the circadian characteristics of immobility behavior in wild type (WT) mice and mice with mutations in core Clock genes. Methods: All mice were tested with forced swim test (FST) at 4 h intervals. Results: These experiments revealed significant diurnal rhythms associated with immobility behavior in both male and female WT mice...

  20. Prior cold water swim stress alters immobility in the forced swim test and associated activation of serotonergic neurons in the rat dorsal raphe nucleus.

    Science.gov (United States)

    Drugan, R C; Hibl, P T; Kelly, K J; Dady, K F; Hale, M W; Lowry, C A

    2013-12-01

    Prior adverse experience alters behavioral responses to subsequent stressors. For example, exposure to a brief swim increases immobility in a subsequent swim test 24h later. In order to determine if qualitative differences (e.g. 19°C versus 25°C) in an initial stressor (15-min swim) impact behavioral, physiological, and associated neural responses in a 5-min, 25°C swim test 24h later, rats were surgically implanted with biotelemetry devices 1 week prior to experimentation then randomly assigned to one of six conditions (Day 1 (15 min)/Day 2 (5 min)): (1) home cage (HC)/HC, (2) HC/25°C swim, (3) 19°C swim/HC, (4) 19°C swim/25°C swim, (5) 25°C swim/HC, (6) 25°C swim/25°C swim. Core body temperature (Tb) was measured on Days 1 and 2 using biotelemetry; behavior was measured on Day 2. Rats were transcardially perfused with fixative 2h following the onset of the swim on Day 2 for analysis of c-Fos expression in midbrain serotonergic neurons. Cold water (19°C) swim on Day 1 reduced Tb, compared to both 25°C swim and HC groups on Day 1, and, relative to rats exposed to HC conditions on Day 1, reduced the hypothermic response to the 25°C swim on Day 2. The 19°C swim on Day 1, relative to HC exposure on Day 1, increased immobility during the 5-min swim on Day 2. Also, 19°C swim, relative to HC conditions, on Day 1 reduced swim (25°C)-induced increases in c-Fos expression in serotonergic neurons within the dorsal and interfascicular parts of the dorsal raphe nucleus. These results suggest that exposure to a 5-min 19°C cold water swim, but not exposure to a 5-min 25°C swim alters physiological, behavioral and serotonergic responses to a subsequent stressor.

  1. A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice.

    Science.gov (United States)

    Poleszak, Ewa; Wlaź, Piotr; Szewczyk, Bernadeta; Wlaź, Aleksandra; Kasperek, Regina; Wróbel, Andrzej; Nowak, Gabriel

    2011-11-01

    Both clinical and preclinical studies demonstrate the antidepressant activity of the functional NMDA receptor antagonists. In this study, we assessed the effects of two glycine/NMDA receptor ligands, namely L-701,324 (antagonist) and D: -cycloserine (a partial agonist) on the action of antidepressant drugs with different pharmacological profiles in the forced swim test in mice. Swim sessions were conducted by placing mice individually in glass cylinders filled with warmed water for 6 min. The duration of behavioral immobility during the last 4 min of the test was evaluated. The locomotor activity of mice was measured with photoresistor actimeters. L-701,324 and D: -cycloserine given with reboxetine (administered in subeffective doses) did not change the behavior of animals in the forced swim test. A potentiating effect was seen when both tested glycine site ligands were given concomitantly with imipramine or fluoxetine in this test. The lesion of noradrenaline nerve terminals produced by DSP-4 neither altered the baseline activity nor influenced the antidepressant-like action of L-701,324 or D: -cycloserine. The depletion of serotonin by p-CPA did not alter baseline activity in the forced swim test. However, it completely antagonized the antidepressant-like action produced by L-701,324 and D: -cycloserine. Moreover, the antidepressant-like effects of imipramine, fluoxetine and reboxetine were abolished by D: -serine, a full agonist of glycine/NMDA receptors. The present study demonstrates that glycine/NMDA receptor functional antagonists enhance the antidepressant-like action of serotonin, but not noradrenaline-based antidepressants and such their activity seems to depend on serotonin rather than noradrenaline pathway.

  2. Stressors affect the response of male and female rats to clomipramine in a model of behavioral despair (forced swim test).

    Science.gov (United States)

    Consoli, Daniele; Fedotova, Julia; Micale, Vincenzo; Sapronov, Nikolay S; Drago, Filippo

    2005-09-27

    Aim of the present study was to evaluate the effects of physical stressors (electric foot-shocks) on effect of the antidepressant drug, clomipramine and plasma corticosterone levels in male and female rats tested in a model of behavioral despair (forced swim test,). Male and female rats of the Wistar strain were injected with clomipramine (50 mg/kg, i.p.) or saline. A group of animals also received electric shocks of different intensity and duration of 24, 5 and 1 h before being subjected to forced swim test. At the end of behavioral procedures, vaginal smears were assessed in all female animals and data on immobility time were plotted according to the ovarian cycle phase. After decapitation, corticosterone plasma levels were measured by radioimmunoassay in both male and female rats. Application of mild shocks (5 ms, 0.1 mA) significantly reduced immobility time in forced swim test of untreated male rats and augmented clomipramine effect on this parameter. Moderate shocks of higher intensity or duration (5 ms, 1.0 mA) also resulted in decreased immobility time of untreated male rats, but in reduced effect of clomipramine treatment. Furthermore, application of severe shocks (10 ms, 1.0 mA) increased the immobility time in untreated animals and totally abolished clomipramine effect in forced swim test. Untreated non-shocked female rats in proestrous and estrous phases exhibited a longer immobility time as compared to diestrous animals. Immobility time appeared to be generally higher when mild, moderate or severe shocks were applied prior to behavioral testing in proestrous and estrous animals, while the behavioral response of diestrous and metestrous animals did not differ from that of controls. Clomipramine effect on immobility time was generally reduced by application of shocks of every strengths. Stress-induced plasma corticosterone levels surge correlated with intensity and duration of shocks in both male and female rats, but clomipramine treatment generally

  3. The Forced Swim Test as a Model of Depressive-like Behavior

    Science.gov (United States)

    Yankelevitch-Yahav, Roni; Franko, Motty; Huly, Avrham; Doron, Ravid

    2015-01-01

    The goal of the present protocol is to describe the forced swim test (FST), which is one of the most commonly used assays for the study of depressive-like behavior in rodents. The FST is based on the assumption that when placing an animal in a container filled with water, it will first make efforts to escape but eventually will exhibit immobility that may be considered to reflect a measure of behavioral despair. This test has been extensively used because it involves the exposure of the animals to stress, which was shown to have a role in the tendency for major depression. Additionally, the FST has been shown to share some of the factors that are influenced or altered by depression in humans, including changes in food consumption, sleep abnormalities and drug-withdrawal-induced anhedonia. The main advantages of this procedure are that it is relatively easy to perform and that its results are easily and quickly analyzed. Moreover, its sensitivity to a broad range of antidepressant drugs that makes it a suitable screening test is one of the most important features leading to its high predictive validity. Despite its appeal, this model has a number of disadvantages. First, the issue of chronic augmentation is problematic in this test because in real life patients need to be treated for at least several weeks before they experience any relief from their symptoms. Last, due to the aversiveness of the FST, it is important to take into account possible influences it might have on brain structure/function if brain analyses are to be carried out following this procedure. PMID:25867960

  4. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    Science.gov (United States)

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST.

  5. Effects of chronic and acute stress on rat behaviour in the forced-swim test.

    Science.gov (United States)

    Suvrathan, Aparna; Tomar, Anupratap; Chattarji, Sumantra

    2010-11-01

    Stress and depression may share common neural plasticity mechanisms. Importantly, the development and reversal of stress-induced plasticity requires time. These temporal aspects, however, are not captured fully in the forced-swim test (FST), a behavioural model for testing antidepressant efficacy, used originally in naïve animals. The present study probed whether and how a rodent model of stress affects behaviour in the FST over time. We found that the intensity and duration of stress are critical in the development of depressive symptoms in male Wistar rats (n = 37) as tested in the FST. Chronic immobilization stress (2 h/day for 10 days) elicited a range of responses, from low to high values of immobility in the FST on day 1, and subsequent immobility on day 2 was inversely related to individual day 1 values. As a whole, chronically stressed rats did not exhibit any significant change in immobility either on day 1 or day 2 compared to control rats. However, climbing behaviour was reduced uniformly from day 1 to day 2, despite the differences in immobility. In contrast, a separate group of rats (n = 30) subjected to the same chronic stressor displayed a significant reduction in open-arm exploration in the elevated plus maze, indicative of a robust increase in anxiety-like behaviour. Furthermore, when the 10-day chronic stress paradigm was reduced to a single 2-h episode of immobilization stress, it triggered a uniform day 1 to day 2 increase in immobility, which was not persistent 10 days later. These results highlight a need for closer examination of the ways in which stress-induced modulation of behaviour in the FST may be used and interpreted in future studies aimed at exploring connections between stress and depression.

  6. The forced swim test as a model of depressive-like behavior.

    Science.gov (United States)

    Yankelevitch-Yahav, Roni; Franko, Motty; Huly, Avrham; Doron, Ravid

    2015-03-02

    The goal of the present protocol is to describe the forced swim test (FST), which is one of the most commonly used assays for the study of depressive-like behavior in rodents. The FST is based on the assumption that when placing an animal in a container filled with water, it will first make efforts to escape but eventually will exhibit immobility that may be considered to reflect a measure of behavioral despair. This test has been extensively used because it involves the exposure of the animals to stress, which was shown to have a role in the tendency for major depression. Additionally, the FST has been shown to share some of the factors that are influenced or altered by depression in humans, including changes in food consumption, sleep abnormalities and drug-withdrawal-induced anhedonia. The main advantages of this procedure are that it is relatively easy to perform and that its results are easily and quickly analyzed. Moreover, its sensitivity to a broad range of antidepressant drugs that makes it a suitable screening test is one of the most important features leading to its high predictive validity. Despite its appeal, this model has a number of disadvantages. First, the issue of chronic augmentation is problematic in this test because in real life patients need to be treated for at least several weeks before they experience any relief from their symptoms. Last, due to the aversiveness of the FST, it is important to take into account possible influences it might have on brain structure/function if brain analyses are to be carried out following this procedure.

  7. Immobility behavior during the forced swim test correlates with BNDF levels in the frontal cortex, but not with cognitive impairments.

    Science.gov (United States)

    Borsoi, Milene; Antonio, Camila Boque; Viana, Alice Fialho; Nardin, Patrícia; Gonçalves, Carlos-Alberto; Rates, Stela Maris Kuze

    2015-03-01

    The forced swim test (FST) is widely used to evaluate the antidepressant-like activity of compounds and is sensitive to stimuli that cause depression-like behaviors in rodents. The immobility behavior observed during the test has been considered to represent behavioral despair. In addition, some studies suggest that the FST impairs rats' performance on cognitive tests, but these findings have rarely been explored. Thus, we investigated the effects of the FST on behavioral tests related to neuropsychiatric diseases that involve different cognitive components: novel object recognition (NOR), the object location test (OLT) and prepulse inhibition (PPI). Brain-derived neurotrophic factor (BDNF) levels in the frontal cortex and hippocampus were evaluated. The rats were forced to swim twice (15-min session followed by a 5-min session 24h later) and underwent cognitive tests 24h after the last swimming exposure. The FST impaired the rats' performance on the OLT and reduced the PPI and acoustic startle responses, whereas the NOR was not affected. The cognitive impairments were not correlated with an immobility behavior profile, but a significant negative correlation between the frontal BDNF levels and immobility behavior was identified. These findings suggest a protective role of BDNF against behavioral despair and demonstrate a deleterious effect of the FST on spatial memory and pre-attentive processes, which point to the FST as a tool to induce cognitive impairments analogous to those observed in depression and in other neuropsychiatric disorders.

  8. Synergistic interaction between ketoconazole and several antidepressant drugs with allopregnanolone treatments in ovariectomized Wistar rats forced to swim.

    Science.gov (United States)

    Molina-Hernández, Miguel; Tellez-Alcántara, Norma Patricia; García, Julían Pérez; Lopez, Jorge Ivan Olivera; Jaramillo, M Teresa

    2004-12-01

    This article was aimed to investigate the interest of the combination allopregnanolone plus ketoconazole in depression with the time-sampling method in the forced swimming task. Dose-response curves for fluoxetine (0.5, 1.0 or 2.0 mg/kg, twice day, during 2 weeks; i.p.), desipramine (0.5, 1.0 or 2.14 mg/kg, twice a day, during 2 weeks; i.p.), ketoconazole (6.25, 12.5, 25.0 and 37.5 mg/kg, once a day, during 2 weeks; i.p.) and allopregnanolone (0.5, 1.5, 2.0 mg/kg; once a day, during 2 weeks; s.c.) were established. Fluoxetine (1.0 mg/kg, p swimming, highlighting a serotonergic mechanism while desipramine (1.0 mg/kg, p climbing behavior highlighting noradrenergic or dopaminergic effects. Subthreshold doses of fluoxetine (p immobility by increasing climbing. In conclusion, fluoxetine, desipramine, ketoconazole and allopregnanolone produced differential antidepressant-like actions in ovariectomized rats forced to swim. Ketoconazole, fluoxetine or desipramine synergized with allopregnanolone.

  9. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test.

    Science.gov (United States)

    Xu, Qun; Pan, Ying; Yi, Li-Tao; Li, Yu-Cheng; Mo, Shi-Fu; Jiang, Fu-Xin; Qiao, Chun-Feng; Xu, Hong-Xi; Lu, Xiao-Bo; Kong, Ling-Dong; Kung, Hsiang-Fu

    2008-06-01

    The forced swimming test (FST) is suggested to produce abnormalities in the serotonergic and hypothalamic-pituitary-adrenal (HPA) axis systems. Therefore, compounds that attenuate these neurobiological alterations may have potential as antidepressants. The behavioral and biochemical effects of psoralen, a major furocoumarin isolated from Psoralea corylifolia, were investigated in the FST model of depression in male mice. Psoralen significantly reduced immobility and increased swimming without altering climbing in the mouse FST. Psoralen remarkably reversed FST-induced alterations in serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in frontal cortex and hippocampus in mice. Furthermore, psoralen attenuated FST-induced elevations in serum corticotropin-releasing factor (CRF) and corticosterone concentrations to normalize the HPA axis activity. These results suggested that psoralen possessed potent antidepressant-like properties which were at least in part mediated by improving the abnormalities in the serotonergic and the HPA axis systems.

  10. No evidence for a bioenergetic advantage from forced swimming in rainbow trout under a restrictive feeding regime

    DEFF Research Database (Denmark)

    Skov, Peter Vilhelm; Lund, Ivar; Margarido Pargana, Alexandre

    2015-01-01

    during a 15 week growth experiment, in which fish were reared at three different current speeds: 1 BL s(-1), 0.5 BL s(-1) and still water (approximate to 0 BL s(-1)). Randomly selected groups of 100 fish were distributed among twelve 600 L tanks and maintained on a restricted diet regime. Specific growth...... rate (SGR) and feed conversion ratio (FCR) were calculated from weight and length measurements every 3 weeks. Routine metabolic rate (RMR) was measured every hour as rate of oxygen consumption in the tanks, and was positively correlated with swimming speed. Total ammonia nitrogen (TAN) excretion rates...... and the current speed at which fish were reared, fish that were forced to swim and were fed restrictively consequentially had poorer growth and feed utilization. The results show that for rainbow trout, water current can negatively affect growth despite promoting minor positive changes in substrate utilization...

  11. Effects of Methyl Jasmonate on Acute Stress Responses in Mice Subjected to Forced Swim and Anoxic Tests.

    Science.gov (United States)

    Aluko, Oritoke M; Umukoro, Solomon; Annafi, Olajide S; Adewole, Folashade A; Omorogbe, Osarume

    2015-01-01

    Methyl jasmonate (MJ) is an anti-stress hormone released by plants in response to external stressors and aids adaptation to stress. In this study, we evaluated the anti-stress activity of MJ using the forced swim endurance test (FSET) and anoxic tolerance test in mice. Male Swiss mice were given MJ (25-100 mg/kg, i.p) 30 min before the FSET and anoxic test were carried out. The first occurrence of immobility, duration of immobility, time spent in active swimming, and latency to exhaustion were assessed in the FSET. The onset to anoxic convulsion was measured in the anoxic tolerance test. MJ significantly (p adaptogens in boosting energy and resilience in the face of stress.

  12. Deletion of the 5-HT3 receptor differentially affects behavior of males and females in the Porsolt forced swim and defensive withdrawal tests.

    Science.gov (United States)

    Bhatnagar, Seema; Nowak, Nathan; Babich, Leslie; Bok, Lauren

    2004-08-31

    The central serotonin (5-HT) system is important in regulating behaviors associated with anxiety and depression. While a fair amount is known about the role of 5-HT1 and 5-HT2 receptor subtypes in regulating these behaviors, much less is known about the involvement of the 5-HT3 receptor, especially with regards to its role in sex differences in behavior. Our goal in the present studies was to examine whether deletion of the 5-HT3 receptor produces different effects in adult male and female mice on performance in three behavioral tests. We examined behavior of male and female mice lacking the 5-HT3 receptor (knock-out or KO) and their wild-type (WT) littermates in the Porsolt forced swim test because of its importance in reliably detecting anti-depressant efficacy. In addition, we examined behavior in the defensive withdrawal test and repeated exposure to an open field because behavior in these two tests provides measures of anxiety. In the Porsolt swim test, sex differences were eliminated by deletion of the 5-HT3 receptor while deletion had no effect in the habituation of locomotor activity to repeated exposure to an open field. In the defensive withdrawal test, deletion of the 5-HT3 receptor had more complex effects though these effects tended to be in the opposite direction in males and females. Together these results suggest that the 5-HT3 receptor regulates behavior-related to depression and anxiety differently in males and females. Whether these effects are due to the interaction of 5-HT3 receptor with gonadal hormones requires further examination.

  13. Analysis of the swimming activity of Pseudomonas aeruginosa by using photonic force microscope

    Science.gov (United States)

    Chan, Chia-Han; Chang, Bo-Jui; Huang, Ying-Jung; Fan, Chia-Chieh; Peng, Hwei-Ling; Chi, Sien; Hsu, Long

    2005-08-01

    Swimming activity of flagella is a main factor of the motility of bacteria. Flagella expressed on the surface of bacterial species serve as a primary means of motility including swimming. We propose to use optical tweezers to analyze the swimming activity of bacteria. The sample bacteria in the work is Pseudomonas aeruginosa, and it is a gram-negative bacterium and often causes leading to burn wound infections, urinary-tract infections, and pneumonia. The single polar flagellum of P. aeruginosa has been demonstrated to be important virulence and colonization factor of this opportunistic pathogen. We demonstrate a gene to regulate the bacterial swimming activity in P. aeruginosa PAO1 by biological method. However, the change of flagellar morphology was not observed by electron microscopy analysis, suggesting that the gene regulates the flagellar rotation that could not be detected by biological method. PFM exhibits a spatial resolution of a few nanometers to detect the relative position of the probe at an acquisition rate over 1 MHz. By binding a probe such as a bead or a quantum dot on the flagella, we expect the rotation of the probe due to the flagella could be detected. It is expected that the study of the swimming activity of P. aeruginosa provide potent method for the pathogenic role of the flagella in P. aeruginosa.

  14. Dual monoamine modulation for the antidepressant-like effect of lamotrigine in the modified forced swimming test.

    Science.gov (United States)

    Consoni, Fernando T; Vital, Maria A B F; Andreatini, Roberto

    2006-08-01

    Lamotrigine is an anticonvulsant drug that exhibits a clinical antidepressant effect. However, few studies have been conducted with lamotrigine in animal models of depression and its mechanism of antidepressant action is still unclear. The present study evaluates the effect of lamotrigine (5-20mg/kg, i.p.) in the modified forced swimming test and compare its behavior pattern in the test with those of paroxetine (20mg/kg, i.p.), nortriptyline (20mg/kg, i.p.) and dizolcipine-MK-801 (0.1mg/kg, i.p.). The effect of lamotrigine on locomotor activity and memory was also studied in order to exclude false-positive results. At low doses, lamotrigine (10mg/kg) decreased immobility and increased climbing scores, a similar pattern to nortriptyline. A higher lamotrigine dose (20mg/kg) also increased swimming scores. Lamotrigine neither changed locomotion in the open-field test nor impaired habituation. Paroxetine and dizolcipine decreased immobility and increased swimming. Dizolcipine also decreased climbing. However, although the effects of paroxetine and nortriptyline were seen without effect on locomotor activity, dizolcipine increased locomotor activity. The present study indicates that the antidepressant-like effect of lamotrigine is probably related to noradrenergic/serotonergic systems.

  15. Sex and age differences in the impact of the forced swimming test on the levels of steroid hormones.

    Science.gov (United States)

    Martínez-Mota, Lucía; Ulloa, Rosa-Elena; Herrera-Pérez, Jaime; Chavira, Roberto; Fernández-Guasti, Alonso

    2011-10-24

    Compared with the adult disorder, depression in children exhibits differences in its neurobiology, particularly in the HPA axis regulation. The bases of such differences can be evaluated in animal models of depression. The objective of the present study was to determine age and sex differences of Wistar rats in the forced swimming test (FST). The influence of sex and age on corticosterone, estrogens and testosterone serum levels was also determined. Prepubertal rats showed immobility, swimming and climbing behaviors during the pre-test and test sessions. In addition, in the prepubertal animals, no sex differences were found during the pre-test and test sessions. Age comparisons indicated no differences in the female groups, however adult males exhibited more immobility and less swimming than young males, in both FST sessions. The young and female rats showed less immobility behavior and increased levels of estrogens after the FST. The present results indicate that the FST is an animal model suitable to evaluate depressive-like behaviors in prepubertal subjects and to explore behavioral changes related to neurodevelopment.

  16. Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor.

    Science.gov (United States)

    Sałat, Kinga; Siwek, Agata; Starowicz, Gabriela; Librowski, Tadeusz; Nowak, Gabriel; Drabik, Urszula; Gajdosz, Ryszard; Popik, Piotr

    2015-12-01

    Ketamine produces rapid and long-lasting antidepressant effects in patients. The involvement of ketamine metabolites in these actions has been proposed. The effects of ketamine and its metabolites norketamine and dehydronorketamine on ligand binding to 80 receptors, ion channels and transporters was investigated at a single concentration of 10 μM. The affinities of all three compounds were then assessed at NMDA receptors using [3H]MK-801 binding. The dose-response relationships of all 3 compounds in the forced swim test were also investigated in mice 30 min after IP administration. The effects of ketamine and norketamine (both 50 mg/kg) were then examined at 30 min, 3 days and 7 days post administration. Among the 80 potential targets examined, only NMDA receptors were affected with a magnitude of >50% by ketamine and norketamine at the concentration of 10 μM. The Ki values of ketamine, norketamine and dehydronorketamine at NMDA receptors were 0.119±0.01, 0.97±0.1 and 3.21±0.3 μM, respectively. Ketamine and norketamine reduced immobility with minimum effective doses (MEDs) of 10 and 50 mg/kg, respectively; dehydronorketamine did not affect immobility at doses of up to 50 mg/kg. Neither ketamine nor norketamine reduced immobility in the forced swim test 3 and 7 days following administration. Further, oral administration of ketamine (5-50 mg/kg) did not affect immobility. We demonstrate that ketamine and norketamine but not dehydronorketamine given acutely at subanesthetic doses reduced immobility in the forced swim test. These antidepressant-like effects appear attributable to NMDA receptor inhibition.

  17. Ontogeny and adolescent alcohol exposure in Wistar rats: open field conflict, light/dark box and forced swim test.

    Science.gov (United States)

    Desikan, Anita; Wills, Derek N; Ehlers, Cindy L

    2014-07-01

    Epidemiological studies have demonstrated that heavy drinking and alcohol abuse and dependence peak during the transition between late adolescence and early adulthood. Studies in animal models have demonstrated that alcohol exposure during adolescence can cause a modification in some aspects of behavioral development, causing the "adolescent phenotype" to be retained into adulthood. However, the "adolescent phenotype" has not been studied for a number of behavioral tests. The objective of the present study was to investigate the ontogeny of behaviors over adolescence/young adulthood in the light/dark box, open field conflict and forced swim test in male Wistar rats. These data were compared to previously published data from rats that received intermittent alcohol vapor exposure during adolescence (AIE) to test whether they retained the "adolescent phenotype" in these behavioral tests. Three age groups of rats were tested (post-natal day (PD) 34-42; PD55-63; PD69-77). In the light/dark box test, younger rats escaped the light box faster than older adults, whereas AIE rats returned to the light box faster and exhibited more rears in the light than controls. In the open field conflict test, both younger and AIE rats had shorter times to first enter the center, spent more time in the center of the field, were closer to the food, and consumed more food than controls. In the forced swim test no clear developmental pattern emerged. The results of the light/dark box and the forced swim test do not support the hypothesis that adolescent ethanol vapor exposure can "lock-in" all adolescent phenotypes. However, data from the open field conflict test suggest that the adolescent and the AIE rats both engaged in more "disinhibited" and food motivated behaviors. These data suggest that, in some behavioral tests, AIE may result in a similar form of behavioral disinhibition to what is seen in adolescence.

  18. Propulsive force calculations in swimming frogs II. Application of a vortex ring model to DPIV data

    NARCIS (Netherlands)

    Stamhuis, EJ; Nauwelaerts, S

    2005-01-01

    Frogs propel themselves by kicking water backwards using a synchronised extension of their hind limbs and webbed feet. To understand this propulsion process, we quantified the water movements and displacements resulting from swimming in the green frog Rana esculenta, applying digital particle image

  19. Boxfish swimming paradox resolved : forces by the flow of water around the body promote manoeuvrability

    NARCIS (Netherlands)

    Van Wassenbergh, S.; van Manen, K.; Marcroft, T. A.; Alfaro, M. E.; Stamhuis, E. J.

    2015-01-01

    The shape of the carapace protecting the body of boxfishes has been attributed an important hydrodynamic role in drag reduction and in providing automatic, flow-direction realignment and is therefore used in bioinspired design of cars. However, tight swimming-course stabilization is paradoxical give

  20. Effect of forced swimming stress on in-vivo fertilization capacity of rat and subsequent offspring quality

    Directory of Open Access Journals (Sweden)

    Ghasem Saki

    2010-01-01

    Full Text Available Aims: This study aimed to determine the effect of 50 days of forced swimming stress on fertilization capacity of rat and subsequent offspring quality. Setting and Design: The prospective study designed in vivo. Materials and Methods: Total 90 Wistar rats including 30 adult male (3 months of age, weighing 210 ± 10.6 g and 60 female rats (3 months of age, weighing 230 ± 12.2 g were engaged in this study. Male rats were randomly divided in two equal groups (n=15: Control and experimental groups. Animals of the experimental group were submitted to forced swimming stress for 3 min in water at 32oC daily for 50 days. Then all adult male rats were mated with normal females (2 per each male for 7 days. Female rats were sacrificed and autopsy was performed on day 20 of pregnancy when uterus and ovaries were examined for the number of corpora lutea, dead and live fetuses, embryo resorption, implantation sites, and fetus weight. Conclusion: Results of this study have important implications for families attempting pregnancy. Stress pursuant to life events may have a negative impact on in vivo fertilization capacity of male rats and subsequent offspring quality.

  1. Effect of forced swimming stress on in-vivo fertilization capacity of rat and subsequent offspring quality.

    Science.gov (United States)

    Saki, Ghasem; Rahim, Fakher; Vaysi, Ozra Allah

    2010-01-01

    This study aimed to determine the effect of 50 days of forced swimming stress on fertilization capacity of rat and subsequent offspring quality. The prospective study designed in vivo. Total 90 Wistar rats including 30 adult male (3 months of age, weighing 210 +/- 10.6 g) and 60 female rats (3 months of age, weighing 230 +/- 12.2 g) were engaged in this study. Male rats were randomly divided in two equal groups (n = 15): Control and experimental groups. Animals of the experimental group were submitted to forced swimming stress for 3 min in water at 32 degrees C daily for 50 days. Then all adult male rats were mated with normal females (2 per each male) for 7 days. Female rats were sacrificed and autopsy was performed on day 20 of pregnancy when uterus and ovaries were examined for the number of corpora lutea, dead and live fetuses, embryo resorption, implantation sites, and fetus weight. Results of this study have important implications for families attempting pregnancy. Stress pursuant to life events may have a negative impact on in vivo fertilization capacity of male rats and subsequent offspring quality.

  2. Effects of pramipexole on the duration of immobility during the forced swim test in normal and ACTH-treated rats.

    Science.gov (United States)

    Kitagawa, Kouhei; Kitamura, Yoshihisa; Miyazaki, Toshiaki; Miyaoka, Junya; Kawasaki, Hiromu; Asanuma, Masato; Sendo, Toshiaki; Gomita, Yutaka

    2009-07-01

    The dopamine D2/D3 receptor agonist pramipexole has clinically been proven to improve depression or treatment-resistant depression. However, the involvement of the dopamine receptor system on the effect of pramipexole on depression remains unclear. We examined the influence of pramipexole on the duration of immobility during the forced swim test in normal and adrenocorticotropic hormone (ACTH)-treated rats and further analyzed the possible role of dopamine receptors in this effect. Additionally, the mechanism by which pramipexole acts in this model was explored specifically in relation to the site of action through the use of microinjections into the intramedial prefrontal cortex and nucleus accumbens. Pramipexole (0.3-1 mg/kg) significantly decreased the duration of immobility in normal and ACTH-treated rats. This effect was blocked by L-741,626, a D2 receptor antagonist, and nafadotride, a D3 receptor antagonist, in normal rats. Furthermore, infusions of pramipexole into the intranucleus accumbens, but not the medial prefrontal cortex, decreased the immobility of normal and ACTH-treated rats during the forced swim test. Taken together, the results of these experiments suggested that pramipexole, administered into the intranucleus accumbens rather than the medial prefrontal cortex, exerted an antidepressant-like effect on ACTH-treated rats via the dopaminergic system. The immobility-decreasing effect of pramipexole may be mediated by dopamine D2 and D3 receptors.

  3. Antidepressant-like effects of rosiglitazone, a PPARγ agonist, in the rat forced swim and mouse tail suspension tests.

    Science.gov (United States)

    Eissa Ahmed, Amany Ali; Al-Rasheed, Nawal Mohammed; Al-Rasheed, Nouf Mohammed

    2009-10-01

    Several studies have evaluated thiazolidinedione therapy as medical treatments for some central nervous system disorders, such as cognitive deficits associated with neurodegenerative disorders. However, there is limited data to support a direct role for peroxisome proliferator-activated receptor-γ agonists in depression. Therefore, the aim of this study was to investigate antidepressant-like activity of rosiglitazone using the mouse tail suspension test and the rat forced swimming test, two models sensitive to the effects of antidepressants. In the tail suspension test, 5 days of treatment with rosiglitazone (8.5 or 17 mg/kg, orally) reduced immobility time. In the forced swimming test, rosiglitazone (6 or 12 mg/kg, orally) treatment decreased immobility time and increased climbing. These effects were not accompanied by any alteration in locomotor activity in the open field test. Rosiglitazone treatment (6 or 12 mg/kg, orally) significantly reduced plasma corticosterone levels in rats. GW9662 significantly inhibited the rosiglitazone-induced reduction in the duration of immobility. In summary, this study suggests that rosiglitazone possesses a specific antidepressant-like activity in behavioral models and that this effect may be mediated by reduction of plasma corticosterone level.

  4. Comparative evaluation of forced swim test and tail suspension test as models of negative symptom of schizophrenia in rodents.

    Science.gov (United States)

    Chatterjee, Manavi; Jaiswal, Manoj; Palit, Gautam

    2012-01-01

    Previous studies have shown that the administration of NMDA antagonist can induce negative symptoms of schizophrenia which can be tested through the enhanced immobility observed in the forced swim test (FST). In the present study, we have compared the effects of acute as well as chronic administration of a noncompetitive NMDA receptor antagonist, ketamine on FST, and another behaviour despair model, tail suspension test (TST). Our observations suggest that chronic ketamine administration induced a state of enhanced immobility in FST, but such findings were not replicated in the TST model. Further, in FST, treatment with clozapine reverses the ketamine-induced immobility in mice, whereas it enhances the immobility duration in the TST model. However, haloperidol showed no protective effects in both models. The data suggests that although both of these tests show common behavioural measure of feeling despair, however, the underlying pathophysiology seems to be different. Hence, forced swim test but not tail suspension test can be used as a model of negative symptom of psychosis in mice.

  5. Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability.

    Science.gov (United States)

    Van Wassenbergh, S; van Manen, K; Marcroft, T A; Alfaro, M E; Stamhuis, E J

    2015-02-06

    The shape of the carapace protecting the body of boxfishes has been attributed an important hydrodynamic role in drag reduction and in providing automatic, flow-direction realignment and is therefore used in bioinspired design of cars. However, tight swimming-course stabilization is paradoxical given the frequent, high-performance manoeuvring that boxfishes display in their spatially complex, coral reef territories. Here, by performing flow-tank measurements of hydrodynamic drag and yaw moments together with computational fluid dynamics simulations, we reverse several assumptions about the hydrodynamic role of the boxfish carapace. Firstly, despite serving as a model system in aerodynamic design, drag-reduction performance was relatively low compared with more generalized fish morphologies. Secondly, the current theory of course stabilization owing to flow over the boxfish carapace was rejected, as destabilizing moments were found consistently. This solves the boxfish swimming paradox: destabilizing moments enhance manoeuvrability, which is in accordance with the ecological demands for efficient turning and tilting.

  6. Desipramine and citalopram attenuate pretest swim-induced increases in prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis and the lateral division of the central nucleus of the amygdala in the forced swimming test.

    Science.gov (United States)

    Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Cho, Jin Hee; Cho, Yun Ha; Kim, Dong-Hoon; Shin, Kyung Ho

    2014-10-01

    Dynorphin in the nucleus accumbens shell plays an important role in antidepressant-like effect in the forced swimming test (FST), but it is unclear whether desipramine and citalopram treatments alter prodynorphin levels in other brain areas. To explore this possibility, we injected mice with desipramine and citalopram 0.5, 19, and 23 h after a 15-min pretest swim and observed changes in prodynorphin expression before the test swim, which was conducted 24 h after the pretest swim. The pretest swim increased prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis (dBNST) and lateral division of the central nucleus of the amygdala (CeL). This increase in prodynorphin immunoreactivity in the dBNST and CeL was blocked by desipramine and citalopram treatments. Similar changes in prodynorphin mRNA levels were observed in the dBNST and CeL, but these changes did not reach significance. To understand the underlying mechanism, we assessed changes in phosphorylated CREB at Ser(133) (pCREB) immunoreactivity in the dBNST and central nucleus of the amygdala (CeA). Treatment with citalopram but not desipramine after the pretest swim significantly increased pCREB immunoreactivity only in the dBNST. These results suggest that regulation of prodynorphin in the dBNST and CeL before the test swim may be involved in the antidepressant-like effect of desipramine and citalopram in the FST and suggest that changes in pCREB immunoreactivity in these areas may not play an important role in the regulation of prodynorphin in the dBNST and CeA.

  7. Antidepressant-like effects of nicotine and mecamylamine in the mouse forced swim and tail suspension tests: role of strain, test and sex

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Redrobe, John P

    2009-01-01

    differences. Here, we compared the effects of nicotine and mecamylamine in females and males of NMRI, C57BL/6J and BALB/c mice using the mouse forced swim (mFST) and tail suspension tests (mTST). In the mFST, mecamylamine, but not nicotine, increased swim distance in NMRI mice. In contrast, nicotine......, but not mecamylamine, increased swim distance in C57BL/6J mice. Both drugs increased swim distance in BALB/c mice. Effects in the mFST were independent of sex. In the mTST, mecamylamine decreased immobility in NMRI mice only, independent of sex. Nicotine was devoid of effects in the mTST, except in female C57BL/6J...

  8. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats.

    Science.gov (United States)

    Arndt, David L; Peterson, Christy J; Cain, Mary E

    2015-01-01

    Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST) is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC), standard (SC), or isolated (IC) conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p.) was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg) rats and EC-fluoxetine (20 mg/kg) rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression.

  9. Antidepressant-Like Effects of Lindera obtusiloba Extracts on the Immobility Behavior of Rats in the Forced Swim Test.

    Science.gov (United States)

    Lim, Dong Wook; Lee, Mi-Sook; Her, Song; Cho, Suengmok; Lee, Chang-Ho; Kim, In-Ho; Han, Daeseok

    2016-02-27

    Lindera obtusiloba extracts are commonly used as an alternative medicine due to its numerous health benefits in Korea. However, the antidepressant-like effects of L. obtusiloba extracts have not been fully elucidated. In this study, we aimed to determine whether L. obtusiloba extracts exhibited antidepressant-like activity in rats subjected to forced swim test (FST)-induced depression. Acute treatment of rats with L. obtusiloba extracts (200 mg/kg, p.o.) significantly reduced immobility time and increased swimming time without any significant change in climbing. Rats treated with L. obtusiloba extracts also exhibited a decrease in the limbic hypothalamic-pituitary-adrenal (HPA) axis response to the FST, as indicated by attenuation of the corticosterone response and decreased c-Fos immunoreactivity in the hippocampus CA3 region. In addition, L. obtusiloba extracts, at concentrations that were not affected by cell viability, significantly decreased luciferase activity in response to cortisol in a concentration-dependent manner by the glucocorticoid binding assay in HeLa cells. Our findings suggested that the antidepressant-like effects of L. obtusiloba extracts were likely mediated via the glucocorticoid receptor (GR). Further studies are needed to evaluate the potential of L. obtusiloba extracts as an alternative therapeutic approach for the treatment of depression.

  10. Antidepressant-Like Effects of Lindera obtusiloba Extracts on the Immobility Behavior of Rats in the Forced Swim Test

    Directory of Open Access Journals (Sweden)

    Dong Wook Lim

    2016-02-01

    Full Text Available Lindera obtusiloba extracts are commonly used as an alternative medicine due to its numerous health benefits in Korea. However, the antidepressant-like effects of L. obtusiloba extracts have not been fully elucidated. In this study, we aimed to determine whether L. obtusiloba extracts exhibited antidepressant-like activity in rats subjected to forced swim test (FST-induced depression. Acute treatment of rats with L. obtusiloba extracts (200 mg/kg, p.o. significantly reduced immobility time and increased swimming time without any significant change in climbing. Rats treated with L. obtusiloba extracts also exhibited a decrease in the limbic hypothalamic-pituitary-adrenal (HPA axis response to the FST, as indicated by attenuation of the corticosterone response and decreased c-Fos immunoreactivity in the hippocampus CA3 region. In addition, L. obtusiloba extracts, at concentrations that were not affected by cell viability, significantly decreased luciferase activity in response to cortisol in a concentration-dependent manner by the glucocorticoid binding assay in HeLa cells. Our findings suggested that the antidepressant-like effects of L. obtusiloba extracts were likely mediated via the glucocorticoid receptor (GR. Further studies are needed to evaluate the potential of L. obtusiloba extracts as an alternative therapeutic approach for the treatment of depression.

  11. Antidepressant-like effects of echo-planar magnetic resonance imaging in mice determined using the forced swimming test.

    Science.gov (United States)

    Aksoz, Elif; Aksoz, Tolga; Bilge, S Sirri; Ilkaya, Fatih; Celik, Suleyman; Diren, H Baris

    2008-10-21

    Echo-planar magnetic resonance imaging (EP-MRI), which is novel variant of MRI, is thought to have antidepressant properties in humans and animal models. Using the forced swimming test (FST), we investigated which monoaminergic system in mice is affected by EP-MRI. The short- and long-term effects of EP-MRI on immobility time in the FST and motor activity within a locomotor activity cage were examined. Two groups of mice underwent 20 min of EP-MRI in an MR scanner (Siemens, 1.5 T Symphony) either 23.5 or 1 h before the start of the second session of the FST. In both groups, the immobility duration in the FST was reduced, similar to effective antidepressant drug treatments. Climbing behavior in the 1-h group and swimming behavior in the 23.5-h group increased significantly, similar to that seen after the administration of desipramine (a noradrenaline reuptake inhibitor) and sertraline (a selective serotonin reuptake inhibitor), respectively. The findings support the hypothesis that EP-MRI has an antidepressant-like effect. We suggest that the antidepressant-like effect begins in the early period with noradrenaline systems and is maintained in the late period with serotonin systems.

  12. A role for serotonin in the antidepressant activity of NG-Nitro-L-arginine, in the rat forced swimming test.

    Science.gov (United States)

    Gigliucci, Valentina; Buckley, Kathleen Niamh; Nunan, John; O'Shea, Karen; Harkin, Andrew

    2010-02-01

    The present study determined regional serotonin (5-HT) synthesis and metabolism changes associated with the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NA) and the influence of 5-HT receptor blockade in the antidepressant-like actions of L-NA in the forced swimming test (FST). Regional effects of L-NA (5,10 and 20mg/kg i.p.) on tryptophan hydroxylase (TPH) activity, the rate limiting enzyme for 5-HT synthesis, were determined by measuring accumulation of the transient intermediate 5-hydoxytryptophan (5-HTP) following in vivo administration of the amino acid decarboxylase inhibitor, NSD 1015 (100mg/kg). L-NA (5-20mg/kg) dose dependently increased 5-HTP accumulation, particularly in the amygdaloid cortex, following exposure to the FST. L-NA also provoked an increase in regional brain 5-HIAA concentrations and in the 5-HIAA:5-HT metabolism ratio. Co-treatment with NSD-1015 failed to consistently modify the antidepressant-like effects of L-NA in the FST. Sub-active doses of L-NA (1mg/kg) and the 5-HT re-uptake inhibitor fluoxetine (2.5mg/kg) acted synergistically to increase swimming in the test. Co-treatment with the non-selective 5-HT receptor antagonist metergoline (1, 2 and 4mg/kg), attenuated the L-NA (20mg/kg)-induced reduction in immobility and increase in swimming behaviours. Metergoline alone however provoked an increase in immobility and reduction in swimming behaviours in the test. A similar response was obtained following co-treatment with the preferential 5-HT(2A) receptor antagonist ketanserin (5mg/kg) and the 5-HT(2C) receptor antagonist RO-430440 (5mg/kg). Co-treatment with the 5-HT(1A) receptor antagonist WAY 100635 (0.3mg/kg) or the 5-HT(1B) receptor antagonist GR 127935 (4mg/kg) failed to influence the antidepressant-like activity of L-NA. Taken together these data provide further support for a role for 5-HT in the antidepressant-like properties of NOS inhibitors.

  13. Antidepressant-like effect of Hoodia gordonii in a forced swimming test in mice: evidence for involvement of the monoaminergic system

    Directory of Open Access Journals (Sweden)

    M.C.O. Citó

    2015-01-01

    Full Text Available Hoodia gordonii is a plant species used traditionally in southern Africa to suppress appetite. Recently, it has been associated with a significant increase in blood pressure and pulse rate in women, suggesting sympathomimetic activity. The present study investigated the possible antidepressant-like effects of acute and repeated (15 days administration of H. gordonii extract (25 and 50 mg/kg, po to mice exposed to a forced swimming test (FST. Neurochemical analysis of brain monoamines was also carried out to determine the involvement of the monoaminergic system on these effects. Acute administration of H. gordonii decreased the immobility of mice in the FST without accompanying changes in general activity in the open-field test during acute treatment, suggesting an antidepressant-like effect. The anti-immobility effect of H. gordonii was prevented by pretreatment of mice with PCPA [an inhibitor of serotonin (5-HT synthesis], NAN-190 (a 5-HT1A antagonist, ritanserin (a 5-HT2A/2C antagonist, ondansetron (a 5-HT3A antagonist, prazosin (an α1-adrenoceptor antagonist, SCH23390 (a D1 receptor antagonist, yohimbine (an α2-adrenoceptor antagonist, and sulpiride (a D2 receptor antagonist. A significant increase in 5-HT levels in the striatum was detected after acute administration, while 5-HT, norepinephrine and dopamine were significantly elevated after chronic treatment. Results indicated that H. gordonii possesses antidepressant-like activity in the FST by altering the dopaminergic, serotonergic, and noradrenergic systems.

  14. Effect of desipramine and citalopram treatment on forced swimming test-induced changes in cocaine- and amphetamine-regulated transcript (CART) immunoreactivity in mice.

    Science.gov (United States)

    Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Kim, Jin Wook; Kim, Jeong Min; Shin, Kyung Ho

    2014-05-01

    Recent study demonstrates antidepressant-like effect of cocaine- and amphetamine-regulated transcript (CART) in the forced swimming test (FST), but less is known about whether antidepressant treatments alter levels of CART immunoreactivity (CART-IR) in the FST. To explore this possibility, we assessed the treatment effects of desipramine and citalopram, which inhibit the reuptake of norepinephrine and serotonin into the presynaptic terminals, respectively, on changes in levels of CART-IR before and after the test swim in mouse brain. Levels of CART-IR in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), and hypothalamic paraventricular nucleus (PVN) were significantly increased before the test swim by desipramine and citalopram treatments. This increase in CART-IR in the AcbSh, dBNST, and PVN before the test swim remained elevated by desipramine treatment after the test swim, but this increase in these brain areas returned to near control levels after test swim by citalopram treatment. Citalopram, but not desipramine, treatment increased levels of CART-IR in the central nucleus of the amygdala (CeA) and the locus ceruleus (LC) before the test swim, and this increase was returned to control levels after the test swim in the CeA, but not in the LC. These results suggest common and distinct regulation of CART by desipramine and citalopram treatments in the FST and raise the possibility that CART in the AcbSh, dBNST, and CeA may be involved in antidepressant-like effect in the FST.

  15. Impact of maternal melatonin suppression on forced swim and tail suspension behavioral despair tests in adult offspring.

    Science.gov (United States)

    Voiculescu, S E; Rosca, A E; Zeca, V; Zagrean, L; Zagrean, A M

    2015-01-01

    Melatonin is an essential hormone, which regulates circadian rhythms and has antioxidative and anticarcinogenic effects. As melatonin secretion is suppressed by light, this effect was examined on the offspring of the Wistar rat females exposed to continuous light (500 lux) during the second half of the pregnancy (day 12 to 21). Control rats were kept under a 12:12 light-dark cycle. The resulted male offspring have been behaviorally assessed for depression after postnatal day 60 by using Forced Swim Test (FST) and Tail Suspension Test (TST). Animals resulted from the melatonin deprived pregnancies have developed an abnormal response in the TST, but a normal FST behavior. Also, TST active movement was different in the melatonin suppression group compared to the control group. These findings suggest that intrauterine melatonin deprivation might be linked to the depressive like behavior in adult male offspring.

  16. Identification of multiple genetic loci in the mouse controlling immobility time in the tail suspension and forced swimming tests.

    Science.gov (United States)

    Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi

    2015-05-01

    Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.

  17. Antidepressant-like properties of prepro-TRH 178-199: acute effects in the forced swim test.

    Science.gov (United States)

    Redei, E; Organ, M; Hart, S

    1999-11-01

    This study examined the central effects of rat prepro-TRH 178-199, a peptide with corticotropin release inhibiting activity at the pituitary, on the Porsolt forced swim test (FST) of depressive behavior in rats. Subacute intracerebroventricular administration of prepro-TRH 178-199 dose-responsively reduced floating and increased active behaviors in the FST. Chronic administration of 6 microg/kg prepro-TRH 178-199 decreased floating more than subacute treatment, but there were no significant differences between chronic and subacute treatment effects on active behavior. Biological activity of this peptide resides in the C-terminal fragment as prepro-TRH 178-199 and prepro-TRH 191-199 were equally potent in the FST. These data suggest that endogenous prepro-TRH 178-199 with its antidepressant-like activity might contribute to the etiology or manifestation of depressive behavior.

  18. Differences in the effects of 5-HT1A receptor agonists on forced swimming behavior and brain 5-HT metabolism between low and high aggressive mice

    NARCIS (Netherlands)

    Veenema, AH; Cremers, TIFH; Jongsma, ME; Steenbergen, PJ; de Boer, SF; Koolhaas, JM; Jongsma, Minke E.; Koolhaas, Jaap M.

    2005-01-01

    Rationale: Male wild house- mice genetically selected for long attack latency ( LAL) and short attack latency ( SAL) differ in structural and functional properties of postsynaptic serotonergic- 1A ( 5- HT1A) receptors. These mouse lines also show divergent behavioral responses in the forced swimming

  19. Allopregnanolone reduces immobility in the forced swimming test and increases the firing rate of lateral septal neurons through actions on the GABAA receptor in the rat.

    Science.gov (United States)

    Rodrìguez-Landa, Juan Francisco; Contreras, Carlos M; Bernal-Morales, Blandina; Gutièrrez-Garcìa, Ana G; Saavedra, Margarita

    2007-01-01

    Since allopregnanolone reduces the total time of immobility in rats submitted to the forced swimming test, we decided to explore whether this neuroactive steroid shares other antidepressant-like actions, such as increasing the neuronal firing rate in the lateral septal nucleus (LSN). In order to discard the influence of the oestrous cycle on immobility and on the firing rate of LSN neurons, all Wistar rats used in the study underwent ovariectomy before treatments. A group of rats received different doses of allopregnanolone (0.5, 1.0, 2.0 and 3.0 mg/kg, i.p.) 1 hour before being forced to swim in order to identify the minimum effective dose diminishing immobility. None of the tested doses of allopregnanolone produced significant changes in motor activity in the open-field test. The minimum dose of allopregnanolone producing a significant reduction in the total time of immobility (pimmobility (pimmobility in the forced swimming test (1.0 mg/kg) significantly (p immobility and LSN firing rate. In conclusion, allopregnanolone produces an antidepressant-like effect in the forced swimming test, associated with an increase in the LSN neuronal firing rate, seemingly mediated by the GABAA receptor.

  20. Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats.

    Science.gov (United States)

    Sussai, Daniela Aparecida; Carvalho, Paulo de Tarso Camillo de; Dourado, Doroty Mesquita; Belchior, Ana Carulina Guimarães; dos Reis, Filipe Abdalla; Pereira, Daniel Martins

    2010-01-01

    Studies suggest that high-intensity physical exercise can cause damage to skeletal muscles, resulting in muscle soreness, fatigue, inflammatory processes and cell apoptosis. The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on a decrease in creatine kinase (CK) levels and cell apoptosis. Twenty male Wistar rats were randomly divided into two equal groups: group 1 (control), resistance swimming; group 2 (LLLT), resistance swimming with LLLT. They were subjected to a single application of indium gallium aluminum phosphide (InGaAlP) laser immediately following the exercise for 40 s at an output power of 100 mW, wavelength 660 nm and 133.3 J/cm(2). The groups were subdivided according to sample collection time: 24 h and 48 h. CK was measured before and both 24 h and 48 h after the test. Samples of the gastrocnemius muscle were processed to determine the presence of apoptosis using terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labeling. (There was a significant difference in CK levels between groups (P < 0.0001) as well as between the 24 h and 48 h levels in the control group, whereas there was no significant intra-group difference in the LLLT group at the same evaluation times. In the LLLT group there were 66.3 +/- 13.2 apoptotic cells after 24 h and 39.0 +/- 6.8 apoptotic cells after 48 h. The results suggest that LLLT influences the metabolic profile of animals subjected to fatigue by lowering serum levels of CK. This demonstrates that LLLT can act as a preventive tool against cell apoptosis experienced during high-intensity physical exercise.

  1. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim.

    Science.gov (United States)

    Lee, Casey Jane; Sanders, Ross H; Payton, Carl J

    2014-01-01

    This study examined changes in the propulsive force and stroke parameters of arm-amputee and able-bodied swimmers during tethered swimming. Eighteen well-trained female swimmers (nine unilateral arm amputees and nine able-bodied) were videotaped performing maximal-effort 30 s front-crawl swims, while attached to a load cell mounted on a pool wall. Tether force, stroke rate, stroke phase durations and inter-arm angle were quantified. The able-bodied group produced significantly higher mean and maximum tether forces than the amputee group. The mean of the intra-cyclic force peaks was very similar for both groups. Mean and maximum tether force had significant negative associations with 100 m swim time, for both groups. Both groups exhibited a similar fatigue index (relative decrease in tether force) during the test, but the amputees had a significantly greater stroke rate decline. A significant positive association between stroke rate decline and fatigue index was obtained for the able-bodied group only. Inter-arm angle and relative phase durations did not change significantly during the test for either group, except the recovery phase duration of the arm amputees, which decreased significantly. This study's results can contribute to the development of a more evidence-based classification system for swimmers with a disability.

  2. Involvement of the monoaminergic system in the antidepressant-like activity of chromium chloride in the forced swim test.

    Science.gov (United States)

    Piotrowska, A; Siwek, A; Wolak, M; Pochwat, B; Szewczyk, B; Opoka, W; Poleszak, E; Nowak, G

    2013-08-01

    Bio-metal chromium(III) is a crucial microelement for the proper functioning of living organisms. Previous preclinical and clinical studies reported its potential antidepressant properties. The aim of the present study was to examine the effect of antidepressants and noradrenergic and dopaminergic receptor antagonists on chromium chloride (CrCl₃) activity in the forced swim test (FST) in mice and rats. Imipramine (5 mg/kg), fluoxetine (5 mg/kg) and reboxetine (5 mg/kg) but not bupropion (1 mg/kg), administered jointly with CrCl₃ at a dose of 6 mg/kg, reduced the immobility time in the FST in mice. The reduction of the immobility time induced by the active dose (12 mg/kg) of CrCl₃ was completely abolished by propranolol (2 mg/kg, β-adrenoceptor antagonist), SCH 23390 (0.5 mg/kg, a dopamine D₁ receptor antagonist), and partially by prazosin (1 mg/kg, an α₁-adrenoceptor antagonist), yohimbine (1 mg/kg, an α₂-adrenoceptor antagonist) and sulpiryd (50 mg/kg, a dopamine D₂/D₃ receptor antagonist) administration. The locomotor activity was significantly reduced by CrCl₃ + reboxetine treatment, which did not influence the reboxetine enhancement of the antidepressant-like effect of CrCl₃ in the FST. Moreover, CrCl₃ at a dose of 32 mg/kg (although not at 12 mg/kg) significantly reduced the immobility and enhanced the climbing (but not swimming) time in the FST in rats, which indicates the involvement of the noradrenergic pathway in this effect. The present study indicates that the antidepressant-like activity of chromium in the FST is dependent (although to a different extent) on the noradrenergic, dopaminergic and serotonin systems.

  3. Influence of sildenafil on the antidepressant activity of bupropion and venlafaxine in the forced swim test in mice.

    Science.gov (United States)

    Socała, Katarzyna; Nieoczym, Dorota; Wyska, Elżbieta; Poleszak, Ewa; Wlaź, Piotr

    2012-12-01

    Recent studies highlight the involvement of the nitrergic system in the mechanism of action of antidepressant drugs. Sildenafil, a selective PDE5 inhibitor, was shown to abolish the anti-immobility effects of bupropion, venlafaxine and s-citalopram in mice. In this study we assessed the effects of sildenafil on the activity of bupropion and venlafaxine in the forced swim test in mice. Swim trials were conducted by placing mice in glass cylinders filled with water for 6min and the duration of the behavioral immobility during the last 4min of the test was evaluated. Locomotor activity was evaluated with photoresistor actimeters. Brain and serum concentrations of the studied antidepressants were determined by HPLC method. Sildenafil at a dose of 20mg/kg, but not 5 and 10mg/kg, significantly increased the anti-immobility action of bupropion (20mg/kg). The antidepressant activity of venlafaxine (2mg/kg) was potentiated by joint administration with sildenafil at doses of 10 and 20mg/kg. Since the combined treatments did not increase the locomotor activity, the antidepressant-like effects were not related to non-specific behavioral activation. Data from pharmacokinetic studies revealed that sildenafil increased bupropion and venlafaxine levels in serum without affecting their concentrations in the brain. The present study demonstrates the enhancement of anti-immobility action of bupropion and venlafaxine by sildenafil co-administration. The observed changes might have been partly due to pharmacokinetic interactions. However, mechanisms underlying the effects of sildenafil on the antidepressant activity of bupropion and venlafaxine should be carefully evaluated in further studies.

  4. Intra-lateral septal infusions of folic acid alone or combined with various antidepressant drugs produce antidepressant-like actions in male Wistar rats forced to swim.

    Science.gov (United States)

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia; Olivera-López, Jorge I; Jaramillo, M Teresa

    2012-01-10

    Intra-cerebral administrations of folic acid produce antidepressant-like effects; either alone or combined with several antidepressant drugs. However, the specific limbic structures implied in the antidepressant-like actions of folic acid are un-known. Thus, intra-lateral septal infusions of folic acid (5.0 nmol, Pimmobility by increasing swimming behavior in the forced swimming test (FST) of male Wistar rats. Conversely, desipramine (10.0 mg/kg, Pimmobility by increasing climbing behavior. Subthreshold doses of folic acid (2.5 nmol/intra-LSN) combined with subthreshold doses of folic acid (25.0 mg/kg, p.o., Pimmobility in the FST. These antidepressant-like actions, probably, were due to modifications of the serotonergic system since swimming behavior was increased and these effects were canceled by ketanserin.

  5. Behavioral analysis during the forced swimming test using a joystick device.

    Science.gov (United States)

    Gersner, Roman; Dar, Dalit E; Shabat-Simon, Maytal; Zangen, Abraham

    2005-04-30

    The behavioral test described by Porsolt in 1977 for screening potential antidepressant drugs is extensively used both in basic research and in the pharmaceutical industry. The measured behavior is the immobility time during the swimming test (preformed in rodents), which decreases upon acute antidepressant treatment. Several research groups have suggested some modifications on the original Porsolt paradigm and its analysis. Nevertheless, there are still inaccuracies resulting from either undefined intermediate behaviors or from considering the movement of the whole body as one unit without analyzing the motion of the limbs. Herein, we propose a novel and simple scoring method, based on continuous measurement of the limbs motion, using a joystick, a computer screen and simple software. We validated the method, using antidepressant drugs and studied examples of false positives and false negatives of the traditional Porsolt paradigm. The proposed method is easy to use, it accounts for all range of movements and the analysis is relatively fast. Moreover, the results obtained using this analysis method show a normal Gaussian distribution in a population of rats (while the traditional Porsolt analysis does not) which allows selective breeding of 'motivated' and 'depressed' lines of animals.

  6. Swimming and the heart.

    Science.gov (United States)

    Lazar, Jason M; Khanna, Neel; Chesler, Roseann; Salciccioli, Louis

    2013-09-20

    Exercise training is accepted to be beneficial in lowering morbidity and mortality in patients with cardiac disease. Swimming is a popular recreational activity, gaining recognition as an effective option in maintaining and improving cardiovascular fitness. Swimming is a unique form of exercise, differing from land-based exercises such as running in many aspects including medium, position, breathing pattern, and the muscle groups used. Water immersion places compressive forces on the body with resulting physiologic effects. We reviewed the physiologic effects and cardiovascular responses to swimming, the cardiac adaptations to swim training, swimming as a cardiac disease risk factor modifier, and the effects of swimming in those with cardiac disease conditions such as coronary artery disease, congestive heart failure and the long-QT syndrome.

  7. Sildenafil, a phosphodiesterase type 5 inhibitor, enhances the activity of two atypical antidepressant drugs, mianserin and tianeptine, in the forced swim test in mice.

    Science.gov (United States)

    Socała, Katarzyna; Nieoczym, Dorota; Wyska, Elżbieta; Poleszak, Ewa; Wlaź, Piotr

    2012-08-01

    Sildenafil, a selective phosphodiesterase type 5 inhibitor, has recently been reported to abolish anti-immobility action of antidepressant drugs, i.e., bupropion, venlafaxine and S-citalopram, in the forced swim test in mice. The present study was designed to investigate the influence of sildenafil on the potential of two atypical antidepressants, namely mianserin and tianeptine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of the behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmocokinetic interaction, total brain concentrations of the studied antidepressants were determined by HPLC method. Sildenafil at a dose of 2.5 mg/kg did not affect the activity of mianserin (20 mg/kg) in the forced swim test. Interestingly, at higher doses (5 and 10 mg/kg), sildenafil significantly enhanced the anti-immobility action of mianserin. Likewise, sildenafil (5, 10 and 20 mg/kg) robustly augmented the antidepressant activity of tianeptine (30 mg/kg). Mianserin alone, as well as in a combination with sildenafil at the highest dose, caused a potent reduction in locomotor activity. However, the changes in motor activity did not interfere with the data obtained in the forced swim test. Sildenafil significantly increased the total brain tianeptine concentration. No alteration in mianserin level in the brain after sildenafil co-administration was observed. The present study suggests that sildenafil enhances the activity of mianserin and tianeptine in the forced swim test in mice. The changes in the antidepressant activity of mianserin evoked by sildenafil co-administration were related to pharmacodynamic interaction while the interaction between tianeptine and sildenafil was, at least in part, pharmacokinetic in nature.

  8. The differential effect of metabolic alkalosis on maximum force and rate of force development during repeated, high-intensity cycling.

    Science.gov (United States)

    Siegler, Jason C; Marshall, Paul W M; Raftry, Sean; Brooks, Cristy; Dowswell, Ben; Romero, Rick; Green, Simon

    2013-12-01

    The purpose of this investigation was to assess the influence of sodium bicarbonate supplementation on maximal force production, rate of force development (RFD), and muscle recruitment during repeated bouts of high-intensity cycling. Ten male and female (n = 10) subjects completed two fixed-cadence, high-intensity cycling trials. Each trial consisted of a series of 30-s efforts at 120% peak power output (maximum graded test) that were interspersed with 30-s recovery periods until task failure. Prior to each trial, subjects consumed 0.3 g/kg sodium bicarbonate (ALK) or placebo (PLA). Maximal voluntary contractions were performed immediately after each 30-s effort. Maximal force (F max) was calculated as the greatest force recorded over a 25-ms period throughout the entire contraction duration while maximal RFD (RFD max) was calculated as the greatest 10-ms average slope throughout that same contraction. F max declined similarly in both the ALK and PLA conditions, with baseline values (ALK: 1,226 ± 393 N; PLA: 1,222 ± 369 N) declining nearly 295 ± 54 N [95% confidence interval (CI) = 84-508 N; P force vs. maximum rate of force development during a whole body fatiguing task.

  9. [Effect of Acupuncture Intervention on c-jun N-terminal Kinase Signaling in the Hippocampus in Rats with Forced Swimming Stress].

    Science.gov (United States)

    Guo, Yu; Xu, Ke; Bao, Wu-ye; Wang, Yu; Zhang, Xu-hui; Xu, Ming-min; Yu, Miao; Zhang, Chun-tao; Zhao, Bing-cong; Wu, Ji-hong; Tu, Ya

    2016-02-01

    To observe the effect of acupuncture on c-jun N-terminal Kinase (JNK) signaling in the hippocampus in rats with forced-swimming stress, so as to reveal its underlying mechanism in relieving depression-like motor response. Forty-eight Sprague-Dawley rats were randomly divided into 8 groups as control, control + JNK inhibitor (SP 600125) , model, model + SP 600125, acupuncture, acupuncture + SP 600125, Fluoxetine (an anti-depressant) , and Fluoxetine + SP 600125 (n = 6 in each group). The depression-like behavior (immobility) model was established by forcing the rat to swim in a glass-cylinder and solitary raise. Acupuncture stimulation was applied to "Baihui" (GV-20) and "Yintang" (GV 29) for 20 min before forced swimming and once again 24 h later.. The rats of the Fluoxetine and Fluoxetine+ SP 600125 groups were treated by intragastric administration of fluoxetine 10 mL (1.8 mg)/kg before forced swimming and once again 24 h thereafter. The rats of the model + SP 600125 and acupuncture + SP 600125 groups were treated by intraperitoneal injection of SP 600125 (10 mg/kg) 90 min before forced swimming and 30 min before acupuncture intervention, respectively. The immobility duration of rats in the water glass-cylinder was used to assess their depression-like behavior response. The expression levels of protein kinase kinase 4 (MKK 4), MKK 7, JNK, and phosphorylated JNK (p-JNK) in the hippocampus were detected by Western blot. Compared to the control group, the duration of immobility, and the expression levels of hippocampal MKK 4, MKK 7, and p-JNK proteins were significantly increased in the model group (P acupuncture, acupuncture + SP 600125, Fluoxetine and Fluoxetine + SP 600125 groups, the expression levels of hippocampal MKK 4 and MKK 7 proteins in the Fluoxetine + SP 600125 group, and those of p-JNK protein in the acupuncture, acupuncture + SP 600125, model + SP 600125, Fluoxetine and Fluoxetine + SP 600125 groups were considerably decreased (P acupuncture

  10. The comparison of immobility time in experimental rat swimming models.

    Science.gov (United States)

    Calil, Caroline Morini; Marcondes, Fernanda Klein

    2006-09-27

    Rat swimming models have been used in studies about stress and depression. However, there is no consensus about interpreting immobility (helplessness or adaptation) in the literature. In the present study, immobility time, glucose and glycogen mobilization, corticosterone and the effect of desipramine and diazepam were investigated in two different models: swimming stress and the forced swimming test. Immobility time was lower in swimming stress than in the forced swimming test. Both swimming models increased corticosterone levels in comparison with control animal levels. Moreover, swimming stress induced higher corticosterone levels than the forced swimming test did [F(2,14)=59.52; pswimming stressswimming testswimming stress in comparison with the forced swimming test and control. The immobility time was recorded and measured in another group treated with desipramine and diazepam in two protocols: a single session of forced swimming test or swimming stress and two sessions (pre- and retest) of forced swimming model or swimming stress. Desipramine decreased the immobility time in the forced swimming test in both the single [F(2,25)=20.63; pswimming session, without changes in the swimming stress model. Diazepam increased the immobility time in the swimming stress but not in the forced swimming test during the single [F(2,26)=11.24; p=0.0003] and retest sessions [F(2,38)=4.17; p=0.02]. It was concluded that swimming stress and the forced swimming test induced different behavior, hormonal and metabolic responses and represented different situations to the animal.

  11. Sertraline behavioral response associates closer and dose-dependently with cortical rather than hippocampal serotonergic activity in the rat forced swim stress.

    Science.gov (United States)

    Mikail, Hudu G; Dalla, Christina; Kokras, Nikolaos; Kafetzopoulos, Vasilios; Papadopoulou-Daifoti, Z

    2012-09-10

    The rat Forced Swim Test (FST) is widely used to investigate the response to antidepressant treatment. Selective serotonin reuptake inhibitors (SSRIs) elongate swimming duration during the FST, while climbing duration is unaffected. In the present study, we aimed to correlate behavioral effects of the SSRI sertraline in the FST with respective changes in the serotonergic activity of the hippocampus and the prefrontal cortex. Male rats were subjected to the standard FST (two swim sessions in two consecutive days) and between the two sessions they received three i.p. injections of sertraline (10 mg/kg or 40 mg/kg) or vehicle. All rats were killed immediately after the second FST session. Unstressed animals received the same administration schemes and were killed in equivalent time-points. Serotonin and its metabolite 5-HIAA were assayed in the hippocampus and the prefrontal cortex with the use of high-performance liquid chromatography (HPLC-ED) and their ratio 5-HIAA/5-HT was calculated. Sertraline enhanced swimming and decreased immobility duration at both doses. Serotonergic activity was not altered by the 2-day swim stress in either brain region, while subchronic sertraline treatment enhanced 5-HT levels and decreased 5-HIAA/5-HT in the hippocampus and the prefrontal cortex. The serotonin turnover rate (5-HIAA/5-HT ratio) decrease is probably indicative of reduced 5-HT metabolism, as a result of 5-HT reuptake inhibition. This effect was significant in the prefrontal cortex of unstressed rats only after a higher dose of sertraline. In the prefrontal cortex, but not in the hippocampus, immobility duration was negatively correlated with 5-HT tissue levels, whereas swimming duration was positively correlated with 5-HT. These results indicate that after antidepressant treatment, behavior during the FST can be predictive of respective serotonergic changes, especially in the prefrontal cortex.

  12. Water spray-induced grooming is negatively correlated with depressive behavior in the forced swimming test in rats.

    Science.gov (United States)

    Shiota, Noboru; Narikiyo, Kimiya; Masuda, Akira; Aou, Shuji

    2016-05-01

    Rodents show grooming, a typical self-care behavior, under stress and non-stress conditions. Previous studies revealed that grooming under stress conditions such as the open-field test (OFT) or the elevated plus-maze test (EPM) is associated with anxiety, but the roles of grooming under non-stress conditions are not well understood. Here, we examined spray-induced grooming as a model of grooming under a non-stress condition to investigate the relationship between this grooming and depression-like behavior in the forced swim test (FST) and tail suspension test, and we compared spray-induced grooming with OFT- and EPM-induced grooming. The main finding was that the duration of spray-induced grooming, but not that of OFT/EPM-induced grooming, was negatively correlated with the duration of immobility in the FST, an index of depression-like behavior. The results suggest that spray-induced grooming is functionally different from the grooming in the OFT and EPM and is related to reduction of depressive behavior.

  13. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Chamanara, Mohsen; Akbarian, Reyhaneh; Imran-Khan, Muhammad; Ghasemi, Mehdi; Dehpour, Ahmad-Reza

    2017-09-01

    Tramadol is an analgesic agent that is mainly used to treat moderate to severe pain. There is evidence that tramadol may have antidepressant property. However, the mechanisms underlying the antidepressant effects of tramadol have not been elucidated yet. Considering that fact that N-methyl-d-aspartate (NMDA) receptor signaling may play an important role in the pathophysiology of depression, the aim of the present study was to investigate the role of NMDA receptor signaling in the possible antidepressant-like effects of tramadol in the mouse forced swimming test (mFST). We found that tramadol exerted antidepressant-like effects at high dose (40mg/kg, intraperitoneally [i.p.]) in the mFST. Co-administration of non-effective doses of NMDA receptor antagonists (ketamine [1mg/kg, i.p.], MK-801 [0.05mg/kg, i.p.], or magnesium sulfate [10mg/kg, i.p.]) with sub-effective dose of tramadol (20mg/kg, i.p.) exerted significant antidepressant-like effects in the mFST. The antidepressant-like effects of tramadol (40mg/kg) was also inhibited by pre-treatment with non-effective dose of the NMDA receptor agonist NMDA (75mg/kg, i.p.). Our data suggest a role for NMDA receptor signaling in the antidepressant-like effects of tramadol in the mFST. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Exposure to forced swim stress alters local circuit activity and plasticity in the dentate gyrus of the hippocampus.

    Science.gov (United States)

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  15. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Orli Yarom

    2008-01-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  16. Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test.

    Science.gov (United States)

    Ohnishi, Hiroshi; Murata, Takaaki; Kusakari, Shinya; Hayashi, Yuriko; Takao, Keizo; Maruyama, Toshi; Ago, Yukio; Koda, Ken; Jin, Feng-Jie; Okawa, Katsuya; Oldenborg, Per-Arne; Okazawa, Hideki; Murata, Yoji; Furuya, Nobuhiko; Matsuda, Toshio; Miyakawa, Tsuyoshi; Matozaki, Takashi

    2010-08-01

    Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein alpha (SIRPalpha) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the protein tyrosine phosphatase Shp2. Here we show that mice expressing a form of SIRPalpha that lacks most of the cytoplasmic region manifest prolonged immobility (depression-like behavior) in the forced swim (FS) test. FS stress induced marked tyrosine phosphorylation of SIRPalpha in the brain of wild-type mice through activation of Src family kinases. The SIRPalpha ligand CD47 was important for such SIRPalpha phosphorylation, and CD47-deficient mice also manifested prolonged immobility in the FS test. Moreover, FS stress-induced tyrosine phosphorylation of both the NR2B subunit of the NMDA subtype of glutamate receptor and the K+-channel subunit Kvbeta2 was regulated by SIRPalpha. Thus, tyrosine phosphorylation of SIRPalpha is important for regulation of depression-like behavior in the response of the brain to stress.

  17. Depressive-like profile induced by MCH microinjections into the dorsal raphe nucleus evaluated in the forced swim test.

    Science.gov (United States)

    Lagos, Patricia; Urbanavicius, Jessika; Scorza, María Cecilia; Miraballes, Rodrigo; Torterolo, Pablo

    2011-04-15

    Antagonism of the melanin-concentrating hormone (MCH) receptor 1 (MCH-R1) has been recently shown to have antidepressant-like profile in rats. However, the mechanisms by which the MCHergic system participates in the modulation of emotional states are still to be determined. In the present study we confirmed the presence of MCHergic fibers within the dorsal raphe nucleus (DRN), a serotonergic nucleus involved in the physiopathology of major depression. We also assessed the effects of the administration of MCH and anti-MCH antibody (immunoneutralization) into the DRN using the forced swim test in rats, an animal model to screen antidepressant drugs. We found that a low dose of MCH (50 ng) evoked a depressive-like behavior indicated by a significant increase in the immobility time as well as a decrease in climbing behavior. Furthermore, the depressive-like response was prevented by pretreatment with fluoxetine. Consistent with these results, the immunoneutralization of MCH produced an antidepressant-like effect. By means of the open field test we discarded that these effects were related to unspecific changes in motor activity. Our results suggest that the MCHergic neurons are involved in the regulation of emotional behaviors through the modulation of the serotonergic neuronal activity within the DRN. In addition, the present results are in agreement with previous reports showing that antagonism of the MCHergic system may be a novel therapeutic strategy for the treatment of depressive disorders.

  18. Involvement of NO/cGMP pathway in the antidepressant-like effect of gabapentin in mouse forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Ameli, Sanaz; Akhlaghipour, Golnoosh; Dehpour, AhmadReza

    2016-04-01

    Based on clinical studies regarding the beneficial effect of gabapentin in depression, we aimed to evaluate the antidepressant-like properties of gabapentin in mice and also the participation of nitric oxide (NO)/cyclic guanosine monophosphate pathway in this effect. The following drugs were used in this study: gabapentin; N(G)-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase (NOS) inhibitor; 7-nitroindazole, a specific neuronal NOS inhibitor; aminoguanidine, a specific inducible NOS inhibitor; L-arginine, a NO precursor; and sildenafil, a phosphodiestrase inhibitor. Finally, we studied the behavioral effects through the forced swimming test (FST) and the changes of the hippocampus NO level through nitrite assay. The immobility time was significantly reduced after gabapentin administration. Co-administration of non-effective doses of gabapentin and L-NAME or 7-nitroindazole (7-NI) resulted in antidepressant-like effect in FST, while aminoguanidine did not affect the immobility time of gabapentin-treated mice. Furthermore, the antidepressant-like property of gabapentin was prevented by L-arginine or sildenafil. Also, the hippocampal nitrite level was significantly lower in gabapentin-treated mice relative to saline-injected mice, and co-administration of 7-NI with sub-effective gabapentin caused a significant decrease in hippocampal nitrite levels. Our results indicate that the antidepressant-like effect of gabapentin in the mice FST model is mediated at least in part through nitric oxide/cyclic guanosine monophosphate (cGMP) pathway.

  19. Sex-Specific Diurnal Immobility Induced by Forced Swim Test in Wild Type and Clock Gene Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ningyue Li

    2015-03-01

    Full Text Available Objective: The link between alterations in circadian rhythms and depression are well established, but the underlying mechanisms are far less elucidated. We investigated the circadian characteristics of immobility behavior in wild type (WT mice and mice with mutations in core Clock genes. Methods: All mice were tested with forced swim test (FST at 4 h intervals. Results: These experiments revealed significant diurnal rhythms associated with immobility behavior in both male and female WT mice with sex-different circadian properties. In addition, male mice showed significantly less immobility during the night phase in comparison to female mice. Female Per1Brdm1 mice also showed significant rhythmicity. However, the timing of rhythmicity was very different from that observed in female wild type mice. Male Per1Brdm1 mice showed a pattern of rhythmicity similar to that of wild type mice. Furthermore, female Per1Brdm1 mice showed higher duration of immobility in comparison to male Per1Brdm1 mice in both daytime and early night phases. Neither Per2Brdm1 nor ClockΔ19 mice showed significant rhythmicity, but both female Per2Brdm1 and ClockΔ19 mice had lower levels of immobility, compared to males. Conclusions: This study highlights the differences in the circadian characteristics of immobility induced by FST in WT, ClockΔ19, Per1, and Per2 deficient mice.

  20. Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway.

    Science.gov (United States)

    Mohseni, Gholmreza; Ostadhadi, Sattar; Imran-Khan, Muhammad; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Haddadi, Nazgol-Sadat; Dehpour, Ahmad-Reza

    2017-04-01

    Depression is one the world leading global burdens leading to various comorbidities. Lithium as a mainstay in the treatment of depression is still considered gold standard treatment. Similar to lithium another agent agmatine has also central protective role against depression. Since, both agmatine and lithium modulate various effects through interaction with NMDA receptor, therefore, in current study we aimed to investigate the synergistic antidepressant-like effect of agmatine with lithium in mouse force swimming test. Also to know whether if such effect is due to interaction with NMDA receptor. In our present study we found that when potent dose of lithium (30mg/kg) was administered, it significantly decreased the immobility time. Also, when subeffective dose of agmatine (0.01mg/kg) was coadministered with subeffective dose of lithium (3mg/kg), it potentiated the antidepressant-like effect of subeffective dose of lithium. For the involvement of NMDA receptor in such effect, we administered NMDA receptor antagonist MK-801 (0.05mg/kg) with a combination of subeffective dose of lithium (3mg/kg) and agmatine (0.001mg/kg). A significant antidepressant-like effect was observed. Furthermore, when subeffective dose (50 and 75mg/kg) of NMDA was given it inhibited the synergistic effect of agmatine (0.01mg/kg) with lithium (3mg/kg). Hence, our finding demonstrate that agmatine have synergistic effect with lithium which is mediated by NMDA receptor pathway.

  1. Chronic oral nicotine increases brain [3H]epibatidine binding and responsiveness to antidepressant drugs, but not nicotine, in the mouse forced swim test

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Nielsen, Elsebet O; Redrobe, John P

    2009-01-01

    Smoking rates among depressed individuals is higher than among healthy subjects, and nicotine alleviates depressive symptoms. Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. In mice, acute nicotine administration enhances...... the activity of antidepressants in the mouse forced swim (mFST) and tail suspension tests. Here, we investigated if this action of nicotine is also reflected in a chronic treatment regimen....

  2. A study of the effects of 3,5-diiodo-L-thyronine in the tail suspension and forced swim models of depression

    Institute of Scientific and Technical Information of China (English)

    Nataliia Markova; Anton Chernopiatko; Aslan Kubatiev; Sergey Bachurin; Harry M W Steinbusch; Tatyana Strekalova

    2016-01-01

    Objectives:Recent findings have further highlighted the role of the thyroid system in the pathophysiology of depression and revealed new physiologically relevant elements of the thyroid system. Our previous study showed an antidepressant-like effect of 3,5-diiodo-L-thyronine (T2), which was previously considered to be a physiologically inactive molecule, in mice. Here, we aimed to investigate the antidepressant-like effects of T2 further. Methods:We studied the effects of bolus injections of T2 to C57Bl6J mice at doses of 0.25 or 0.75 mg/kg with the tail suspension and forced swim models. The effects of the higher dose were investigated in CD1 mice in the forced swim test. Potential behavioral effects of these treatments were also studied using the novel cage and dark-light box tests. Results:A reduction of depressive-like behavior was found in mice treated with 0.75 mg/kg of T2 in the tail suspension test, but not in the forced swim test. Locomotion and anxiety variables were unaltered following treatment with T2. There were no significant changes after bolus administration of 0.25 mg/kg T2 in either test for depressive-like behavior. Thus, bolus injection of T2 at the dose 0.75 mg/kg can induce antidepressant-like effects without affecting other behaviors. Conclusions:A discrepant result in the forced swim test may be due to its different sensitivity to T2 compared with the tail suspension paradigm. Furthermore, the development of procedural modifications of this model can be useful in its application in pre-clinical studies.

  3. Effects of co-administration of fluoxetine or tianeptine with metyrapone on immobility time and plasma corticosterone concentration in rats subjected to the forced swim test.

    Science.gov (United States)

    Rogóz, Zofia; Skuza, Grazyna; Leśkiewicz, Monika; Budziszewska, Bogusława

    2008-01-01

    Major depression is frequently associated with hyperactivity of the hypothalamic-pituitary-adrenocortical axis, and glucocorticoid synthesis inhibitors have been shown to exert antidepressant action. The aim of the present study was to examine the effect of co-administration of fluoxetine or tianeptine with metyrapone on immobility time and plasma corticosterone concentration in male Wistar rats subjected to the forced swim test. Metyrapone alone (50 mg/kg, but not 25 mg/kg) reduced the immobility time of rats in the forced swim test; moreover, both doses tested (25 and 50 mg/kg), dose-dependently decreased the stress-induced plasma corticosterone concentration. Joint administration of fluoxetine or tianeptine (10 mg/kg) and metyrapone (25 mg/kg - a dose inactive per se) exhibited antidepressant-like activity in the forced swim test in rats. WAY 100636 (a 5-HT(1A) antagonist), but not prazosin (an alpha(1)-adrenergic antagonist), used in doses ineffective in the forced swim test, inhibited the antidepressant-like effect induced by co-administration of fluoxetine or tianeptine with metyrapone (25 mg/kg). Combined treatment of fluoxetine or tianeptine and metyrapone inhibited stress-induced corticosterone secretion to a similar extent as metyrapone alone. The obtained results indicate that metyrapone potentiates the antidepressant-like activity of fluoxetine or tianeptine and that, among other mechanisms, 5-HT(1A) receptors may play some role in this effect. Moreover, metyrapone exerts a beneficial effect on the stress-induced increase in plasma corticosterone concentration. These findings suggest that the co-administration of metyrapone and an antidepressant drug may be useful for the treatment of drug-resistant depression and/or depression associated with a high cortisol level.

  4. Possible involvement of nitric oxide (NO) signaling pathway in the antidepressant-like effect of MK-801(dizocilpine), a NMDA receptor antagonist in mouse forced swim test.

    Science.gov (United States)

    Dhir, Ashish; Kulkarni, S K

    2008-03-01

    L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) is an important signaling pathway involved in depression. With this information, the present study aimed to study the involvement of this signaling pathway in the antidepressant-like action of MK-801 (dizocilpine; N-methyl-d-aspartate receptor antagonist) in the mouse forced-swim test. Total immobility period was recorded in mouse forced swim test for 6 min. MK-801 (5-25 microg/kg., ip) produced a U-shaped curve in reducing the immobility period. The antidepressant-like effect of MK-801 (10 microg/kg, ip) was prevented by pretreatment with L-arginine (750 mg/kg, ip) [substrate for nitric oxide synthase (NOS)]. Pretreatment of mice with 7-nitroindazole (7-NI) (25 mg/kg, ip) [a specific neuronal nitric oxide synthase inhibitor] produced potentiation of the action of subeffective dose of MK-801 (5 microg/kg, ip). In addition, treatment of mice with methylene blue (10 mg/kg, ip) [direct inhibitor of both nitric oxide synthase and soluble guanylate cyclase] potentiated the effect of MK-801 (5 microg/kg, ip) in the forced-swim test. Further, the reduction in the immobility period elicited by MK-801 (10 microg/kg, ip) was also inhibited by pretreatment with sildenafil (5 mg/kg, ip) [phosphodiesterase 5 inhibitor]. The various modulators used in the study and their combination did not produce any changes in locomotor activity per se and in combination with MK-801. MK-801 however, at higher doses (25 microg/kg, ip) produced hyperlocomotion. The results demonstrated the involvement of nitric oxide signaling pathway in the antidepressant-like effect of MK-801 in mouse forced-swim test.

  5. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage

    DEFF Research Database (Denmark)

    Peltrea, Clément; Nyord, Tavs; Bruun, Sander

    2015-01-01

    for different organic wastes influenced the specific draught. Overall, the decrease in draught force could lead to a decrease in tractor fuel consumption for soil tillage of up to 25% for compost applied at an accelerated rate and up to 14% for compost applied at a normal rate. This reduced fuel consumption......Abstract Soil application of organic waste products (OWP) can maintain or increase soil organic carbon (SOC) content, which in turn could lead to increased porosity and potentially to reduced energy use for soil tillage. Only a few studies have addressed the effect of SOC content on draught force...... for soil tillage, and this still needs to be addressed for fields that receive diverse types of organic waste of urban, agricultural and agro-industrial origin. The objective of this study was to determine the effect of changes in SOC induced by repeated soil application of OWP on draught force for soil...

  6. Effects of co-treatment with mirtazapine and low doses of risperidone on immobility time in the forced swimming test in mice.

    Science.gov (United States)

    Rogóż, Zofia

    2010-01-01

    The aim of the present study was to examine the effect of mirtazapine (MIR) and risperidone (an atypical antipsychotic drug), given separately or jointly, on immobility time in the forced swimming test in male C57BL/6J mice. Fluoxetine (FLU) was used as a reference drug. MIR (2.5, 5 and 10 mg/kg) and FLU (5 and 10 mg/kg), or risperidone in low doses (0.05 and 0.1 mg/kg) given alone did not change the immobility time of mice in the forced swimming test. Joint administration of MIR (5 and 10 mg/kg) or FLU (10 mg/kg) and risperidone (0.1 mg/kg) produced antidepressant-like activity in the forced swimming test. WAY100636 (a 5-HT(1A) receptor antagonist) inhibited, while yohimbine (an α(2)-adrenergic receptor antagonist) potentiated the antidepressant-like effect induced by co-administration of MIR and risperidone. Active behavior in that test did not reflect an increase in general activity, since combined administration of antidepressants and risperidone failed to enhance the locomotor activity of mice. The obtained results indicate that risperidone applied in a low dose enhances the antidepressant-like activity of MIR and that, among other mechanisms, 5-HT(1A)-, and α(2)-adrenergic receptors may play a role in this effect.

  7. Comparison of monoamine reuptake inhibitors for the immobility time and serotonin levels in the hippocampus and plasma of sub-chronically forced swim stressed rats.

    Science.gov (United States)

    Abbas, Ghulam; Naqvi, Sabira; Dar, Ahsana

    2012-04-01

    The current study was aimed at comparing the behavioral and biochemical (5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels) effects of monoamine reuptake inhibitors (fluoxetine, venlafaxine and imipramine) in sub-chronically forced swim stressed rats. At the given doses of 10, 20 and 30 mg/kg, among aforesaid antidepressants, the imipramine treatment alone caused significant decline in the immobility time of rats (IC(50) 20 mg/kg). In the hippocampus of rats, the imipramine treatment caused significant elevation of 5-hydroxytryptamine (5-HT) whereas, the fluoxetine and venlafaxine elicited significant increase in 5-hydroxyindoleacetic acid (5-HIAA) levels. Likewise, in the plasma of rats, the imipramine treatment significantly increased the 5-HIAA levels whereas, the fluoxetine and venlafaxine treatment significantly elevate the 5-HT levels. It can therefore be inferred that the imipramine did not act like other monoamine reuptake inhibitors in biochemical study, which could possibly underlie its ability to be detected in forced swim test (behavioral study). Moreover, the re-uptake inhibition of 5-HT is not accountable for the antidepressant action exhibited in forced swim test.

  8. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test.

    Science.gov (United States)

    Isacson, Ruben; Nielsen, Elisabet; Dannaeus, Karin; Bertilsson, Göran; Patrone, Cesare; Zachrisson, Olof; Wikström, Lilian

    2011-01-10

    We have earlier shown that the glucagon-like peptide 1 receptor agonist exendin-4 stimulates neurogenesis in the subventricular zone and excerts anti-parkinsonian behavior. The aim of this study was to assess the effects of exendin-4 treatment on hippocampus-associated cognitive and mood-related behavior in adult rodents. To investigate potential effects of exendin-4 on hippocampal function, radial maze and forced swim test were employed. The time necessary to solve a radial maze task and the duration of immobility in the forced swim test were significantly reduced compared to respective vehicle groups if the animals had received exendin-4 during 1-2weeks before testing. In contrast to the positive control imipramine, single administration of exendin-4 1h before the challenge in the forced swim test had no effect. Immunohistochemical analysis showed that the incorporation of bromodeoxyuridine, a marker for DNA synthesis, as well as doublecortin expression was increased in the hippocampal dentate gyrus following chronic treatment with exendin-4 compared to vehicle-treated controls. The neurogenic effect of exendin-4 on hippocampus was confirmed by quantitative PCR showing an upregulation of mRNA expression for Ki-67, doublecortin and Mash-1. Since exendin-4 significantly improves hippocampus-associated behavior in adult rodents, it may be a candidate for alleviation of mood and cognitive disorders.

  9. Noradrenergic neurotransmission within the bed nucleus of the stria terminalis modulates the retention of immobility in the rat forced swimming test.

    Science.gov (United States)

    Nagai, Michelly M; Gomes, Felipe V; Crestani, Carlos C; Resstel, Leonardo B M; Joca, Sâmia R L

    2013-06-01

    The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α(1), α(2), β(1), and β(2) adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α(1), β(1), and β(2) adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress.

  10. Allopregnanolone microinjected into the lateral septum or dorsal hippocampus reduces immobility in the forced swim test: participation of the GABAA receptor.

    Science.gov (United States)

    Rodríguez-Landa, Juan Francisco; Contreras, Carlos M; García-Ríos, Rosa Isela

    2009-10-01

    Allopregnanolone is a 5α-reduced metabolite of progesterone with actions on γ-aminobutyric acid-A (GABAA) receptors that produce antidepressant-like effects. However, little is known about the target brain regions that mediate its antidepressant-like effects. In this study, allopregnanolone (2.0 μg/0.3 μl/rat) or its vehicle (35% cyclodextrin solution) were microinjected into the lateral septum, septofimbrial, or dorsal hippocampus of male Wistar rats that had previously received intraperitoneal injections of either saline or the GABAA antagonist bicuculline (1.0 mg/kg), and its effects were evaluated in the open field and forced swim tests. Allopregnanolone microinjected into the lateral septum or dorsal hippocampus, but not septofimbrial nucleus, induced a longer latency to the first immobility and a shorter total immobility time in the forced swim test compared with vehicle. Bicuculline pretreatment reversed the effect of allopregnanolone. None of the treatments produced significant changes in crossings in the open field test. In conclusion, allopregnanolone produces an antidepressant-like effect in rats submitted to the forced swim test through actions on GABAA receptors located in the lateral septum and dorsal hippocampus, which is consistent with the antistress effect of GABAA agonists in these particular brain structures.

  11. In the rat forced swimming test, NA-system mediated interactions may prevent the 5-HT properties of some subacute antidepressant treatments being expressed.

    Science.gov (United States)

    Rénéric, Jean-Philippe; Bouvard, Manuel; Stinus, Luis

    2002-04-01

    In the rat forced swimming test (FST), reuptake inhibitors selective of either serotonin (5-HT) or noradrenaline (NA) decrease immobility duration, and increase, respectively, swimming and climbing behaviour. In this study, an almost total 6-OHDA-induced NA-depletion prevented the behavioural effects of desipramine, but not fluoxetine. Interestingly, the serotonin/noradrenaline-reuptake-inhibitor milnacipran, as well as a (desipramine+fluoxetine) combination, could produce both swimming and climbing behaviour in NA-lesioned rats, but not in non-lesioned. The new antidepressant mirtazapine, which enhances both 5-HT and NA transmissions, supposedly through the antagonizing of alpha(2)-adrenoreceptors, dose-dependently reduced immobility and increased climbing behaviour. Interestingly, a (mirtazapine+fluoxetine) combination treatment resulted in additive anti-immobility effects and in the summation of fluoxetine-induced swimming with mirtazapine-induced climbing. Taken together, these data suggest that the NA system mediates presynaptic inhibiting interactions on the 5-HT system, that may involve alpha(2)-receptors, and that may limit the efficacy of mixed serotonin/noradrenaline reuptake inhibition in subacute antidepressant treatments.

  12. Simulations of optimized anguilliform swimming.

    Science.gov (United States)

    Kern, Stefan; Koumoutsakos, Petros

    2006-12-01

    The hydrodynamics of anguilliform swimming motions was investigated using three-dimensional simulations of the fluid flow past a self-propelled body. The motion of the body is not specified a priori, but is instead obtained through an evolutionary algorithm used to optimize the swimming efficiency and the burst swimming speed. The results of the present simulations support the hypothesis that anguilliform swimmers modify their kinematics according to different objectives and provide a quantitative analysis of the swimming motion and the forces experienced by the body. The kinematics of burst swimming is characterized by the large amplitude of the tail undulations while the anterior part of the body remains straight. In contrast, during efficient swimming behavior significant lateral undulation occurs along the entire length of the body. In turn, during burst swimming, the majority of the thrust is generated at the tail, whereas in the efficient swimming mode, in addition to the tail, the middle of the body contributes significantly to the thrust. The burst swimming velocity is 42% higher and the propulsive efficiency is 15% lower than the respective values during efficient swimming. The wake, for both swimming modes, consists largely of a double row of vortex rings with an axis aligned with the swimming direction. The vortex rings are responsible for producing lateral jets of fluid, which has been documented in prior experimental studies. We note that the primary wake vortices are qualitatively similar in both swimming modes except that the wake vortex rings are stronger and relatively more elongated in the fast swimming mode. The present results provide quantitative information of three-dimensional fluid-body interactions that may complement related experimental studies. In addition they enable a detailed quantitative analysis, which may be difficult to obtain experimentally, of the different swimming modes linking the kinematics of the motion with the forces

  13. The selective glucocorticoid receptor antagonist ORG 34116 decreases immobility time in the forced swim test and affects cAMP-responsive element-binding protein phosphorylation in rat brain.

    Science.gov (United States)

    Bachmann, Cornelius G; Bilang-Bleuel, Alicia; De Carli, Sonja; Linthorst, Astrid C E; Reul, Johannes M H M

    2005-01-01

    Glucocorticoid receptor (GR) antagonists can block the retention of the immobility response in the forced swimming test. Recently, we showed that forced swimming evokes a distinct spatiotemporal pattern of cAMP-responsive element-binding protein (CREB) phosphorylation in the dentate gyrus (DG) and neocortex. In the present study, we found that chronic treatment of rats with the selective GR antagonist ORG 34116 decreased the immobility time in the forced swim test, increased baseline levels of phosphorylated CREB (P-CREB) in the DG and neocortex and affected the forced swimming-induced changes in P-CREB levels in a time- and site-specific manner. Overall, we observed that, in control rats, forced swimming evoked increases in P-CREB levels in the DG and neocortex, whereas in ORG 34116-treated animals a major dephosphorylation of P-CREB was observed. These observations underscore an important role of GRs in the control of the phosphorylation state of CREB which seems to be of significance for the immobility response in the forced swim test and extend the molecular mechanism of action of GRs in the brain.

  14. Strain differences in paroxetine-induced reduction of immobility time in the forced swimming test in mice: role of serotonin.

    Science.gov (United States)

    Guzzetti, Sara; Calcagno, Eleonora; Canetta, Alessandro; Sacchetti, Giuseppina; Fracasso, Claudia; Caccia, Silvio; Cervo, Luigi; Invernizzi, Roberto W

    2008-10-10

    We studied the antidepressant-like effect of paroxetine in strains of mice carrying different isoforms of tryptophan hydroxylase-2 (TPH-2), the enzyme responsible for the synthesis of brain serotonin (5-HT). The effect of paroxetine alone and in combination with pharmacological treatments enhancing or lowering 5-HT synthesis or melatonin was assessed in the forced swimming test in mice carrying allelic variants of TPH-2 (1473C in C57BL/6 and 1473G in DBA/2 and BALB/c). Changes in brain 5-hydroxytryptophan (5-HTP) accumulation and melatonin levels were measured by high-performance liquid chromatography. Paroxetine (2.5 and 5 mg/kg) reduced immobility time in C57BL/6J and C57BL/6N mice but had no such effect in DBA/2J, DBA/2N and BALB/c mice, even at 10 mg/kg. Enhancing 5-HT synthesis with tryptophan reinstated the antidepressant-like effect of paroxetine in DBA/2J, DBA/2N and BALB/c mice whereas inhibition of 5-HT synthesis prevented the effect of paroxetine in C57BL/6N mice. The response to paroxetine was not associated with changes in locomotor activity, brain melatonin or brain levels of the drug measured at the end of the behavioral test. These results support the importance of 5-HT synthesis in the response to SSRIs and suggest that melatonin does not contribute to the ability of tryptophan to rescue the antidepressant-like effect of paroxetine.

  15. Immobility stress induces depression-like behavior in the forced swim test in mice: effect of magnesium and imipramine.

    Science.gov (United States)

    Poleszak, Ewa; Wlaź, Piotr; Kedzierska, Ewa; Nieoczym, Dorota; Wyska, Elzbieta; Szymura-Oleksiak, Joanna; Fidecka, Sylwia; Radziwoń-Zaleska, Maria; Nowak, Gabriel

    2006-01-01

    Previously, we demonstrated antidepressant-like effect of magnesium (Mg) in the forced swim test (FST). Moreover, the joint administration of Mg and imipramine (IMI) at ineffective doses per se, resulted in a potent reduction in the immobility time in this test. In the present study, we examined the effect of immobility stress (IS), and Mg and/or IMI administration on FST behavior. IS induced enhancement of immobility time, which was reversed by Mg or IMI at doses ineffective in non-stressed mice (10 mg/kg and 15 mg/kg, respectively). The joint administration of Mg and IMI was effective in both IS and non-stressed animals in FST. IS did not significantly alter locomotor activity, while IMI or Mg + IMI treatment in IS mice reduced this activity. We also measured serum and brain Mg, IMI and its metabolite desipramine (DMI) concentration in mice subjected to FST and injected with Mg + IMI, both restrained and non-restrained. In the present study we demonstrated a significant increase (by 68%) in the brain IMI and a slight, non-significant reduction in DMI concentration in IS + Mg + IMI + FST vs. Mg + IMI + FST groups, which might indicate the reduction in brain IMI metabolism. The IS-induced reduction in brain IMI metabolism did not participate in the activity in FST, since no differences in such activity were noticed between IS + Mg + IMI + FST and Mg + IMI + FST groups. The present data suggest that IS-induced increase in immobility time in FST is more sensitive for detection antidepressant-like activity. However, further studies are needed to examine the effect of other antidepressants in such an experimental paradigm.

  16. The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test.

    Science.gov (United States)

    Solomon, Matia B; Wulsin, Aynara C; Rice, Taylor; Wick, Dayna; Myers, Brent; McKlveen, Jessica; Flak, Jonathan N; Ulrich-Lai, Yvonne; Herman, James P

    2014-04-01

    Pre-clinical and clinical studies have employed treatment with glucocorticoid receptor (GR) antagonists in an attempt to limit the deleterious behavioral and physiological effects of excess glucocorticoids. Here, we examined the effects of GR antagonists on neuroendocrine and behavioral stress responses, using two compounds: mifepristone, a GR antagonist that is also a progesterone receptor antagonist, and CORT 108297, a specific GR antagonist lacking anti-progestin activity. Given its well-documented impact on neuroendocrine and behavioral stress responses, imipramine (tricyclic antidepressant) served as a positive control. Male rats were treated for five days with mifepristone (10mg/kg), CORT 108297 (30mg/kg and 60mg/kg), imipramine (10mg/kg) or vehicle and exposed to forced swim test (FST) or restraint stress. Relative to vehicle, imipramine potently suppressed adrenocorticotropin hormone (ACTH) responses to FST and restraint exposure. Imipramine also decreased immobility in the FST, consistent with antidepressant actions. Both doses of CORT 108297 potently suppressed peak corticosterone responses to FST and restraint stress. However, only the higher dose of CORT 108297 (60mg/kg) significantly decreased immobility in the FST. In contrast, mifepristone induced protracted secretion of corticosterone in response to both stressors, and modestly decreased immobility in the FST. Taken together, the data indicate distinct effects of each compound on neuroendocrine stress responses and also highlight dissociation between corticosterone responses and immobility in the FST. Within the context of the present study, our data suggest that CORT 108297 may be an attractive alternative for mitigating neuroendocrine and behavioral states associated with excess glucocorticoid secretion.

  17. Melatonin affects the immobility time of rats in the forced swim test: the role of serotonin neurotransmission.

    Science.gov (United States)

    Micale, Vincenzo; Arezzi, Anna; Rampello, Liborio; Drago, Filippo

    2006-10-01

    The efficacy of melatonin or its derivatives in depressive patients has been recently considered for clinical application. However, the evidence for its effect on experimental models of depression is not consolidated. Here, the effects of melatonin on the model of forced swim test (FST) paradigm were studied in male rats of the Wistar strain after acute intraperitoneal (i.p.) administration of 0.1, 0.5 or 1 mg/kg of the hormone. Melatonin at doses of 0.5 and 1 mg/kg, but not of 0.1 mg/kg, decreased the immobility of rats in the FST paradigm suggesting a possible antidepressant-like activity. The dose of 0.5 mg/kg appeared to be as potent as clomipramine 50 mg/kg in reducing the immobility time of rats in the FST paradigm. The effect of melatonin on immobility time of rats in the FST paradigm was abolished by the simultaneous injection of the non-selective melatonin antagonist, luzindole (0.25 mg/kg, subcutaneously). Similarly, administration of small quantities of serotonin (5-HT, 5 ng/1 microl) or of the 5-HT(2A)/5-HT(2C) receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (2 ng/1 microl) injected into the amygdale totally suppressed the reduction of immobility time in the FST paradigm induced by melatonin 0.5 mg/kg. These results may suggest that effects of melatonin on the behavioral reaction of rats in the FST paradigm are due to an interaction of the hormone with central 5-HT neurotransmission.

  18. Effects of ifenprodil on the antidepressant-like activity of NMDA ligands in the forced swim test in mice.

    Science.gov (United States)

    Poleszak, Ewa; Wośko, Sylwia; Serefko, Anna; Szopa, Aleksandra; Wlaź, Aleksandra; Szewczyk, Bernadeta; Nowak, Gabriel; Wlaź, Piotr

    2013-10-01

    Multiple pre-clinical and clinical studies clearly displayed implication of the NMDA receptors in development of depressive disorders since a variety of NMDA receptor antagonists exhibit an antidepressant-like effect. The main aim of our study was to assess the influence of ifenprodil - an allosteric modulator selectively binding at the NR2B subunit on the performance in the forced swim test in mice of various NMDA receptor ligands interacting with distinct components of the NMDA receptor complex. Ifenprodil at a dose of 10mg/kg enhanced the antidepressant-like effect of CGP 37849 (a competitive NMDA receptor antagonist, 0.312mg/kg), L-701,324 (an antagonist at glycine site, 1mg/kg), MK-801 (a non-competitive antagonist, 0.05mg/kg) and d-cycloserine (a partial agonist of a glycine site, 2.5mg/kg) but it did not shorten the immobility time of animals which concurrently received an inorganic modulator of the NMDA receptor complex, such as Zn(2+) (2.5mg/kg) or Mg(2+) (10mg/kg). On the other hand, the antidepressant-like effect of ifenprodil (20mg/kg) was reversed by N-methyl-d-aspartic acid (an agonist at the glutamate site, 75mg/kg) or d-serine (an agonist at the glycine site, 100nmol/mouse). In conclusion, the antidepressant-like potential of ifenprodil given concomitantly with NMDA ligands was either reinforced (in the case of both partial agonist and antagonists, except for magnesium and zinc) or diminished (in the case of conventional full agonists).

  19. Antidepressant-like effects of Sanyuansan in the mouse forced swim test, tail suspension test, and chronic mild stress model.

    Science.gov (United States)

    Yan, Shuo; You, Zi-Li; Zhao, Qiu-Ying; Peng, Cheng; He, Gang; Gou, Xiao-Jun; Lin, Bin

    2015-12-01

    Natural products have been widely reported as effective therapeutic alternatives for treatment of depression. Sanyuansan is a compound recipe composed of ginseng total saponins, fish oil, and valeriana. The aims of this study were to validate whether Sanyuansan has antidepressant-like effects through acute behavioral tests including the forced swimming test (FST), tail suspension test (TST), locomotor activity test, and chronic mild stress (CMS) mice model of depression. C57BL/6 mice were given oral administration of 30 mg/kg imipramine, Sanyuansan, and saline, respectively. The acute behavioral tests including the TST, FST, and locomotor activity test were done after the administration of drugs for consecutively three times (24 hours, 1 hour, and 0.5 hour prior to the tests). Furthermore, the sucrose preference and the serum corticosterone level of mice in the CMS model were examined. Sanyuansan only at 900 mg/kg markedly reduced immobility time in the TST compared with the saline-treated group of mice. Sanyuansan at doses of 225 mg/kg, 450 mg/kg, and 900 mg/kg significantly reduced immobility time of mice in the FST. Sanyuansan reversed the CMS-induced anhedonia and hyperactivation of the hypothalamus-pituitary-adrenal axis. In addition, our results showed that neither imipramine nor Sanyuansan at any dosage increased spontaneous motor activity. These results suggested that Sanyuansan induced significant antidepressant-like effects in mice in both acute and chronic animal models, which seemed unlikely to be attributed to an increase in locomotor activities of mice, and had no sedative-like effects.

  20. Differential effects of caffeine on the antidepressant-like effect of amitriptyline in female rat subpopulations with low and high immobility in the forced swimming test.

    Science.gov (United States)

    Enríquez-Castillo, Andrea; Alamilla, Javier; Barral, Jaime; Gourbière, Sébastien; Flores-Serrano, Ana G; Góngora-Alfaro, José L; Pineda, Juan C

    2008-06-01

    The interaction of caffeine (1 mg/kg) and amitriptyline (15 mg/kg) on the immobility time (IT) during Porsolt's forced swimming test (FST) was investigated in female Wistar rats. Akaike's Information Criterion indicated that the ITs recorded from 142 rats during the first day of the FST followed a bimodal distribution. Hence, the median (125.5 s) was used to classify the animals in subpopulations with low (125.5 s, HI-rats) immobility. The paired t-test was used to compare the change of ITs between the first and second swimming sessions. Vehicle-treated animals had a significant increase of ITs during the second day of the test, either in LI-rats (77+/-12 s vs. 196+/-8 s, Pimmobility effect of amitriptyline in HI-rats is mediated in part by endogenous adenosine.

  1. Force Spectroscopy of the Plasmodium falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region.

    Science.gov (United States)

    Patra, Aditya Prasad; Sharma, Shobhona; Ainavarapu, Sri Rama Koti

    2017-02-10

    The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSPrep), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSPΔHP). Our results show that the CSPrep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSPΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Acute treatment with 5-HT3 receptor antagonist, tropisetron, reduces immobility in intact female rats exposed to the forced swim test.

    Science.gov (United States)

    Bravo, Gabriela; Maswood, Sharmin

    2006-10-01

    The effects of tropisetron, a 5-HT3 receptor antagonist, were evaluated in adult Fischer female rats exposed to the Forced Swim Test (FST). Rats selected on the days of proestrus or estrus was immersed in a cylinder of water for 2 consecutive days. Rats were exposed to the FST for 15 min on day 1 (pretest), followed by a 5-min session (test), 24 h later. The proestrous-estrous group consisted of rats that were exposed to the FST on their proestrous stage (pretest); then 24 h later the same rats were exposed to the FST on their estrous stage (test). Rats in the estrous-diestrous group were exposed to the FST on their estrous stage (pretest) and 24 h later on their diestrous stage (test). Rats were injected intraperitoneally with saline or 1.0 or 2.0 mg/kg tropisetron 30 min prior to exposure to the cylinder on the test day. Immobility, swimming, and struggling behaviors were scored for 5 min. There was a significant decline in immobility after treatment with 2.0 mg/kg tropisetron in both groups. In addition, a significant decline in swimming was observed in the estrous rats (proestrous-estrous group) after treatment with 2.0 mg/kg tropisetron. There were no significant effects of tropisetron on struggling in any groups examined.

  3. Caffeine enhances the antidepressant-like activity of common antidepressant drugs in the forced swim test in mice.

    Science.gov (United States)

    Szopa, Aleksandra; Poleszak, Ewa; Wyska, Elżbieta; Serefko, Anna; Wośko, Sylwia; Wlaź, Aleksandra; Pieróg, Mateusz; Wróbel, Andrzej; Wlaź, Piotr

    2016-02-01

    Caffeine is the most widely used behaviorally active drug in the world which exerts its activity on central nervous system through adenosine receptors. Worrying data indicate that excessive caffeine intake applies to patients suffering from mental disorders, including depression. The main goal of the present study was to evaluate the influence of caffeine on animals' behavior in forced swim test (FST) as well as the effect of caffeine (5 mg/kg) on the activity of six typical antidepressants, such as imipramine (15 mg/kg), desipramine (10 mg/kg), fluoxetine (5 mg/kg), paroxetine (0.5 mg/kg), escitalopram (2 mg/kg), and reboxetine (2.5 mg/kg). Locomotor activity was estimated to verify and exclude false-positive/negative results. In order to assess the influence of caffeine on the levels of antidepressant drugs studied, their concentrations were determined in murine serum and brains using high-performance liquid chromatography. The results showed that caffeine at a dose of 10, 20, and 50 mg/kg exhibited antidepressant activity in the FST, and it was not related to changes in locomotor activity in the animals. Caffeine at a dose of 5 mg/kg potentiated the activity of all antidepressants, and the observed effects were not due to the increase in locomotor activity in the animals. The interactions between caffeine and desipramine, fluoxetine, escitalopram, and reboxetine were exclusively of pharmacodynamic character, because caffeine did not cause any changes in the concentrations of these drugs neither in blood serum nor in brain tissue. As a result of joint administration of caffeine and paroxetine, an increase in the antidepressant drug concentrations in serum was observed. No such change was noticed in the brain tissue. A decrease in the antidepressant drug concentrations in brain was observed in the case of imipramine administered together with caffeine. Therefore, it can be assumed that the interactions caffeine-paroxetine and caffeine-imipramine occur at least in

  4. NK1 receptor antagonism lowers occupancy requirement for antidepressant-like effects of SSRIs in the gerbil forced swim test.

    Science.gov (United States)

    Lelas, Snjezana; Li, Yu-Wen; Wallace-Boone, Tanya L; Taber, Matthew T; Newton, Amy E; Pieschl, Rick L; Davis, Carl D; Molski, Thaddeus F; Newberry, Kimberly S; Parker, Michael F; Gillman, Kevin W; Bronson, Joanne J; Macor, John E; Lodge, Nicholas J

    2013-10-01

    The known interactions between the serotonergic and neurokinin systems suggest that serotonin reuptake inhibitor (SSRIs) efficacy may be improved by neurokinin-1 receptor (NK1R) antagonism. In the current studies combination of a subeffective dose of an SSRI (0.3 mg/kg fluoxetine or 0.03 mg/kg citalopram) with a subeffective dose of an NK1R antagonist (0.3 mg/kg aprepitant or 1 mg/kg CP-122,721) produced efficacy in the gerbil forced swim test (FST). Serotonin transporter (SERT) occupancy produced by 1 mg/kg fluoxetine (lowest efficacious dose) was 52 ± 5% and was reduced to 29 ± 4% at 0.3 mg/kg, a dose that was efficacious in combination with 0.3 mg/kg aprepitant or 1 mg/kg CP-122,721; the corresponding NK1R occupancies were 79 ± 4% and 61 ± 4% for aprepitant and CP-122,721, respectively. For citalopram, SERT occupancy at the lowest efficacious dose (0.1 mg/kg) was 50 ± 4% and was reduced to 20 ± 5% at 0.03 mg/kg, a dose that was efficacious when combined with aprepitant (0.3 mg/kg). Aprepitant (10 mg/kg) augmented the serotonin elevation produced by fluoxetine (1 or 10 mg/kg) in the gerbil prefrontal cortex; i.e. NK1R antagonism can modulate serotonin responses. A novel orally-available dual-acting NK1R antagonist/SERT inhibitor BMS-795176 is described; gerbil Ki = 1.4 and 1 nM at NK1R and SERT, respectively. BMS-795176 was efficacious in the gerbil FST; efficacy was observed with 35 ± 3% SERT occupancy and 73 ± 3% NK1R occupancy. The interaction between NK1R antagonism and SERT inhibition to lower the SERT occupancy required for antidepressant-like efficacy suggests that BMS-795176 has the potential to improve efficacy with a reduction in SSRI-associated side effects.

  5. Opposite effects of diazepam and beta-CCE on immobility and straw-climbing behavior of rats in a modified forced-swim test.

    Science.gov (United States)

    Nishimura, H; Ida, Y; Tsuda, A; Tanaka, M

    1989-05-01

    The present study was undertaken to examine how two ligands of the benzodiazepine receptor, which possess anxiolytic or anxiogenic actions, affect both the duration of immobility and the incidence of straw-climbing behavior in rats in a modified forced-swim test. Rats were injected IP with either vehicle, diazepam (0.5, 1, 5 mg/kg), or beta-carboline-3-carboxylic acid ethyl ester (beta-CCE; 0.5, 1, 2, 5 mg/kg), or a combination of diazepam at 1 mg/kg and beta-CCE at 2 mg/kg. In addition, Ro 15-1788 (1 mg/kg), a specific benzodiazepine antagonist, was injected IP 20 min after diazepam injection and immediately after beta-CCE injection, respectively. In the first 5-min period of the forced-swim test, diazepam at 5 mg/kg prolonged the duration of immobility, whereas beta-CCE at 1, 2 and 5 mg/kg reduced its duration. Immediately after the first 5-min test period, 4 straws were suspended above the surface of the water, and the number of straw-climbing attempts and the duration of immobility were measured for a subsequent 5-min test period. Straw-suspension elicited straw-climbing behavior in forced swimming rats, resulting in a shortening of the duration of immobility in this period. All doses of diazepam inhibited straw-climbing attempts and prolonged the duration of immobility in a dose-dependent manner. beta-CCE at 1 or 2 mg/kg enhanced straw-climbing attempts, but did not significantly affect the duration of immobility. Furthermore, the combined administration of diazepam and beta-CCE antagonized the respective drug effects on the duration of immobility and the number of straw-climbing attempts.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Antidepressant-like activity of liposomal formulation containing nimodipine treatment in the tail suspension test, forced swim test and MAOB activity in mice.

    Science.gov (United States)

    Moreno, Lina Clara Gayoso E Almendra Ibiapina; Rolim, Hercília Maria Lins; Freitas, Rivelilson Mendes; Santos-Magalhães, Nereide Stela

    2016-09-01

    Previous studies have shown that intracellular calcium ion dysfunction may be an etiological factor in affective illness. Nimodipine (NMD) is a Ca(2+) channel blocker that has been extensively investigated for therapy of central nervous system (CNS) disorders. In this work, we have evaluated the antidepressant-like activity of nimodipine encapsulated into liposomes (NMD-Lipo) in mice through tail suspension and forced swim assays, as well as MAOB activity. During the tail suspension test, the administration of NMD-Lipo at 0.1, 1 and 10mg/kg was able to promote a reduction in the immobility time of animals greater than the positive control (imipramine). In the forced swim test, the immobility time of mice treated with NMD-Lipo was reduced. This reduction was significantly greater than that found in the animals treated with imipramine and paroxetine. This may suggest that NMD-Lipo provides more antidepressant-like activity than in positive controls. The groups that received a combination of liposomal NMD and antidepressant drugs showed lower immobility time than the groups, which were treated only with imipramine or paroxetine. The mice treated with the combination of NMD-Lipo and reserpine presented an increase in the time of immobility compared with animals treated only with NMD-Lipo. There was a significant decrease in MAOB activity in animals treated with NMD-Lipo compared with untreated animals. The results of the tail suspension test, forced swim test and MAOB activity suggested that the antidepressant activity of NMD-Lipo may be related to an increase in the cerebral monoamine concentrations.

  7. Effect of the use-dependent, nicotinic receptor antagonist BTMPS in the forced swim test and elevated plus maze after cocaine discontinuation in rats.

    Science.gov (United States)

    Hall, Brandon J; Pearson, Laura S; Buccafusco, Jerry J

    2010-04-26

    Withdrawal from cocaine use often is associated with anxiety and depressive states. In this study the use-dependent, nicotinic acetylcholine receptor antagonist bis-(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (BTMPS) was studied for its ability to reduce these symptoms in two rat models of anxiety and depression. Rats were administered saline vehicle, or two escalating doses of cocaine, for a period of 5 days and they were evaluated during the period after cocaine discontinuation in the elevated plus maze (anxiety) and the forced swim test (affect). BTMPS (0.25, 0.5, or 0.75mg/kg) was co-administered with saline or cocaine in the dependence phase. Withdrawal from cocaine administration alone resulted in reductions in both the time spent in the open arms of the elevated plus maze test, as well as entries into, and out of, the open arms of the maze. Withdrawal from cocaine also resulted in a reduction of escape behaviors, and the time to first immobility, in the forced swim test. Treatment with BTMPS produced a reversal of cocaine-induced anxiety-like behaviors in the elevated plus maze, including an increase (up to 68%) in time spent in the open arms of the maze and an increase in the number of crossings between open and enclosed arms. BTMPS also reduced depressive-like behaviors associated with the forced swim test, including up to a 62% increase in the time to first immobility and a 50% increase in escape behavior. These results provide proof of concept for the development and use of cholinergic compounds in the treatment of substance abuse.

  8. Antidepressant-like activity of sildenafil following acute and subchronic treatment in the forced swim test in mice: effects of restraint stress and monoamine depletion.

    Science.gov (United States)

    Socała, Katarzyna; Nieoczym, Dorota; Pieróg, Mateusz; Szuster-Ciesielska, Agnieszka; Wyska, Elżbieta; Wlaź, Piotr

    2016-10-01

    Sildenafil is a highly effective oral agent for the treatment of erectile dysfunction of multiple etiologies. Although in clinical practice sildenafil is often used in depressed patients, its influence on the pathophysiology of depression remains unclear. The aim of the present study was to evaluate the antidepressant-like activity following acute and subchronic treatment with sildenafil in naïve mice as well as in mice with reserpine- and restraint stress-induced depressive-like behavior. Since corticosterone is released in response to acute stress, we also aimed to assess the influence of sildenafil on serum corticosterone level in non-stressed and stressed animals. The antidepressant activity of sildenafil was assessed in the forced swim test. Corticosterone serum level was determined by using ELISA method, while brain and serum sildenafil level via HPLC method. Sildenafil administered acutely exerted an antidepressant-like effect. Subchronic (14 days) administration of sildenafil resulted only in a weak antidepressant-like effect when evaluated 24 h after the last dose. Acute but not subchronic sildenafil administration reversed the reserpine- and stress-induced immobility in the forced swim test. The lack of effects of sildenafil after subchronic treatment could have been related to its complete elimination from the brain within 24 h from the last injection. Interestingly, acute administration of sildenafil produced a marked increase in serum corticosterone level in both non-stressed and stressed animals. Sildenafil exerts differential effects in the forced swim test after acute and subchronic administration. Further studies on the antidepressant activity of sildenafil are required.

  9. Role of 5-HT(1A) and 5-HT(1B) receptors in the antidepressant-like effect of piperine in the forced swim test.

    Science.gov (United States)

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2011-10-24

    Our previous studies have showed that treating mice with piperine significantly decreased the immobility time of the animals in the forced swim test and tail suspension test, which was related to up-regulation of serotonin (5-HT) level in the brain. The purpose of this study is to explore the contribution of 5-HT receptors in the antidepressant-like effect of piperine. The results showed that pre-treating mice with methiothepin (a non-selective 5-HT receptor antagonist, 0.1mg/kg, intraperitoneally), 4-(2'-methoxy-phenyl)-1-[2'-(n-2″-pyridinyl)-p-iodobenzamino-]ethyl-piperazine (a selective 5-HT(1A) receptor antagonist, 1mg/kg, subcutaneously) or 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (a 5-HT(1B) receptor antagonist, 2.5mg/kg, intraperitoneally) was found to abolish the anti-immobility effect of piperine (10mg/kg, intraperitoneally) in the forced swim test. On the other hand, a sub-effective dose of piperine (1mg/kg, intraperitoneally) produced a synergistic antidepressant-like effect with (+)-8-hydroxy-2-(di-n-propylamino)tetralin (a 5-HT(1A) receptor agonist, 1mg/kg, intraperitoneally) or anpirtoline (a 5-HT(1B) receptor agonist, 0.25mg/kg, intraperitoneally). Taken together, these results suggest that the antidepressant-like effect of piperine in the mouse forced swim test may be mediated, at least in part, by the activation of 5-HT(1A) and 5-HT(1B) receptors.

  10. Creatine supplementation and swimming performance.

    Science.gov (United States)

    Leenders, N M; Lamb, D R; Nelson, T E

    1999-09-01

    The purpose of this study was to determine if oral creatine (CR) ingestion, compared to a placebo (PL), would enable swimmers to maintain a higher swimming velocity across repeated interval sets over 2 weeks of supplementation. Fourteen female and 18 male university swimmers consumed a PL during a 2-week baseline period. Using a randomized, double-blind design, during the next 2 weeks subjects consumed either CR or PL. Swimming velocity was assessed twice weekly during 6 X 50-m swims and once weekly during 10 X 25-yd swims. There was no effect of CR on the 10 X 25-yd interval sets for men and women and no effect on the 6 X 50-m interval sets for women. In contrast, for men, CR significantly improved mean overall swimming velocity in the 6 X 50-m interval after 2 weeks of supplementation, whereas PL had no effect. Although ineffective in women, CR supplementation apparently enables men to maintain a faster mean overall swimming velocity during repeated swims each lasting about 30 s; however, CR was not effective for men in repeated swims each lasting about 10 - 15 s.

  11. The antidepressant-like effect of ethynyl estradiol is mediated by both serotonergic and noradrenergic systems in the forced swimming test.

    Science.gov (United States)

    Vega-Rivera, N M; López-Rubalcava, C; Estrada-Camarena, E

    2013-10-10

    17α-Ethynyl-estradiol (EE2, a synthetic steroidal estrogen) induces antidepressant-like effects in the forced swimming test (FST) similar to those induced by 5-HT and noradrenaline reuptake inhibitors (dual antidepressants). However, the precise mechanism of action of EE2 has not been studied. In the present study, the participation of estrogen receptors (ERs) and the serotonergic and the noradrenergic presynaptic sites in the antidepressant-like action of EE2 was evaluated in the FST. The effects of the ER antagonist ICI 182,780 (10 μg/rat; i.c.v.), the serotonergic and noradrenergic terminal destruction with 5,7-dihydroxytryptamine (5,7-DHT; 200 μg/rat, i.c.v.), and N-(2-chloro-ethyl)-N-ethyl-2-bromobenzylamine (DSP4; 10mg/kg, i.p.) were studied in ovariectomized rats treated with EE2 and subjected to the FST. In addition, the participation of α2-adrenergic receptors in the antidepressant-like action of EE2 was explored using the selective α2-receptor antagonist idazoxan (0.25, 0.5 and 1.0mg/kg, i.p.). EE2 induced an antidepressant-like action characterized by a decrease in immobility behavior with a concomitant increase in swimming and climbing behaviors. The ER antagonist, 5,7-DHT, DSP4, and idazoxan blocked the effects of EE2 on the immobility behavior, whereas ICI 182,780 and 5,7-DHT affected swimming behavior. The noradrenergic compound DSP4 altered climbing behavior, while Idazoxan inhibited the increase of swimming and climbing behaviors induced by EE2. Our results suggest that the antidepressant-like action of EE2 implies a complex mechanism of action on monoaminergic systems and estrogen receptors.

  12. Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors.

    Science.gov (United States)

    Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

    2014-01-01

    Blocking, desensitizing, or knocking out transient receptor potential vanilloid type 1 (TRPV1) receptors decreases immobility in the forced swim test, a measure of depressive behavior. We questioned whether enhancing TRPV1 activity promotes immobility in a fashion that is prevented by antidepressants. To test this we activated heat-sensitive TRPV1 receptors in mice by water that is warmer than body temperature (41 °C) or a low dose of resiniferatoxin (RTX). Water at 41 °C elicited less immobility than cooler water (26 °C), indicating that thermoregulatory sites do not contribute to immobility. Although a desensitizing regimen of RTX (3-5 injections of 0.1 mg/kg s.c.) decreased immobility during swims at 26 °C, it did not during swims at 41 °C. In contrast, low dose of RTX (0.02 mg/kg s.c.) enhanced immobility, but only during swims at 41 °C. Thus, activation of TRPV1 receptors, endogenously or exogenously, enhances immobility and these sites are activated by cold rather than warmth. Two distinct types of antidepressants, amitriptyline (10mg/kg i.p.) and ketamine (50 mg/kg i.p.), each inhibited the increase in immobility induced by the low dose of RTX, verifying its mediation by TRPV1 sites. When desensitization was limited to central populations using intrathecal injections of RTX (0.25 μg/kg i.t.), immobility was attenuated at both temperatures and the increase in immobility produced by the low dose of RTX was inhibited. This demonstrates a role for central TRPV1 receptors in depressive behavior, activated by conditions (cold stress) distinct from those that activate TRPV1 receptors along thermosensory afferents (heat).

  13. Involvement of adrenergic and serotonergic receptors in antidepressant-like effect of urocortin 3 in a modified forced swimming test in mice.

    Science.gov (United States)

    Tanaka, Masaru; Telegdy, Gyula

    2008-11-25

    Most of the evidence suggests that peptides in the corticotropin-releasing factor (CRF) family act on CRF receptors and are involved in depressive disorders. Urocortin 3 (Ucn 3) is specific for CRF type 2 (CRF(2)) receptors and mediates anxiolytic-like action. Little is known about the roles of Ucn 3 and CRH(2) receptors on depressive disorders. The previous study revealed that Ucn 3 elicits the antidepressant-like action by shortening the immobility time and increasing both the climbing time and the swimming time. The involvement of the adrenergic and serotonergic receptors in the antidepressant-like effect of Ucn 3 (0.5μg/2μl, i.c.v.) was studied in a modified forced swimming test (FST) in mice. Mice were pretreated with a non-selective α-adrenergic receptor antagonist, phenoxybenzamine, an α(1)/α(2β)-adrenergic receptor antagonist, prazosin, an α(2)-adrenergic receptor antagonist, yohimbine, a mixed 5-HT(1)/5-HT(2) serotonergic receptor antagonist, methysergide, a non-selective 5-HT(2) serotonergic receptor antagonist, cyproheptadine or a β-adrenergic receptor antagonist, propranolol. Phenoxybenzamine prevented the effects of Ucn 3 on the immobility time. Prazosin prevented the effects of Ucn 3 on the climbing time. Yohimbine prevented the effects of Ucn 3 on the immobility, climbing and swimming times. Methysergide prevented the effects of Ucn 3 on the immobility and climbing time. Cyproheptadine prevented the effects of Ucn 3 on the swimming time. Propranolol did not change the effects of Ucn 3. The results demonstrated that the antidepressant-like effect of Ucn 3 is mediated, at least in part, by an interaction of the α-adrenergic and serotonergic receptors in a modified mouse FST.

  14. Antidepressant-like effects of the CRF family peptides, urocortin 1, urocortin 2 and urocortin 3 in a modified forced swimming test in mice.

    Science.gov (United States)

    Tanaka, Masaru; Telegdy, Gyula

    2008-03-28

    Most of the evidence suggests that corticotropin-releasing hormone (CRH) is involved in mood disorders. The CRF receptors type 1 (CRF(1) receptors) elicit a stress response, and their natural and synthetic antagonists have been studied as possible drugs against depression, whereas CRF receptors type 2 (CRF(2) receptors) appear to alleviate the stress response and mediate anxiolytic action. Other CRF family peptides are urocortin 1 (Ucn 1), urocortin 2 (Ucn 2) and urocortin 3 (Ucn 3). Little is known about the action of Ucn 1, Ucn 2 and Ucn 3 on depressive disorders. Antidepressant-like effects of Ucn 1, Ucn 2 and Ucn 3 (0.13, 0.25 and 0.5 microg/2 microl, i.c.v.) were assayed in mice in a modified forced swimming test (FST). This modified FST predicts the clinical efficacy of an antidepressant drug through the scoring of immobility, climbing and swimming behavior. The study demonstrated that Ucn 1 had no action on any of parameters studied in the modified FST. Ucn 2 elicited antidepressive-like action by shortening the immobility time. Additionally Ucn 2 significantly increased the climbing and swimming times. Ucn 3 likewise displayed an antidepressive-like effect by shortening the immobility time, and increasing the climbing and swimming times. The results suggest that CRF(2) receptor stimulation by Ucn 2 or Ucn 3 leads to antidepressant-like action, but dual stimulation of the CRF(1) and CRF(2) receptors by Ucn 1 does not trigger antidepressant-like action in the modified mouse FST.

  15. Utility and progress of forced swimming test study%强迫游泳实验研究应用及进展

    Institute of Scientific and Technical Information of China (English)

    杨福中; 施慎逊

    2009-01-01

    抑郁症病因迄今不明,可能与遗传因素、社会心理因素有关。动物模型为研究抑郁症提供了方便。强迫游泳实验(forced swimming test,FST)是目前应用最广泛的一种抑郁症动物模型,主要用于筛选具有抗抑郁活性的药物、研究抑郁症相关的受体。

  16. Antidepressant-like effects of endogenous histamine and of two histamine H1 receptor agonists in the mouse forced swim test

    OpenAIRE

    Lamberti, Claudia; Ipponi, Alessandro; Bartolini, Alessandro; Schunack, Walter; Malmberg-Aiello, Petra

    1998-01-01

    Effects of substances which are able to alter brain histamine levels and two histamine H1 receptor agonists were investigated in mice by means of an animal model of depression, the forced swim test.Imipramine (10 and 30 mg kg−1, i.p.) and amitriptyline (5 and 15 mg kg−1, i.p.) were used as positive controls. Their effects were not affected by pretreatment with the histamine H3 receptor agonist, (R)-α-methylhistamine, at a dose (10 mg kg−1, i.p.) which did not modify the cumulative time of imm...

  17. Sand swimming lizard: sandfish

    CERN Document Server

    Maladen, Ryan D; Kamor, Adam; Goldman, Daniel I

    2009-01-01

    We use high-speed x-ray imaging to reveal how a small (~10cm) desert dwelling lizard, the sandfish (Scincus scincus), swims within a granular medium [1]. On the surface, the lizard uses a standard diagonal gait, but once below the surface, the organism no longer uses limbs for propulsion. Instead it propagates a large amplitude single period sinusoidal traveling wave down its body and tail to propel itself at speeds up to ~1.5 body-length/sec. Motivated by these experiments we study a numerical model of the sandfish as it swims within a validated soft sphere Molecular Dynamics granular media simulation. We use this model as a tool to understand dynamics like flow fields and forces generated as the animal swims within the granular media. [1] Maladen, R.D. and Ding, Y. and Li, C. and Goldman, D.I., Undulatory Swimming in Sand: Subsurface Locomotion of the Sandfish Lizard, Science, 325, 314, 2009

  18. The depressogenic-like effect of acute and chronic treatment with dexamethasone and its influence on the activity of antidepressant drugs in the forced swim test in adult mice.

    Science.gov (United States)

    Wróbel, Andrzej; Serefko, Anna; Wlaź, Piotr; Poleszak, Ewa

    2014-10-01

    There is a close relationship between chronic stress, glucocorticoids and depression. Psychiatric and cognitive symptoms resembling major depression have been observed in patients experiencing elevated glucocorticoid levels, and a high percentage of people suffering from depression have undergone a stressful event/events prior to the onset of this mental disorder. In our study, we investigated whether acute and chronic treatment of dexamethasone induces depression-like behavior in mice and if dexamethasone therapy influences the activity of antidepressant drugs with diverse modes of action. The antidepressant-like effect was assessed by the forced swim test in adult mice. The depressogenic-like activity of dexamethasone turned out to be dose-dependent: only the highest tested dose of the glucocorticoid (i.e., 64μg/kg) given as a single injection increased immobility time, whereas 16μg/kg/day of dexamethasone (but not 4μg/kg/day) administered repeatedly induced a significant alteration in animal behavior. These depressogenic doses of dexamethasone (i.e., 64μg/kg and 16μg/kg/day for an acute and repeated administration, respectively) diminished the antidepressant potential of the therapeutic doses of imipramine (10mg/kg), amitriptyline (10mg/kg), tianeptine (25mg/kg), mianserin (10mg/kg), citalopram (15mg/kg) and moclobemide (25mg/kg). Two main findings of our study should be particularly underlined: (1) both single and repeated administration of dexamethasone evoked a depression-like behavior of mice, (2) both single and repeated administration of dexamethasone were able to modify the activity of the antidepressant agents from various pharmacological groups, which may lead to a considerable reduction in the efficacy of pharmacotherapy prescribed for patients with mood disorders.

  19. Force response of the fingertip pulp to repeated compression--effects of loading rate, loading angle and anthropometry.

    Science.gov (United States)

    Serina, E R; Mote, C D; Rempel, D

    1997-10-01

    Repeated loading of the fingertips has been postulated to contribute to tendon and nerve disorders at the wrist during activities associated with prolonged fingertip loading such as typing. To fully understand the pathomechanics of these soft tissue disorders, the role of the fingertip pulp in attenuating the applied dynamic forces must be known. An experiment was conducted to characterize the response of the in vivo fingertip pulp under repeated, dynamic, compressive loadings, to identify factors that influence pulp dynamics, and to better understand the force modulation by the pulp. Twenty subjects tapped repeatedly on a flat plate with their left index finger, while the contact force and pulp displacement were measured simultaneously. Tapping trials were conducted at three fingertip contact angles from the horizontal plane (0 degree, 45 degrees, and 90 degrees) and five tapping rates (0.25, 0.5, 1, 2, and 3 Hz). The fingertip pulp responds as a viscoelastic material, exhibiting rate-dependence, hysteresis, and a nonlinear force-displacement relationship. The pulp was relatively compliant at forces less than 1 N, but stiffened rapidly with displacement at higher forces for all loading conditions. This suggests that high-frequency forces of a small magnitude (< 1 N) are attenuated by the nonlinearly stiffening pulp while these forces of larger magnitude are transmitted to the bone. Pulp response was significantly influenced by the angle of loading. Fingertip dimensions, gender, and subject age had little to no influence on pulp parameters.

  20. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter.

    Science.gov (United States)

    Lin, Shih-Hang; Chou, Mei-Ling; Chen, Wei-Cheng; Lai, Yi-Syuan; Lu, Kuan-Hung; Hao, Cherng-Wei; Sheen, Lee-Yan

    2015-12-04

    Depression is a serious psychological disorder that causes extreme economic loss and social problems. However, the conventional medications typically cause side effects that result in patients opting to out of therapy. Lemon balm (Melissa officinalis L., MO) is an old and particularly reliable medicinal herb for relieving feelings of melancholy, depression and anxiety. The present study aims to investigate the antidepressant-like activity of water extract of MO (WMO) by evaluating its influence on the behaviors and the relevant neurotransmitters of rats performed to forced swimming test. Two phases of the experiment were conducted. In the acute model, rats were administered ultrapure water (control), fluoxetine, WMO, or the indicated active compound (rosmarinic acid, RA) three times in one day. In the sub-acute model, rats were respectively administered ultrapure water (control), fluoxetine, or three dosages of WMO once a day for 10 days. Locomotor activity and depression-like behavior were examined using the open field test and the forced swimming test, respectively. The levels of relevant neurotransmitters and their metabolites in the frontal cortex, amygdala, hippocampus, and striatum were analyzed by high performance liquid chromatography. In the acute model, WMO and RA significantly reduced depressive-like behavior but the type of related neurotransmitter could not be determined. The results indicated that the effect of WMO administration on the reduction of immobility time was associated with an increase in swimming time of the rats, indicative of serotonergic neurotransmission modulation. Chromatography data validated that the activity of WMO was associated with a reduction in the serotonin turnover rate. The present study shows the serotonergic antidepressant-like activity of WMO. Hence, WMO may offer a serotonergic antidepressant activity to prevent depression and to assist in conventional therapies. Copyright © 2015. Published by Elsevier Ireland Ltd.

  1. Resistance to the development of stress-induced behavioral despair in the forced swim test associated with elevated hippocampal Bcl-xl expression.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Berezova, Inna V; Bulygina, Veta V; Dygalo, Nikolay N

    2010-12-01

    Stress may predispose individuals toward depression through down-regulation of neurogenesis and increase in apoptosis in the brain. However, many subjects show high resistance to stress in relation to psychopathology. In the present study, we assessed the possibility that individual-specific patterns of gene expression associated with cell survival and proliferation may be among the molecular factors underlying stress resilience. Brain-derived neurotrophic factor (BDNF), anti-apoptotic B cell lymphoma like X (Bcl-xl) and pro-apoptotic bcl2-associated X protein (Bax) expression were determined in the hippocampus and frontal cortex of rats naturally differed in despair-like behavior in the forced swim test. In the hippocampus, BDNF messenger RNA (mRNA) level was significantly down-regulated 2h after the forced swim test exposure, and at this time point, Bcl-xl mRNA and protein levels were significantly higher in stressed than in untested animals. The ratios of hippocampal Bcl-xl to Bax mRNA negatively correlated with the total time spent immobile in the test. When animals were divided in two groups according to immobility responses in two consecutive swim sessions and designated as stress resilient if their immobility time did not increase in the second session as it did in stress sensitive rats, it was found that resilient rats had significantly higher Bcl-xl/Bax ratios in the hippocampus than stress sensitive animals. The data suggest that naturally occurring variations in the Bcl-xl/Bax ratio in the hippocampus may contribute to individual differences in vulnerability to stress-induced depression-like behaviors.

  2. Ozone modulates the effects of imipramine on immobility in the forced swim test, and nonspecific parameters of hippocampal oxidative stress in the rat.

    Science.gov (United States)

    Mokoena, Mmalebuso L; Harvey, Brian H; Oliver, Douglas W; Brink, Christiaan B

    2010-06-01

    Depression has been associated with oxidative stress. There is increased awareness of the role of environmental toxins in the development of mood disorders. Ozone, a pro-oxidant and environmental pollutant, has been noted to have central nervous system effects. We investigated the effects of acute and chronic ozone inhalation on the response of imipramine in the forced-swim test (FST) and on biomarkers of oxidative stress in rat hippocampus. Sprague Dawley rats were exposed to 0, 0.25 or 0.7 ppm ozone per inhalation 4 h daily for either 30 days (chronic) or once (acute). Animals were then injected intraperitoneally with imipramine (10 mg/kg) or saline 24, 5 and 1 h before the forced-swim test. Hippocampal superoxide accumulation and lipid peroxidation were measured. Imipramine evoked an antidepressant-like effect independent of acute or chronic ozone exposure. However, 0.7 ppm acute ozone and 0.25 ppm chronic ozone attenuated the antidepressant-like effects of imipramine. The ozone exposures also elevated hippocampal superoxide accumulation and lipid peroxidation. Importantly, imipramine reversed the lipid peroxidation induced by chronic ozone, thereby preventing cellular damage induced by oxidative stress. Ozone exposure presents a feasible model with etiological validity to investigate oxidative stress in depression and antidepressant action.

  3. Mouse strain differences in immobility and sensitivity to fluvoxamine and desipramine in the forced swimming test: analysis of serotonin and noradrenaline transporter binding.

    Science.gov (United States)

    Sugimoto, Yumi; Kajiwara, Yoshinobu; Hirano, Kazufumi; Yamada, Shizuo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hotta, Yoshihiro; Yamada, Jun

    2008-09-11

    Strain differences in immobility time in the forced swimming test were investigated in five strains of mice, namely, ICR, ddY, C57BL/6, DBA/2 and BALB/c mice. There were significant strain differences. The immobility times of ICR, ddY and C57BL/6 mice were longer than those of DBA/2 and BALB/c mice. Immobility times were not significantly related to locomotor activity in these strains. There were also differences in sensitivity to the selective serotonin reuptake inhibitor (SSRI) fluvoxamine. In ICR, ddY and C57BL/6 mice, fluvoxamine did not affect immobility time, while it reduced the immobility time of DBA/2 and BALB/c mice dose-dependently. The noradrenaline reuptake inhibitor desipramine decreased immobility time in all strains of mice. Serotonin (5-HT) transporter binding in the brains of all five strains of mice was also investigated. Analysis of 5-HT transporter binding revealed significant strain differences, being lower in DBA/2 and BALB/c mice than in other strains of mice. The amount of 5-HT transporter binding was correlated to baseline immobility time. However, there was no significant relation between noradrenaline transporter binding and immobility time. These results suggest that the duration of baseline immobility depends on the levels of 5-HT transporter binding, leading to apparent strain differences in immobility time in the forced swimming test. Furthermore, differences in 5-HT transporter binding may cause variations in responses to fluvoxamine.

  4. Both increases in immature dentate neuron number and decreases of immobility time in the forced swim test occurred in parallel after environmental enrichment of mice.

    Science.gov (United States)

    Llorens-Martín, M V; Rueda, N; Martínez-Cué, C; Torres-Alemán, I; Flórez, J; Trejo, J L

    2007-07-13

    A direct relation between the rate of adult hippocampal neurogenesis in mice and the immobility time in a forced swim test after living in an enriched environment has been suggested previously. In the present work, young adult mice living in an enriched environment for 2 months developed considerably more immature differentiating neurons (doublecortin-positive, DCX(+)) than control, non-enriched animals. Furthermore, we found that the more DCX(+) cells they possessed, the lower the immobility time they scored in the forced swim test. This DCX(+) subpopulation is composed of mostly differentiating dentate neurons independently of the birthdates of every individual cell. However, variations found in this subpopulation were not the result of a general effect on the survival of any newborn neuron in the granule cell layer, as 5-bromo-2-deoxyuridine (BrdU)-labeled cells born during a narrow time window included in the longer lifetime period of DCX(+) cells, were not significantly modified after enrichment. In contrast, the survival of the mature population of neurons in the granule cell layer of the dentate gyrus in enriched animals increased, although this did not influence their performance in the Porsolt test, nor did it influence the dentate gyrus volume or granule neuronal nuclei size. These results indicate that the population of immature, differentiating neurons in the adult hippocampus is one factor directly related to the protective effect of an enriched environment against a highly stressful event.

  5. Effects of imipramine or GABA(B) receptor ligands on the immobility, swimming and climbing in the forced swim test in rats following discontinuation of cocaine self-administration.

    Science.gov (United States)

    Frankowska, Małgorzata; Gołda, Anna; Wydra, Karolina; Gruca, Piotr; Papp, Mariusz; Filip, Małgorzata

    2010-02-10

    We tested if discontinuation of cocaine self-administration can lead to the development of depressive-like symptoms in the forced swim test expressed as changes in immobility, swimming and climbing behaviors in rats. A "yoked" procedure in which rats were run simultaneously in groups of three, with two rats received the passive injection of cocaine or saline, was employed. Later, we examined whether acute treatment with the classical antidepressant imipramine or GABA(B) receptor ligands could alter the increases in immobility recorded after discontinuation of self-administered cocaine. We found a significant increase (44%) in the immobility time 3 days following discontinuation of cocaine (0.5mg/kg/infusion/2h daily) self-administration for 14 days; such enhancement resembled that observed in rats following the chronic mild stress. Acute administration with imipramine (15 or 30 mg/kg), the GABA(B) receptor agonists baclofen (0.125 mg/kg) and SKF 97541 (0.005 mg/kg), the positive allosteric modulator CGP 7930 (0.3mg/kg) or the antagonist SCH 50911 (0.3mg/kg) counteracted the cocaine discontinuation-induced enhancement in the immobility time. The enhanced immobility time in rats that self-administered cocaine (but not given cocaine passively) may reflect the motivated or cognitive processes of reinforced responding of cocaine and could be a potential driver of the addiction process per se. Moreover, either blockade or stimulation of GABA(B) receptors by their ligands in very low doses attenuated the enhanced immobility time in rats after discontinuation of cocaine self-administration and these findings extend preclinical studies demonstrating the potential involvement of GABA(B) receptor ligands to reduce cocaine craving.

  6. Geneva 24 hours swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  7. Geneva 24 Hours Swim

    CERN Multimedia

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  8. Effects of prolonged ethanol vapor exposure on forced swim behavior, and neuropeptide Y and corticotropin-releasing factor levels in rat brains.

    Science.gov (United States)

    Walker, Brendan M; Drimmer, David A; Walker, Jennifer L; Liu, Tianmin; Mathé, Aleksander A; Ehlers, Cindy L

    2010-09-01

    Depressive symptoms in alcohol-dependent individuals are well-recognized and clinically relevant phenomena. The etiology has not been elucidated although it is clear that the depressive symptoms may be alcohol independent or alcohol induced. To contribute to the understanding of the neurobiology of chronic ethanol use, we investigated the effects of chronic intermittent ethanol vapor exposure on behaviors in the forced swim test (FST) and neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) levels in specific brain regions. Adult male Wistar rats were subjected to intermittent ethanol vapor (14 h on/10 h off) or air exposure for 2 weeks and were then tested at three time points corresponding to acute withdrawal (8-12 h into withdrawal) and protracted withdrawal (30 and 60 days of withdrawal) in the FST. The behaviors that were measured in the five-min FST consisted of latency to immobility, swim time, immobility time, and climbing time. The FST results showed that the vapor-exposed animals displayed depressive-like behaviors; for instance, decreased latency to immobility in acute withdrawal and decreased latency to immobility, decreased swim time and increased immobility time in protracted withdrawal, with differences between air- and vapor-exposed animals becoming more pronounced over the 60-day withdrawal period. NPY levels in the frontal cortex of the vapor-exposed animals were decreased compared with the control animals, and CRF levels in the amygdala were correlated with increased immobility time. Thus, extended ethanol vapor exposure produced long-lasting changes in FST behavior and NPY levels in the brain.

  9. Effects of Prolonged Ethanol Vapor Exposure on Forced Swim Behavior, and Neuropeptide Y and Corticotropin Releasing Factor Levels in Rat Brains

    Science.gov (United States)

    Walker, Brendan M.; Drimmer, David A.; Walker, Jennifer L.; Liu, Tianmin; Mathé, Aleksander A.; Ehlers, Cindy L.

    2010-01-01

    Depressive symptoms in alcohol-dependent individuals are well recognized and clinically relevant phenomena. The etiology has not been elucidated although it is clear that the depressive symptoms may be alcohol independent or alcohol-induced. In order to contribute to the understanding of the neurobiology of chronic ethanol use, we investigated the effects of chronic intermittent ethanol vapor exposure on behaviors in the forced swim test (FST) and neuropeptide Y (NPY) and corticotropin releasing factor (CRF) levels in specific brain regions. Adult male Wistar rats were subjected to intermittent ethanol vapor (14 hours on / 10 hours off) or air exposure for two weeks and were then tested at three time points corresponding to acute withdrawal (8–12 hours into withdrawal) and protracted withdrawal (30 and 60 days of withdrawal) in the FST. The behaviors that were measured in the five minute FST consisted of latency to immobility, swim time, immobility time and climbing time. The FST results showed that the vapor-exposed animals displayed depressive-like behaviors, for instance decreased latency to immobility in acute withdrawal and decreased latency to immobility, decreased swim time and increased immobility time in protracted withdrawal, with differences between air- and vapor-exposed animals becoming more pronounced over the 60 day withdrawal period. NPY levels in the frontal cortex of the vapor-exposed animals were decreased compared to the control animals and CRF levels in the amygdala were correlated with increased immobility time. Thus, extended ethanol vapor exposure produced long-lasting changes in FST behavior and NPY levels in the brain. PMID:20705420

  10. Antidepressant-Like Effects of the Ethyl Acetate Soluble Fraction of the Root Bark of Morus alba on the Immobility Behavior of Rats in the Forced Swim Test

    Directory of Open Access Journals (Sweden)

    Dong Wook Lim

    2014-06-01

    Full Text Available In this study, the antidepressant-like effects of Morus alba fractions in rats were investigated in the forced swim test (FST. Male Wistar rats (9-week-old were administered orally the M. alba ethyl acetate (EtOAc 30 and 100 mg/kg and M. alba n-butanol fractions (n-BuOH 30 and 100 mg/kg every day for 7 consecutive days. On day 7, 1 h after the final administration of the fractions, the rats were exposed to the FST. M. alba EtOAc fraction at the dose of 100 mg/kg induced a decrease in immobility behavior (p < 0.01 with a concomitant increase in both climbing (p < 0.05 and swimming (p < 0.05 behaviors when compared with the control group, and M. alba EtOAc fraction at the dose of 100 mg/kg decreased the hypothalamic-pituitary-adrenal (HPA axis response to the stress, as indicated by an attenuated corticosterone response and decreased c-fos immunoreactivity in the hippocampal and hypothalamic paraventricular nucleus (PVN region. These findings demonstrated that M. alba EtOAc fraction have beneficial effects on depressive behaviors and restore both altered c-fos expression and HPA activity.

  11. Test-retest paradigm of the forced swimming test in female mice is not valid for predicting antidepressant-like activity: participation of acetylcholine and sigma-1 receptors.

    Science.gov (United States)

    Su, Jing; Hato-Yamada, Noriko; Araki, Hiroaki; Yoshimura, Hiroyuki

    2013-01-01

    The forced swimming test (FST) in mice is widely used to predict the antidepressant activity of a drug, but information describing the immobility of female mice is limited. We investigated whether a prior swimming experience affects the immobility duration in a second FST in female mice and whether the test-retest paradigm is a valid screening tool for antidepressants. Female ICR mice were exposed to the FST using two experimental paradigms: a single FST and a double FST in which mice had experienced FST once 24 h prior to the second trail. The initial FST experience reliably prolonged immobility duration in the second FST. The antidepressants imipramine and paroxetine significantly reduced immobility duration in the single FST, but not in the double FST. Scopolamine and the sigma-1 (σ1) antagonist NE-100 administered before the second trial significantly prevented the prolongation of immobility. Neither a 5-HT1A nor a 5-HT2A receptor agonist affected immobility duration. We suggest that the test-retest paradigm in female mice is not adequate for predicting antidepressant-like activity of a drug; the prolongation of immobility in the double FST is modulated through acetylcholine and σ1 receptors.

  12. Antidepressant-like effects of the ethyl acetate soluble fraction of the root bark of Morus alba on the immobility behavior of rats in the forced swim test.

    Science.gov (United States)

    Lim, Dong Wook; Kim, Yun Tai; Park, Ji-Hae; Baek, Nam-In; Han, Daeseok

    2014-06-12

    In this study, the antidepressant-like effects of Morus alba fractions in rats were investigated in the forced swim test (FST). Male Wistar rats (9-week-old) were administered orally the M. alba ethyl acetate (EtOAc 30 and 100 mg/kg) and M. alba n-butanol fractions (n-BuOH 30 and 100 mg/kg) every day for 7 consecutive days. On day 7, 1 h after the final administration of the fractions, the rats were exposed to the FST. M. alba EtOAc fraction at the dose of 100 mg/kg induced a decrease in immobility behavior (p swimming (p < 0.05) behaviors when compared with the control group, and M. alba EtOAc fraction at the dose of 100 mg/kg decreased the hypothalamic-pituitary-adrenal (HPA) axis response to the stress, as indicated by an attenuated corticosterone response and decreased c-fos immunoreactivity in the hippocampal and hypothalamic paraventricular nucleus (PVN) region. These findings demonstrated that M. alba EtOAc fraction have beneficial effects on depressive behaviors and restore both altered c-fos expression and HPA activity.

  13. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Olsen, G M; Wiborg, O;

    2009-01-01

    AChR subtype/s involved remains unknown. In this study, we systematically compared the effects of non-selective and selective nicotinic agonists and antagonists in two different tests for antidepressant effects in mice: the tail suspension test and the forced swim test. Compounds: nicotine, RJR-2403 (alpha4......beta2-selective agonist), PNU-282987 (alpha7-selective agonist), mecamylamine (non-selective antagonist), dihydro-beta-erythroidine (DHbetaE; alpha4beta2-selective antagonist), methyllycaconitine (MLA; alpha7-selective antagonist) and hexamethonium (non-brain-penetrant non-selective antagonist). All...... compounds were tested in a locomotor activity paradigm to rule out non-specific stimulant effects. The data show that blockade of nAChRs with mecamylamine, or selective antagonism of alpha4beta2 or alpha7 nAChRs with DHbetaE or MLA, respectively, has antidepressant-like effects. These effects were...

  14. Reduced effectiveness of escitalopram in the forced swimming test is associated with increased serotonin clearance rate in food-restricted rats.

    Science.gov (United States)

    France, Charles P; Li, Jun-Xu; Owens, William A; Koek, Wouter; Toney, Glenn M; Daws, Lynette C

    2009-07-01

    Efficacy of antidepressant drugs is often limited. One of the limiting factors may be diet. This study shows that the effect of escitalopram in the forced swimming test is diminished in rats by food restriction that decreased body weight by 8%. The primary target for escitalopram is the serotonin (5-HT) transporter. Using high-speed chronoamperometry to measure 5-HT clearance in vivo in rats fed the same food-restricted diet, the rate of 5-HT clearance from extracellular fluid in brain was dramatically increased. Increased 5-HT transporter function under conditions of dietary restriction might contribute to the decreased effect of escitalopram. These results suggest that diet plays an integral role in determining efficacy of antidepressant drugs, and might well generalize to other psychoactive drugs that impinge upon the 5-HT transporter.

  15. The involvement of NMDA receptor/NO/cGMP pathway in the antidepressant like effects of baclofen in mouse force swimming test.

    Science.gov (United States)

    Khan, Muhammad Imran; Ostadhadi, Sattar; Zolfaghari, Samira; Ejtemaei Mehr, Shahram; Hassanzadeh, Gholamreza; Dehpour, Ahmad-Reza

    2016-01-26

    In the current study, the involvement of N-methyl-d-aspartate receptor (NMDAR) and nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) system in the antidepressant-like effects of baclofen was evaluated by using animal model in forced swimming test. Followed by an open field test for the evaluation of locomotor activity, the immobility time for mice in force swimming test was recorded. Only the last four min was analyzed. Administration of Baclofen (0.5 and 1mg/kg, i.p.) reduced the immobility interval in the FST. Prior administration of l-arginine (750mg/kg, i.p.,) a nitric oxide synthase substrate or sildenafil (5mg/kg, i.p.) a phosphodiesterase 5 into mice suppressed the antidepressant-like activity of baclofen (1mg/kg, i.p.).Co-treatment of 7-nitroindazole (50mg/kg, i.p.,) an inhibitor of neuronal nitric oxide synthase, L-NAME (10mg/kg, i.p.,) a non-specific inhibitor of nitric oxide synthase or MK-801 (0.05mg/kg, i.p.) an NMDA receptor antagonist with subeffective dose of baclofen (0.1mg/kg, i.p.), reduced the immobility time in the FST as compared to the drugs when used alone. Co-administrated of lower doses of MK-801 (0.01mg/kg) or l-NAME (1mg/kg) failed to effect immobility time however, simultaneous administration of these two agents in same dose with subeffective dose of baclofen (0.1mg/kg, i.p.), minimized the immobility time in the FST. Thus, our results support the role of NMDA receptors and l-arginine-NO-GMP pathway in the antidepressant-like action of baclofen.

  16. Effects of ketamine and N-methyl-D-aspartate on fluoxetine-induced antidepressant-related behavior using the forced swimming test.

    Science.gov (United States)

    Owolabi, Rotimi Adegbenga; Akanmu, Moses Atanda; Adeyemi, Oluwole Isaac

    2014-04-30

    This study investigated the effects of ketamine on fluoxetine-induced antidepressant behavior using the forced swimming test (FST) in mice. In order to understand the possible role of N-methyl-d-aspartate (NMDA) neurotransmission in the antidepressant effect of fluoxetine, different groups of mice (n=10) were administered with acute ketamine (3mg/kg, i.p.), acute NMDA (75mg/kg and 150mg/kg, i.p.) and a 21-day chronic ketamine (15mg/kg, i.p./day) were administered prior to the administration of fluoxetine (20mg/kg, i.p.) in the mice. Antidepressant related behavior (immobility score) was measured using the forced swimming test. The results showed that the acute ketamine and fluoxetine alone treatments elicited a significant (pimmobility score compared with saline control. Furthermore, pre-treatment with acute ketamine significantly enhanced by the fluoxetine-induced decrease in immobility score. In contrast, pre-treatment with NMDA (150mg/kg) significantly (pimmobility score. On the other hand, chronic administration of ketamine significantly elicited an increase in immobility score as well as reversed the reduction induced by fluoxetine. Similarly, NMDA administration at both 75mg/kg and 150mg/kg increased immobility score in chronically administered ketamine groups. Furthermore, chronic administration of ketamine, followed by NMDA (75mg/kg) and fluoxetine significantly elevated the immobility score when compared with the group that received NMDA and fluoxetine but not chronically treated with ketamine. It can be suggested) that facilitation of NMDA transmission blocked fluoxetine-induced reduction in immobility score, while down-regulation of NMDA transmission is associated with increase in fluoxetine-induced antidepressant-related behavior in mice. Down-regulation of the NMDA transmission is proposed as an essential component of mechanism of suppression of depression related behaviors by fluoxetine. Modulation of NMDA transmission is suggested to be relevant in

  17. Effects of a glycine transporter-1 inhibitor and D-serine on MK-801-induced immobility in the forced swimming test in rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Koike, Hiroyuki; Kinoshita, Kohnosuke; Kambe, Daiji; Kaku, Ayaka; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko

    2015-02-01

    Glutamatergic dysfunction, particularly the hypofunction of N-methyl-D-aspartate (NMDA) receptors, is involved in the pathophysiology of schizophrenia. The positive modulation of the glycine site on the NMDA receptor has been proposed as a novel therapeutic approach for schizophrenia. However, its efficacy against negative symptoms, which are poorly managed by current medications, has not been fully addressed. In the present study, the effects of the positive modulation of the glycine site on the NMDA receptor were investigated in an animal model of negative symptoms of schizophrenia. The subchronic administration of MK-801 increased immobility in the forced swimming test in rats without affecting spontaneous locomotor activity. The increased immobility induced by MK-801 was attenuated by the atypical antipsychotic clozapine but not by either the typical antipsychotic haloperidol or the antidepressant imipramine, indicating that the increased immobility induced by subchronic treatment with MK-801 in the forced swimming test may represent a negative symptom of schizophrenia. Likewise, positive modulation of the glycine sites on the NMDA receptor using an agonist for the glycine site, D-serine, and a glycine transporter-1 inhibitor, N-[(3R)-3-([1,1'-biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine hydrochloride (NFPS), significantly reversed the increase in immobility in MK-801-treated rats without reducing the immobility time in vehicle-treated rats. The present results show that the stimulation of the NMDA receptor through the glycine site on the receptor either directly with D-serine or by blocking glycine transporter-1 attenuates the immobility elicited by the subchronic administration of MK-801 and may be potentially useful for the treatment of negative symptoms of schizophrenia.

  18. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    Science.gov (United States)

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine.

  19. The neurosteroid dehydroepiandrosterone sulfate, but not androsterone, enhances the antidepressant effect of cocaine examined in the forced swim test--Possible role of serotonergic neurotransmission.

    Science.gov (United States)

    Krzascik, Pawel; Zajda, Malgorzata Elzbieta; Majewska, Maria Dorota

    2015-04-01

    One of the mechanisms of cocaine's actions in the central nervous system is its antidepressant action. This effect might be responsible for increased usage of the drug by individuals with mood disorders. Higher endogenous levels of the excitatory neurosteroid dehydroepiandrosterone sulfate (DHEAS) were reported to correlate with successful abstinence from cocaine use in addicts, but a clinical trial showed that supplementation with a high dose of DHEA increased cocaine usage instead. Such ambiguous effects of DHEA(S) could potentially be linked to its influence on the antidepressant effect of cocaine. In this study we tested DHEAS and its metabolite, androsterone, for interactions with cocaine in animal model of depression (forced swim test) and examined the effects of both steroids and cocaine on serotoninergic neurotransmission. All substances were also tested for influence on locomotor activity. A cocaine dose of 5mg/kg, which had no significant effect on locomotor activity, was chosen for the forced swim test. Neither DHEAS nor androsterone showed any antidepressant action in this test, while cocaine manifested a clear antidepressant effect. Androsterone slightly reduced the antidepressant influence of cocaine while DHEAS markedly, dose-dependently enhanced it. Such an effect might be caused by the influence of DHEAS on serotonin neurotransmission, as this steroid decreased serotonin concentration and turnover in the striatum. When DHEAS and cocaine were administered together, the levels of serotonin in the striatum and hippocampus remained unchanged. This phenomenon may explain the additive antidepressant action of DHEAS and cocaine and why co-administration of DHEAS and cocaine increases drug use.

  20. Possible role of dopamine D1-like and D2-like receptors in behavioural activation and evaluation of response efficacy in the forced swimming test.

    Science.gov (United States)

    D'Aquila, Paolo S; Galistu, Adriana

    2012-03-01

    Based on the different effects of the dopamine D1-like and D2-like receptor antagonists SCH 23390 and raclopride on the measures of licking microstructure in rats ingesting a sucrose solution, we suggested that the behavioural activation of reward-associated responses depends on dopamine D1-like receptor stimulation, and its level is updated, or "reboosted", on the basis of a dopamine D2-like receptor-mediated evaluation process. The aim of this study was to test this hypothesis on the forced swimming test response. The effects of the dopamine D1-like and D2-like receptor antagonists SCH 23390 (0.01-0.04 mg/kg) and raclopride (0.025-0.25 mg/kg) administered before a 15-min exposure to forced swimming, and the response to a second session performed 24 h later, were examined. SCH 23390 dose-dependently reduced climbing scores in the first session and increased them in the second session, but the within-session decline of this measure was similar to that observed in the control group in both sessions. Raclopride-treated subjects showed a slightly reduced level of climbing scores at the beginning of the first session, but persisted in emitting this costly behavioural response up to the end of the session, while no effects were observed in the second session. These results, along with our results examining licking for sucrose, are consistent with the hypothesis that behavioural activation and response effort allocation are directly mediated by dopamine D1-like receptor stimulation, but the level of this activation is updated, or "reboosted", on the basis of a dopamine D2-like receptor-mediated mechanism of response efficacy evaluation.

  1. Effects of chronic forced swim stress on hippocampal brain-derived neutrophic factor (BDNF) and its receptor (TrkB) immunoreactive cells in juvenile and aged rats.

    Science.gov (United States)

    Badowska-Szalewska, Ewa; Spodnik, Edyta; Klejbor, Ilona; Morys, Janusz

    2010-01-01

    A type of stress stimulation and age are claimed to affect the expression of brain-derived neurotrophic factor (BDNF) and its receptor - tyrosine kinase B (TrkB) in the hippocampal regions differentially. This study aimed to explore the influence of chronic (15 min daily for 21 days) forced swim stress (FS) exposure on the BDNF and TrkB containing neurons in the hippocampal CA1, CA3 pyramidal cell layers and dentate gyrus (DG) granule cell layer in juvenile (P28) and aged (P360) rats. An immunofluorescence (-ir) method was used to detect BDNF-ir and TrkB-ir cells. Under chronic FS exposure, in the group of juvenile rats a significant decrease in the density of BDNF immunoreactive neurons was observed in CA1 and DG (P less than CA3, where it remained unaltered just as the density of TrkB-ir cells in CA1 and DG, but in CA3 the number of TrkB-ir cells was found to grow (P less than 0.05) in comparison with control groups. After chronic FS exposure of aged (P360) rats, the density of BDNF-ir and TrkB-ir cells did not decline in any of the subregions of the hippocampus. In all subfields of the hippocampus, the denseness of BDNF-positive neurons was significantly higher in P360 stressed group, compared with P28 stressed group, but the density of TrkB-ir fell more markedly in P360 than in P28. In conclusion, chronic FS stress influenced the number of BDNF and TrkB immunoreactive neurons only in juvenile animals. The age of rats tested in the chronic forced swim test was a decisive factor determining changes in the density of BDNF-ir and TrkB-ir in the hippocampal structures.

  2. Swimming-Induced Taste Aversion and Its Prevention by a Prior History of Swimming

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2004-01-01

    In two experiments, the evidence showed that 20 min of forced swimming by rats caused aversion to a taste solution consumed before swimming. When one of two taste solutions (sodium saccharin or sodium chloride, counterbalanced across rats) was paired with swimming and the other was not, the rats' intakes of these two solutions showed less…

  3. A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force.

    Science.gov (United States)

    Hall, Rick S; Desmoulin, Geoffrey T; Milner, Theodore E

    2008-12-01

    Miniature sensors that could measure forces applied by the fingers and hand without interfering with manual dexterity or range of motion would have considerable practical value in ergonomics and rehabilitation. In this study, techniques have been developed to use inexpensive pressure-sensing resistors (FSRs) to accurately measure compression force. The FSRs are converted from pressure-sensing to force-sensing devices. The effects of nonlinear response properties and dependence on loading history are compensated by signal conditioning and calibration. A fourth-order polynomial relating the applied force to the current voltage output and a linearly weighted sum of prior outputs corrects for sensor hysteresis and drift. It was found that prolonged (>20h) shear force loading caused sensor gain to change by approximately 100%. Shear loading also had the effect of eliminating shear force effects on sensor output, albeit only in the direction of shear loading. By applying prolonged shear loading in two orthogonal directions, the sensors were converted into pure compression sensors. Such preloading of the sensor is, therefore, required prior to calibration. The error in compression force after prolonged shear loading and calibration was consistently industrial design applications where measurements of finger and hand force are needed.

  4. Contribution of hand and foot force to take-off velocity for the kick-start in competitive swimming.

    Science.gov (United States)

    Takeda, Tsuyoshi; Sakai, Shin; Takagi, Hideki; Okuno, Keisuke; Tsubakimoto, Shozo

    2017-03-01

    This study examines the hand and foot reaction force recorded independently while performing the kick-start technique. Eleven male competitive swimmers performed three trials for the kick-start with maximum effort. Three force platforms (main block, backplate and handgrip) were used to measure reaction forces during starting motion. Force impulses from the hands, front foot and rearfoot were calculated via time integration. During the kick-start, the vertical impulse from the front foot was significantly higher than that from the rearfoot and the horizontal impulse from the rearfoot was significantly higher than that from the front foot. The force impulse from the front foot was dominant for generating vertical take-off velocity and the force impulse from the rearfoot was dominant for horizontal take-off velocity. The kick-start's shorter block time in comparison to prior measurements of the grab start was explained by the development of horizontal reaction force from the hands and the rearfoot at the beginning of the starting motion.

  5. Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Ostadhadi, Sattar; Kordjazy, Nastaran; Dehpour, Ahmad Reza; Ejtemaei Mehr, Shahram

    2014-07-15

    Opioid and glutamatergic receptors have a key role in depression following stress. In this study, we assessed opioid and glutamatergic receptors interaction with the depressant-like behavior of acute foot-shock stress in the mouse forced swimming test. Stress was induced by intermittent foot shock stimulation during 30min and swim periods were afterwards conducted by placing mice in separated glass cylinders filled with water for 6min. The immobility time during the last 4min of the test was considered. Acute foot-shock stress significantly increased the immobility time of mice compared to non-stressed control group (P≤0.01). Administration of non-selective opioid receptors antagonist, naltrexone (1 and 2mg/kg, i.p.), and the selective non-competitive NMDA receptor antagonist, MK-801 (0.05mg/kg, i.p.), and the selective serotonin reuptake inhibitor, fluoxetine (5mg/kg), significantly reduced the immobility time in stressed animals (P≤0.01). Lower doses of MK-801 (0.01mg/kg), naltrexone (0.3mg/kg), NMDA (75mg/kg) and morphine(5mg/kg) had no effect on foot-shock stressed mice. Combined treatment of sub-effective doses of naltrexone and MK-801 significantly showed an antidepressant-like effect (P≤0.001). On the other hand, co-administration of non-effective doses of NMDA and morphine with effective doses of naltrexone and MK-801 reversed the anti-immobility effect of these drugs. Taken together, we have for the first time demonstrated the possible role of opioid/NMDA receptors signaling in the depressant-like effect of foot-shock stress, and proposed the use of drugs that act like standard anti-depressants in stress-induced depression.

  6. Sildenafil, a phosphodiesterase type 5 inhibitor, enhances the antidepressant activity of amitriptyline but not desipramine, in the forced swim test in mice.

    Science.gov (United States)

    Socała, Katarzyna; Nieoczym, Dorota; Wyska, Elżbieta; Poleszak, Ewa; Wlaź, Piotr

    2012-06-01

    The cholinergic theory of depression highlights the involvement of muscarinic acetylcholine receptors in the neurobiology of mood disorders. The present study was designed to investigate the effect of sildenafil, a phosphodiesterase type 5 inhibitor which exhibits cholinomimetic properties, alone and in combination with scopolamine in the forced swim test in mice. Moreover, we assessed the ability of sildenafil to modify the antidepressant activity of two tricyclic antidepressants with distinct cholinolytic activity, amitriptyline and desipramine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmacokinetic interaction between amitriptyline and sildenafil, brain and serum concentrations of amitriptyline were determined by HPLC. Sildenafil (1.25-20 mg/kg) as well as scopolamine (0.5 mg/kg) and its combination with sildenafil (1.25 mg/kg) did not affect the total immobility time duration. However, joint administration of scopolamine with sildenafil at doses of 2.5 and 5 mg/kg significantly reduced immobility time as compared to control group. Moreover, co-administration of scopolamine with sildenafil at the highest dose (5 mg/kg) significantly decreased immobility time as compared to scopolamine-treated group. Sildenafil (1.25, 2.5 and 5 mg/kg) significantly enhanced the antidepressant activity of amitriptyline (5 mg/kg). No changes in anti-immobility action of desipramine (20 mg/kg) in combination with sildenafil (5, 10 and 20 mg/kg) were observed. Sildenafil did not affect amitriptyline level in both brain and serum. In conclusion, the present study suggests that sildenafil may enhance the activity of antidepressant drugs which exhibit cholinolytic activity.

  7. Clinical doses of citalopram or reboxetine differentially modulate passive and active behaviors of female Wistar rats with high or low immobility time in the forced swimming test.

    Science.gov (United States)

    Flores-Serrano, Ana Gisela; Vila-Luna, María Leonor; Álvarez-Cervera, Fernando José; Heredia-López, Francisco José; Góngora-Alfaro, José Luis; Pineda, Juan Carlos

    2013-09-01

    The sensitivity of immobility time (IT) to antidepressant-drugs differs in rats expressing high or low motor activity during the forced swimming test (FST). However, whether this heterogeneity is expressed after the administration of the most selective serotonin and norepinephrine reuptake inhibitors (SSRIs and SNRIs, respectively) is unknown. We compared the influence of either the SSRI citalopram or the SNRI reboxetine with the tricyclic antidepressant amitriptyline on two subgroups of female Wistar rats expressing high IT (HI; at or above the mean value) or low IT (LI; below the mean) during the initial 5 min of the first session of the FST. None of the tested drugs increased motor activity in the open field test. When vehicle was applied to either HI or LI rats, IT increased in the second session of the FST. This increment concurred with a simultaneous climbing time (CT) decrement. When amitriptyline (15 mg/kg) was tested the CT increased for both HI and LI rats. This increment was accompanied by an IT decrement in HI and LI rats. Reboxetine (0.16 or 1 mg/kg) precluded IT and CT changes in both HI and LI rats and produced a swimming time reduction. Citalopram (0.4, 1, and 3 mg/kg) essentially mimicked the influence of reboxetine on the IT and CT in LI rats, as well as in HI rats, but in the latter case only at 3 mg/kg. Yet, at the dose of 10 mg/kg citalopram lacked this effect in both subgroups. No differences were detected when the IT of LI rats was evaluated with citalopram (3 mg/kg) during estrus or diestrus stage. These results show that clinical doses of citalopram produced an antidepressant-like effect selectively in LI rats, while amitriptyline or reboxetine produced this effect in both LI and HI animals.

  8. Immobility time during the forced swimming test predicts sensitivity to amitriptyline, whereas traveled distance in the circular corridor indicates resistance to treatment in female Wistar rats.

    Science.gov (United States)

    Flores-Serrano, Ana G; Zaldívar-Rae, Jaime; Salgado, Humberto; Pineda, Juan C

    2015-03-25

    Among the main issues in the pharmacological treatment of depression are the wide variation in response to antidepressants among individual patients and the lack of indexes that allow prediction of which drug will be effective in a particular case. We evaluated whether differential sensitivity to amitriptyline is related to dichotomous categorization of individuals on the basis of their behavioral responses to two common paradigms used to evaluate the potential of tricyclic drugs as antidepressants. Hence, we categorized a cohort of 38 female rats on the basis of their immobility time in the conditioning phase of the forced swimming test [FST; high immobility (HI) vs. low immobility (LI) rats] and their locomotor behavior in the circular corridor test [high locomotor response (HR) vs. low locomotor response (LR) rats]. We subjected the rodents to the FST while under the influence of vehicle (n=20) or amitriptyline (15 mg/kg; n=18). We found no statistical evidence of dependence between categorizations of rats on the basis of their behavior in the FST and circular corridor test. Rats categorized as HI/LI and HR/LR significantly differed in their sensitivity/resistance to amitriptyline, as evidenced by changes (or lack thereof) in their immobility time, climbing time, and swimming time during the FST. These results confirm that different behavioral styles among rats are linked to differential sensitivity/resistance to antidepressants. However, we specifically found that categorizing rats as HI/LI better reflected sensitivity to amitriptyline, whereas categorizing them as HR/LR better revealed resistance to the drug. These differential responses should be considered in experimental approaches.

  9. Central immune overactivation in the presence of reduced plasma corticosterone contributes to swim stress-induced hyperalgesia.

    Science.gov (United States)

    Suarez-Roca, H; Quintero, L; Avila, R; Medina, S; De Freitas, M; Cárdenas, R

    2014-01-01

    Although it is widely known that immunological, hormonal and nociceptive mechanisms are altered by exposure to repeated stress, the interplaying roles of each function in the development of post-stress hyperalgesia are not completely clear. Thus, we wanted to establish how interleukin 1-beta (IL-1β), corticosterone and microglia interact to contribute in the development of hyperalgesia following repeated forced swim. Rats were subjected to either forced swim, sham swim or non-conditioned. Each group was then treated with minocycline, ketoconazole, or saline. Thermal nociception was measured via the hot plate test, before and after the behavioral conditioning, whereas blood and lumbar spinal cord tissue samples were obtained at the end of the protocol. Serum levels of corticosterone, spinal tissue concentration of IL-1β and spinal OX-42 labeling (microglial marker) were determined. Rats exposed to forced swim stress developed thermal hyperalgesia along with elevated spinal tissue IL-1β, increased OX-42 labeling and relatively diminished serum corticosterone. Pre-treatment with minocycline and ketoconazole prevented the development of thermal hyperalgesia and the increase in IL-1β, without significantly modifying serum corticosterone. These results suggest that the development of forced swim-induced thermal hyperalgesia requires the simultaneous presence of increased spinal IL-1β, microglial activation, and relatively decreased serum corticosterone.

  10. Swimming Droplets

    Science.gov (United States)

    Maass, Corinna C.; Krüger, Carsten; Herminghaus, Stephan; Bahr, Christian

    2016-03-01

    Swimming droplets are artificial microswimmers based on liquid droplets that show self-propelled motion when immersed in a second liquid. These systems are of tremendous interest as experimental models for the study of collective dynamics far from thermal equilibrium. For biological systems, such as bacterial colonies, plankton, or fish swarms, swimming droplets can provide a vital link between simulations and real life. We review the experimental systems and discuss the mechanisms of self-propulsion. Most systems are based on surfactant-stabilized droplets, the surfactant layer of which is modified in a way that leads to a steady Marangoni stress resulting in an autonomous motion of the droplet. The modification of the surfactant layer is caused either by the advection of a chemical reactant or by a solubilization process. Some types of swimming droplets possess a very simple design and long active periods, rendering them promising model systems for future studies of collective behavior.

  11. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    Science.gov (United States)

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to

  12. Determination of a quantitative parameter to evaluate swimming technique based on the maximal tethered swimming test.

    Science.gov (United States)

    Soncin, Rafael; Mezêncio, Bruno; Ferreira, Jacielle Carolina; Rodrigues, Sara Andrade; Huebner, Rudolf; Serrão, Julio Cerca; Szmuchrowski, Leszek

    2017-06-01

    The aim of this study was to propose a new force parameter, associated with swimmers' technique and performance. Twelve swimmers performed five repetitions of 25 m sprint crawl and a tethered swimming test with maximal effort. The parameters calculated were: the mean swimming velocity for crawl sprint, the mean propulsive force of the tethered swimming test as well as an oscillation parameter calculated from force fluctuation. The oscillation parameter evaluates the force variation around the mean force during the tethered test as a measure of swimming technique. Two parameters showed significant correlations with swimming velocity: the mean force during the tethered swimming (r = 0.85) and the product of the mean force square root and the oscillation (r = 0.86). However, the intercept coefficient was significantly different from zero only for the mean force, suggesting that although the correlation coefficient of the parameters was similar, part of the mean velocity magnitude that was not associated with the mean force was associated with the product of the mean force square root and the oscillation. Thus, force fluctuation during tethered swimming can be used as a quantitative index of swimmers' technique.

  13. Association between tryptophan hydroxylase-2 genotype and the antidepressant effect of citalopram and paroxetine on immobility time in the forced swim test in mice.

    Science.gov (United States)

    Kulikov, Alexander V; Tikhonova, Maria A; Osipova, Daria V; Kulikov, Victor A; Popova, Nina K

    2011-10-01

    Tryptophan hydroxylase-2 (TPH2) is the rate limiting enzyme of serotonin synthesis in the brain. The 1473G allele of the C1473G polymorphism in mTPH2 gene is associated with reduced enzyme activity and serotonin synthesis rate in the mouse brain. Here, the influence of the 1473G allele on the antidepressant effect of selective serotonin reuptake inhibitors (SSRIs), citalopram (2.5 or 5.0mg/kg) and paroxetine (5.0 or 10.0mg/kg), in the forced swim test was studied using B6-1473G and B6-1473C congenic mouse lines with the 1473G (decreased TPH2 activity) or 1473C (normal TPH2 activity) alleles, respectively, transferred to the genome of C57BL/6 mouse strain. Paroxetine (5.0 or 10.0mg/kg) and citalopram (2.5 or 5.0mg/kg) decreased immobility time in B6-1473C mice, while both doses of paroxetine and 2.5mg/kg of citaloprame did not alter immobility time in B6-1473G mice. However, 5.0mg/kg of citalopram reduced immobility in B6-1473G mice. The results provided genetic evidence of moderate association between 1473G allele and reduced sensitivity to SSRIs in mice.

  14. Effects of (+)-8-OH-DPAT on the duration of immobility during the forced swim test and hippocampal cell proliferation in ACTH-treated rats.

    Science.gov (United States)

    Miyake, Ayaka; Kitamura, Yoshihisa; Miyazaki, Ikuko; Asanuma, Masato; Sendo, Toshiaki

    2014-07-01

    In the present study, we examined the effect of ACTH on the immobilization of rats in the forced swim test and hippocampal cell proliferation after administration of the 5-HT1A receptor agonist, R-(+)-8-hydroxy-2-di-n-propylamino tetralin ((+)-8-OH-DPAT). Chronic treatment with (+)-8-OH-DPAT (0.01-0.1 mg/kg, s.c.) significantly decreased the duration of immobility in saline- and ACTH-treated rats. Chronic administration of ACTH caused a significant decrease in hippocampal cell proliferation. However, (+)-8-OH-DPAT significantly normalized cell proliferation in ACTH-treated rats. We then investigated the effects of (+)-8-OH-DPAT on the expression of brain-derived neurotrophic factor (BDNF) and cyclin D1 (elements of cyclic adenosine monophosphate response element-binding protein (CREB)-BDNF and Wnt signaling pathways, respectively) in the hippocampus of saline- and ACTH-treated rats. ACTH treatment significantly decreased the expression of cyclin D1, while treatment with (+)-8-OH-DPAT normalized the expression of cyclin D1 in ACTH-treated rats. However, the expression of BDNF did not change in either saline- or ACTH-treated rats. These findings suggest that the antidepressant effects of (+)-8-OH-DPAT in treatment-resistant animals may be attributed to an enhancement of hippocampal cell proliferation, at least in part due to an enhancement of cyclin D1 expression.

  15. Synergistic antidepressant-like effect of the joint administration of caffeine and NMDA receptor ligands in the forced swim test in mice.

    Science.gov (United States)

    Serefko, Anna; Szopa, Aleksandra; Wlaź, Aleksandra; Wośko, Sylwia; Wlaź, Piotr; Poleszak, Ewa

    2016-04-01

    The optimal treatment of depressed patients remains one of the most important challenges concerning depression. The identification of the best treatment strategies and development of new, safer, and more effective agents are crucial. The glutamatergic system seems to be a promising drug target, and consequently the use of the NMDA receptor ligands, particularly in co-administration with other substances exerting the antidepressant activity, has emerged among the new ideas. The objective of this study was to examine the effect of caffeine on the performance of mice treated with various NMDA modulators in the forced swim test. We demonstrated a significant interaction between caffeine (5 mg/kg) and the following NMDA receptor ligands: MK-801 (an antagonist binding in the ion channel, 0.05 mg/kg), CGP 37849 (an antagonist of the glutamate site, 0.312 mg/kg), L-701,324 (an antagonist of the glycine site, 1 mg/kg), and D-cycloserine (a high-efficacy partial agonist of the glycine site, 2.5 mg/kg), while the interaction between caffeine and the inorganic modulators, i.e., Zn(2+) (2.5 mg/kg) and Mg(2+) (10 mg/kg), was not considered as significant. Based on the obtained results, the simultaneous blockage of the adenosine and NMDA receptors may be a promising target in the development of new antidepressants.

  16. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: the HPA axis, BDNF expression and phosphorylation of ERK.

    Science.gov (United States)

    Wang, Zhen; Gu, Jianhua; Wang, Xueer; Xie, Kai; Luan, Qinsong; Wan, Nianqing; Zhang, Qun; Jiang, Hong; Liu, Dexiang

    2013-11-01

    Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has diverse biological activities. There is only limited information about the antidepressant-like effect of resveratrol. The present study assessed whether resveratrol treatment (20, 40 and 80mg/kg, i.p., 21days) has an antidepressant-like effect on the forced swim test (FST) and tail suspension test (TST) in mice and examined what its molecular targets might be. The results showed that resveratrol administration produced antidepressant-like effects in mice, evidenced by the reduced immobility time in the FST and TST, while it had no effect on the locomotor activity in the open field test. Resveratrol treatment significantly reduced serum corticosterone levels, which had been elevated by the FST and TST. Moreover, resveratrol increased brain-derived neurotrophic factor (BDNF) protein and extracellular signal-regulated kinase (ERK) phosphorylation levels in the prefrontal cortex and hippocampus. All of these antidepressant-like effects of resveratrol were essentially similar to those observed with the clinical antidepressant, fluoxetine. These results suggest that the antidepressant-like effects of resveratrol in the FST and TST are mediated, at least in part, by modulating hypothalamic-pituitary-adrenal axis, BDNF and ERK phosphorylation expression in the brain region of mice.

  17. Amoeboid swimming in a channel

    CERN Document Server

    Wu, Hao; Hu, W -F; Thiébaud, M; Rafaï, S; Peyla, P; Lai, M -C; Misbah, C

    2016-01-01

    Several micro-organisms, such as bacteria, algae, or spermatozoa, use flagellum or cilium activity to swim in a fluid. Many other organisms use rather ample shape deformation, described as amoeboid, to propel themselves, either crawling on a substrate or swimming. Many eukaryotic cells were believed to require an underlying substratum to migrate (crawl) by using ample membrane deformation (like blebbing). There is now an increasing evidence that a large variety of cells (including those of the immune system) can migrate without the assistance of focal adhesion, and can perform swimming as efficiently as crawling. This paper deals with a detailed analysis of amoeboid swimming in a confined fluid, by modeling the swimmer as an inextensible membrane deploying local active forces. The swimmer exhibits a rich behavior: it can settle into a straight trajectory in the channel, or can navigate from one wall to the other, depending on confinement. Furthermore, the nature of the swimmer is found to be affected by the c...

  18. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    Science.gov (United States)

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  19. Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests.

    Science.gov (United States)

    Belozertseva, I V; Kos, T; Popik, P; Danysz, W; Bespalov, A Y

    2007-02-01

    Drugs that act to reduce glutamatergic neurotransmission such as NMDA receptor antagonists exert antidepressant-like effects in a variety of experimental paradigms, but their therapeutic application is limited by undesired side effects. In contrast, agents that reduce glutamatergic tone by blocking type I metabotropic glutamate receptors have been suggested to have more a favorable side-effect profile. The present study aimed to compare the effects of mGluR1 antagonist (EMQMCM; JNJ16567083, 3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate, 0.156-10 mg/kg) and mGluR5 antagonist (MTEP, [(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine, 1.25-10 mg/kg) in two behavioral screening assays commonly used to assess antidepressant-like activity. In the modified forced swim test in rats, imipramine (used as a positive control) decreased immobility (MED 40 mg/kg) and increased the duration of escape-oriented (climbing and diving; MED 20 mg/kg) behaviors. Both EMQMCM and MTEP decreased the floating duration (MED 1.25 and 2.5 mg/kg) and increased the duration of mobile behaviors (paddling and swimming; MED 2.5 and 5 mg/kg). EMQMCM but not MTEP increased the duration of escape behaviors (climbing and diving; MED 1.25 mg/kg). In the mouse tail suspension test, EMQMCM (5 but not 2.5, 10 and 25 mg/kg), 2-methyl-6-(phenylethynyl)-pyridine (MPEP, 10 but not 1 mg/kg) and MTEP (MED 25 mg/kg) decreased immobility scores. For EMQMCM, the dose-effect relationship was biphasic. With the exception of EMQMCM (10 mg/kg), locomotor activity in mice was not affected by treatments. The present study therefore suggests that acute blockade of mGluR5 and also of mGluR1 exerts antidepressant-like effects in behavioral despair tests in rats and mice.

  20. Facilitating antidepressant-like actions of estrogens are mediated by 5-HT1A and estrogen receptors in the rat forced swimming test.

    Science.gov (United States)

    Estrada-Camarena, E; López-Rubalcava, C; Fernández-Guasti, A

    2006-09-01

    Previous studies have shown that 17beta-estradiol (E2) induces antidepressant-like actions per se and potentiates those produced by fluoxetine (FLX) in the forced swimming test (FST). The aim of the present work was to explore the participation of serotonin 1A receptors (5-HT1A) and estrogen receptors (ERs) in the antidepressant-like actions of E2, FLX or their combination in the FST. Although all antidepressants reduce behavioral immobility, antidepressants that modulate serotonergic neurotransmission increase swimming behavior whereas those that modulate the catecholaminergic neurotransmission increase climbing behavior. Thus, using this animal model, it is possible to infer which neurotransmitter system is modulating the action of an antidepressant compound. Ovariectomized female Wistar rats were used in all experiments. In the first experiment, an effective dose of E2 (10 microg/rat, -48 h) was combined with several doses (0.5, 1.0 and 2 mg/kg) of RU 58668 (a pure ER antagonist) 48 h previous to the FST. The second experiment evaluated the action of (1 mg/kg, -48 h or -23, -5 and -1 h) WAY 100635 (5-HT1A receptor antagonist) on the antidepressant-like action of FLX (10 mg/kg, -23, -5 and -1 h). In the third experiment, the effect of RU 58668 (2 mg/kg, -48) or WAY 100635 (1 mg/kg, -48 h) on the antidepressant-like action of the combination of a sub-optimal dose of E2 (2.5 microg/rat, -48 h) plus a non-effective dose of FLX (2.5 mg/kg, -23,-5 and -1 h) was evaluated. The results showed that RU 58668, the antagonist to the ER, canceled the antidepressant-like action of E2 in a dose-dependent manner. The antagonist to the 5-HT1A receptor blocked the antidepressant action of FLX only when administered simultaneously with FLX, i.e. -23, -5 and -1 h before the FST. Finally, the administration of both RU 58668, and WAY100635 canceled the antidepressant-like action of the combination of E2/FLX. These results imply that both 5-HT1A receptors and ERs participate in the

  1. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems.

    Science.gov (United States)

    Pesarico, Ana Paula; Sampaio, Tuane Bazanella; Stangherlin, Eluza Curte; Mantovani, Anderson C; Zeni, Gilson; Nogueira, Cristina Wayne

    2014-10-03

    The aim of the present study was to investigate the role of monoaminergic system in the antidepressant-like action of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a derivative of isoquinoline class, in Swiss mice. The antidepressant-like effect of FDPI was characterized in the modified forced swimming test (FST) and the possible mechanism of action was investigated by using serotonergic, dopaminergic and noradrenergic antagonists. Monoamine oxidase (MAO) activity and [(3)H]serotonin (5-HT) uptake were determined in prefrontal cortices of mice. The results showed that FDPI (1, 10 and 20mg/kg, i.g.) reduced the immobility time and increased the swimming time but did not alter climbing time in the modified FST. These effects were similar to those of paroxetine (8mg/kg, i.p.), a positive control. Pretreatments with p-chlorophenylalanine (100mg/kg, i.p., an inhibitor of 5-HT synthesis), WAY100635 (0.1mg/kg, s.c., 5-HT1A antagonist), ondansetron (1mg/kg, i.p., a 5-HT3 receptor antagonist), haloperidol (0.2mg/kg, i.p., a non-selective D2 receptor antagonist) and SCH23390 (0.05mg/kg, s.c., a D1 receptor antagonist) were effective to block the antidepressant-like effect of FDPI at a dose of 1mg/kg in the FST. Ritanserin (1mg/kg, i.p., a 5-HT2A/2C receptor antagonist), sulpiride (50mg/kg, i.p., a D2 and D3 receptor antagonist), prazosin (1mg/kg, i.p., an α1 receptor antagonist), yohimbine (1mg/kg, i.p., an α2 receptor antagonist) and propranolol (2mg/kg, i.p., a β receptor antagonist) did not modify the effect of FDPI in the FST. FDPI did not change synaptosomal [(3)H]5-HT uptake. At doses of 10 and 20mg/kg FDPI inhibited MAO-A and MAO-B activities. These results suggest that antidepressant-like effect of FDPI is mediated mostly by serotonergic and dopaminergic systems.

  2. The force recovery following repeated quick releases applied to pig urinary bladder smooth muscle

    NARCIS (Netherlands)

    R. van Mastrigt (Ron)

    1991-01-01

    textabstractA method for measuring several quick-releases during one contraction of a pig urinary bladder smooth muscle preparation was developed. The force recovery following quick release in this muscle type was studied by fitting a multiexponential model to 926 responses measured during the first

  3. The force recovery following repeated quick releases applied to pig urinary bladder smooth muscle

    NARCIS (Netherlands)

    R. van Mastrigt (Ron)

    1991-01-01

    textabstractA method for measuring several quick-releases during one contraction of a pig urinary bladder smooth muscle preparation was developed. The force recovery following quick release in this muscle type was studied by fitting a multiexponential model to 926 responses measured during the first

  4. Swimming and other activities: applied aspects of fish swimming performance

    Science.gov (United States)

    Castro-Santos, Theodore R.; Farrell, A.P.

    2011-01-01

    Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.

  5. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    Science.gov (United States)

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  6. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system.

    Science.gov (United States)

    Kruk-Slomka, Marta; Michalak, Agnieszka; Biala, Grazyna

    2015-05-01

    The purpose of the experiments was to explore the role of the endocannabinoid system, through cannabinoid (CB) receptor ligands, nicotine and scopolamine, in the depression-related responses using the forced swimming test (FST) in mice. Our results revealed that acute injection of oleamide (10 and 20 mg/kg), a CB1 receptor agonist, caused antidepressant-like effect in the FST, while AM 251 (0.25-3 mg/kg), a CB1 receptor antagonist, did not provoke any effect in this test. Moreover, acute administration of both CB2 receptor agonist, JWH 133 (0.5 and 1 mg/kg) and CB2 receptor antagonist, AM 630 (0.5 mg/kg), exhibited antidepressant action. Antidepressant effects of oleamide and JWH 133 were attenuated by acute injection of both non-effective dose of AM 251, as well as AM 630. Among the all CB compounds used, only the combination of non-effective dose of oleamide (2.5 mg/kg) with non-effective dose of nicotine (0.5 mg/kg) caused an antidepressant effect. However, none of the CB receptor ligands, had influence on the antidepressant effects provoked by nicotine (0.2 mg/kg) injection. In turn, the combination of non-effective dose of oleamide (2.5 mg/kg); JWH (2 mg/kg) or AM 630 (2 mg/kg), but not of AM 251 (0.25 mg/kg), with non-effective dose of scopolamine (0.1 mg/kg), exhibited antidepressant properties. Indeed, all of the CB compounds used, intensified the antidepressant-like effects induced by an acute injection of scopolamine (0.3 mg/kg). Our results provide clear evidence that the endocannabinoid system participates in the depression-related behavior and through interactions with cholinergic system modulate these kind of responses.

  7. NMDA-NO signaling in the dorsal and ventral hippocampus time-dependently modulates the behavioral responses to forced swimming stress.

    Science.gov (United States)

    Diniz, Cassiano R A F; Casarotto, Plínio C; Joca, Sâmia R L

    2016-07-01

    Hodological and genetic differences between dorsal (DH) and ventral (VH) hippocampus may convey distinct behavioral roles. DH is responsible for mediating cognitive process, such as learning and memory, while VH modulates neuroendocrine and emotional-motivational responses to stress. Manipulating glutamatergic NMDA receptors and nitric oxide (NO) systems of the hippocampus induces important changes in behavioral responses to stress. Nevertheless, there is no study concerning functional differences between DH and VH in the modulation of behavioral responses induced by stress models predictive of antidepressant effects. Thus, this study showed that reversible blockade of the DH or VH of animals submitted to the forced swimming test (FST), by using cobalt chloride (calcium-dependent synaptic neurotransmission blocker), was not able to change immobility time. Afterwards, the NMDA-NO system was evaluated in the FST by means of intra-DH or intra-VH administration of NMDA receptor antagonist (AP7), NOS1 and sGC inhibitors (N-PLA and ODQ, respectively). Bilateral intra-DH injections after pretest or before test were able to induce antidepressant-like effects in the FST. On the other hand, bilateral VH administration of AP-7, N-PLA and ODQ induced antidepressant-like effects only when injected before the test. Administration of NO scavenger (C-PTIO) intra-DH, after pretest and before test, or intra-VH before test induced similar results. Increased NOS1 levels was associated to stress exposure in the DH. These results suggest that the glutamatergic-NO system of the DH and VH are both able to modulate behavioral responses in the FST, albeit with differential participation along time after stress exposure.

  8. N-3 polyunsaturated fatty acid consumption produces neurobiological effects associated with prevention of depression in rats after the forced swimming test.

    Science.gov (United States)

    Park, Yongsoon; Moon, Hyoun-Jung; Kim, Seok-Hyeon

    2012-08-01

    Epidemiological data and clinical trials suggest that n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have preventive and therapeutic effects on depression; however, the underlying mechanism remains elusive. The present study aimed to examine the behavioral effects and antidepressant mechanism of n-3 PUFA using a forced swimming test. Eleven-week-old male Sprague-Dawley rats were fed an American Institute of Nutrition-93M diet containing 0%, 0.5% or 1% EPA and DHA relative to the total energy intake in their diet for 12 weeks (n=8 per group). Total dietary intake, body weight and hippocampus weights were not significantly different among groups. The groups administered 0.5% and 1% EPA+DHA diets had significantly higher levels of n-3 PUFA in their brain phospholipids compared to those in the control group. The immobility time was significantly decreased and the climbing time was significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Plasma serotonin concentration and hippocampus c-AMP response element binding protein (CREB) expression were significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Conversely, interleukin (IL)-6 expression was significantly reduced in the 0.5% and 1% EPA+DHA groups compared with that in the 0% EPA+DHA group. However, there were no dose-dependent effects of n-3 PUFA and no significant differences in expressions of IL-1β, tumor necrosis factor-α, brain-derived neurotrophic factor or phosphorylated CREB. In conclusion, long-term intake of EPA+DHA induced antidepressant-like effects in rats and overexpression of CREB via decreased IL-6 expression.

  9. Antidepressant-like effect of bis-eugenol in the mice forced swimming test: evidence for the involvement of the monoaminergic system.

    Science.gov (United States)

    do Amaral, Jeferson Falcão; Silva, Maria Izabel Gomes; de Aquino Neto, Manuel Rufino; Moura, Brinell Arcanjo; de Carvalho, Alyne Mara Rodrigues; Vasconcelos, Patrícia Freire; Barbosa Filho, José Maria; Gutierrez, Stanley Juan Chavez; Vasconcelos, Silvânia Maria Mendes; Macêdo, Danielle Silveira; de Sousa, Francisca Cléa Florenço

    2013-10-01

    Dehydrodieugenol, known as bis-eugenol, is a eugenol ortho dimer, and both compounds were able to exhibit anti-inflammatory and antioxidant activities in previous studies. Furthermore, eugenol showed antidepressant-like effect; however, the biological actions of bis-eugenol on experimental models for screening antidepressant activity are still unknown. The present study investigated a possible antidepressant-like activity of bis-eugenol in the forced swimming test (FST) and tail suspension test (TST) in mice and the involvement in the monoaminergic system in this effect. In addition, a neurochemical analysis on brain monoamines of mice acutely treated with bis-eugenol was also conducted. Bis-eugenol decreased the immobility time in the FST and TST without accompanying changes in ambulation in the open field test at 10 mg/kg, i.p.. Nevertheless, it induced ambulation at 25 and 50 mg/kg doses. The anti-immobility effect of bis-eugenol (10 and 50 mg/kg, i.p.) was prevented by pretreatment of mice with p-chlorophenylalanine (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, for four consecutive days), yohimbine (1 mg/kg, i.p., an α2-adrenoceptor antagonist), SCH23390 (15 μg/kg, s.c., a dopamine D1 receptor antagonist) and sulpiride (50 mg/kg, i.p., a dopamine D2 receptor antagonist). Monoamines analysis using high-performance liquid chromatograph revealed significant increase in the 5-HT, NE and DA levels in brain striatum. The present study indicates that bis-eugenol possesses antidepressant-like activity in FST and TST by altering dopaminergic, serotonergic and noradrenergic systems function.

  10. Delta(9)-tetrahydrocannabinol prolongs the immobility time in the mouse forced swim test: involvement of cannabinoid CB(1) receptor and serotonergic system.

    Science.gov (United States)

    Egashira, Nobuaki; Matsuda, Tomomi; Koushi, Emi; Higashihara, Fuminori; Mishima, Kenichi; Chidori, Shozo; Hasebe, Nobuyoshi; Iwasaki, Katsunori; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-07-28

    In the present study, we investigated the effect of Delta(9)-tetrahydrocannabinol (THC), the principal psychoactive component of marijuana, on immobility time during the forced swim test. THC (2 and 6 mg/kg, i.p.) significantly prolonged the immobility time. In addition, THC at the same doses did not significantly affect locomotor activity in the open-field test. The selective cannabinoid CB(1) receptor antagonist rimonabant (3 mg/kg, i.p.) significantly reduced the enhancement of immobility by THC (6 mg/kg). Similarly, the selective serotonin (5-HT) reuptake inhibitor (SSRI) citalopram (10 mg/kg, i.p.) and 5-HT(1A/7) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.3 mg/kg, i.p.) significantly reduced this THC-induced effect. Moreover, the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide dihydrochloride (WAY100635, 1 mg/kg, i.p.) and the postsynaptic 5-HT(1A) receptor antagonist MM-77 (0.1 mg/kg, i.p.) reversed this reduction effect of 8-OH-DPAT (0.3 mg/kg). In contrast, the selective 5-HT(7) receptor antagonist (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulfonyl]phenol hydrochloride (SB269970) had no effect on this reduction effect of 8-OH-DPAT. WAY100635 (1 mg/kg) also reversed the reduction effect of citalopram (10 mg/kg). These findings suggest that the 5-HT(1A) receptors are involved in THC-induced enhancement of immobility.

  11. Either the dorsal hippocampus or the dorsolateral striatum is selectively involved in consolidation of forced swim-induced immobility depending on genetic background.

    Science.gov (United States)

    Colelli, V; Campus, P; Conversi, D; Orsini, C; Cabib, S

    2014-05-01

    Healthy subjects differ in the memory system they engage to learn dual-solution tasks. Both genotype and stress experience could contribute to this phenotypic variability. The present experiments tested whether the hippocampus and the dorsal striatum, the core nodes of two different memory systems, are differently involved in 24 h retention of a stress-associated memory in two genetically unrelated inbred strains of mice. Mice from both the C57BL/6J and the DBA/2J inbred strains showed progressive increase of immobility during 10 min exposure to forced swim (FS) and retrieved the acquired levels of immobility when tested 24h later. The pattern of c-fos immunostaining promoted by FS revealed activation of a large number of brain areas in both strains, including CA1 and CA3 fields of the hippocampus. However, only DBA/2J mice showed activation of the dorsolateral striatum (DLS). In addition, FS induced a positive correlation between c-fos expression in the amygdala and CA1 and CA3 in C57BL/6J mice whereas it induced a positive correlation between c-fos expression in the amygdala and DLS in DBA/2J mice. Finally, temporary post-training inactivation of the dorsal hippocampus, by local infusion of lidocaine, prevented 24h retention of immobility in C57BL/6J mice only, whereas inactivation of the DLS prevented retention in DBA/2J mice only. These findings support the view that genetic factors can determine whether the dorsal hippocampus or the DLS are selectively engaged to consolidate stress-related memory.

  12. Modulatory effect of cilostazol on tramadol-induced behavioral and neurochemical alterations in rats challenged across the forced swim despair test

    Directory of Open Access Journals (Sweden)

    Noha M. Gamil

    2016-06-01

    Full Text Available Pain-associated depression is encountered clinically in some cases such as cancer, chronic neuropathy, and after operations. Tramadol is an opioid analgesic drug that may modulate monoaminergic neurotransmission by inhibition of noradrenaline and serotonin reuptake that may contribute to its antidepressant-like effects. Clinically, tramadol is used either alone or in combination with other NSAIDs in the treatment of cases associated with pain and depression, e.g. low back pain, spinal cord injury, and post-operative pain management. However, tramadol monotherapy as an antidepressant is impeded by severe adverse effects including seizures and serotonin syndrome. Interestingly, phosphodiesterase-III inhibitors demonstrated novel promising antidepressant effects. Among which, cilostazol was reported to attenuate depression in post-stroke cases, geriatrics and patients undergoing carotid artery stenting. Therefore, this study was carried out to investigate the possible antidepressant-like effects of tramadol and/or cilostazol on the behavioral level in experimental animals, and to examine the neurochemical and biochemical effects of tramadol, cilostazol and their combination in rats, in order to explore the probable mechanisms of action underlying their effects. To achieve our target, male albino mice and rats were randomly allocated into five groups and administered either vehicle for control, fluoxetine (20 mg/kg, p.o., tramadol HCl (20 mg/kg, p.o., cilostazol (100 mg/kg, p.o., or combination of both tramadol and cilostazol. At day 14, mice and rats were challenged in the tail suspension test and forced swim test, respectively. Rats were sacrificed and brains were isolated for determination of brain monoamines, MDA, NO, SOD, and TNF-α. The current results showed that concurrent administration of cilostazol to tramadol-treated animals modulated depression on the behavioral level, and showed ameliorative neurochemical and biochemical effects

  13. The Post-Ovariectomy Interval Affects the Antidepressant-Like Action of Citalopram Combined with Ethynyl-Estradiol in the Forced Swim Test in Middle Aged Rats.

    Science.gov (United States)

    Vega Rivera, Nelly M; Gallardo Tenorio, Alfredo; Fernández-Guasti, Alonso; Estrada Camarena, Erika

    2016-05-03

    The use of a combined therapy with low doses of estrogens plus antidepressants to treat depression associated to perimenopause could be advantageous. However the use of these combinations is controversial due to several factors, including the time of intervention in relation to menopause onset. This paper analyzes whether time post-OVX influences the antidepressant-like action of a combination of ethynyl-estradiol (EE₂) and citalopram (CIT) in the forced swim test (FST). Middle-aged (15 months old) female Wistar rats were ovariectomized and after one or three weeks treated with EE₂ (1.25, 2.5 or 5.0 µg/rat, s.c.; -48 h) or CIT (1.25, 2.5, 5.0 or 10 mg/kg, i.p./3 injections in 24 h) and tested in the FST. In a second experiment, after one or three weeks of OVX, rats received a combination of an ineffective dose of EE₂ (1.25 µg/rat, s.c., -48 h) plus CIT (2.5 mg/kg, i.p./3 injections in 24 h) and subjected to the FST. Finally, the uteri were removed and weighted to obtain an index of the peripheral effects of EE₂ administration. EE₂ (2.5 or 5.0 µg/rat) reduced immobility after one but not three weeks of OVX. In contrast, no CIT dose reduced immobility at one or three weeks after OVX. When EE₂ (1.25 µg/rat) was combined with CIT (2.5 mg/kg) an antidepressant-like effect was observed at one but not three weeks post-OVX. The weight of the uteri augmented when EE₂ was administrated three weeks after OVX. The data suggest that the time post-OVX is a crucial factor that contributes to observe the antidepressant-like effect of EE₂ alone or in combination with CIT.

  14. The effect of Schisandra chinensis extracts on depression by noradrenergic, dopaminergic, GABAergic and glutamatergic systems in the forced swim test in mice.

    Science.gov (United States)

    Yan, Tingxu; Xu, Mengjie; Wu, Bo; Liao, Zhengzheng; Liu, Zhi; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-15

    Schisandra chinensis (Turcz.) Baill., as a Chinese functional food, has been widely used in neurological disorders including insomnia and Alzheimer's disease. The treatment of classical neuropsychiatric disorder depression is to be developed from Schisandra chinensis. The antidepressant-like effects of the Schisandra chinensis extracts (SCE), and their probable involvement in the serotonergic, noradrenergic, dopaminergic, GABAergic and glutamatergic systems were investigated by the forced swim test (FST). Acute administration of SCE (600 mg kg(-1), i.g.), a combination of SCE (300 mg kg(-1), i.g.) and reboxetine (a noradrenalin reuptake inhibitor, 2.5 mg kg(-1), i.p.) or imipramine (a TCA, 2 mg kg(-1), i.p.) reduced the immobility time in the FST. Pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4, a selective noradrenergic neurotoxin, 50 mg kg(-1), i.p., 4 days), haloperidol (a non-selective D2 receptor antagonist, 0.2 mg kg(-1), i.p.), SCH 23390 (a selective D1 receptor antagonist, 0.03 mg kg(-1), i.p.), bicuculline (a competitive GABA antagonist, 4 mg kg(-1), i.p.) and N-methyl-d-aspartic acid (NMDA, an agonist at the glutamate site, 75 mg kg(-1), i.p.) effectively reversed the antidepressant-like effect of SCE (600 mg kg(-1), i.g.). However, p-chlorophenylalanine (pCPA, an inhibitor of 5-HT synthesis, 100 mg kg(-1), i.p., 4 days,) did not eliminate the reduced immobility time induced by SCE (600 mg kg(-1), i.g.). Moreover, the treatments did not change the locomotor activity. Altogether, these results indicated that SCE produced antidepressant-like activity, which might be mediated by the modification of noradrenergic, dopaminergic, GABAergic and glutamatergic systems.

  15. Influence of the brain sexual differentiation process on despair and antidepressant-like effect of fluoxetine in the rat forced swim test.

    Science.gov (United States)

    Gómez, M L; Martínez-Mota, L; Estrada-Camarena, E; Fernández-Guasti, A

    2014-03-01

    Sex differences exist in the depressive disorder prevalence and response to treatment. Several studies suggest that females respond better than males to the action of selective serotonin reuptake inhibitors (SSRIs), suggesting that gonadal hormones modulate mood and the response to these drugs. Sexual steroid hormones exert organizational actions (perennial and on early development) and activational effects (transient and on differentiated tissues). The aim of this study was to analyze sex differences in the forced swim test (FST) in animals without treatment and after fluoxetine (FLX, 0, 2.5, 5.0 and 10.0mg/kg). Initially, we compared male and female adult rats under control conditions or after altering their sexual differentiation process (at day 5 postnatally, PN, 60μg of testosterone propionate to females and male castration to induce or preclude masculinization, respectively). To further analyze if the sex differences depend on organizational or activational steroid hormone action we tested the same animals before and after adult gonadectomy. To prevent variations depending upon the estrous cycle, control and masculinized females were tested in estrus. Control females showed lower immobility and required lower doses of FLX (5mg/kg), to show an antidepressant-like effect, than males (10mg/kg), even after adult gonadectomy. In control males adult orchidectomy prevented FLX's action. Neonatally masculinized females exhibited analogous levels of immobility than control ones; before ovariectomy they responded to FLX similar to controls, but after the surgery they did not respond to fluoxetine. Neonatally orchidectomized males exhibited similar immobility values and response to FLX than control females. The findings suggest that the sex difference in despair depends on the hormones organizational effects and, in males, the response to FLX relies on organizational and activational actions.

  16. Involvement of NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effects of topiramate in mice forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Khan, Muhammad Imran; Norouzi-Javidan, Abbas; Chamanara, Mohsen; Jazaeri, Farahnaz; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2016-04-01

    Topiramate (TPM) is an agent primarily used in the treatment of epilepsy. Using mice model of forced swimming test (FST) the current study was basically aimed to investigate the influence of TPM on depression by inhibiting NMDA receptor and nitric oxide-cGMP production. When TPM was administered in a dose of 20 and 30 mg/kg by i.p. route it reduced the immobility time during FST. However this effect of TPM (30 mg/kg, i.p.) in the FST was abolished when the mice were pretreated either with NMDA (75 mg/kg, i.p.), or l-arginine (750 mg/kg, i.p. NO precursor), or sildenafil (5mg/kg, i.p. Phosphodiesterase 5 inhibitor). The immobility time in the FST was reduced after administration of L-NAME (10mg/kg, i.p, a non-specific NOS inhibitor), 7-nitoinidazol (30 mg/kg, i.p. a nNOS inhibitor) or MK-801 (0.05 mg/kg, i.p, a NMDA receptor antagonist) in combination with a subeffective dose of TPM (10mg/kg, i.p.) as compared with single use of either drug. Co-administrated of lower doses of MK-801 (0.01 mg/kg) or L-NAME (1mg/kg) failed to effect immobility time. However, simultaneous administration of these two agents in the same doses with subeffective dose of TPM (10mg/kg, i.p.), reduced the immobility time during FST. None of these drugs were found to have a profound effect on the locomotor activity per se during the open field test. Taken together, our data demonstrates that TPM exhibit antidepressant-like effect which is accomplished either due to inhibition of NMDA receptors or NO-cGMP production.

  17. The anti-immobility effect of hyperoside on the forced swimming test in rats is mediated by the D2-like receptors activation.

    Science.gov (United States)

    Haas, Juliana Schulte; Stolz, Eveline Dischkaln; Betti, Andresa Heemann; Stein, Ana Cristina; Schripsema, Jan; Poser, Gilsane Lino von; Rates, Stela Maris Kuze

    2011-03-01

    The crude extracts of HYPERICUM species native to South Brazil showed analgesic and antidepressant-like effects in rodents. The chemical characterization of these species revealed that they are rich in flavonoids and phloroglucinol derivatives. In the present study a detailed investigation was performed on the activities of hyperoside (HYP), a common flavonoid in the genus HYPERICUM. Hyperoside was obtained from the aerial parts of H. CAPRIFOLIATUM by chromatographic procedures. Mice treated with single doses (10, 20 and 40 mg/kg i.p.) did not present signs of toxicity or weight loss. At 20 and 40 mg/kg i.p. the mice exploratory behavior in the open field test was reduced. At 20 mg/kg i. p. the pentobarbital sleeping time increased, but not the sleeping latency. No activity was found on the hot-plate (10 and 20 mg/kg i.p.) or in the acetic acid-induced writhing test (20 and 40 mg/kg p.o.). Nevertheless, an antidepressant-like effect in the forced swimming test in mice and rats was observed (HYP 10 and 20 mg/kg i.p. in mice; HYP 1.8 mg/kg/day p.o. in rats). The antidepressant-like effect in rats was prevented by the administration of sulpiride (50 mg/kg i.p.) a D2 antagonist. In conclusion, hyperoside was found to present a depressor effect on the central nervous system as well as an antidepressant-like effect in rodents which is, at least in part, mediated by the dopaminergic system.

  18. Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force

    Science.gov (United States)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-08-01

    A noncommuting measurement transfers, via the apparatus, information encoded in a system's state to the external "observer." Classical measurements determine properties of physical objects. In the quantum realm, the very same notion restricts the recording process to orthogonal states as only those are distinguishable by measurements. Therefore, even a possibility to describe physical reality by means of non-Hermitian operators should volens nolens be excluded as their eigenstates are not orthogonal. Here, we show that non-Hermitian operators with real spectra can be treated within the standard framework of quantum mechanics. Furthermore, we propose a quantum canonical transformation that maps Hermitian systems onto non-Hermitian ones. Similar to classical inertial forces this map is accompanied by an energetic cost, pinning the system on the unitary path.

  19. Swimming and feeding of mixotrophic biflagellates

    DEFF Research Database (Denmark)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed...... with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow...

  20. PROPERTIES OF SWIMMING WATER

    Directory of Open Access Journals (Sweden)

    Tayfun KIR

    2004-10-01

    Full Text Available Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000: 103-104

  1. PROPERTIES OF SWIMMING WATER

    OpenAIRE

    Tayfun KIR; Zakir COBANOÐLU

    2004-01-01

    Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000): 103-104

  2. A Swimming Competition

    Institute of Scientific and Technical Information of China (English)

    邹成兵; 邓新华

    2004-01-01

    Last Sunday, there was a swimming competition in our school. It had been a short time since I learned how to swim. Mr. Zhang, our PE teacher, said I had a gift in swimming and that competing in the game would help build up my confidence and courage. With his encouragement,I signed up for the swimming race.

  3. Swimming as a limit cycle

    CERN Document Server

    Jacobs, Henry O

    2012-01-01

    Steady swimming can be characterized as both periodic and stable. These characteristics are the very definition of limit cycles, and so we ask "Can we view swimming as a limit cycle?" In this paper we will find that the answer is "yes". We will define a class of dissipative systems which correspond to the passive dynamics of a body immersed in a Navier-Stokes fluid (i.e. the dynamics of a dead fish). Upon performing reduction by symmetry we will find a hyperbolically stable fixed point which corresponds to the stability of a dead fish in stagnant water. Given a periodic force on the shape of the body we will invoke the persistence theorem to assert the existence of a loop which approximately satisfies the exact equations of motion. If we lift this loop with a phase reconstruction formula we will find that the lifted loops are not loops, but stable trajectories which represent regular periodic motion reminiscent of swimming.

  4. The Post-Ovariectomy Interval Affects the Antidepressant-Like Action of Citalopram Combined with Ethynyl-Estradiol in the Forced Swim Test in Middle Aged Rats

    Science.gov (United States)

    Vega Rivera, Nelly M.; Gallardo Tenorio, Alfredo; Fernández-Guasti, Alonso; Estrada Camarena, Erika

    2016-01-01

    The use of a combined therapy with low doses of estrogens plus antidepressants to treat depression associated to perimenopause could be advantageous. However the use of these combinations is controversial due to several factors, including the time of intervention in relation to menopause onset. This paper analyzes whether time post-OVX influences the antidepressant-like action of a combination of ethynyl-estradiol (EE2) and citalopram (CIT) in the forced swim test (FST). Middle-aged (15 months old) female Wistar rats were ovariectomized and after one or three weeks treated with EE2 (1.25, 2.5 or 5.0 µg/rat, s.c.; −48 h) or CIT (1.25, 2.5, 5.0 or 10 mg/kg, i.p./3 injections in 24 h) and tested in the FST. In a second experiment, after one or three weeks of OVX, rats received a combination of an ineffective dose of EE2 (1.25 µg/rat, s.c., −48 h) plus CIT (2.5 mg/kg, i.p./3 injections in 24 h) and subjected to the FST. Finally, the uteri were removed and weighted to obtain an index of the peripheral effects of EE2 administration. EE2 (2.5 or 5.0 µg/rat) reduced immobility after one but not three weeks of OVX. In contrast, no CIT dose reduced immobility at one or three weeks after OVX. When EE2 (1.25 µg/rat) was combined with CIT (2.5 mg/kg) an antidepressant-like effect was observed at one but not three weeks post-OVX. The weight of the uteri augmented when EE2 was administrated three weeks after OVX. The data suggest that the time post-OVX is a crucial factor that contributes to observe the antidepressant-like effect of EE2 alone or in combination with CIT. PMID:27153072

  5. Synergistic antidepressant-like effects between a kappa opioid antagonist (LY2444296) and a delta opioid agonist (ADL5859) in the mouse forced swim test.

    Science.gov (United States)

    Huang, Peng; Tunis, Julia; Parry, Christopher; Tallarida, Ronald; Liu-Chen, Lee-Yuan

    2016-06-15

    Kappa opioid (KOP) receptor antagonists and delta opioid (DOP) receptor agonists have antidepressant-like effects in animal tests and may be useful for treatment-resistant depression in humans. In this study, we examined whether the combination of a KOP receptor antagonist and a DOP receptor agonist would produce a better than additive effect (i.e. synergy). LY2444296 is a short-acting selective nonpeptide KOP receptor antagonist. ADL5859 is a selective nonpeptide DOP receptor agonist which does not produce seizures and EEG disturbances. Each compound and combinations of the two were examined in the forced swim test (FST) one h post injection, a screening test for antidepressant-like effect, in male adult C57BL/6J mice (Jackson Lab). LY2444296 [subcutaneous (s.c.) injection] at 10 and 30mg/kg, but not 3mg/kg, significantly decreased immobility time in a dose-dependent manner. Intraperitoneal (i.p.) injections of ADL5859 also reduced immobility time dose-dependently at doses of 3 and 10mg/kg, but not at 1mg/kg. An analysis was conducted using the method of Tallarida and Raffa (2010), which employed dose equivalence. The relative potency of the drugs was determined to be LY2444296: ADL5859=1:0.28, which was the dose ratio for combination studies. Six combinations of the two compounds were tested in mice at a fixed dose ratio. We found that LY2444296 and ADL5859 yielded significant synergistic effects for the antidepressant-like effect at the combined dose ranging from 3.84mg/kg to 9.0mg/kg. ADL5859 (10mg/kg), LY2444296 (30mg/kg) and their combined dose (3.84mg/kg) had no effects on locomotor activities. Since the two drugs have distinct pharmacological profiles, such a synergism will allow use of lower doses of both drugs to achieve desired antidepressant effects with fewer side effects.

  6. The Post-Ovariectomy Interval Affects the Antidepressant-Like Action of Citalopram Combined with Ethynyl-Estradiol in the Forced Swim Test in Middle Aged Rats

    Directory of Open Access Journals (Sweden)

    Nelly M. Vega Rivera

    2016-05-01

    Full Text Available The use of a combined therapy with low doses of estrogens plus antidepressants to treat depression associated to perimenopause could be advantageous. However the use of these combinations is controversial due to several factors, including the time of intervention in relation to menopause onset. This paper analyzes whether time post-OVX influences the antidepressant-like action of a combination of ethynyl-estradiol (EE2 and citalopram (CIT in the forced swim test (FST. Middle-aged (15 months old female Wistar rats were ovariectomized and after one or three weeks treated with EE2 (1.25, 2.5 or 5.0 µg/rat, s.c.; −48 h or CIT (1.25, 2.5, 5.0 or 10 mg/kg, i.p./3 injections in 24 h and tested in the FST. In a second experiment, after one or three weeks of OVX, rats received a combination of an ineffective dose of EE2 (1.25 µg/rat, s.c., −48 h plus CIT (2.5 mg/kg, i.p./3 injections in 24 h and subjected to the FST. Finally, the uteri were removed and weighted to obtain an index of the peripheral effects of EE2 administration. EE2 (2.5 or 5.0 µg/rat reduced immobility after one but not three weeks of OVX. In contrast, no CIT dose reduced immobility at one or three weeks after OVX. When EE2 (1.25 µg/rat was combined with CIT (2.5 mg/kg an antidepressant-like effect was observed at one but not three weeks post-OVX. The weight of the uteri augmented when EE2 was administrated three weeks after OVX. The data suggest that the time post-OVX is a crucial factor that contributes to observe the antidepressant-like effect of EE2 alone or in combination with CIT.

  7. Omega-3 fatty acid deficiency does not alter the effects of chronic fluoxetine treatment on central serotonin turnover or behavior in the forced swim test in female rats.

    Science.gov (United States)

    McNamara, Robert K; Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lipton, Jack W

    2013-12-01

    While translational evidence suggests that long-chain omega-3 fatty acid status is positively associated with the efficacy of selective serotonin reuptake inhibitor drugs, the neurochemical mechanisms mediating this interaction are not known. Here, we investigated the effects of dietary omega-3 (n-3) fatty acid insufficiency on the neurochemical and behavioral effects of chronic fluoxetine (FLX) treatment. Female rats were fed diets with (CON, n=56) or without (DEF, n=40) the n-3 fatty acids during peri-adolescent development (P21-P90), and one half of each group was administered FLX (10mg/kg/day) for 30days (P60-P90) prior to testing. In adulthood (P90), regional brain serotonin (5-HT) and 5-hydroxyindoleacetic (5-HIAA) concentrations, presynaptic markers of 5-HT neurotransmission, behavioral responses in the forced swim test (FST), and plasma FLX and norfluoxetine (NFLX) concentrations were investigated. Peri-adolescent n-3 insufficiency led to significant reductions in cortical docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-25%, p≤0.0001) and DEF+FLX (-28%, p≤0.0001) rats. Untreated DEF rats exhibited significantly lower regional 5-HIAA/5-HT ratios compared with untreated CON rats, but exhibited similar behavioral responses in the FST. In both CON and DEF rats, chronic FLX treatment similarly and significantly decreased 5-HIAA concentrations and the 5-HIAA/5-HT ratio in the hypothalamus, hippocampus, and nucleus accumbens, brainstem tryptophan hydroxylase-2 mRNA expression, and immobility in the FST. While the FLX-induced reduction in 5-HIAA concentrations in the prefrontal cortex was significantly blunted in DEF rats, the reduction in the 5-HIAA/5-HT ratio was similar to CON rats. Although plasma FLX and NFLX levels were not significantly different in DEF and CON rats, the NFLX/FLX ratio was significantly lower in DEF+FLX rats. These preclinical data demonstrate that n-3 fatty acid deficiency does not significantly reduce the effects of chronic

  8. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats.

    Science.gov (United States)

    Koike, Hiroyuki; Chaki, Shigeyuki

    2014-09-01

    Ketamine, a non-competitive N-methyl-d-aspartate receptor antagonist, and group II metabotropic glutamate (mGlu2/3) receptor antagonists produce antidepressant effects in animal models of depression, which last for at least 24h, through the transient increase in glutamate release, leading to activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor. Both ketamine and an mGlu2/3 receptor antagonist reportedly increase the expression of GluR1, an AMPA receptor subunit, within 24h, which may account for the sustained enhancement of excitatory synaptic transmission following ketamine administration. However, whether the sustained increase in AMPA receptor-mediated synaptic transmission is associated with the antidepressant effects of ketamine and mGlu2/3 receptor antagonists has not yet been investigated. In the present study, to address this question, we tested whether AMPA receptor stimulation at 24h after a single injection of ketamine or an mGlu2/3 receptor antagonist, (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY341495) was necessary for the antidepressant effect of these compounds using a forced swim test in rats. A single injection of ketamine or LY341495 at 24h before the test significantly decreased the immobility time. An AMPA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), administered 30min prior to the test significantly and dose-dependently reversed the antidepressant effects of ketamine and LY341495, while NBQX itself had no effect on the immobility time. Our findings suggest that AMPA receptor stimulation at 24h after a single injection of ketamine or LY341495 is required to produce the anti-immobility effects of these compounds. Moreover, the present results provide additional evidence that an mGlu2/3 receptor antagonist may share some of neural mechanisms with ketamine to exert antidepressant effects.

  9. Antidepressant effect of pramipexole in mice forced swimming test: A cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway.

    Science.gov (United States)

    Ostadhadi, Sattar; Imran Khan, Muhammad; Norouzi-Javidan, Abbas; Dehpour, Ahmad-Reza

    2016-07-01

    Pramipexole is a dopamine D2 receptor agonist indicated for treating Parkinson disorder. This study was aimed to investigate the effect of pramipexole in forced swimming test (FST) in mice and the possible involvement of activation of D2 receptors and inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) on this effect. Intraperitoneal administration of pramipexole (1-3mg/kg) reduced the immobility time in the FST similar to fluoxetine (20mg/kg, i.p.). This effect of pramipexole (1mg/kg, i.p.) was ceased when mice were pretreated with haloperidol (0.15mg/kg, i.p,) and sulpiride (5mg/kg, i.p) as D2 receptor antagonists, NMDA (75mg/kg,i.p.), l-arginine (750mg/kg, i.p., a substrate for nitric oxide synthase) or sildenafil (5mg/kg, i.p., a phosphodiesterase 5 inhibitor). The administration of MK-801 (0.05mg/kg, i.p., a NMDA receptor antagonist) l-NG-Nitro arginine methyl ester (l-NAME, 10mg/kg, i.p., a non-specific nitric oxide synthase (NOS) inhibitor), 7-nitroindazole (30mg/kg, i.p., a neuronal NOS inhibitor) and methylene blue (10mg/kg, i.p.), an inhibitor of both NOS and soluble guanylyl cyclase (sGC) in combination with the sub-effective dose of pramipexole (0.3mg/kg, i.p.) reduced the immobility. Altogether, our data suggest that the antidepressant-like effect of pramipexole is dependent on the activation of D2 receptor and inhibition of either NMDA receptors and/or NO-cGMP synthesis. These results contribute to the understanding of the mechanisms underlying the antidepressant-like effect of pramipexole and reinforce the role of D2 receptors, NMDA receptors and l-arginine-NO-GMP pathway in the antidepressant mechanism of this agent.

  10. Swimming fluctuations of micro-organisms due to heterogeneous microstructure

    Science.gov (United States)

    Jabbarzadeh, Mehdi; Hyon, YunKyong; Fu, Henry C.

    2014-10-01

    Swimming microorganisms in biological complex fluids may be greatly influenced by heterogeneous media and microstructure with length scales comparable to the organisms. A fundamental effect of swimming in a heterogeneous rather than homogeneous medium is that variations in local environments lead to swimming velocity fluctuations. Here we examine long-range hydrodynamic contributions to these fluctuations using a Najafi-Golestanian swimmer near spherical and filamentous obstacles. We find that forces on microstructures determine changes in swimming speed. For macroscopically isotropic networks, we also show how the variance of the fluctuations in swimming speeds are related to density and orientational correlations in the medium.

  11. ARC Code TI: Swim

    Data.gov (United States)

    National Aeronautics and Space Administration — Swim is a software information service for the grid built on top of Pour, which is an information service framework developed at NASA. Swim provides true software...

  12. Swimming pool cleaner poisoning

    Science.gov (United States)

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  13. Laryngoscopy during swimming

    DEFF Research Database (Denmark)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken

    2017-01-01

    that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 2017....

  14. Swimming Pool Safety

    Science.gov (United States)

    ... Prevention Listen Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to keep my child safe around swimming pools? An adult should actively watch children at ...

  15. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  16. 2012 Swimming Season Factsheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  17. Modeling of breaststroke swimming

    Science.gov (United States)

    Karmanov, S. P.; Chernous'ko, F. L.

    2014-02-01

    A mechanical system that models swimming using a pair of two-chain extremities is considered. The motion of the system under study is similar to swimming of a frog and some other animals, in which lower extremities play the main role. This type of motion is characteristic of competitive breaststroke swimming.

  18. 反复力竭游泳运动对小鼠前脑皮层和海马的影响%Effects of repeated exhaustive swimming exercise on the prefrontal cortex and hippocampus in mice

    Institute of Scientific and Technical Information of China (English)

    蔡成法; 李亚

    2014-01-01

    Acute stress and chronic stress can damage the brain prefrontal cortex( PFC)and hippo-campus( HP)function,then reduce learning and memory abilities of animal or human. Model of exhaustive exercise mice was set up by the way of repeatedly( four weeks)exhausted swimming. Membrane fluidity and free calcium concentrations([ Ca2+]i)of prefrontal cortical and hippocam-pal synaptosomes in mice were detected. The results show that,compared with control group mice, the membrane fluidity of synaptosomes in PFC and HP of exhaustive exercise group mice were signif-icantly decreased at 0 h and 12 h,after repeatedly exhausted exercise. The synaptosomal[ Ca2+]i in PFC and HP were significantly increased at 0 h,12 h and 24 h in exhaustive exercise group mice. The[ Ca2+]i in PFC and HP at 1 week were remarkably reduced than the exhaustive exercise 0 h group mice,respectively. The generation and recovery of exercise-induced central fatigue in mice after exhausted exercise which may be nearly related to the changes of membrane fluidity and [ Ca2+]i of synaptosomes.%急性应激和长期慢性应激均可损伤脑内的海马和前额叶,继而降低动物或人的学习记忆能力。采用4周反复力竭游泳运动方式建立力竭运动小鼠模型。在反复性力竭游泳运动后即刻(0 h)、12 h、24 h和1周,检测小鼠前脑皮层和海马突触体膜流动性变化,以及突触体内游离Ca2+浓度。结果表明,反复性力竭游泳运动后,与对照组小鼠比较,力竭运动组小鼠前脑皮层和海马突触体膜流动性在0 h、12 h显著降低,24 h有所恢复,1周后基本恢复到正常水平。力竭运动组小鼠前脑皮层和海马突触体内游离Ca2+浓度在0 h、12 h和24 h后显著增加,1周后前脑皮层和海马突触体内游离Ca2+浓度明显回落。力竭游泳运动所致小鼠运动性中枢疲劳的产生和恢复可能与突触体膜流动性和突触体内游离Ca2+浓度的变化密切相关。

  19. Reliability of Tethered Swimming Evaluation in Age Group Swimmers

    Science.gov (United States)

    Amaro, Nuno; Marinho, Daniel A; Batalha, Nuno; Marques, Mário C; Morouço, Pedro

    2014-01-01

    The aim of the present study was to examine the reliability of tethered swimming in the evaluation of age group swimmers. The sample was composed of 8 male national level swimmers with at least 4 years of experience in competitive swimming. Each swimmer performed two 30 second maximal intensity tethered swimming tests, on separate days. Individual force-time curves were registered to assess maximum force, mean force and the mean impulse of force. Both consistency and reliability were very strong, with Cronbach’s Alpha values ranging from 0.970 to 0.995. All the applied metrics presented a very high agreement between tests, with the mean impulse of force presenting the highest. These results indicate that tethered swimming can be used to evaluate age group swimmers. Furthermore, better comprehension of the swimmers ability to effectively exert force in the water can be obtained using the impulse of force. PMID:25114742

  20. Reliability of Tethered Swimming Evaluation in Age Group Swimmers

    Directory of Open Access Journals (Sweden)

    Amaro Nuno

    2014-07-01

    Full Text Available The aim of the present study was to examine the reliability of tethered swimming in the evaluation of age group swimmers. The sample was composed of 8 male national level swimmers with at least 4 years of experience in competitive swimming. Each swimmer performed two 30 second maximal intensity tethered swimming tests, on separate days. Individual force-time curves were registered to assess maximum force, mean force and the mean impulse of force. Both consistency and reliability were very strong, with Cronbach's Alpha values ranging from 0.970 to 0.995. All the applied metrics presented a very high agreement between tests, with the mean impulse of force presenting the highest. These results indicate that tethered swimming can be used to evaluate age group swimmers. Furthermore, better comprehension of the swimmers ability to effectively exert force in the water can be obtained using the impulse of force.

  1. Hydrodynamics of freely swimming flagellates

    Science.gov (United States)

    Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas; Bohr, Tomas; Andersen, Anders

    2016-11-01

    Flagellates are a diverse group of unicellular organisms forming an important part of the marine ecosystem. The arrangement of flagella around the cell serves as a key trait optimizing and compromising essential functions. With micro-particle image velocimetry we observed time-resolved near-cell flows around freely swimming flagellates, and we developed an analytical model based on the Stokes flow around a solid sphere propelled by a variable number of differently placed, temporally varying point forces, each representing one flagellum. The model allows us to reproduce the observed flow patterns and swimming dynamics, and to extract quantities such as swimming velocities and prey clearance rates as well as flow disturbances revealing the organism to flow-sensing predators. Our results point to optimal flagellar arrangements and beat patterns, and essential trade-offs. For biflagellates with two symmetrically arranged flagella we contrasted two species using undulatory and ciliary beat patterns, respectively, and found breast-stroke type beat patterns with equatorial power strokes to be favorable for fast as well as quiet swimming. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  2. A natação forçada induz subsensibilidade à fenilefrina em aorta torácica de rato Forced-swim induces subsensitivity to phenylephrine in the rat thoracic aorta

    Directory of Open Access Journals (Sweden)

    Maria José C. Sampaio Moura

    2003-12-01

    Full Text Available O estresse pode alterar a função vascular. O objetivo deste trabalho foi estudar a sensibilidade à fenilefrina (FE em aorta torácica de ratos submetidos à natação forçada. Ratos Wistar (200-250 g foram submetidos a três sessões de natação aplicadas em dias consecutivos (15, 30 e 30 min respectivamente. Imediatamente após a última sessão, os animais foram sacrificados e, da aorta torácica foram obtidos anéis (3-5 mm com e sem endotélio. Os anéis foram mantidos em solução de Krebs-Henseleit (37 ºC; 95% O2-5% CO2. A integridade do endotélio foi avaliada pelo relaxamento em resposta à acetilcolina (10 µM, após indução de contração por FE (0,1 µM. Curvas concentração-efeito à FE foram obtidas (n=5/grupo. Não houve diferença na resposta máxima à FE entre os tratamentos controle e estresse, em anéis com e sem endotélio (p>0,05. A natação forçada induziu subsensibilidade à FE em anéis com endotélio de aorta torácica isolada de ratos submetidos à natação (pD2= 6,89 ± 0,07, pStress may change vascular function. The aim of this report was to study the sensitivity to phenylephrine (PHE in the thoracic aorta from rats submitted to forced-swim. Male Wistar rats (200-250 g were submitted to three swimming sessions, one session/day (15, 30 and 30 min, respectively. Immediately after the last swimming session, the animals were sacrificed and thoracic aorta was isolated. Aortic rings (3-5 mm, with and without endothelium, were carefully obtained and were main-tained in Krebs-Henseleit solution (95% O2- 5% CO2, 37 ºC. Endothelial integrity was assessed by relaxation to acetylcholine (10 µM in pre-contracted rings (PHE 0.1 µM. Concentration-effect curves to PHE were obtained (n = 5/group. There was no difference between control and stress groups in the maximum response to PHE of aortic rings with and without endothelium (p>0.05. Forced-swim induced subsensitivity to PHE in aortic rings with endothelium isolated

  3. 1,2,3,4-Tetrahydroisoquinoline produces an antidepressant-like effect in the forced swim test and chronic mild stress model of depression in the rat: Neurochemical correlates.

    Science.gov (United States)

    Możdżeń, Edyta; Papp, Mariusz; Gruca, Piotr; Wąsik, Agnieszka; Romańska, Irena; Michaluk, Jerzy; Antkiewicz-Michaluk, Lucyna

    2014-04-15

    1,2,3,4-Tetrahydroisoquinoline (TIQ) is an exo- and endogenous amine naturally present in mammalian brain which displays antidepressant-like effect in various animal models: the forced swim test (FST) and chronic mild stress (CMS) paradigm in rats. To elucidate this action we compared the effects of TIQ with imipramine, a classic antidepressant drug and one of the most clinically effective. Applied behavioral tests showed that TIQ produced an antidepressant-like effect with a potency comparable to that of imipramine. TIQ (25-50mg/kg i.p.), similarly to imipramine (10-30mg/kg i.p.), reduced the immobility time in FST and completely reversed the decrease in sucrose intake caused by CMS in the rat. In addition, in order to avoid the possible psychostimulating effect of TIQ we examined the influence of its administration on locomotor activity in rats. TIQ, like imipramine, produced a reduction in horizontal locomotor activity. This suggested that TIQ did not have psychostimulant properties and that prolonged swimming in the FST was a result of an increased motivation to escape from the stressful situation. The biochemical analyses have shown that TIQ activates monoaminergic systems as a reversible monoamine oxidase (MAO) inhibitor and free radical scavenger. Beyond the activation of noradrenaline and serotonin systems, TIQ also moderately affects the dopamine system. On the basis of the presented behavioral and biochemical studies we suggest that TIQ is a potential new antidepressant which may be effective for the depression therapy in a clinical setting.

  4. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  5. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  6. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.

    Science.gov (United States)

    Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y

    2016-03-01

    Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers.

  7. Creatine supplementation and swim performance: a brief review.

    Science.gov (United States)

    Hopwood, Melissa J; Graham, Kenneth; Rooney, Kieron B

    2006-03-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key PointsCreatine supplementation does not improve single sprint

  8. Procedure of Forecasting Operational and Extremal State of Critical Systems of the Rocket Technique Under Repeated Thermo-Force Loading

    Directory of Open Access Journals (Sweden)

    Shevchenko Yu.M.

    2015-09-01

    Full Text Available The mathematical model for investigation of the thermoelastoplastic stress-strain state and the strength of the rocket technique systems under the repeated starting is proposed. The thermal conductivity equation and constitutive equations of thermoplasticity for the repeated elastic-plastic deformation processes of isotropic materials along small-curvature paths, the strength and low-cyclic fatigue criteria, numerical methods for solving the boundary-value heat conduction problems and corresponding computer software are used.

  9. Team swimming in ant spermatozoa.

    Science.gov (United States)

    Pearcy, Morgan; Delescaille, Noémie; Lybaert, Pascale; Aron, Serge

    2014-06-01

    In species where females mate promiscuously, competition between ejaculates from different males to fertilize the ova is an important selective force shaping many aspects of male reproductive traits, such as sperm number, sperm length and sperm-sperm interactions. In eusocial Hymenoptera (bees, wasps and ants), males die shortly after mating and their reproductive success is ultimately limited by the amount of sperm stored in the queen's spermatheca. Multiple mating by queens is expected to impose intense selective pressure on males to optimize the transfer of sperm to the storage organ. Here, we report a remarkable case of cooperation between spermatozoa in the desert ant Cataglyphis savignyi. Males ejaculate bundles of 50-100 spermatozoa. Sperm bundles swim on average 51% faster than solitary sperm cells. Team swimming is expected to increase the amount of sperm stored in the queen spermatheca and, ultimately, enhance male posthumous fitness.

  10. Swimming Efficiency of Bacterium Escherichia Coli

    CERN Document Server

    Chattopadhyay, S; Wu, X L; Yeung, C; Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck

    2005-01-01

    We use in vivo measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we determine the propulsion matrix, which relates the angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix dynamical properties such as forces, torques, swimming speed and power can be obtained from measurements of the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be 0.2%.

  11. Effect of postactivation potentiation on swimming starts in international sprint swimmers.

    Science.gov (United States)

    Kilduff, Liam P; Cunningham, Dan J; Owen, Nick J; West, Daniel J; Bracken, Richard M; Cook, Christian J

    2011-09-01

    The aim of this study was to investigate the effects of postactivation potentiation (PAP) on swim start performance (time to 15 m) in a group of international sprint swimmers. Nine international sprint swimmers (7 men and 2 women) volunteered and gave informed consent for this study, which was approved by the university ethics committee. Initially, swimmers performed a countermovement jump (CMJ) on a portable force platform (FP) at baseline and at the following time points ∼15 seconds, 4, 8, 12, and 16 minutes after a PAP stimulus (1 set of 3 repetitions at 87% 1 repetition maximum [RM]) to individually determine the recovery time required to observe enhanced muscle performance. On 2 additional days, swimmers performed a swim start to 15 m under 50-m freestyle race conditions, which was preceded by either their individualized race specific warm-up or a PAP stimulus (1 set of 3 repetitions at 87% 1RM). Both trials were recorded on 2 cameras operating at 50 Hz with camera 1 located at the start and camera 2 at the 15-m mark. Peak vertical force (PVF) and peak horizontal force (PHF) were measured during all swim starts from a portable FP placed on top of the swim block. A repeated measures analysis of variance revealed a significant time effect with regard to power output (PO) (F = 20.963, p < 0.01) and jump height (JH) (F = 14.634, p < 0.01) with a paired comparison indicating a significant increase in PO and JH after 8 minutes of recovery from the PAP stimulus. There was a significant increase in both PHF and PVF after the PAP stimulus compared to the swim-specific warm-up during the swim start (PHF 770 ± 228 vs. 814 ± 263 N, p = 0.018; PVF: 1,462 ± 280 vs. 1,518 ± 311 N, p = 0.038); however, time to 15 m was the same when both starts were compared (7.1 ± 0.8 vs. 7.1 ± 0.8 seconds, p = 0.447). The results from this study indicate that muscle performance during a CMJ is enhanced after a PAP stimulus providing adequate recovery (∼8 minutes) is given between

  12. Heart rate variability and swimming.

    Science.gov (United States)

    Koenig, Julian; Jarczok, Marc N; Wasner, Mieke; Hillecke, Thomas K; Thayer, Julian F

    2014-10-01

    Professionals in the domain of swimming have a strong interest in implementing research methods in evaluating and improving training methods to maximize athletic performance and competitive outcome. Heart rate variability (HRV) has gained attention in research on sport and exercise to assess autonomic nervous system activity underlying physical activity and sports performance. Studies on swimming and HRV are rare. This review aims to summarize the current evidence on the application of HRV in swimming research and draws implications for future research. A systematic search of databases (PubMed via MEDLINE, PSYNDEX and Embase) according to the PRISMA statement was employed. Studies were screened for eligibility on inclusion criteria: (a) empirical investigation (HRV) in humans (non-clinical); (b) related to swimming; (c) peer-reviewed journal; and (d) English language. The search revealed 194 studies (duplicates removed), of which the abstract was screened for eligibility. Fourteen studies meeting the inclusion criteria were included in the review. Included studies broadly fell into three classes: (1) control group designs to investigate between-subject differences (i.e. swimmers vs. non-swimmers, swimmers vs. other athletes); (2) repeated measures designs on within-subject differences of interventional studies measuring HRV to address different modalities of training or recovery; and (3) other studies, on the agreement of HRV with other measures. The feasibility and possibilities of HRV within this particular field of application are well documented within the existing literature. Future studies, focusing on translational approaches that transfer current evidence in general practice (i.e. training of athletes) are needed.

  13. Applied physiology of swimming.

    Science.gov (United States)

    Lavoie, J M; Montpetit, R R

    1986-01-01

    Scientific research in swimming over the past 10 to 15 years has been oriented toward multiple aspects that relate to applied and basic physiology, metabolism, biochemistry, and endocrinology. This review considers recent findings on: 1) specific physical characteristics of swimmers; 2) the energetics of swimming; 3) the evaluation of aerobic fitness in swimming; and 4) some metabolic and hormonal aspects related to swimmers. Firstly, the age of finalists in Olympic swimming is not much different from that of the participants from other sports. They are taller and heavier than a reference population of the same age. The height bias in swimming may be the reason for lack of success from some Asian and African countries. Experimental data point toward greater leanness, particularly in female swimmers, than was seen 10 years ago. Overall, female swimmers present a range of 14 to 19% body fat whereas males are much lower (5 to 10%). Secondly, the relationship between O2 uptake and crawl swimming velocity (at training and competitive speeds) is thought to be linear. The energy cost varies between strokes with a dichotomy between the 2 symmetrical and the 2 asymmetrical strokes. Energy expenditure in swimming is represented by the sum of the cost of translational motion (drag) and maintenance of horizontal motion (gravity). The cost of the latter decreases as speed increases. Examination of the question of size-associated effects on the cost of swimming using Huxley's allometric equation (Y = axb) shows an almost direct relationship with passive drag. Expressing energy cost in litres of O2/m/kg is proposed as a better index of technical swimming ability than the traditional expression of VO2/distance in L/km. Thirdly, maximal direct conventional techniques used to evaluate maximal oxygen consumption (VO2 max) in swimming include free swimming, tethered swimming, and flume swimming. Despite the individual peculiarities of each method, with similar experimental conditions

  14. Swimming Orientation for Preschoolers.

    Science.gov (United States)

    Smith, Mary Lou

    1990-01-01

    Techniques which are designed to dispel fears and promote confident learning are offered to preschool swimming instructors. Safety, class organization, water games, and class activities are discussed. (IAH)

  15. How fast does a seal swim? Variations in swimming behaviour under differing foraging conditions.

    Science.gov (United States)

    Gallon, Susan L; Sparling, Carol E; Georges, Jean-Yves; Fedak, Michael A; Biuw, Martin; Thompson, Dave

    2007-09-01

    The duration of breath-hold dives and the available time for foraging in submerged prey patches is ultimately constrained by oxygen balance. There is a close relationship between swim speed and oxygen utilisation, so it is likely that breath-holding divers optimise their speeds to and from the feeding patch to maximise time spent feeding at depth. Optimal foraging models suggest that transit swim speed should decrease to minimum cost of transport (MCT) speed in deeper and longer duration dives. Observations also suggest that descent and ascent swimming mode and speed may vary in response to changes in buoyancy. We measured the swimming behaviour during simulated foraging of seven captive female grey seals (two adults and five pups). Seals had to swim horizontally underwater from a breathing box to a submerged automatic feeder. The distance to the feeder and the rate of prey food delivery could be varied to simulate different feeding conditions. Diving durations and distances travelled in dives recorded during these experiments were similar to those recorded in the wild. Mean swim speed decreased significantly with increasing distance to the patch, indicating that seals adjusted their speed in response to travel distance, consistent with optimality model predictions. There was, however, no significant relationship between the transit swim speeds and prey density at the patch. Interestingly, all seals swam 10-20% faster on their way to the prey patch compared to the return to the breathing box, despite the fact that any effect of buoyancy on swimming speed should be the same in both directions. These results suggest that the swimming behaviour exhibited by foraging grey seals might be a combination of having to overcome the forces of buoyancy during vertical swimming and also of behavioural choices made by the seals.

  16. Biomechanical analysis of the swim-start: a review.

    Science.gov (United States)

    Vantorre, Julien; Chollet, Didier; Seifert, Ludovic

    2014-05-01

    This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water entry, require adaptations to the swimmer's chosen technique over the course of a performance; we thus define the swim-start as the moment when preparation for take-off begins to the moment when the swimming pattern begins. A secondary objective is to determine the role of adaptive variability as it emerges during the swim-start. Variability is contextualized as having a functional role and operating across multiple levels of analysis: inter-subject (expert versus non-expert), inter-trial or intra-subject (through repetitions of the same movement), and inter-preference (preferred versus non-preferred technique). Regarding skill effects, we assume that swim-start expertise is distinct from swim stroke expertise. Highly skilled swim-starts are distinguished in terms of several factors: reaction time from the start signal to the impulse on the block, including the control and regulation of foot force and foot orientation during take-off; appropriate amount of glide time before leg kicking commences; effective transition from leg kicking to break-out of full swimming with arm stroking; overall maximal leg and arm propulsion and minimal water resistance; and minimized energy expenditure through streamlined body position. Swimmers who are less expert at the swim-start spend more time in this phase and would benefit from training designed to reduce: (i) the time between reaction to the start signal and impulse on the block, and (ii) the time in transition (i.e., between gliding and leg

  17. Effects of hydrodynamic interactions in bacterial swimming.

    Science.gov (United States)

    Chattopadhyay, Suddhashil; Lun Wu, Xiao

    2008-03-01

    The lack of precise experimental data has prevented the investigation of the effects of long range hydrodynamic interactions in bacterial swimming. We perform measurements on various strains of bacteria with the aid of optical tweezers to shed light on this aspect of bacterial motility. Geometrical parameters recorded by fluorescence microscopy are used with theories which model flagella propulsion (Resistive force theory & Lighthill's formulation which includes long range interactions). Comparison of the predictions of these theories with experimental data, observed directly from swimming bacterium, led to the conclusion that while long range inetractions were important for single polar flagellated strains (Vibrio Alginolyticus & Caulobacter Crescentus), local force theory was adequate to describe the swimming of multi-flagellated Esherichia Coli. We performed additional measurements on E. Coli minicells (miniature cells with single polar flagellum) to try and determine the cause of this apparent effect of shielding of long range interactions in multiple flagellated bacteria.

  18. Repeatability of maximal voluntary force and of surface EMG variables during voluntary isometric contraction of quadriceps muscles in healthy subjects.

    Science.gov (United States)

    Rainoldi, A; Bullock-Saxton, J E; Cavarretta, F; Hogan, N

    2001-12-01

    The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC). Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC>70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions.

  19. Forced swimming stress does not affect monoamine levels and neurodegeneration in rats%强迫性游泳压力对大鼠单胺水平和神经退行性变化没有影响

    Institute of Scientific and Technical Information of China (English)

    Ghulam Abbas; Sabira Naqvi; Shahab Mehmood; Nurul Kabir; Ahsana Dar

    2011-01-01

    Objective The current study was aimed to investigate the correlations between immobility time in the forced swimming test (FST,a behavioral indicator of stress level) and hippocampal monoamine levels (markers of depression),Methods Male Sprague-Dawley rats were subjected to acute,sub-chronic (7 d) or chronic (14 d) FSTs and immobility time was recorded.Levels of noradrenalin,serotonin and dopamine in the hippocampus,and adrenalin level in the plasma were quantified by high-performance liquid chromatography with electrochemical detection.Brain sections from rats after chronic forced swimming or rotenone treatment (3 mg/kg subcutaneously for 4 d) were stained with fluoro jade C.Results The rats subjected to swimming stress (acute,sub-chronic and chronic) showed long immobility times[(214±5),(220±4) and (231±7) s,respectively],indicating that the animals were under stress.However,the rats did not exhibit significant declines in hippocampal monoamine levels,and the plasma adrenalin level was not significantly increased compared to that in unstressed rats.The rats that underwent chronic swimming stress did not manifest fluoro-jade C staining in brain sections,while degenerating neurons were evident after rotenone treatment.Conclusion The immobility time in the FST does not correlate with markers of depression (monoamine levels) and internal stress (adrenalin levels and neurodegeneration),hence this parameter may not be a true indicator of stress level.%目的 本文旨在研究强迫性游泳试验中的不动时间(压力的行为性指示)与海马中单胺水平(抑郁指标)、血浆中肾上腺素水平(循环系统中的压力指标)以及神经退行性变化(fluoro jade C染色法检测)的关系.方法 给予雄性Sprague-Dawley大鼠急性、亚慢性(7天)或慢性(14天)强迫游泳的压力,并在强迫游泳试验中记录大鼠的不动时间.试验结束后,用高效液相色谱电化学检测法测定大鼠海马中去甲肾上腺素、5-羟色胺

  20. Comparación de los efectos del D-004, imipramina y sertralina en el modelo de nado forzado en ratones Comparative effects of D-004, Imipramine and Sertraline in the forced swimming test in mice

    Directory of Open Access Journals (Sweden)

    Daisy Carbajal Quintana

    2012-09-01

    fruit (Roystonea regia that is effective to prevent prostatic hyperplasia by inhibiting 5 a-reductase and shows moderate antidepressant effects in the forced swimming test (FST and tail suspension test. Objective: to compare the effects of D-004, Imipramine and Sertraline on the duration of behaviours under conditions of immobility, swimming and climbing in the forced swimming test. Methods: mice were randomly distributed in 8 groups: control (vehicle, 3 treated with D-004 (100, 250 and 500 mg/kg, 2 with Sertraline and 2 with Imipramine (30 and 50 mg/kg respectively. Mice were placed in a glass cylinder containing 6 cm high column of water and their behaviours were quantified. Results: oral administration of D-004 (100, 250 and 500 mg/kg during 14 days reduced the length of time of immobility with respect to the control group (17, 22 and 25 %, and significantly increased the behaviours at swimming by 1.58, 1.68 and 1.74 times. This is a moderate effect (25 % if compared with Sertraline and Imipramine (³ 60 % The doses of 250 and 500 mg/kg showed that climbing behaviours were 2.79 and 3.55 times higher than the control group. The results were similar to those of Imipramine but less effective. Conclusions: D-004 showed moderate antidepressant effect. This fact could help in the treatment of patients with benign prostatic hyperplasia, who reported similar depressive status.

  1. Teaching Swimming Effectively.

    Science.gov (United States)

    Larrabee, Jean G.

    A step-by-step sequential plan is offered for developing a successful competitive swimming season, including how to teach swimming strokes and organize practices. Various strokes are analyzed, and coaching check points are offered along with practice drills, helpful hints on proper body positioning, arm strokes, kicking patterns, breathing…

  2. Early postnatal handling and environmental enrichment improve the behavioral responses of 17-month-old 3xTg-AD and non-transgenic mice in the Forced Swim Test in a gender-dependent manner.

    Science.gov (United States)

    Torres-Lista, Virginia; Giménez-Llort, Lydia

    2015-11-01

    Forced Swimming Test (FST) models behavioural despair in animals by loss of motivation to respond or the refusal to escape. The present study was aimed at characterizing genetic (genotype and gender) and environmental factors (age/stage of disease and rearing conditions: C, standard; H, early postnatal handling; EE, environmental enrichment consisting in physical exercise as well as social and object enrichment) that may modulate the poor behavioural and cognitive flexibility response we have recently described in 12-month-old male 3xTg-AD mice in the FST. The comprehensive analysis of the ethogram shown in the FST considered the intervals of the test (0-2 and 2-6min), all the elicited behavioural responses (immobility, swimming and climbing) and their features (total duration and frequency of episodes). The long persistence of behaviours found in 17-month-old (late-stages of disease) 3xTg-AD mice was comparable to that recently described in males at 12 months of age (beginning of advanced stages) but also suggested increased age-dependent frailty in both genotypes. The poor behavioral flexibility of 3xTg-AD mice to elicit the behavioural despair shown by the NTg mice, was also found in the female gender. Finally, the present work demonstrates that early-life interventions were able to improve the time and frequency of episodes of immobility, being more evident in the female gender of both old NTg and 3xTg-AD mice. Ontogenic modulation by early-postnatal handling resulted in a more effective long-term improvement of the elicited behaviours in the FST than that achieved by environmental enrichment. The results talk in favor of the beneficence of early-life interventions on ageing in both healthy and disease conditions.

  3. Propulsive efficiency of frog swimming with different feet and swimming patterns

    Science.gov (United States)

    Jizhuang, Fan; Wei, Zhang; Bowen, Yuan; Gangfeng, Liu

    2017-01-01

    ABSTRACT Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11%) between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58%) fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency. PMID:28302669

  4. Sex differences associated with intermittent swim stress.

    Science.gov (United States)

    Warner, Timothy A; Libman, Matthew K; Wooten, Katherine L; Drugan, Robert C

    2013-11-01

    Various animal models of depression have been used to seek a greater understanding of stress-related disorders. However, there is still a great need for novel research in this area, as many individuals suffering from depression are resistant to current treatment methods. Women have a higher rate of depression, highlighting the need to investigate mechanisms of sex differences. Therefore, we employed a new animal model to assess symptoms of depression, known as intermittent swim stress (ISS). In this model, the animal experiences 100 trials of cold water swim stress. ISS has already been shown to cause signs of behavioral depression in males, but has yet to be assessed in females. Following ISS exposure, we looked at sex differences in the Morris water maze and forced swim test. The results indicated a spatial learning effect only in the hidden platform task between male and female controls, and stressed and control males. A consistent spatial memory effect was only seen for males exposed to ISS. In the forced swim test, both sexes exposed to ISS exhibited greater immobility, and the same males and females also showed attenuated climbing and swimming, respectively. The sex differences could be due to different neural substrates for males and females. The goal of this study was to provide the first behavioral examination of sex differences following ISS exposure, so the stage of estrous cycle was not assessed for the females. This is a necessary future direction for subsequent experiments. The current article highlights the importance of sex differences in response to stress.

  5. Mechanics of undulatory swimming in a frictional fluid

    National Research Council Canada - National Science Library

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    .... In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT...

  6. Is paramecium swimming autonomic?

    Science.gov (United States)

    Bandyopadhyay, Promode R.; Toplosky, Norman; Hansen, Joshua

    2010-11-01

    We seek to explore if the swimming of paramecium has an underlying autonomic mechanism. Such robotic elements may be useful in capturing the disturbance field in an environment in real time. Experimental evidence is emerging that motion control neurons of other animals may be present in paramecium as well. The limit cycle determined using analog simulation of the coupled nonlinear oscillators of olivo-cerebellar dynamics (ieee joe 33, 563-578, 2008) agrees with the tracks of the cilium of a biological paramecium. A 4-motor apparatus has been built that reproduces the kinematics of the cilium motion. The motion of the biological cilium has been analyzed and compared with the results of the finite element modeling of forces on a cilium. The modeling equates applied torque at the base of the cilium with drag, the cilium stiffness being phase dependent. A low friction pendulum apparatus with a multiplicity of electromagnetic actuators is being built for verifying the maps of the attractor basin computed using the olivo-cerebellar dynamics for different initial conditions. Sponsored by ONR 33.

  7. Antidepressant behavioral effects of duloxetine and fluoxetine in the rat forced swimming test Efeitos antidepressivos da duloxetina e da fluoxetina no teste do nado forçado em ratos

    Directory of Open Access Journals (Sweden)

    Leandro Ciulla

    2007-10-01

    Full Text Available PURPOSE: To compare the effects of the antidepressant drugs duloxetine and fluoxetine on depressive behaviors in rodents. METHODS: Eighteen male Wistar rats were given systemic injections of duloxetine, fluoxetine, or saline prior to a Forced Swimming Test (FST. Immobility and number of stops were measured. RESULTS: Rats given injections of fluoxetine displayed significantly less immobility (p = 0.02 and fewer stops than the control group (p = 0.003. Duloxetine significanlty reduced the number of stops (p = 0.003, but did not effect immobility (p = 0.48. CONCLUSION: Duloxetine and fluoxetine reduced depressive behaviors in the Forced FST. However, our findings suggest that fluoxetine is more effective than duloxetine.OBJETIVO: Comparar o efeito antidepressivo da droga cloridrato de duloxetina com a fluoxetina. MÉTODOS: O teste do nado forçado, teste comportamental que avalia a atividade antidepressiva em ratos, foi utilizado em 18 ratos Wistar, machos adultos, divididos em três grupos iguais: duloxetina, fluoxetina e controle. RESULTADOS: Os dados do teste do nado forçado foram analisados pelo teste One-way ANOVA, Mann Whitney e Kruskall-Wallis.Houve diferença significativa (p = 0,003 entre o número de paradas dos grupos duloxetina e fluoxetina e o grupo controle. CONCLUSÃO: A duloxetina e a fluoxetina tiveram frequência de paradas similares. A fluoxetina mostrou ser mais efetiva que a duloxetina no teste do nado forçado em ratos.

  8. Quantification of upper limb kinetic asymmetries in front crawl swimming.

    Science.gov (United States)

    Morouço, Pedro G; Marinho, Daniel A; Fernandes, Ricardo J; Marques, Mário C

    2015-04-01

    This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  10. Swimming and birth weight.

    Science.gov (United States)

    Nieuwenhuijsen, Mark J; Northstone, Kate; Golding, Jean

    2002-11-01

    Swimmers can be exposed to high levels of trihalomethanes, byproducts of chlorination disinfection. There are no published studies on the relation between swimming and birth weight. We explored this relation in a large birth cohort, the Avon (England) Longitudinal Study of Parents and Children (ALSPAC), in 1991-1992. Information on the amount of swimming per week during the first 18-20 weeks of pregnancy was available for 11,462 pregnant women. Fifty-nine percent never swam, 31% swam up to 1 hour per week, and 10% swam for longer. We used linear regression to explore the relation between birth weight and the amount of swimming, with adjustment for gestational age, maternal age, parity, maternal education level, ethnicity, housing tenure, drug use, smoking and alcohol consumption. We found little effect of the amount of swimming on birth weight. More highly educated women were more likely to swim compared with less educated women, whereas smokers were less likely to swim compared with nonsmokers. There appears to be no relation between the duration of swimming and birth weight.

  11. Instabilities in the Swimming of Bacteria

    Science.gov (United States)

    Riley, Emily; Lauga, Eric

    2016-11-01

    Peritrichously flagellated bacteria, such as E. coli and B. subtillis, have flagella randomly distributed over their body. These flagella rotate to generate a pushing force that causes the cell to swim body first. For changes in direction these flagella return to their randomly distributed state where the flagella point in many different directions. The main observed state of swimming peritrichously flagellated bacteria however is one where all their flagella gathered or bundled at one end of the body. In this work we address this problem from the point of view of fluid-structure interactions and show theoretically and numerically how the conformation of flagella depends on the mechanics of the cell.

  12. Effect of different conditions on forced swimming test in BALB/C Mice%不同研究条件对BALB/C小鼠强迫游泳实验的影响

    Institute of Scientific and Technical Information of China (English)

    乔向阳; 王晓英; 刘宏云

    2012-01-01

    Objective To study the effect of different conditions on forced swimming test in BALB/C mice, and to provide guidance to enhance the sensitivity, validity and reliability of mice model of depression. Methods The immobility time of BALB/C mice under different conditions (circadian rhythm, water temperature) were investigated. Results The immobility time of BALB/C mice during the daytime is significantly longer than that at night. The differences of the immobility time between male and female mice showed no statistically significant difference, but positive results in male mice was significantly more than that in female mice. The immobility time under water temperature of 22℃ is significantly longer than that under water temperature of 12℃ or 32℃. Conclusion To increase the sensitivity and reliability, the forced swimming test should be taken during the daytime in male BALB/C mice. BalB/C mice are more prone to depression under water temperature of 22℃.%目的 研究不同条件对BALB/C小鼠强迫游泳实验的影响,对该品系小鼠抑郁模型的敏感性、有效性、可靠性进行探索.方法 将不同性别、体重相近的BALB/C小鼠放置在相同的饲养、实验环境下,通过设置不同研究参数(昼夜和水温),对强迫游泳行为进行观察分析.结果 ①雌雄小鼠间的不动时间差异无统计学意义,然而雄性小鼠的阳性结果数多于雌性;②在昼夜节律变化的强迫游泳试验中BALB/C小鼠白天的不动时间显著长于夜间的不动时间;③BALB/C小鼠在22℃水温的不动时间显著长于在12℃、32℃水温的不动时间.结论 为增加强迫游泳实验的敏感性、可靠性,应选择雄性BALB/C小鼠在白天进行试验,在22℃水温下更容易产生抑郁样行为.

  13. Cellular effects of swim stress in the dorsal raphe nucleus.

    Science.gov (United States)

    Kirby, Lynn G; Pan, Yu-Zhen; Freeman-Daniels, Emily; Rani, Shobha; Nunan, John D; Akanwa, Adaure; Beck, Sheryl G

    2007-07-01

    Swim stress regulates forebrain 5-hydroxytryptamine (5-HT) release in a complex manner and its effects are initiated in the serotonergic dorsal raphe nucleus (DRN). The purpose of this study was to examine the effects of swim stress on the physiology of DRN neurons in conjunction with 5-HT immunohistochemistry. Basic membrane properties, 5-HT(1A) and 5-HT(1B) receptor-mediated responses and glutamatergic excitatory postsynaptic currents (EPSCs) were measured using whole-cell patch clamp techniques. Rats were forced to swim for 15min and 24h later DRN brain slices were prepared for electrophysiology. Swim stress altered the resting membrane potential, input resistance and action potential duration of DRN neurons in a neurochemical-specific manner. Swim stress selectively elevated glutamate EPSC frequency in 5-HT DRN neurons. Swim stress non-selectively reduced EPSC amplitude in all DRN cells. Swim stress elevated the 5-HT(1B) receptor-mediated inhibition of glutamatergic synaptic activity that selectively targeted 5-HT cells. Non-5-HT DRN neurons appeared to be particularly responsive to the effects of a milder handling stress. Handling elevated EPSC frequency, reduced EPSC decay time and enhanced a 5-HT(1B) receptor-mediated inhibition of mEPSC frequency selectively in non-5-HT DRN cells. These results indicate that swim stress has both direct, i.e., changes in membrane characteristics, and indirect effects, i.e., via glutamatergic afferents, on DRN neurons. These results also indicate that there are distinct local glutamatergic afferents to neurochemically specific populations of DRN neurons, and furthermore that these distinct afferents are differentially regulated by swim stress. These cellular changes may contribute to the complex effects of swim stress on 5-HT neurotransmission and/or the behavioral changes underlying the forced swimming test model of depression.

  14. Flow analysis of C. elegans swimming

    Science.gov (United States)

    Montenegro-Johnson, Thomas; Gagnon, David; Arratia, Paulo; Lauga, Eric

    2015-11-01

    Improved understanding of microscopic swimming has the potential to impact numerous biomedical and industrial processes. A crucial means of analyzing these systems is through experimental observation of flow fields, from which it is important to be able to accurately deduce swimmer physics such as power consumption, drag forces, and efficiency. We examine the swimming of the nematode worm C. elegans, a model system for undulatory micro-propulsion. Using experimental data of swimmer geometry and kinematics, we employ the regularized stokeslet boundary element method to simulate the swimming of this worm outside the regime of slender-body theory. Simulated flow fields are then compared with experimentally extracted values confined to the swimmer beat plane, demonstrating good agreement. We finally address the question of how to estimate three-dimensional flow information from two-dimensional measurements.

  15. The temporal change of the anxiety and depression like behaviors and spatial learning and memory of rats forced swimming test%慢性强迫游泳后大鼠焦虑抑郁行为及空间学习记忆能力的动态变化

    Institute of Scientific and Technical Information of China (English)

    刘渝; 王文; 罗晓星; 郑红; 王化宁; 晋翔; 谭庆荣

    2008-01-01

    目的 探讨长期强迫游泳后大鼠焦虑抑郁行为以及空间学习和记忆能力的动态变化.方法 将24只成年雄性SD大鼠随机分为对照组(CONTROL组)及强迫游泳组(FST组),利用MORRIS水迷宫来测定大鼠的空间学习和记忆能力,其中在应激结束后第1,7,14,21天进行大鼠空间学习能力,第2,8,15,22天进行大鼠记忆能力测试,旷场、高架十字迷宫来测定大鼠的焦虑抑郁行为.结果 (1)MORRIS水迷宫实验:定位航行训练中,应激结束后第1天的第4,5组实验的上台潜伏期[(12.57±2.17)s;(14.56±2.17)s]低于CONTROL组大鼠[(29.13±5.04)s;(26.13±5.04)s](P<0.05);第7天FaT组大鼠的第1,3组实验的上台潜伏期[(16.88±2.82)s;(13.33±1.57)s]低于CONTROL组大鼠[(35.04±4.53)s;(23.66±4.04)s],差异有显著性(P<0.05).空间探索试验中,应激结束后第2天和第8天FST组在目标象限游泳时间的百分比和穿台次数显著高于CONTROL组(第2,8天均为P<0.05).在应激结束3周后,CONTROL组和FST组大鼠的上台潜伏期和目标象限游泳时间的百分比以及穿台次数均差异无显著性(P0.05).(2)高架十字迷宫实验:第1次P3T后大鼠的开臂停留时间[(2.48±2.22)s]显著短于CONTROL组[(40.82±8.33)s],差异有显著性(P<0.05);同时开臂进入次数也显著少于CONTROL组(P<0.05),这种差异持续到应激结束后第1天.应激结束7d后2组的开臂停留时间和进入次数已经基本一致.(3)旷场实验:应激结束后第1天和第7天的FST组大鼠的水平活动度和活动次数均显著少于CONTROL组(P<0.05).结论 慢性强迫游泳可以提高大鼠短期的空间学习、记忆,但并不影响大鼠长期的空间学习、记忆能力;可以使动物产生焦虑抑郁样行为但并不稳定.%Objective To observe the temporal change of the anxiety and depression like behaviors and spatial learning and memory of rats receiving repeated daily forced swimming test (FST). Methods Twenty-four adult male Sprague

  16. Evidence of circadian rhythm, oxygen regulation capacity, metabolic repeatability and positive correlations between forced and spontaneous maximal metabolic rates in lake sturgeon Acipenser fulvescens.

    Directory of Open Access Journals (Sweden)

    Jon C Svendsen

    Full Text Available Animal metabolic rate is variable and may be affected by endogenous and exogenous factors, but such relationships remain poorly understood in many primitive fishes, including members of the family Acipenseridae (sturgeons. Using juvenile lake sturgeon (Acipenser fulvescens, the objective of this study was to test four hypotheses: 1 A. fulvescens exhibits a circadian rhythm influencing metabolic rate and behaviour; 2 A. fulvescens has the capacity to regulate metabolic rate when exposed to environmental hypoxia; 3 measurements of forced maximum metabolic rate (MMR(F are repeatable in individual fish; and 4 MMR(F correlates positively with spontaneous maximum metabolic rate (MMR(S. Metabolic rates were measured using intermittent flow respirometry, and a standard chase protocol was employed to elicit MMR(F. Trials lasting 24 h were used to measure standard metabolic rate (SMR and MMR(S. Repeatability and correlations between MMR(F and MMR(S were analyzed using residual body mass corrected values. Results revealed that A. fulvescens exhibit a circadian rhythm in metabolic rate, with metabolism peaking at dawn. SMR was unaffected by hypoxia (30% air saturation (O(2sat, demonstrating oxygen regulation. In contrast, MMR(F was affected by hypoxia and decreased across the range from 100% O(2sat to 70% O(2sat. MMR(F was repeatable in individual fish, and MMR(F correlated positively with MMR(S, but the relationships between MMR(F and MMR(S were only revealed in fish exposed to hypoxia or 24 h constant light (i.e. environmental stressor. Our study provides evidence that the physiology of A. fulvescens is influenced by a circadian rhythm and suggests that A. fulvescens is an oxygen regulator, like most teleost fish. Finally, metabolic repeatability and positive correlations between MMR(F and MMR(S support the conjecture that MMR(F represents a measure of organism performance that could be a target of natural selection.

  17. [Swimming-induced asthma].

    Science.gov (United States)

    Fjellbirkeland, L; Gulsvik, A; Walløe, A

    1995-06-30

    Swimming is said to have low asthmogeneity especially when compared with other physical activities. Four young athletes who participated in heavy swimming exercise are reported as having symptoms of exercise-induced asthma (EIA). Three of them started to develop the symptoms after several years of training and had no former history of asthma. In the fourth, the asthma was diagnosed in childhood but the EIA-symptoms here exacerbated by swimming. All four experienced more symptoms when the air in the swimming pool was warm, or when there was a strong smell of chlorine. Two of the athletes reported having no symptoms when they swam in outdoor pools and had only minor symptoms, or none at all, when they did other formes of physical exercise, including running. In all four their swimming performance was hampered by their respiratory symptoms. Two of the swimmers improved when they inhaled steroids and adrenerg-beta 2 agonists, and continued their swimming carrier. The cases suggest that an irritant may provoke asthma symptoms in susceptible swimmers. Volatile compounds from chlorination of the pools are suspected as possible irritant agents.

  18. Antidepressant behavioral effects of duloxetine and amitriptyline in the rat forced swimming test Efeitos antidepressivos da duloxetina e da amitriptilina no teste do nado forçado em ratos

    Directory of Open Access Journals (Sweden)

    Honório Sampaio Menezes

    2008-10-01

    Full Text Available PURPOSE: To compare the effects of the antidepressant drugs duloxetine and amitriptyline on depressive behaviors in rats. METHODS: Fifteen male Wistar rats were given systemic injections of duloxetine, amitriptyline or saline prior to a Forced Swimming Test (FST. Immobility and number of stops were measured. Data were analyzed by one-way ANOVA and Kruskall-Wallis. RESULTS: Rats given injections of duloxetine displayed fewer stops than the amitriptyline and control group (pOBJETIVO: Comparar o efeito antidepressivo da droga cloridrato de duloxetina com a amitriptilina. MÉTODOS: O teste do nado forçado, teste comportamental que avalia a atividade antidepressiva em ratos, foi utilizado em 15 ratos Wistar, machos adultos, divididos em três grupos iguais: duloxetina, amitriptilina e controle. Os dados foram analisados pelo teste One-way ANOVA e Kruskall-Wallis. RESULTADOS: Houve diferença significativa entre o número de paradas (p <0,05 entre os grupos duloxetina e amitriptilina e o grupo controle. Grupo amitriptilina e controle não apresentaram diferença (p=0,8. CONCLUSÃO: A duloxetina reduziu o comportamento depressivo sendo mais efetiva do que a amitriptilina.

  19. Enhanced anti-immobility effects of Sanggenon G isolated from the root bark of Morus alba combined with the α2-antagonist yohimbine in the rat forced swim test.

    Science.gov (United States)

    Lim, Dong Wook; Baek, Nam-In; Kim, Yun Tai; Lee, Changho; Kim, In-Ho; Han, Daeseok

    2016-07-01

    In this study, we aimed to determine whether Sanggenon G, an active compound isolated from the root bark of Morus alba, exhibited enhanced anti-immobility activity with the addition of the α2-antagonist yohimbine in rats subjected to forced swim test (FST)-induced depression. Fluoxetine (a selective serotonin reuptake inhibitor) treatment in rats reduced the immobility time, and pretreatment with yohimbine significantly enhanced the antidepressant-like behavior of fluoxetine at 5, 10 and 20 mg/kg. Similarly, Sanggenon G significantly decreased the immobility time, reducing immobility by a maximum of 43.9 % when treated at a dose of 20 mg/kg. Furthermore, pretreatment with yohimbine significantly enhanced the antidepressant-like behavior of Sanggenon G at 5 and 10 mg/kg. Our findings suggest that the antidepressant-like effect of Sanggenon G could be facilitated by concomitant use of the α2-antagonist. Further studies are needed to evaluate the potential of Sanggenon G as an alternative therapeutic approach for the treatment of depression.

  20. 国内昆明种小鼠和Wistar大鼠适合作强迫性游泳抑郁模型动物%Domestic Kuming mice and Wistar rats are suitable animals for in the forced swimming tests

    Institute of Scientific and Technical Information of China (English)

    张中启

    2001-01-01

    @@ 70年代末期,一种简便,可靠的抑郁动物模型--大鼠和小鼠强迫性游泳(Forced swimming test)在法国Porsolt神经药理室悄然出现[1,2].该模型是利用动物不能逃逸出恶劣环境,以致行为绝望(behavioural despair)而建立的一种评筛抗抑郁剂的方法.20多年来,它以强大的生命力,在世界各地许多实验室得到广泛应用,极大地推动了抑郁病理机制的研究和抗抑郁药物的发展.近年来,有关这种方法在国内也有一些报道[3].不过,考虑到国内从事这方面工作的人员甚少,同时,此法有较明显的种属差异[4],也就是说,有些种属不宜作为强迫性游泳模型动物.因此,本研究特就国内常用昆明种(KM)小鼠和Wistar大鼠在这种模型中的应用进行较系统评价.

  1. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression.

    Science.gov (United States)

    Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K

    2014-03-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats.

  2. CREATINE SUPPLEMENTATION AND SWIM PERFORMANCE: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Melissa J. Hopwood

    2006-03-01

    Full Text Available Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle

  3. How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish

    NARCIS (Netherlands)

    Leeuwen, van J.L.; Voesenek, C.J.; Müller, U.K.

    2015-01-01

    Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces.

  4. Thermal and temporal stability of swimming performance in the European sea bass.

    Science.gov (United States)

    Claireaux, Guy; Handelsman, Corey; Standen, Emily; Nelson, Jay A

    2007-01-01

    Studies of locomotor performance have contributed to the elucidation of how suborganismal traits ultimately relate to fitness. In terrestrial populations, exploring the physiological and environmental contributions to whole-animal performance measures has improved our understanding of phenotypic selection. Conversely, very little is known about the links between phenotypic selection and swimming abilities in fish. Most research on swimming performance in fish has focused on morphological, physiological, and biochemical traits contributing to performance or has used swimming performance as a measure of environmental suitability. Few studies have explored how swimming performance is integrated with life-history traits or contributes to Darwinian fitness. In addition, while there are many studies on how the environment influences the swimming performance of fish, few have been done at the individual level. The objective of this study was to broaden our understanding of the relevance of fish swimming performance studies by testing the hypothesis that swimming performance (endurance and sprint) is ontogenetically and temporally stable across fluctuating environmental conditions. We found that individual sprint performances recorded at 12 degrees C were significantly repeatable after a 4-wk acclimation to 22 degrees C, although relative sprint performance of fish that survived 6 mo of natural conditions in a mesocosm was not significantly repeatable. Endurance swimming performance, as measured by critical swimming speed (U(crit)) before and after the 6-mo exposure to simulated natural conditions, was significantly repeatable within survivors. Relative sprint and critical swimming performances were not significantly related to each other. We concluded that within a time frame of up to 6 mo, the swimming performances of individual bass are ontogenetically nearly stable (sprint) to stable (endurance) despite large fluctuations in environmental conditions. Moreover, because

  5. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    1995-01-01

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen

  6. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    1995-01-01

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves depen

  7. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves

  8. Relationship between Muscle Strength and Front Crawl Swimming Velocity

    Directory of Open Access Journals (Sweden)

    Gola Radosław

    2014-08-01

    Full Text Available Purpose. competitive performance in swimming depends on a number of factors including, among others, the development of relevant muscle groups. The aim of the study was to clarify the relationship between muscle strength and swimming velocity and the role of individual muscle groups in front crawl swimming. Methods. sixteen physical education university students participated in the study. The strength values, defined as torque produced during isometric contractions, of eight upper and lower extremity muscle groups were measured. Data were compared with participants' front crawl swim times in the 25m and 50m distances. Results. correlation analysis demonstrated a relationship between muscle strength and swimming velocity. statistically significant relationships were observed between swimming velocity and the torque values of the elbow flexor and shoulder extensor muscles as well as the sum of upper extremity muscle torque values (p ⋋ 0.05. Conclusions. The results indicate the need for a focus on training those muscle groups identified as having a statistically significant relationship with swimming velocity for a given distance, as the sample showed deficiencies in the strength of those muscle groups responsible for generating propulsive force in the front crawl. Additionally, the collected data can serve as a diagnostic tool in evaluating the development of muscle groups critical for swimming performance.

  9. The Complex Hydrodynamics of Swimming in the Spanish Dancer

    Science.gov (United States)

    Zhou, Zhuoyu; Mittal, Rajat

    2016-11-01

    The lack of a vertebra seems to have freed marine gastropods to explore and exploit a stupendous variety of swimming kinematics. In fact, examination of just a few animals in this group reveal locomotory modes ranging from insect-like flapping, to fish-like undulatory swimming, jet propulsion, and rajiform (manta-like) swimming. There are also a number of marine gastropods that have bizarre swimming gaits with no equivalent among fish or marine mammals. In this latter category is the Spanish Dancer (Hexabranchus sanguineus) a sea slug that swims with a complex combination of body undulations and flapping parapodia. While the neurobiology of these animals has been relatively well-studied, less is known about their propulsive mechanism and swimming energetics. In this study, we focus on the hydrodynamics of two distinct swimmers: the Spanish Dancer, and the sea hare Aplysia; the latter adopts a rajiform-like mode of swimming by passing travelling waves along its parapodia. In the present study an immersed boundary method is employed to examine the vortex structures, hydrodynamic forces and energy costs of the swimming in these animals. NSF Grant No. 1246317.

  10. Crash worthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force

    Energy Technology Data Exchange (ETDEWEB)

    Paruka, Perowansa [Jalan Politeknik, Kota Kinabalu (Malaysia); Siswanto, Waluyo Adi [Universiti Tun Hussein Onn Malaysia, Parit Raja (Malaysia); Maleque, Md Abdul [Universiti Islam Antarabangsa Malaysia, Kuala Lumpur (Malaysia); Shah, Mohd Kamal Mohd [Universiti Malaysia Sabah, Kota Kinabalu (Malaysia)

    2015-05-15

    A combination of aluminum columnar member with composite laminate to form a hybrid structure can be used as collapsible energy absorbers especially in automotive vehicular structures to protect occupants and cargo. A key advantage of aluminum member in composite is that it provides ductile and stable plastic collapse mechanisms with progressive deformation in a stable manner by increasing energy absorption during collision. This paper presents an experimental investigation on the influence of the number of hybrid epoxy glass layers in overwrap composite columnar tubes. Three columnar tube specimens were used and fabricated by hand lay-up method. Aluminum square hollow shape was combined with externally wrapped by using an isophthalic epoxy resin reinforced with glass fiber skin with an orientation angle of 0 .deg. /90 .deg. The aluminum columnar tube was used as reference material. Crushed hybrid-composite columnar tubes were prepared using one, two, and three layers to determine the crash worthy capacity. Quasi-static crush test was conducted using INSTRON machine with an axial loading. Results showed that crush force and the number of layers were related to the enhancement of energy absorption before the collapse of columnar tubes. The energy absorption properties of the crushed hybrid-composite columnar tubes improved significantly with the addition of layers in the overwrap. Microscopic analysis on the modes of epoxy-glass fiber laminate failure was conducted by using scanning electron microscopy.

  11. Sink or Swim: Navigating the Perilous Waters of Promotion and Tenure--What's Diversity Got to Do with It?

    Science.gov (United States)

    Knight, Wanda B.

    2010-01-01

    The "sink-or-swim" ideology is pervasive in the United States society. At research universities, for example, promotion and tenure are institutional waters in which faculty are forced to sink or swim with respect to publishing. Either they publish ("swim") or they perish ("sink"). In throwing faculty overboard, institutions assume that those who…

  12. Sink or Swim: Navigating the Perilous Waters of Promotion and Tenure--What's Diversity Got to Do with It?

    Science.gov (United States)

    Knight, Wanda B.

    2010-01-01

    The "sink-or-swim" ideology is pervasive in the United States society. At research universities, for example, promotion and tenure are institutional waters in which faculty are forced to sink or swim with respect to publishing. Either they publish ("swim") or they perish ("sink"). In throwing faculty overboard,…

  13. Inspiratory muscle training improves 100 and 200 m swimming performance.

    Science.gov (United States)

    Kilding, Andrew E; Brown, Sarah; McConnell, Alison K

    2010-02-01

    Inspiratory muscle training (IMT) has been shown to improve time trial performance in competitive athletes across a range of sports. Surprisingly, however, the effect of specific IMT on surface swimming performance remains un-investigated. Similarly, it is not known whether any ergogenic influence of IMT upon swimming performance is confined to specific race distances. To determine the influence of IMT upon swimming performance over 3 competitive distances, 16 competitive club-level swimmers were assigned at random to either an experimental (pressure threshold IMT) or sham IMT placebo control group. Participants performed a series of physiological and performance tests, before and following 6 weeks of IMT, including (1) an incremental swim test to the limit of tolerance to determine lactate, heart rate and perceived exertion responses; (2) standard measures of lung function (forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow) and maximal inspiratory pressure (MIP); and (3) 100, 200 and 400 m swim time trials. Training utilised a hand-held pressure threshold device and consisted of 30 repetitions, twice per day. Relative to control, the IMT group showed the following percentage changes in swim times: 100 m, -1.70% (90% confidence limits, +/-1.4%), 200 m, -1.5% (+/-1.0), and 400 m, 0.6% (+/-1.2). Large effects were observed for MIP and rates of perceived exertion. In conclusion, 6 weeks of IMT has a small positive effect on swimming performance in club-level trained swimmers in events shorter than 400 m.

  14. A COMPUTATIONAL STUDY ON BACKWARD SWIMMING HYDRODYNAMICS IN THE EEL ANGUILLA ANGUILLA

    Institute of Scientific and Technical Information of China (English)

    HU Wen-rong; TONG Bin-gang; MA Hui-yang; LIU Hao

    2005-01-01

    Eels can perform both forward and backward undulatory swimming but few studies are seen on how eels propel themselves backward. A computational study on the unsteady hydrodynamics of the backward swimming in the eel anguilla anguilla is carried out and presented. A two-dimensional geometric model of the European eel body in its middle horizontal section is appropriately approximated by a NACA0005 airfoil. Kinematic data of the backward and forward swimming eel used in the computational modeling are based on the experimental results of the European eel. Present study provided the different flow field characteristics of three typical cases in the backward swimming, and confirmed the guess of Wu: When the eel swims steadily, the vortex centers extensive comparison between the backward and forward swimming further reveals that the controllable parameters, such as frequency, amplitude and wavelength of the traveling wave, have a similar influence on the propulsion performance as in forward swimming. But it is shown that the backward swimming does not be a "reversed" forward swimming one. The backward swimming does show significant discrepancy in the propulsion performance: utilization of a constant-amplitude wave profile enables larger force generation for maneuverability but with much lower propulsive efficiency instead of the linear-increasing amplitude wave profile in the forward swimming. The actual swimming modes eels choose is the best choice associated with their propulsive requirement, as well as their physiological and ecological adaptation.

  15. Healthy Swimming/Recreational Water

    Science.gov (United States)

    ... Now Available! Q&A with Missy Franklin: Olympic Gold Medalist and Healthy Swimming Champion New Report on ... enter your email address: Enter Email Address Submit Button What's this? Healthy Swimming Swimmers Health Benefits of ...

  16. 2008 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  17. 2007 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  18. 2006 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  19. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  20. 2009 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  1. 2010 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  2. Effect of swim cap model on passive drag.

    Science.gov (United States)

    Gatta, Giorgio; Zamparo, Paola; Cortesi, Matteo

    2013-10-01

    Hydrodynamics plays an important role in swimming because even small decreases in a swimmer's drag can lead to performance improvements. During the gliding phases of a race, the head of a swimmer is an important point of impact with the fluid, and the swim cap, even if it covers only a small portion of the swimmer's body, can have an influence on drag. The purpose of this study was to investigate the effects on passive drag (Dp) of wearing 3 different types of swim caps (LSC: a lycra cap; CSC: a silicone cap; HSC: a silicone helmet cap without seams). Sixteen swimmers were tested at 3 velocities (1.5, 1.7, 1.9 m·s), and the Dp measurements were repeated at each condition 5 times. A statistical analysis revealed significant differences in drag (p swim cap is the most rigid, the most adherent to the swimmer's head, and does not allow the formation of wrinkles compared with the other 2 investigated swim caps. Therefore, the following conclusions can be made: (a) swimmers should take care when selecting their swim cap if they want to improve the fluid dynamics at the "leading edge" of their body and (b) because Dp is affected by the swim cap model, care should be taken when comparing data from different studies, especially at faster investigated speeds.

  3. Quiet swimming at low Reynolds number

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Wadhwa, Navish; Kiørboe, Thomas

    2015-01-01

    that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three......The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode...... are valid surprisingly close to the organism. Finally, we discuss point force models as a general framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions in the planktonic world....

  4. 广东省游泳后备力量人才培养模式现状调查研究%Guangdong province swimming reserve forces training mode present situation investigation and study

    Institute of Scientific and Technical Information of China (English)

    吴军强; 徐朝阳

    2014-01-01

    该文主要通过文献资料法,问卷调查法,访谈法选取广东代表性游泳队进行研究,对广东游泳后备人才培养模式现状进行调查,总结成功经验与不足,为广东游泳的可持续发展提供有效帮助。同时,还可以为国内其他省市的游泳后备人才培养提供参考,从而促使我国游泳水平不断提高,逐步缩小与欧美游泳发达国家水平的差距。%This paper mainly through the literature material law, questionnaire investigation, interview method to select representative swimming team in Guangdong, in Guangdong province swimming reserve personnel training mode present situation investigation, summarizes the successful experience and deficiency, for the sustainable development of Guangdong swimming provide effective help. At the same time, can also for other domestic provinces and cities to offer reference to the swimming reserve personnel training, to promote China’s swimming level enhances unceasingly, gradually reducing the gap with Europe and the United States swimming level in developed countries.

  5. Bioinspired swimming simulations

    Science.gov (United States)

    Bergmann, Michel; Iollo, Angelo

    2016-10-01

    We present a method to simulate the flow past bioinspired swimmers starting from pictures of an actual fish. The overall approach requires i) a skeleton graph generation to get a level-set function from pictures; ii) optimal transportation to obtain the velocity on the body surface; iii) flow simulations realized with a Cartesian method based on penalization. This technique can be used to automate modeling swimming motion from data collected by biologists. We illustrate this paradigm by simulating the swimming of a mackerel fish.

  6. AMPA Receptor-mTOR Activation Is Required for the Antidepressant-like Effects of Sarcosine during the Forced Swim Test in rats: Insertion of AMPA Receptor may Play a Role

    Directory of Open Access Journals (Sweden)

    Kuang-Ti eChen

    2015-06-01

    Full Text Available Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-D-aspartate receptor (NMDAR coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons. A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(fquinoxaline (NBQX pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR–mTOR signaling pathway activity and facilitating AMPAR membrane insertion.Highlights:- A single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the

  7. Traxoprodil, a selective antagonist of the NR2B subunit of the NMDA receptor, potentiates the antidepressant-like effects of certain antidepressant drugs in the forced swim test in mice.

    Science.gov (United States)

    Poleszak, Ewa; Stasiuk, Weronika; Szopa, Aleksandra; Wyska, Elżbieta; Serefko, Anna; Oniszczuk, Anna; Wośko, Sylwia; Świąder, Katarzyna; Wlaź, Piotr

    2016-08-01

    One of the newest substances, whose antidepressant activity was shown is traxoprodil, which is a selective antagonist of the NR2B subunit of the NMDA receptor. The main goal of the present study was to evaluate the effect of traxoprodil on animals' behavior using the forced swim test (FST), as well as the effect of traxoprodil (10 mg/kg) on the activity of antidepressants, such as imipramine (15 mg/kg), fluoxetine (5 mg/kg), escitalopram (2 mg/kg) and reboxetine (2.5 mg/kg). Serotonergic lesion and experiment using the selective agonists of serotonin receptors 5-HT1A and 5-HT2 was conducted to evaluate the role of the serotonergic system in the antidepressant action of traxoprodil. Brain concentrations of tested agents were determined using HPLC. The results showed that traxoprodil at a dose of 20 and 40 mg/kg exhibited antidepressant activity in the FST and it was not related to changes in animals' locomotor activity. Co-administration of traxoprodil with imipramine, fluoxetine or escitalopram, each in subtherapeutic doses, significantly affected the animals' behavior in the FST and, what is important, these changes were not due to the severity of locomotor activity. The observed effect of traxoprodil is only partially associated with serotonergic system and is independent of the effect on the 5-HT1A and 5-HT2 serotonin receptors. The results of an attempt to assess the nature of the interaction between traxoprodil and the tested drugs show that in the case of joint administration of traxoprodil and fluoxetine, imipramine or escitalopram, there were interactions in the pharmacokinetic phase.

  8. A lack of α1A-adrenergic receptor-mediated antidepressant-like effects of S-(+)-niguldipine and B8805-033 in the forced swim test.

    Science.gov (United States)

    Kreiner, Grzegorz; Roman, Adam; Zelek-Molik, Agnieszka; Kowalska, Marta; Nalepa, Irena

    2016-06-01

    The α1-adrenergic receptors (α1-ARs), which belong to a G protein-coupled receptor family, consist of three highly homologous subtypes known as α1A-ARs, α1B-ARs, and α1D-ARs. Our previous findings suggested that α1A-ARs are an important target for imipramine and electroconvulsive therapy. The current study sought to evaluate whether S-(+)-niguldipine and B8805-033, two selective antagonists of α1A-ARs, can evoke antidepressant-like effects in the forced swim test in rats. Both compounds were administered at three time points (24, 5, and 1 h before testing), and the effects of three doses (2, 5, and 10 mg/kg) of each compound were investigated. S-(+)-Niguldipine produced no antidepressant-like effects other than a 14% reduction in immobility time at the highest dose. Although B8805-033 at a dose of 2 mg/kg did not influence the rats' behavior, higher B8805-033 doses (5 and 10 mg/kg) produced significant reductions in immobility time (approximately 42 and 44% vs. controls, respectively; P<0.01). However, this effect was abolished by the concomitant administration of WAY100135, a serotonin receptor antagonist, suggesting that the observed antidepressant-like effects of B8805-033 are unrelated to α1A-ARs. Nevertheless, given the current dearth of selective α1A-AR agonists, the question of whether this particular subtype could be involved in antidepressant therapy mechanisms remains unresolved.

  9. Swimming of the Honey Bees

    Science.gov (United States)

    Roh, Chris; Gharib, Morteza

    2016-11-01

    When the weather gets hot, nursing honey bees nudge foragers to collect water for thermoregulation of their hive. While on their mission to collect water, foragers sometimes get trapped on the water surface, forced to interact with a different fluid environment. In this study, we present the survival strategy of the honey bees at the air-water interface. A high-speed videography and shadowgraph were used to record the honey bees swimming. A unique thrust mechanism through rapid vibration of their wings at 60 to 150 Hz was observed. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  10. The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.).

    Science.gov (United States)

    McHenry, Matthew J; Azizi, Emanuel; Strother, James A

    2003-01-01

    Understanding how the shape and motion of an aquatic animal affects the performance of swimming requires knowledge of the fluid forces that generate thrust and drag. These forces are poorly understood for the large diversity of animals that swim at Reynolds numbers (Re) between 10(0) and 10(2). We experimentally tested quasi-steady and unsteady blade-element models of the hydrodynamics of undulatory swimming in the larvae of the ascidian Botrylloides sp. by comparing the forces predicted by these models with measured forces generated by tethered larvae and by comparing the swimming speeds predicted with measurements of the speed of freely swimming larvae. Although both models predicted mean forces that were statistically indistinguishable from measurements, the quasi-steady model predicted the timing of force production and mean swimming speed more accurately than the unsteady model. This suggests that unsteady force (i.e. the acceleration reaction) does not play a role in the dynamics of steady undulatory swimming at Re approximately 10(2). We explored the relative contribution of viscous and inertial force to the generation of thrust and drag at 10(0)10(2)) and low (<10(0)) Re, the fluid forces that generate thrust cannot be assumed to be the same as those that generate drag at intermediate Re.

  11. Swimming and feeding of mixotrophic biflagellates

    Science.gov (United States)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas; Andersen, Anders

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed, predation risk due to flow-sensing predators, and prey capture? Here, we describe measured flows around two species of mixotrophic, biflagellated haptophytes with qualitatively different flagellar arrangements and beat patterns. We model the near cell flows using two symmetrically arranged point forces with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow facilitates transport of captured prey along the haptonema structure. We argue that prey capture alone cannot fulfil the energy needs of the observed species, and that the mixotrophic life strategy is essential for survival. PMID:28054596

  12. Swimming and feeding of mixotrophic biflagellates

    Science.gov (United States)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas; Andersen, Anders

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed, predation risk due to flow-sensing predators, and prey capture? Here, we describe measured flows around two species of mixotrophic, biflagellated haptophytes with qualitatively different flagellar arrangements and beat patterns. We model the near cell flows using two symmetrically arranged point forces with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow facilitates transport of captured prey along the haptonema structure. We argue that prey capture alone cannot fulfil the energy needs of the observed species, and that the mixotrophic life strategy is essential for survival.

  13. Intermittent Swimming with a Flexible Propulsor

    Science.gov (United States)

    Akoz, Emre; Zeyghami, Samane; Moored, Keith

    2016-11-01

    Some animals propel themselves by using an intermittent swimming gait known as a burst-and-glide or a burst-and-coast motion. These swimmers tend to have a more pronounced pitching of their caudal fins than heaving leading to low non-dimensional heave-to-pitch ratios. Recent work has shown that when this ratio is sufficiently low the efficiency of an intermittently heaving/pitching airfoil can be significantly improved over a continuously oscillating airfoil. However, fish that swim with an intermittent gait, such as cod and saithe, do not have rigid fins, but instead have highly flexible fins. To examine the performance and flow structures of an intermittent swimmer with a flexible propulsor, a fast boundary element method solver strongly coupled with a torsional-spring structural model was developed. A self-propelled virtual body combined with a flexible-hinged pitching airfoil is used to model a free-swimming animal and its flexible caudal fin. The duty cycle of the active to the coasting phase of motion, the torsional spring flexibility and the forcing frequency are all varied. The cost-of-transport and the swimming speed are measured and connected to the observed wake patterns. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  14. Intermittent cold water swim stress increases immobility and interferes with escape performance in rat.

    Science.gov (United States)

    Christianson, John P; Drugan, Robert C

    2005-11-30

    The behavioral consequences of intermittent, 5 s cold-water swims (15 degrees C) or confinement were assessed 24 h after stress in a 5 min forced swim test or an instrumental swim escape test (SET). The SET was conducted with temporal and instrumental parameters similar to the shock-motivated shuttle escape test. The tests detected significantly increased immobility in the forced swim test and increased latency to escape in the SET. These results extend previous findings with intermittent swim stress and provide evidence that intermittent swim stress produces behavioral deficits similar to other stress models. This new model may be a useful tool for exploring the physiological mechanisms underlying the stress response.

  15. Optimal shape and motion of undulatory swimming organisms.

    Science.gov (United States)

    Tokić, Grgur; Yue, Dick K P

    2012-08-07

    Undulatory swimming animals exhibit diverse ranges of body shapes and motion patterns and are often considered as having superior locomotory performance. The extent to which morphological traits of swimming animals have evolved owing to primarily locomotion considerations is, however, not clear. To shed some light on that question, we present here the optimal shape and motion of undulatory swimming organisms obtained by optimizing locomotive performance measures within the framework of a combined hydrodynamical, structural and novel muscular model. We develop a muscular model for periodic muscle contraction which provides relevant kinematic and energetic quantities required to describe swimming. Using an evolutionary algorithm, we performed a multi-objective optimization for achieving maximum sustained swimming speed U and minimum cost of transport (COT)--two conflicting locomotive performance measures that have been conjectured as likely to increase fitness for survival. Starting from an initial population of random characteristics, our results show that, for a range of size scales, fish-like body shapes and motion indeed emerge when U and COT are optimized. Inherent boundary-layer-dependent allometric scaling between body mass and kinematic and energetic quantities of the optimal populations is observed. The trade-off between U and COT affects the geometry, kinematics and energetics of swimming organisms. Our results are corroborated by empirical data from swimming animals over nine orders of magnitude in size, supporting the notion that optimizing U and COT could be the driving force of evolution in many species.

  16. Tethered Swimming for the Evaluation and Prescription of Resistance Training in Young Swimmers.

    Science.gov (United States)

    Papoti, Marcelo; da Silva, Adelino S R; Kalva-Filho, Carlos Augusto; Araujo, Gustavo Gomes; Santiago, Vanessa; Martins, LuizEduardo Barreto; Cunha, Sérgio Augusto; Gobatto, Claudio Alexandre

    2017-02-01

    The aims of the present study were 1) to evaluate the effects of 11 weeks of a typical free-swimming training program on aerobic and stroke parameters determined in tethered swimming (Study 1; n=13) and 2) to investigate the responses of tethered swimming efforts, in addition to free-swimming sessions, through 7 weeks of training (Study 2; n=21). In both studies, subjects performed a graded exercise test in tethered swimming (GET) to determine anaerobic threshold (AnT), stroke rate at AnT (SRAnT), peak force at GET (PFGET) and peak blood lactate ([La-]GET). Participants also swam 100-, 200- and 400-m lengths to evaluate performance. In Study 2, swimmers were divided into control (i. e., only free-swimming; GC [n=11]) and tethered swimming group (i. e., 50% of the main session; GTS [n=10]). The results of Study 1 demonstrate that AnT, PFGET, [La(-)]GET and 200-m performance were improved with free-swimming training. The SRAnT decreased with training. In Study 2, free-swimming performance and most of the graded exercise test parameters were not altered in either group. However, [La-]GET improved only for GTS. These results demonstrate that aerobic parameters obtained in tethered swimming can be used to evaluate free-swimming training responses, and the addition of tethered efforts during training routine improves the lactate production capacity of swimmers. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Reduction of spinal PGE2 concentrations prevents swim stress-induced thermal hyperalgesia.

    Science.gov (United States)

    Guevara, Coram; Fernandez, Ana Cristina; Cardenas, Ricardo; Suarez-Roca, Heberto

    2015-03-30

    We evaluated the association between spinal PGE2 and thermal hyperalgesia following repeated stress. Thermal nociception was determined in male Sprague-Dawley rats using the hot-plate test, before and after forced-swimming; non-conditioned rats served as controls. Animals were pretreated with ketoprofen or meloxicam, preferential COX-1 and COX-2 inhibitors, respectively. After the second hot-plate test, we measured serum corticosterone (stress marker), and lumbar spinal PGE2 (neuroinflammation marker) under peripheral inflammation (1% formalin plantar injection). Stressed rats displayed response latencies 40% shorter and inflammatory spinal PGE2 levels 95% higher than controls. Pretreatment with ketoprofen or meloxicam prevented hyperalgesia and elevation of spinal PGE2, increasing the escape behavior time during forced swimming 95% respect to saline-treated rats. Corticosterone levels in stressed rats were 97% higher than controls; COX inhibitors reduced them by 84%. PGE2 could participate in stress-induced hyperalgesia, learned helplessness, and corticosterone production, supporting the use of non-steroidal anti-inflammatory drugs (NSAIDs) for persistent pain associated with chronic stress and depression.

  18. 3D Kinematics and Hydrodynamic Analysis of Freely Swimming Cetacean

    Science.gov (United States)

    Ren, Yan; Sheinberg, Dustin; Liu, Geng; Dong, Haibo; Fish, Frank; Javed, Joveria

    2015-11-01

    It's widely thought that flexibility and the ability to control flexibility are crucial elements in determining the performance of animal swimming. However, there is a lack of quantification of both span-wise and chord-wise deformation of Cetacean's flukes and associated hydrodynamic performance during actively swimming. To fill this gap, we examined the motion and flexure of both dolphin fluke and orca fluke in steady swimming using a combined experimental and computational approach. It is found that the fluke surface morphing can effectively modulate the flow structures and influence the propulsive performance. Findings from this work are fundamental for understanding key kinematic features of effective Cetacean propulsors, and for quantifying the hydrodynamic force production that naturally occurs during different types of swimming. This work is supported by ONR MURI N00014-14-1-0533 and NSF CBET-1313217.

  19. HYDRODYNAMIC ANALYSIS AND SIMULATION OF A SWIMMING BIONIC ROBOT TUNA

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A dynamic model for undulatory locomotion was proposed to study the swimming mechanism of a developed bionic robot tuna. On the basis of inviscid hydrodynamics and rigid-body dynamics, the momentum and propulsive force required for propelling the swimming robot tuna's flexible body was calculated. By solving the established dynamic equations and efficiency formula, the swimming velocity and propulsive efficiency of the bionic robot tuna were obtained. The relationship between the kinematic parameters of the robot tuna's body curve and the hydrodynamic performances was established and discussed after hydrodynamic simulations. The results presented in this article can be used to increase the swimming speed, propulsive thrust, and the efficiency of underwater vehicles effectively.

  20. Do resonating bells increase jellyfish swimming performance?

    Science.gov (United States)

    Hoover, Alexander; Miller, Laura

    2013-11-01

    A current question in swimming and flight is whether or not driving flexible appendages at their resonant frequency results in faster or more efficient locomotion. It has been suggested that jellyfish swim faster and/or more efficiently when the bell is driven at its resonant frequency. Previous work has modeled the jellyfish bell as a damped harmonic oscillator, and this simplified model suggests that work done by the bell is maximized when force is applied at the resonant frequency of the bell. We extend the idea of resonance phenomena of the jellyfish bell to a fluid structure interaction framework using the immersed boundary method. We first examine the effects of the bending stiffness of the bell on its resonant frequency. We then further our model with the inclusion of a ``muscular'' spring that connects the two sides of a 2D bell and drives it near its resonant frequency. We use this muscular spring to force the bell at varying frequencies and examine the work done by these springs and the resulting swimming speed. We finally augment our model with a flexible, passive bell margin to examine its role in propulsive efficiency.

  1. Desipramine restricts estral cycle oscillations in swimming.

    Science.gov (United States)

    Contreras, C M; Martínez-Mota, L; Saavedra, M

    1998-10-01

    1. Desipramine (DMI) is a tricyclic antidepressant which reduces the immobility in rats forced to swim; however, it is unknown whether estral cycle phases impinge on DMI actions on immobility in daily swimming tests during several weeks. 2. In female wistar rats, vaginal smears taken before testing defined four estral phases. Afterwards, the authors assessed the latency for the first period of immobility in five-min forced swim tests practiced on 21-day DMI (DMI group), 21-day washout saline given after a 21-day DMI treatment (washout-saline group), or non-treated rats (control group). 3. We observed a longer latency for the first period of immobility in proestrus-estrus from the control and washout-saline groups. The 21-day treatment with DMI (2.1 mg/kg i.p., once a day) significantly (p estral cycle phase. 4. It is concluded that proestrus-estrus relates to increased struggling behavior. DMI enhances struggling behavior independently of hormonal state.

  2. Stirring by swimming bodies

    Energy Technology Data Exchange (ETDEWEB)

    Thiffeault, Jean-Luc, E-mail: jeanluc@math.wisc.ed [Department of Mathematics, University of Wisconsin - Madison, 480 Lincoln Dr., Madison, WI 53706 (United States); Institute for Mathematics and Applications, University of Minnesota - Twin Cities, 207 Church Street S.E., Minneapolis, MN 55455 (United States); Childress, Stephen [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (United States)

    2010-07-26

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  3. Mixing by Swimming Algae

    CERN Document Server

    Guasto, Jeffrey S; Gollub, J P; Pesci, Adriana I; Goldstein, Raymond E

    2009-01-01

    In this fluid dynamics video, we demonstrate the microscale mixing enhancement of passive tracer particles in suspensions of swimming microalgae, Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10 micron diameter) swim with a "breaststroke" pulling motion of their flagella at speeds of about 100 microns/s and exhibit heterogeneous trajectory shapes. Fluorescent tracer particles (2 micron diameter) allowed us to quantify the enhanced mixing caused by the swimmers, which is relevant to suspension feeding and biogenic mixing. Without swimmers present, tracer particles diffuse slowly due solely to Brownian motion. As the swimmer concentration is increased, the probability density functions (PDFs) of tracer displacements develop strong exponential tails, and the Gaussian core broadens. High-speed imaging (500 Hz) of tracer-swimmer interactions demonstrates the importance of flagellar beating in creating oscillatory flows that exceed Brownian motion out to about 5 cell radii from the swimm...

  4. Neonatal treatment with fluoxetine reduces depressive behavior induced by forced swim in adult rats Tratamento neonatal com fluoxetina reduz o comportameto depressivo induzido pelo nado forçado em ratos adultos

    Directory of Open Access Journals (Sweden)

    Cristiano Mendes-da-Silva

    2002-12-01

    Full Text Available Serotonin plays a role at the pathophysiology of depression in humans and in experimental models. The present study investigated the depressive behavior and the weigh evolution in adult rats (60 days treated from the 1st to the 21st postnatal day with fluoxetine, a selective serotonin reuptake inhibitor (10 mg/kg, sc, daily. The depressive behavior was induced by the forced swim test (FST. The animals were submitted to two sessions of FST: 1st session for 15 min and the 2nd session 24h later, for 5 min. During the 2nd session the Latency of the Attempt of Escape (LAE and Behavioral Immobility (BI were appraised. The Fluoxetine group when compared to the Control group, showed an increase in LAE and a decrease in BI. The neonatal administration of fluoxetine reduced the depressive behavior in adult rats, possibly by increase in the brain serotonergic activity. This alteration can be associated to process of neuroadaptation.Estudos em humanos e em modelos experimentais demonstram que a serotonina (5-HT participa da fisiopatologia da depressão. O presente estudo investigou o comportamento depressivo e a evolução ponderal de ratos adultos jovens (60 dias tratados do 1º ao 21º dia pós-natal com fluoxetina, um inibidor seletivo de recaptação da serotonina, (10 mg/kg, sc, diariamente. A depressão experimental foi induzida através do teste de nado forçado (NF. Os animais foram submetidos a duas sessões de NF, a primeira por 15 min e a segunda após 24 h, por 5 min. Durante os 5 min de NF a latência da tentativa de fuga (LTF e o tempo de imobilidade (TI foram avaliados. O grupo tratado com fluoxetina apresentou aumento da LTF e redução do TI comparado ao controle. A administração neonatal de fluoxetina reduziu o comportamento depressivo em ratos adultos, possivelmente em função do aumento da atividade serotoninérgica cerebral. Esta alteração poderá estar relacionada a processos neuroadaptativos.

  5. Selective estrogen receptor-beta (SERM-beta) compounds modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and cause antidepressant-like effects in the forced swim test.

    Science.gov (United States)

    Clark, J A; Alves, S; Gundlah, C; Rocha, B; Birzin, E T; Cai, S-J; Flick, R; Hayes, E; Ho, K; Warrier, S; Pai, L; Yudkovitz, J; Fleischer, R; Colwell, L; Li, S; Wilkinson, H; Schaeffer, J; Wilkening, R; Mattingly, E; Hammond, M; Rohrer, S P

    2012-11-01

    Estrogen acts through two molecularly distinct receptors termed estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) which bind estradiol with similar affinities and mediate the effects of estrogen throughout the body. ERα plays a major role in reproductive physiology and behavior, and mediates classic estrogen signaling in such tissues as the uterus, mammary gland, and skeleton. ERβ, however, modulates estrogen signaling in the ovary, the immune system, prostate, gastrointestinal tract, and hypothalamus, and there is some evidence that ERβ can regulate ERα activity. Moreover, ERβ knockout studies and receptor distribution analyses in the CNS suggest that this receptor may play a role in the modulation of mood and cognition. In recent years several ERβ-specific compounds (selective estrogen receptor beta modulators; SERM-beta) have become available, and research suggests potential utility of these compounds in menopausal symptom relief, breast cancer prevention, diseases that have an inflammatory component, osteoporosis, cardiovascular disease, and inflammatory bowel disease, as well as modulation of mood, and anxiety. Here we demonstrate an antidepressant-like effect obtained using two SERM-beta compounds, SERM-beta1 and SERM-beta2. These compounds exhibit full agonist activity at ERβ in a cell based estrogen response element (ERE) transactivation assay. SERM-beta1 and 2 are non-proliferative with respect to breast as determined using the MCF-7 breast cancer cell-based assay and non-proliferative in the uterus as determined by assessing the effects of SERM-beta compounds on immature rat uterine weight and murine uterine weight. In vivo SERM-beta1 and 2 are brain penetrant and display dose dependent efficacy in the murine dorsal raphe assays for induction of tryptophan hydroxylase mRNA and progesterone receptor protein. These compounds show activity in the murine forced swim test and promote hippocampal neurogenesis acutely in rats. Taken

  6. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role.

    Science.gov (United States)

    Chen, Kuang-Ti; Tsai, Mang-Hung; Wu, Ching-Hsiang; Jou, Ming-Jia; Wei, I-Hua; Huang, Chih-Chia

    2015-01-01

    Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-d-aspartate receptor (NMDAR) coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR) signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST) and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons). A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR-mTOR signaling pathway activity and facilitating AMPAR membrane insertion. Highlights-A single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the mammalian

  7. Woman Swims Atlantic

    Institute of Scientific and Technical Information of China (English)

    贾庆文

    2009-01-01

    Jennifer Figge pressed her toes into the Caribbean sand, excited and exhausted as she touched land this week for the first time in almost a month. Reaching a beach in Trinidad, she became the first woman on record to s,Mm across the Atlantic Ocean-a dream she'd had since the early 1960s, when a stormy trans-Atlantic flight got her thinking she could wear a life vest and swim the rest of the way if needed.

  8. Going for a Swim

    Science.gov (United States)

    Covington, Savannah

    2016-01-01

    Is anything more refreshing than going for a nice, long swim? The math scenarios presented in this article will take the reader back to hot summer days and remind the reader what a cool dip in the water feels like. Solving these problems is enjoyable and encourages the solver to think of the many ways that math is all around--even in the middle of…

  9. Swimming dynamics of the Lyme disease spirochete

    Science.gov (United States)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2013-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat-wave, a process driven by rotating internal flagella. We study B. burgdorferi ’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat-waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology. PMID:23215618

  10. Swimming Dynamics of the Lyme Disease Spirochete

    Science.gov (United States)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  11. Vortices revealed: Swimming faster

    Science.gov (United States)

    van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman

    2016-11-01

    Understanding and optimizing the propulsion in human swimming requires insight into the hydrodynamics of the flow around the swimmer. Experiments and simulations addressing the hydrodynamics of swimming have been conducted in studies before, including the visualization of the flow using particle image velocimetry (PIV). The main objective in this study is to develop a system to visualize the flow around a swimmer in practice inspired by this technique. The setup is placed in a regular swimming pool. The use of tracer particles and lasers to illuminate the particles is not allowed. Therefore, we choose to work with air bubbles with a diameter of 4 mm, illuminated by ambient light. Homogeneous bubble curtains are produced by tubes implemented in the bottom of the pool. The bubble motion is captured by six cameras placed in underwater casings. A first test with the setup has been conducted by pulling a cylinder through the bubbles and performing a PIV analysis. The vorticity plots of the resulting data show the expected vortex street behind the cylinder. The shedding frequency of the vortices resembles the expected frequency. Thus, it is possible to identify and follow the coherent structures. We will discuss these results and the first flow measurements around swimmers.

  12. 东莨菪碱对强迫游泳大鼠雷帕霉素靶蛋白及脑源性神经营养因子表达的影响%Effects of scopolamine on the expression of hippocampal mammalian target of rapamycin and brain -derived neurotrophic factor of rats in the forced swimming test

    Institute of Scientific and Technical Information of China (English)

    朱滨; 杨春

    2014-01-01

    Objective To investigate the effects of scopolamine on the expression of hippocampal mammalian target of rapamycin and brain -derived neurotrophic factor of rats in the forced swimming test . Methods Twenty male Wistar rats were randomly divided intocontrol group ( C group,n=10) and scopolamine group (Sgroup,n=10).Rats were forced to swimming for 15 min to construct depression animal model .On the second day, rats in group C and S were intraperitoneal injected with the same volume of saline and 0.04 mg/kg scopolamine .Sixty minutes later , rats were forced to swim again for 5 min, record the immobility time .Detect the expression of mTOR and BDNF in hippocampus after behavioral test .Results Compared with C group ,immobility time of rats in S group decreased significantly during forced swimming test , and the expression of mTOR and BNDF in hippocampusincreased significantly .Conclusions The antidepressant effect of scopolamine might related to the up-regulation of mTOR and BDNF in hippocampus .%目的:探讨东莨菪碱对强迫游泳大鼠海马雷帕霉素靶蛋白( mammalian target of rapamycin , mTOR)及脑源性神经营养因子( brain-derived neurotrophic factor ,BDNF)表达的影响。方法雄性Wistar大鼠20只,随机均分为两组( n=10):对照组( C组)和东莨菪碱组( S组),行强迫游泳15 min建立大鼠抑郁模型。次日,分别腹腔注射等容积生理盐水和东莨菪碱0.04 mg/kg。给药后60 min再次行强迫游泳实验5 min,观察并记录不动时间。行为学测试后,取海马组织测定mTOR和BDNF的含量。结果与C组相比,S组大鼠强迫游泳不动时间显著减少,海马组织中mTOR及BDNF的表达显著增高。结论东莨菪碱的抗抑郁作用可能与海马组织中mTOR及BDNF的上调有关。

  13. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime

    NARCIS (Netherlands)

    Müller, U.K.; Boogaart, van den J.G.M.; Leeuwen, van J.L.

    2008-01-01

    Fish larvae, like many adult fish, swim by undulating their body. However, their body size and swimming speeds put them in the intermediate flow regime, where viscous and inertial forces both play an important role in the interaction between fish and water. To study the influence of the relatively

  14. The effects of swimming pattern on the energy use of gilthead seabream (Sparus aurata L.)

    DEFF Research Database (Denmark)

    Steinhausen, Maria Faldborg; Steffensen, John Fleng; Andersen, Niels Gerner

    2010-01-01

    Oxygen consumption ( ) was measured for gilthead seabream (Sparus aurata) during spontaneous and forced activities. During spontaneous activity, the swimming pattern was analysed for the effect on   on the average speed (U), turning rate (¿) and change in speed (¿U). All swimming characteristics...

  15. Mechanics of undulatory swimming in a frictional fluid.

    Directory of Open Access Journals (Sweden)

    Yang Ding

    Full Text Available The sandfish lizard (Scincus scincus swims within granular media (sand using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  16. Mechanics of undulatory swimming in a frictional fluid.

    Science.gov (United States)

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  17. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings

    Directory of Open Access Journals (Sweden)

    David T. Booth

    2014-09-01

    Full Text Available Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1 increased swimming speed is achieved through an increased stroke rate; (2 force produced per stroke is proportional to stroke amplitude, (3 that forward thrust is produced during both the down and up phases of stroking; and (4 that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of

  18. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings.

    Science.gov (United States)

    Booth, David T

    2014-09-04

    Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1) increased swimming speed is achieved through an increased stroke rate; (2) force produced per stroke is proportional to stroke amplitude, (3) that forward thrust is produced during both the down and up phases of stroking; and (4) that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of swimming. The

  19. A new system for analyzing swim fin propulsion based on human kinematic data.

    Science.gov (United States)

    Nicolas, Guillaume; Bideau, Benoit; Bideau, Nicolas; Colobert, Briac; Le Guerroue, Gaël; Delamarche, Paul

    2010-07-20

    The use of swim fins has become popular in various water sport activities. While numerous models of swim fin with various innovative shapes have been subjectively designed, the exact influence of the fin characteristics on swimming performance is still much debated, and remains difficult to quantify. To date, the most common approach for evaluating swim fin propulsion is based on the study of "swimmer-fins" as a global system, where physiological and/or biomechanical responses are considered. However, reproducible swimming technique is difficult (or even impossible) to obtain on human body and may lead to discrepancies in data acquired between trials. In this study, we present and validate a new automat called HERMES which enables an evaluation of various swim fins during an adjustable, standardized and reproducible motion. This test bench reliably and accurately reproduces human fin-swimming motions, and gives resulting dynamic measurements at the ankle joint. Seven fins with various geometrical and mechanical characteristics were tested. For each swim fin, ankle force and hydromechanical efficiency (useful mechanical power output divided by mechanical power input delivered by the motors) were calculated. Efficiencies reported in our study were high (close to 70% for some swim fins) over a narrow range of Strouhal number (St) and peaks within the interval 0.2swimming animals. Therefore, an interesting prospect in this work would be to accurately study the impact of adjustable fin kinematics and material (design and mechanical properties) on the wake structure and on efficiency.

  20. Swimming behavior and prey retention of the polychaete larvae Polydora ciliata (Johnston)

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Jacobsen, Hans Henrik; Andersen, Anders

    2010-01-01

    The behavior of the ubiquitous estuarine planktotrophic spionid polychaete larvae Polydora ciliata was studied. We describe ontogenetic changes in morphology, swimming speed and feeding rates and have developed a simple swimming model using low Reynolds number hydrodynamics. In the model we assumed...... that the ciliary swimming apparatus is primarily composed of the prototroch and secondarily by the telotroch. The model predicted swimming speeds and feeding rates that corresponded well with the measured speeds and rates. Applying empirical data to the model, we were able to explain the profound decrease...... in specific feeding rates and the observed increase in the difference between upward and downward swimming speeds with larval size. We estimated a critical larval length above which the buoyancy-corrected weight of the larva exceeds the propulsion force generated by the ciliary swimming apparatus and thus...

  1. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard.

    Science.gov (United States)

    Maladen, Ryan D; Ding, Yang; Li, Chen; Goldman, Daniel I

    2009-07-17

    The desert-dwelling sandfish (Scincus scincus) moves within dry sand, a material that displays solid and fluidlike behavior. High-speed x-ray imaging shows that below the surface, the lizard no longer uses limbs for propulsion but generates thrust to overcome drag by propagating an undulatory traveling wave down the body. Although viscous hydrodynamics can predict swimming speed in fluids such as water, an equivalent theory for granular drag is not available. To predict sandfish swimming speed, we developed an empirical model by measuring granular drag force on a small cylinder oriented at different angles relative to the displacement direction and summing these forces over the animal movement profile. The agreement between model and experiment implies that the noninertial swimming occurs in a frictional fluid.

  2. Swimming speeds of filaments in viscous fluids with resistance

    Science.gov (United States)

    Ho, Nguyenho; Olson, Sarah D.; Leiderman, Karin

    2016-04-01

    Many microorganisms swim in a highly heterogeneous environment with obstacles such as fibers or polymers. To better understand how this environment affects microorganism swimming, we study propulsion of a cylinder or filament in a fluid with a sparse, stationary network of obstructions modeled by the Brinkman equation. The mathematical analysis of swimming speeds is investigated by studying an infinite-length cylinder propagating lateral or spiral displacement waves. For fixed bending kinematics, we find that swimming speeds are enhanced due to the added resistance from the fibers. In addition, we examine the work and the torque exerted on the cylinder in relation to the resistance. The solutions for the torque, swimming speed, and work of an infinite-length cylinder in a Stokesian fluid are recovered as the resistance is reduced to zero. Finally, we compare the asymptotic solutions with numerical results for the Brinkman flow with regularized forces. The swimming speed of a finite-length filament decreases as its length decreases and planar bending induces an angular velocity that increases linearly with added resistance. The comparisons between the asymptotic analysis and computation give insight on the effect of the length of the filament, the permeability, and the thickness of the cylinder in terms of the overall performance of planar and helical swimmers.

  3. The Impact of Immediate Verbal Feedback on the Improvement of Swimming Technique

    Directory of Open Access Journals (Sweden)

    Zatoń Krystyna

    2014-07-01

    Full Text Available The present research attempts to ascertain the impact of immediate verbal feedback (IVF on modifications of stroke length (SL. In all swimming styles, stroke length is considered an essential kinematic parameter of the swimming cycle. It is important for swimming mechanics and energetics. If SL shortens while the stroke rate (SR remains unchanged or decreases, the temporal-spatial structure of swimming is considered erroneous. It results in a lower swimming velocity. Our research included 64 subjects, who were divided into two groups: the experimental - E (n=32 and the control - C (n=32 groups. A pretest and a post-test were conducted. The subjects swam the front crawl over the test distance of 25m at Vmax. Only the E group subjects were provided with IVF aiming to increase their SL. All tests were filmed by two cameras (50 samples•s-1. The kinematic parameters of the swimming cycle were analyzed using the SIMI Reality Motion Systems 2D software (SIMI Reality Motion Systems 2D GmbH, Germany. The movement analysis allowed to determine the average horizontal swimming velocity over 15 meters. The repeated measures analysis of variance ANOVA with a post-hoc Tukey range test demonstrated statistically significant (p<0.05 differences between the two groups in terms of SL and swimming velocity. IVF brought about a 6.93% (Simi method and a 5.09% (Hay method increase in SL, as well as a 2.92% increase in swimming velocity.

  4. Swimming Microrobot Optical Nanoscopy.

    Science.gov (United States)

    Li, Jinxing; Liu, Wenjuan; Li, Tianlong; Rozen, Isaac; Zhao, Jason; Bahari, Babak; Kante, Boubacar; Wang, Joseph

    2016-10-12

    Optical imaging plays a fundamental role in science and technology but is limited by the ability of lenses to resolve small features below the fundamental diffraction limit. A variety of nanophotonic devices, such as metamaterial superlenses and hyperlenses, as well as microsphere lenses, have been proposed recently for subdiffraction imaging. The implementation of these micro/nanostructured lenses as practical and efficient imaging approaches requires locomotive capabilities to probe specific sites and scan large areas. However, directed motion of nanoscale objects in liquids must overcome low Reynolds number viscous flow and Brownian fluctuations, which impede stable and controllable scanning. Here we introduce a new imaging method, named swimming microrobot optical nanoscopy, based on untethered chemically powered microrobots as autonomous probes for subdiffraction optical scanning and imaging. The microrobots are made of high-refractive-index microsphere lenses and powered by local catalytic reactions to swim and scan over the sample surface. Autonomous motion and magnetic guidance of microrobots enable large-area, parallel and nondestructive scanning with subdiffraction resolution, as illustrated using soft biological samples such as neuron axons, protein microtubulin, and DNA nanotubes. Incorporating such imaging capacities in emerging nanorobotics technology represents a major step toward ubiquitous nanoscopy and smart nanorobots for spectroscopy and imaging.

  5. Effects of different experimental conditions on Kunming and BALB/C mice in forced swimming test%不同实验条件对昆明和BALB/C小鼠强迫游泳实验的影响

    Institute of Scientific and Technical Information of China (English)

    张辉; 王军锋; 邢博; 赵妍; 刘飞; 师建国; 党永辉

    2011-01-01

    目的 研究不同实验条件对小鼠强迫游泳实验的影响,为研究小鼠抑郁模型的敏感性、有效性、可靠性提供可行的实验参考标准.方法 将不同性别,体质量相近的昆明小鼠和BALB/C小鼠,放置在相同的饲养、实验环境下,观察在不同水温、昼夜节律改变的环境下,不同品系间、同品系雌雄间小鼠强迫游泳行为的变化.结果 ①不同品系的小鼠在昼夜节律变化的强迫游泳试验中,白天不动时间有统计学差异,昆明小鼠的不动时间[(91.95±40.32)s]明显少于BALB/C小鼠的不动时间[(142.42±33.58)s];BALB/C小鼠白天的不动时间[(142.42±33.58)s]明显长于夜间的不动时间[(104.89±34.33)s].②BALB/C小鼠的阳性结果数明显多于昆明小鼠;同品系雌雄小鼠间的不动时间相差不大,但是雄性小鼠的阳性结果数明显多于雌性小鼠.③BALB/C小鼠在22C水温的不动时间[(92.24±25.81)s]明显长于其在32℃水温的不动时间[(60.72±11.11)s].结论 为增加强迫游泳实验的敏感性、可靠性应选择雄性小鼠宜在白天进行实验;BALB/C小鼠相对于昆明小鼠及其在22℃水温中更容易产生抑郁样行为.%Objective To investigate the sensitivity and variability factors that were assessed on the forced swimming test (FST) using BALB/C and Kunming mice. Methods The immobility time of FST was compared using Kunming and BALB/C mice in different experimental conditions including circadian rhythm ( day and night) ,gender and water temperature ( 12,22 and 32℃ ) . Results (①) The immobility time of BALB/C during the daytime( ( 142.42 ± 33.58) s) was significantly increased than that at night ( ( 104.89 ± 34.33 ) s). (② The immobility time of Kunming mice( (91.95 ± 40.32) s) was significantly decreased than that of BALB/C mice ( ( 142.42 ± 33.58 ) s). (③)The immobility time under the water temperature of 22 C ( ( 92.24 ± 25.81 ) s) was significant longer than that under the water

  6. Exercise-training intervention studies in competitive swimming.

    Science.gov (United States)

    Aspenes, Stian Thoresen; Karlsen, Trine

    2012-06-01

    Competitive swimming has a long history and is currently one of the largest Olympic sports, with 16 pool events. Several aspects separate swimming from most other sports such as (i) the prone position; (ii) simultaneous use of arms and legs for propulsion; (iii) water immersion (i.e. hydrostatic pressure on thorax and controlled respiration); (iv) propulsive forces that are applied against a fluctuant element; and (v) minimal influence of equipment on performance. Competitive swimmers are suggested to have specific anthropometrical features compared with other athletes, but are nevertheless dependent on physiological adaptations to enhance their performance. Swimmers thus engage in large volumes of training in the pool and on dry land. Strength training of various forms is widely used, and the energetic systems are addressed by aerobic and anaerobic swimming training. The aim of the current review was to report results from controlled exercise training trials within competitive swimming. From a structured literature search we found 17 controlled intervention studies that covered strength or resistance training, assisted sprint swimming, arms-only training, leg-kick training, respiratory muscle training, training the energy delivery systems and combined interventions across the aforementioned categories. Nine of the included studies were randomized controlled trials. Among the included studies we found indications that heavy strength training on dry land (one to five repetitions maximum with pull-downs for three sets with maximal effort in the concentric phase) or sprint swimming with resistance towards propulsion (maximal pushing with the arms against fixed points or pulling a perforated bowl) may be efficient for enhanced performance, and may also possibly have positive effects on stroke mechanics. The largest effect size (ES) on swimming performance was found in 50 m freestyle after a dry-land strength training regimen of maximum six repetitions across three

  7. The effect of acute exhaustive swimming exercise and high altitude ...

    African Journals Online (AJOL)

    Windows 7

    2012-06-05

    Jun 5, 2012 ... LA, forced swimming exercise resulted in a significant increase in serum total cholesterol (TChol), triacylglycerides ... effect of different types of stress on lipid metabolism has .... samples were immediately taken from the heart and placed in plain ... 50% inhibition of the rate reduction of 2-(4-iodophenyl)-3-(4-.

  8. The Impact of Baby Swimming on Introductory and Elementary Swimming Training

    OpenAIRE

    Břízová, Gabriela

    2007-01-01

    THESIS ANNOTATION Title: The Impact of Baby Swimming on Introductory and Elementary Swimming Training Aim: To assess the impact of 'baby swimming' on the successfulness in introductory and partly in elementary swimming training, and to find out whether also other circumstances (for example the length of attendance at 'baby swimming') have some influence on introductory swimming training. Methods: We used a questionnaire method for the parents of children who had attended 'baby swimming' and f...

  9. Swimming level of pupils from elementary schools with own swimming pool

    OpenAIRE

    Zálupská, Klára

    2012-01-01

    Title: Swimming level of pupils from primary school with private swimming pool. Work objectives: The aim is to identify assess level of swimming of pupils from first to ninth grade of primary school with a private pool in Chomutov district using continuous swimming test with regular swimming lessons, which is started in the first grade and persists until the ninth grade. The condition was organizing a school swimming lessons once a week for 45 minutes in all grades. Methodology: Swimming leve...

  10. The effect of creatine supplementation on muscle fatigue and physiological indices following intermittent swimming bouts.

    Science.gov (United States)

    Dabidi Roshan, V; Babaei, H; Hosseinzadeh, M; Arendt-Nielsen, L

    2013-06-01

    We evaluated the effect of Creatine (Cr) supplementation on muscle fatigue and physiological indices after intermittent swimming bouts in trained swimmers. Sixteen healthy non-elite swimmers (19±4 years, 75±12 kg) were randomly assigned into two groups of either Cr supplementation or placebo and performed six repeated sprints swimming bouts of 50-m departing every 120 seconds. The Cr group was supplemented 4 times a day for 6 days. Blood lactate, Creatine Kinase (CK), creatinine, heart rate, best repeated sprint (RSb) and mean repeated sprint (RSm) times, and percentage of speed decrement (%Dec) were measured at the various phases of swimming bouts. Repeated measure ANOVA and independent t-student tests showed CK and blood lactate concentration increased gradually after the third and sixth swimming bouts. % Dec in Cr group was significantly lower after 3rd swimming bout, also heart rate in Cr group was associated with lower increase in HR mean (Pswimmers may improve anaerobic performance and heart rate variations independent of the effect of intensive sprint swimming bouts.

  11. The Effects of Swimming Goggles on Swimming Performances

    OpenAIRE

    "荒井, 康夫; "アライ, ヤスオ"; YASUO", "ARAI

    1982-01-01

    "Children in swimming tend to have some fear on water due to the factors such as obstruction of breathing, blocking of vision, and changes in body equilibrium affected by buoyance. It is said that about a 5-month period is needed in order to overcome the fear in kindergarten kids during swimming instruction. The purpose of the present study was to investigate the effect of swimming goggles as a teaching aid in order to avoid the fear due to blocking vision. Ten children, 4 boys and 6 girls, i...

  12. Optimization of flagellar swimming by a model sperm

    CERN Document Server

    Felderhof, B U

    2014-01-01

    The swimming of a bead-spring chain in a viscous incompressible fluid as a model of a sperm is studied in the framework of low Reynolds number hydrodynamics. The optimal mode in the class of planar flagellar strokes of small amplitude is determined on the basis of a generalized eigenvalue problem involving two matrices which can be evaluated from the mobility matrix of the set of spheres constituting the chain. For an elastic chain with a cargo constraint for its spherical head, the actuating forces yielding a nearly optimal stroke can be determined. These can be used in a Stokesian dynamics simulation of large amplitude swimming.

  13. Stirring by swimming bodies

    CERN Document Server

    Thiffeault, Jean-Luc

    2009-01-01

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. Using the distribution of finite-time Lyapunov exponents induced by the swimmers, we derive a form for the moments of the concentration of a passive scalar, which exhibits spatial intermittency.

  14. Swimming Performance and Metabolism of Golden Shiners

    Science.gov (United States)

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  15. 21 CFR 1250.89 - Swimming pools.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall be...

  16. Simulations of dolphin kick swimming using smoothed particle hydrodynamics.

    Science.gov (United States)

    Cohen, Raymond C Z; Cleary, Paul W; Mason, Bruce R

    2012-06-01

    In competitive human swimming the submerged dolphin kick stroke (underwater undulatory swimming) is utilized after dives and turns. The optimal dolphin kick has a balance between minimizing drag and maximizing thrust while also minimizing the physical exertion required of the swimmer. In this study laser scans of athletes are used to provide realistic swimmer geometries in a single anatomical pose. These are rigged and animated to closely match side-on video footage. Smoothed Particle Hydrodynamics (SPH) fluid simulations are performed to evaluate variants of this swimming stroke technique. This computational approach provides full temporal and spatial information about the flow moving around the deforming swimmer model. The effects of changes in ankle flexibility and stroke frequency are investigated through a parametric study. The results suggest that the net streamwise force on the swimmer is relatively insensitive to ankle flexibility but is strongly dependent on kick frequency.

  17. The Impact of Immediate Verbal Feedback on the Improvement of Swimming Technique

    Science.gov (United States)

    Zatoń, Krystyna; Szczepan, Stefan

    2014-01-01

    The present research attempts to ascertain the impact of immediate verbal feedback (IVF) on modifications of stroke length (SL). In all swimming styles, stroke length is considered an essential kinematic parameter of the swimming cycle. It is important for swimming mechanics and energetics. If SL shortens while the stroke rate (SR) remains unchanged or decreases, the temporal-spatial structure of swimming is considered erroneous. It results in a lower swimming velocity. Our research included 64 subjects, who were divided into two groups: the experimental – E (n=32) and the control – C (n=32) groups. A pretest and a post-test were conducted. The subjects swam the front crawl over the test distance of 25m at Vmax. Only the E group subjects were provided with IVF aiming to increase their SL. All tests were filmed by two cameras (50 samples•s-1). The kinematic parameters of the swimming cycle were analyzed using the SIMI Reality Motion Systems 2D software (SIMI Reality Motion Systems 2D GmbH, Germany). The movement analysis allowed to determine the average horizontal swimming velocity over 15 meters. The repeated measures analysis of variance ANOVA with a post-hoc Tukey range test demonstrated statistically significant (pswimming velocity. IVF brought about a 6.93% (Simi method) and a 5.09% (Hay method) increase in SL, as well as a 2.92% increase in swimming velocity. PMID:25114741

  18. Creatine Supplementation and Swim Performance: A Brief Review

    OpenAIRE

    Hopwood, Melissa J.; Kenneth Graham; Kieron B Rooney

    2006-01-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Researc...

  19. System Wide Information Management (SWIM)

    Science.gov (United States)

    Hritz, Mike; McGowan, Shirley; Ramos, Cal

    2004-01-01

    This viewgraph presentation lists questions regarding the implementation of System Wide Information Management (SWIM). Some of the questions concern policy issues and strategies, technology issues and strategies, or transition issues and strategies.

  20. Fluid dynamics: Swimming across scales

    Science.gov (United States)

    Baumgart, Johannes; Friedrich, Benjamin M.

    2014-10-01

    The myriad creatures that inhabit the waters of our planet all swim using different mechanisms. Now, a simple relation links key physical observables of underwater locomotion, on scales ranging from millimetres to tens of metres.

  1. Swim pressure of active matter

    Science.gov (United States)

    Takatori, Sho; Yan, Wen; Brady, John; Caltech Team

    2014-11-01

    Through their self-motion, all active matter systems generate a unique ``swim pressure'' that is entirely athermal in origin. This new source for the active stress exists at all scales in both living and nonliving active systems, and also applies to larger organisms where inertia is important (i.e., the Stokes number is not small). Here we explain the origin of the swim stress and develop a simple thermodynamic model to study the self-assembly and phase separation in active soft matter. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria and catalytic nanobots, schools of fish and birds, and molecular motors that activate the cellular cytoskeleton.

  2. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  3. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  4. Influence of pre-school swimming on level of swimming abilities of early schol age children

    OpenAIRE

    Velová, Lenka

    2011-01-01

    My thesis paper is focused on children swimming from their birth to early school age. The pivotal part of the paper is the comparison of swimming abilities between primary school children who have passed pre-school swimming training and those who have had no training at all. Theoretical framework of the paper is then focused on general swimming theory, characteristics of children's evolutionary stages within the context of swimming and definition of basic swimming skills.

  5. Efficient swimming of an assembly of rigid spheres at low Reynolds number

    CERN Document Server

    Felderhof, B U

    2015-01-01

    The swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent is studied in low Reynolds number hydrodynamics. The instantaneous swimming velocity and rate of dissipation are expressed in terms of the time-dependent displacements of sphere centers about their collective motion. For small amplitude swimming with periodically oscillating displacements, optimization of the mean swimming speed at given mean power leads to an eigenvalue problem involving a velocity matrix and a power matrix. The corresponding optimal stroke permits generalization to large amplitude motion in a model of spheres with harmonic interactions and corresponding actuating forces. The method allows straightforward calculation of the swimming performance of structures modeled as assemblies of interacting rigid spheres. A model of three collinear spheres with motion along the common axis is studied as an example.

  6. Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake.

    Science.gov (United States)

    Dabiri, John O; Colin, Sean P; Costello, John H

    2006-06-01

    Fast-swimming hydromedusan jellyfish possess a characteristic funnel-shaped velum at the exit of their oral cavity that interacts with the pulsed jets of water ejected during swimming motions. It has been previously assumed that the velum primarily serves to augment swimming thrust by constricting the ejected flow in order to produce higher jet velocities. This paper presents high-speed video and dye-flow visualizations of free-swimming Nemopsis bachei hydromedusae, which instead indicate that the time-dependent velar kinematics observed during the swimming cycle primarily serve to optimize vortices formed by the ejected water rather than to affect the speed of the ejected flow. Optimal vortex formation is favorable in fast-swimming jellyfish because, unlike the jet funnelling mechanism, it allows for the minimization of energy costs while maximizing thrust forces. However, the vortex ;formation number' corresponding to optimality in N. bachei is substantially greater than the value of 4 found in previous engineering studies of pulsed jets from rigid tubes. The increased optimal vortex formation number is attributable to the transient velar kinematics exhibited by the animals. A recently developed model for instantaneous forces generated during swimming motions is implemented to demonstrate that transient velar kinematics are required in order to achieve the measured swimming trajectories. The presence of velar structures in fast-swimming jellyfish and the occurrence of similar jet-regulating mechanisms in other jet-propelled swimmers (e.g. the funnel of squid) appear to be a primary factor contributing to success of fast-swimming jetters, despite their primitive body plans.

  7. Effect of inulin-type hexasaccharide on forced swimming tests in mice and rats and DRL 72 s in rats%菊淀粉型六聚糖对鼠强迫性游泳和低速率差式强化程序的影响

    Institute of Scientific and Technical Information of China (English)

    张中启; 袁莉; 赵楠; 徐玉坤; 杨明; 罗质璞

    2001-01-01

    AIM To determine whether O-β -D-fructofuranosyl-〔(2→1 )-O-β-D-fructofuransyl〕4α-D-glucopyranoside (inulin-type hexasaccharide, IHS), a monomer extracted from the roots of Morinda of ficinalis How, has antidepressant action. METHODS Fo rced swimming tests in mice and rats and differential-reinforcement-of-low-r ate 72 second schedule (DRL 72 s) in rats were used. RESULTS In the forced swimming test in mice, IHS (80 mg*kg-1, po), like the effe ct of clinically effective antidepressant desipramine (10 mg*kg-1, ip), produced significant decrease in immobility time. IHS (20 mg*kg-1,po ) also elicited significant decrease in immobility time in forced swimming test in rats, which was comparable to the effect of desipramine (40 mg*kg-1, po). Moreover, in the DRL 72 s in rats, IHS (5~10 mg*kg-1, ip), s imilar to desipramine (5 mg*kg-1, ip), elicited significant increase in reinforcers. CONCLUSION These findings demonstrate that IHS has antidepressant action and is an effective component extracted from the root s of Morinda officinalis How.%目的确定巴戟天中菊淀粉型六聚糖单体(IHS)的抗抑郁作用。方法采用经典大小鼠强迫性游泳和程序化大鼠低速率差式强化(DRL 72s)法。结果在小鼠强迫性游泳模型上,po IHS 80 mg*kg-1与ip 地昔帕明1 0 mg *kg-1的作用类似,能明显缩短小鼠的不动时间;同样,po IHS 20 mg*kg -1 也缩短大鼠强迫性游泳的不动时间,其效果与po地昔帕明40 mg*kg-1相当。另外,在大鼠DRL 72s模型上,ip IHS 5~10 mg*kg-1和地昔帕明5 mg*kg-1 ,均增加大鼠DRL 72s 的强化数。结论 IHS具有抗抑郁作用,是巴戟天中抗抑郁有效成分。

  8. Vaginal birth after cesarean section (VBAC versus emergency repeat cesarean section at teaching hospitals in India: an ICMR task force study

    Directory of Open Access Journals (Sweden)

    B. S. Dhillon

    2014-06-01

    Results: A total of 155863 deliveries occurred during the study duration, there were 28.1% (n=43824 cesarean section and (10.1% (n=15664 were the number of previous cesarean section. In 84% (n=13151 had repeat cesarean delivery and 2513 (16% delivered vaginally. A trial of labor was planned in 4035 (25.8% women. The success rate of VBAC was 62.3% with 2513 women had successful vaginal delivery and 1522 (37.7% delivered by emergency repeat cesarean section. Major indication of emergency cesarean section was CPD (52.9%, foetal distress (25.8%, severe PIH/eclampsia (5.0%, previous 2 CS (0.7%, APH (1.4% and others (2.7%. In majority, surgical technique was conventional and in 3.7% the Misgav-Ladach technique was used. Scar dehiscence and surgical complications were observed in 5.4% and 4.0% of cases respectively. Blood transfusion was given in 7.0% and post-operative complications were seen in 6.8%. Perinatal and maternal mortality was 18.0/1000 and 257/100000 deliveries respectively. Conclusions: Safety in childbirth for women with prior cesarean is a major public health concern. Repeat caesarean section and planned vaginal birth after cesarean section are both associated with benefits and harms and correct management represents one of the most significant and challenging issues in obstetric practice. [Int J Reprod Contracept Obstet Gynecol 2014; 3(3.000: 592-597

  9. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    Science.gov (United States)

    Li, Ningyu; Liu, Huanxing; Su, Yumin

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self

  10. Nutrition for swimming.

    Science.gov (United States)

    Shaw, Gregory; Boyd, Kevin T; Burke, Louise M; Koivisto, Anu

    2014-08-01

    Swimming is a sport that requires considerable training commitment to reach individual performance goals. Nutrition requirements are specific to the macrocycle, microcycle, and individual session. Swimmers should ensure suitable energy availability to support training while maintaining long term health. Carbohydrate intake, both over the day and in relation to a workout, should be manipulated (3-10 g/kg of body mass/day) according to the fuel demands of training and the varying importance of undertaking these sessions with high carbohydrate availability. Swimmers should aim to consume 0.3 g of high-biological-value protein per kilogram of body mass immediately after key sessions and at regular intervals throughout the day to promote tissue adaptation. A mixed diet consisting of a variety of nutrient-dense food choices should be sufficient to meet the micronutrient requirements of most swimmers. Specific dietary supplements may prove beneficial to swimmers in unique situations, but should be tried only with the support of trained professionals. All swimmers, particularly adolescent and youth swimmers, are encouraged to focus on a well-planned diet to maximize training performance, which ensures sufficient energy availability especially during periods of growth and development. Swimmers are encouraged to avoid rapid weight fluctuations; rather, optimal body composition should be achieved over longer periods by modest dietary modifications that improve their food choices. During periods of reduced energy expenditure (taper, injury, off season) swimmers are encouraged to match energy intake to requirement. Swimmers undertaking demanding competition programs should ensure suitable recovery practices are used to maintain adequate glycogen stores over the entirety of the competition period.

  11. Dynamics of the vortex wakes of flying and swimming vertebrates.

    Science.gov (United States)

    Rayner, J M

    1995-01-01

    The vortex wakes of flying and swimming animals provide evidence of the history of aero- and hydrodynamic force generation during the locomotor cycle. Vortex-induced momentum flux in the wake is the reaction of forces the animal imposes on its environment, which must be in equilibrium with inertial and external forces. In flying birds and bats, the flapping wings generate lift both to provide thrust and to support the weight. Distinct wingbeat and wake movement patterns can be identified as gaits. In flow visualization experiments, only two wake patterns have been identified: a vortex ring gait with inactive upstroke, and a continuous vortex gait with active upstroke. These gaits may be modelled theoretically by free vortex and lifting line theory to predict mechanical energy consumption, aerodynamic forces and muscle activity. Longer-winged birds undergo a distinct gait change with speed, but shorter-winged species use the vortex ring gait at all speeds. In swimming fish, the situation is more complex: the wake vortices form a reversed von Kármán vortex street, but little is known about the mechanism of generation of the wake, or about how it varies with speed and acceleration or with body form and swimming mode. An unresolved complicating factor is the interaction between the drag wake of the flapping fish body and the thrusting wake from the tail.

  12. Response of Swimming Paramecia to in situ changes in their apparent weight

    Science.gov (United States)

    Jung, Ilyong; Mickalide, Harry; Valles, James M., Jr.

    2012-02-01

    There is a class of marine micro-organisms that are small enough that low Reynold's number hydrodynamics dictates their swimming mechanics and large enough that the force of gravity exerts a noticeable influence on their motion. Experiments on populations of paramecia suggest that they exert a greater propulsion when swimming against gravity. This negative gravi-kinesis is surprising because it suggests that they sense their tiny apparent weight of about 80 pN. To understand this response in more detail, we are investigating how individual paramecia caudatum change their swimming speed and helical trajectories in response to changes in their apparent weight. We vary the apparent weight with the technique of Magnetic Force Buoyancy Variation employing a high field resistive magnet at the National High Magnetic Field Laboratory. We will present analysis of the swimming for apparent weight changes as large as a factor of 8.

  13. Synchronised Swimming of Two Fish

    CERN Document Server

    Novati, Guido; Alexeev, Dmitry; Rossinelli, Diego; van Rees, Wim M; Koumoutsakos, Petros

    2016-01-01

    We study the fluid dynamics of two fish-like bodies with synchronised swimming patterns. Our studies are based on two-dimensional simulations of viscous incompressible flows. We distinguish between motion patterns that are externally imposed on the swimmers and self-propelled swimmers that learn manoeuvres to achieve certain goals. Simulations of two rigid bodies executing pre-specified motion indicate that flow-mediated interactions can lead to substantial drag reduction and may even generate thrust intermittently. In turn we examine two self-propelled swimmers arranged in a leader-follower configuration, with a-priori specified body-deformations. We find that the swimming of the leader remains largely unaffected, while the follower experiences either an increase or decrease in swimming speed, depending on the initial conditions. Finally, we consider a follower that synchronises its motion so as to minimise its lateral deviations from the leader's path. The leader employs a steady gait while the follower use...

  14. Optimal swimming of a sheet.

    Science.gov (United States)

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  15. Communication: Green-Kubo approach to the average swim speed in active Brownian systems

    Science.gov (United States)

    Sharma, A.; Brader, J. M.

    2016-10-01

    We develop an exact Green-Kubo formula relating nonequilibrium averages in systems of interacting active Brownian particles to equilibrium time-correlation functions. The method is applied to calculate the density-dependent average swim speed, which is a key quantity entering coarse grained theories of active matter. The average swim speed is determined by integrating the equilibrium autocorrelation function of the interaction force acting on a tagged particle. Analytical results are validated using Brownian dynamics simulations.

  16. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  17. Repeated oral administration of capsaicin increases anxiety-like behaviours with prolonged stress-response in rats

    Indian Academy of Sciences (India)

    Y-J Choi; J Y Kim; S B Yoo; J-H Lee; J W Jahng

    2013-09-01

    This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of capsaicin. Stereotypy counts and rostral grooming were significantly increased, and caudal grooming decreased, in capsaicin-treated rats during the ambulatory activity test. In elevated plus maze test, not only the time spent in open arms but also the percent arm entry into open arms was reduced in capsaicin-treated rats compared with control rats. In forced swim test, although swimming duration was decreased, struggling increased in the capsaicin group, immobility duration did not differ between the groups. Repeated oral capsaicin did not affect the basal levels of plasma corticosterone; however, the stress-induced elevation of plasma corticosterone was prolonged in capsaicin treated rats. Oral capsaicin exposure significantly increased c-Fos expression not only in the nucleus tractus of solitarius but also in the paraventricular nucleus. Results suggest that repeated oral exposure to capsaicin increases anxiety-like behaviours in rats, and dysfunction of the hypothalamic-pituitary-adrenal axis may play a role in its pathophysiology.

  18. Effects of estradiol on behavior and expression of serotonin transporter in hippocampus and amygdala of rats in forced swimming test%雌二醇对强迫游泳实验中大鼠行为及海马和杏仁核5-羟色胺转运体表达的影响

    Institute of Scientific and Technical Information of China (English)

    杨福中; 吴彦; 单红英; 仇剑崟

    2011-01-01

    Objective To investigate the effects of estradiol on behavior and expression of serotonin transporter (SERT) protein in hippocampus and amygdala in bilaterally ovariectomized rats in forced swimming test. Methods Twenty-eight adult female SD rats were randomly divided into control group, stress group, estradiol group and fluoxetine group (n =7). Three weeks after bilateral ovariectomy, drugs were administered to rats for 14 d. On the fourteenth day of administration, rats in stress group, estradiol group and fluoxetine group were subjected to 15 min forced swimming test, and the behavior of rats was evaluated. The expression of SERT in hippocampus and amygdala of rats in each group was determined by immunofluorescence histochemical method. Results In forced swimming test, the counts of swimming behavior in estradiol group and fluoxetine group were significantly more than that in stress group, while the counts of immobility behavior in estradiol group and fluoxeitne group were significantly less than that in stress group ( P < 0. 001 for all). Immunofluorescence histochemistry indicated that the integral absorbance of SERT in hippocampus and amygdala in stress group was significantly higher than that in control group ( P < 0. 001), while the integral absorbance of SERT in hippocampus and amygdala in estradiol group and fluoxeitne group was significantly lower than that in stress group (P < 0.05, P< 0.001). Conclusion Estradiol may increase the counts of swimming behavior and decrease the counts of immobility behavior of bilaterally ovariectomized rats in forced swimming test. Pretreatment with estradiol may inhibit stress-induced content increase of SERT protein in hippocampus and amygdala, which resembles the effects of antidepressant fluoxetine.%目的 观察雌二醇对强迫游泳实验中双侧卵巢切除大鼠行为及海马和杏仁核中5 -羟色胺转运体(SERT)蛋白表达的影响.方法 将28只成年雌性SD大鼠随机分为对照组、应激组、

  19. How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel (Anguilla anguilla).

    Science.gov (United States)

    Müller, U K; Smit, J; Stamhuis, E J; Videler, J J

    2001-08-01

    Undulatory swimmers generate thrust by passing a transverse wave down their body. Thrust is generated not just at the tail, but also to a varying degree by the body, depending on the fish's morphology and swimming movements. To examine the mechanisms by which the body in particular contributes to thrust production, we chose eels, which have no pronounced tail fin and hence are thought to generate all their thrust with their body. We investigated the interaction between body movements and the flow around swimming eels using two-dimensional particle image velocimetry. Maximum flow velocities adjacent to the eel's body increase almost linearly from head to tail, suggesting that eels generate thrust continuously along their body. The wake behind eels swimming at 1.5 Ls(-1), where L is body length, consisted of a double row of double vortices with little backward momentum. The eel sheds two vortices per half tail-beat, which can be identified by their shedding dynamics as a start-stop vortex of the tail and a vortex shed when the body-generated flows reach the 'trailing edge' and cause separation. Two consecutively shed ipsilateral body and tail vortices combine to form a vortex pair that moves away from the mean path of motion. This wake shape resembles flow patterns described previously for a propulsive mode in which neither swimming efficiency nor thrust is maximised but sideways forces are high. This swimming mode is suited to high manoeuvrability. Earlier recordings show that eels also generate a wake reflective of maximum swimming efficiency. The combined findings suggest that eels can modify their body wave to generate wakes that reflect their propulsive mode.

  20. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...

  1. Modeling and simulation of fish swimming with active muscles.

    Science.gov (United States)

    Curatolo, Michele; Teresi, Luciano

    2016-11-21

    Our goal is to reproduce the key features of carangiform swimming by modeling muscle functioning using the notion of active distortions, thus emphasizing the kinematical role of muscle, the generation of movement, rather than the dynamical one, the production of force. This approach, already proposed to model the action of muscles in different contexts, is here tested again for the problem of developing an effective and reliable framework to model and simulate swimming. A proper undulatory movement of a fish-like body is reproduced by defining a pattern of distortions, tuned in both space and time, meant to model the muscles activation which produce the flexural motion of body fish; eventually, interactions with the surrounding water yields the desired thrust. Carangiform swimmers have a relatively inflexible anterior body section and a generally flat, flexible posterior section. Because of this configuration, undulations sent rearward along the body attain a significant amplitude only in the posterior section. We compare the performances of different swimming gaits, and we are able to find some important relations between key parameters such as frequencies, wavelength, tail amplitude, and the achieved swim velocity, or the generated thrust, which summarize the swimming performance. In particular, an interesting relation is found between the Strouhal number and the wavelength of muscles activation. We highlight the muscle function during fish locomotion describing the activation of muscles and the relation between the force production and the shortening-lengthening cycle of muscle. We found a great accordance between results and empirical relations, giving an implicit validation of our models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Targeted delivery of colloids by swimming bacteria

    Science.gov (United States)

    Koumakis, N.; Lepore, A.; Maggi, C.; Di Leonardo, R.

    2013-01-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems. PMID:24100868

  3. Undulatory fish swimming : from muscles to flow

    NARCIS (Netherlands)

    Müller, U.K.; Leeuwen, van J.L.

    2006-01-01

    Undulatory swimming is employed by many fish for routine swimming and extended sprints. In this biomechanical review, we address two questions: (i) how the fish's axial muscles power swimming; and (ii) how the fish's body and fins generate thrust. Fish have adapted the morphology of their axial musc

  4. 36 CFR 327.5 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 327.5 Section 327.5 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY RULES AND REGULATIONS... Swimming. (a) Swimming, wading, snorkeling or scuba diving at one's own risk is permitted, except...

  5. 36 CFR 331.10 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 331.10 Section 331.10 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY REGULATIONS..., KENTUCKY AND INDIANA § 331.10 Swimming. Swimming is prohibited unless authorized in writing by the...

  6. 43 CFR 423.36 - Swimming.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Swimming. 423.36 Section 423.36 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR... Swimming. (a) You may swim, wade, snorkel, scuba dive, raft, or tube at your own risk in Reclamation...

  7. Undulatory fish swimming : from muscles to flow

    NARCIS (Netherlands)

    Müller, U.K.; Leeuwen, van J.L.

    2006-01-01

    Undulatory swimming is employed by many fish for routine swimming and extended sprints. In this biomechanical review, we address two questions: (i) how the fish's axial muscles power swimming; and (ii) how the fish's body and fins generate thrust. Fish have adapted the morphology of their axial

  8. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  9. Deployment Repeatability

    Science.gov (United States)

    2016-04-01

    controlled to great precision, but in a Cubesat , there may be no attitude determination at all. Such a Cubesat might treat sun angle and tumbling rates as...could be sensitive to small differences in motor controller timing. In these cases, the analyst might choose to model the entire deployment path, with...knowledge of the material damage model or motor controller timing precision. On the other hand, if many repeated and environmentally representative

  10. The influence of elements of synchronized swimming on technique of the selected swimming strokes

    OpenAIRE

    Široký, Michal

    2015-01-01

    Title: The influence of elements of synchronized swimming on technique of the selected swimming strokes Objectives: The objective of the thesis is to assess the effect of the elements of synchronized swimming at improving the techniques of swimming. Methods: The results were detected by overt observation with active participation and subsequent scaling on the ordinal scale 1 to 5. Results: The results show that the influence of the elements of synchronized swimming on improving the technique ...

  11. Relative Contribution of Arms and Legs in 30 s Fully Tethered Front Crawl Swimming

    Directory of Open Access Journals (Sweden)

    Pedro G. Morouço

    2015-01-01

    Full Text Available The relative contribution of arm stroke and leg kicking to maximal fully tethered front crawl swimming performance remains to be solved. Twenty-three national level young swimmers (12 male and 11 female randomly performed 3 bouts of 30 s fully tethered swimming (using the whole body, only the arm stroke, and only the leg kicking. A load-cell system permitted the continuous measurement of the exerted forces, and swimming velocity was calculated from the time taken to complete a 50 m front crawl swim. As expected, with no restrictions swimmers were able to exert higher forces than that using only their arm stroke or leg kicking. Estimated relative contributions of arm stroke and leg kicking were 70.3% versus 29.7% for males and 66.6% versus 33.4% for females, with 15.6% and 13.1% force deficits, respectively. To obtain higher velocities, male swimmers are highly dependent on the maximum forces they can exert with the arm stroke (r=0.77, P<0.01, whereas female swimmers swimming velocity is more related to whole-body mean forces (r=0.81, P<0.01. The obtained results point that leg kicking plays an important role over short duration high intensity bouts and that the used methodology may be useful to identify strength and/or coordination flaws.

  12. Confined swimming of bio-inspired microrobots in rectangular channels.

    Science.gov (United States)

    Temel, Fatma Zeynep; Yesilyurt, Serhat

    2015-02-02

    Controlled swimming of bio-inspired microrobots in confined spaces needs to be understood well for potential use in medical applications in conduits and vessels inside the body. In this study, experimental and computational studies are performed for analysis of swimming modes of a bio-inspired microrobot in rectangular channels at low Reynolds number. Experiments are performed on smooth and rough surfaces using a magnetic helical swimmer (MHS), having 0.5 mm diameter and 2 mm length, with left-handed helical tail and radially polarized magnetic head within rotating magnetic field obtained by two electromagnetic coil pairs. Experiments indicate three motion modes of the MHS with respect to the rotation frequency: (i) lateral motion under the effect of a perpendicular force such as gravity and the surface traction at low frequencies, (ii) lateral motion under the effect of fluid forces and gravity at transition frequencies, and (iii) circular motion under the effect of fluid forces at high frequencies. Observed modes of motion for the MHS are investigated with computational fluid dynamics simulations by calculating translational and angular velocities and studying the induced flow fields for different radial positions inside the channel. Results indicate the importance of rotation frequency, surface roughness and flow field on the swimming modes and behaviour of the MHS inside the rectangular channel.

  13. Swimming and Persons with Mild Persistant Asthma

    Directory of Open Access Journals (Sweden)

    Mirjana Arandelovic

    2007-01-01

    Full Text Available The aim of our study was to analyze the effect of recreational swimming on lung function and bronchial hyperresponsiveness (BHR in patients with mild persistent asthma. This study included 65 patients with mild persistent asthma, who were divided into two groups: experimental group A (n = 45 and control group B (n = 20. Patients from both groups were treated with low doses of inhaled corticosteroids (ICS and short-acting β2 agonists salbutamol as needed. Our program for patients in group A was combined asthma education with swimming (twice a week on a 1-h basis for the following 6 months. At the end of the study, in Group A, we found a statistically significant increase of lung function parameters FEV1 (forced expiratory volume in 1 sec (3.55 vs. 3.65 (p < 0.01, FVC (forced vital capacity (4.27 vs. 4.37 (p < 0.05, PEF (peak expiratory flow (7.08 vs. 7.46 (p < 0.01, and statistically significant decrease of BHR (PD20 0.58 vs. 2.01 (p < 0.001. In Group B, there was a statistically significant improvement of FEV1 3.29 vs. 3.33 (p < 0.05 and although FVC, FEV1/FVC, and PEF were improved, it was not significant. When Groups A and B were compared at the end of the study, there was a statistically significant difference of FVC (4.01 vs. 4.37, FEV1 (3.33 vs. 3.55, PEF (6.79 vs.7.46, and variability (p <0.001, and statistically significantly decreased BHR in Group A (2.01 vs. 1.75 (p < 0.001. Engagement of patients with mild persistent asthma in recreational swimming in nonchlorinated pools, combined with regular medical treatment and education, leads to better improvement of their parameters of lung function and also to more significant decrease of their airway hyperresponsiveness compared to patients treated with traditional medicine

  14. Effect of Poly Phenols on Swimming Performance in Rats

    Directory of Open Access Journals (Sweden)

    Anand Tamatam

    2011-11-01

    Full Text Available Background:Increased physical activities elevate reactive oxygen species (ROS leading to dysfunction and integrity of cells thus inducing oxidative stress which intern may affect overall physical performance. Polyphenols are well known for their excellent antioxidant potency. In this study, the effect of selected polyphenols with established health benefits viz., catachin, chlorogenic acid, ellagic acid and quercetin was investigated with respect to swimming performance in rats. Methods: The animals were force fed with aqueous mixture of polyphenols at 25 mg/rat/day and subjected to swimming exercise until exhaustion. Results: Rats fed with poly phenols showed a significant increase in swimming time, and the activities of Lactic dehydrogenase (LDH and creatine pyruvic kinase (CPK were lowered. Polyphenols increased the concentration of Adenosine triphosphate (ATP, glycogen in muscle lowered the activities of and. Polyphenols increased the concentration of Adenosine triphosphate (ATP and glycogen in muscle and reduced MDA levels in the liver, muscle and blood but increased DNA and RNA concentration in muscle. Conclusion: The results clearly demonstrated combination of polyphenols used enhanced the swimming performance of the rats.

  15. Swimming bacteria in liquid crystal

    Science.gov (United States)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  16. Shape Optimization of Swimming Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  17. Swimming pool-induced asthma.

    Science.gov (United States)

    Beretta, S; Vivaldo, T; Morelli, M; Carlucci, P; Zuccotti, G V

    2011-01-01

    A 13-year-old elite swimmer presented with wheezing after indoor swimming training. On the basis of her clinical history and the tests performed, exercise-induced asthma and mold-induced asthma were ruled out and a diagnosis of chlorine-induced asthma was made.

  18. Sports Medicine Meets Synchronized Swimming.

    Science.gov (United States)

    Wenz, Betty J.; And Others

    This collection of articles contains information about synchronized swimming. Topics covered include general physiology and cardiovascular conditioning, flexibility exercises, body composition, strength training, nutrition, coach-athlete relationships, coping with competition stress and performance anxiety, and eye care. Chapters are included on…

  19. Adiabatic swimming in an ideal quantum gas.

    Science.gov (United States)

    Avron, J E; Gutkin, B; Oaknin, D H

    2006-04-07

    Interference effects are important for swimming of mesoscopic systems that are small relative to the coherence length of the surrounding quantum medium. Swimming is geometric for slow swimmers and the distance covered in each stroke is determined, explicitly, in terms of the on-shell scattering matrix. Remarkably, for a one-dimensional Fermi gas at zero temperature we find that slow swimming is topological: the swimming distance covered in one stroke is quantized in half integer multiples of the Fermi wavelength. In addition, a careful choice of the swimming stroke can eliminate dissipation.

  20. Micro- and nanorobots swimming in heterogeneous liquids.

    Science.gov (United States)

    Nelson, Bradley J; Peyer, Kathrin E

    2014-09-23

    Essentially all experimental investigations of swimming micro- and nanorobots have focused on swimming in homogeneous Newtonian liquids. In this issue of ACS Nano, Schamel et al. investigate the actuation of "nanopropellers" in a viscoelastic biological gel that illustrates the importance of the size of the nanostructure relative to the gel mesh size. In this Perspective, we shed further light on the swimming performance of larger microrobots swimming in heterogeneous liquids. One of the interesting results of our work is that earlier findings on the swimming performance of motile bacteria in heterogeneous liquids agree, in principle, with our results. We also discuss future research directions that should be pursued in this fascinating interdisciplinary field.

  1. Greater neurobehavioral deficits occur in adult mice after repeated, as compared to single, mild traumatic brain injury (mTBI).

    Science.gov (United States)

    Nichols, Jessica N; Deshane, Alok S; Niedzielko, Tracy L; Smith, Cory D; Floyd, Candace L

    2016-02-01

    Mild traumatic brain injury (mTBI) accounts for the majority of all brain injuries and affected individuals typically experience some extent of cognitive and/or neuropsychiatric deficits. Given that repeated mTBIs often result in worsened prognosis, the cumulative effect of repeated mTBIs is an area of clinical concern and on-going pre-clinical research. Animal models are critical in elucidating the underlying mechanisms of single and repeated mTBI-associated deficits, but the neurobehavioral sequelae produced by these models have not been well characterized. Thus, we sought to evaluate the behavioral changes incurred after single and repeated mTBIs in mice utilizing a modified impact-acceleration model. Mice in the mTBI group received 1 impact while the repeated mTBI group received 3 impacts with an inter-injury interval of 24h. Classic behavior evaluations included the Morris water maze (MWM) to assess learning and memory, elevated plus maze (EPM) for anxiety, and forced swim test (FST) for depression/helplessness. Additionally, species-typical behaviors were evaluated with the marble-burying and nestlet shredding tests to determine motivation and apathy. Non-invasive vibration platforms were used to examine sleep patterns post-mTBI. We found that the repeated mTBI mice demonstrated deficits in MWM testing and poorer performance on species-typical behaviors. While neither single nor repeated mTBI affected behavior in the EPM or FST, sleep disturbances were observed after both single and repeated mTBI. Here, we conclude that behavioral alterations shown after repeated mTBI resemble several of the deficits or disturbances reported by patients, thus demonstrating the relevance of this murine model to study repeated mTBIs.

  2. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    Science.gov (United States)

    Lee, Pilhwa; Wolgemuth, Charles W.

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material param