WorldWideScience

Sample records for repeated dna family

  1. A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons

    DEFF Research Database (Denmark)

    Nielsen, M.L.; Hermansen, T.D.; Aleksenko, Alexei Y.

    2001-01-01

    In the course of a chromosomal walk towards the centromere of chromosome IV of Aspergillus nidulans, several cross- hybridizing genomic cosmid clones were isolated. Restriction mapping of two such clones revealed that their restriction patterns were similar in a region of at least 15 kb, indicati......) phenomenon, first described in Neurospora crassa, may have operated in A. nidulans. The data indicate that this family of repeats has assimilated mobile elements that subsequently degenerated but then underwent further duplications as a part of the host repeats....... the presence of a large repeat. The nature of the repeat was further investigated by sequencing and Southern analysis. The study revealed a family of long dispersed repeats with a high degree of sequence similarity. The number and location of the repeats vary between wild isolates. Two copies of the repeat...

  2. Characterization of a highly repeated DNA sequence family in five species of the genus Eulemur.

    Science.gov (United States)

    Ventura, M; Boniotto, M; Cardone, M F; Fulizio, L; Archidiacono, N; Rocchi, M; Crovella, S

    2001-09-19

    The karyotypes of Eulemur species exhibit a high degree of variation, as a consequence of the Robertsonian fusion and/or centromere fission. Centromeric and pericentromeric heterochromatin of eulemurs is constituted by highly repeated DNA sequences (including some telomeric TTAGGG repeats) which have so far been investigated and used for the study of the systematic relationships of the different species of the genus Eulemur. In our study, we have cloned a set of repetitive pericentromeric sequences of five Eulemur species: E. fulvus fulvus (EFU), E. mongoz (EMO), E. macaco (EMA), E. rubriventer (ERU), and E. coronatus (ECO). We have characterized these clones by sequence comparison and by comparative fluorescence in situ hybridization analysis in EMA and EFU. Our results showed a high degree of sequence similarity among Eulemur species, indicating a strong conservation, within the five species, of these pericentromeric highly repeated DNA sequences.

  3. Genome-wide analysis of tandem repeats in Tribolium castaneum genome reveals abundant and highly dynamic tandem repeat families with satellite DNA features in euchromatic chromosomal arms.

    Science.gov (United States)

    Pavlek, Martina; Gelfand, Yevgeniy; Plohl, Miroslav; Meštrović, Nevenka

    2015-12-01

    Although satellite DNAs are well-explored components of heterochromatin and centromeres, little is known about emergence, dispersal and possible impact of comparably structured tandem repeats (TRs) on the genome-wide scale. Our bioinformatics analysis of assembled Tribolium castaneum genome disclosed significant contribution of TRs in euchromatic chromosomal arms and clear predominance of satellite DNA-typical 170 bp monomers in arrays of ≥5 repeats. By applying different experimental approaches, we revealed that the nine most prominent TR families Cast1-Cast9 extracted from the assembly comprise ∼4.3% of the entire genome and reside almost exclusively in euchromatic regions. Among them, seven families that build ∼3.9% of the genome are based on ∼170 and ∼340 bp long monomers. Results of phylogenetic analyses of 2500 monomers originating from these families show high-sequence dynamics, evident by extensive exchanges between arrays on non-homologous chromosomes. In addition, our analysis shows that concerted evolution acts more efficiently on longer than on shorter arrays. Efficient genome-wide distribution of nine TR families implies the role of transposition only in expansion of the most dispersed family, and involvement of other mechanisms is anticipated. Despite similarities in sequence features, FISH experiments indicate high-level compartmentalization of centromeric and euchromatic tandem repeats.

  4. Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae).

    Science.gov (United States)

    Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas

    2013-07-01

    The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100-500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S-5·8S-25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.

  5. Short Tandem Repeat DNA Internet Database

    Science.gov (United States)

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  6. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes.

    Science.gov (United States)

    Richard, Guy-Franck; Kerrest, Alix; Dujon, Bernard

    2008-12-01

    Repeated elements can be widely abundant in eukaryotic genomes, composing more than 50% of the human genome, for example. It is possible to classify repeated sequences into two large families, "tandem repeats" and "dispersed repeats." Each of these two families can be itself divided into subfamilies. Dispersed repeats contain transposons, tRNA genes, and gene paralogues, whereas tandem repeats contain gene tandems, ribosomal DNA repeat arrays, and satellite DNA, itself subdivided into satellites, minisatellites, and microsatellites. Remarkably, the molecular mechanisms that create and propagate dispersed and tandem repeats are specific to each class and usually do not overlap. In the present review, we have chosen in the first section to describe the nature and distribution of dispersed and tandem repeats in eukaryotic genomes in the light of complete (or nearly complete) available genome sequences. In the second part, we focus on the molecular mechanisms responsible for the fast evolution of two specific classes of tandem repeats: minisatellites and microsatellites. Given that a growing number of human neurological disorders involve the expansion of a particular class of microsatellites, called trinucleotide repeats, a large part of the recent experimental work on microsatellites has focused on these particular repeats, and thus we also review the current knowledge in this area. Finally, we propose a unified definition for mini- and microsatellites that takes into account their biological properties and try to point out new directions that should be explored in a near future on our road to understanding the genetics of repeated sequences.

  7. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible...... to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range....

  8. Repeated extraction of DNA from FTA cards

    OpenAIRE

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus; Frank-Hansen, Rune; Hansen, Anders Johannes; Morling, Niels

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range.

  9. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible...... to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range....

  10. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    Science.gov (United States)

    2010-01-01

    Background In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units

  11. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA in the Asteraceae family

    Directory of Open Access Journals (Sweden)

    Garcia Sònia

    2010-08-01

    Full Text Available Abstract Background In flowering plants and animals the most common ribosomal RNA genes (rDNA organisation is that in which 35S (encoding 18S-5.8S-26S rRNA and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae, a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing, gene copy number (quantitative PCR and chromosomal position (FISH of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases, tribe Gnaphalieae (100% and in the "Heliantheae alliance" (23%. The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic

  12. DNA profiling of extended tracts of primitive DNA repeats: Direct identification of unstable simple repeat loci in complex genome

    Energy Technology Data Exchange (ETDEWEB)

    Rogaeva, E.A.; Korovaitseva, G.; St. George-Hyslop, P. [Univ. of Toronto (Canada)] [and others

    1994-09-01

    The most simple DNA repetitive elements, with repetitive monomer units of only 1-10 bp in tandem tracts, are an abundant component of the human genome. The expansion of at least one type of these repeats ((CCG)n and (CTG)n) have been detected for a several neurological diseases with anticipation in successive generations. We propose here a simple method for the identification of particularly expanded repeats and for the recovery of flanking sequences. We generated DNA probes using PCR to create long concatamers (n>100) by amplification of the di-, tri-, tetra-, penta- and hexa-nucleotide repeat oligonucleotide primer pairs. To reduce the complexity of the background band pattern, the genomic DNA was restricted with a mixture of at least five different endonucleases, thereby reducing the size of restriction fragments containing short simple repeat arrays while leaving intact the large fragments containing the longer simple repeats arrays. Direct blot hybridization has shown different {open_quotes}DNA fingerprint{close_quotes} patterns with all arbitrary selected di-hexa nucleotide repeat probes. Direct hybridization of the (CTG)n and (CCG)n probes revealed simple or multiple band patterns depending upon stringency conditions. We were able to detect the presence of expanded unstable tri-nucleotide alleles by (CCG)n probe for some FRAXA subjects and by (CTG)n probe for some myotonic dystrophy subjects which were not present in the parental DNA patterns. The cloning of the unstable alleles for simple repeats can be performed by direct recover from agarose gels of the aberrant unstable bands detected above. The recovered flanking regions can be cloned, sequenced and used for PCR detection of expanded alleles or can be used to screen cDNA. This method may be used for testing of small families with diseases thought to display clinical evidence of anticipation.

  13. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  14. Tandem repeat DNA localizing on the proximal DAPI bands of chromosomes in Larix, Pinaceae.

    Science.gov (United States)

    Hizume, Masahiro; Shibata, Fukashi; Matsumoto, Ayako; Maruyama, Yukie; Hayashi, Eiji; Kondo, Teiji; Kondo, Katsuhiko; Zhang, Shozo; Hong, Deyuan

    2002-08-01

    Repetitive DNA was cloned from HindIII-digested genomic DNA of Larix leptolepis. The repetitive DNA was about 170 bp long, had an AT content of 67%, and was organized tandemly in the genome. Using fluorescence in situ hybridization and subsequent DAPI banding, the repetitive DNA was localized in DAPI bands at the proximal region of one arm of chromosomes in L. leptolepis and Larix chinensis. Southern blot hybridization to genomic DNA of seven species and five varieties probed with cloned repetitive DNA showed that the repetitive DNA family was present in a tandem organization in genomes of all Larix taxa examined. In addition to the 170-bp sequence, a 220-bp sequence belonging to the same DNA family was also present in 10 taxa. The 220-bp repeat unit was a partial duplication of the 170-bp repeat unit. The 220-bp repeat unit was more abundant in L. chinensis and Larix potaninii var. macrocarpa than in other taxa. The repetitive DNA composed 2.0-3.4% of the genome in most taxa and 0.3 and 0.5% of the genome in L. chinensis and L. potaninii var. macrocarpa, respectively. The unique distribution of the 220-bp repeat unit in Larix indicates the close relationship of these two species. In the family Pinaceae, the LPD (Larix proximal DAPI band specific repeat sequence family) family sequence is widely distributed, but their amount is very small except in the genus Larix. The abundant LPD family in Larix will occur after its speciation.

  15. Role of DNA Polymerases in Repeat-Mediated Genome Instability

    Directory of Open Access Journals (Sweden)

    Kartik A. Shah

    2012-11-01

    Full Text Available Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich’s ataxia (GAAn repeats in a yeast experimental system. The elementary step of expansion corresponded to ∼160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM. Notably, defects in the replicative DNA polymerases δ and ∊ strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.

  16. Alu repeats as markers for forensic DNA analyses

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Kass, D.H. [Louisiana State Univ., New Orleans, LA (United States)] [and others

    1994-01-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 98.9% nucleotide identity with the HS subfamily consensus sequence, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 inch and 3 inch unique flanking DNA sequences from each HS Alu that allow the locus to be assayed for the presence or absence of the Alu repeat. The dimorphic HS Alu sequences probably inserted in the human genome after the radiation of modem humans (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project. HS Alu family member insertions differ from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) in that polymorphisms due to Alu insertions arise as a result of a unique event which has occurred only one time in the human population and spread through the population from that point. Therefore, individuals that share HS Alu repeats inherited these elements from a common ancestor. Most VNTR and RFLP polymorphisms may arise multiple times in parallel within a population.

  17. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus;

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible ...

  18. Significance of satellite DNA revealed by conservation of a widespread repeat DNA sequence among angiosperms.

    Science.gov (United States)

    Mehrotra, Shweta; Goel, Shailendra; Raina, Soom Nath; Rajpal, Vijay Rani

    2014-08-01

    The analysis of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of plant nuclear DNA. In the present study, we analyzed the nature of pCtKpnI-I and pCtKpnI-II tandem repeated sequences, reported earlier in Carthamus tinctorius. Interestingly, homolog of pCtKpnI-I repeat sequence was also found to be present in widely divergent families of angiosperms. pCtKpnI-I showed high sequence similarity but low copy number among various taxa of different families of angiosperms analyzed. In comparison, pCtKpnI-II was specific to the genus Carthamus and was not present in any other taxa analyzed. The molecular structure of pCtKpnI-I was analyzed in various unrelated taxa of angiosperms to decipher the evolutionary conserved nature of the sequence and its possible functional role.

  19. Copy number of tandem direct repeats within the inverted repeats of Marek's disease virus DNA.

    Science.gov (United States)

    Kanamori, A; Nakajima, K; Ikuta, K; Ueda, S; Kato, S; Hirai, K

    1986-12-01

    We previously reported that DNA of the oncogenic strain BC-1 of Marek's disease virus serotype 1 (MDV1) contains three units of tandem direct repeats with 132 base pair (bp) repeats within the inverted repeats of the long regions of the MDV1 genome, whereas the attenuated, nononcogenic viral DNA contains multiple units of tandem direct repeats (Maotani et al., 1986). In the present study, the difference in the copy numbers of 132 bp repeats of oncogenic and nononcogenic MDV1 DNAs in other strains of MDV1 was investigated by Southern blot hybridization. The main copy numbers in different oncogenic MDV1 strains differed: those of BC-1, JM and highly oncogenic Md5 were 3, 5 to 12 and 2, respectively. The viral DNA population with two units of repeats was small, but detectable, in cells infected with either the oncogenic BC-1 or JM strain. The MDV1 DNA in various MD cell lines contained either two units or both two and three units of repeats. The significance of the copy number of repeats in oncogenicity of MDV1 is discussed.

  20. EVOLUTION AND RECOMBINATION OF BOVINE DNA REPEATS

    NARCIS (Netherlands)

    JOBSE, C; BUNTJER, JB; HAAGSMA, N; BREUKELMAN, HJ; BEINTEMA, JJ; LENSTRA, JA

    The history of the abundant repeat elements in the bovine genome has been studied by comparative hybridization and PCR. The Bov-A and Bov-B SINE elements both emerged just after the divergence of the Camelidae and the true ruminants. A 31-bp subrepeat motif in satellites of the Bovidae species

  1. EVOLUTION AND RECOMBINATION OF BOVINE DNA REPEATS

    NARCIS (Netherlands)

    JOBSE, C; BUNTJER, JB; HAAGSMA, N; BREUKELMAN, HJ; BEINTEMA, JJ; LENSTRA, JA

    1995-01-01

    The history of the abundant repeat elements in the bovine genome has been studied by comparative hybridization and PCR. The Bov-A and Bov-B SINE elements both emerged just after the divergence of the Camelidae and the true ruminants. A 31-bp subrepeat motif in satellites of the Bovidae species cattl

  2. Molecular cytogenetic analysis and genomic organization of major DNA repeats in castor bean (Ricinus communis L.).

    Science.gov (United States)

    Alexandrov, O S; Karlov, G I

    2016-04-01

    This article addresses the bioinformatic, molecular genetic, and cytogenetic study of castor bean (Ricinus communis, 2n = 20), which belongs to the monotypic Ricinus genus within the Euphorbiaceae family. Because castor bean chromosomes are small, karyotypic studies are difficult. However, the use of DNA repeats has yielded new prospects for karyotypic research and genome characterization. In the present study, major DNA repeat sequences were identified, characterized and localized on mitotic metaphase and meiotic pachytene chromosomes. Analyses of the nucleotide composition, curvature models, and FISH localization of the rcsat39 repeat suggest that this repeat plays a key role in building heterochromatic arrays in castor bean. Additionally, the rcsat390 sequences were determined to be chromosome-specific repeats located in the pericentromeric region of mitotic chromosome A (pachytene chromosome 1). The localization of rcsat39, rcsat390, 45S and 5S rDNA genes allowed for the development of cytogenetic landmarks for chromosome identification. General questions linked to heterochromatin formation, DNA repeat distribution, and the evolutionary emergence of the genome are discussed. The article may be of interest to biologists studying small genome organization and short monomer DNA repeats.

  3. DNA Replication Dynamics of the GGGGCC Repeat of the C9orf72 Gene.

    Science.gov (United States)

    Thys, Ryan Griffin; Wang, Yuh-Hwa

    2015-11-27

    DNA has the ability to form a variety of secondary structures in addition to the normal B-form DNA, including hairpins and quadruplexes. These structures are implicated in a number of neurological diseases and cancer. Expansion of a GGGGCC repeat located at C9orf72 is associated with familial amyotrophic lateral sclerosis and frontotemporal dementia. This repeat expands from two to 24 copies in normal individuals to several hundreds or thousands of repeats in individuals with the disease. Biochemical studies have demonstrated that as little as four repeats have the ability to form a stable DNA secondary structure known as a G-quadruplex. Quadruplex structures have the ability to disrupt normal DNA processes such as DNA replication and transcription. Here we examine the role of GGGGCC repeat length and orientation on DNA replication using an SV40 replication system in human cells. Replication through GGGGCC repeats leads to a decrease in overall replication efficiency and an increase in instability in a length-dependent manner. Both repeat expansions and contractions are observed, and replication orientation is found to influence the propensity for expansions or contractions. The presence of replication stress, such as low-dose aphidicolin, diminishes replication efficiency but has no effect on instability. Two-dimensional gel electrophoresis analysis demonstrates a replication stall with as few as 20 GGGGCC repeats. These results suggest that replication of the GGGGCC repeat at C9orf72 is perturbed by the presence of expanded repeats, which has the potential to result in further expansion, leading to disease.

  4. [Heterogeneity and homologies of the repeating and unique DNA of dragonflies (Odonata, Insecta)].

    Science.gov (United States)

    Petrov, N B; Aleshin, V V

    1983-01-01

    A relative content of unique and reiterated nucleotide sequences in DNA of eleven dragonfly species was estimated. The degree of intra- and intergenomic divergence of these DNA sequences was determined by means of DNA-DNA hybridization. Species from different genera share 40-45% of the repetitive sequences and those from different families--from 11 to 20% only. Data on the thermostability of homo- and heteroduplexes suggest that new families of the repetitive sequences have arisen repeatedly during dragonflies evolution. The quality of homologous unique sequences in the DNA compared (20-97%) correlates with the taxonomic relationships of species. Phylogenesis of some dragonfly families is discussed in view of the results obtained.

  5. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans.

    Science.gov (United States)

    Ribeiro, Tiago; Dos Santos, Karla G B; Richard, Manon M S; Sévignac, Mireille; Thareau, Vincent; Geffroy, Valérie; Pedrosa-Harand, Andrea

    2017-03-01

    Common bean (Phaseolus vulgaris) subtelomeres are highly enriched for khipu, the main satellite DNA identified so far in this genome. Here, we comparatively investigate khipu genomic organization in Phaseolus species from different clades. Additionally, we identified and characterized another satellite repeat, named jumper, associated to khipu. A mixture of P. vulgaris khipu clones hybridized in situ confirmed the presence of khipu-like sequences on subterminal chromosome regions in all Phaseolus species, with differences in the number and intensity of signals between species and when species-specific clones were used. Khipu is present as multimers of ∼500 bp and sequence analyses of cloned fragments revealed close relationship among khipu repeats. The new repeat, named jumper, is a 170-bp satellite sequence present in all Phaseolus species and inserted into the nontranscribed spacer (NTS) of the 5S rDNA in the P. vulgaris genome. Nevertheless, jumper was found as a high-copy repeat at subtelomeres and/or pericentromeres in the Phaseolus microcarpus lineage only. Our data argue for khipu as an important subtelomeric satellite DNA in the genus and for a complex satellite repeat composition of P. microcarpus subtelomeres, which also contain jumper. Furthermore, the differential amplification of these repeats in subtelomeres or pericentromeres reinforces the presence of a dynamic satellite DNA library in Phaseolus.

  6. Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase

    Directory of Open Access Journals (Sweden)

    Paric Enesa

    2003-10-01

    Full Text Available Abstract Background Bloom syndrome is one of the most cancer-predisposing disorders and is characterized by genomic instability and a high frequency of sister chromatid exchange. The disorder is caused by loss of function of a 3' to 5' RecQ DNA helicase, BLM. The exact role of BLM in maintaining genomic integrity is not known but the helicase has been found to associate with several DNA repair complexes and some DNA replication foci. Results Chromatin immunoprecipitation of BLM complexes recovered telomere and ribosomal DNA repeats. The N-terminus of BLM, required for NB localization, is the same as the telomere association domain of BLM. The C-terminus is required for ribosomal DNA localization. BLM localizes primarily to the non-transcribed spacer region of the ribosomal DNA repeat where replication forks initiate. Bloom syndrome cells expressing the deletion alleles lacking the ribosomal DNA and telomere association domains have altered cell cycle populations with increased S or G2/M cells relative to normal. Conclusion These results identify telomere and ribosomal DNA repeated sequence elements as chromosomal targets for the BLM DNA helicase during the S/G2 phase of the cell cycle. BLM is localized in nuclear bodies when it associates with telomeric repeats in both telomerase positive and negative cells. The BLM DNA helicase participates in genomic stability at ribosomal DNA repeats and telomeres.

  7. Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase.

    Science.gov (United States)

    Schawalder, James; Paric, Enesa; Neff, Norma F

    2003-10-27

    Bloom syndrome is one of the most cancer-predisposing disorders and is characterized by genomic instability and a high frequency of sister chromatid exchange. The disorder is caused by loss of function of a 3' to 5' RecQ DNA helicase, BLM. The exact role of BLM in maintaining genomic integrity is not known but the helicase has been found to associate with several DNA repair complexes and some DNA replication foci. Chromatin immunoprecipitation of BLM complexes recovered telomere and ribosomal DNA repeats. The N-terminus of BLM, required for NB localization, is the same as the telomere association domain of BLM. The C-terminus is required for ribosomal DNA localization. BLM localizes primarily to the non-transcribed spacer region of the ribosomal DNA repeat where replication forks initiate. Bloom syndrome cells expressing the deletion alleles lacking the ribosomal DNA and telomere association domains have altered cell cycle populations with increased S or G2/M cells relative to normal. These results identify telomere and ribosomal DNA repeated sequence elements as chromosomal targets for the BLM DNA helicase during the S/G2 phase of the cell cycle. BLM is localized in nuclear bodies when it associates with telomeric repeats in both telomerase positive and negative cells. The BLM DNA helicase participates in genomic stability at ribosomal DNA repeats and telomeres.

  8. Cloning, characterization, and properties of seven triplet repeat DNA sequences.

    Science.gov (United States)

    Ohshima, K; Kang, S; Larson, J E; Wells, R D

    1996-07-12

    Several neuromuscular and neurodegenerative diseases are caused by genetically unstable triplet repeat sequences (CTG.CAG, CGG.CCG, or AAG.CTT) in or near the responsible genes. We implemented novel cloning strategies with chemically synthesized oligonucleotides to clone seven of the triplet repeat sequences (GTA.TAC, GAT.ATC, GTT.AAC, CAC.GTG, AGG.CCT, TCG.CGA, and AAG.CTT), and the adjoining paper (Ohshima, K., Kang, S., Larson, J. E., and Wells, R. D.(1996) J. Biol. Chem. 271, 16784-16791) describes studies on TTA.TAA. This approach in conjunction with in vivo expansion studies in Escherichia coli enabled the preparation of at least 81 plasmids containing the repeat sequences with lengths of approximately 16 up to 158 triplets in both orientations with varying extents of polymorphisms. The inserts were characterized by DNA sequencing as well as DNA polymerase pausings, two-dimensional agarose gel electrophoresis, and chemical probe analyses to evaluate the capacity to adopt negative supercoil induced non-B DNA conformations. AAG.CTT and AGG.CCT form intramolecular triplexes, and the other five repeat sequences do not form any previously characterized non-B structures. However, long tracts of TCG.CGA showed strong inhibition of DNA synthesis at specific loci in the repeats as seen in the cases of CTG.CAG and CGG.CCG (Kang, S., Ohshima, K., Shimizu, M., Amirhaeri, S., and Wells, R. D.(1995) J. Biol. Chem. 270, 27014-27021). This work along with other studies (Wells, R. D.(1996) J. Biol. Chem. 271, 2875-2878) on CTG.CAG, CGG.CCG, and TTA.TAA makes available long inserts of all 10 triplet repeat sequences for a variety of physical, molecular biological, genetic, and medical investigations. A model to explain the reduction in mRNA abundance in Friedreich's ataxia based on intermolecular triplex formation is proposed.

  9. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA

    Indian Academy of Sciences (India)

    Richard R Sinden; Vladimir N Potaman; Elena A Oussatcheva; Christopher E Pearson; Yuri L Lyubchenko; Luda S Shlyakhtenko

    2002-02-01

    Fourteen genetic neurodegenerative diseases and three fragile sites have been associated with the expansion of (CTG)n•(CAG)n, (CGG)n•(CCG)n, or (GAA)n•(TTC)n repeat tracts. Different models have been proposed for the expansion of triplet repeats, most of which presume the formation of alternative DNA structures in repeat tracts. One of the most likely structures, slipped strand DNA, may stably and reproducibly form within triplet repeat sequences. The propensity to form slipped strand DNA is proportional to the length and homogeneity of the repeat tract. The remarkable stability of slipped strand DNA may, in part, be due to loop-loop interactions facilitated by the sequence complementarity of the loops and the dynamic structure of three-way junctions formed at the loop-outs.

  10. Evolutionary Origin of Higher-Order Repeat Structure in Alpha-Satellite DNA of Primate Centromeres

    Science.gov (United States)

    Koga, Akihiko; Hirai, Yuriko; Terada, Shoko; Jahan, Israt; Baicharoen, Sudarath; Arsaithamkul, Visit; Hirai, Hirohisa

    2014-01-01

    Alpha-satellite DNA (AS) is a main DNA component of primate centromeres, consisting of tandemly repeated units of ∼170 bp. The AS of humans contains sequences organized into higher-order repeat (HOR) structures, in which a block of multiple repeat units forms a larger repeat unit and the larger units are repeated tandemly. The presence of HOR in AS is widely thought to be unique to hominids (family Hominidae; humans and great apes). Recently, we have identified an HOR-containing AS in the siamang, which is a small ape species belonging to the genus Symphalangus in the family Hylobatidae. This result supports the view that HOR in AS is an attribute of hominoids (superfamily Hominoidea) rather than hominids. A single example is, however, not sufficient for discussion of the evolutionary origin of HOR-containing AS. In the present study, we developed an efficient method for detecting signs of large-scale HOR and demonstrated HOR of AS in all the three other genera. Thus, AS organized into HOR occurs widely in hominoids. Our results indicate that (i) HOR-containing AS was present in the last common ancestor of hominoids or (ii) HOR-containing AS emerged independently in most or all basal branches of hominoids. We have also confirmed HOR occurrence in centromeric AS in the Hylobatidae family, which remained unclear in our previous study because of the existence of AS in subtelomeric regions, in addition to centromeres, of siamang chromosomes. PMID:24585002

  11. Direct detection of expanded trinucleotide repeats using DNA hybridization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Petronis, A.; Tatuch, Y.; Kennedy, J.L. [Univ. of Toronto (Canada)] [and others

    1994-09-01

    Recently, unstable trinucleotide repeats have been shown to be the etiologic factor in several neuropsychiatric diseases, and they may play a similar role in other disorders. To our knowledge, a method that detects expanded trinucleotide sequences with the opportunity for direct localization and cloning has not been achieved. We have developed a set of hybridization-based methods for direct detection of unstable DNA expansion. Our analysis of myotonic dystrophy patients that possess different degrees of (CTG){sub n} expansion, versus unaffected controls, has demonstrated the identification of the trinucleotide instability site without any prior information regarding genetic map location. High stringency modified Southern blot hybridization with a PCR-generated trinucleotide repeat probe allowed us to detect the DNA fragment containing the expansion in myotonic dystrophy patients. The same probe was used for fluorescent in situ hybridization and several regions of (CTG){sub n}/(CAG){sub n} repeats in the human genome were detected, including the myotonic dystrophy locus on chromosome 19q. These strategies can be applied to directly clone genes involved in disorders caused by unstable DNA.

  12. CTCF regulates the local epigenetic state of ribosomal DNA repeats

    Directory of Open Access Journals (Sweden)

    van de Nobelen Suzanne

    2010-11-01

    Full Text Available Abstract Background CCCTC binding factor (CTCF is a highly conserved zinc finger protein, which is involved in chromatin organization, local histone modifications, and RNA polymerase II-mediated gene transcription. CTCF may act by binding tightly to DNA and recruiting other proteins to mediate its various functions in the nucleus. To further explore the role of this essential factor, we used a mass spectrometry-based approach to screen for novel CTCF-interacting partners. Results Using biotinylated CTCF as bait, we identified upstream binding factor (UBF and multiple other components of the RNA polymerase I complex as potential CTCF-interacting partners. Interestingly, CTCFL, the testis-specific paralog of CTCF, also binds UBF. The interaction between CTCF(L and UBF is direct, and requires the zinc finger domain of CTCF(L and the high mobility group (HMG-box 1 and dimerization domain of UBF. Because UBF is involved in RNA polymerase I-mediated ribosomal (rRNA transcription, we analyzed CTCF binding to the rDNA repeat. We found that CTCF bound to a site upstream of the rDNA spacer promoter and preferred non-methylated over methylated rDNA. DNA binding by CTCF in turn stimulated binding of UBF. Absence of CTCF in cultured cells resulted in decreased association of UBF with rDNA and in nucleolar fusion. Furthermore, lack of CTCF led to reduced binding of RNA polymerase I and variant histone H2A.Z near the rDNA spacer promoter, a loss of specific histone modifications, and diminished transcription of non-coding RNA from the spacer promoter. Conclusions UBF is the first common interaction partner of CTCF and CTCFL, suggesting a role for these proteins in chromatin organization of the rDNA repeats. We propose that CTCF affects RNA polymerase I-mediated events globally by controlling nucleolar number, and locally by regulating chromatin at the rDNA spacer promoter, similar to RNA polymerase II promoters. CTCF may load UBF onto rDNA, thereby forming

  13. Plasmid P1 replication: negative control by repeated DNA sequences.

    OpenAIRE

    Chattoraj, D; Cordes, K.; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pi...

  14. Species-genomic relationships among the tribasic diploid and polyploid Carthamus taxa based on physical mapping of active and inactive 18S-5.8S-26S and 5S ribosomal RNA gene families, and the two tandemly repeated DNA sequences.

    Science.gov (United States)

    Agrawal, Renuka; Tsujimoto, Hisashi; Tandon, Rajesh; Rao, Satyawada Rama; Raina, Soom Nath

    2013-05-25

    In the genus Carthamus (2n=20, 22, 24, 44, 64; x=10, 11, 12), most of the homologues within and between the chromosome complements are difficult to be identified. In the present work, we used fluorescent in situ hybridisation (FISH) to determine the chromosome distribution of the two rRNA gene families, and the two isolated repeated DNA sequences in the 14 Carthamus taxa. The distinctive variability in the distribution, number and signal intensity of hybridisation sites for 18S-26S and 5S rDNA loci could generally distinguish the 14 Carthamus taxa. Active 18S-26S rDNA sites were generally associated with NOR loci on the nucleolar chromosomes. The two A genome taxa, C. glaucus ssp. anatolicus and C. boissieri with 2n=20, and the two botanical varieties of B genome C. tinctorius (2n=24) had diagnostic FISH patterns. The present results support the origin of C. tinctorius from C. palaestinus. FISH patterns of C. arborescens vis-à-vis the other taxa indicate a clear division of Carthamus taxa into two distinct lineages. Comparative distribution and intensity pattern of 18S-26S rDNA sites could distinguish each of the tetraploid and hexaploid taxa. The present results indicate that C. boissieri (2n=20) is one of the genome donors for C. lanatus and C. lanatus ssp. lanatus (2n=44), and C. lanatus is one of the progenitors for the hexaploid (2n=64) taxa. The association of pCtKpnI-2 repeated sequence with rRNA gene cluster (orphon) in 2-10 nucleolar and non-nucleolar chromosomes and the consistent occurrence of pCtKpnI-1 repeated sequence at the subtelomeric region in all the taxa analysed indicate some functional role of these sequences.

  15. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes

    DEFF Research Database (Denmark)

    Peng, Xu; Brügger, Kim; Shen, Biao

    2003-01-01

    Short regularly spaced repeats (SRSRs) occur in multiple large clusters in archaeal chromosomes and as smaller clusters in some archaeal conjugative plasmids and bacterial chromosomes. The sequence, size, and spacing of the repeats are generally constant within a cluster but vary between clusters...... that are identical in sequence to one of the repeat variants in the S. solfataricus chromosome. Repeats from the pNOB8 cluster were amplified and tested for protein binding with cell extracts from S. solfataricus. A 17.5-kDa SRSR-binding protein was purified from the cell extracts and sequenced. The protein is N...... terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also...

  16. A specific family of interspersed repeats (SINEs facilitates meiotic synapsis in mammals

    Directory of Open Access Journals (Sweden)

    Johnson Matthew E

    2013-01-01

    Full Text Available Abstract Background Errors during meiosis that affect synapsis and recombination between homologous chromosomes contribute to aneuploidy and infertility in humans. Despite the clinical relevance of these defects, we know very little about the mechanisms by which homologous chromosomes interact with one another during mammalian meiotic prophase. Further, we remain ignorant of the way in which chromosomal DNA complexes with the meiosis-specific structure that tethers homologs, the synaptonemal complex (SC, and whether specific DNA elements are necessary for this interaction. Results In the present study we utilized chromatin immunoprecipitation (ChIP and DNA sequencing to demonstrate that the axial elements of the mammalian SC are markedly enriched for a specific family of interspersed repeats, short interspersed elements (SINEs. Further, we refine the role of the repeats to specific sub-families of SINEs, B1 in mouse and AluY in old world monkey (Macaca mulatta. Conclusions Because B1 and AluY elements are the most actively retrotransposing SINEs in mice and rhesus monkeys, respectively, our observations imply that they may serve a dual function in axial element binding; i.e., as the anchoring point for the SC but possibly also as a suppressor/regulator of retrotransposition.

  17. Familial Mediterranean fever variant with repeated atypical skin eruptions.

    Science.gov (United States)

    Takahashi, Tomoko; Fujisawa, Tomomi; Kimura, Masaki; Ohnishi, Hidenori; Seishima, Mariko

    2015-09-01

    Familial Mediterranean fever (FMF) is characterized by self-limited bouts of fever and polyserositis. Skin involvement is not common in FMF, and erysipelas-like erythema is found to be the most frequent skin eruption which is often accompanied by arthritis and fever, and disappears within 12-72 h. We report a 40-year-old Japanese woman who presented with a 2-year history of recurrent fever with general fatigue, polyarthralgia and transient maculopapular eruptions on her lower extremities and trunk. The histological findings of the maculopapular eruption showed lymphocyte infiltration around the capillaries in the entire dermis. Mutation analysis showed a heterozygous E148Q-P369S mutation of MEFV. These findings suggested a diagnosis of late-onset FMF variant with atypical skin eruptions. The patient was successfully treated with colchicine. Thus, we should pay attention to repeated atypical skin eruptions for the early detection of atypical FMF. © 2015 Japanese Dermatological Association.

  18. [Mutation in microsatellite repeats of DNA and embryonal death in humans].

    Science.gov (United States)

    Nikitina, T V; Nazarenko, S A

    2000-07-01

    In the analysis of tetranucleotide DNA repeats inheritance carried out in 55 families with a history of spontaneous miscarriages and normal karyotypes in respect to 21 loci located on seven autosomes, 8 embryos (14.5%) demonstrating 12 cases of the presence of alleles absent in both parents were described. The study of chromosome segregation using other DNA markers permitted highly probable exclusion of false paternity as well as uniparental disomy as the reasons for parent/child allele mismatches. The high probability of paternity together with the presence of a "new" allele at any offspring locus points to the mutation having occurred during game-togenesis in one of the parents. Examination of mutation in spontaneous abortuses revealed an increased number of tandem repeat units at microsatellite loci in three cases and an decreased number of these repeats in six cases. In two abortuses, a third allele absent in both parents, which resulted from a somatic mutation that occurred during embryonic development, was observed. The prevalence of the male germline mutations, revealed during investigation of the mutation origin, was probably associated with an increased number of DNA replication cycles in sperm compared to the oocytes. In spontaneous abortuses, the mean mutation rate of the tetranucleotide repeat complexes analyzed was 9.8 x 10(-3) per locus per gamete per generation. This was about five times higher than the spontaneous mutation rate of these STR loci. It can be suggested that genome instability detected at the level of repeated DNA sequences can involve not only genetically neutral loci but also active genomic regions crucial for embryonic viability. This results in cell death and termination of embryonic development. Our findings indicate that the death of embryos with normal karyotypes in most cases is associated with an increased frequency of germline and somatic microsatellite mutations. The data of the present study also provide a practical tool for

  19. Imperfect DNA mirror repeats in E. coli TnsA and other protein-coding DNA.

    Science.gov (United States)

    Lang, Dorothy M

    2005-09-01

    DNA imperfect mirror repeats (DNA-IMRs) are ubiquitous in protein-coding DNA. However, they overlap and often have different centers of symmetry, making it difficult to evaluate their relationship to each other and to specific DNA and protein motifs and structures. This paper describes a systematic method of determining a hierarchy for DNA-IMRs and evaluates their relationship to protein structural elements (PSEs)--helices, turns and beta-sheets. DNA-IMRs are identifed by two different methods--DNA-IMRs terminated by reverse dinucleotides (rd-IMRs) and DNA-IMRs terminated by a single (mono) matching nucleotide (m-IMRs). Both rd-IMRs and m-IMRs are evaluated in 17 proteins, and illustrated in detail for TnsA. For each of the proteins, Fisher's exact test (FET) is used to measure the coincidence between the terminal dinucleotides of rd-IMRs and the terminal amino acids of individual PSEs. A significant correlation over a span of about 3 nt was found for each protein. The correlation is robust and for most genes, all rd-IMRs16 nt contain approximately 88% of the potential functional motifs. The protein translation of the longest rd- and m-IMRs span sequences important to the protein's structure and function. In all 17 proteins studied, the population of rd-IMRs is substantially less than the expected number and the population of m-IMRs greater than the expected number, indicating strong selective pressures. The association of rd-IMRs with PSEs restricts their spatial distribution, and therefore, their number. The greater than predicted number of m-IMRs indicates that DNA symmetry exists throughout the entire protein-coding region and may stabilize the sequence.

  20. Ginger DNA transposons in eukaryotes and their evolutionary relationships with long terminal repeat retrotransposons

    Directory of Open Access Journals (Sweden)

    Bao Weidong

    2010-01-01

    Full Text Available Abstract Background In eukaryotes, long terminal repeat (LTR retrotransposons such as Copia, BEL and Gypsy integrate their DNA copies into the host genome using a particular type of DDE transposase called integrase (INT. The Gypsy INT-like transposase is also conserved in the Polinton/Maverick self-synthesizing DNA transposons and in the 'cut and paste' DNA transposons known as TDD-4 and TDD-5. Moreover, it is known that INT is similar to bacterial transposases that belong to the IS3, IS481, IS30 and IS630 families. It has been suggested that LTR retrotransposons evolved from a non-LTR retrotransposon fused with a DNA transposon in early eukaryotes. In this paper we analyze a diverse superfamily of eukaryotic cut and paste DNA transposons coding for INT-like transposase and discuss their evolutionary relationship to LTR retrotransposons. Results A new diverse eukaryotic superfamily of DNA transposons, named Ginger (for 'Gypsy INteGrasE Related' DNA transposons is defined and analyzed. Analogously to the IS3 and IS481 bacterial transposons, the Ginger termini resemble those of the Gypsy LTR retrotransposons. Currently, Ginger transposons can be divided into two distinct groups named Ginger1 and Ginger2/Tdd. Elements from the Ginger1 group are characterized by approximately 40 to 270 base pair (bp terminal inverted repeats (TIRs, and are flanked by CCGG-specific or CCGT-specific target site duplication (TSD sequences. The Ginger1-encoded transposases contain an approximate 400 amino acid N-terminal portion sharing high amino acid identity to the entire Gypsy-encoded integrases, including the YPYY motif, zinc finger, DDE domain, and, importantly, the GPY/F motif, a hallmark of Gypsy and endogenous retrovirus (ERV integrases. Ginger1 transposases also contain additional C-terminal domains: ovarian tumor (OTU-like protease domain or Ulp1 protease domain. In vertebrate genomes, at least two host genes, which were previously thought to be derived from

  1. Methods for sequencing GC-rich and CCT repeat DNA templates

    Science.gov (United States)

    Robinson, Donna L.

    2007-02-20

    The present invention is directed to a PCR-based method of cycle sequencing DNA and other polynucleotide sequences having high CG content and regions of high GC content, and includes for example DNA strands with a high Cytosine and/or Guanosine content and repeated motifs such as CCT repeats.

  2. A Model of DNA Repeat-Assembled Mitotic Chromosomal Skeleton

    OpenAIRE

    Shao-Jun Tang

    2011-01-01

    Despite intensive investigation for decades, the principle of higher-order organization of mitotic chromosomes is unclear. Here, I describe a novel model that emphasizes a critical role of interactions of homologous DNA repeats (repetitive elements; repetitive sequences) in mitotic chromosome architecture. According to the model, DNA repeats are assembled, via repeat interactions (pairing), into compact core structures that govern the arrangement of chromatins in mitotic chromosomes. Tandem r...

  3. Familial searching on DNA mixtures with dropout.

    Science.gov (United States)

    Slooten, K

    2016-05-01

    Familial searching, the act of searching a database for a relative of an unknown individual whose DNA profile has been obtained, is usually restricted to cases where the DNA profile of that person has been unambiguously determined. Therefore, it is normally applied only with a good quality single source profile as starting point. In this article we investigate the performance of the method if applied to mixtures with and without allelic dropout, when likelihood ratios are computed with a semi-continuous (binary) model. We show that mixtures with dropout do not necessarily perform worse than mixtures without, especially if some separation between the donors is possible due to their different dropout probabilities. The familial searching true and false positive rates of mixed profiles on 15 loci are in some cases better than those of single source profiles on 10 loci. Thus, the information loss due to the fact that the person of interest's DNA has been mixed with that of other, and is affected by dropout, can be less than the loss of information corresponding to having 5 fewer loci available for a single source trace. Profiles typed on 10 autosomal loci are often involved in familial searching casework since many databases, including the Dutch one, in part consist of such profiles. Therefore, from this point of view, there seems to be no objection to extend familial searching to mixed or degraded profiles.

  4. Restriction enzyme-mediated DNA family shuffling.

    Science.gov (United States)

    Behrendorff, James B Y H; Johnston, Wayne A; Gillam, Elizabeth M J

    2014-01-01

    DNA shuffling is an established recombinatorial method that was originally developed to increase the speed of directed evolution experiments beyond what could be accomplished using error-prone PCR alone. To achieve this, mutated copies of a protein-coding sequence are fragmented with DNase I and the fragments are then reassembled in a PCR without primers. The fragments anneal where there is sufficient sequence identity, resulting in full-length variants of the original gene that have inherited mutations from multiple templates. Subsequent studies demonstrated that directed evolution could be further accelerated by shuffling similar native protein-coding sequences from the same gene family, rather than mutated variants of a single gene. Generally at least 65-75 % global identity between parental sequences is required in DNA family shuffling, with recombination mostly occurring at sites with at least five consecutive nucleotides of local identity. Since DNA shuffling was originally developed, many variations on the method have been published. In particular, the use of restriction enzymes in the fragmentation step allows for greater customization of fragment lengths than DNase I digestion and avoids the risk that parental sequences may be over-digested into unusable very small fragments. Restriction enzyme-mediated fragmentation also reduces the occurrence of undigested parental sequences that would otherwise reduce the number of unique variants in the resulting library. In the current chapter, we provide a brief overview of the alternative methods currently available for DNA shuffling as well as a protocol presented here that improves on several previous implementations of restriction enzyme-mediated DNA family shuffling, in particular with regard to purification of DNA fragments for reassembly.

  5. Stable DNA methylation boundaries and expanded trinucleotide repeats: role of DNA insertions.

    Science.gov (United States)

    Naumann, Anja; Kraus, Cornelia; Hoogeveen, André; Ramirez, Christina M; Doerfler, Walter

    2014-07-15

    The human genome segment upstream of the FMR1 (fragile X mental retardation 1) gene (Xq27.3) contains several genetic signals, among them is a DNA methylation boundary that is located 65-70 CpGs upstream of the CGG repeat. In fragile X syndrome (FXS), the boundary is lost, and the promoter is inactivated by methylation spreading. Here we document boundary stability in spite of critical expansions of the CGG trinucleotide repeat in male or female premutation carriers and in high functioning males (HFMs). HFMs carry a full CGG repeat expansion but exhibit an unmethylated promoter and lack the FXS phenotype. The boundary is also stable in Turner (45, X) females. A CTCF-binding site is located slightly upstream of the methylation boundary and carries a unique G-to-A polymorphism (single nucleotide polymorphism), which occurs 3.6 times more frequently in genomes with CGG expansions. The increased frequency of this single nucleotide polymorphism might have functional significance. In CGG expansions, the CTCF region does not harbor additional mutations. In FXS individuals and often in cells transgenomic for EBV (Epstein Barr Virus) DNA or for the telomerase gene, the large number of normally methylated CpGs in the far-upstream region of the boundary is decreased about 4-fold. A methylation boundary is also present in the human genome segment upstream of the HTT (huntingtin) promoter (4p16.3) and is stable both in normal and Huntington disease chromosomes. Hence, the vicinity of an expanded repeat does not per se compromise methylation boundaries. Methylation boundaries exert an important function as promoter safeguards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Evolution of ribosomal DNA-derived satellite repeat in tomato genome

    Directory of Open Access Journals (Sweden)

    Hur Cheol-Goo

    2009-04-01

    Full Text Available Abstract Background Tandemly repeated DNA, also called as satellite DNA, is a common feature of eukaryotic genomes. Satellite repeats can expand and contract dramatically, which may cause genome size variation among genetically-related species. However, the origin and expansion mechanism are not clear yet and needed to be elucidated. Results FISH analysis revealed that the satellite repeat showing homology with intergenic spacer (IGS of rDNA present in the tomato genome. By comparing the sequences representing distinct stages in the divergence of rDNA repeat with those of canonical rDNA arrays, the molecular mechanism of the evolution of satellite repeat is described. Comprehensive sequence analysis and phylogenetic analysis demonstrated that a long terminal repeat retrotransposon was interrupted into each copy of the 18S rDNA and polymerized by recombination rather than transposition via an RNA intermediate. The repeat was expanded through doubling the number of IGS into the 25S rRNA gene, and also greatly increasing the copy number of type I subrepeat in the IGS of 25-18S rDNA by segmental duplication. Homogenization to a single type of subrepeat in the satellite repeat was achieved as the result of amplifying copy number of the type I subrepeat but eliminating neighboring sequences including the type II subrepeat and rRNA coding sequence from the array. FISH analysis revealed that the satellite repeats are commonly present in closely-related Solanum species, but vary in their distribution and abundance among species. Conclusion These results represent that the dynamic satellite repeats were originated from intergenic spacer of rDNA unit in the tomato genome. This result could serve as an example towards understanding the initiation and the expansion of the satellite repeats in complex eukaryotic genome.

  7. Unusual structures are present in DNA fragments containing super-long Huntingtin CAG repeats.

    Directory of Open Access Journals (Sweden)

    Daniel Duzdevich

    Full Text Available BACKGROUND: In the R6/2 mouse model of Huntington's disease (HD, expansion of the CAG trinucleotide repeat length beyond about 300 repeats induces a novel phenotype associated with a reduction in transcription of the transgene. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the structure of polymerase chain reaction (PCR-generated DNA containing up to 585 CAG repeats using atomic force microscopy (AFM. As the number of CAG repeats increased, an increasing proportion of the DNA molecules exhibited unusual structural features, including convolutions and multiple protrusions. At least some of these features are hairpin loops, as judged by cross-sectional analysis and sensitivity to cleavage by mung bean nuclease. Single-molecule force measurements showed that the convoluted DNA was very resistant to untangling. In vitro replication by PCR was markedly reduced, and TseI restriction enzyme digestion was also hindered by the abnormal DNA structures. However, significantly, the DNA gained sensitivity to cleavage by the Type III restriction-modification enzyme, EcoP15I. CONCLUSIONS/SIGNIFICANCE: "Super-long" CAG repeats are found in a number of neurological diseases and may also appear through CAG repeat instability. We suggest that unusual DNA structures associated with super-long CAG repeats decrease transcriptional efficiency in vitro. We also raise the possibility that if these structures occur in vivo, they may play a role in the aetiology of CAG repeat diseases such as HD.

  8. Crystal Structure of DNA-PKcs Reveals a Large Open-Ring Cradle Comprised of HEAT Repeats

    Science.gov (United States)

    Sibanda, Bancinyane L.; Chirgadze, Dimitri Y.; Blundell, Tom L.

    2009-01-01

    Broken chromosomes arising from DNA double strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation1, 2, 3. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holo-enzyme that comprises DNA-dependent protein kinase catalytic subunit (DNA-PKcs)4, 5 and the heterodimer Ku70/Ku80, plays a major role in non-homologous end joining (NHEJ), the main pathway in mammals used to repair double strand breaks6, 7, 8. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4128 amino acids and belonging to the phosphotidyl inositol 3-kinase (PI3-K)- related protein family9. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest10, 11. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA12. Here we present the crystal structure of human DNA-PKcs at 6.6Å resolution, in which the overall fold is for the first time clearly visible. The many α-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The C-terminal kinase domain is located on top of this structure and a small HEAT repeat domain that likely binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair. PMID:20023628

  9. History repeats itself: the family medication history and pharmacogenomics.

    Science.gov (United States)

    Smith, Thomas R; Kearney, Elizabeth; Hulick, Peter J; Kisor, David F

    2016-05-01

    Related to many drug gene-product interactions, application of pharmacogenomics can lead to improved medication efficacy while decreasing or avoiding adverse drug reactions. However, utilizing pharmacogenomics without other information does not allow for optimal medication therapy. Currently, there is a lack of documentation of family medication history, in other words, inefficacy and adverse reactions across family members throughout generations. The family medication history can serve as an impetus for pharmacogenomic testing to explain lack of medication efficacy or an adverse drug reaction and pre-emptive testing can drive recognition and documentation of medication response in family members. We propose combining the family medication history via pedigree construction with pharmacogenomics to further optimize medication therapy. We encourage clinicians to combine family medication history with pharmacogenomics.

  10. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures

    Energy Technology Data Exchange (ETDEWEB)

    Nakagama, Hitoshi [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)]. E-mail: hnakagam@gan2.res.ncc.go.jp; Higuchi, Kumiko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Tanaka, Etsuko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Tsuchiya, Naoto [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Nakashima, Katsuhiko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Katahira, Masato [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Fukuda, Hirokazu [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2006-06-25

    Mammalian genomes contain several types of repetitive sequences. Some of these sequences are implicated in various specific cellular events, including meiotic recombination, chromosomal breaks and transcriptional regulation, and also in several human disorders. In this review, we document the formation of DNA secondary structures by the G-rich repetitive sequences that have been found in several minisatellites, telomeres and in various triplet repeats, and report their effects on in vitro DNA synthesis. d(GGCAG) repeats in the mouse minisatellite Pc-1 were demonstrated to form an intra-molecular folded-back quadruplex structure (also called a G4' structure) by NMR and CD spectrum analyses. d(TTAGGG) telomere repeats and d(CGG) triplet repeats were also shown to form G4' and other unspecified higher order structures, respectively. In vitro DNA synthesis was substantially arrested within the repeats, and this could be responsible for the preferential mutability of the G-rich repetitive sequences. Electrophoretic mobility shift assays using NIH3T3 cell extracts revealed heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and A3, which were tightly and specifically bound to d(GGCAG) and d(TTAGGG) repeats with K {sub d} values in the order of nM. HnRNP A1 unfolded the G4' structure formed in the d(GGCAG) {sub n} and d(TTAGGG) {sub n} repeat regions, and also resolved the higher order structure formed by d(CGG) triplet repeats. Furthermore, DNA synthesis arrest at the secondary structures of d(GGCAG) repeats, telomeres and d(CGG) triplet repeats was efficiently repressed by the addition of hnRNP A1. High expression of hnRNPs may contribute to the maintenance of G-rich repetitive sequences, including telomere repeats, and may also participate in ensuring the stability of the genome in cells with enhanced proliferation. Transcriptional regulation of genes, such as c-myc and insulin, by G4 sequences found in the promoter regions could be an intriguing field of

  11. Spectroscopic investigation on the telomeric DNA base sequence repeat

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Telomeres are protein-DNA complexes at the terminals of linear chromosomes, which protect chromosomal integrity and maintain cellular replicative capacity.From single-cell organisms to advanced animals and plants,structures and functions of telomeres are both very conservative. In cells of human and vertebral animals, telomeric DNA base sequences all are (TTAGGG)n. In the present work, we have obtained absorption and fluorescence spectra measured from seven synthesized oligonucleotides to simulate the telomeric DNA system and calculated their relative fluorescence quantum yields on which not only telomeric DNA characteristics are predicted but also possibly the shortened telomeric sequences during cell division are imrelative fluorescence quantum yield and remarkable excitation energy innerconversion, which tallies with the telomeric sequence of (TTAGGG)n. This result shows that telomeric DNA has a strong non-radiative or innerconvertible capability.``

  12. Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee.

    OpenAIRE

    Jørgensen, A L; Laursen, H B; Jones, C; Bak, A L

    1992-01-01

    Centromeric alphoid DNA in primates represents a class of evolving repeat DNA. In humans, chromosomes 13 and 21 share one subfamily of alphoid DNA while chromosomes 14 and 22 share another subfamily. We show that similar pairwise homogenizations occur in the chimpanzee (Pan troglodytes), where chromosomes 14 and 22, homologous to human chromosomes 13 and 21, share one partially homogenized alphoid DNA subfamily and chromosomes 15 and 23, homologous to human chromosomes 14 and 22, share anothe...

  13. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    DEFF Research Database (Denmark)

    Kenchappa, Chandra; Heiðarsson, Pétur Orri; Kragelund, Birthe;

    2013-01-01

    in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys(7) and Cys(28) enhancing high thermal stability of Cbp2(Hb) through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2......Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds...... specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal...

  14. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    DEFF Research Database (Denmark)

    Kenchappa, Chandra; Heiðarsson, Pétur Orri; Kragelund, Birthe

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds...... specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal...... in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys(7) and Cys(28) enhancing high thermal stability of Cbp2(Hb) through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2...

  15. Applications of inter simple sequence repeat (ISSR) rDNA in ...

    African Journals Online (AJOL)

    Applications of inter simple sequence repeat (ISSR) rDNA in detecting ... and phylogenetic relationships between Lymnaea natalensis collected from Giza, ... in water samples of all tested governorates with different significant differences.

  16. Quality Control of Isothermal Amplified DNA Based on Short Tandem Repeat Analysis.

    Science.gov (United States)

    Kroneis, Thomas; El-Heliebi, Amin

    2015-01-01

    This protocol describes the use of a 16plex PCR for the purpose assessing DNA quality after isothermal whole genome amplification (WGA). In short, DNA products, generated by amplification multiple displacement amplification, are forwarded to PCR targeting 15 short tandem repeats (STR) as well as amelogenin generating up to 32 different PCR products. After amplification, the PCR products are separated via capillary electrophoresis and analyzed based on the obtained DNA profiles. Isothermal WGA products of good DNA quality will result in DNA profiles with efficiencies of >90 % of the full DNA profile.

  17. Exact Tandem Repeats Analyzer (E-TRA): A new program for DNA sequence mining

    Indian Academy of Sciences (India)

    Mehmet Karaca; Mehmet Bilgen; A. Naci Onus; Ayse Gul Ince; Safinaz Y. Elmasulu

    2005-04-01

    Exact Tandem Repeats Analyzer 1.0 (E-TRA) combines sequence motif searches with keywords such as ‘organs’, ‘tissues’, ‘cell lines’ and ‘development stages’ for finding simple exact tandem repeats as well as non-simple repeats. E-TRA has several advanced repeat search parameters/options compared to other repeat finder programs as it not only accepts GenBank, FASTA and expressed sequence tags (EST) sequence files, but also does analysis of multiple files with multiple sequences. The minimum and maximum tandem repeat motif lengths that E-TRA finds vary from one to one thousand. Advanced user defined parameters/options let the researchers use different minimum motif repeats search criteria for varying motif lengths simultaneously. One of the most interesting features of genomes is the presence of relatively short tandem repeats (TRs). These repeated DNA sequences are found in both prokaryotes and eukaryotes, distributed almost at random throughout the genome. Some of the tandem repeats play important roles in the regulation of gene expression whereas others do not have any known biological function as yet. Nevertheless, they have proven to be very beneficial in DNA profiling and genetic linkage analysis studies. To demonstrate the use of E-TRA, we used 5,465,605 human EST sequences derived from 18,814,550 GenBank EST sequences. Our results indicated that 12.44% (679,800) of the human EST sequences contained simple and non-simple repeat string patterns varying from one to 126 nucleotides in length. The results also revealed that human organs, tissues, cell lines and different developmental stages differed in number of repeats as well as repeat composition, indicating that the distribution of expressed tandem repeats among tissues or organs are not random, thus differing from the un-transcribed repeats found in genomes.

  18. Polyalanine repeat expansion mutation of the HOXD13 gene in a Chinese family with unusual clinical manifestations of synpolydactyly.

    Science.gov (United States)

    Gong, Licheng; Wang, Binbin; Wang, Jing; Yu, Haibo; Ma, Xu; Yang, Jun

    2011-01-01

    Synpolydactyly (SPD) is an autosomal dominant limb malformation caused by mutations in the gene HOXD13. We investigated a Chinese family in which three individuals across three generations were affected with distinctive limb malformations. We extracted genomic DNA from the affected and three unaffected individuals from this family as well as 100 unrelated controls, for mutation detection by DNA sequencing. The family was characterized by camptodactyly and symphalangism of fingers two to five, transverse phalanx and osseous fusion of the third metacarpal with the proximal phalanx, as well as the coexistence of mild and more severe bilateral phenotypes. We identified a duplication mutation, c. 186-212dup, in exon 1 of the HOXD13 gene in the affected individuals from this family; it was not present in the unaffected individuals or the 100 unrelated individuals. And we also did not find polymorphism among the controls. This study has expanded the phenotypic spectrum of known HOXD13 polyalanine repeat mutations and provided more information about the polymorphic nature of the polyalanine repeat. In addition, new clinical manifestations have been added to the spectrum of possible synpolydactyly phenotypes.

  19. Polymorphisms in the CAG repeat--a source of error in Huntington disease DNA testing.

    Science.gov (United States)

    Yu, S; Fimmel, A; Fung, D; Trent, R J

    2000-12-01

    Five of 400 patients (1.3%), referred for Huntington disease DNA testing, demonstrated a single allele on CAG alone, but two alleles when the CAG + CCG repeats were measured. The PCR assay failed to detect one allele in the CAG alone assay because of single-base silent polymorphisms in the penultimate or the last CAG repeat. The region around and within the CAG repeat sequence in the Huntington disease gene is a hot-spot for DNA polymorphisms, which can occur in up to 1% of subjects tested for Huntington disease. These polymorphisms may interfere with amplification by PCR, and so have the potential to produce a diagnostic error.

  20. CTCF regulates the local epigenetic state of ribosomal DNA repeats

    NARCIS (Netherlands)

    S. van de Nobelen (Suzanne); M. Rosa-Garrido (Manuel); J. Leers (Joerg); H. Heath (Helen); W.S.W. Soochit (Widia); L. Joosen (Linda); I. Jonkers (Iris); J.A.A. Demmers (Jeroen); M. van der Reijden (Michael); V. Torrano (Veránica); F.G. Grosveld (Frank); M.D. Delgado (Dolores); R. Renkawitz (Rainer); N.J. Galjart (Niels); F. Sleutels (Frank)

    2010-01-01

    textabstractBackground: CCCTC binding factor (CTCF) is a highly conserved zinc finger protein, which is involved in chromatin organization, local histone modifications, and RNA polymerase II-mediated gene transcription. CTCF may act by binding tightly to DNA and recruiting other proteins to mediate

  1. Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription

    Directory of Open Access Journals (Sweden)

    Davood Norouzi

    2015-11-01

    Full Text Available The spatial organization of nucleosomes in 30-nm fibers remains unknown in detail. To tackle this problem, we analyzed all stereochemically possible configurations of two-start chromatin fibers with DNA linkers L = 10-70 bp (nucleosome repeat length NRL = 157-217 bp. In our model, the energy of a fiber is a sum of the elastic energy of the linker DNA, steric repulsion, electrostatics, and the H4 tail-acidic patch interaction between two stacked nucleosomes. We found two families of energetically feasible conformations of the fibers—one observed earlier, and the other novel. The fibers from the two families are characterized by different DNA linking numbers—that is, they are topologically different. Remarkably, the optimal geometry of a fiber and its topology depend on the linker length: the fibers with linkers L = 10n and 10n + 5 bp have DNA linking numbers per nucleosome DLk >>-1.5 and -1.0, respectively. In other words, the level of DNA supercoiling is directly related to the length of the inter-nucleosome linker in the chromatin fiber (and therefore, to NRL. We hypothesize that this topological polymorphism of chromatin fibers may play a role in the process of transcription, which is known to generate different levels of DNA supercoiling upstream and downstream from RNA polymerase. A genome-wide analysis of the NRL distribution in active and silent yeast genes yielded results consistent with this assumption.

  2. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  3. Molecular cloning and expression of a novel human cDNA containing CAG repeats.

    Science.gov (United States)

    Takeuchi, T; Chen, B K; Qiu, Y; Sonobe, H; Ohtsuki, Y

    1997-12-19

    A novel human cDNA containing CAG repeats, designated B120, was cloned by PCR amplification. An approximately 300-bp 3' untranslated region in this cDNA was followed by a 3426-bp coding region containing the CAG repeats. A computer search failed to find any significant homology between this cDNA and previously reported genes. The number of CAG trinucleotide repeats appeared to vary from seven to 12 in analyses of genomic DNA from healthy volunteers. An approximately 8-kb band was detected in brain, skeletal muscle and thymus by Northern blot analysis. The deduced amino-acid sequence had a polyglutamine chain encoded by CAG repeats as well as glutamine- and tyrosine-rich repeats, which has also been reported for several RNA binding proteins. We immunized mice with recombinant gene product and established a monoclonal antibody to it. On Western immunoblotting, this antibody detected an approximately 120-kDa protein in human brain tissue. In addition, immunohistochemical staining showed that the cytoplasm of neural cells was stained with this antibody. These findings indicated that B120 is a novel cDNA with a CAG repeat length polymorphism and that its gene product is a cytoplasmic protein with a molecular mass of 120 kDa.

  4. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, V.; Kouprina, N. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)]|[Institute of Cytology, St. Petersburg, (Russian Federation); Edlarov, M. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)]|[Center of Bioengineering, Moscow, (Russian Federation); Perkins, E.; Porter, G.; Resnick, M.A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1993-12-31

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic growth. The frequency of recombination is partly dependent on the method of transformation in that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RADS2, RADI and the RNCI genes,

  5. Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits.

    Science.gov (United States)

    Piazza, Ilaria; Rutkowska, Anna; Ori, Alessandro; Walczak, Marta; Metz, Jutta; Pelechano, Vicent; Beck, Martin; Haering, Christian H

    2014-06-01

    Condensin complexes have central roles in the three-dimensional organization of chromosomes during cell divisions, but how they interact with chromatin to promote chromosome segregation is largely unknown. Previous work has suggested that condensin, in addition to encircling chromatin fibers topologically within the ring-shaped structure formed by its SMC and kleisin subunits, contacts DNA directly. Here we describe the discovery of a binding domain for double-stranded DNA formed by the two HEAT-repeat subunits of the Saccharomyces cerevisiae condensin complex. From detailed mapping data of the interfaces between the HEAT-repeat and kleisin subunits, we generated condensin complexes that lack one of the HEAT-repeat subunits and consequently fail to associate with chromosomes in yeast and human cells. The finding that DNA binding by condensin's HEAT-repeat subunits stimulates the SMC ATPase activity suggests a multistep mechanism for the loading of condensin onto chromosomes.

  6. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    Science.gov (United States)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  7. A Model of DNA Repeat-Assembled Mitotic Chromosomal Skeleton

    Directory of Open Access Journals (Sweden)

    Shao-Jun Tang

    2011-09-01

    Full Text Available Despite intensive investigation for decades, the principle of higher-order organization of mitotic chromosomes is unclear. Here, I describe a novel model that emphasizes a critical role of interactions of homologous DNA repeats (repetitive elements; repetitive sequences in mitotic chromosome architecture. According to the model, DNA repeats are assembled, via repeat interactions (pairing, into compact core structures that govern the arrangement of chromatins in mitotic chromosomes. Tandem repeat assemblies form a chromosomal axis to coordinate chromatins in the longitudinal dimension, while dispersed repeat assemblies form chromosomal nodes around the axis to organize chromatins in the halo. The chromosomal axis and nodes constitute a firm skeleton on which non-skeletal chromatins can be anchored, folded, and supercoiled.

  8. A model of DNA repeat-assembled mitotic chromosomal skeleton.

    Science.gov (United States)

    Tang, Shao-Jun

    2011-01-01

    Despite intensive investigation for decades, the principle of higher-order organization of mitotic chromosomes is unclear. Here, I describe a novel model that emphasizes a critical role of interactions of homologous DNA repeats (repetitive elements; repetitive sequences) in mitotic chromosome architecture. According to the model, DNA repeats are assembled, via repeat interactions (pairing), into compact core structures that govern the arrangement of chromatins in mitotic chromosomes. Tandem repeat assemblies form a chromosomal axis to coordinate chromatins in the longitudinal dimension, while dispersed repeat assemblies form chromosomal nodes around the axis to organize chromatins in the halo. The chromosomal axis and nodes constitute a firm skeleton on which non-skeletal chromatins can be anchored, folded, and supercoiled.

  9. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat.

    Science.gov (United States)

    Jiménez-Menéndez, Nereida; Fernández-Millán, Pablo; Rubio-Cosials, Anna; Arnan, Carme; Montoya, Julio; Jacobs, Howard T; Bernadó, Pau; Coll, Miquel; Usón, Isabel; Solà, Maria

    2010-07-01

    The regulation of mitochondrial DNA (mtDNA) processes is slowly being characterized at a structural level. We present here crystal structures of human mitochondrial regulator mTERF, a transcription termination factor also implicated in replication pausing, in complex with double-stranded DNA oligonucleotides containing the tRNA(Leu)(UUR) gene sequence. mTERF comprises nine left-handed helical tandem repeats that form a left-handed superhelix, the Zurdo domain.

  10. Recombination frequency in plasmid DNA containing direct repeats--predictive correlation with repeat and intervening sequence length.

    Science.gov (United States)

    Oliveira, Pedro H; Lemos, Francisco; Monteiro, Gabriel A; Prazeres, Duarte M F

    2008-09-01

    In this study, a simple non-linear mathematical function is proposed to accurately predict recombination frequencies in bacterial plasmid DNA harbouring directly repeated sequences. The mathematical function, which was developed on the basis of published data on deletion-formation in multicopy plasmids containing direct-repeats (14-856 bp) and intervening sequences (0-3872 bp), also accounts for the strain genotype in terms of its recA function. A bootstrap resampling technique was used to estimate confidence intervals for the correlation parameters. More than 92% of the predicted values were found to be within a pre-established +/-5-fold interval of deviation from experimental data. The correlation does not only provide a way to predict, with good accuracy, the recombination frequency, but also opens the way to improve insight into these processes.

  11. Effective DNA fragmentation technique for simple sequence repeat detection with a microsatellite-enriched library and high-throughput sequencing.

    Science.gov (United States)

    Tanaka, Keisuke; Ohtake, Rumi; Yoshida, Saki; Shinohara, Takashi

    2017-04-01

    Two different techniques for genomic DNA fragmentation before microsatellite-enriched library construction-restriction enzyme (NlaIII and MseI) digestion and sonication-were compared to examine their effects on simple sequence repeat (SSR) detection using high-throughput sequencing. Tens of thousands of SSR regions from 5 species of the plant family Myrtaceae were detected when the output of individual samples was >1 million paired-end reads. Comparison of the two DNA fragmentation techniques showed that restriction enzyme digestion was superior to sonication for identification of heterozygous genotypes, whereas sonication was superior for detection of various SSR flanking regions with both species-specific and common characteristics. Therefore, choosing the most suitable DNA fragmentation method depends on the type of analysis that is planned.

  12. Direct detection of expanded trinucleotide repeats using PCR and DNA hybridization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Petronis, A.; Tatuch, Y.; Klempan, T.A.; Kennedy, J.L. [Hospital for Sick Children, Toronto (Canada)] [and others

    1996-02-16

    Recently, unstable trinucleotide repeats have been shown to be the etiologic factor in seven neuropsychiatric diseases, and they may play a similar role in other genetic disorders which exhibit genetic anticipation. We have tested one polymerase chain reaction (PCR)-based and two hybridization-based methods for direct detection of unstable DNA expansion in genomic DNA. This technique employs a single primer (asymmetric) PCR using total genomic DNA as a template to efficiently screen for the presence of large trinucleotide repeat expansions. High-stringency Southern blot hybridization with a PCR-generated trinucleotide repeat probe allowed detection of the DNA fragment containing the expansion. Analysis of myotonic dystrophy patients containing different degrees of (CTG){sub n} expansion demonstrated the identification of the site of trinucleotide instability in some affected individuals without any prior information regarding genetic map location. The same probe was used for fluorescent in situ hybridization and several regions of (CTG){sub n}/(CAG){sub n} repeats in the human genome were detected, including the myotonic dystrophy locus on chromosome 19q. Although limited at present to large trinucleotide repeat expansions, these strategies can be applied to directly clone genes involved in disorders caused by large expansions of unstable DNA. 33 refs., 4 figs.

  13. Identification of the remains of the Romanov family by DNA analysis.

    Science.gov (United States)

    Gill, P; Ivanov, P L; Kimpton, C; Piercy, R; Benson, N; Tully, G; Evett, I; Hagelberg, E; Sullivan, K

    1994-02-01

    Nine skeletons found in a shallow grave in Ekaterinburg, Russia, in July 1991, were tentatively identified by Russian forensic authorities as the remains of the last Tsar, Tsarina, three of their five children, the Royal Physician and three servants. We have performed DNA based sex testing and short tandem repeat (STR) analysis and confirm that a family group was present in the grave. Analysis of mitochondrial (mt) DNA reveals an exact sequence match between the putative Tsarina and the three children with a living maternal relative. Amplified mtDNA extracted from the remains of the putative Tsar has been cloned to demonstrate heteroplasmy at a single base within the mtDNA control region. One of these sequences matches two living maternal relatives of the Tsar. We conclude that the DNA evidence supports the hypothesis that the remains are those of the Romanov family.

  14. Analysis of SCA1, DRPLA, MJD, SCA2, and SCA6 CAG repeats in 48 Portuguese ataxia families.

    Science.gov (United States)

    Silveira, I; Coutinho, P; Maciel, P; Gaspar, C; Hayes, S; Dias, A; Guimarães, J; Loureiro, L; Sequeiros, J; Rouleau, G A

    1998-03-28

    The spinocerebellar ataxias (SCAs) are clinically and genetically a heterogeneous group of neurodegenerative disorders. To date, eight different loci causing SCA have been identified: SCA1, SCA2, Machado-Joseph disease (MJD)/SCA3, SCA4, SCA5, SCA6, SCA7, and dentatorubropallidoluysian atrophy (DRPLA). Expansion of a CAG repeat in the disease genes has been found in five of these disorders. To estimate the relative frequencies of the SCA1, DRPLA, MJD, SCA2, and SCA6 mutations among Portuguese ataxia patients, we collected DNA samples from 48 ataxia families and performed polymerase chain reaction (PCR) amplification of the CAG repeat mutations on chromosomes 6p, 12p, 14q, 12q, and 19p, respectively. Fifty-five individuals belonging to 34 dominant families (74%) had an expanded CAG repeat at the MJD gene. In five individuals from two kindreds with a dominant pattern of inheritance (4%), an expanded CAG repeat at the SCA2 gene was found. In MJD patients, the normal allele size ranged from 13 to 41, whereas the mutant alleles contained 65 to 80 repeats. For the SCA2 patients, normal alleles had 22 or 23, while expanded alleles had between 36 and 47 CAG units. We did not find the SCA1, DRPLA, or SCA6 mutations in our group of families. The MJD mutation remains the most common cause of SCA in Portugal, while a small number of cases are caused by mutations at the SCA2 gene, and 22% are due to still unidentified genes.

  15. Interactions within the mammalian DNA methyltransferase family

    Directory of Open Access Journals (Sweden)

    Ehrenhofer-Murray Ann E

    2003-05-01

    Full Text Available Abstract Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.

  16. Effect of repeated sequential ejaculation on sperm DNA integrity in subfertile males with asthenozoospermia.

    Science.gov (United States)

    Hussein, T M; Elariny, A F; Elabd, M M; Elgarem, Y F; Elsawy, M M

    2008-10-01

    The aim of this work was to study the possible beneficial effect of repeated sequential ejaculation on sperm DNA integrity in subfertile males and its possible implementation in assisted reproduction. The study included 20 infertile males with idiopathic asthenozoospermia or oligoasthenozoospermia. They underwent detailed history taking, complete clinical assessment and hormonal assessment. Patients were asked to bring two semen samples (taken within 1-3 h). Two consecutive samples were assessed with regard to semen volume, sperm count, motility grading, and morphology and sperm DNA integrity using the comet assay. There was a significant improvement in the sperm motility pattern and DNA integrity in the second sample in comparison with the first sample. Therefore, it is concluded that due to its positive impact on sperm motility and DNA integrity, repeated sequential ejaculation is recommended in subfertile males with idiopathic asthenozoospermia who pursue assisted reproduction.

  17. A Novel Signal Processing Measure to Identify Exact and Inexact Tandem Repeat Patterns in DNA Sequences

    Directory of Open Access Journals (Sweden)

    Ravi Gupta

    2007-03-01

    Full Text Available The identification and analysis of repetitive patterns are active areas of biological and computational research. Tandem repeats in telomeres play a role in cancer and hypervariable trinucleotide tandem repeats are linked to over a dozen major neurodegenerative genetic disorders. In this paper, we present an algorithm to identify the exact and inexact repeat patterns in DNA sequences based on orthogonal exactly periodic subspace decomposition technique. Using the new measure our algorithm resolves the problems like whether the repeat pattern is of period P or its multiple (i.e., 2P, 3P, etc., and several other problems that were present in previous signal-processing-based algorithms. We present an efficient algorithm of O(NLw logLw, where N is the length of DNA sequence and Lw is the window length, for identifying repeats. The algorithm operates in two stages. In the first stage, each nucleotide is analyzed separately for periodicity, and in the second stage, the periodic information of each nucleotide is combined together to identify the tandem repeats. Datasets having exact and inexact repeats were taken up for the experimental purpose. The experimental result shows the effectiveness of the approach.

  18. A CA-repeat polymorphism close to the adenomatous polyposis coli (APC) gene offers improved diagnostic testing for familial APC

    Energy Technology Data Exchange (ETDEWEB)

    Spirio, L.; Nelson, L.; Ward, K.; Burt, R.; White, R.; Leppert, M. (Univ. of Utah, Salt Lake City (United States))

    1993-02-01

    Presymptomatic genetic testing for the presence of a mutant allele causing familial adenomatous polyposis coli (APC) has been difficult to perform effectively in the past because DNA markers surrounding the APC gene on chromosome 5q have not been very informative. The authors report results of genetic linkage studies on both research families and clinical families by using D5S346, a highly polymorphic dinucleotide (CA)-repeat locus 30-70 kb from the APC gene. Linkage analysis with this marker in a large APC pedigree showed an increase of at least 9.0 LOD units, in likelihood of linkage of the disease-causing allele to the APC locus, when compared with the highest LOD score attained with any other closely linked marker. When the first 14 APC families that requested genotypic analysis by the DNA Diagnostic Laboratory at the University of Utah were tested with D5S346, 20 of the 31 at-risk individuals were identified as either carriers or noncarriers of an APC-predisposing allele. The authors see this marker as an important tool for research studies and for the presymptomatic diagnosis of APC. 28 refs., 3 figs., 2 tabs.

  19. Database likelihood ratios and familial DNA searching

    CERN Document Server

    Slooten, Klaas

    2012-01-01

    Familial Searching is the process of searching in a DNA database for relatives of a given individual. It is well known that in order to evaluate the genetic evidence in favour of a certain given form of relatedness between two individuals, one needs to calculate the appropriate likelihood ratio, which is in this context called a Kinship Index. Suppose that the database contains, for a given type of relative, at most one related individual. Given prior probabilities of being the relative for all persons in the database, we derive the likelihood ratio for each database member in favour of being that relative. This likelihood ratio takes all the Kinship Indices between target and members of the database into account. We also compute the corresponding posterior probabilities. We then discuss two ways of selecting a subset from the database that contains the relative with a known probability, or at least a useful lower bound thereof. We discuss the relation between these approaches and illustrate them with Familia...

  20. The HumD21S11 system of short tandem repeat DNA polymorphisms in Japanese and Chinese.

    Science.gov (United States)

    Zhou, H G; Sato, K; Nishimaki, Y; Fang, L; Hasekura, H

    1997-04-18

    HumD21S11 is a short tandem repeat DNA polymorphic system with a complex basic structure of (TCTA)4-6 (TCTG)5-6 (TCTA)3 TA (TCTA)3 TCA (TCTA)2 TCCA TA (TCTA)n. Using the allelic ladder prepared by us, the distribution of alleles among Japanese and Chinese was investigated, and four new alleles 28.2, 34, 35.2, and 36.2, were discovered. DNA sequencing was performed on the newly found alleles as well as on family samples and led to the discovery of different gene structures within alleles 28 and 32. Forensic materials, including hairs and seminal stains, were tested in parallel with blood samples from the same individual and were successfully typed for D21S11.

  1. Subnuclear relocalization and silencing of a chromosomal region by an ectopic ribosomal DNA repeat

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Domange Jordö, Marie Elise; Mebarek, Mazhoura Aït;

    2013-01-01

    dimerization, providing a mechanism for the observed relocalization. Replacing the full rDNA repeat with Reb1-binding sites, and using mutants lacking the histone H3K9 methyltransferase Clr4, indicated that the relocalized region was silenced redundantly by heterochromatin and another mechanism, plausibly...

  2. Comparison of highly repeated DNA sequences in some Lemuridae and taxonomic implications.

    Science.gov (United States)

    Montagnon, D; Crovella, S; Rumpler, Y

    1993-01-01

    Highly repeated DNA sequences of Eulemur fulvus mayottensis, E. coronatus, Lemur catta, and Hapalemur griseus griseus have been identified and compared. Sequence analysis of highly repeated DNA fragments isolated from L. catta and Hapalemur showed a high percentage of similarity (nearly 95%), as did fragments isolated from the two very close Eulemur species, whereas comparison of the DNA fragments isolated from the two Eulemur species and the L. catta/Hapalemur group showed a very low percentage (approximately 40%) of identity, as might be expected for distant species. These results confirm our previous data, obtained by Southern blot hybridization techniques on the same species, and strongly support the existence of a common trunk between L. catta and Hapalemur, but different from the leading to the Eulemur species.

  3. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, V.; Kouprina, N. [National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC (United States)]|[Institute of Cytology, St. Petersburg (Russian Federation); Eldarov, M. [National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC (United States)]|[Center for Bioengineering, Moscow (Russian Federation); Perkins, E.; Porter, G.; Resnick, M.A. [National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC (United States)

    1994-10-01

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic-growth. The frequency of recombination is partly dependent on the method of transformation In that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RAD52, RAD1 and the RNC1 genes.

  4. Haplotype analysis of the CAG and CCG repeats in 21 Brazilian families with Huntington's disease.

    Science.gov (United States)

    Agostinho, Luciana de A; Rocha, Catielly F; Medina-Acosta, Enrique; Barboza, Hazel N; da Silva, Antônio F Alves; Pereira, Simão P F; da Silva, Iane Dos Santos; Paradela, Eduardo R; Figueiredo, André L dos S; Nogueira, Eduardo de M; Alvarenga, Regina M P; Hernan Cabello, Pedro; dos Santos, Suely R; Paiva, Carmen L A

    2012-12-01

    We studied the allelic profile of CAG and CCG repeats in 61 Brazilian individuals in 21 independent families affected by Huntington's disease (HD). Thirteen individuals had two normal alleles for HD, two had one mutable normal allele and no HD phenotype, and forty-six patients carried at least one expanded CAG repeat allele. Forty-five of these individuals had one expanded allele and one individual had one mutable normal allele (27 CAG repeats) and one expanded allele (48 CAG repeats). Eleven of these forty-five subjects had a mutant allele with reduced penetrance, and thirty-four patients had a mutant allele with complete penetrance. Inter- and intragenerational investigations of CAG repeats were also performed. We found a negative correlation between the number of CAG repeats and the age of disease onset (r=-0.84; Pdisease onset (r=0.06). We found 40 different haplotypes and the analysis showed that (CCG)(10) was linked to a CAG normal allele in 19 haplotypes and to expanded alleles in two haplotypes. We found that (CCG)(7) was linked to expanded CAG repeats in 40 haplotypes (95.24%) and (CCG)(10) was linked to expanded CAG repeats in only two haplotypes (4.76%). Therefore, (CCG)(7) was the most common allele in HD chromosomes in this Brazilian sample. It was also observed that there was a significant association of (CCG)(7) with the expanded CAG alleles (χ(2)=6.97, P=0.0084). Worldwide, the most common CCG alleles have 7 or 10 repeats. In Western Europe, (CCG)(7) is the most frequent allele, similarly to our findings.

  5. Genomic and polyploid evolution in genus Avena as revealed by RFLPs of repeated DNA sequences.

    Science.gov (United States)

    Morikawa, Toshinobu; Nishihara, Miho

    2009-06-01

    Phylogenetic relationships and genome affinities were investigated by utilizing all the biological Avena species consisting of 11 diploid species (15 accessions), 8 tetraploid species (9 accessions) and 4 hexaploid species (5 accessions). Genomic DNA regions of As120a, avenin, and globulin were amplified by PCR. A total of 130 polymorphic fragments were detected out of 156 fragments generated by digesting the PCR-amplified fragments with 11 restriction enzymes. The number of fragments generated by PCR-amplification followed by digestion with restriction enzymes was almost the same as those among the three repeated DNA sequences. A high level of genetic distance was detected between A. damascena (Ad) and A. canariensis (Ac) genomes, which reflected their different morphology and reproductive isolation. The A. longiglumis (Al) and A. prostrata (Ap) genomes were closely related to the As genome group. The AB genome species formed a cluster with the AsAs genome artificial autotetraploid and the As genome diploids indicating near-autotetraploid origin. The A. macrostachya is an outbreeding autotetraploid closely related with the C genome diploid and the AC genome tetraploid species. The differences of genetic distances estimated from the repeated DNA sequence divergence among the Avena species were consistent with genome divergences and it was possible to compare the genetic intra- and inter-ploidy relationships produced by RFLPs. These results suggested that the PCR-mediated analysis of repeated DNA polymorphism can be used as a tool to examine genomic relationships of polyploidy species.

  6. Cytogenetic analysis of Populus trichocarpa--ribosomal DNA, telomere repeat sequence, and marker-selected BACs.

    Science.gov (United States)

    Islam-Faridi, M N; Nelson, C D; DiFazio, S P; Gunter, L E; Tuskan, G A

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  7. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Gunter, Lee E [ORNL; DiFazio, Stephen P [West Virginia University

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  8. Controlled growth of DNA structures from repeating units using the vernier mechanism.

    Science.gov (United States)

    Greschner, Andrea A; Bujold, Katherine E; Sleiman, Hanadi F

    2014-08-11

    In this report, we demonstrate the assembly of length-programmed DNA nanostructures using a single 16 base sequence and its complement as building blocks. To achieve this, we applied the Vernier mechanism to DNA assembly, which uses a mismatch in length between two monomers to dictate the final length of the product. Specifically, this approach relies on the interaction of two DNA strands containing a different number (n, m) of complementary binding sites: these two strands will keep binding to each other until they come into register, thus generating a larger assembly whose length (n × m) is encoded by the number of binding sites in each strand. While the Vernier mechanism has been applied to other areas of supramolecular chemistry, here we present an application of its principles to DNA nanostructures. Using a single 16 base repeat and its complement, and varying the number of repeats on a given DNA strand, we show the consistent construction of duplexes up to 228 base pairs (bp) in length. Employing specific annealing protocols, strand capping, and intercalator chaperones allows us to further grow the duplex to 392 base pairs. We demonstrate that the Vernier method is not only strand-efficient, but also produces a cleaner, higher-yielding product than conventional designs.

  9. Repeated Play of Families of Games by Resource-Constrained Players

    Directory of Open Access Journals (Sweden)

    Arina Nikandrova

    2013-07-01

    Full Text Available This paper studies a repeated play of a family of games by resource-constrained players. To economize on reasoning resources, the family of games is partitioned into subsets of games which players do not distinguish. An example is constructed to show that when games are played a finite number of times, partitioning of the game set according to a coarse exogenously given partition might introduce new symmetric equilibrium payoffs which Pareto dominate best equilibrium outcomes with distinguished games. Moreover, these new equilibrium payoffs are also immune to evolutionary pressure at the partition selection stage.

  10. Characterization of two unrelated satellite DNA families in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae).

    Science.gov (United States)

    Lorite, Pedro; Torres, M Isabel; Palomeque, Teresa

    2013-10-01

    The Colorado potato beetle (Leptinotarsa decemlineata, family Chrysomelidae),a phytophagous insect, which feeds preferably on potatoes, constitutes a serious pest of this crop and causes extensive damage to tomatoes and egg plants. It has a remarkable ability to develop resistance quickly against insecticides and shows a diversified and flexible life history. Consequently, the control of this pest has become difficult, requiring the development of new alternative biotechnology-based strategies. Such strategies require a thorough knowledge of the beetle’s genome,including the repetitive DNA. Satellite DNA (stDNA), composed of long arrays of tandemly arranged repeat units, constitutes the major component of heterochromatin and is located mainly in centromeric and telomeric chromosomal regions. We have studied two different unrelated satellite-DNA families of which the consensus sequences were 295 and 109bp in length, named LEDE-I and LEDE-II, respectively.Both were AT-rich (70.8% and 71.6%, respectively). Predictive models of sequence-dependent DNA bending and the study of electrophoretic mobility on non-denaturing polyacrylamide gels have shown that the DNA was curved in both satellite-DNA families. Among other features, the chromosome localization of both stDNAs has been studied. In situ hybridization performed on meiotic and mitoticnuclei showed chromosomes, including the X chromosome, with zero, one, or two stDNAs. In recent years, it has been proposed that the repetitive DNA may play a key role in biological diversification processes. This is the first molecular and cytogenetic study conducted on L. decemlineata repetitive DNA and specifically on stDNA, which is one of the important constituents of eukaryotic genomes.

  11. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats.

  12. Linker histone variant H1T targets rDNA repeats.

    Science.gov (United States)

    Tani, Ruiko; Hayakawa, Koji; Tanaka, Satoshi; Shiota, Kunio

    2016-04-02

    H1T is a linker histone H1 variant that is highly expressed at the primary spermatocyte stage through to the early spermatid stage of spermatogenesis. While the functions of the somatic types of H1 have been extensively investigated, the intracellular role of H1T is unclear. H1 variants specifically expressed in germ cells show low amino acid sequence homology to somatic H1s, which suggests that the functions or target loci of germ cell-specific H1T differ from those of somatic H1s. Here, we describe the target loci and function of H1T. H1T was expressed not only in the testis but also in tumor cell lines, mouse embryonic stem cells (mESCs), and some normal somatic cells. To elucidate the intracellular localization and target loci of H1T, fluorescent immunostaining and ChIP-seq were performed in tumor cells and mESCs. We found that H1T accumulated in nucleoli and predominantly targeted rDNA repeats, which differ from somatic H1 targets. Furthermore, by nuclease sensitivity assay and RT-qPCR, we showed that H1T repressed rDNA transcription by condensing chromatin structure. Imaging analysis indicated that H1T expression affected nucleolar formation. We concluded that H1T plays a role in rDNA transcription, by distinctively targeting rDNA repeats.

  13. Mitochondrial Inverted Repeats Strongly Correlate with Lifespan: mtDNA Inversions and Aging

    Science.gov (United States)

    Yang, Jiang-Nan; Seluanov, Andrei; Gorbunova, Vera

    2013-01-01

    Mitochondrial defects are implicated in aging and in a multitude of age-related diseases, such as cancer, heart failure, Parkinson’s disease, and Huntington’s disease. However, it is still unclear how mitochondrial defects arise under normal physiological conditions. Mitochondrial DNA (mtDNA) deletions caused by direct repeats (DRs) are implicated in the formation of mitochondrial defects, however, mitochondrial DRs show relatively weak (Pearson’s r = −0.22, p<0.002; Spearman’s ρ = −0.12, p = 0.1) correlation with maximum lifespan (MLS). Here we report a stronger correlation (Pearson’s r = −0.55, p<10–16; Spearman’s ρ = −0.52, p<10–14) between mitochondrial inverted repeats (IRs) and lifespan across 202 species of mammals. We show that, in wild type mice under normal conditions, IRs cause inversions, which arise by replication-dependent mechanism. The inversions accumulate with age in the brain and heart. Our data suggest that IR-mediated inversions are more mutagenic than DR-mediated deletions in mtDNA, and impose stronger constraint on lifespan. Our study identifies IR-induced mitochondrial genome instability during mtDNA replication as a potential cause for mitochondrial defects. PMID:24069185

  14. Mitochondrial inverted repeats strongly correlate with lifespan: mtDNA inversions and aging.

    Directory of Open Access Journals (Sweden)

    Jiang-Nan Yang

    Full Text Available Mitochondrial defects are implicated in aging and in a multitude of age-related diseases, such as cancer, heart failure, Parkinson's disease, and Huntington's disease. However, it is still unclear how mitochondrial defects arise under normal physiological conditions. Mitochondrial DNA (mtDNA deletions caused by direct repeats (DRs are implicated in the formation of mitochondrial defects, however, mitochondrial DRs show relatively weak (Pearson's r = -0.22, p<0.002; Spearman's ρ = -0.12, p = 0.1 correlation with maximum lifespan (MLS. Here we report a stronger correlation (Pearson's r = -0.55, p<10(-16; Spearman's ρ = -0.52, p<10(-14 between mitochondrial inverted repeats (IRs and lifespan across 202 species of mammals. We show that, in wild type mice under normal conditions, IRs cause inversions, which arise by replication-dependent mechanism. The inversions accumulate with age in the brain and heart. Our data suggest that IR-mediated inversions are more mutagenic than DR-mediated deletions in mtDNA, and impose stronger constraint on lifespan. Our study identifies IR-induced mitochondrial genome instability during mtDNA replication as a potential cause for mitochondrial defects.

  15. DNA tandem repeat instability in the Escherichia coli chromosome is stimulated by mismatch repair at an adjacent CAG·CTG trinucleotide repeat

    Science.gov (United States)

    Blackwood, John K.; Okely, Ewa A.; Zahra, Rabaab; Eykelenboom, John K.; Leach, David R. F.

    2010-01-01

    Approximately half the human genome is composed of repetitive DNA sequences classified into microsatellites, minisatellites, tandem repeats, and dispersed repeats. These repetitive sequences have coevolved within the genome but little is known about their potential interactions. Trinucleotide repeats (TNRs) are a subclass of microsatellites that are implicated in human disease. Expansion of CAG·CTG TNRs is responsible for Huntington disease, myotonic dystrophy, and a number of spinocerebellar ataxias. In yeast DNA double-strand break (DSB) formation has been proposed to be associated with instability and chromosome fragility at these sites and replication fork reversal (RFR) to be involved either in promoting or in preventing instability. However, the molecular basis for chromosome fragility of repetitive DNA remains poorly understood. Here we show that a CAG·CTG TNR array stimulates instability at a 275-bp tandem repeat located 6.3 kb away on the Escherichia coli chromosome. Remarkably, this stimulation is independent of both DNA double-strand break repair (DSBR) and RFR but is dependent on a functional mismatch repair (MMR) system. Our results provide a demonstration, in a simple model system, that MMR at one type of repetitive DNA has the potential to influence the stability of another. Furthermore, the mechanism of this stimulation places a limit on the universality of DSBR or RFR models of instability and chromosome fragility at CAG·CTG TNR sequences. Instead, our data suggest that explanations of chromosome fragility should encompass the possibility of chromosome gaps formed during MMR. PMID:21149728

  16. Discrimination of Shark species by simple PCR of 5S rDNA repeats

    Directory of Open Access Journals (Sweden)

    Danillo Pinhal

    2008-01-01

    Full Text Available Sharks are suffering from intensive exploitation by worldwide fisheries leading to a severe decline in several populations in the last decades. The lack of biological data on a species-specific basis, associated with a k-strategist life history make it difficult to correctly manage and conserve these animals. The aim of the present study was to develop a DNA-based procedure to discriminate shark species by means of a rapid, low cost and easily applicable PCR analysis based on 5S rDNA repeat units amplification, in order to contribute conservation management of these animals. The generated agarose electrophoresis band patterns allowed to unequivocally distinguish eight shark species. The data showed for the first time that a simple PCR is able to discriminate elasmobranch species. The described 5S rDNA PCR approach generated species-specific genetic markers that should find broad application in fishery management and trade of sharks and their subproducts.

  17. Relative Telomere Repeat Mass in Buccal and Leukocyte-Derived DNA

    Science.gov (United States)

    Finnicum, Casey T.; Dolan, Conor V.; Willemsen, Gonneke; Weber, Zachary M.; Petersen, Jason L.; Beck, Jeffrey J.; Codd, Veryan; Boomsma, Dorret I.; Davies, Gareth E.; Ehli, Erik A.

    2017-01-01

    Telomere length has garnered interest due to the potential role it may play as a biomarker for the cellular aging process. Telomere measurements obtained from blood-derived DNA are often used in epidemiological studies. However, the invasive nature of blood draws severely limits sample collection, particularly with children. Buccal cells are commonly sampled for DNA isolation and thus may present a non-invasive alternative for telomere measurement. Buccal and leukocyte derived DNA obtained from samples collected at the same time period were analyzed for telomere repeat mass (TRM). TRM was measured in buccal-derived DNA samples from individuals for whom previous TRM data from blood samples existed. TRM measurement was performed by qPCR and was normalized to the single copy 36B4 gene relative to a reference DNA sample (K562). Correlations between TRM from blood and buccal DNA were obtained and also between the same blood DNA samples measured in separate laboratories. Using the classical twin design, TRM heritability was estimated (N = 1892, MZ = 1044, DZ = 775). Buccal samples measured for TRM showed a significant correlation with the blood-1 (R = 0.39, p < 0.01) and blood-2 (R = 0.36, p < 0.01) samples. Sex and age effects were observed within the buccal samples as is the norm within blood-derived DNA. The buccal, blood-1, and blood-2 measurements generated heritability estimates of 23.3%, 47.6% and 22.2%, respectively. Buccal derived DNA provides a valid source for the determination of TRM, paving the way for non-invasive projects, such as longitudinal studies in children. PMID:28125671

  18. Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Henrik D. Møller

    2016-02-01

    Full Text Available Extrachromosomal circular DNA (eccDNA derived from chromosomal Ty retrotransposons in yeast can be generated in multiple ways. Ty eccDNA can arise from the circularization of extrachromosomal linear DNA during the transpositional life cycle of retrotransposons, or from circularization of genomic Ty DNA. Circularization may happen through nonhomologous end-joining (NHEJ of long terminal repeats (LTRs flanking Ty elements, by Ty autointegration, or by LTR–LTR recombination. By performing an in-depth investigation of sequence reads stemming from Ty eccDNAs obtained from populations of Saccharomyces cerevisiae S288c, we find that eccDNAs predominantly correspond to full-length Ty1 elements. Analyses of sequence junctions reveal no signs of NHEJ or autointegration events. We detect recombination junctions that are consistent with yeast Ty eccDNAs being generated through recombination events within the genome. This opens the possibility that retrotransposable elements could move around in the genome without an RNA intermediate directly through DNA circularization.

  19. Analysis of unstable DNA sequence in FRM1 gene in Polish families with fragile X syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, Michal; Bal, Jerzy; Obersztyn, Ewa; Bocian, Ewa; Mazurczak, Tadeusz [Instytut Matki i Dziecka, Warsaw (Poland); Zygulska, Marta; Horst, Juergen [Institute of Human Genetics, Muenster (Germany); Deelen, Wout H.; Halley, Dicky J.J. [Erasmus Univ., Rotterdam (Netherlands)

    1996-12-31

    The unstable DNA sequence in the FMR1 gene was analyzed in 85 individuals from Polish families with fragile X syndrome in order to characterize mutations responsible for the disease in Poland. In all affected individuals classified on the basis of clinical features and expression of the fragile site at X(q27.3) a large expansion of the unstable sequence (full mutation) was detected. About 5% (2 of 43) of individuals with full mutation did not express the fragile site. Among normal alleles, ranging in size from 20 to 41 CGC repeats, allele with 29 repeats was the most frequent (37%). Transmission of premutated and fully mutated alleles to the offspring was always associated with size increase. No change in repeat number was found when normal alleles were transmitted. (author). 19 refs., 4 figs, 1 tab.

  20. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rangapriya Sundararajan

    2011-03-01

    Full Text Available Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2, a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.

  1. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sundararajan, Rangapriya; Freudenreich, Catherine H

    2011-03-01

    Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.

  2. Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis.

    Science.gov (United States)

    Lunardi, Andrea; Varmeh, Shohreh; Chen, Ming; Taulli, Riccardo; Guarnerio, Jlenia; Ala, Ugo; Seitzer, Nina; Ishikawa, Tomoki; Carver, Brett S; Hobbs, Robin M; Quarantotti, Valentina; Ng, Christopher; Berger, Alice H; Nardella, Caterina; Poliseno, Laura; Montironi, Rodolfo; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Signoretti, Sabina; Pandolfi, Pier Paolo

    2015-05-01

    The ETS family of transcription factors has been repeatedly implicated in tumorigenesis. In prostate cancer, ETS family members, such as ERG, ETV1, ETV4, and ETV5, are frequently overexpressed due to chromosomal translocations, but the molecular mechanisms by which they promote prostate tumorigenesis remain largely undefined. Here, we show that ETS family members, such as ERG and ETV1, directly repress the expression of the checkpoint kinase 1 (CHK1), a key DNA damage response cell-cycle regulator essential for the maintenance of genome integrity. Critically, we find that ERG expression correlates with CHK1 downregulation in human patients and demonstrate that Chk1 heterozygosity promotes the progression of high-grade prostatic intraepithelial neoplasia into prostatic invasive carcinoma in Pten(+) (/-) mice. Importantly, CHK1 downregulation sensitizes prostate tumor cells to etoposide but not to docetaxel treatment. Thus, we identify CHK1 as a key functional target of the ETS proto-oncogenic family with important therapeutic implications. Genetic translocation and aberrant expression of ETS family members is a common event in different types of human tumors. Here, we show that through the transcriptional repression of CHK1, ETS factors may favor DNA damage accumulation and consequent genetic instability in proliferating cells. Importantly, our findings provide a rationale for testing DNA replication inhibitor agents in ETS-positive TP53-proficient tumors. ©2015 American Association for Cancer Research.

  3. (TG/CAn repeats in human gene families: abundance and selective patterns of distribution according to function and gene length

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2005-06-01

    Full Text Available Abstract Background Creation of human gene families was facilitated significantly by gene duplication and diversification. The (TG/CAn repeats exhibit length variability, display genome-wide distribution, and are abundant in the human genome. Accumulation of evidences for their multiple functional roles including regulation of transcription and stimulation of recombination and splicing elect them as functional elements. Here, we report analysis of the distribution of (TG/CAn repeats in human gene families. Results The 1,317 human gene families were classified into six functional classes. Distribution of (TG/CAn repeats were analyzed both from a global perspective and from a stratified perspective based on their biological properties. The number of genes with repeats decreased with increasing repeat length and several genes (53% had repeats of multiple types in various combinations. Repeats were positively associated with the class of Signaling and communication whereas, they were negatively associated with the classes of Immune and related functions and of Information. The proportion of genes with (TG/CAn repeats in each class was proportional to the corresponding average gene length. The repeat distribution pattern in large gene families generally mirrored the global distribution pattern but differed particularly for Collagen gene family, which was rich in repeats. The position and flanking sequences of the repeats of Collagen genes showed high conservation in the Chimpanzee genome. However the majority of these repeats displayed length polymorphism. Conclusion Positive association of repeats with genes of Signaling and communication points to their role in modulation of transcription. Negative association of repeats in genes of Information relates to the smaller gene length, higher expression and fundamental role in cellular physiology. In genes of Immune and related functions negative association of repeats perhaps relates to the smaller gene

  4. Intermediates in the folding equilibrium of repeat proteins from the TPR family.

    Science.gov (United States)

    González-Charro, Vicente; Rey, Antonio

    2014-09-01

    In recent decades, advances in computational methods and experimental biophysical techniques have improved our understanding of protein folding. Although some of these advances have been remarkable, the structural variability of globular proteins usually encountered makes it difficult to extract general features of their folding processes. To overcome this difficulty, experimental and computational studies of the folding of repeat (or modular) proteins are of interest. Because their native structures can be described as linear arrays of the same, repeated, supersecondary structure unit, it is possible to seek a possibly independent behavior of the different modules without taking into account the intrinsic stability associated with different secondary structure motifs. In this work we have used a Monte Carlo-based simulation to study the folding equilibrium of four repeat proteins belonging to the tetratricopeptide repeat family. Our studies provide new insights into their energy profiles, enabling investigation about the existence of intermediate states and their relative stabilities. We have also performed structural analyses to describe the structure of these intermediates, going through the vast number of conformations obtained from the simulations. In this way, we have tried to identify the regions of each protein in which the modular structure yields a different behavior and, more specifically, regions of the proteins that can stay folded when the rest of the chain has been thermally denatured.

  5. Mutagenic roles of DNA "repair" proteins in antibody diversity and disease-associated trinucleotide repeat instability.

    Science.gov (United States)

    Slean, Meghan M; Panigrahi, Gagan B; Ranum, Laura P; Pearson, Christopher E

    2008-07-01

    While DNA repair proteins are generally thought to maintain the integrity of the whole genome by correctly repairing mutagenic DNA intermediates, there are cases where DNA "repair" proteins are involved in causing mutations instead. For instance, somatic hypermutation (SHM) and class switch recombination (CSR) require the contribution of various DNA repair proteins, including UNG, MSH2 and MSH6 to mutate certain regions of immunoglobulin genes in order to generate antibodies of increased antigen affinity and altered effector functions. Another instance where "repair" proteins drive mutations is the instability of gene-specific trinucleotide repeats (TNR), the causative mutations of numerous diseases including Fragile X mental retardation syndrome (FRAXA), Huntington's disease (HD), myotonic dystrophy (DM1) and several spinocerebellar ataxias (SCAs) all of which arise via various modes of pathogenesis. These healthy and deleterious mutations that are induced by repair proteins are distinct from the genome-wide mutations that arise in the absence of repair proteins: they occur at specific loci, are sensitive to cis-elements (sequence context and/or epigenetic marks) and transcription, occur in specific tissues during distinct developmental windows, and are age-dependent. Here we review and compare the mutagenic role of DNA "repair" proteins in the processes of SHM, CSR and TNR instability.

  6. On DNA codes from a family of chain rings

    Directory of Open Access Journals (Sweden)

    Elif Segah Oztas

    2017-01-01

    Full Text Available In this work, we focus on reversible cyclic codes which correspond to reversible DNA codes or reversible-complement DNA codes over a family of finite chain rings, in an effort to extend what was done by Yildiz and Siap in [20]. The ring family that we have considered are of size $2^{2^k}$, $k=1,2, \\cdots$ and we match each ring element with a DNA $2^{k-1}$-mer. We use the so-called $u^2$-adic digit system to solve the reversibility problem and we characterize cyclic codes that correspond to reversible-complement DNA-codes. We then conclude our study with some examples.

  7. Molecular analysis of the (CAGN repeat causing Huntington′s disease in 34 Iranian families

    Directory of Open Access Journals (Sweden)

    Hormozian F

    2004-01-01

    Full Text Available Huntington′s disease (HD is an inherited neurodegenerative disorder characterized by chorea and progressive dementia. The mutation causing the disease has been identified as an unstable expansion of a trinucleotide (CAG n at the 5′ end of the IT 15 gene on chromosome 4. We have analyzed the distribution of CAG repeats in 71 Iranian individuals (34 patients and 37 unaffected family members belonging to 31 unrelated families thought to segregate HD. We found one expanded CAG allele in 22 individuals (65% belonging to 21 unrelated families. In these HD patients, expanded alleles varied from 40 to 83 CAG units and normal alleles varied from 13 to 36 CAGs. A significant negative correlation between age at onset of symptoms and size of the expanded CAG allele was found (r= - 0.51; P=0. 1. In addition, we genotyped 25 unrelated control individuals (total of 50 alleles and found normal CAG repeats varying from 10 to 34 units. In conclusion, our results showed that molecular confirmation of the clinical diagnosis in HD should be sought in all suspected patients, making it possible for adequate genetic counseling. This Study is the first report of molecular diagnosis of Huntington disease among Iranian population and ever in Middle East and with regard to high frequency of consanguinity marriage in this region.

  8. Lack of expansion of triplet repeats in the FMR1, FRAXE, and FRAXF loci in male multiplex families with autism and pervasive developmental disorders

    Energy Technology Data Exchange (ETDEWEB)

    Holden, J.J.A.; Julien-Inalsingh, C. [Queen`s Univ., Kingston (Canada); Wing, M. [Ongwanada Resource Centre, Kingston (Canada)] [and others

    1996-08-09

    Sib, twin, and family studies have shown that a genetic cause exists in many cases of autism, with a portion of cases associated with a fragile X chromosome. Three folate-sensitive fragile sites in the Xq27{r_arrow}Xq28 region have been cloned and found to have polymorphic trinucleotide repeats at the respective sites; these repeats are amplified and methylated in individuals who are positive for the different fragile sites. We have tested affected boys and their mothers from 19 families with two autistic/PDD boys for amplification and/or instability of the triplet repeats at these loci and concordance of inheritance of alleles by affected brothers. In all cases, the triplet repeat numbers were within the normal range, with no individuals having expanded or premutation-size alleles. For each locus, there was no evidence for an increased frequency of concordance, indicating that mutations within these genes are unlikely to be responsible for the autistic/PDD phenotypes in the affected boys. Thus, we think it is important to retest those autistic individuals who were cytogenetically positive for a fragile X chromosome, particularly cases where there is no family history of the fragile X syndrome, using the more accurate DNA-based testing procedures. 29 refs., 1 fig., 1 tab.

  9. Reduction in the structural instability of cloned eukaryotic tandem-repeat DNA by low-temperature culturing of host bacteria.

    Science.gov (United States)

    Thapana, Watcharaporn; Sujiwattanarat, Penporn; Srikulnath, Kornsorn; Hirai, Hirohisa; Koga, Akihiko

    2014-10-27

    Summary For accurate analyses of eukaryotic tandem-repeat DNA, it is often required to clone a genomic DNA fragment into a bacterial plasmid. It is, however, a serious problem that tandem-repeat DNA is frequently subjected to structural changes during maintenance or amplification in the host bacteria. Here, we show an example of a clear difference in the instability of tandem-repeat DNA between different culturing temperatures. A fragment of monkey centromeric DNA carried by pUC19 was considerably degraded by culturing bacteria at 37 °C, but the damage was reduced at 25 °C. Thus, culturing temperature is a significant factor for avoiding degradation, in addition to the genotype of the host bacteria.

  10. In silico reversal of repeat-induced point mutation (RIP identifies the origins of repeat families and uncovers obscured duplicated genes

    Directory of Open Access Journals (Sweden)

    Hane James K

    2010-11-01

    Full Text Available Abstract Background Repeat-induced point mutation (RIP is a fungal genome defence mechanism guarding against transposon invasion. RIP mutates the sequence of repeated DNA and over time renders the affected regions unrecognisable by similarity search tools such as BLAST. Results DeRIP is a new software tool developed to predict the original sequence of a RIP-mutated region prior to the occurrence of RIP. In this study, we apply deRIP to the genome of the wheat pathogen Stagonospora nodorum SN15 and predict the origin of several previously uncharacterised classes of repetitive DNA. Conclusions Five new classes of transposon repeats and four classes of endogenous gene repeats were identified after deRIP. The deRIP process is a new tool for fungal genomics that facilitates the identification and understanding of the role and origin of fungal repetitive DNA. DeRIP is open-source and is available as part of the RIPCAL suite at http://www.sourceforge.net/projects/ripcal.

  11. Recombination-independent recognition of DNA homology for repeat-induced point mutation.

    Science.gov (United States)

    Gladyshev, Eugene; Kleckner, Nancy

    2017-06-01

    Numerous cytogenetic observations have shown that homologous chromosomes (or individual chromosomal loci) can engage in specific pairing interactions in the apparent absence of DNA breakage and recombination, suggesting that canonical recombination-mediated mechanisms may not be the only option for sensing DNA/DNA homology. One proposed mechanism for such recombination-independent homology recognition involves direct contacts between intact double-stranded DNA molecules. The strongest in vivo evidence for the existence of such a mechanism is provided by the phenomena of homology-directed DNA modifications in fungi, known as repeat-induced point mutation (RIP, discovered in Neurospora crassa) and methylation-induced premeiotically (MIP, discovered in Ascobolus immersus). In principle, Neurospora RIP can detect the presence of gene-sized DNA duplications irrespectively of their origin, underlying nucleotide sequence, coding capacity or relative, as well as absolute positions in the genome. Once detected, both sequence copies are altered by numerous cytosine-to-thymine (C-to-T) mutations that extend specifically over the duplicated region. We have recently shown that Neurospora RIP does not require MEI-3, the only RecA/Rad51 protein in this organism, consistent with a recombination-independent mechanism. Using an ultra-sensitive assay for RIP mutation, we have defined additional features of this process. We have shown that RIP can detect short islands of homology of only three base-pairs as long as many such islands are arrayed with a periodicity of 11 or 12 base-pairs along a pair of DNA molecules. While the presence of perfect homology is advantageous, it is not required: chromosomal segments with overall sequence identity of only 35-36 % can still be recognized by RIP. Importantly, in order for this process to work efficiently, participating DNA molecules must be able to co-align along their lengths. Based on these findings, we have proposed a model, in which

  12. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family.

    Science.gov (United States)

    Deryusheva, Evgeniia I; Machulin, Andrey V; Selivanova, Olga M; Galzitskaya, Oxana V

    2017-04-01

    Proteins of the nucleic acid-binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB-fold in protein structures. Here, we have analyzed the superfamily of nucleic acid-binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA-binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA-binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain-containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB-fold is a distinctive feature of S1 domain-containing proteins. Proteins from the other families and superfamilies have either one OB-fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain-containing proteins. Proteins 2017; 85:602-613. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. DNA methylation and triplet repeat stability: New proposals addressing actual questions on the CGG repeat of fragile X syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Woehrle, D.; Schwemmle, S.; Steinbach, P. [Univ. of Ulm (Germany)

    1996-08-09

    Methylation of expanded CGG repeats in the FMR1 gene may well have different consequences. One is that methylation, extending into upstream regulatory elements, could lead to gene inactivation. Another effect of methylation, which we have obtained evidence for, could be stabilization of the repeat sequence and even prevention of premutations from expansion to full mutation. The full mutation of the fragile X syndrome probably occurs in an early transitional stage of embryonic development. The substrate is a maternally inherited premutation. The product usually is a mosaic pattern of full mutations detectable in early fetal life. These full mutation patterns are mitotically stable as, for instance, different somatic tissues of full mutation fetuses show identical mutation patterns. This raised the following questions: What triggers repeat expansion in that particular stage of development and what causes subsequent mitotic stability of expanded repeats? 21 refs., 1 fig.

  14. Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring

    Directory of Open Access Journals (Sweden)

    Neil A Youngson

    2016-01-01

    Full Text Available There is now strong evidence that the paternal contribution to offspring phenotype at fertilisation is more than just DNA. However, the identity and mechanisms of this nongenetic inheritance are poorly understood. One of the more important questions in this research area is: do changes in sperm DNA methylation have phenotypic consequences for offspring? We have previously reported that offspring of obese male rats have altered glucose metabolism compared with controls and that this effect was inherited through nongenetic means. Here, we describe investigations into sperm DNA methylation in a new cohort using the same protocol. Male rats on a high-fat diet were 30% heavier than control-fed males at the time of mating (16-19 weeks old, n = 14/14. A small (0.25% increase in total 5-methyl-2Ͳ-deoxycytidine was detected in obese rat spermatozoa by liquid chromatography tandem mass spectrometry. Examination of the repetitive fraction of the genome with methyl-CpG binding domain protein-enriched genome sequencing (MBD-Seq and pyrosequencing revealed that retrotransposon DNA methylation states in spermatozoa were not affected by obesity, but methylation at satellite repeats throughout the genome was increased. However, examination of muscle, liver, and spermatozoa from male 27-week-old offspring from obese and control fathers (both groups from n = 8 fathers revealed that normal DNA methylation levels were restored during offspring development. Furthermore, no changes were found in three genomic imprints in obese rat spermatozoa. Our findings have implications for transgenerational epigenetic reprogramming. They suggest that postfertilization mechanisms exist for normalising some environmentally-induced DNA methylation changes in sperm cells.

  15. A Conserved DNA Repeat Promotes Selection of a Diverse Repertoire of Trypanosoma brucei Surface Antigens from the Genomic Archive.

    Directory of Open Access Journals (Sweden)

    Galadriel Hovel-Miner

    2016-05-01

    Full Text Available African trypanosomes are mammalian pathogens that must regularly change their protein coat to survive in the host bloodstream. Chronic trypanosome infections are potentiated by their ability to access a deep genomic repertoire of Variant Surface Glycoprotein (VSG genes and switch from the expression of one VSG to another. Switching VSG expression is largely based in DNA recombination events that result in chromosome translocations between an acceptor site, which houses the actively transcribed VSG, and a donor gene, drawn from an archive of more than 2,000 silent VSGs. One element implicated in these duplicative gene conversion events is a DNA repeat of approximately 70 bp that is found in long regions within each BES and short iterations proximal to VSGs within the silent archive. Early observations showing that 70-bp repeats can be recombination boundaries during VSG switching led to the prediction that VSG-proximal 70-bp repeats provide recombinatorial homology. Yet, this long held assumption had not been tested and no specific function for the conserved 70-bp repeats had been demonstrated. In the present study, the 70-bp repeats were genetically manipulated under conditions that induce gene conversion. In this manner, we demonstrated that 70-bp repeats promote access to archival VSGs. Synthetic repeat DNA sequences were then employed to identify the length, sequence, and directionality of repeat regions required for this activity. In addition, manipulation of the 70-bp repeats allowed us to observe a link between VSG switching and the cell cycle that had not been appreciated. Together these data provide definitive support for the long-standing hypothesis that 70-bp repeats provide recombinatorial homology during switching. Yet, the fact that silent archival VSGs are selected under these conditions suggests the 70-bp repeats also direct DNA pairing and recombination machinery away from the closest homologs (silent BESs and toward the rest of

  16. DNA Fingerprint Analysis of Three Short Tandem Repeat (STR) Loci for Biochemistry and Forensic Science Laboratory Courses

    Science.gov (United States)

    McNamara-Schroeder, Kathleen; Olonan, Cheryl; Chu, Simon; Montoya, Maria C.; Alviri, Mahta; Ginty, Shannon; Love, John J.

    2006-01-01

    We have devised and implemented a DNA fingerprinting module for an upper division undergraduate laboratory based on the amplification and analysis of three of the 13 short tandem repeat loci that are required by the Federal Bureau of Investigation Combined DNA Index System (FBI CODIS) data base. Students first collect human epithelial (cheek)…

  17. DNA Fingerprint Analysis of Three Short Tandem Repeat (STR) Loci for Biochemistry and Forensic Science Laboratory Courses

    Science.gov (United States)

    McNamara-Schroeder, Kathleen; Olonan, Cheryl; Chu, Simon; Montoya, Maria C.; Alviri, Mahta; Ginty, Shannon; Love, John J.

    2006-01-01

    We have devised and implemented a DNA fingerprinting module for an upper division undergraduate laboratory based on the amplification and analysis of three of the 13 short tandem repeat loci that are required by the Federal Bureau of Investigation Combined DNA Index System (FBI CODIS) data base. Students first collect human epithelial (cheek)…

  18. PCR typing of DNA fragments of the short tandem repeat (STR) system HUMTH01 in Danes and Greenland Eskimos

    DEFF Research Database (Denmark)

    Nellemann, L J; Møller, A; Morling, N

    1994-01-01

    DNA from the short tandem repeat (STR) system HUMTH01 was amplified by the polymerase chain reaction (PCR) and analyzed by vertical electrophoresis in polyacrylamide gels followed by silver staining. DNA samples from 100 unrelated Danes, 147 unrelated Greenland Eskimos, and 89 Danish mother/child...

  19. DNA-labelled cytidine assay for the quantification of CAG repeats.

    Science.gov (United States)

    Pérez-Bello, Dannelys; Xu, Z H; Higginson-Clarke, David; Rojas, Ana María Riverón; Le, Weidong; Rodríguez-Tanty, Chryslaine

    2008-03-30

    The sequencing procedure has been used to determine the size of the CAG repeat expansion for the diagnosis of genetic disorders. Likewise, standard polymerase chain reaction (PCR) and gel electrophoresis techniques are applied for screening large number of patients. The trinucleotide repeats (TNR) region amplification by means of the PCR procedure was initially performed using 32-P end-labelled primers and currently carried out with fluorescently end-labelled primers. The goal to obtain reliable TNR quantification assays, at low cost and short assay times, represents a challenge for the molecular diagnosis aimed at massive screening of affected populations. In the current work, we obtained preliminary results of a new methodology for the detection and size estimation of CAG expanded alleles. The assay was based on an indirect enzyme linked immunosorbent assay (ELISA) for quantifying the amount of labelled cytidines in DNA molecules. The label, 6-(p-bromobenzamido)caproyl radical, was introduced by the transamination and acylation reactions. A group of model sequences containing different numbers of CAG repeats, as well as the ATXN3 (ataxin 3) gene (from subjects suffering type 3 spinocerebellar ataxia SCA3) were used for assay standardization. The assay is simple, inexpensive, and easy to perform and differentiates distinct degrees of CAG expansions.

  20. Analysis of the trinucleotide CAG repeat from the human mitochondrial DNA polymerase gene in healthy and diseased individuals.

    Science.gov (United States)

    Rovio, A; Tiranti, V; Bednarz, A L; Suomalainen, A; Spelbrink, J N; Lecrenier, N; Melberg, A; Zeviani, M; Poulton, J; Foury, F; Jacobs, H T

    1999-01-01

    The human nuclear gene (POLG) for the catalytic subunit of mitochondrial DNA polymerase (DNA polymerase gamma) contains a trinucleotide CAG microsatellite repeat within the coding sequence. We have investigated the frequency of different repeat-length alleles in populations of diseased and healthy individuals. The predominant allele of 10 CAG repeats was found at a very similar frequency (approximately 88%) in both Finnish and ethnically mixed population samples, with homozygosity close to the equilibrium prediction. Other alleles of between 5 and 13 repeat units were detected, but no larger, expanded alleles were found. A series of 51 British myotonic dystrophy patients showed no significant variation from controls, indicating an absence of generalised CAG repeat instability. Patients with a variety of molecular lesions in mtDNA, including sporadic, clonal deletions, maternally inherited point mutations, autosomally transmitted mtDNA depletion and autosomal dominant multiple deletions showed no differences in POLG trinucleotide repeat-length distribution from controls. These findings rule out POLG repeat expansion as a common pathogenic mechanism in disorders characterised by mitochondrial genome instability.

  1. Formation of functional CENP-B boxes at diverse locations in repeat units of centromeric DNA in New World monkeys.

    Science.gov (United States)

    Kugou, Kazuto; Hirai, Hirohisa; Masumoto, Hiroshi; Koga, Akihiko

    2016-06-13

    Centromere protein B, which is involved in centromere formation, binds to centromeric repetitive DNA by recognizing a nucleotide motif called the CENP-B box. Humans have large numbers of CENP-B boxes in the centromeric repetitive DNA of their autosomes and X chromosome. The current understanding is that these CENP-B boxes are located at identical positions in the repeat units of centromeric DNA. Great apes also have CENP-B boxes in locations that are identical to humans. The purpose of the present study was to examine the location of CENP-B box in New World monkeys. We recently identified CENP-B box in one species of New World monkeys (marmosets). In this study, we found functional CENP-B boxes in CENP-A-assembled repeat units of centromeric DNA in 2 additional New World monkeys (squirrel monkeys and tamarins) by immunostaining and ChIP-qPCR analyses. The locations of the 3 CENP-B boxes in the repeat units differed from one another. The repeat unit size of centromeric DNA of New World monkeys (340-350 bp) is approximately twice that of humans and great apes (171 bp). This might be, associated with higher-order repeat structures of centromeric DNA, a factor for the observed variation in the CENP-B box location in New World monkeys.

  2. A graphical simulation model of the entire DNA process associated with the analysis of short tandem repeat loci

    OpenAIRE

    Gill, Peter; Curran, James; Elliot, Keith

    2005-01-01

    The use of expert systems to interpret short tandem repeat DNA profiles in forensic, medical and ancient DNA applications is becoming increasingly prevalent as high-throughput analytical systems generate large amounts of data that are time-consuming to process. With special reference to low copy number (LCN) applications, we use a graphical model to simulate stochastic variation associated with the entire DNA process starting with extraction of sample, followed by the processing associated wi...

  3. The Pentapeptide Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  4. Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)(n) Repeats by PNA or LNA Targeting

    DEFF Research Database (Denmark)

    Bergquist, Helen; Rocha, Cristina S. J.; Alvarez-Asencio, Ruben

    2016-01-01

    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigen......Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated...... with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical...... probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA...

  5. Visualization and quantitative analysis of extrachromosomal telomere-repeat DNA in individual human cells by Halo-FISH.

    Science.gov (United States)

    Komosa, Martin; Root, Heather; Meyn, M Stephen

    2015-02-27

    Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain 300), range widely in length (200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells.

  6. Molecular characterization and evolution of an interspersed repetitive DNA family of oysters.

    Science.gov (United States)

    López-Flores, Inmaculada; Ruiz-Rejón, Carmelo; Cross, Ismael; Rebordinos, Laureana; Robles, Francisca; Navajas-Pérez, Rafael; de la Herrán, Roberto

    2010-12-01

    When genomic DNA from the European flat oyster Ostrea edulis L. was digested by BclI enzyme, a band of about 150 bp was observed in agarose gel. After cloning and sequencing this band and analysing their molecular characteristics and genomic organization by means of Southern blot, in situ hybridisation, and polymerase chain reaction (PCR) protocols, we concluded that this band is an interspersed highly repeated DNA element, which is related in sequence to the flanking regions of (CT)-microsatellite loci of the species O. edulis and Crassostrea gigas. Furthermore, we determined that this element forms part of a longer repetitive unit of 268 bp in length that, at least in some loci, is present in more than one copy. By Southern blot hybridisation and PCR amplifications-using primers designed for conserved regions of the 150-bp BclI clones of O. edulis-we determined that this repetitive DNA family is conserved in five other oyster species (O. stentina, C. angulata, C. gigas, C. ariakensis, and C. sikamea) while it is apparently absent in C. gasar. Finally, based on the analysis of the repetitive units in these oyster species, we discuss the slow degree of concerted evolution in this interspersed repetitive DNA family and its use for phylogenetic analysis.

  7. Localization of a new highly repeated DNA sequence of Lemur cafta (Lemuridae, Strepsirhini).

    Science.gov (United States)

    Boniotto, Michele; Ventura, Mario; Cardone, Maria Francesca; Boaretto, Francesca; Archidiacono, Nicoletta; Rocchi, Mariano; Crovella, Sergio

    2002-10-01

    We have isolated and cloned an 800-bp highly repeated DNA (HRDNA) sequence from Lemur catta (LCA) and described its localization on LCA chromosomes. Lemur catta HRDNA sequences were localized by performing FISH experiments on standard and elongated metaphasic chromosomes using an LCA HRDNA probe (LCASAT). A complex hybridization pattern was detected. A strong pericentromeric hybridization signal was observed on most LCA chromosomes. Chromosomes 7 and 13 were lit in pericentromeric regions, as well as in the interspersed heterochromatin. Chromosomes 1, 3, 4, 17, 19, X, and microchromosomes (20, 25, 26, and 27) showed no signals in the pericentromeric region, but chromosomes 3 and 4 showed a positive hybridization in heterochromatic regions. The 800-bp L catta HRDNA was species specific. We performed FISH experiments with the LCASAT probe on Eulemur macaco macaco (EMA) and Eulemur fulvus fulvus (EFU) metaphases and no positive signal of hybridization was detected. These findings were also confirmed by Southern blot analysis and PCR.

  8. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation.

    Science.gov (United States)

    Kaufer, Benedikt B; Jarosinski, Keith W; Osterrieder, Nikolaus

    2011-03-14

    Some herpesviruses, particularly lymphotropic viruses such as Marek's disease virus (MDV) and human herpesvirus 6 (HHV-6), integrate their DNA into host chromosomes. MDV and HHV-6, among other herpesviruses, harbor telomeric repeats (TMRs) identical to host telomeres at either end of their linear genomes. Using MDV as a natural virus-host model, we show that herpesvirus TMRs facilitate viral genome integration into host telomeres and that integration is important for establishment of latency and lymphoma formation. Integration into host telomeres also aids in reactivation from the quiescent state of infection. Our results and the presence of TMRs in many herpesviruses suggest that integration mediated by viral TMRs is a conserved mechanism, which ensures faithful virus genome maintenance in host cells during cell division and allows efficient mobilization of dormant viral genomes. This finding is of particular importance as reactivation is critical for virus spread between susceptible individuals and is necessary for continued herpesvirus evolution and survival.

  9. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting.

    Science.gov (United States)

    Guo, Lijun; Xu, Kun; Liu, Zhiyuan; Zhang, Cunfang; Xin, Ying; Zhang, Zhiying

    2015-06-01

    In addition to the advantages of scalable, affordable, and easy to engineer, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology is superior for multiplex targeting, which is laborious and inconvenient when achieved by cloning multiple gRNA expressing cassettes. Here, we report a simple CRISPR array assembling method which will facilitate multiplex targeting usage. First, the Streptococcus thermophilus CRISPR3/Cas locus was cloned. Second, different CRISPR arrays were assembled with different crRNA spacers. Transformation assays using different Escherichia coli strains demonstrated efficient plasmid DNA targeting, and we achieved targeting efficiency up to 95% with an assembled CRISPR array with three crRNA spacers. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Maternal inheritance and mitochondrial DNA variants in familial Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Pfeiffer Ronald F

    2010-04-01

    Full Text Available Abstract Background Mitochondrial function is impaired in Parkinson's disease (PD and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to the risk of PD. Methods We examined the possibility of a maternal inheritance bias as well as the association between mitochondrial haplogroups and maternal inheritance and disease risk in a case-control study of 168 multiplex PD families in which the proband and one parent were diagnosed with PD. 2-tailed Fisher Exact Tests and McNemar's tests were used to compare allele frequencies, and a t-test to compare ages of onset. Results The frequency of affected mothers of the proband with PD (83/167, 49.4% was not significantly different from the frequency of affected females of the proband generation (115/259, 44.4% (Odds Ratio 1.22; 95%CI 0.83 - 1.81. After correcting for multiple tests, there were no significant differences in the frequencies of mitochondrial haplogroups or of the 10398G complex I gene polymorphism in PD patients compared to controls, and no significant associations with age of onset of PD. Mitochondrial haplogroup and 10398G polymorphism frequencies were similar in probands having an affected father as compared to probands having an affected mother. Conclusions These data fail to demonstrate a bias towards maternal inheritance in familial PD. Consistent with this, we find no association of common haplogroup-defining mtDNA variants or for the 10398G variant with the risk of PD. However, these data do not exclude a role for mtDNA variants in other populations, and it remains possible that other inherited mitochondrial DNA variants, or somatic mDNA

  11. Huntington CAG repeat size does not modify onset age in familial Parkinson’s disease: The GenePD Study

    Science.gov (United States)

    McNicoll, Christopher F.; Latourelle, Jeanne C.; MacDonald, Marcy E.; Lew, Mark F.; Suchowersky, Oksana; Klein, Christine; Golbe, Lawrence I.; Mark, Margery H.; Growdon, John H.; Wooten, G. Frederick; Watts, Ray L.; Guttman, Mark; Racette, Brad A.; Perlmutter, Joel S.; Ahmed, Anwar; Shill, Holly A.; Singer, Carlos; Saint-Hilaire, Marie H.; Massood, Tiffany; Huskey, Karen W.; DeStefano, Anita L.; Gillis, Tammy; Mysore, Jayalakshmi; Goldwurm, Stefano; Pezzoli, Gianni; Baker, Kenneth B.; Itin, Ilia; Litvan, Irene; Nicholson, Garth; Corbett, Alastair; Nance, Martha; Drasby, Edward; Isaacson, Stuart; Burn, David J.; Chinnery, Patrick F.; Pramstaller, Peter P.; Al-hinti, Jomana; Moller, Anette T.; Ostergaard, Karen; Sherman, Scott J.; Roxburgh, Richard; Snow, Barry; Slevin, John T.; Cambi, Franca; Gusella, James F.; Myers, Richard H.

    2009-01-01

    The ATP/ADP ratio reflects mitochondrial function and has been reported to be influenced by the size of the Huntington disease gene (HD) repeat. Impaired mitochondrial function has long been implicated in the pathogenesis of Parkinson’s disease (PD) and therefore, we evaluated the relationship of the HD CAG repeat size to PD onset age in a large sample of familial PD cases. PD affected siblings (n=495) with known onset ages from 248 families, were genotyped for the HD CAG repeat. Genotyping failed in 11 cases leaving 484 for analysis, including 35 LRRK2 carriers. All cases had HD CAG repeats (range 15 to 34) below the clinical range for HD, although 5.2 percent of the sample (n=25) had repeats in the intermediate range (the intermediate range lower limit=27; upper limit=35 repeats), suggesting that the prevalence of intermediate allele carriers in the general population is significant. No relation between the HD CAG repeat size and the age at onset for PD was found in this sample of familial PD. PMID:18649400

  12. Retesting for repeat chlamydial infection: family planning provider knowledge, attitudes, and practices.

    Science.gov (United States)

    Park, Ina U; Amey, Annette; Creegan, Linda; Barandas, Aileen; Bauer, Heidi M

    2010-06-01

    Repeated genital infections with Chlamydia trachomatis are common and associated with serious adverse reproductive sequelae in women such as infertility, ectopic pregnancy, and chronic pelvic pain. Retesting for repeat chlamydial infection is recommended 3 months after treatment for an initial infection; however, retesting rates in various settings are low. In order to design interventions to increase retesting rates, understanding provider barriers and practices around retesting is crucial. Therefore, in this survey of family planning providers we sought to describe: (1) knowledge about retesting for chlamydia; (2) attitudes and barriers toward retesting; (3) practices currently utilized to ensure retesting, and predictors associated with their use. We conducted a cross-sectional, self-administered, Internet-based survey of a convenience sample of family planning providers in California inquiring about strategies utilized to ensure retesting in their practice setting. High-intensity strategies included chart flagging, tickler (reminder) systems, follow-up appointments, and phone/mail reminders. Of 268 respondents, 82% of providers reported at least 1 barrier to retesting, and only 44% utilized high-intensity interventions to ensure that patients returned. Predictors associated with use of high-intensity interventions included existence of clinic-level retesting policies (OR 3.95, 95% CI 1.98-7.88), and perception of a high/moderate level of clinic priority toward retesting (OR 3.75, 95% CI 2.12-.6.63). Emphasizing the importance of retesting to providers through adoption of clinic policies will likely be an important component of a multimodal strategy to ensure that patients are retested and that provider/clinic staff take advantage of opportunities to retest patients. Innovative approaches such as home-based retesting with self-collected vaginal swabs and use of cost-effective technologies to generate patient reminders should also be considered.

  13. Chelating resin-based extraction of DNA from dental pulp and sex determination from incinerated teeth with Y-chromosomal alphoid repeat and short tandem repeats.

    Science.gov (United States)

    Tsuchimochi, Tsukasa; Iwasa, Mineo; Maeno, Yoshitaka; Koyama, Hiroyoshi; Inoue, Hiroyuki; Isobe, Ichiro; Matoba, Ryoji; Yokoi, Motoo; Nagao, Masataka

    2002-09-01

    A procedure utilizing Chelex 100, chelating resin, was adapted to extract DNA from dental pulp. The procedure was simple and rapid, involved no organic solvents, and did not require multiple tube transfers. The extraction of DNA from dental pulp using this method was as efficient, or more so, than using proteinase K and phenol-chloroform extraction. In this study, the Chelex method was used with amplification and typing at Y-chromosomal loci to determine the effects of temperature on the sex determination of the teeth. The extracted teeth were incinerated in a dental furnace for 2 minutes at 100 degrees C, 200 degrees C, 300 degrees C, 400 degrees C, and 500 degrees C. After the isolation of DNA from the dental pulp by the Chelex method, alphoid repeats, and short tandem repeats, the human Y chromosome (DYZ3), DYS19, SYS389, DYS390, and DYS393 could be amplified and typed in all samples incinerated at up to 300 degrees C for 2 minutes. The DYS389 locus in some samples could not be amplified at 300 degrees C for 2 minutes. An autopsy case is described in which genotypings of DYS19, DYS390, and DYS393 from dental pulp obtained from a burned body were needed. The data presented in this report suggest that Chelex 100-based DNA extraction, amplification, and typing are possible in burned teeth in forensic autopsy cases.

  14. Random rapid amplification of cDNA ends (RRACE) allows for cloning of multiple novel human cDNA fragments containing (CAG)n repeats.

    Science.gov (United States)

    Carney, J P; McKnight, C; VanEpps, S; Kelley, M R

    1995-04-03

    We describe a new technique for isolating cDNA fragments in which (i) either a partial sequence of the cDNA is known or (ii) a repeat sequence is utilized. We have used this technique, termed random rapid amplification of cDNA ends (random RACE), to isolate a number of trinucleotide repeat (CAG)n-containing genes. Using the random RACE (RRACE) technique, we have isolated over a hundred (CAG)n-containing genes. The results of our initial analysis of ten clones indicate that three are identical to previously cloned (CAG)n-containing genes. Three of our clones matched with expressed sequence tags, one of which contained a CA repeat. The remaining four clones did not match with any sequence in GenBank. These results indicate that this approach provides a rapid and efficient method for isolating trinucleotide repeat-containing cDNA fragments. Finally, this technique may be used for purposes other than cloning repeat-containing cDNA fragments. If only a partial sequence of a gene is known, our system, described here, provides a rapid and efficient method for isolating a fragment of the gene of interest.

  15. Toxoplasma gondii: a bradyzoite-specific DnaK-tetratricopeptide repeat (DnaK-TPR) protein interacts with p23 co-chaperone protein.

    Science.gov (United States)

    Ueno, Akio; Dautu, George; Haga, Kaori; Munyaka, Biscah; Carmen, Gabriella; Kobayashi, Yoshiyasu; Igarashi, Makoto

    2011-04-01

    The DnaK-tetratricopeptide repeat (DnaK-TPR) gene (ToxoDB ID, TGME49_002020) is expressed predominantly at the bradyzoite stage. DnaK-TPR protein has a heat shock protein (DnaK) and tetratricopeptide repeat (TPR) domains with amino acid sequence similarity to the counterparts of other organisms (40.2-43.7% to DnaK domain and 41.1-66.0% to TPR domain). These findings allowed us to infer that DnaK-TPR protein is important in the tachyzoite-to-bradyzoite development or maintenance of cyst structure although the function of this gene is still unknown. An immunofluorescence assay (IFA) revealed that DnaK-TPR protein was expressed in Toxoplasma gondii-encysted and in vitro-induced bradyzoites and distributed in the whole part of parasite cells. We conducted yeast two-hybrid screening to identify proteins interacting with DnaK-TPR protein, and demonstrated that DnaK-TPR protein interacts with p23 co-chaperone protein (Tgp23). It was expected that DnaK-TPR protein would have a function as a molecular chaperon in bradyzoite cells associated with Tgp23. Possible mechanisms for this gene are discussed.

  16. DNA dynamics is likely to be a factor in the genomic nucleotide repeats expansions related to diseases.

    Directory of Open Access Journals (Sweden)

    Boian S Alexandrov

    Full Text Available Trinucleotide repeats sequences (TRS represent a common type of genomic DNA motif whose expansion is associated with a large number of human diseases. The driving molecular mechanisms of the TRS ongoing dynamic expansion across generations and within tissues and its influence on genomic DNA functions are not well understood. Here we report results for a novel and notable collective breathing behavior of genomic DNA of tandem TRS, leading to propensity for large local DNA transient openings at physiological temperature. Our Langevin molecular dynamics (LMD and Markov Chain Monte Carlo (MCMC simulations demonstrate that the patterns of openings of various TRSs depend specifically on their length. The collective propensity for DNA strand separation of repeated sequences serves as a precursor for outsized intermediate bubble states independently of the G/C-content. We report that repeats have the potential to interfere with the binding of transcription factors to their consensus sequence by altered DNA breathing dynamics in proximity of the binding sites. These observations might influence ongoing attempts to use LMD and MCMC simulations for TRS-related modeling of genomic DNA functionality in elucidating the common denominators of the dynamic TRS expansion mutation with potential therapeutic applications.

  17. Huntington's disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?!

    Science.gov (United States)

    Banoei, Mohammad Mehdi; Houshmand, Massoud; Panahi, Mehdi Shafa Shariat; Shariati, Parvin; Rostami, Maryam; Manshadi, Masoumeh Dehghan; Majidizadeh, Tayebeh

    2007-11-01

    The mitochondrial DNA (mtDNA) may play an essential role in the pathogenesis of the respiratory chain complex activities in neurodegenerative disorders such as Huntington's disease (HD). Research studies were conducted to determine the possible levels of mitochondrial defect (deletion) in HD patients and consideration of interaction between the expanded Huntingtin gene as a nuclear gene and mitochondria as a cytoplasmic organelle. To determine mtDNA damage, we investigated deletions based in four areas of mitochondrial DNA, in a group of 60 Iranian patients clinically diagnosed with HD and 70 healthy controls. A total of 41 patients out of 60 had CAG expansion (group A). About 19 patients did not show expansion but had the clinical symptoms of HD (group B). MtDNA deletions were classified into four groups according to size; 9 kb, 7.5 kb, 7 kb, and 5 kb. We found one of the four-mtDNA deletions in at least 90% of samples. Multiple deletions have also been observed in 63% of HD patients. None of the normal control (group C) showed mtDNA deletions. The sizes or locations of the deletions did not show a clear correlation with expanded CAG repeat and age in our samples. The study presented evidence that HD patients had higher frequencies of mtDNA deletions in lymphocytes in comparison to the controls. It is thus proposed that CAG repeats instability and mutant Htt are causative factor in mtDNA damage.

  18. Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)(n) Repeats by PNA or LNA Targeting

    DEFF Research Database (Denmark)

    Bergquist, Helen; Rocha, Cristina S. J.; Alvarez-Asencio, Ruben;

    2016-01-01

    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigen......Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated...

  19. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus

    2010-01-01

    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic

  20. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus

    2010-01-01

    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic prope

  1. A family of repeating low-frequency earthquakes at the downdip edge of tremor and slip

    Science.gov (United States)

    Sweet, Justin R.; Creager, Kenneth C.; Houston, Heidi

    2014-09-01

    analyze an isolated low-frequency earthquake (LFE) family located at the downdip edge of the main episodic tremor and slip (ETS) zone beneath western Washington State. The 9000 individual LFEs from this repeating family cluster into 198 swarms that recur roughly every week. Cumulative LFE seismic moment for each swarm correlates strongly with the time until the next swarm, suggesting that these LFE swarms are time predictable. Precise double-difference relative locations for 700 individual LFEs within this family show a distribution that is approximately 2 km long and 500 m wide, elongated parallel to the relative plate convergence direction. The distribution of locations (<300 m vertical spread) lies within a few hundred meters of two different plate interface models and has a similar dip. Peak-to-peak LFE S wave amplitudes range from 0.2 to 18 nm. Individual LFEs exhibit a trend of increasing magnitude during swarms, with smaller events at the beginning and the largest events toward the end. The largest LFEs cluster in a small area (300 m radius) coincident with maximum LFE density. We propose that the less-concentrated smaller LFEs act to unlock this patch core, allowing it to fully rupture in the largest LFEs, usually toward the end of a swarm. We interpret the patch responsible for producing these LFEs as a subducted seamount on the downgoing Juan de Fuca (JdF) plate. LFE locking efficiency (slip estimated during 5 years from summing LFE seismic moment divided by plate-rate-determined slip) is at most 20% and is highly concentrated in two ˜50 m radius locations in the larger patch core. Estimated individual LFE stress drops range from 1 to 20 kPa, but could also be significantly larger.

  2. Nucleotide sequence, DNA damage location and protein stoichiometry influence base excision repair outcome at CAG/CTG repeats

    Science.gov (United States)

    Goula, Agathi-Vasiliki; Pearson, Christopher E.; Della Maria, Julie; Trottier, Yvon; Tomkinson, Alan E.; Wilson, David M.; Merienne, Karine

    2012-01-01

    Expansion of CAG/CTG repeats is the underlying cause of >fourteen genetic disorders, including Huntington’s disease (HD) and myotonic dystrophy. The mutational process is ongoing, with increases in repeat size enhancing the toxicity of the expansion in specific tissues. In many repeat diseases the repeats exhibit high instability in the striatum, whereas instability is minimal in the cerebellum. We provide molecular insights as to how base excision repair (BER) protein stoichiometry may contribute to the tissue-selective instability of CAG/CTG repeats by using specific repair assays. Oligonucleotide substrates with an abasic site were mixed with either reconstituted BER protein stoichiometries mimicking the levels present in HD mouse striatum or cerebellum, or with protein extracts prepared from HD mouse striatum or cerebellum. In both cases, repair efficiency at CAG/CTG repeats and at control DNA sequences was markedly reduced under the striatal conditions, likely due to the lower level of APE1, FEN1 and LIG1. Damage located towards the 5’ end of the repeat tract was poorly repaired accumulating incompletely processed intermediates as compared to an AP lesion in the centre or at the 3’ end of the repeats or within a control sequences. Moreover, repair of lesions at the 5’ end of CAG or CTG repeats involved multinucleotide synthesis, particularly under the cerebellar stoichiometry, suggesting that long-patch BER processes lesions at sequences susceptible to hairpin formation. Our results show that BER stoichiometry, nucleotide sequence and DNA damage position modulate repair outcome, and suggest that a suboptimal LP-BER activity promotes CAG/CTG repeat instability. PMID:22497302

  3. DNA Commission of the International Society of Forensic Genetics: recommendations on forensic analysis using Y-chromosome short tandem repeats

    DEFF Research Database (Denmark)

    Gill, P.; Brenner, C.; Brinkmann, B.;

    2001-01-01

    During the past few years the DNA commission of the International Society of Forensic Genetics has published a series of documents providing guidelines and recommendations concerning the application of DNA polymorphisms to the problems of human identification. This latest report addresses a relat...... a relatively new area, namely Y-chromosome polymorphisms, with particular emphasis on short tandem repeats (STRs). This report addresses nomenclature, use of allelic ladders, population genetics and reporting methods Udgivelsesdato: 2001/12...

  4. Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome.

    Science.gov (United States)

    Tang, Xiaomin; Datema, Erwin; Guzman, Myriam Olortegui; de Boer, Jan M; van Eck, Herman J; Bachem, Christian W B; Visser, Richard G F; de Jong, Hans

    2014-12-01

    One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes. We also analysed various repeat elements that are unique to potato including the moderately repetitive P5 and REP2 elements, where the REP2 is part of a larger Gypsy-type LTR retrotransposon and cover most chromosome regions, with some brighter fluorescing spots in the heterochromatin. The most abundant tandem repeat is the potato genomic repeat 1 that covers subtelomeric regions of most chromosome arms. Extensive multiple alignments of these repetitive sequences in the assembled RH89-039-16 potato BACs and the draft assembly of the DM1-3 516 R44 genome shed light on the conservation of these repeats within the potato genome. The consensus sequences thus obtained revealed the native complete transposable elements from which they were derived.

  5. Tracking of intercalary DNA sequences integrated into tandem repeat arrays in rye Secale vavilovii

    Directory of Open Access Journals (Sweden)

    Magdalena Achrem

    2017-06-01

    Full Text Available The structure of repetitive sequences of the JNK block present in the pericentromeric region of the 2RL chromosome was studied in Secale vavilovii. Amplification of sequences present between the JNK sequences led to the identification of seven abnormal DNA fragments. Two of these fragments showed high similarity to the glutamate 5-kinase gene and putative alcohol dehydrogenase gene of trypanosomatid from the genus Leishmania, whose presence can be explained by horizontal gene transfer (HGT. Other fragments were similar to mitochondrial gene for ribosomal protein S4 in plants and to the glycoprotein (G gene of the IHNV virus. Presumably, they are pseudogenes inserted into the JNK heterochromatin region. Within this region, also fragments similar to the rye repetitive sequence and chromosome 3B in wheat were found. There is no known mechanism that would explain how foreign sequences were inserted into the block region of tandem repetitive sequences of the JNK family.

  6. Phylogenomic approaches to common problems encountered in the analysis of low copy repeats: The sulfotransferase 1A gene family example

    Directory of Open Access Journals (Sweden)

    Benner Steven A

    2005-03-01

    Full Text Available Abstract Background Blocks of duplicated genomic DNA sequence longer than 1000 base pairs are known as low copy repeats (LCRs. Identified by their sequence similarity, LCRs are abundant in the human genome, and are interesting because they may represent recent adaptive events, or potential future adaptive opportunities within the human lineage. Sequence analysis tools are needed, however, to decide whether these interpretations are likely, whether a particular set of LCRs represents nearly neutral drift creating junk DNA, or whether the appearance of LCRs reflects assembly error. Here we investigate an LCR family containing the sulfotransferase (SULT 1A genes involved in drug metabolism, cancer, hormone regulation, and neurotransmitter biology as a first step for defining the problems that those tools must manage. Results Sequence analysis here identified a fourth sulfotransferase gene, which may be transcriptionally active, located on human chromosome 16. Four regions of genomic sequence containing the four human SULT1A paralogs defined a new LCR family. The stem hominoid SULT1A progenitor locus was identified by comparative genomics involving complete human and rodent genomes, and a draft chimpanzee genome. SULT1A expansion in hominoid genomes was followed by positive selection acting on specific protein sites. This episode of adaptive evolution appears to be responsible for the dopamine sulfonation function of some SULT enzymes. Each of the conclusions that this bioinformatic analysis generated using data that has uncertain reliability (such as that from the chimpanzee genome sequencing project has been confirmed experimentally or by a "finished" chromosome 16 assembly, both of which were published after the submission of this manuscript. Conclusion SULT1A genes expanded from one to four copies in hominoids during intra-chromosomal LCR duplications, including (apparently one after the divergence of chimpanzees and humans. Thus, LCRs may

  7. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution.

  8. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  9. Differential effects of the HESR/HEY transcription factor family on dopamine transporter reporter gene expression via variable number of tandem repeats.

    Science.gov (United States)

    Kanno, Kouta; Ishiura, Shoichi

    2011-04-01

    The 3'-untranslated region (UTR) of the human dopamine transporter (DAT1) gene contains a variable number of tandem repeats (VNTR) domain, which is thought to be associated with dopamine-related psychiatric disorders, personality, and behavior. However, the molecular and neuronal functions of polymorphisms within the VNTR domain are unknown. We previously identified the transcription factor HESR1 (HEY1) as a VNTR-binding protein. Hesr1 knockout mice exhibit DAT up-regulation in the brain and low levels of spontaneous activity. Other members of the HESR (HEY) family, including HESR2 (HEY2) and 3 (HEYL), have similar DNA-binding domains. In this study, we analyzed the effects of HESR1, -2, and -3 on DAT1 expression in human neuroblastoma SH-SY5Y cells using luciferase reporter assays. We found that the VNTR domain played an inhibitory role in DAT1 reporter gene expression and that HESR1 and -2 inhibited expression via both the core promoter and the VNTR. The inhibitory effects of HESR family members on DAT reporter gene expression differed depending on the number of repeats in the VNTR domain. We also found that each Hesr was expressed in the dopaminergic neurons in the mouse midbrain. These results suggest that the HESR family is involved in DAT expression via the VNTR domain.

  10. DNA barcoding of the Lemnaceae, a family of aquatic monocots

    Directory of Open Access Journals (Sweden)

    Wang Wenqin

    2010-09-01

    Full Text Available Abstract Background Members of the aquatic monocot family Lemnaceae (commonly called duckweeds represent the smallest and fastest growing flowering plants. Their highly reduced morphology and infrequent flowering result in a dearth of characters for distinguishing between the nearly 38 species that exhibit these tiny, closely-related and often morphologically similar features within the same family of plants. Results We developed a simple and rapid DNA-based molecular identification system for the Lemnaceae based on sequence polymorphisms. We compared the barcoding potential of the seven plastid-markers proposed by the CBOL (Consortium for the Barcode of Life plant-working group to discriminate species within the land plants in 97 accessions representing 31 species from the family of Lemnaceae. A Lemnaceae-specific set of PCR and sequencing primers were designed for four plastid coding genes (rpoB, rpoC1, rbcL and matK and three noncoding spacers (atpF-atpH, psbK-psbI and trnH-psbA based on the Lemna minor chloroplast genome sequence. We assessed the ease of amplification and sequencing for these markers, examined the extent of the barcoding gap between intra- and inter-specific variation by pairwise distances, evaluated successful identifications based on direct sequence comparison of the "best close match" and the construction of a phylogenetic tree. Conclusions Based on its reliable amplification, straightforward sequence alignment, and rates of DNA variation between species and within species, we propose that the atpF-atpH noncoding spacer could serve as a universal DNA barcoding marker for species-level identification of duckweeds.

  11. A simple Duplex-PCR to evaluate the DNA quality of anthropological and forensic samples prior short tandem repeat typing.

    Science.gov (United States)

    von Wurmb-Schwark, Nicole; Schwark, Thorsten; Harbeck, Michaela; Oehmichen, Manfred

    2004-04-01

    Typing of DNA from ancient or otherwise highly degraded material, e.g. formalin fixed tissues, can be difficult, time consuming and costly. Very often, genetic typing is not possible at all. We present an inexpensive and easy to use Duplex-PCR that amplifies a 164 bp fragment specific for nuclear DNA together with a 260 bp mitochondrial DNA fragment and that can be employed as a pretest prior to short tandem repeat (STR) typing. All together, we analyzed DNA from 20 ancient bones, 20 formalin fixed tissues and 20 other forensic samples in different concentrations. Each sample that failed in the presented Duplex-amplification was also negative for STR typing, while samples that showed strong and clear signals in the Duplex-PCR led to reproducible genetic profiles using the multiplex kits AmpFLSTR Identifiler and Powerplex ES. The Duplex-PCR worked as a reliable indicator of DNA quality in the sample.

  12. Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia.

    Science.gov (United States)

    Amsellem, Sabine; Briffaut, Dorothée; Carrié, Alain; Rabès, Jean Pierre; Girardet, Jean Philippe; Fredenrich, Alexandre; Moulin, Philippe; Krempf, Michel; Reznik, Yves; Vialettes, Bernard; de Gennes, Jean Luc; Brukert, Eric; Benlian, Pascale

    2002-12-01

    Familial hypercholesterolemia (FH), a frequent monogenic condition complicated by premature cardiovascular disease, is characterized by high allelic heterogeneity at the low-density lipoprotein receptor ( LDLR) locus. Despite more than a decade of genetic testing, knowledge about intronic disease-causing mutations has remained limited because of lack of available genomic sequences. Based on the finding from bioinformatic analysis that Alu repeats represent 85% of LDLR intronic sequences outside exon-intron junctions, we designed a strategy to improve the exploration of genomic regions in the vicinity of exons in 110 FH subjects from an admixed population. In the first group of 42 patients of negative mutation carriers, as previously established by former screening strategies (denaturing gradient gel electrophoresis, DNA sequencing with former primers overlapping splice-sites, Southern Blotting), about half ( n=22) were found to be carriers of at least one heterozygous mutation. Among a second group of 68 newly recruited patients, 27% of mutation carriers ( n=37) had a splicing regulatory mutation. Overall, out of the 54 mutations identified, 13 were intronic, and 18 were novel, out of which nearly half were intronic. Two novel intronic mutations (IVS8-10G-->A within the polypyrimidine tract and IVS7+10G-->A downstream of donor site) might create potential aberrant splice sites according to neural-network computed estimation, contrary to 31 common single nucleotide variations also identified at exon-intron junctions. This new strategy of detecting the most likely disease-causing LDLR mutations outside of Alu-rich genomic regions reveals that intronic mutations may have a greater impact than previously reported on the molecular basis of FH.

  13. Isolation of human minisatellite loci detected by synthetic tandem repeat probes: direct comparison with cloned DNA fingerprinting probes.

    Science.gov (United States)

    Armour, J A; Vergnaud, G; Crosier, M; Jeffreys, A J

    1992-08-01

    As a direct comparison with cloned 'DNA fingerprinting' probes, we present the results of screening an ordered array Charomid library for hypervariable human loci using synthetic tandem repeat (STR) probes. By recording the coordinates of positive hybridization signals, the subset of clones within the library detected by each STR probe can be defined, and directly compared with the set of clones detected by naturally occurring (cloned) DNA fingerprinting probes. The STR probes vary in the efficiency of detection of polymorphic minisatellite loci; among the more efficient probes, there is a strong overlap with the sets of clones detected by the DNA fingerprinting probes. Four new polymorphic loci were detected by one or more of the STR probes but not by any of the naturally occurring repeats. Sequence comparisons with the probe(s) used to detect the locus suggest that a relatively poor match, for example 10 out of 14 bases in a limited region of each repeat, is sufficient for the positive detection of tandem repeats in a clone in this type of library screening by hybridization. These results not only provide a detailed evaluation of the usefulness of STR probes in the isolation of highly variable loci, but also suggest strategies for the use of these multi-locus probes in screening libraries for clones from hypervariable loci.

  14. Differential distribution and association of repeat DNA sequences in the lateral element of the synaptonemal complex in rat spermatocytes.

    Science.gov (United States)

    Hernández-Hernández, Abrahan; Rincón-Arano, Héctor; Recillas-Targa, Félix; Ortiz, Rosario; Valdes-Quezada, Christian; Echeverría, Olga M; Benavente, Ricardo; Vázquez-Nin, Gerardo H

    2008-02-01

    The synaptonemal complex (SC) is an evolutionarily conserved structure that mediates synapsis of homologous chromosomes during meiotic prophase I. Previous studies have established that the chromatin of homologous chromosomes is organized in loops that are attached to the lateral elements (LEs) of the SC. The characterization of the genomic sequences associated with LEs of the SC represents an important step toward understanding meiotic chromosome organization and function. To isolate these genomic sequences, we performed chromatin immunoprecipitation assays in rat spermatocytes using an antibody against SYCP3, a major structural component of the LEs of the SC. Our results demonstrated the reproducible and exclusive isolation of repeat deoxyribonucleic acid (DNA) sequences, in particular long interspersed elements, short interspersed elements, long terminal direct repeats, satellite, and simple repeats. The association of these repeat sequences to the LEs of the SC was confirmed by in situ hybridization of meiotic nuclei shown by both light and electron microscopy. Signals were also detected over the chromatin surrounding SCs and in small loops protruding from the lateral elements into the SC central region. We propose that genomic repeat DNA sequences play a key role in anchoring the chromosome to the protein scaffold of the SC.

  15. Naphthyridine-Benzoazaquinolone: Evaluation of a Tricyclic System for the Binding to (CAG)n Repeat DNA and RNA.

    Science.gov (United States)

    Li, Jinxing; Sakata, Akihiro; He, Hanping; Bai, Li-Ping; Murata, Asako; Dohno, Chikara; Nakatani, Kazuhiko

    2016-07-05

    The expansion of CAG repeats in the human genome causes the neurological disorder Huntington's disease. The small-molecule naphthyridine-azaquinolone NA we reported earlier bound to the CAG/CAG motif in the hairpin structure of the CAG repeat DNA. In order to investigate and improve NA-binding to the CAG repeat DNA and RNA, we conducted systematic structure-binding studies of NA to CAG repeats. Among the five new NA derivatives we synthesized, surface plasmon resonance (SPR) assay showed that all of the derivatives modified from amide linkages in NA to a carbamate linkage failed to bind to CAG repeat DNA and RNA. One derivative, NBzA, modified by incorporating an additional ring to the azaquinolone was found to bind to both d(CAG)9 and r(CAG)9 . NBzA binding to d(CAG)9 was similar to NA binding in terms of large changes in the SPR assay and circular dichroism (CD) as well as pairwise binding, as assessed by electron spray ionization time-of-flight (ESI-TOF) mass spectrometry. For the binding to r(CAG)9 , both NA and NBzA showed stepwise binding in ESI-TOF MS, and NBzA-binding to r(CAG)9 induced more extensive conformational change than NA-binding. The tricyclic system in NBzA did not show significant effects on the binding, selectivity, and translation, but provides a large chemical space for further modification to gain higher affinity and selectivity. These studies revealed that the linker structure in NA and NBzA was suitable for the binding to CAG DNA and RNA, and that the tricyclic benzoazaquinolone did not interfere with the binding.

  16. Role of direct repeat and stem-loop motifs in mtDNA deletions: cause or coincidence?

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayanan Lakshmanan

    Full Text Available Deletion mutations within mitochondrial DNA (mtDNA have been implicated in degenerative and aging related conditions, such as sarcopenia and neuro-degeneration. While the precise molecular mechanism of deletion formation in mtDNA is still not completely understood, genome motifs such as direct repeat (DR and stem-loop (SL have been observed in the neighborhood of deletion breakpoints and thus have been postulated to take part in mutagenesis. In this study, we have analyzed the mitochondrial genomes from four different mammals: human, rhesus monkey, mouse and rat, and compared them to randomly generated sequences to further elucidate the role of direct repeat and stem-loop motifs in aging associated mtDNA deletions. Our analysis revealed that in the four species, DR and SL structures are abundant and that their distributions in mtDNA are not statistically different from randomized sequences. However, the average distance between the reported age associated mtDNA breakpoints and their respective nearest DR motifs is significantly shorter than what is expected of random chance in human (p10 bp tend to decrease with increasing lifespan among the four mammals studied here, further suggesting an evolutionary selection against stable mtDNA misalignments associated with long DRs in long-living animals. In contrast to the results on DR, the probability of finding SL motifs near a deletion breakpoint does not differ from random in any of the four mtDNA sequences considered. Taken together, the findings in this study give support for the importance of stable mtDNA misalignments, aided by long DRs, as a major mechanism of deletion formation in long-living, but not in short-living mammals.

  17. Assessment of candidate plant DNA barcodes using the Rutaceae family.

    Science.gov (United States)

    Luo, Kun; Chen, ShiLin; Chen, KeLi; Song, JingYuan; Yao, Hui; Ma, XinYe; Zhu, YingJie; Pang, XiaoHui; Yu, Hua; Li, XiWen; Liu, Zhen

    2010-06-01

    DNA barcoding is a rapidly developing frontier technology that is gaining worldwide attention. Here, seven regions (psbA-trnH, matK, ycf5, rpoC1, rbcL, ITS2, and ITS) with potential for use as DNA barcodes were tested for their ability to identify 300 samples of 192 species from 72 genera of the family Rutaceae. To evaluate each barcode's utility for species authentication, PCR amplification efficiency, genetic divergence, and barcoding gaps were assessed. We found that the ITS2 region exhibited the highest inter-specific divergence, and that this was significantly higher than the intra-specific variation in the "DNA barcoding gap" assessment and Wilcoxon two-sample tests. The ITS2 locus had the highest identification efficiency among all tested regions. In a previous study, we found that ITS2 was able to discriminate a wide range of plant taxa, and here we confirmed that ITS2 was also able to discriminate a number of closely related species. Therefore, we propose that ITS2 is a promising candidate barcode for plant species identification.

  18. Assessment of candidate plant DNA barcodes using the Rutaceae family

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    DNA barcoding is a rapidly developing frontier technology that is gaining worldwide attention.Here,seven regions (psbA-trnH,matK,ycf5,rpoC1,rbcL,ITS2,and ITS) with potential for use as DNA barcodes were tested for their ability to identify 300 samples of 192 species from 72 genera of the family Rutaceae.To evaluate each barcode’s utility for species authentication,PCR amplification efficiency,genetic divergence,and barcoding gaps were assessed.We found that the ITS2 region exhibited the highest inter-specific divergence,and that this was significantly higher than the intra-specific variation in the "DNA barcoding gap" assessment and Wilcoxon two-sample tests.The ITS2 locus had the highest identification efficiency among all tested regions.In a previous study,we found that ITS2 was able to discriminate a wide range of plant taxa,and here we confirmed that ITS2 was also able to discriminate a number of closely related species.Therefore,we propose that ITS2 is a promising candidate barcode for plant species identification.

  19. Cytomolecular discrimination of the A(m) chromosomes of Triticum monococcum and the A chromosomes of Triticum aestivum using microsatellite DNA repeats.

    Science.gov (United States)

    Megyeri, Mária; Mikó, Péter; Farkas, András; Molnár-Láng, Márta; Molnár, István

    2017-02-01

    The cytomolecular discrimination of the A(m)- and A-genome chromosomes facilitates the selection of wheat-Triticum monococcum introgression lines. Fluorescence in situ hybridisation (FISH) with the commonly used DNA probes Afa family, 18S rDNA and pSc119.2 showed that the more complex hybridisation pattern obtained in T. monococcum relative to bread wheat made it possible to differentiate the A(m) and A chromosomes within homoeologous groups 1, 4 and 5. In order to provide additional chromosomal landmarks to discriminate the A(m) and A chromosomes, the microsatellite repeats (GAA)n, (CAG)n, (CAC)n, (AAC)n, (AGG)n and (ACT)n were tested as FISH probes. These showed that T. monococcum chromosomes have fewer, generally weaker, simple sequence repeat (SSR) signals than the A-genome chromosomes of hexaploid wheat. A differential hybridisation pattern was observed on 6A(m) and 6A chromosomes with all the SSR probes tested except for the (ACT)n probe. The 2A(m) and 2A chromosomes were differentiated by the signals given by the (GAA)n, (CAG)n and (AAC)n repeats, while only (GAA)n discriminated the chromosomes 3A(m) and 3A. Chromosomes 7A(m) and 7A could be differentiated by the lack of (GAA)n and (AGG)n signals on 7A. As potential landmarks for identifying the A(m) chromosomes, SSR repeats will facilitate the introgression of T. monococcum chromatin into wheat.

  20. Repeated oral administration of chitosan/DNA nanoparticles delivers functional FVIII with the absence of antibodies in hemophilia A mice.

    Science.gov (United States)

    Dhadwar, S S; Kiernan, J; Wen, J; Hortelano, G

    2010-12-01

    Current treatment of hemophilia A is expensive and involves regular infusions of factor (F)VIII concentrates. The supply of functional FVIII is further compromised by the generation of neutralizing antibodies. Thus, the development of an alternative safe, cost effective, non-invasive treatment that circumvents immune response induction is desirable. To evaluate the feasibility of oral administration of chitosan nanoparticles containing FVIII DNA to provide sustainable FVIII activity in hemophilia A mice. Nanoparticles were characterized for morphology, DNA protection and transfection efficiency. Oral administration of nanoparticles containing canine FVIII in C57Bl/6 FVIII(-/-) hemophilia A mice was evaluated for biodistribution, plasma FVIII activity and phenotypic correction. Sustainable FVIII expression was elucidated after repeated nanoparticle administration. Immune responses to repeated oral nanoparticle administration were also investigated. Chitosan nanoparticles had a particle size range of 200-400 nm and protected DNA from endonuclease and pH degradation. In addition, nanoparticles transfected HEK 293 cells resulted in expression of eGFP, luciferase and FVIII. Hemophilia A mice that ingested chitosan nanoparticles demonstrated transient canine FVIII expression reaching > 100 mU 1 day after treatment, together with partial phenotypic correction. The delivered FVIII plasmid DNA was detected in the intestine and, to a lesser extent, in the liver. Importantly, repeated weekly administrations restored FVIII activity. Furthermore, inhibitors and non-neutralizing FVIII antibodies were not detectable. Repeat oral administration of FVIII DNA formulated in chitosan nanoparticles resulted in sustained FVIII activity in hemophilic mice, and thus may provide a non-invasive alternative treatment for hemophilia A. © 2010 International Society on Thrombosis and Haemostasis.

  1. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities!

    Directory of Open Access Journals (Sweden)

    Christopher E Pearson

    2011-03-01

    Full Text Available Diseases associated with unstable repetitive elements in the DNA, RNA, and amino acids have consistently revealed scientific surprises. Most diseases are caused by expansions of trinucleotide repeats, which ultimately lead to diseases like Huntington's disease, myotonic dystrophy, fragile X syndrome, and a series of spinocerebellar ataxias. These repeat mutations are dynamic, changing through generations and within an individual, and the repeats can be bi-directionally transcribed. Unsuspected modes of pathogenesis involve aberrant loss of protein expression; aberrant over-expression of non-mutant proteins; toxic-gain-of-protein function through expanded polyglutamine tracts that are encoded by expanded CAG tracts; and RNA-toxic-gain-of-function caused by transcripts harboring expanded CUG, CAG, or CGG tracts. A recent advance reveals that RNA transcripts with expanded CAG repeats can be translated in the complete absence of a starting ATG, and this Repeat Associated Non-ATG translation (RAN-translation occurs across expanded CAG repeats in all reading frames (CAG, AGC, and GCA to produce homopolymeric proteins of long polyglutamine, polyserine, and polyalanine tracts. Expanded CTG tracts expressing CUG transcripts also show RAN-translation occurring in all three frames (CUG, UGC, and GCU, to produce polyleucine, polycysteine, and polyalanine. These RAN-translation products can be toxic. Thus, one unstable (CAG•(CTG DNA can produce two expanded repeat transcripts and homopolymeric proteins with reading frames (the AUG-directed polyGln and six RAN-translation proteins, yielding a total of potentially nine toxic entities. The occurrence of RAN-translation in patient tissues expands our horizons of modes of disease pathogenesis. Moreover, since RAN-translation counters the canonical requirements of translation initiation, many new questions are now posed that must be addressed. This review covers RAN-translation and some of the pertinent

  2. The relationship between repeated unintended pregnancies and current contraceptive use: National Survey of Family Growth (NSFG) 2006-2008 data.

    Science.gov (United States)

    Matsuda, Yui; Masho, Saba; McGrath, Jacqueline M

    2012-01-01

    The purpose of this study is to examine the relationship between the number of unintended pregnancies and current contraceptive use. This is a secondary analysis of a cross-sectional survey, the 2006-2008 National Survey of Family Growth, which included 4,052 women between the ages of 15 and 44 years. A statistically significant association was found between the nonuse of contraceptives and repeated unintended pregnancies, as well as among those who used an effective contraceptive method and repeated unintended pregnancies. Nurses are encouraged to ask questions about intendedness of pregnancies during women's visits and help women choose appropriate contraceptive methods.

  3. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability

    Science.gov (United States)

    Cilli, Piera; Ventura, Ilenia; Minoprio, Anna; Meccia, Ettore; Martire, Alberto; Wilson, Samuel H.; Bignami, Margherita; Mazzei, Filomena

    2016-01-01

    DNA trinucleotide repeat (TNR) expansion underlies several neurodegenerative disorders including Huntington's disease (HD). Accumulation of oxidized DNA bases and their inefficient processing by base excision repair (BER) are among the factors suggested to contribute to TNR expansion. In this study, we have examined whether oxidation of the purine dNTPs in the dNTP pool provides a source of DNA damage that promotes TNR expansion. We demonstrate that during BER of 8-oxoguanine (8-oxodG) in TNR sequences, DNA polymerase β (POL β) can incorporate 8-oxodGMP with the formation of 8-oxodG:C and 8-oxodG:A mispairs. Their processing by the OGG1 and MUTYH DNA glycosylases generates closely spaced incisions on opposite DNA strands that are permissive for TNR expansion. Evidence in HD model R6/2 mice indicates that these DNA glycosylases are present in brain areas affected by neurodegeneration. Consistent with prevailing oxidative stress, the same brain areas contained increased DNA 8-oxodG levels and expression of the p53-inducible ribonucleotide reductase. Our in vitro and in vivo data support a model where an oxidized dNTPs pool together with aberrant BER processing contribute to TNR expansion in non-replicating cells. PMID:26980281

  4. Highly Effective DNA Extraction Method for Nuclear Short Tandem Repeat Testing of Skeletal Remains from Mass Graves

    Science.gov (United States)

    Davoren, Jon; Vanek, Daniel; Konjhodzić, Rijad; Crews, John; Huffine, Edwin; Parsons, Thomas J.

    2007-01-01

    Aim To quantitatively compare a silica extraction method with a commonly used phenol/chloroform extraction method for DNA analysis of specimens exhumed from mass graves. Methods DNA was extracted from twenty randomly chosen femur samples, using the International Commission on Missing Persons (ICMP) silica method, based on Qiagen Blood Maxi Kit, and compared with the DNA extracted by the standard phenol/chloroform-based method. The efficacy of extraction methods was compared by real time polymerase chain reaction (PCR) to measure DNA quantity and the presence of inhibitors and by amplification with the PowerPlex 16 (PP16) multiplex nuclear short tandem repeat (STR) kit. Results DNA quantification results showed that the silica-based method extracted on average 1.94 ng of DNA per gram of bone (range 0.25-9.58 ng/g), compared with only 0.68 ng/g by the organic method extracted (range 0.0016-4.4880 ng/g). Inhibition tests showed that there were on average significantly lower levels of PCR inhibitors in DNA isolated by the organic method. When amplified with PP16, all samples extracted by silica-based method produced 16 full loci profiles, while only 75% of the DNA extracts obtained by organic technique amplified 16 loci profiles. Conclusions The silica-based extraction method showed better results in nuclear STR typing from degraded bone samples than a commonly used phenol/chloroform method. PMID:17696302

  5. Tandemly repeated DNA is a target for the partial replacement of thymine by beta-D-glucosyl-hydroxymethyluracil in Trypanosoma brucei.

    Science.gov (United States)

    van Leeuwen, F; Kieft, R; Cross, M; Borst, P

    2000-07-01

    In the DNA of African trypanosomes a small fraction of thymine is replaced by the modified base beta-D-glucosyl-hydroxymethyluracil (J). The function of this large base is unknown. The presence of J in the silent variant surface glycoprotein gene expression sites and the lack of J in the transcribed expression site indicates that DNA modification might play a role in control of gene repression. However, the abundance of J in the long telomeric repeat tracts and in subtelomeric arrays of simple repeats suggests that J may also have specific functions in repetitive DNA. We have now analyzed chromosome-internal repetitive sequences in the genome of Trypanosoma brucei and found J in the minichromosomal 177-bp repeats, in the long arrays of 5S RNA gene repeats, and in the spliced-leader RNA gene repeats. No J was found in the rDNA locus or in dispersed repetitive transposon-like elements. Remarkably, the rDNA of T. brucei is not organized in long arrays of tandem repeats, as in many other eukaryotes. T. brucei contains only approximately 15-20 rDNA repeat units that are divided over six to seven chromosomes. Our results show that J is present in many tandemly repeated sequences, either at a telomere or chromosome internal. The presence of J might help to stabilize the long arrays of repeats in the genome.

  6. Correlation of inter-locus polyglutamine toxicity with CAG•CTG triplet repeat expandability and flanking genomic DNA GC content.

    Directory of Open Access Journals (Sweden)

    Colm E Nestor

    Full Text Available Dynamic expansions of toxic polyglutamine (polyQ-encoding CAG repeats in ubiquitously expressed, but otherwise unrelated, genes cause a number of late-onset progressive neurodegenerative disorders, including Huntington disease and the spinocerebellar ataxias. As polyQ toxicity in these disorders increases with repeat length, the intergenerational expansion of unstable CAG repeats leads to anticipation, an earlier age-at-onset in successive generations. Crucially, disease associated alleles are also somatically unstable and continue to expand throughout the lifetime of the individual. Interestingly, the inherited polyQ length mediating a specific age-at-onset of symptoms varies markedly between disorders. It is widely assumed that these inter-locus differences in polyQ toxicity are mediated by protein context effects. Previously, we demonstrated that the tendency of expanded CAG•CTG repeats to undergo further intergenerational expansion (their 'expandability' also differs between disorders and these effects are strongly correlated with the GC content of the genomic flanking DNA. Here we show that the inter-locus toxicity of the expanded polyQ tracts of these disorders also correlates with both the expandability of the underlying CAG repeat and the GC content of the genomic DNA flanking sequences. Inter-locus polyQ toxicity does not correlate with properties of the mRNA or protein sequences, with polyQ location within the gene or protein, or steady state transcript levels in the brain. These data suggest that the observed inter-locus differences in polyQ toxicity are not mediated solely by protein context effects, but that genomic context is also important, an effect that may be mediated by modifying the rate at which somatic expansion of the DNA delivers proteins to their cytotoxic state.

  7. Characterization of Family D DNA polymerase from Thermococcus sp. 9°N

    OpenAIRE

    Greenough, Lucia; Menin, Julie F.; Desai, Nirav S.; Kelman, Zvi; Gardner, Andrew F.

    2014-01-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we repor...

  8. Characterization of Family D DNA polymerase from Thermococcus sp. 9°N

    OpenAIRE

    Greenough, Lucia; Menin, Julie F.; Desai, Nirav S.; Kelman, Zvi; Gardner, Andrew F.

    2014-01-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we repor...

  9. Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T.

    Science.gov (United States)

    Giunta, Simona; Funabiki, Hironori

    2017-02-21

    Centromeres are highly specialized chromatin domains that enable chromosome segregation and orchestrate faithful cell division. Human centromeres are composed of tandem arrays of α-satellite DNA, which spans up to several megabases. Little is known about the mechanisms that maintain integrity of the long arrays of α-satellite DNA repeats. Here, we monitored centromeric repeat stability in human cells using chromosome-orientation fluorescent in situ hybridization (CO-FISH). This assay detected aberrant centromeric CO-FISH patterns consistent with sister chromatid exchange at the frequency of 5% in primary tissue culture cells, whereas higher levels were seen in several cancer cell lines and during replicative senescence. To understand the mechanism(s) that maintains centromere integrity, we examined the contribution of the centromere-specific histone variant CENP-A and members of the constitutive centromere-associated network (CCAN), CENP-C, CENP-T, and CENP-W. Depletion of CENP-A and CCAN proteins led to an increase in centromere aberrations, whereas enhancing chromosome missegregation by alternative methods did not, suggesting that CENP-A and CCAN proteins help maintain centromere integrity independently of their role in chromosome segregation. Furthermore, superresolution imaging of centromeric CO-FISH using structured illumination microscopy implied that CENP-A protects α-satellite repeats from extensive rearrangements. Our study points toward the presence of a centromere-specific mechanism that actively maintains α-satellite repeat integrity during human cell proliferation.

  10. Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD.

    Science.gov (United States)

    Zhou, Bo; Liu, Changdong; Geng, Yanyan; Zhu, Guang

    2015-11-13

    Abnormal expansions of an intronic hexanucleotide GGGGCC (G4C2) repeat of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Previous studies suggested that the C9orf72 hexanucleotide repeat expansion (HRE), either as DNA or the transcribed RNA, can fold into G-quadruplexes with distinct structures. These structural polymorphisms lead to abortive transcripts and contribute to the pathogenesis of ALS and FTD. Using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, we analyzed the structures of C9orf72 HRE DNA with various G4C2 repeats. They exhibited diverse G-quadruplex folds in potassium ions. Furthermore, we determined the topology of a G-quadruplex formed by d(G4C2)4. It favors a monomeric fold and forms a chair-type G-quadruplex with a four-layer antiparallel G-tetra core and three edgewise loops, which is distinct from known structures of chair-type G-quadruplexes. Our findings highlight the conformational heterogeneity of C9orf72 HRE DNA, and may lay the necessary structural basis for designing small molecules for the modulation of ALS/FTD pathogenesis.

  11. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  12. Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania.

    Directory of Open Access Journals (Sweden)

    Jean-Michel Ubeda

    2014-05-01

    Full Text Available Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment.

  13. Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania.

    Science.gov (United States)

    Ubeda, Jean-Michel; Raymond, Frédéric; Mukherjee, Angana; Plourde, Marie; Gingras, Hélène; Roy, Gaétan; Lapointe, Andréanne; Leprohon, Philippe; Papadopoulou, Barbara; Corbeil, Jacques; Ouellette, Marc

    2014-05-01

    Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment.

  14. Long inverted repeat transiently stalls DNA replication by forming hairpin structures on both leading and lagging strands.

    Science.gov (United States)

    Lai, Pey Jiun; Lim, Chew Theng; Le, Hang Phuong; Katayama, Tsutomu; Leach, David R F; Furukohri, Asako; Maki, Hisaji

    2016-02-01

    Long inverted repeats (LIRs), often found in eukaryotic genomes, are unstable in Escherichia coli where they are recognized by the SbcCD (the bacterial Mre11/Rad50 homologue), an endonuclease/exonuclease capable of cleaving hairpin DNA. It has long been postulated that LIRs form hairpin structures exclusively on the lagging-strand template during DNA replication, and SbcCD cleaves these hairpin-containing lagging strands to generate DNA double-strand breaks. Using a reconstituted oriC plasmid DNA replication system, we have examined how a replication fork behaves when it meets a LIR on DNA. We have shown that leading-strand synthesis stalls transiently within the upstream half of the LIR. Pausing of lagging-strand synthesis at the LIR was not clearly observed, but the pattern of priming sites for Okazaki fragment synthesis was altered within the downstream half of the LIR. We have found that the LIR on a replicating plasmid was cleaved by SbcCD with almost equal frequency on both the leading- and lagging-strand templates. These data strongly suggest that the LIR is readily converted to a cruciform DNA, before the arrival of the fork, creating SbcCD-sensitive hairpin structures on both leading and lagging strands. We propose a model for the replication-dependent extrusion of LIRs to form cruciform structures that transiently impede replication fork movement.

  15. In-frame deletion in the seventh immunoglobulin-like repeat of filamin C in a family with myofibrillar myopathy.

    Science.gov (United States)

    Shatunov, Alexey; Olivé, Montse; Odgerel, Zagaa; Stadelmann-Nessler, Christine; Irlbacher, Kerstin; van Landeghem, Frank; Bayarsaikhan, Munkhuu; Lee, Hee-Suk; Goudeau, Bertrand; Chinnery, Patrick F; Straub, Volker; Hilton-Jones, David; Damian, Maxwell S; Kaminska, Anna; Vicart, Patrick; Bushby, Kate; Dalakas, Marinos C; Sambuughin, Nyamkhishig; Ferrer, Isidro; Goebel, Hans H; Goldfarb, Lev G

    2009-05-01

    Myofibrillar myopathies (MFMs) are an expanding and increasingly recognized group of neuromuscular disorders caused by mutations in DES, CRYAB, MYOT, and ZASP. The latest gene to be associated with MFM was FLNC; a p.W2710X mutation in the 24th immunoglobulin-like repeat of filamin C was shown to be the cause of a distinct type of MFM in several German families. We studied an International cohort of 46 patients from 39 families with clinically and myopathologically confirmed MFM, in which DES, CRYAB, MYOT, and ZASP mutations have been excluded. In patients from an unrelated family a 12-nucleotide deletion (c.2997_3008del) in FLNC resulting in a predicted in-frame four-residue deletion (p.Val930_Thr933del) in the seventh repeat of filamin C was identified. Both affected family members, mother and daughter, but not unrelated control individuals, carried the p.Val930_Thr933del mutation. The mutation is transcribed and, based on myopathological features and immunoblot analysis, it leads to an accumulation of dysfunctional filamin C in the myocytes. The study results suggest that the novel p.Val930_Thr933del mutation in filamin C is the cause of MFM but also indicate that filamin C mutations are a comparatively rare cause of MFM.

  16. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin.

    Science.gov (United States)

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2004-05-31

    The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the

  17. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    Directory of Open Access Journals (Sweden)

    Perumal Sampath

    Full Text Available Miniature inverted-repeat transposable elements (MITEs are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5 were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1 were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.

  18. Repeated Dientamoeba fragilis infections: a case report of two families from Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Damien Stark

    2009-11-01

    Full Text Available We report cases of two unrelated families who both presented with recurrent Dienta-moeba fragilis infections. Subsequent antimicrobial therapy resulted in the clearance of D. fragilis and total resolution of gastrointestinal symptoms in both families. This report highlights the potentially recurrent nature of D. fragilis infections and the need for laboratories to routinely test for this organism.

  19. Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria.

    Directory of Open Access Journals (Sweden)

    Frederic Bertels

    2011-06-01

    Full Text Available Repetitive sequences are a conserved feature of many bacterial genomes. While first reported almost thirty years ago, and frequently exploited for genotyping purposes, little is known about their origin, maintenance, or processes affecting the dynamics of within-genome evolution. Here, beginning with analysis of the diversity and abundance of short oligonucleotide sequences in the genome of Pseudomonas fluorescens SBW25, we show that over-represented short sequences define three distinct groups (GI, GII, and GIII of repetitive extragenic palindromic (REP sequences. Patterns of REP distribution suggest that closely linked REP sequences form a functional replicative unit: REP doublets are over-represented, randomly distributed in extragenic space, and more highly conserved than singlets. In addition, doublets are organized as inverted repeats, which together with intervening spacer sequences are predicted to form hairpin structures in ssDNA or mRNA. We refer to these newly defined entities as REPINs (REP doublets forming hairpins and identify short reads from population sequencing that reveal putative transposition intermediates. The proximal relationship between GI, GII, and GIII REPINs and specific REP-associated tyrosine transposases (RAYTs, combined with features of the putative transposition intermediate, suggests a mechanism for within-genome dissemination. Analysis of the distribution of REPs in a range of RAYT-containing bacterial genomes, including Escherichia coli K-12 and Nostoc punctiforme, show that REPINs are a widely distributed, but hitherto unrecognized, family of miniature non-autonomous mobile DNA.

  20. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294; Zhukovskaya, Natalia [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Bedwell, Gregory [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Nuth, Manunya [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Gillilan, Richard [MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca New York 14853; Prevelige, Peter E. [Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama 35294; Ricciardi, Robert P. [Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania 19104; Banerjee, Surajit [Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT Argonne Illinois 60439; Chattopadhyay, Debasish [Department of Medicine, University of Alabama at Birmingham, Birmingham Alabama 35294

    2016-11-02

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.

  1. Curcusone C induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2.

    Science.gov (United States)

    Wang, Mingxue; Cao, Jiaojiao; Zhu, Jian-Yong; Qiu, Jun; Zhang, Yan; Shu, Bing; Ou, Tian-Miao; Tan, Jia-Heng; Gu, Lian-Quan; Huang, Zhi-Shu; Yin, Sheng; Li, Ding

    2017-11-01

    Telomeric repeat factor 2 (known as TRF2 or TERF2) is a key component of telomere protection protein complex named as Shelterin. TRF2 helps the folding of telomere to form T-loop structure and the suppression of ATM-dependent DNA damage response activation. TRF2 has been recognized as a potentially new therapeutic target for cancer treatment. In our routine screening of small molecule libraries, we found that Curcusone C had significant effect in disrupting the binding between TRF2 and telomeric DNA, with potent antitumor activity against cancer cells. Our result showed that Curcusone C could bind with TRF2 without binding interaction with TRF1 (telomeric repeat factor 1) although these two proteins share high sequence homology, indicating that their binding conformations and biological functions in telomere could be different. Our mechanistic studies showed that Curcusone C bound with TRF2 possibly through its DNA binding site causing blockage of its interaction with telomeric DNA. Further in cellular studies indicated that the interaction of TRF2 with Curcusone C could activate DNA-damage response, inhibit tumor cell proliferation, and cause cell cycle arrest, resulting in tumor cell apoptosis. Our studies showed that Curcusone C could become a promising lead compound for further development for cancer treatment. Here, TRF2 was firstly identified as a target of Curcusone C. It is likely that the anti-cancer activity of some other terpenes and terpenoids are related with their possible effect for telomere protection proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers

    Science.gov (United States)

    Vershinina, Alisa O.; Anokhin, Boris A.; Lukhtanov, Vladimir A.

    2015-01-01

    Abstract Ribosomal DNA clusters and telomeric repeats are important parts of eukaryotic genome. However, little is known about their organization and localization in karyotypes of organisms with holocentric chromosomes. Here we present first cytogenetic study of these molecular structures in seven blue butterflies of the genus Polyommatus Latreille, 1804 with low and high chromosome numbers (from n=10 to n=ca.108) using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG)n telomeric probes. FISH with the 18S rDNA probe showed the presence of two different variants of the location of major rDNA clusters in Polyommatus species: with one or two rDNA-carrying chromosomes in haploid karyotype. We discuss evolutionary trends and possible mechanisms of changes in the number of ribosomal clusters. We also demonstrate that Polyommatus species have the classical insect (TTAGG)n telomere organization. This chromosome end protection mechanism probably originated de novo in small chromosomes that evolved via fragmentations. PMID:26140159

  3. A graphical simulation model of the entire DNA process associated with the analysis of short tandem repeat loci.

    Science.gov (United States)

    Gill, Peter; Curran, James; Elliot, Keith

    2005-01-01

    The use of expert systems to interpret short tandem repeat DNA profiles in forensic, medical and ancient DNA applications is becoming increasingly prevalent as high-throughput analytical systems generate large amounts of data that are time-consuming to process. With special reference to low copy number (LCN) applications, we use a graphical model to simulate stochastic variation associated with the entire DNA process starting with extraction of sample, followed by the processing associated with the preparation of a PCR reaction mixture and PCR itself. Each part of the process is modelled with input efficiency parameters. Then, the key output parameters that define the characteristics of a DNA profile are derived, namely heterozygote balance (Hb) and the probability of allelic drop-out p(D). The model can be used to estimate the unknown efficiency parameters, such as pi(extraction). 'What-if' scenarios can be used to improve and optimize the entire process, e.g. by increasing the aliquot forwarded to PCR, the improvement expected to a given DNA profile can be reliably predicted. We demonstrate that Hb and drop-out are mainly a function of stochastic effect of pre-PCR molecular selection. Whole genome amplification is unlikely to give any benefit over conventional PCR for LCN.

  4. Maternal inheritance and mitochondrial DNA variants in familial Parkinson's disease

    OpenAIRE

    Pfeiffer Ronald F; Rudolph Alice; Halter Cheryl A; Pauciulo Michael W; Kissell Diane K; Pankratz Nathan; Simon David K; Nichols William C; Foroud Tatiana

    2010-01-01

    Abstract Background Mitochondrial function is impaired in Parkinson's disease (PD) and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA) from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to t...

  5. Chromosomal localization of a tandemly repeated DNA sequence in Trifilium repens L.

    Institute of Scientific and Technical Information of China (English)

    ZHUJM; NWELLISON; 等

    1996-01-01

    A karyotype of Trifolium repens constructed from mitotic cells revealed 13 pairs of metacentric and 3 pairs of submetacentric chromosomes including a pair of satellites located at the end of the short arm of chromosome 16.C-bands were identified around the centromeric regions of 8 pairs of chromosomes.A 350 bp tandemly repeated DNAsequence from T.repens labelled with digoxygenin hybridized to the proximal centromeric regions of 12 chromosome pairs.Some correlation between the distribution of the repeat sequence and the distribution of C-banding was demonstrated.

  6. Twisting right to left: A…A mismatch in a CAG trinucleotide repeat overexpansion provokes left-handed Z-DNA conformation.

    Science.gov (United States)

    Khan, Noorain; Kolimi, Narendar; Rathinavelan, Thenmalarchelvi

    2015-04-01

    Conformational polymorphism of DNA is a major causative factor behind several incurable trinucleotide repeat expansion disorders that arise from overexpansion of trinucleotide repeats located in coding/non-coding regions of specific genes. Hairpin DNA structures that are formed due to overexpansion of CAG repeat lead to Huntington's disorder and spinocerebellar ataxias. Nonetheless, DNA hairpin stem structure that generally embraces B-form with canonical base pairs is poorly understood in the context of periodic noncanonical A…A mismatch as found in CAG repeat overexpansion. Molecular dynamics simulations on DNA hairpin stems containing A…A mismatches in a CAG repeat overexpansion show that A…A dictates local Z-form irrespective of starting glycosyl conformation, in sharp contrast to canonical DNA duplex. Transition from B-to-Z is due to the mechanistic effect that originates from its pronounced nonisostericity with flanking canonical base pairs facilitated by base extrusion, backbone and/or base flipping. Based on these structural insights we envisage that such an unusual DNA structure of the CAG hairpin stem may have a role in disease pathogenesis. As this is the first study that delineates the influence of a single A…A mismatch in reversing DNA helicity, it would further have an impact on understanding DNA mismatch repair.

  7. Twisting right to left: A…A mismatch in a CAG trinucleotide repeat overexpansion provokes left-handed Z-DNA conformation.

    Directory of Open Access Journals (Sweden)

    Noorain Khan

    2015-04-01

    Full Text Available Conformational polymorphism of DNA is a major causative factor behind several incurable trinucleotide repeat expansion disorders that arise from overexpansion of trinucleotide repeats located in coding/non-coding regions of specific genes. Hairpin DNA structures that are formed due to overexpansion of CAG repeat lead to Huntington's disorder and spinocerebellar ataxias. Nonetheless, DNA hairpin stem structure that generally embraces B-form with canonical base pairs is poorly understood in the context of periodic noncanonical A…A mismatch as found in CAG repeat overexpansion. Molecular dynamics simulations on DNA hairpin stems containing A…A mismatches in a CAG repeat overexpansion show that A…A dictates local Z-form irrespective of starting glycosyl conformation, in sharp contrast to canonical DNA duplex. Transition from B-to-Z is due to the mechanistic effect that originates from its pronounced nonisostericity with flanking canonical base pairs facilitated by base extrusion, backbone and/or base flipping. Based on these structural insights we envisage that such an unusual DNA structure of the CAG hairpin stem may have a role in disease pathogenesis. As this is the first study that delineates the influence of a single A…A mismatch in reversing DNA helicity, it would further have an impact on understanding DNA mismatch repair.

  8. A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER

    Directory of Open Access Journals (Sweden)

    Haga Christopher L

    2007-09-01

    Full Text Available Abstract Background In mouse the cytokine interleukin-7 (IL-7 is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER. The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR, a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules.

  9. Repeat Finding Techniques, Data Structures and Algorithms in DNA sequences: A Survey

    Directory of Open Access Journals (Sweden)

    Freeson Kaniwa

    2015-09-01

    Full Text Available DNA sequencing technologies keep getting faster and cheaper leading to massive availability of entire human genomes. This massive availability calls for better analysis tools with a potential to realize a shift from reactive to predictive medicine. The challenge remains, since the entire human genomes need more space and processing power than that can be offered by a standard Desktop PC for their analysis. A background of key concepts surrounding the area of DNA analysis is given and a review of selected prominent algorithms used in this area. The significance of this paper would be to survey the concepts surrounding DNA analysis so as to provide a deep rooted understanding and knowledge transfer regarding existing approaches for DNA analysis using Burrows-Wheeler transform, Wavelet tree and their respective strengths and weaknesses. Consequent to this survey, the paper attempts to provide some directions for future research.

  10. Repeatedly positive human immunodeficiency virus type 1 DNA polymerase chain reaction in human immunodeficiency virus-exposed seroreverting infants.

    Science.gov (United States)

    Bakshi, S S; Tetali, S; Abrams, E J; Paul, M O; Pahwa, S G

    1995-08-01

    Three human immunodeficiency virus type 1 (HIV-1)-exposed children who had repeatedly positive DNA polymerase chain reaction (PCR) tests for HIV in > or = 5 samples before seroreversion to HIV-negative status are reported. The children belong to a cohort of 210 infants who were born to HIV-infected mothers and were tested at intervals of 1 to 3 months by HIV viral culture, PCR, and p24 antigen; only the PCR was positive in > or = 5 samples in the children reported here. Their clinical features were indistinguishable from other seroreverters. All three children had a transient drop in CD4:CD8 ratio to < 1.0. The transiently positive DNA PCR in HIV-exposed infants may indicate either that HIV infection was eliminated by a strong host immune response or that infection was caused by an attenuated/defective strain of virus.

  11. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature.

    Science.gov (United States)

    Sakofsky, Cynthia J; Foster, Patricia L; Grogan, Dennis W

    2012-04-01

    The intrinsically thermostable Y-family DNA polymerases of Sulfolobus spp. have revealed detailed three-dimensional structure and catalytic mechanisms of trans-lesion DNA polymerases, yet their functions in maintaining their native genomes remain largely unexplored. To identify functions of the Y-family DNA polymerase Dbh in replicating the Sulfolobus genome under extreme conditions, we disrupted the dbh gene in Sulfolobus acidocaldarius and characterized the resulting mutant strains phenotypically. Disruption of dbh did not cause any obvious growth defect, sensitivity to any of several DNA-damaging agents, or change in overall rate of spontaneous mutation at a well-characterized target gene. Loss of dbh did, however, cause significant changes in the spectrum of spontaneous forward mutation in each of two orthologous target genes of different sequence. Relative to wild-type strains, dbh(-) constructs exhibited fewer frame-shift and other small insertion-deletion mutations, but exhibited more base-pair substitutions that converted G:C base pairs to T:A base pairs. These changes, which were confirmed to be statistically significant, indicate two distinct activities of the Dbh polymerase in Sulfolobus cells growing under nearly optimal culture conditions (78-80°C and pH 3). The first activity promotes slipped-strand events within simple repetitive motifs, such as mononucleotide runs or triplet repeats, and the second promotes insertion of C opposite a potentially miscoding form of G, thereby avoiding G:C to T:A transversions.

  12. Repeat-associated plasticity in the Helicobacter pylori RD Gene Family

    Science.gov (United States)

    epetitive DNA facilitates genomic flexibility via increased recombination, deletion, and insertion. The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Examining the genomes of two H. pylori strains, we d...

  13. Searching for first-degree familial relationships in California's offender DNA database: validation of a likelihood ratio-based approach.

    Science.gov (United States)

    Myers, Steven P; Timken, Mark D; Piucci, Matthew L; Sims, Gary A; Greenwald, Michael A; Weigand, James J; Konzak, Kenneth C; Buoncristiani, Martin R

    2011-11-01

    A validation study was performed to measure the effectiveness of using a likelihood ratio-based approach to search for possible first-degree familial relationships (full-sibling and parent-child) by comparing an evidence autosomal short tandem repeat (STR) profile to California's ∼1,000,000-profile State DNA Index System (SDIS) database. Test searches used autosomal STR and Y-STR profiles generated for 100 artificial test families. When the test sample and the first-degree relative in the database were characterized at the 15 Identifiler(®) (Applied Biosystems(®), Foster City, CA) STR loci, the search procedure included 96% of the fathers and 72% of the full-siblings. When the relative profile was limited to the 13 Combined DNA Index System (CODIS) core loci, the search procedure included 93% of the fathers and 61% of the full-siblings. These results, combined with those of functional tests using three real families, support the effectiveness of this tool. Based upon these results, the validated approach was implemented as a key, pragmatic and demonstrably practical component of the California Department of Justice's Familial Search Program. An investigative lead created through this process recently led to an arrest in the Los Angeles Grim Sleeper serial murders.

  14. Molecular analysis of a large subtelomeric nucleotide-binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris.

    Science.gov (United States)

    Geffroy, Valérie; Macadré, Catherine; David, Perrine; Pedrosa-Harand, Andrea; Sévignac, Mireille; Dauga, Catherine; Langin, Thierry

    2009-02-01

    In common bean, the B4 disease resistance gene cluster is a complex cluster localized at the end of linkage group (LG) B4, containing at least three R specificities to the fungus Colletotrichum lindemuthianum. To investigate the evolution of this R cluster since the divergence of Andean and Mesoamerican gene pools, DNA sequences were characterized from two representative genotypes of the two major gene pools of common bean (BAT93: Mesoamerican; JaloEEP558: Andean). Sequences encoding 29 B4-CC nucleotide-binding-site-leucine-rich-repeat (B4-CNL) genes were determined-12 from JaloEEP558 and 17 from BAT93. Although sequence exchange events were identified, phylogenetic analyses revealed that they were not frequent enough to lead to homogenization of B4-CNL sequences within a haplotype. Genetic mapping based on pulsed-field gel electrophoresis separation confirmed that the B4-CNL family is a large family specific to one end of LG B4 and is present at two distinct blocks separated by 26 cM. Fluorescent in situ hybridization on meiotic pachytene chromosomes revealed that two B4-CNL blocks are located in the subtelomeric region of the short arm of chromosome 4 on both sides of a heterochromatic block (knob), suggesting that this peculiar genomic environment may favor the proliferation of a large R gene cluster.

  15. Molecular Analysis of a Large Subtelomeric Nucleotide-Binding-Site–Leucine-Rich-Repeat Family in Two Representative Genotypes of the Major Gene Pools of Phaseolus vulgaris

    Science.gov (United States)

    Geffroy, Valérie; Macadré, Catherine; David, Perrine; Pedrosa-Harand, Andrea; Sévignac, Mireille; Dauga, Catherine; Langin, Thierry

    2009-01-01

    In common bean, the B4 disease resistance (R) gene cluster is a complex cluster localized at the end of linkage group (LG) B4, containing at least three R specificities to the fungus Colletotrichum lindemuthianum. To investigate the evolution of this R cluster since the divergence of Andean and Mesoamerican gene pools, DNA sequences were characterized from two representative genotypes of the two major gene pools of common bean (BAT93: Mesoamerican; JaloEEP558: Andean). Sequences encoding 29 B4-CC nucleotide-binding-site–leucine-rich-repeat (B4-CNL) genes were determined—12 from JaloEEP558 and 17 from BAT93. Although sequence exchange events were identified, phylogenetic analyses revealed that they were not frequent enough to lead to homogenization of B4-CNL sequences within a haplotype. Genetic mapping based on pulsed-field gel electrophoresis separation confirmed that the B4-CNL family is a large family specific to one end of LG B4 and is present at two distinct blocks separated by 26 cM. Fluorescent in situ hybridization on meiotic pachytene chromosomes revealed that two B4-CNL blocks are located in the subtelomeric region of the short arm of chromosome 4 on both sides of a heterochromatic block (knob), suggesting that this peculiar genomic environment may favor the proliferation of a large R gene cluster. PMID:19087965

  16. Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors.

    Science.gov (United States)

    He, Gaofei; Tolic, Ana; Bashkin, James K; Poon, Gregory M K

    2015-04-30

    The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Differential sensitivity to methylated DNA by ETS-family transcription factors is intrinsically encoded in their DNA-binding domains.

    Science.gov (United States)

    Stephens, Dominique C; Poon, Gregory M K

    2016-10-14

    Transactivation by the ETS family of transcription factors, whose members share structurally conserved DNA-binding domains, is variably sensitive to methylation of their target genes. The mechanism by which DNA methylation controls ETS proteins remains poorly understood. Uncertainly also pervades the effects of hemi-methylated DNA, which occurs following DNA replication and in response to hypomethylating agents, on site recognition by ETS proteins. To address these questions, we measured the affinities of two sequence-divergent ETS homologs, PU.1 and Ets-1, to DNA sites harboring a hemi- and fully methylated CpG dinucleotide. While the two proteins bound unmethylated DNA with indistinguishable affinity, their affinities to methylated DNA are markedly heterogeneous and exhibit major energetic coupling between the two CpG methylcytosines. Analysis of simulated DNA and existing co-crystal structures revealed that hemi-methylation induced non-local backbone and groove geometries that were not conserved in the fully methylated state. Indirect readout of these perturbations was differentially achieved by the two ETS homologs, with the distinctive interfacial hydration in PU.1/DNA binding moderating the inhibitory effects of DNA methylation on binding. This data established a biophysical basis for the pioneering properties associated with PU.1, which robustly bound fully methylated DNA, but not Ets-1, which was substantially inhibited. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Structure and organization of the mitochondrial DNA control region with tandemly repeated sequence in the Amazon ornamental fish.

    Science.gov (United States)

    Terencio, Maria Leandra; Schneider, Carlos Henrique; Gross, Maria Claudia; Feldberg, Eliana; Porto, Jorge Ivan Rebelo

    2013-02-01

    Tandemly repeated sequences are a common feature of vertebrate mitochondrial DNA control regions. However, questions still remain about their mode of evolution and function. To better understand patterns of variation in length and to explore the existence of previously described domain, we have characterized the control region structure of the Amazonian ornamental fish Nannostomus eques and Nannostomus unifasciatus. The control region ranged from 1121 to 1142 bp in length and could be separated into three domains: the domain associated with the extended terminal associated sequences, the central conserved domain, and the conserved sequence blocks domain. In the first domain, we encountered a sequence repeated 10 times in tandem (variable number tandem repeat (VNTR)) that could adopt an "inverted repetitions" type structural conformation. The results suggest that the VNTR pattern encountered in both N. eques and N. unifasciatus is consistent with the prerequisites of the illegitimate elongation model in which the unequal pairing of the chains near the 5'-end of the control region favors the formation of repetitions.

  19. Expansion of CAG triplet repeats by human DNA polymerases λ and β in vitro, is regulated by flap endonuclease 1 and DNA ligase 1.

    Science.gov (United States)

    Crespan, Emmanuele; Hübscher, Ulrich; Maga, Giovanni

    2015-05-01

    Huntington's disease (HD) is a neurological genetic disorder caused by the expansion of the CAG trinucleotide repeats (TNR) in the N-terminal region of coding sequence of the Huntingtin's (HTT) gene. This results in the addition of a poly-glutamine tract within the Huntingtin protein, resulting in its pathological form. The mechanism by which TRN expansion takes place is not yet fully understood. We have recently shown that DNA polymerase (Pol) β can promote the microhomology-mediated end joining and triplet expansion of a substrate mimicking a double strand break in the TNR region of the HTT gene. Here we show that TNR expansion is dependent on the structure of the DNA substrate, as well as on the two essential Pol β co-factors: flap endonuclease 1 (Fen1) and DNA ligase 1 (Lig1). We found that Fen1 significantly stimulated TNR expansion by Pol β, but not by the related enzyme Pol λ, and subsequent ligation of the DNA products by Lig1. Interestingly, the deletion of N-terminal domains of Pol λ, resulted in an enzyme which displayed properties more similar to Pol β, suggesting a possible evolutionary mechanism. These results may suggest a novel mechanism for somatic TNR expansion in HD.

  20. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  1. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. DNA testing for fragile X syndrome: implications for parents and family.

    OpenAIRE

    van Rijn, M A; de Vries, B B; Tibben, A; van den Ouweland, A M; Halley, D J; Niermeijer, M F

    1997-01-01

    The fragile X syndrome is an X linked, semidominant mental retardation disorder caused by the amplification of a CGG repeat in the 5' UTR of the FMR1 gene. Nineteen fragile X families in which the mutated FMR1 gene segregated were evaluated. The implications of the diagnosis for the parents and family were studied through pedigree information, interviews, and questionnaires. Information about the heredity of fragile X syndrome was only disseminated by family members to a third (124/366) of th...

  3. Direct and inverted repeats elicit genetic instability by both exploiting and eluding DNA double-strand break repair systems in mycobacteria.

    Directory of Open Access Journals (Sweden)

    Ewelina A Wojcik

    Full Text Available Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs. However, the contribution of each of the DSB repair pathways, homologous recombination (HR, non-homologous end-joining (NHEJ and single-strand annealing (SSA, to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ~1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1 directly interfering with replication fidelity, 2 stimulating the three main DSB repair pathways, and 3 enticing L5 site-specific recombination.

  4. The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction.

    Science.gov (United States)

    Murakami, Mário Tyago; Sforça, Mauricio Luis; Neves, Jorge Luiz; Paiva, Joice Helena; Domingues, Mariane Noronha; Pereira, André Luiz Araujo; Zeri, Ana Carolina de Mattos; Benedetti, Celso Eduardo

    2010-12-01

    Many plant pathogenic bacteria rely on effector proteins to suppress defense and manipulate host cell mechanisms to cause disease. The effector protein PthA modulates the host transcriptome to promote citrus canker. PthA possesses unusual protein architecture with an internal region encompassing variable numbers of near-identical tandem repeats of 34 amino acids termed the repeat domain. This domain mediates protein-protein and protein-DNA interactions, and two polymorphic residues in each repeat unit determine DNA specificity. To gain insights into how the repeat domain promotes protein-protein and protein-DNA contacts, we have solved the structure of a peptide corresponding to 1.5 units of the PthA repeat domain by nuclear magnetic resonance (NMR) and carried out small-angle X-ray scattering (SAXS) and spectroscopic studies on the entire 15.5-repeat domain of PthA2 (RD2). Consistent with secondary structure predictions and circular dichroism data, the NMR structure of the 1.5-repeat peptide reveals three α-helices connected by two turns that fold into a tetratricopeptide repeat (TPR)-like domain. The NMR structure corroborates the theoretical TPR superhelix predicted for RD2, which is also in agreement with the elongated shape of RD2 determined by SAXS. Furthermore, RD2 undergoes conformational changes in a pH-dependent manner and upon DNA interaction, and shows sequence similarities to pentatricopeptide repeat (PPR), a nucleic acid-binding motif structurally related to TPR. The results point to a model in which the RD2 structure changes its compactness as it embraces the DNA with the polymorphic diresidues facing the interior of the superhelix oriented toward the nucleotide bases.

  5. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions.

    Directory of Open Access Journals (Sweden)

    Daria A Beshnova

    2014-07-01

    Full Text Available The nucleosome repeat length (NRL is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning.

  6. Evaluating the weight of evidence by using quantitative short tandem repeat data in DNA mixtures

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt

    2010-01-01

    he evaluation of results from mixtures of deoxyribonucleic acid (DNA) from two or more people in crime case investigations may be improved by taking not only the qualitative but also the quantitative part of the results into consideration. We present a statistical likelihood approach to assess...... distribution of peak areas for assessing the weight of the evidence. On the basis of data from analyses of controlled experiments with mixed DNA samples, we exploited the linear relationship between peak heights and peak areas, and the linear relationships of the means and variances of the measurements...... to factorization of the likelihood, properties of the normal distribution and use of auxiliary variables, an ordinary implementation of the EM algorithm solved the missing data problem....

  7. Recombination analysis of autosomal short tandem repeats in Chinese Han families.

    Science.gov (United States)

    Liu, Qiu-Ling; Luo, Hong; Zhao, Hu; Huang, Xiao-Ling; Cheng, Jian-Ding; Lu, De-Jian

    2014-03-01

    Recombination fractions between forensic STRs can be extrapolated from the International HapMap Project, but the concordance between recombination fractions predicated from genetic maps and derived from observation of STR transmissions in families is still ambiguous for autosomal STRs because of limited family studies. Therefore, the main goal of this study is to compare recombination fractions estimated by pedigree analysis with those derived from HapMap phase SNP data. Genotypes of nine autosomal STR pairs (TPOX-D2S1772, D5S818-CSF1PO, D7S3048-D7S820, D8S1132-D8S1179, TH01-D11S2368, vWA-D12S391, D13S325-D13S317, D18S51-D18S1364, and D21S11-PentaD) from 207 two-generation families with two to five children (the number of families with five, four, three, and two children was 2, 3, 20, and 182, respectively) were used to analyze the recombination. The linkage analysis showed that significant linkage was observed at six STR pairs (D5S818-CSF1PO, D8S1132-D8S1179, TH01-D11S2368, vWA-D12S391, D13S325-D13S317, and D18S51-D18S1364) with genetic distances HapMap. Their recombination fractions calculated from family data were very close to those derived from HapMap. However, three STR pairs of TPOX-D2S1772, D7S3048-D7S820, and D21S11-PentaD showed no significant linkage with genetic distances from 43.38 to 91.49 cM. Our results indicate that recombination fractions extrapolated from HapMap can provide a substitute if empirical data are unavailable for the linkage STR pair with a genetic distance spanned <36.22 cM.

  8. Distinctive adaptive response to repeated exposure to hydrogen peroxide associated with upregulation of DNA repair genes and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Gloria A. Santa-Gonzalez

    2016-10-01

    Full Text Available Many environmental and physiological stresses are chronic. Thus, cells are constantly exposed to diverse types of genotoxic insults that challenge genome stability, including those that induce oxidative DNA damage. However, most in vitro studies that model cellular response to oxidative stressors employ short exposures and/or acute stress models. In this study, we tested the hypothesis that chronic and repeated exposure to a micromolar concentration of hydrogen peroxide (H2O2 could activate DNA damage responses, resulting in cellular adaptations. For this purpose, we developed an in vitro model in which we incubated mouse myoblast cells with a steady concentration of ~50 μM H2O2 for one hour daily for seven days, followed by a final challenge of a 10 or 20X higher dose of H2O2 (0.5 or 1 mM. We report that intermittent long-term exposure to this oxidative stimulus nearly eliminated cell toxicity and significantly decreased genotoxicity (in particular, a >5-fold decreased in double-strand breaks resulting from subsequent acute exposure to oxidative stress. This protection was associated with cell cycle arrest in G2/M and induction of expression of nine DNA repair genes. Together, this evidence supports an adaptive response to chronic, low-level oxidative stress that results in genomic protection and up-regulated maintenance of cellular homeostasis.

  9. An examination of the origin and evolution of additional tandem repeats in the mitochondrial DNA control region of Japanese sika deer (Cervus Nippon).

    Science.gov (United States)

    Ba, Hengxing; Wu, Lang; Liu, Zongyue; Li, Chunyi

    2016-01-01

    Tandem repeat units are only detected in the left domain of the mitochondrial DNA control region in sika deer. Previous studies showed that Japanese sika deer have more tandem repeat units than its cousins from the Asian continent and Taiwan, which often have only three repeat units. To determine the origin and evolution of these additional repeat units in Japanese sika deer, we obtained the sequence of repeat units from an expanded dataset of the control region from all sika deer lineages. The functional constraint is inferred to act on the first repeat unit because this repeat has the least sequence divergence in comparison to the other units. Based on slipped-strand mispairing mechanisms, the illegitimate elongation model could account for the addition or deletion of these additional repeat units in the Japanese sika deer population. We also report that these additional repeat units could be occurring in the internal positions of tandem repeat regions, possibly via coupling with a homogenization mechanism within and among these lineages. Moreover, the increased number of repeat units in the Japanese sika deer population could reflect a balance between mutation and selection, as well as genetic drift.

  10. Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions

    Science.gov (United States)

    Kocman, Vojč; Plavec, Janez

    2017-05-01

    Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5'-AGCGA-3' tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5'-AGCGA-3' and 5'-GGG-3' repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development.

  11. Repeated encephalopathy and hemicerebral atrophy in a patient with familial hemiplegic migraine type 1.

    Science.gov (United States)

    Tashiro, Yuichi; Yamazaki, Tsuneo; Nagamine, Shun; Mizuno, Yuji; Yoshiki, Adachi; Okamoto, Koichi

    2014-01-01

    We herein describe a case of a 38-year-old man with familial hemiplegic migraine with a T666M mutation in the electrical potential-dependent calcium ion channel (CACNA1A) gene. His migraine was accompanied by hemiparesis and impaired consciousness. Brain magnetic resonance imaging revealed abnormalities in the right cortical hemisphere. Single-photon emission computed tomography demonstrated a decrease in iomazenil uptake and an increase in (99m)Tc-ethyl cysteinate dimer uptake at the ipsilateral site. Positron emission tomography showed a decrease in 18F-fluorodeoxyglucose uptake in the same area, which later showed atrophic changes. The patient's brain atrophy ceased after treatment with sodium valproate. This case suggests that the progression of brain atrophy can be prevented with adequate prophylaxis.

  12. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti

    OpenAIRE

    Tu, Zhijian

    1997-01-01

    Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richnes...

  13. Cytosolic 5'-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf.

    Directory of Open Access Journals (Sweden)

    Federico Cividini

    Full Text Available IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme.

  14. Chromosome-Specific DNA Repeats: Rapid Identification in Silico and Validation Using Fluorescence in Situ Hybridization

    Directory of Open Access Journals (Sweden)

    Heinz-Ulrich G. Weier

    2012-12-01

    Full Text Available Chromosome enumeration in interphase and metaphase cells using fluorescence in situ hybridization (FISH is an established procedure for the rapid and accurate cytogenetic analysis of cell nuclei and polar bodies, the unambiguous gender determination, as well as the definition of tumor-specific signatures. Present bottlenecks in the procedure are a limited number of commercial, non-isotopically labeled probes that can be combined in multiplex FISH assays and the relatively high price and effort to develop additional probes. We describe a streamlined approach for rapid probe definition, synthesis and validation, which is based on the analysis of publicly available DNA sequence information, also known as “database mining”. Examples of probe preparation for the human gonosomes and chromosome 16 as a selected autosome outline the probe selection strategy, define a timeline for expedited probe production and compare this novel selection strategy to more conventional probe cloning protocols.

  15. The 5S rDNA high dynamism in Diplodus sargus is a transposon-mediated mechanism. Comparison with other multigene families and Sparidae species.

    Science.gov (United States)

    Merlo, Manuel A; Cross, Ismael; Manchado, Manuel; Cárdenas, Salvador; Rebordinos, Laureana

    2013-03-01

    There has been considerable discussion in recent years on the evolution of the tandemly repeated multigene families, since some organisms show a concerted model whereas others show a birth-and-death model. This controversial subject extends to several species of fish. In this study, three species of the Sparidae family (Pagrus pagrus, P. auriga and Diplodus sargus) and an interspecific hybrid (P. pagrus (♀) × P. auriga (♂)) have been studied at both molecular and cytogenetic level, taking three different multigene families (5S rDNA, 45S rDNA and U2 snDNA). Results obtained with the 5S rDNA in P. pagrus and P. auriga are characterized by a considerable degree of conservation at the two levels; however, an extraordinary variation was observed in D. sargus at the two levels, which has never been found in other fishes studied to date. As a consequence of this, the evolutionary model of the multigene families is discussed considering the results obtained and others from the bibliography. The result obtained in the hybrid allowed the recombination frequency in each multigene family to be estimated.

  16. Meta-Analysis of DNA Tumor-Viral Integration Site Selection Indicates a Role for Repeats, Gene Expression and Epigenetics

    Directory of Open Access Journals (Sweden)

    Janet M. Doolittle-Hall

    2015-11-01

    Full Text Available Oncoviruses cause tremendous global cancer burden. For several DNA tumor viruses, human genome integration is consistently associated with cancer development. However, genomic features associated with tumor viral integration are poorly understood. We sought to define genomic determinants for 1897 loci prone to hosting human papillomavirus (HPV, hepatitis B virus (HBV or Merkel cell polyomavirus (MCPyV. These were compared to HIV, whose enzyme-mediated integration is well understood. A comprehensive catalog of integration sites was constructed from the literature and experimentally-determined HPV integration sites. Features were scored in eight categories (genes, expression, open chromatin, histone modifications, methylation, protein binding, chromatin segmentation and repeats and compared to random loci. Random forest models determined loci classification and feature selection. HPV and HBV integrants were not fragile site associated. MCPyV preferred integration near sensory perception genes. Unique signatures of integration-associated predictive genomic features were detected. Importantly, repeats, actively-transcribed regions and histone modifications were common tumor viral integration signatures.

  17. A contralateral repeated bout effect attenuates induction of NF-κB DNA binding following eccentric exercise.

    Science.gov (United States)

    Xin, Ling; Hyldahl, Robert D; Chipkin, Stuart R; Clarkson, Priscilla M

    2014-06-01

    We investigated the existence of contralateral repeated bout effect and tested if the attenuation of nuclear factor-kappa B (NF-κB; an important regulator of muscle inflammation) induction following eccentric exercise is a potential mechanism. Thirty-one healthy men performed two bouts of knee extension eccentric exercise, initially with one leg and then with the opposite leg 4 wk later. Vastus lateralis muscle biopsies of both exercised and control legs were taken 3 h postexercise. Knee extension isometric and isokinetic strength (60°/sec and 180°/sec) were measured at baseline, pre-exercise, immediately postexercise, and 1/day for 5 days postexercise. Serum creatine kinase (CK) activity and muscle soreness were assessed at baseline and 1/day for 5 days postexercise. NF-κB (p65) DNA-binding activity was measured in the muscle biopsies. Isometric strength loss was lower in bout 2 than in bout 1 at 24, 72, and 96 h postexercise (P eccentric exercise (compared with the control leg) in bout 1 (122.9% ± 2.6%; P eccentric exercise results in a contralateral repeated bout effect, which could be due to the attenuated increase in NF-κB activity postexercise. Copyright © 2014 the American Physiological Society.

  18. Stage and strain specific expression of the tandemly repeated 90 kDa surface antigen gene family in Trypanosoma cruzi.

    Science.gov (United States)

    Beard, C A; Wrightsman, R A; Manning, J E

    1988-04-01

    A recombinant cDNA library constructed in the expression vector lambda gtll using mRNA from the trypomastigote stage of Trypanosoma cruzi was screened with two monoclonal antibodies that have been shown to react with a 105 kDa and a 90 kDa surface antigen in trypomastigotes of the Peru and Y strains of T. cruzi. One recombinant lambda phage, designated Tcc-20, was reactive to both monoclonals. The beta-galactosidase/T. cruzi hybrid protein encoded in Tcc-20 is recognized by the monoclonal antibodies and by serum antibodies from mice infected with strains of T. cruzi which contain the 90 kDa antigen. Antibodies immunoselected from serum of mice infected with the Peru strain by adsorption to Tcc-20 fusion protein react specifically with a 90 kDa polypeptide in trypomastigote but not epimastigote lysates of T. cruzi. The mRNA complementary to the DNA insert in Tcc-20 is present only in those stages and strains of T. cruzi which express the 90 kDa surface antigen. These characteristics are strong evidence that the T. cruzi DNA fragment cloned into Tcc-20 encodes a portion of the 90 kDa surface antigen. The gene(s) which encodes this polypeptide is shown to be present in approximately 20 copies per haploid genome and most, and possibly all, of the copies are found in a tandemly linked multigene family.

  19. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    Science.gov (United States)

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-09

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion.

  20. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans.

    Science.gov (United States)

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S; Mittelman, David; Sharp, Andrew J

    2016-05-05

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. DNA polymorphism among Fusarium oxysporum f.sp. elaeidis populations from oil palm, using a repeated and dispersed sequence "Palm".

    Science.gov (United States)

    Mouyna, I; Renard, J L; Brygoo, Y

    1996-07-31

    A worldwide collection, of 76 F. oxysporum f.sp. elaeidis isolates (Foe), and of 21 F. oxysporum isolates from the soil of several palm grove was analysed by RFLP. As a probe, we used a random DNA fragment (probe 46) from a genomic library of a Foe isolate. This probe contains two different types of sequence, one being repeated and dispersed in the genome "Palm", the other being a single-copy sequence. All F. oxysporum isolates from the palm-grove soils were non-pathogenic to oil palm. They all had a simple restriction pattern with one band homologous to the single-copy sequence of probe 46. All Foe isolates were pathogenic to oil palm and they all had complex patterns due to hybridization with "Palm". This repetitive sequence reveals that Foe isolates are distinct from the other F. oxysporum palm-grove soils isolates. The sequence can reliably discriminate pathogenic from non-pathogenic oil palm isolates. Based on DNA fingerprint similarities, Foe populations were divided into ten groups consisting of isolates with the same geographic origin. Isolates from Brazil and Ecuador were an exception to that rule as they had the same restriction pattern as a few isolates from the Ivory Coast, suggesting they may originated from Africa.

  2. Unexpected instability of family of repeats (FR, the critical cis-acting sequence required for EBV latent infection, in EBV-BAC systems.

    Directory of Open Access Journals (Sweden)

    Teru Kanda

    Full Text Available A group of repetitive sequences, known as the Family of Repeats (FR, is a critical cis-acting sequence required for EBV latent infection. The FR sequences are heterogeneous among EBV strains, and they are sometimes subject to partial deletion when subcloned in E. coli-based cloning vectors. However, the FR stability in EBV-BAC (bacterial artificial chromosome system has never been investigated. We found that the full length FR of the Akata strain EBV was not stably maintained in a BAC vector. By contrast, newly obtained BAC clones of the B95-8 strain of EBV stably maintained the full length FR during recombinant virus production and B-cell transformation. Investigation of primary DNA sequences of Akata-derived EBV-BAC clones indicates that the FR instability is most likely due to a putative secondary structure of the FR region. We conclude that the FR instability in EBV-BAC clones can be a pitfall in E. coli-mediated EBV genetics.

  3. Unexpected instability of family of repeats (FR), the critical cis-acting sequence required for EBV latent infection, in EBV-BAC systems.

    Science.gov (United States)

    Kanda, Teru; Shibata, Sachiko; Saito, Satoru; Murata, Takayuki; Isomura, Hiroki; Yoshiyama, Hironori; Takada, Kenzo; Tsurumi, Tatsuya

    2011-01-01

    A group of repetitive sequences, known as the Family of Repeats (FR), is a critical cis-acting sequence required for EBV latent infection. The FR sequences are heterogeneous among EBV strains, and they are sometimes subject to partial deletion when subcloned in E. coli-based cloning vectors. However, the FR stability in EBV-BAC (bacterial artificial chromosome) system has never been investigated. We found that the full length FR of the Akata strain EBV was not stably maintained in a BAC vector. By contrast, newly obtained BAC clones of the B95-8 strain of EBV stably maintained the full length FR during recombinant virus production and B-cell transformation. Investigation of primary DNA sequences of Akata-derived EBV-BAC clones indicates that the FR instability is most likely due to a putative secondary structure of the FR region. We conclude that the FR instability in EBV-BAC clones can be a pitfall in E. coli-mediated EBV genetics.

  4. A highly parallel method for synthesizing DNA repeats enables the discovery of 'smart' protein polymers.

    Science.gov (United States)

    Amiram, Miriam; Quiroz, Felipe Garcia; Callahan, Daniel J; Chilkoti, Ashutosh

    2011-02-01

    Robust high-throughput synthesis methods are needed to expand the repertoire of repetitive protein-polymers for different applications. To address this need, we developed a new method, overlap extension rolling circle amplification (OERCA), for the highly parallel synthesis of genes encoding repetitive protein-polymers. OERCA involves a single PCR-type reaction for the rolling circle amplification of a circular DNA template and simultaneous overlap extension by thermal cycling. We characterized the variables that control OERCA and demonstrated its superiority over existing methods, its robustness, high-throughput and versatility by synthesizing variants of elastin-like polypeptides (ELPs) and protease-responsive polymers of glucagon-like peptide-1 analogues. Despite the GC-rich, highly repetitive sequences of ELPs, we synthesized remarkably large genes without recursive ligation. OERCA also enabled us to discover 'smart' biopolymers that exhibit fully reversible thermally responsive behaviour. This powerful strategy generates libraries of repetitive genes over a wide and tunable range of molecular weights in a 'one-pot' parallel format.

  5. Cloning and analysis of DnaJ family members in the silkworm, Bombyx mori.

    Science.gov (United States)

    Li, Yinü; Bu, Cuiyu; Li, Tiantian; Wang, Shibao; Jiang, Feng; Yi, Yongzhu; Yang, Huipeng; Zhang, Zhifang

    2016-01-15

    Heat shock proteins (Hsps) are involved in a variety of critical biological functions, including protein folding, degradation, and translocation and macromolecule assembly, act as molecular chaperones during periods of stress by binding to other proteins. Using expressed sequence tag (EST) and silkworm (Bombyx mori) transcriptome databases, we identified 27 cDNA sequences encoding the conserved J domain, which is found in DnaJ-type Hsps. Of the 27 J domain-containing sequences, 25 were complete cDNA sequences. We divided them into three types according to the number and presence of conserved domains. By analyzing the gene structures, intron numbers, and conserved domains and constructing a phylogenetic tree, we found that the DnaJ family had undergone convergent evolution, obtaining new domains to expand the diversity of its family members. The acquisition of the new DnaJ domains most likely occurred prior to the evolutionary divergence of prokaryotes and eukaryotes. The expression of DnaJ genes in the silkworm was generally higher in the fat body. The tissue distribution of DnaJ1 proteins was detected by western blotting, demonstrating that in the fifth-instar larvae, the DnaJ1 proteins were expressed at their highest levels in hemocytes, followed by the fat body and head. We also found that the DnaJ1 transcripts were likely differentially translated in different tissues. Using immunofluorescence cytochemistry, we revealed that in the blood cells, DnaJ1 was mainly localized in the cytoplasm.

  6. Global analysis of ankyrin repeat domain C3HC4-type RING finger gene family in plants.

    Directory of Open Access Journals (Sweden)

    Xiaowei Yuan

    Full Text Available Ankyrin repeat (ANK C3HC4-type RING finger (RF genes comprise a large family in plants and play important roles in various physiological processes of plant life. In this study, we identified 187 ANK C3HC4-type RF proteins from 29 species with complete genomes and named the ANK C3HC4-type RF proteins the XB3-like proteins because they are structurally related to the rice (Oryza sativa XB3. A phylogenetic relationship analysis suggested that the XB3-like genes originated from ferns, and the encoded proteins fell into 3 major groups. Among these groups, we found that the spacing between the metal ligand position 6 and 7, and the conserved residues, which was in addition to the metal ligand amino acids, in the C3HC4-type RF were different. Using a wide range of protein structural analyses, protein models were established, and all XB3-like proteins were found to contain two to seven ANKs and a C3HC4-type RF. The microarray data for the XB3-like genes of Arabidopsis, Oryza sative, Zea mays and Glycine max revealed that the expression of XB3-like genes was in different tissues and during different life stages. The preferential expression of XB3-like genes in specified tissues and the response to phytohormone and abiotic stress treatments of Arabidopsis and Zea mays not only confirmed the microarray analysis data but also demonstrated that the XB3-like proteins play roles in plant growth and development as well as in stress responses. Our data provide a very useful reference for the identification and functional analysis of members of this gene family and also provide a new method for the genome-wide analysis of gene families.

  7. Evidence for involvement of TRE-2 (USP6) oncogene, low-copy repeat and acrocentric heterochromatin in two families with chromosomal translocations.

    Science.gov (United States)

    Ou, Zhishuo; Jarmuz, Małgorzata; Sparagana, Steven P; Michaud, Jacques; Décarie, Jean-Claude; Yatsenko, Svetlana A; Nowakowska, Beata; Furman, Patti; Shaw, Chad A; Shaffer, Lisa G; Lupski, James R; Chinault, A Craig; Cheung, Sau W; Stankiewicz, Paweł

    2006-09-01

    We report clinical findings and molecular cytogenetic analyses for two patients with translocations [t(14;17)(p12;p12) and t(15;17)(p12;p13.2)], in which the chromosome 17 breakpoints map at a large low-copy repeat (LCR) and a breakage-prone TRE-2 (USP6) oncogene, respectively. In family 1, a 6-year-old girl and her 5-year-old brother were diagnosed with mental retardation, short stature, dysmorphic features, and Charcot-Marie-Tooth disease type 1A (CMT1A). G-banding chromosome analysis showed a der(14)t(14;17)(p12;p12) in both siblings, inherited from their father, a carrier of the balanced translocation. Chromosome microarray and FISH analyses revealed that the PMP22 gene was duplicated. The chromosome 17 breakpoint was mapped within an approximately 383 kb LCR17pA that is known to also be the site of several breakpoints of different chromosome aberrations including the evolutionary translocation t(4;19) in Gorilla gorilla. In family two, a patient with developmental delay, subtle dysmorphic features, ventricular enlargement with decreased periventricular white matter, mild findings of bilateral perisylvian polymicrogyria and a very small anterior commissure, a cryptic duplication including the Miller-Dieker syndrome region was identified by chromosome microarray analysis. The chromosome 17 breakpoint was mapped by FISH at the TRE-2 oncogene. Both partner chromosome breakpoints were mapped on the short arm acrocentric heterochromatin within or distal to the rRNA cluster, distal to the region commonly rearranged in Robertsonian translocations. We propose that TRE-2 together with LCR17pA, located approximately 10 Mb apart, also generated the evolutionary gorilla translocation t(4;19). Our results support previous observations that the USP6 oncogene, LCRs, and repetitive DNA sequences play a significant role in the origin of constitutional chromosome aberrations and primate genome evolution.

  8. The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat.

    OpenAIRE

    Varnum, B C; Ma, Q F; T. H. Chi; Fletcher, B.; Herschman, H.R.

    1991-01-01

    The TIS11 primary response gene is rapidly and transiently induced by both 12-O-tetradecanoylphorbol-13-acetate and growth factors. The predicted TIS11 protein contains a 6-amino-acid repeat, YKTELC. We cloned two additional cDNAs, TIS11b and TIS11d, that contain the YKTELC sequence. TIS11, TIS11b, and TIS11d proteins share a 67-amino-acid region of sequence similarity that includes the YKTELC repeat and two cysteine-histidine containing repeats. TIS11 gene family members are not coordinately...

  9. Heart rate variability and DNA methylation levels are altered after short-term metal fume exposure among occupational welders: a repeated-measures panel study

    OpenAIRE

    2014-01-01

    Background: In occupational settings, boilermakers are exposed to high levels of metallic fine particulate matter (PM2.5) generated during the welding process. The effect of welding PM2.5 on heart rate variability (HRV) has been described, but the relationship between PM2.5, DNA methylation, and HRV is not known. Methods: In this repeated-measures panel study, we recorded resting HRV and measured DNA methylation levels in transposable elements Alu and long interspersed nuclear element-1 (LINE...

  10. Novel mtDNA mutations and oxidative phosphorylation dysfunction in Russian LHON families.

    Science.gov (United States)

    Brown, M D; Zhadanov, S; Allen, J C; Hosseini, S; Newman, N J; Atamonov, V V; Mikhailovskaya, I E; Sukernik, R I; Wallace, D C

    2001-07-01

    Leber's hereditary optic neuropathy (LHON) is characterized by maternally transmitted, bilateral, central vision loss in young adults. It is caused by mutations in the mitochondrial DNA (mtDNA) encoded genes that contribute polypeptides to NADH dehydrogenase or complex I. Four mtDNA variants, the nucleotide pair (np) 3460A, 11778A, 14484C, and 14459A mutations, are known as "primary" LHON mutations and are found in most, but not all, of the LHON families reported to date. Here, we report the extensive genetic and biochemical analysis of five Russian families from the Novosibirsk region of Siberia manifesting maternally transmitted optic atrophy consistent with LHON. Three of the five families harbor known LHON primary mutations. Complete sequence analysis of proband mtDNA in the other two families has revealed novel complex I mutations at nps 3635A and 4640C, respectively. These mutations are homoplasmic and have not been reported in the literature. Biochemical analysis of complex I in patient lymphoblasts and transmitochondrial cybrids demonstrated a respiration defect with complex-I-linked substrates, although the specific activity of complex I was not reduced. Overall, our data suggests that the spectrum of mtDNA mutations associated with LHON in Russia is similar to that in Europe and North America and that the np 3635A and 4640C mutations may be additional mtDNA complex I mutations contributing to LHON expression.

  11. DNA polymorphism analysis in families with recurrence of free trisomy 21

    Energy Technology Data Exchange (ETDEWEB)

    Pangalos, C.G.; Rethore, M.O.; Blois, M.C. de; Prieur, M.; Raoul, O.; Lejeune, J.; Talbot, C.C. Jr.; Lewis, J.G.; Adelsberger, P.A.; Peterson, M.B. (and others)

    1992-11-01

    The authors used DNA polymorphic markers on the long arm of human chromosome 21 in order to determine the parental and meiotic origin of the extra chromosome 21 in families with recurrent free trisomy 21. A total of 22 families were studied, 13 in which the individuals with trisomy 21 were siblings (category 1), four families in which the individuals with trisomy 21 were second-degree relatives (category 2), and five families in which the individuals with trisomy 21 were third-degree relatives, that is, their parents were siblings (category 3). In five category 1 families, parental mosaicism was detected, while in the remaining eight families, the origin of nondisjunction was maternal. In two of the four families of category 2 the nondisjunctions originated in individuals who were related. In only one of five category 3 families, the nondisjunctions originated in related individuals. These results suggest that parental mosaicism is an important etiologic factor in recurrent free trisomy 21 (5 of 22 families) and that chance alone can explain the recurrent trisomy 21 in many of the remaining families (14 of 22 families). However, in a small number of families (3 of 22), a familial predisposing factor or undetected mosaicism cannot be excluded. 34 refs., 3 figs., 1 tab.

  12. Paternal inheritance of mitochondrial DNA in the sheep (Ovine aries)

    National Research Council Canada - National Science Library

    Zhao, Xingbo; Chu, Mingxing; Li, Ning; Wu, Changxin

    2001-01-01

    Paternal inheritance of mitochondria DNA in sheep was discovered by examination of 152 sheep from 38 hybrid families for mtDNA D-loop polymorphisms using PCR-RFLP, amplification of repeated sequence...

  13. DNA methylation of the LIN28 pseudogene family.

    Science.gov (United States)

    Davis, Aaron P; Benninghoff, Abby D; Thomas, Aaron J; Sessions, Benjamin R; White, Kenneth L

    2015-04-11

    DNA methylation directs the epigenetic silencing of selected regions of DNA, including the regulation of pseudogenes, and is widespread throughout the genome. Pseudogenes are decayed copies of duplicated genes that have spread throughout the genome by transposition. Pseudogenes are transcriptionally silenced by DNA methylation, but little is known about how pseudogenes are targeted for methylation or how methylation levels are maintained in different tissues. We employed bisulfite next generation sequencing to examine the methylation status of the LIN28 gene and four processed pseudogenes derived from LIN28. The objective was to determine whether LIN28 pseudogenes maintain the same pattern of methylation as the parental gene or acquire a methylation pattern independent of the gene of origin. In this study, we determined that the methylation status of LIN28 pseudogenes does not resemble the pattern evident for the LIN28 gene, but rather these pseudogenes appear to acquire methylation patterns independent of the parental gene. Furthermore, we observed that methylation levels of the examined pseudogenes correlate to the location of insertion within the genome. LIN28 pseudogenes inserted into gene bodies were highly methylated in all tissues examined. In contrast, pseudogenes inserted into genomic regions that are not proximal to genes were differentially methylated in various tissue types. Our analysis suggests that Lin28 pseudogenes do not acquire patterns of tissue-specific methylation as for the parental gene, but rather are methylated in patterns specific to the local genomic environment into which they were inserted.

  14. The Repeat Pattern Toolkit (RPT): Analyzing the structure and evolution of the C. elegans genome

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, P.; States, D.J. [Washington Univ., St. Louis, MO (United States)

    1994-12-31

    Over 3.6 million bases of DNA sequence from chromosome III of the C. elegans have been determined. The availability of this extended region of contiguous sequence has allowed us to analyze the nature and prevalence of repetitive sequences in the genome of a eukaryotic organism with a high gene density. We have assembled a Repeat Pattern Toolkit (RPT) to analyze the patterns of repeats occurring in DNA. The tools include identifying significant local alignments (utilizing both two-way and three-way alignments), dividing the set of alignments into connected components (signifying repeat families), computing evolutionary distance between repeat family members, constructing minimum spanning trees from the connected components, and visualizing the evolution of the repeat families. Over 7000 families of repetitive sequences were identified. The size of the families ranged from isolated pairs to over 1600 segments of similar sequence. Approximately 12.3% of the analyzed sequence participates in a repeat element.

  15. Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord.

    Science.gov (United States)

    Shi, L; Tang, G P; Gao, S J; Ma, Y X; Liu, B H; Li, Y; Zeng, J M; Ng, Y K; Leong, K W; Wang, S

    2003-07-01

    Gene delivery into the spinal cord provides a potential approach to the treatment of spinal cord traumatic injury, amyotrophic lateral sclerosis, and spinal muscular atrophy. These disorders progress over long periods of time, necessitating a stable expression of functional genes at therapeutic levels for months or years. We investigated in this study the feasibility of achieving prolonged transgene expression in the rat spinal cord through repeated intrathecal administration of plasmid DNA complexed with 25 kDa polyethylenimine (PEI) into the lumbar subarachnoid space. With a single injection, DNA/PEI complexes could provide transgene expression in the spinal cord 40-fold higher than naked plasmid DNA. The transgene expression at the initial level persisted for about 5 days, with a low-level expression being detectable for at least 8 weeks. When repeated dosing was tested, a 70% attenuation of gene expression was observed following reinjection at a 2-week interval. This attenuation was associated with apoptotic cell death and detected even using complexes containing a noncoding DNA that did not mediate any gene expression. When each component of the complexes, PEI polymer or naked DNA alone, were tested in the first dosing, no reduction was found. Using polyethylene glycol (PEG)-grafted PEI for DNA complexes, no attenuation of gene expression was detected after repeated intrathecal injections, even in those rats receiving three doses, administered 2 weeks apart. Lumbar puncture is a routine and relatively nontraumatic clinical procedure. Repeated administration of DNA complexed with PEG-grafted PEI through this less invasive route may prolong the time span of transgene expression when needed, providing a viable strategy for the gene therapy of spinal cord disorders.

  16. A case of congenital central hypoventilation syndrome in a three-generation family with non-polyalanine repeat PHOX2B mutation.

    Science.gov (United States)

    Low, K J; Turnbull, A R; Smith, K R; Hilliard, T N; Hole, L J; Meecham Jones, D J; Williams, M M; Donaldson, A

    2014-10-01

    We describe a three generation family in whom multiple individuals are variably affected due to a PHOX2B non-polyalanine repeat mutation. This family demonstrates extreme phenotypic variability and autosomal dominant transmission over three generations not previously reported in the wider literature. Novel findings also inclue a history of recurrent second trimester miscarriage. Pediatr Pulmonol. 2014; 49:E140-E143. © 2014 Wiley Periodicals, Inc.

  17. GENETIC VARIATION IN RED RASPBERRIES (RUBUS IDAEUS L.; ROSACEAE) FROM SITES DIFFERING IN ORGANIC POLLUTANTS COMPARED WITH SYNTHETIC TANDEM REPEAT DNA PROBES

    Science.gov (United States)

    Two synthetic tandem repetitive DNA probes were used to compare genetic variation at variable-number-tandem-repeat (VNTR) loci among Rubus idaeus L. var. strigosus (Michx.) Maxim. (Rosaceae) individuals sampled at eight sites contaminated by pollutants (N = 39) and eight adjacent...

  18. The histone H3K9 methylation and RNAi pathways regulate normalnucleolar and repeated DNA organization by inhibiting formation ofextrachromosomal DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.; Karpen, Gary H.

    2006-06-15

    In order to identify regulators of nuclear organization, Drosophila mutants in the Su(var)3-9 histone H3K9 methyltransferase, RNAi pathway components, and other regulators of heterochromatin-mediated gene silencing were examined for altered nucleoli and positioning of repeated DNAs. Animals lacking components of the H3K9 methylation and RNAi pathways contained disorganized nucleoli, ribosomal DNA (rDNA) and satellite DNAs. The levels of H3K9 dimethylation (H3K9me2) in chromatin associated with repeated DNAs decreased dramatically in Su(var)3-9 and dcr-2 (dicer-2) mutant tissues compared to wild type. We also observed a substantial increase in extrachromosomal repeated DNAs in mutant tissues. The disorganized nucleolus phenotype depends on the presence of Ligase 4 (Lig4), and ecc DNA formation is not induced by removal of cohesin. We conclude that H3K9 methylation of rDNA and satellites, maintained by Su(var)3-9, HP1, and the RNAi pathway, is necessary for the structural stability of repeated DNAs, which is mediated through suppression of non-homologous end joining (NHEJ). These results suggest a mechanism for how local chromatin structure can regulate genome stability, and the organization of chromosomal elements and nuclear organelles.

  19. Somatic CTG•CAG repeat instability in a mouse model for myotonic dystrophy type 1 is associated with changes in cell nuclearity and DNA ploidy

    Directory of Open Access Journals (Sweden)

    Wieringa Bé

    2007-07-01

    Full Text Available Abstract Background Trinucleotide instability is a hallmark of degenerative neurological diseases like Huntington's disease, some forms of spinocerebellar ataxia and myotonic dystrophy type 1 (DM1. To investigate the effect of cell type and cell state on the behavior of the DM1 CTG•CAG repeat, we studied a knock-in mouse model for DM1 at different time points during ageing and followed how repeat fate in cells from liver and pancreas is associated with polyploidization and changes in nuclearity after the onset of terminal differentiation. Results After separation of liver hepatocytes and pancreatic acinar cells in pools with 2n, 4n or 8n DNA, we analyzed CTG•CAG repeat length variation by resolving PCR products on an automated PAGE system. We observed that somatic CTG•CAG repeat expansion in our DM1 mouse model occurred almost uniquely in the fraction of cells with high cell nuclearity and DNA ploidy and aggravated with aging. Conclusion Our findings suggest that post-replicative and terminal-differentiation events, coupled to changes in cellular DNA content, form a preconditional state that influences the control of DNA repair or recombination events involved in trinucleotide expansion in liver hepatocytes and pancreatic acinar cells.

  20. Spontaneous event of mitochondrial DNA mutation, A3243G, found in a family of identical twins.

    Science.gov (United States)

    Harihara, Shinji; Nakamura, Kennichi; Takubo, Kaiyo; Takeuchi, Fujio

    2013-04-01

    A mutation in mitochondrial DNA (mtDNA) A3243G is an important cause of some serious mitochondrial diseases, and maternal inheritance of the mutation has been reported. In order to investigate the heredity of the mutation, we measured the ratio of the mutated mtDNA molecule among 32 families of identical twins. Both twins from one family showed 20.16% and 18.49% mutated molecules, and the level is significantly high in comparison with members of other families and control subjects (0.23-0.86%). Their parents, however, showed normal level of mutated molecules (0.70% and 0.66%). The high-level mutation of the twins may be due to a spontaneous event, which occurred during development of germ line of their mother, or oogenesis of their mother, or during early stage of their development.

  1. Translesion DNA polymerases Pol , Pol , Pol , Pol and Rev1 are not essential for repeat-induced point mutation in Neurospora crassa

    Indian Academy of Sciences (India)

    Ranjan Tamuli; C Ravindran; Durgadas P Kasbekar

    2006-12-01

    Pol , Pol , Pol , Pol and Rev1 are specialized DNA polymerases that are able to synthesize DNA across a damaged template. DNA synthesis by such translesion polymerases can be mutagenic due to the miscoding nature of most damaged nucleotides. In fact, many mutational and hypermutational processes in systems ranging from yeast to mammals have been traced to the activity of such polymerases. We show however, that the translesion polymerases are dispensable for repeat-induced point mutation (RIP) in Neurospora crassa. Additionally, we demonstrate that the upr-1 gene, which encodes the catalytic subunit of Pol , is a highly polymorphic locus in Neurospora.

  2. CAG repeat variants in the POLG1 gene encoding mtDNA polymerase-gamma and risk of breast cancer in African-American women.

    Science.gov (United States)

    Azrak, Sami; Ayyasamy, Vanniarajan; Zirpoli, Gary; Ambrosone, Christine; Bandera, Elisa V; Bovbjerg, Dana H; Jandorf, Lina; Ciupak, Gregory; Davis, Warren; Pawlish, Karen S; Liang, Ping; Singh, Keshav

    2012-01-01

    The DNA polymerase-gamma (POLG) gene, which encodes the catalytic subunit of enzyme responsible for directing mitochondrial DNA replication in humans, contains a polyglutamine tract encoded by CAG repeats of varying length. The length of the CAG repeat has been associated with the risk of testicular cancer, and other genomic variants that impact mitochondrial function have been linked to breast cancer risk in African-American (AA) women. We evaluated the potential role of germline POLG-CAG repeat variants in breast cancer risk in a sample of AA women (100 cases and 100 age-matched controls) who participated in the Women's Circle of Health Study, an ongoing multi-institutional, case-control study of breast cancer. Genotyping was done by fragment analysis in a blinded manner. Results from this small study suggest the possibility of an increased risk of breast cancer in women with minor CAG repeat variants of POLG, but no statistically significant differences in CAG repeat length were observed between cases and controls (multivariate-adjusted odds ratio 1.74; 95% CI, 0.49-6.21). Our study suggests that POLG-CAG repeat length is a potential risk factor for breast cancer that needs to be explored in larger population-based studies.

  3. CAG repeat variants in the POLG1 gene encoding mtDNA polymerase-gamma and risk of breast cancer in African-American women.

    Directory of Open Access Journals (Sweden)

    Sami Azrak

    Full Text Available The DNA polymerase-gamma (POLG gene, which encodes the catalytic subunit of enzyme responsible for directing mitochondrial DNA replication in humans, contains a polyglutamine tract encoded by CAG repeats of varying length. The length of the CAG repeat has been associated with the risk of testicular cancer, and other genomic variants that impact mitochondrial function have been linked to breast cancer risk in African-American (AA women. We evaluated the potential role of germline POLG-CAG repeat variants in breast cancer risk in a sample of AA women (100 cases and 100 age-matched controls who participated in the Women's Circle of Health Study, an ongoing multi-institutional, case-control study of breast cancer. Genotyping was done by fragment analysis in a blinded manner. Results from this small study suggest the possibility of an increased risk of breast cancer in women with minor CAG repeat variants of POLG, but no statistically significant differences in CAG repeat length were observed between cases and controls (multivariate-adjusted odds ratio 1.74; 95% CI, 0.49-6.21. Our study suggests that POLG-CAG repeat length is a potential risk factor for breast cancer that needs to be explored in larger population-based studies.

  4. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family

    Directory of Open Access Journals (Sweden)

    Joerger Andreas C

    2009-12-01

    Full Text Available Abstract Background Transcription factors activate their target genes by binding to specific response elements. Many transcription factor families evolved from a common ancestor by gene duplication and subsequent divergent evolution. Members of the p53 family, which play key roles in cell-cycle control and development, share conserved DNA binding and oligomerisation domains but exhibit distinct functions. In this study, the molecular basis of the functional divergence of related transcription factors was investigated. Results We characterised the DNA-binding specificity and oligomerisation properties of human p53, p63 and p73, as well as p53 from other organisms using novel biophysical approaches. All p53 family members bound DNA cooperatively as tetramers with high affinity. Despite structural differences in the oligomerisation domain, the dissociation constants of the tetramers was in the low nanomolar range for all family members, indicating that the strength of tetramerisation was evolutionarily conserved. However, small differences in the oligomerisation properties were observed, which may play a regulatory role. Intriguingly, the DNA-binding specificity of p53 family members was highly conserved even for evolutionarily distant species. Additionally, DNA recognition was only weakly affected by CpG methylation. Prediction of p53/p63/p73 binding sites in the genome showed almost complete overlap between the different homologs. Conclusion Diversity of biological function of p53 family members is not reflected in differences in sequence-specific DNA binding. Hence, additional specificity factors must exist, which allowed the acquisition of novel functions during evolution while preserving original roles.

  5. Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, D.R.; Sapp, P.; O`Regan, J.; McKenna-Yasek, D.; Schlumpf, K.S.; Haines, J.L.; Gusella, J.F.; Horvitz, H.R.; Brown, R.H. Jr. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1994-05-15

    Amyotrophic lateral sclerosis (ALS; Lou Gehrig`s Disease) is a lethal neurodegenerative disease of upper and lower motorneurons in the brain and spinal cord. We previously reported linkage of a gene for familial ALS (FALS) to human chromosome 21 using 4 restriction fragment length polymorphism DNA markers and identified disease-associated mutations in the superoxide dismutase (SOD)-1 gene in some ALS families. We report here the genetic linkage data that led us to examine the SOD-1 gene for mutations. We also report a new microsatellite DNA marker for D21S63, derived from the cosmid PW517. Ten microsatellite DNA markers, including the new marker D21S63, were used to reinvestigate linkage of FALS to chromosome 21. Genetic linkage analysis performed with 13 ALS familes for these 10 DNA markers confirmed the presence of a FALS gene on chromosome 21. The highest total 2-point LOD score for all families was 4.33, obtained at a distance of 10 cM from the marker D21S223. For 5 ALS families linked to chromosome 21, a peak 2-point LOD score of 5.94 was obtained at the DNA marker D21S223. A multipoint score of 6.50 was obtained with the markers D21S213, D21S223, D21S167, and FALS for 5 chromosome 21-linked ALS families. The haplotypes of these families for the 10 DNA markers reveal recombination events that further refined the location of the FALS gene to a segment of approximately 5 megabases (Mb) between D21S213 and D21S219. The only characterized gene within this segment was SOD-1, the structural gene for Cu, Zn SOD. 30 refs., 4 figs., 4 tabs.

  6. Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.V.; Cevario, S.; O`Brien, S.J. [National Cancer Institute, Frederick, MD (United States)

    1996-04-15

    The complete 17,009-bp mitochondrial genome of the domestic cat, Felis catus, has been sequenced and conforms largely to the typical organization of previously characterized mammalian mtDNAs. Codon usage and base composition also followed canonical vertebrate patterns, except for an unusual ATC (non-AUG) codon initiating the NADH dehydrogenase subunit 2 (ND2) gene. Two distinct repetitive motifs at opposite ends of the control region contribute to the relatively large size (1559 bp) of this carnivore mtDNA. Alignment of the feline mtDNA genome to a homologous 7946-bp nuclear mtDNA tandem repeat DNA sequence in the cat, Numt, indicates simple repeat motifs associated with insertion/deletion mutations. Overall DNA sequence divergence between Numt and cytoplasmic mtDNA sequence was only 5.1%. Substitutions predominate at the third codon position of homologous feline protein genes. Phylogenetic analysis of mitochondrial gene sequences confirms the recent transfer of the cytoplasmic mtDNA sequences to the domestic cat nucleus and recapitulates evolutionary relationships between mammal species. 86 refs., 4 figs., 3 tabs.

  7. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility.

    Science.gov (United States)

    Huang, Wenchao; Yu, Changchun; Hu, Jun; Wang, Lili; Dan, Zhiwu; Zhou, Wei; He, Chunlan; Zeng, Yafei; Yao, Guoxin; Qi, Jianzhao; Zhang, Zhihong; Zhu, Renshan; Chen, Xuefeng; Zhu, Yingguo

    2015-12-01

    Cytoplasmic male sterility (CMS) has been extensively used for hybrid seed production in many major crops. Honglian CMS (HL-CMS) is one of the three major types of CMS in rice and has contributed greatly to food security worldwide. The HL-CMS trait is associated with an aberrant chimeric mitochondrial transcript, atp6-orfH79, which causes pollen sterility and can be rescued by two nonallelic restorer-of-fertility (Rf) genes, Rf5 or Rf6. Here, we report the identification of Rf6, which encodes a novel pentatricopeptide repeat (PPR) family protein with a characteristic duplication of PPR motifs 3-5. RF6 is targeted to mitochondria, where it physically associates with hexokinase 6 (OsHXK6) and promotes the processing of the aberrant CMS-associated transcript atp6-orfH79 at nucleotide 1238, which ensures normal pollen development and restores fertility. The duplicated motif 3 of RF6 is essential for RF6-OsHXK6 interactions, processing of the aberrant transcript, and restoration of fertility. Furthermore, reductions in the level of OsHXK6 result in atp6-orfH79 transcript accumulation and male sterility. Together these results reveal a novel mechanism for CMS restoration by which RF6 functions with OsHXK6 to restore HL-CMS fertility. The present study also provides insight into the function of hexokinase 6 in regulating mitochondrial RNA metabolism and may facilitate further exploitation of heterosis in rice.

  8. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2010-10-01

    Full Text Available Abstract Background Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. Results The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. Conclusions ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.

  9. Molecular Typing of Mycobacterium tuberculosis Based on Variable Number of Tandem DNA Repeats Used Alone and in Association with Spoligotyping

    Science.gov (United States)

    Filliol, Ingrid; Ferdinand, Severine; Negroni, Laetitia; Sola, Christophe; Rastogi, Nalin

    2000-01-01

    Fingerprinting based on variable numbers of tandem DNA repeats (VNTR), a recently described methodology, was evaluated for molecular typing of Mycobacterium tuberculosis in an insular setting. In this study, VNTR fingerprinting was used alone or as a second-line test in association with spoligotyping, double-repetitive-element PCR (DRE-PCR), and IS6110 restriction fragment length polymorphism (RFLP) analysis, and the discriminatory power for each method or the combination of methods was compared by calculating the Hunter-Gaston discriminative index (HGI). The results obtained showed that in 6 out of 12 (50%) cases, VNTR-defined clusters were further subdivided by spoligotyping, compared to 7 out of 18 (39%) cases where spoligotyping-defined clusters were further subdivided by VNTR. When used alone, VNTR was the least discriminatory method (HGI = 0.863). Although VNTR was significantly more discriminatory when used in association with spoligotyping (HGI = 0.982), the combination of spoligotyping and DRE-PCR (HGI = 0.992) was still the most efficient among rapid, PCR-based methodologies, giving results comparable to IS6110 RFLP analysis. Nonetheless, VNTR typing may provide additional phylogenetical information that may be helpful to trace the molecular evolution of tubercle bacilli. PMID:10878036

  10. Organellar genome, nuclear ribosomal DNA repeat unit, and microsatellites isolated from a small-scale of 454 GS FLX sequencing on two mosses.

    Science.gov (United States)

    Liu, Yang; Forrest, Laura L; Bainard, Jillian D; Budke, Jessica M; Goffinet, Bernard

    2013-03-01

    Recent innovations in high-throughput DNA sequencing methodology (next generation sequencing technologies [NGS]) allow for the generation of large amounts of high quality data that may be particularly critical for resolving ambiguous relationships such as those resulting from rapid radiations. Application of NGS technology to bryology is limited to assembling entire nuclear or organellar genomes of selected exemplars of major lineages (e.g., classes). Here we outline how organellar genomes and the entire nuclear ribosomal DNA repeat can be obtained from minimal amounts of moss tissue via small-scale 454 GS FLX sequencing. We sampled two Funariaceae species, Funaria hygrometrica and Entosthodon obtusus, and assembled nearly complete organellar genomes and the whole nuclear ribosomal DNA repeat unit (18S-ITS1-5.8S-ITS2-26S-IGS1-5S-IGS2) for both taxa. Sequence data from these species were compared to sequences from another Funariaceae species, Physcomitrella patens, revealing low overall degrees of divergence of the organellar genomes and nrDNA genes with substitutions spread rather evenly across their length, and high divergence within the external spacers of the nrDNA repeat. Furthermore, we detected numerous microsatellites among the 454 assemblies. This study demonstrates that NGS methodology can be applied to mosses to target large genomic regions and identify microsatellites.

  11. Characterization of family D DNA polymerase from Thermococcus sp. 9°N.

    Science.gov (United States)

    Greenough, Lucia; Menin, Julie F; Desai, Nirav S; Kelman, Zvi; Gardner, Andrew F

    2014-07-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3'-5' exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3'-5' exonuclease proofreading activity, polD has a relatively high error rate (95 × 10(-5)) compared to polB (19 × 10(-5)) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.

  12. Distinctive effects of the Epstein-Barr virus family of repeats on viral latent gene promoter activity and B-lymphocyte transformation.

    Science.gov (United States)

    Ali, Ahmed K M; Saito, Satoru; Shibata, Sachiko; Takada, Kenzo; Kanda, Teru

    2009-09-01

    The Epstein-Barr virus (EBV), a human B-lymphotropic gamma herpesvirus, contains multiple repetitive sequences within its genome. A group of repetitive sequences, known as the family of repeats (FR), contains multiple binding sites for the viral trans-acting protein EBNA-1. The FR sequences are important for viral genome maintenance and for the regulation of the promoter involved in viral latent gene expression. It has been reported that a palindromic sequence with a putative secondary structure exists at the 3' end of the FR in the genome of the EBV B95-8 strain and that this palindromic sequence has been deleted from the FR of the commonly used EBV miniplasmids. For the first time, we cloned an EBV B95-8 DNA fragment containing the full-length FR, which enabled us to examine the functional difference between full-length and deleted FRs. The full-length FR, like the deleted FR, functioned as a transcriptional enhancer of the viral latent gene promoter, but that transactivation was significantly attenuated in the case of the full-length FR. No significant enhancement of replication was observed when the deleted FR was replaced with the full-length FR in an EBV miniplasmid. By contrast, when the same set of FR sequences were tested in the context of the complete EBV genome, the full-length FR resulted in more-efficient B-cell transformation than the deleted FR. We propose that the presence of the full-length FR contributes to the precise regulation of the viral latent promoter and increases the efficiency of B-cell transformation.

  13. Tandem repeat sequence variation and length heteroplasmy in the mitochondrial DNA D-loop of the threatened Gulf of Mexico sturgeon, Acipenser oxyrhynchus desotoi.

    Science.gov (United States)

    Miracle, A L; Campton, D E

    1995-01-01

    Genetic variability within the Suwannee River, Florida, population of Gulf of Mexico sturgeon, Acipenser oxyrhynchus desotoi, was assessed by examining sequence and length variation within the control region, or D-loop, of the mitochondrial genome. Although once abundant throughout the Gulf of Mexico, Gulf sturgeon are now listed as a threatened species by the U.S. Fish and Wildlife Service. Mitochondrial DNA was analyzed for length variation from 168 individual Gulf sturgeon by PCR amplification and visualization of PCR products using ethidium bromide-stained agarose gels. Of the 168 individual Gulf sturgeon, 31 (18.5%) were heteroplasmic for one to four copies of an 81-base pair, tandemly repeated sequence in the D-loop region. However, no individuals homoplasmic for multiple copies of the repeat sequence were observed. The existence and nature of these tandem repeats in heteroplasmic individuals was confirmed by direct sequencing of the PCR products for a subset of 22 individuals. The results are consistent with the apparent nature and mechanism of heteroplasmy observed in a congeneric species, A. transmontanus. In addition, sequences for 187 base pairs outside of the tandem repeats were identical among all 16 individuals assayed for this region. Lack of variable sequences is concordant with earlier studies involving mtDNA restriction fragment length profiles of Gulf sturgeon found in the Suwannee River. The absence of sequence variation exclusive of the tandem repeats is consistent with the hypothesis that the subspecies has undergone a population or evolutionary bottleneck.

  14. DNA barcoding for species identification in the Palmae family.

    Science.gov (United States)

    Naeem, A; Khan, A A; Cheema, H M N; Khan, I A; Buerkert, A

    2014-12-04

    DNA barcoding is a promising tool for species identification at the molecular level. The barcoding system is well established for species differentiation in animals, while it is less common in plants. We evaluated 2 barcoding regions, maturase K (matK) and ribulose bisphosphate carboxylase (rbcL), to compare species of Palmae according to amplification success, discrimination power, and inter- and intra-specific divergence. Both regions appear to have potential to discriminate most species of Palmae, but 2 species, Phoenix dactylifera and Phoenix sylvestris, did not show variation in the nucleotides of the barcode genes. P. sylvestris is said to be the sister species of P. dactilyfera according to its morphological and genetic proximity to the cultivated date palm. Thus, the status of these 2 species needs to be re-evaluated considering more genes as barcodes. Furthermore, rbcL has a higher discrimination power (90%) than matK (66.6%) and can thus be potentially used as a standard barcode to discriminate the species of Palmae.

  15. A single whole-body low dose X-irradiation does not affect L1, B1 and IAP repeat element DNA methylation longitudinally.

    Directory of Open Access Journals (Sweden)

    Michelle R Newman

    Full Text Available The low dose radioadaptive response has been shown to be protective against high doses of radiation as well as aging-induced genomic instability. We hypothesised that a single whole-body exposure of low dose radiation would induce a radioadaptive response thereby reducing or abrogating aging-related changes in repeat element DNA methylation in mice. Following sham or 10 mGy X-irradiation, serial peripheral blood sampling was performed and differences in Long Interspersed Nucleic Element 1 (L1, B1 and Intracisternal-A-Particle (IAP repeat element methylation between samples were assessed using high resolution melt analysis of PCR amplicons. By 420 days post-irradiation, neither radiation- or aging-related changes in the methylation of peripheral blood, spleen or liver L1, B1 and IAP elements were observed. Analysis of the spleen and liver tissues of cohorts of untreated aging mice showed that the 17-19 month age group exhibited higher repeat element methylation than younger or older mice, with no overall decline in methylation detected with age. This is the first temporal analysis of the effect of low dose radiation on repeat element methylation in mouse peripheral blood and the first to examine the long term effect of this dose on repeat element methylation in a radiosensitive tissue (spleen and a tissue fundamental to the aging process (liver. Our data indicate that the methylation of murine DNA repeat elements can fluctuate with age, but unlike human studies, do not demonstrate an overall aging-related decline. Furthermore, our results indicate that a low dose of ionising radiation does not induce detectable changes to murine repeat element DNA methylation in the tissues and at the time-points examined in this study. This radiation dose is relevant to human diagnostic radiation exposures and suggests that a dose of 10 mGy X-rays, unlike high dose radiation, does not cause significant short or long term changes to repeat element or global DNA

  16. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil.

    Science.gov (United States)

    Wagner, Andreas O; Praeg, Nadine; Reitschuler, Christoph; Illmer, Paul

    2015-09-01

    Different DNA extraction protocols were evaluated on a reference soil. A wide difference was found in the total extractable DNA as derived from different extraction protocols. Concerning the DNA yield phenol-chloroform-isomyl alcohol extraction resulted in high DNA yield but also in a remarkable co-extraction of contaminants making PCR from undiluted DNA extracts impossible. By comparison of two different extraction kits, the Macherey&Nagel SoilExtract II kit resulted in the highest DNA yields when buffer SL1 and the enhancer solution were applied. The enhancer solution not only significantly increased the DNA yield but also the amount of co-extracted contaminates, whereas additional disintegration strategies did not. Although a three times repeated DNA extraction increased the total amount of extracted DNA, microbial fingerprints were merely affected. However, with the 5th extraction this changed. A reduction of total DGGE band numbers was observed for archaea and fungi, whereas for bacteria the diversity increased. The application of ethidium monoazide (EMA) or propidium monoazide (PMA) treatment aiming on the selective removal of soil DNA derived from cells lacking cell wall integrity resulted in a significant reduction of total extracted DNA, however, the hypothesized effect on microbial fingerprints failed to appear indicating the need for further investigations.

  17. A Familial Factor Independent of CAG Repeat Length Influences Age at Onset of Machado-Joseph Disease

    OpenAIRE

    DeStefano, Anita L.; Cupples, L. Adrienne; Maciel, Patricia; Gaspar, Claudia; Radvany, Joao; Dawson, David M.; Sudarsky, Lewis; Corwin, Lee; Coutinho, Paula; MacLeod, Patrick; Sequeiros, Jorge; Rouleau, Guy A.; Farrer, Lindsay A.

    1996-01-01

    Machado-Joseph disease (MJD) is a late-onset, progressive, neurodegenerative disorder caused by the expansion of an unstable trinucleotide (CAG) repeat sequence in a novel gene (MJD1) on chromosome 14. Previous studies showed that age at onset is negatively correlated with the number of CAG repeat units, but only part of the variation in onset age is explained by CAG repeat length. Ages at onset and CAG repeat lengths of 136 MJD patients from 23 kindreds of Portuguese descent were analyzed, t...

  18. NMR studies of a new family of DNA binding proteins: the THAP proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, Virginie, E-mail: virginie.gervais@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France); Campagne, Sebastien [ETH Zurich (Switzerland); Durand, Jade; Muller, Isabelle; Milon, Alain, E-mail: alain.milon@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France)

    2013-05-15

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.

  19. Comparative analysis of DNA methyltransferase gene family in fungi: a focus on Basidiomycota

    Directory of Open Access Journals (Sweden)

    Ruirui Huang

    2016-10-01

    Full Text Available DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes.

  20. Comparative Analysis of DNA Methyltransferase Gene Family in Fungi: A Focus on Basidiomycota

    Science.gov (United States)

    Huang, Ruirui; Ding, Qiangqiang; Xiang, Yanan; Gu, Tingting; Li, Yi

    2016-01-01

    DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases) in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes. PMID:27818666

  1. Comparative Analysis of DNA Methyltransferase Gene Family in Fungi: A Focus on Basidiomycota.

    Science.gov (United States)

    Huang, Ruirui; Ding, Qiangqiang; Xiang, Yanan; Gu, Tingting; Li, Yi

    2016-01-01

    DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases) in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes.

  2. Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.

    Directory of Open Access Journals (Sweden)

    Elisson A C Romanel

    Full Text Available BACKGROUND: The B3 DNA binding domain includes five families: auxin response factor (ARF, abscisic acid-insensitive3 (ABI3, high level expression of sugar inducible (HSI, related to ABI3/VP1 (RAV and reproductive meristem (REM. The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily. METHODOLOGY: In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family. CONCLUSIONS: Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.

  3. Dynamic Conformational Change Regulates the Protein-DNA Recognition: An Investigation on Binding of a Y-Family Polymerase to Its Target DNA

    Science.gov (United States)

    Chu, Xiakun; Liu, Fei; Maxwell, Brian A.; Wang, Yong; Suo, Zucai; Wang, Haijun; Han, Wei; Wang, Jin

    2014-01-01

    Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4) during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates. PMID:25188490

  4. Family-specific vs. universal PCR primers for the study of mitochondrial DNA in plants

    Directory of Open Access Journals (Sweden)

    Aleksić Jelena M.

    2016-01-01

    Full Text Available Mitochondrial genomes (mtDNAs or mitogenomes of seed plants are characterized by a notoriously unstable organization on account of which available so-called universal or consensus primers may fail to fulfil their foreseen function - amplification of various mtDNA regions in a broad range of plant taxa. Thus, the primers developed for groups assumed to have similar organization of their mitogenomes, such as families, may facilitate a broader usage of more variable non-coding portions of these genomes in group members. Using in silico PCR method and six available complete mitogenomes of Fabaceae, it has been demonstrated that only three out of 36 published universal primer and three Medicago sativa-specific primer pairs that amplify various mtDNA regions are suitable for six representatives of the Fabaceae family upon minor modifications, and develop 21 Fabaceae-specific primer pairs for amplification of all 14 cis-splicing introns in genes of NADH subunits (nad genes which represent the most commonly used non-coding mtDNA regions in various studies in plants. Using the same method and six available complete mitogenomes of representatives of related families Cucurbitaceae, Euphorbiaceae and Rosaceae and a model plant, Arabidopsis thaliana, it has further been demonstrated that applicability of newly developed primer pairs for amplification of nad introns in more or less related taxa was dependent not only on species evolutionary distances but also on their genome sizes. A reported set of 24 primer pairs is a valuable resource which may facilitate a broader usage of mtDNA variability in future studies at both intra- and inter-specific levels in Fabaceae, which is the third largest family of flowering plants rarely studied at the mtDNA level, and in other more or less related taxa. [Projekat Ministarstva nauke Republike Srbije, br. 173005

  5. Evidence for 5S rDNA horizontal transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families.

    Science.gov (United States)

    Merlo, Manuel A; Cross, Ismael; Palazón, José L; Ubeda-Manzanaro, María; Sarasquete, Carmen; Rebordinos, Laureana

    2012-10-07

    hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATA)n repeats, from dispersed to localized in one locus. The accumulation of (GATA)n repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology.

  6. Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801 based on the analysis of three multigene families

    Directory of Open Access Journals (Sweden)

    Merlo Manuel A

    2012-10-01

    in the Pleuronectiformes and Clupeiformes orders. Two hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATAn repeats, from dispersed to localized in one locus. The accumulation of (GATAn repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology.

  7. Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes.

    Science.gov (United States)

    Dragileva, Ella; Hendricks, Audrey; Teed, Allison; Gillis, Tammy; Lopez, Edith T; Friedberg, Errol C; Kucherlapati, Raju; Edelmann, Winfried; Lunetta, Kathryn L; MacDonald, Marcy E; Wheeler, Vanessa C

    2009-01-01

    Modifying the length of the Huntington's disease (HD) CAG repeat, the major determinant of age of disease onset, is an attractive therapeutic approach. To explore this we are investigating mechanisms of intergenerational and somatic HD CAG repeat instability. Here, we have crossed HD CAG knock-in mice onto backgrounds deficient in mismatch repair genes, Msh3 and Msh6, to discern the effects on CAG repeat size and disease pathogenesis. We find that different mechanisms predominate in inherited and somatic instability, with Msh6 protecting against intergenerational contractions and Msh3 required both for increasing CAG length and for enhancing an early disease phenotype in striatum. Therefore, attempts to decrease inherited repeat size may entail a full understanding of Msh6 complexes, while attempts to block the age-dependent increases in CAG size in striatal neurons and to slow the disease process will require a full elucidation of Msh3 complexes and their function in CAG repeat instability.

  8. Recombination-Independent Recognition of DNA Homology for Repeat-Induced Point Mutation (RIP Is Modulated by the Underlying Nucleotide Sequence.

    Directory of Open Access Journals (Sweden)

    Eugene Gladyshev

    2016-05-01

    Full Text Available Haploid germline nuclei of many filamentous fungi have the capacity to detect homologous nucleotide sequences present on the same or different chromosomes. Once recognized, such sequences can undergo cytosine methylation or cytosine-to-thymine mutation specifically over the extent of shared homology. In Neurospora crassa this process is known as Repeat-Induced Point mutation (RIP. Previously, we showed that RIP did not require MEI-3, the only RecA homolog in Neurospora, and that it could detect homologous trinucleotides interspersed with a matching periodicity of 11 or 12 base-pairs along participating chromosomal segments. This pattern was consistent with a mechanism of homology recognition that involved direct interactions between co-aligned double-stranded (ds DNA molecules, where sequence-specific dsDNA/dsDNA contacts could be established using no more than one triplet per turn. In the present study we have further explored the DNA sequence requirements for RIP. In our previous work, interspersed homologies were always examined in the context of a relatively long adjoining region of perfect homology. Using a new repeat system lacking this strong interaction, we now show that interspersed homologies with overall sequence identity of only 36% can be efficiently detected by RIP in the absence of any perfect homology. Furthermore, in this new system, where the total amount of homology is near the critical threshold required for RIP, the nucleotide composition of participating DNA molecules is identified as an important factor. Our results specifically pinpoint the triplet 5'-GAC-3' as a particularly efficient unit of homology recognition. Finally, we present experimental evidence that the process of homology sensing can be uncoupled from the downstream mutation. Taken together, our results advance the notion that sequence information can be compared directly between double-stranded DNA molecules during RIP and, potentially, in other processes

  9. Recombination-Independent Recognition of DNA Homology for Repeat-Induced Point Mutation (RIP) Is Modulated by the Underlying Nucleotide Sequence.

    Science.gov (United States)

    Gladyshev, Eugene; Kleckner, Nancy

    2016-05-01

    Haploid germline nuclei of many filamentous fungi have the capacity to detect homologous nucleotide sequences present on the same or different chromosomes. Once recognized, such sequences can undergo cytosine methylation or cytosine-to-thymine mutation specifically over the extent of shared homology. In Neurospora crassa this process is known as Repeat-Induced Point mutation (RIP). Previously, we showed that RIP did not require MEI-3, the only RecA homolog in Neurospora, and that it could detect homologous trinucleotides interspersed with a matching periodicity of 11 or 12 base-pairs along participating chromosomal segments. This pattern was consistent with a mechanism of homology recognition that involved direct interactions between co-aligned double-stranded (ds) DNA molecules, where sequence-specific dsDNA/dsDNA contacts could be established using no more than one triplet per turn. In the present study we have further explored the DNA sequence requirements for RIP. In our previous work, interspersed homologies were always examined in the context of a relatively long adjoining region of perfect homology. Using a new repeat system lacking this strong interaction, we now show that interspersed homologies with overall sequence identity of only 36% can be efficiently detected by RIP in the absence of any perfect homology. Furthermore, in this new system, where the total amount of homology is near the critical threshold required for RIP, the nucleotide composition of participating DNA molecules is identified as an important factor. Our results specifically pinpoint the triplet 5'-GAC-3' as a particularly efficient unit of homology recognition. Finally, we present experimental evidence that the process of homology sensing can be uncoupled from the downstream mutation. Taken together, our results advance the notion that sequence information can be compared directly between double-stranded DNA molecules during RIP and, potentially, in other processes where homologous

  10. Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species

    NARCIS (Netherlands)

    Kuipers, A.G.J.; Kamstra, S.A.; Jeu, de M.J.; Jacobsen, E.

    2002-01-01

    Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragm

  11. High-resolution DNA melt curve analysis of the clustered, regularly interspaced short-palindromic-repeat locus of Campylobacter jejuni.

    Science.gov (United States)

    Price, Erin P; Smith, Helen; Huygens, Flavia; Giffard, Philip M

    2007-05-01

    A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short sequence repeats in other species.

  12. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter.

    Science.gov (United States)

    Gijselinck, I; Van Mossevelde, S; van der Zee, J; Sieben, A; Engelborghs, S; De Bleecker, J; Ivanoiu, A; Deryck, O; Edbauer, D; Zhang, M; Heeman, B; Bäumer, V; Van den Broeck, M; Mattheijssens, M; Peeters, K; Rogaeva, E; De Jonghe, P; Cras, P; Martin, J-J; de Deyn, P P; Cruts, M; Van Broeckhoven, C

    2016-08-01

    Pathological expansion of a G4C2 repeat, located in the 5' regulatory region of C9orf72, is the most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 patients have highly variable onset ages suggesting the presence of modifying factors and/or anticipation. We studied 72 Belgian index patients with FTLD, FTLD-ALS or ALS and 61 relatives with a C9orf72 repeat expansion. We assessed the effect of G4C2 expansion size on onset age, the role of anticipation and the effect of repeat size on methylation and C9orf72 promoter activity. G4C2 expansion sizes varied in blood between 45 and over 2100 repeat units with short expansions (45-78 units) present in 5.6% of 72 index patients with an expansion. Short expansions co-segregated with disease in two families. The subject with a short expansion in blood but an indication of mosaicism in brain showed the same pathology as those with a long expansion. Further, we provided evidence for an association of G4C2 expansion size with onset age (Pdisease anticipation. Also, intermediate repeats (7-24 units) showed a slightly higher methylation degree (Pdisease mechanisms and have important implications for diagnostic counseling and potential therapeutic approaches.

  13. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  14. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    -wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum......-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  15. Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo

    Science.gov (United States)

    Wei, Gong-Hong; Badis, Gwenael; Berger, Michael F; Kivioja, Teemu; Palin, Kimmo; Enge, Martin; Bonke, Martin; Jolma, Arttu; Varjosalo, Markku; Gehrke, Andrew R; Yan, Jian; Talukder, Shaheynoor; Turunen, Mikko; Taipale, Mikko; Stunnenberg, Hendrik G; Ukkonen, Esko; Hughes, Timothy R; Bulyk, Martha L; Taipale, Jussi

    2010-01-01

    Members of the large ETS family of transcription factors (TFs) have highly similar DNA-binding domains (DBDs)—yet they have diverse functions and activities in physiology and oncogenesis. Some differences in DNA-binding preferences within this family have been described, but they have not been analysed systematically, and their contributions to targeting remain largely uncharacterized. We report here the DNA-binding profiles for all human and mouse ETS factors, which we generated using two different methods: a high-throughput microwell-based TF DNA-binding specificity assay, and protein-binding microarrays (PBMs). Both approaches reveal that the ETS-binding profiles cluster into four distinct classes, and that all ETS factors linked to cancer, ERG, ETV1, ETV4 and FLI1, fall into just one of these classes. We identify amino-acid residues that are critical for the differences in specificity between all the classes, and confirm the specificities in vivo using chromatin immunoprecipitation followed by sequencing (ChIP-seq) for a member of each class. The results indicate that even relatively small differences in in vitro binding specificity of a TF contribute to site selectivity in vivo. PMID:20517297

  16. Multiple DNA-binding modes for the ETS family transcription factor PU.1.

    Science.gov (United States)

    Esaki, Shingo; Evich, Marina G; Erlitzki, Noa; Germann, Markus W; Poon, Gregory M K

    2017-09-29

    The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Variation in the genomic locations and sequence conservation of STAR elements among staphylococcal species provides insight into DNA repeat evolution

    Directory of Open Access Journals (Sweden)

    Purves Joanne

    2012-09-01

    Full Text Available Abstract Background Staphylococcus aureus Repeat (STAR elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis.

  18. Variation in the genomic locations and sequence conservation of STAR elements among staphylococcal species provides insight into DNA repeat evolution.

    Science.gov (United States)

    Purves, Joanne; Blades, Matthew; Arafat, Yasrab; Malik, Salman A; Bayliss, Christopher D; Morrissey, Julie A

    2012-09-28

    Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis.

  19. Repeating the Errors of Our Parents? Parental Violence in Men's Family of Origin and Conflict Management in Dating Couples

    Science.gov (United States)

    Skuja, Kathy; Halford, W. Kim

    2004-01-01

    Within a social learning model, family-of-origin violence places men at risk for developing negative communication in their adult relationships. Thirty young men exposed to family-of-origin violence (exposed group) and 30 unexposed young men were videotaped discussing a conflict topic with their female dating partners. Relative to the unexposed…

  20. Familial longevity study reveals a significant association of mitochondrial DNA copy number between centenarians and their offspring.

    Science.gov (United States)

    He, Yong-Han; Chen, Xiao-Qiong; Yan, Dong-Jing; Xiao, Fu-Hui; Lin, Rong; Liao, Xiao-Ping; Liu, Yao-Wen; Pu, Shao-Yan; Yu, Qin; Sun, Hong-Peng; Jiang, Jian-Jun; Cai, Wang-Wei; Kong, Qing-Peng

    2016-11-01

    Reduced mitochondrial function is an important cause of aging and age-related diseases. We previously revealed a relatively higher level of mitochondrial DNA (mtDNA) content in centenarians. However, it is still unknown whether such an mtDNA content pattern of centenarians could be passed on to their offspring and how it was regulated. To address these issues, we recruited 60 longevity families consisting of 206 family members (cohort 1) and explored their mtDNA copy number. The results showed that the first generation of the offspring (F1 offspring) had a higher level of mtDNA copy number than their spouses (p copy number in centenarians with that in F1 offspring (r = 0.54, p = 0.0008) but not with that in F1 spouses. These results were replicated in another independent cohort consisting of 153 subjects (cohort 2). RNA sequencing analysis suggests that the single-stranded DNA-binding protein 4 was significantly associated with mtDNA copy number and was highly expressed in centenarians as well as F1 offspring versus the F1 spouses, thus likely regulates the mtDNA copy number in the long-lived family members. In conclusion, our results suggest that the pattern of high mtDNA copy number is likely inheritable, which may act as a favorable factor to familial longevity through assuring adequate energy supply. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A contracted DNA repeat in LHX3 intron 5 is associated with aberrant splicing and pituitary dwarfism in German shepherd dogs.

    Directory of Open Access Journals (Sweden)

    Annemarie M W Y Voorbij

    Full Text Available Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism.

  2. A Contracted DNA Repeat in LHX3 Intron 5 Is Associated with Aberrant Splicing and Pituitary Dwarfism in German Shepherd Dogs

    Science.gov (United States)

    Voorbij, Annemarie M. W. Y.; van Steenbeek, Frank G.; Vos-Loohuis, Manon; Martens, Ellen E. C. P.; Hanson-Nilsson, Jeanette M.; van Oost, Bernard A.; Kooistra, Hans S.; Leegwater, Peter A.

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism. PMID:22132174

  3. Revisiting the TALE repeat.

    Science.gov (United States)

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  4. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays.

    Science.gov (United States)

    Pinhal, Danillo; Yoshimura, Tatiana S; Araki, Carlos S; Martins, Cesar

    2011-05-31

    Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution.

  5. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Directory of Open Access Journals (Sweden)

    Araki Carlos S

    2011-05-01

    Full Text Available Abstract Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution.

  6. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Science.gov (United States)

    2011-01-01

    Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution. PMID:21627815

  7. Association of the polymorphism of the CAG repeat in the mitochondrial DNA polymerase gamma gene (POLG) with testicular germ-cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, M; Leffers, H; Petersen, J H

    2008-01-01

    BACKGROUND: A possible association between the polymorphic CAG repeat in the DNA polymerase gamma (POLG) gene and the risk of testicular germ-cell tumours (TGCT) was investigated in this study. The hypothesis was prompted by an earlier preliminary study proposing an association of the absence...... of the common 10-CAG-long POLG allele with testicular cancer as well as previously reported in some European populations' association with male subfertility, which is a condition carrying an increased risk of TGCT. PATIENTS AND METHODS: The number of CAG repeats in both POLG alleles was established in 243.......001). The vast majority of the homozygous patients had a seminoma (11 of 12; 97%), despite that only about half (55%) of the studied patients had this tumour type. CONCLUSIONS: The findings indicate that the POLG polymorphism may be a contributing factor in the pathogenesis of TGCT particularly in seminoma...

  8. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies.

    Directory of Open Access Journals (Sweden)

    Shaun Mahony

    2007-03-01

    Full Text Available Transcription factor (TF proteins recognize a small number of DNA sequences with high specificity and control the expression of neighbouring genes. The evolution of TF binding preference has been the subject of a number of recent studies, in which generalized binding profiles have been introduced and used to improve the prediction of new target sites. Generalized profiles are generated by aligning and merging the individual profiles of related TFs. However, the distance metrics and alignment algorithms used to compare the binding profiles have not yet been fully explored or optimized. As a result, binding profiles depend on TF structural information and sometimes may ignore important distinctions between subfamilies. Prediction of the identity or the structural class of a protein that binds to a given DNA pattern will enhance the analysis of microarray and ChIP-chip data where frequently multiple putative targets of usually unknown TFs are predicted. Various comparison metrics and alignment algorithms are evaluated (a total of 105 combinations. We find that local alignments are generally better than global alignments at detecting eukaryotic DNA motif similarities, especially when combined with the sum of squared distances or Pearson's correlation coefficient comparison metrics. In addition, multiple-alignment strategies for binding profiles and tree-building methods are tested for their efficiency in constructing generalized binding models. A new method for automatic determination of the optimal number of clusters is developed and applied in the construction of a new set of familial binding profiles which improves upon TF classification accuracy. A software tool, STAMP, is developed to host all tested methods and make them publicly available. This work provides a high quality reference set of familial binding profiles and the first comprehensive platform for analysis of DNA profiles. Detecting similarities between DNA motifs is a key step in the

  9. Evaluation of four commonly used DNA barcoding Loci for chinese medicinal plants of the family schisandraceae.

    Science.gov (United States)

    Zhang, Jian; Chen, Min; Dong, Xiaoyu; Lin, Ruozhu; Fan, Jianhua; Chen, Zhiduan

    2015-01-01

    Many species of Schisandraceae are used in traditional Chinese medicine and are faced with contamination and substitution risks due to inaccurate identification. Here, we investigated the discriminatory power of four commonly used DNA barcoding loci (ITS, trnH-psbA, matK, and rbcL) and corresponding multi-locus combinations for 135 individuals from 33 species of Schisandraceae, using distance-, tree-, similarity-, and character-based methods, at both the family level and the genus level. Our results showed that the two spacer regions (ITS and trnH-psbA) possess higher species-resolving power than the two coding regions (matK and rbcL). The degree of species resolution increased with most of the multi-locus combinations. Furthermore, our results implied that the best DNA barcode for the species discrimination at the family level might not always be the most suitable one at the genus level. Here we propose the combination of ITS+trnH-psbA+matK+rbcL as the most ideal DNA barcode for discriminating the medicinal plants of Schisandra and Kadsura, and the combination of ITS+trnH-psbA as the most suitable barcode for Illicium species. In addition, the closely related species Schisandra rubriflora Rehder & E. H. Wilson and Schisandra grandiflora Hook.f. & Thomson, were paraphyletic with each other on phylogenetic trees, suggesting that they should not be distinct species. Furthermore, the samples of these two species from the southern Hengduan Mountains region formed a distinct cluster that was separated from the samples of other regions, implying the presence of cryptic diversity. The feasibility of DNA barcodes for identification of geographical authenticity was also verified here. The database and paradigm that we provide in this study could be used as reference for the authentication of traditional Chinese medicinal plants utilizing DNA barcoding.

  10. Evaluation of four commonly used DNA barcoding Loci for chinese medicinal plants of the family schisandraceae.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Many species of Schisandraceae are used in traditional Chinese medicine and are faced with contamination and substitution risks due to inaccurate identification. Here, we investigated the discriminatory power of four commonly used DNA barcoding loci (ITS, trnH-psbA, matK, and rbcL and corresponding multi-locus combinations for 135 individuals from 33 species of Schisandraceae, using distance-, tree-, similarity-, and character-based methods, at both the family level and the genus level. Our results showed that the two spacer regions (ITS and trnH-psbA possess higher species-resolving power than the two coding regions (matK and rbcL. The degree of species resolution increased with most of the multi-locus combinations. Furthermore, our results implied that the best DNA barcode for the species discrimination at the family level might not always be the most suitable one at the genus level. Here we propose the combination of ITS+trnH-psbA+matK+rbcL as the most ideal DNA barcode for discriminating the medicinal plants of Schisandra and Kadsura, and the combination of ITS+trnH-psbA as the most suitable barcode for Illicium species. In addition, the closely related species Schisandra rubriflora Rehder & E. H. Wilson and Schisandra grandiflora Hook.f. & Thomson, were paraphyletic with each other on phylogenetic trees, suggesting that they should not be distinct species. Furthermore, the samples of these two species from the southern Hengduan Mountains region formed a distinct cluster that was separated from the samples of other regions, implying the presence of cryptic diversity. The feasibility of DNA barcodes for identification of geographical authenticity was also verified here. The database and paradigm that we provide in this study could be used as reference for the authentication of traditional Chinese medicinal plants utilizing DNA barcoding.

  11. A novel approach to propagate flavivirus infectious cDNA clones in bacteria by introducing tandem repeat sequences upstream of virus genome.

    Science.gov (United States)

    Pu, Szu-Yuan; Wu, Ren-Huang; Tsai, Ming-Han; Yang, Chi-Chen; Chang, Chung-Ming; Yueh, Andrew

    2014-07-01

    Despite tremendous efforts to improve the methodology for constructing flavivirus infectious cDNAs, the manipulation of flavivirus cDNAs remains a difficult task in bacteria. Here, we successfully propagated DNA-launched type 2 dengue virus (DENV2) and Japanese encephalitis virus (JEV) infectious cDNAs by introducing seven repeats of the tetracycline-response element (7×TRE) and a minimal cytomegalovirus (CMVmin) promoter upstream of the viral genome. Insertion of the 7×TRE-CMVmin sequence upstream of the DENV2 or JEV genome decreased the cryptic E. coli promoter (ECP) activity of the viral genome in bacteria, as measured using fusion constructs containing DENV2 or JEV segments and the reporter gene Renilla luciferase in an empty vector. The growth kinetics of recombinant viruses derived from DNA-launched DENV2 and JEV infectious cDNAs were similar to those of parental viruses. Similarly, RNA-launched DENV2 infectious cDNAs were generated by inserting 7×TRE-CMVmin, five repeats of the GAL4 upstream activating sequence, or five repeats of BamHI linkers upstream of the DENV2 genome. All three tandem repeat sequences decreased the ECP activity of the DENV2 genome in bacteria. Notably, 7×TRE-CMVmin stabilized RNA-launched JEV infectious cDNAs and reduced the ECP activity of the JEV genome in bacteria. The growth kinetics of recombinant viruses derived from RNA-launched DENV2 and JEV infectious cDNAs displayed patterns similar to those of the parental viruses. These results support a novel methodology for constructing flavivirus infectious cDNAs, which will facilitate research in virology, viral pathogenesis and vaccine development of flaviviruses and other RNA viruses. © 2014 The Authors.

  12. Complete mitochondrial genome of Coelomactra antiquata (Mollusca: Bivalvia): The first representative from the family Mactridae with novel gene order and unusual tandem repeats.

    Science.gov (United States)

    Meng, Xueping; Zhao, Nana; Shen, Xin; Hao, Jue; Liang, Meng; Zhu, Xiaolin; Cheng, Hanliang; Yan, Binlun; Liu, Zhaopu

    2012-06-01

    The complete mitochondrial genome plays an important role in the accurate inference of phylogenetic relationships among metazoans. Mactridae, also known as trough shells or duck clams, is an important family of marine bivalve clams in the order Veneroida. Here we present the complete mitochondrial genome sequence of the Xishishe Coelomactra antiquata (Mollusca: Bivalvia), which is the first representative from the family Mactridae. The mitochondrial genome of C. antiquata is of 17,384bp in length, and encodes 35 genes, including 12 protein-coding, 21 transfer RNA, and 2 ribosomal RNA genes. Compared with the typical gene content of animal mitochondrial genomes, atp8 and tRNAS(2) are missing. Gene order of the mitochondrial genome of C. antiquata is unique compared with others from Veneroida. In the mitochondrial genome of the C. antiquata, a total of 2189bp of non-coding nucleotides are scattered among 26 non-coding regions. The largest non-coding region contains one section of tandem repeats (99 bp×11), which is the second largest tandem repeats found in the mitochondrial genomes from Veneroida. The phylogenetic trees based on mitochondrial genomes support the monophyly of Veneridae and Lucinidae, and the relationship at the family level: ((Veneridae+Mactridae)+(Cardiidae+Solecurtidae))+Lucinidae. The phylogenetic result is consistent with the morphological classification. Meanwhile, bootstrap values are very high (BP=94-100), suggesting that the evolutionary relationship based on mitochondrial genomes is very reliable. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Repeated oral dosing of TAS-102 confers high trifluridine incorporation into DNA and sustained antitumor activity in mouse models.

    Science.gov (United States)

    Tanaka, Nozomu; Sakamoto, Kazuki; Okabe, Hiroyuki; Fujioka, Akio; Yamamura, Keisuke; Nakagawa, Fumio; Nagase, Hideki; Yokogawa, Tatsushi; Oguchi, Kei; Ishida, Keiji; Osada, Akiko; Kazuno, Hiromi; Yamada, Yukari; Matsuo, Kenichi

    2014-12-01

    TAS-102 is a novel oral nucleoside antitumor agent containing trifluridine (FTD) and tipiracil hydrochloride (TPI). The compound improves overall survival of colorectal cancer (CRC) patients who are insensitive to standard chemotherapies. FTD possesses direct antitumor activity since it inhibits thymidylate synthase (TS) and is itself incorporated into DNA. However, the precise mechanisms underlying the incorporation into DNA and the inhibition of TS remain unclear. We found that FTD-dependent inhibition of TS was similar to that elicited by fluorodeoxyuridine (FdUrd), another clinically used nucleoside analog. However, washout experiments revealed that FTD-dependent inhibition of TS declined rapidly, whereas FdUrd activity persisted. The incorporation of FTD into DNA was significantly higher than that of other antitumor nucleosides. Additionally, orally administered FTD had increased antitumor activity and was incorporated into DNA more effectively than continuously infused FTD. When TAS-102 was administered, FTD gradually accumulated in tumor cell DNA, in a TPI-independent manner, and significantly delayed tumor growth and prolonged survival, compared to treatment with 5-FU derivatives. TAS-102 reduced the Ki-67-positive cell fraction, and swollen nuclei were observed in treated tumor tissue. The amount of FTD incorporation in DNA and the antitumor activity of TAS-102 in xenograft models were positively and significantly correlated. These results suggest that TAS-102 exerts its antitumor activity predominantly due to its DNA incorporation, rather than as a result of TS inhibition. The persistence of FTD in the DNA of tumor cells treated with TAS-102 may underlie its ability to prolong survival in cancer patients.

  14. Triplet repeat sequences in human DNA can be detected by hybridization to a synthetic (5'-CGG-3')17 oligodeoxyribonucleotide

    DEFF Research Database (Denmark)

    Behn-Krappa, A; Mollenhauer, J; Doerfler, W

    1993-01-01

    The seemingly autonomous amplification of naturally occurring triplet repeat sequences in the human genome has been implicated in the causation of human genetic disease, such as the fragile X (Martin-Bell) syndrome, myotonic dystrophy (Curshmann-Steinert), spinal and bulbar muscular atrophy...

  15. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  16. The DUB/USP17 deubiquitinating enzymes: A gene family within a tandemly repeated sequence, is also embedded within the copy number variable Beta-defensin cluster

    Directory of Open Access Journals (Sweden)

    Scott Christopher J

    2010-04-01

    Full Text Available Abstract Background The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A. Subsequently we have identified a number of human family members and shown that one of these (DUB-3 is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1. Results Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable beta-defensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating. Conclusions The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.

  17. The bldC Developmental Locus of Streptomyces coelicolor Encodes a Member of a Family of Small DNA-Binding Proteins Related to the DNA-Binding Domains of the MerR Family

    OpenAIRE

    Hunt, AC; Servin-Gonzalez, L; Kelemen, GH; Buttner, MJ

    2005-01-01

    The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-n...

  18. Sea cucumber species identification of family Caudinidae from Surabaya based on morphological and mitochondrial DNA evidence

    Science.gov (United States)

    Amin, Muhammad Hilman Fu'adil; Pidada, Ida Bagus Rai; Sugiharto, Widyatmoko, Johan Nuari; Irawan, Bambang

    2016-03-01

    Species identification and taxonomy of sea cucumber remains a challenge problem in some taxa. Caudinidae family of sea cucumber was comerciallized in Surabaya, and it was used as sea cucumber chips. Members of Caudinid sea cucumber have similiar morphology, so it is hard to identify this sea cucumber only from morphological appearance. DNA barcoding is useful method to overcome this problem. The aim of this study was to determine Caudinid specimen of sea cucumber in East Java by morphological and molecular approach. Sample was collected from east coast of Surabaya, then preserved in absolute ethanol. After DNA isolation, Cytochrome Oxydase I (COI) gene amplification was performed using Echinoderm universal primer and PCR product was sequenced. Sequencing result was analyzed and identified in NCBI database using BLAST. Results showed that Caudinid specimen in have closely related to Acaudina molpadioides sequence in GenBank with 86% identity. Morphological data, especially based on ossicle, also showed that the specimen is Acaudina molpadioides.

  19. Duplication in DNA Sequences

    Science.gov (United States)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  20. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (Cornell); (NWU)

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  1. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    Science.gov (United States)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  2. Functional studies of ssDNA binding ability of MarR family protein TcaR from Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Yu-Ming Chang

    Full Text Available The negative transcription regulator of the ica locus, TcaR, regulates proteins involved in the biosynthesis of poly-N-acetylglucosamine (PNAG. Absence of TcaR increases PNAG production and promotes biofilm formation in Staphylococci. Previously, the 3D structure of TcaR in its apo form and its complex structure with several antibiotics have been analyzed. However, the detailed mechanism of multiple antibiotic resistance regulator (MarR family proteins such as TcaR is unclear and only restricted on the binding ability of double-strand DNA (dsDNA. Here we show by electrophoretic mobility shift assay (EMSA, electron microscopy (EM, circular dichroism (CD, and Biacore analysis that TcaR can interact strongly with single-stranded DNA (ssDNA, thereby identifying a new role in MarR family proteins. Moreover, we show that TcaR preferentially binds 33-mer ssDNA over double-stranded DNA and inhibits viral ssDNA replication. In contrast, such ssDNA binding properties were not observed for other MarR family protein and TetR family protein, suggesting that the results from our studies are not an artifact due to simple charge interactions between TcaR and ssDNA. Overall, these results suggest a novel role for TcaR in regulation of DNA replication. We anticipate that the results of this work will extend our understanding of MarR family protein and broaden the development of new therapeutic strategies for Staphylococci.

  3. Radiation-induced mutation at tandem repeat DNA Loci in the mouse germline: spectra and doubling doses.

    Science.gov (United States)

    Dubrova, Yuri E

    2005-02-01

    The spectra and dose response for mutations at expanded simple tandem repeat (ESTR) loci in the germline of male mice acutely exposed to low-LET X or gamma rays at pre-meiotic stages of spermatogenesis were compared in five strains of laboratory mice. Most mutation events involved the gain or loss of a relatively small number of repeat units, and the distributions of length changes were indistinguishable between the exposed and control males. Overall, a significant bias toward gains of repeats was detected, with approximately 60% of mutants showing gains. The values for ESTR mutation induction did not differ substantially between strains. The highest values of doubling dose were obtained for two genetically related strains, BALB/c and C.B17 (mean value 0.98 Gy). The estimates of doubling dose for three other strains (CBA/H, C57BL/6 x CBA/H F1 and 129SVJ x C57BL/6) were lower, with a mean value of 0.44 Gy. The dose response for ESTR mutation across all five strains was very close to that for the specific loci (Russell 7-locus test). The mechanisms of ESTR mutation induction and applications of this system for monitoring radiation-induced mutation in the mouse germline are discussed.

  4. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus

    2007-11-01

    Full Text Available Abstract Background In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. Methods Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. Results An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1 on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. Conclusion Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as

  5. The archaeal “7 kDa DNA-binding” proteins: extended characterization of an old gifted family

    OpenAIRE

    Valentina Kalichuk; Ghislaine Béhar; Axelle Renodon-Cornière; Georgi Danovski; Gonzalo Obal; Jacques Barbet; Barbara Mouratou; Frédéric Pecorari

    2016-01-01

    International audience; The " 7 kDa DNA-binding " family, also known as the Sul7d family, is composed of chromatin proteins from the Sulfolobales archaeal order. Among them, Sac7d and Sso7d have been the focus of several studies with some characterization of their properties. Here, we studied eleven other proteins alongside Sac7d and Sso7d under the same conditions. The dissociation constants of the purified proteins for binding to double-stranded DNA (dsDNA) were determined in phosphate-buff...

  6. Phylogenetic position of the family Orientocreadiidae within the superfamily Plagiorchioidea (Trematoda) based on partial 28S rDNA sequence.

    Science.gov (United States)

    Sokolov, S G; Shchenkov, S V

    2017-08-22

    Trematodes of the family Orientocreadiidae are mostly parasites of freshwater fishes. Here, the phylogenetic position of this family is inferred based on the partial 28S rDNA sequence from a representative of the genus Orientocreadium s. str.-О. pseudobagri Yamaguti, 1934. Sequences were analysed by maximum likelihood and Bayesian inference algorithms. Both approaches placed the Orientocreadiidae within a clade corresponding to the superfamily Plagiorchioidea and supported the family Leptophallidae as a sister taxon.

  7. B-G cDNA clones have multiple small repeats and hybridize to both chicken MHC regions

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1989-01-01

    We used rabbit antisera to the chicken MHC erythrocyte molecule B-G and to the class I alpha chain (B-F) to screen lambda gt11 cDNA expression libraries made with RNA selected by oligo-dT from bone marrow cells of anemic B19 homozygous chickens. Eight clones were found to encode B-G molecules which...

  8. SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily

    Directory of Open Access Journals (Sweden)

    Verjovski-Almeida Sergio

    2006-11-01

    Full Text Available Abstract Background The CACTA (also called En/Spm superfamily of DNA-only transposons contain the core sequence CACTA in their Terminal Inverted Repeats (TIRs and so far have only been described in plants. Large transcriptome and genome sequence data have recently become publicly available for Schistosoma mansoni, a digenetic blood fluke that is a major causative agent of schistosomiasis in humans, and have provided a comprehensive repository for the discovery of novel genes and repetitive elements. Despite the extensive description of retroelements in S. mansoni, just a single DNA-only transposon belonging to the Merlin family has so far been reported in this organism. Results We describe a novel S. mansoni transposon named SmTRC1, for S. mansoni Transposon Related to CACTA 1, an element that shares several characteristics with plant CACTA transposons. Southern blotting indicates approximately 30–300 copies of SmTRC1 in the S. mansoni genome. Using genomic PCR followed by cloning and sequencing, we amplified and characterized a full-length and a truncated copy of this element. RT-PCR using S. mansoni mRNA followed by cloning and sequencing revealed several alternatively spliced transcripts of this transposon, resulting in distinct ORFs coding for different proteins. Interestingly, a survey of complete genomes from animals and fungi revealed several other novel TRC elements, indicating new families of DNA transposons belonging to the CACTA superfamily that have not previously been reported in these kingdoms. The first three bases in the S. mansoni TIR are CCC and they are identical to those in the TIRs of the insects Aedes aegypti and Tribolium castaneum, suggesting that animal TRCs may display a CCC core sequence. Conclusion The DNA-only transposable element SmTRC1 from S. mansoni exhibits various characteristics, such as generation of multiple alternatively-spliced transcripts, the presence of terminal inverted repeats at the extremities of

  9. Lay perceptions of predictive testing for diabetes based on DNA test results versus family history assessment: a focus group study

    Directory of Open Access Journals (Sweden)

    Cornel Martina C

    2011-07-01

    Full Text Available Abstract Background This study assessed lay perceptions of issues related to predictive genetic testing for multifactorial diseases. These perceived issues may differ from the "classic" issues, e.g. autonomy, discrimination, and psychological harm that are considered important in predictive testing for monogenic disorders. In this study, type 2 diabetes was used as an example, and perceptions with regard to predictive testing based on DNA test results and family history assessment were compared. Methods Eight focus group interviews were held with 45 individuals aged 35-70 years with (n = 3 and without (n = 1 a family history of diabetes, mixed groups of these two (n = 2, and diabetes patients (n = 2. All interviews were transcribed and analysed using Atlas-ti. Results Most participants believed in the ability of a predictive test to identify people at risk for diabetes and to motivate preventive behaviour. Different reasons underlying motivation were considered when comparing DNA test results and a family history risk assessment. A perceived drawback of DNA testing was that diabetes was considered not severe enough for this type of risk assessment. In addition, diabetes family history assessment was not considered useful by some participants, since there are also other risk factors involved, not everyone has a diabetes family history or knows their family history, and it might have a negative influence on family relations. Respect for autonomy of individuals was emphasized more with regard to DNA testing than family history assessment. Other issues such as psychological harm, discrimination, and privacy were only briefly mentioned for both tests. Conclusion The results suggest that most participants believe a predictive genetic test could be used in the prevention of multifactorial disorders, such as diabetes, but indicate points to consider before both these tests are applied. These considerations differ with regard to the method of assessment

  10. Collateral damage: Spread of repeat-induced point mutation from a duplicated DNA sequence into an adjoining single-copy gene in Neurospora crassa

    Indian Academy of Sciences (India)

    Meenal Vyas; Durgadas P Kasbekar

    2005-02-01

    Repeat-induced point mutation (RIP) is an unusual genome defense mechanism that was discovered in Neurospora crassa. RIP occurs during a sexual cross and induces numerous G : C to A : T mutations in duplicated DNA sequences and also methylates many of the remaining cytosine residues. We measured the susceptibility of the erg-3 gene, present in single copy, to the spread of RIP from duplications of adjoining sequences. Genomic segments of defined length (1, 1.5 or 2 kb) and located at defined distances (0, 0.5, 1 or 2 kb) upstream or downstream of the erg-3 open reading frame (ORF) were amplified by polymerase chain reaction (PCR), and the duplications were created by transformation of the amplified DNA. Crosses were made with the duplication strains and the frequency of erg-3 mutant progeny provided a measure of the spread of RIP from the duplicated segments into the erg-3 gene. Our results suggest that ordinarily RIP-spread does not occur. However, occasionally the mechanism that confines RIP to the duplicated segment seems to fail (frequency 0.1–0.8%) and then RIP can spread across as much as 1 kb of unduplicated DNA. Additionally, the bacterial hph gene appeared to be very susceptible to the spread of RIP-associated cytosine methylation.

  11. Cerastoderma glaucum 5S ribosomal DNA: characterization of the repeat unit, divergence with respect to Cerastoderma edule, and PCR-RFLPs for the identification of both cockles.

    Science.gov (United States)

    Freire, Ruth; Insua, Ana; Méndez, Josefina

    2005-06-01

    The 5S rDNA repeat unit of the cockle Cerastoderma glaucum from the Mediterranean and Baltic coasts was PCR amplified and sequenced. The length of the units was 539-568 bp, of which 120 bp were assigned to the 5S rRNA gene and 419-448 bp to the spacer region, and the G/C content was 46%-49%, 54%, and 44%-47%, respectively. Two types of units (A and B), differing in the spacer, were distinguished based on the percentage of differences and clustering in phylogenetic trees. A PCR assay with specific primers for each unit type indicated that the occurrence of both units is not restricted to the sequenced individuals. The 5S rDNA units of C. glaucum were compared with new and previously reported sequences of Cerastoderma edule. The degree of variation observed in C. edule was lower than that in C. glaucum and evidence for the existence of units A and B in C. edule was not found. The two cockles have the same coding region but displayed numerous fixed differences in the spacer region and group separately in the phylogenetic trees. Digestion of the 5S rDNA PCR product with the restriction enzymes HaeIII and EcoRV revealed two RFLPs useful for cockle identification.

  12. Identification of exhumed remains of fire tragedy victims using conventional methods and autosomal/Y-chromosomal short tandem repeat DNA profiling.

    Science.gov (United States)

    Calacal, Gayvelline C; Delfin, Frederick C; Tan, Michelle Music M; Roewer, Lutz; Magtanong, Danilo L; Lara, Myra C; Fortun, Raquel dR; De Ungria, Maria Corazon A

    2005-09-01

    In a fire tragedy in Manila in December 1998, one of the worst tragic incidents which resulted in the reported death of 23 children, identity could not be established initially resulting in the burial of still unidentified bodies. Underscoring the importance of identifying each of the human remains, the bodies were exhumed 3 months after the tragedy. We describe here our work, which was the first national case handled by local laboratories wherein conventional and molecular-based techniques were successfully applied in forensic identification. The study reports analysis of DNA obtained from skeletal remains exposed to conditions of burning, burial, and exhumation. DNA typing methods using autosomal and Y-chromosomal short tandem repeat (Y-STR) markers reinforced postmortem examinations using conventional identification techniques. The strategy resulted in the identification of 18 out of the 21 human remains analyzed, overcoming challenges encountered due to the absence of established procedures for the recovery of mass disaster remains. There was incomplete antemortem information to match the postmortem data obtained from the remains of 3 female child victims. Two victims were readily identified due to the availability of antemortem tissues. In the absence of this biologic material, parentage testing was performed using reference blood samples collected from parents and relatives. Data on patrilineal lineage based on common Y-STR haplotypes augmented autosomal DNA typing, particularly in deficiency cases.

  13. Interactions between meso-tetrakis(4-(N-methylpyridiumyl))porphyrin TMPyP4 and DNA G-quadruplex of telomeric repeated sequence TTAGGG

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The binding properties between meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) and the parallel DNA G-quadruplex (G4) of telomeric repeated sequence 5′-TTAGGG-3′ have been characterized by means of circular dichroism,steady-state absorption,steady-state fluorescence and picosecond time-resolved fluorescence spectroscopies. The binding constant and the saturated binding number were determined as 1.29×106 (mol/L)-1 and 3,respectively,according to steady-state absorption spec-troscopy. Based on the findings by the use of time-resolved fluorescence spectroscopic technique,it is deduced that TMPyP4 binds to a DNA G-quadruplex with both the thread-intercalating and end-stacking modes and at the saturated binding state,one TMPyP4 molecule intercalates into the intervals of G-tetrads while the other two stack to the ends of the DNA G-quadruplex.

  14. Familial searching: a specialist forensic DNA profiling service utilising the National DNA Database to identify unknown offenders via their relatives--the UK experience.

    Science.gov (United States)

    Maguire, C N; McCallum, L A; Storey, C; Whitaker, J P

    2014-01-01

    The National DNA Database (NDNAD) of England and Wales was established on April 10th 1995. The NDNAD is governed by a variety of legislative instruments that mean that DNA samples can be taken if an individual is arrested and detained in a police station. The biological samples and the DNA profiles derived from them can be used for purposes related to the prevention and detection of crime, the investigation of an offence and for the conduct of a prosecution. Following the South East Asian Tsunami of December 2004, the legislation was amended to allow the use of the NDNAD to assist in the identification of a deceased person or of a body part where death has occurred from natural causes or from a natural disaster. The UK NDNAD now contains the DNA profiles of approximately 6 million individuals representing 9.6% of the UK population. As the science of DNA profiling advanced, the National DNA Database provided a potential resource for increased intelligence beyond the direct matching for which it was originally created. The familial searching service offered to the police by several UK forensic science providers exploits the size and geographic coverage of the NDNAD and the fact that close relatives of an offender may share a significant proportion of that offender's DNA profile and will often reside in close geographic proximity to him or her. Between 2002 and 2011 Forensic Science Service Ltd. (FSS) provided familial search services to support 188 police investigations, 70 of which are still active cases. This technique, which may be used in serious crime cases or in 'cold case' reviews when there are few or no investigative leads, has led to the identification of 41 perpetrators or suspects. In this paper we discuss the processes, utility, and governance of the familial search service in which the NDNAD is searched for close genetic relatives of an offender who has left DNA evidence at a crime scene, but whose DNA profile is not represented within the NDNAD. We

  15. Power analysis of QTL detection in half-sib families using selective DNA pooling

    Directory of Open Access Journals (Sweden)

    López Teresa

    2001-05-01

    Full Text Available Abstract Individual loci of economic importance (QTL can be detected by comparing the inheritance of a trait and the inheritance of loci with alleles readily identifiable by laboratory methods (genetic markers. Data on allele segregation at the individual level are costly and alternatives have been proposed that make use of allele frequencies among progeny, rather than individual genotypes. Among the factors that may affect the power of the set up, the most important are those intrinsic to the QTL: the additive effect of the QTL, and its dominance, and distance between markers and QTL. Other factors are relative to the choice of animals and markers, such as the frequency of the QTL and marker alleles among dams and sires. Data collection may affect the detection power through the size of half-sib families, selection rate within families, and the technical error incurred when estimating genetic frequencies. We present results for a sensitivity analysis for QTL detection using pools of DNA from selected half-sibs. Simulations showed that conclusive detection may be achieved with families of at least 500 half-sibs if sires are chosen on the criteria that most of their marker alleles are either both missing, or one is fixed, among dams.

  16. Polyphyly of the fern family Tectariaceae sensu Ching: Insights from cpDNA sequence data

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Tectariaceae are a pantropical fern family of about 20 genera, among which 8 are distributed in China. The morphological distinctiveness of the family is widely recognized, yet relatively little systematic research has been conducted on members of Tectariaceae. Phylogenetic analyses of chloroplast DNA sequence data (rbcL and atpB) from 15 species representing all 8 genera in China were carried out under parsimony criteria and Bayesian inference. The phylogenetic reconstructions indicated that the fern family Tectariaceae as traditionally circumscribed are polyphyletic. Ctenitis, Dryopsis, Lastreopsis clustered with and should be included within the newly-defined Dryopteridaceae, and Pleocnemia is also tentatively assigned to it. A narrowly monophyletic Tectariaceae is identified, which includes Ctenitopsis, Hemigramma, Pteridrys, Quercifilix, and Tectaria. In the single rbcL analysis, Arthropteris clustered with the above-mentioned monophyletic Tectariaceae. Although further investigations are still needed to identify infrafamilial relationships within the monophyletic Tectariaceae and to redefine several problematic genera, we propose a working concept here that better reflects the inferred evolutionary history of this group.

  17. Polyphyly of the fern family Tectariaceae sensu Ching: insights from cpDNA sequence data.

    Science.gov (United States)

    Liu, HongMei; Zhang, XianChun; Chen, ZhiDuan; Dong, ShiYong; Qiu, YinLong

    2007-12-01

    Tectariaceae are a pantropical fern family of about 20 genera, among which 8 are distributed in China. The morphological distinctiveness of the family is widely recognized, yet relatively little systematic research has been conducted on members of Tectariaceae. Phylogenetic analyses of chloroplast DNA sequence data (rbcL and atpB) from 15 species representing all 8 genera in China were carried out under parsimony criteria and Bayesian inference. The phylogenetic reconstructions indicated that the fern family Tectariaceae as traditionally circumscribed are polyphyletic. Ctenitis, Dryopsis, Lastreopsis clustered with and should be included within the newly-defined Dryopteridaceae, and Pleocnemia is also tentatively assigned to it. A narrowly monophyletic Tectariaceae is identified, which includes Ctenitopsis, Hemigramma, Pteridrys, Quercifilix, and Tectaria. In the single rbcL analysis, Arthropteris clustered with the above-mentioned monophyletic Tectariaceae. Although further investigations are still needed to identify infrafamilial relationships within the monophyletic Tectariaceae and to redefine several problematic genera, we propose a working concept here that better reflects the inferred evolutionary history of this group.

  18. Molecular and cytogenetic characterization of an AT-rich satellite DNA family in Urvillea chacoensis Hunz. (Paullinieae, Sapindaceae).

    Science.gov (United States)

    Urdampilleta, Juan D; de Souza, Anete Pereira; Schneider, Dilaine R S; Vanzela, André L L; Ferrucci, María S; Martins, Eliana R F

    2009-05-01

    Urvillea chacoensis is a climber with 2n = 22 and some terminal AT-rich heterochromatin blocks that differentiate it from other species of the genus. The AT-rich highly repeated satellite DNA was isolated from U. chacoensis by the digestion of total nuclear DNA with HindIII and XbaI and cloned in Escherichia coli. Satellite DNA structure and chromosomal distribution were investigated. DNA sequencing revealed that the repeat length of satDNA ranges between 721 and 728 bp, the percentage of AT-base pairs was about 72-73% and the studied clones showed an identity of 92.5-95.9%. Although this monomer has a tetranucleosomal size, direct imperfect repetitions of ~180 bp subdividing it in four nucleosomal subregions were observed. The results obtained with FISH indicate that this monomer usually appears distributed in the terminal regions of most chromosomes and is associated to heterochromatin blocks observed after DAPI staining. These observations are discussed in relation to the satellite DNA evolution and compared with other features observed in several plant groups.

  19. Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGGn repeat in eight species of true bugs (Hemiptera, Heteroptera

    Directory of Open Access Journals (Sweden)

    Snejana Grozeva

    2011-11-01

    Full Text Available Eight species belonging to five true bug families were analyzed using DAPI/CMA3-staining and fluorescence in situ hybridization (FISH with telomeric (TTAGGn and 18S rDNA probes. Standard chromosomal complements are reported for the first time for Deraeocoris rutilus (Herrich-Schäffer, 1838 (2n=30+2m+XY and D. ruber (Linnaeus, 1758 (2n=30+2m+XY from the family Miridae. Using FISH, the location of a 18S rDNA cluster was detected in these species and in five more species: Megaloceroea recticornis (Geoffroy, 1785 (2n=30+XY from the Miridae; Oxycarenus lavaterae (Fabricius, 1787 (2n=14+2m+XY from the Lygaeidae s.l.; Pyrrhocoris apterus (Linnaeus, 1758 (2n=22+X from the Pyrrhocoridae; Eurydema oleracea (Linnaeus, 1758 (2n=12+XY and Graphosoma lineatum (Linnaeus, 1758 (2n=12+XY from the Pentatomidae. The species were found to differ with respect to location of a 18S rRNA gene cluster which resides on autosomes in O. lavaterae and P. apterus, whereas it locates on sex chromosomes in other five species. The 18S rDNA location provides the first physical landmark of the genomes of the species studied. The insect consensus telomeric pentanucleotide (TTAGGn was demonstrated to be absent in all the species studied in this respect, D. rutilus, M. recticornis, Cimex lectularius Linnaeus, 1758 (Cimicidae, E. oleracea, and G. lineatum, supporting the hypothesis that this motif was lost in early evolution of the Heteroptera and secondarily replaced with another motif (yet unknown or the alternative telomerase-independent mechanisms of telomere maintenance. Dot-blot hybridization analysis of the genomic DNA from C. lectularius, Nabis sp. and O. lavaterae with (TTAGGn and six other telomeric probes likewise provided a negative result.

  20. B-G cDNA clones have multiple small repeats and hybridize to both chicken MHC regions

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1989-01-01

    in turn react with authentic B-G proteins. None of the clones represent a complete message, some--if not all--bear introns, and none of them match with any sequences presently stored in the data banks. The following new information did, however, emerge. At least two homologous transcripts are present......We used rabbit antisera to the chicken MHC erythrocyte molecule B-G and to the class I alpha chain (B-F) to screen lambda gt11 cDNA expression libraries made with RNA selected by oligo-dT from bone marrow cells of anemic B19 homozygous chickens. Eight clones were found to encode B-G molecules which...... could explain the bewildering variation in size of B-G proteins within and between haplotypes. Southern blots of genomic chicken DNA gave complex patterns for most probes, with many bands in common using different probes, but few bands in common between haplotypes. The sequences detected are all present...

  1. Repeating the errors of our parents? Family-of-origin spouse violence and observed conflict management in engaged couples.

    Science.gov (United States)

    Halford, W K; Sanders, M R; Behrens, B C

    2000-01-01

    Based on a developmental social learning analysis, it was hypothesized that observing parental violence predisposes partners to difficulties in managing couple conflict. Seventy-one engaged couples were assessed on their observation of parental violence in their family of origin. All couples were videotaped discussing two areas of current relationship conflict, and their cognitions during the interactions were assessed using a video-mediated recall procedure. Couples in which the male partner reported observing parental violence (male-exposed couples) showed more negative affect and communication during conflict discussions than couples in which neither partner reported observing parental violence (unexposed couples). Couples in which only the female partner reported observing parental violence (female-exposed couples) did not differ from unexposed couples in their affect or behavior. Female-exposed couples reported more negative cognitions than unexposed couples, but male-exposed couples did not differ from unexposed couples in their reported cognitions.

  2. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance*

    OpenAIRE

    Schermerhorn, Kelly M.; Gardner, Andrew F.

    2015-01-01

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, k pol and Kd , for corre...

  3. Kearns-Sayre syndrome case presenting a mitochondrial DNA deletion with unusual direct repeats and a rudimentary RNAse mitochondria ribonucleotide processing target sequence

    Energy Technology Data Exchange (ETDEWEB)

    Remes, A.M.; Hassinen, I.E. (Univ. of Oulu (Finland)); Peuhkurinen, K.J.; Herva, R.; Majamaa, K. (Oulu Univ. Central Hospital (Finland))

    1993-04-01

    A mitochondrial DNA deletion in a case of Kearns-Sayre syndrome is described. The deletion is bracketed by direct repeats that were unusual in that one of them was located 11--13 nucleotides from the deletion seam and both were conserved, which should not occur in slip replication or illegitimate elongation. The deleted region was demarcated on the deletion side by sequences that could be predicted to form hairpin structures. The 5[prime]-side of the deletion was flanked by a sequence homologous to a 9-nucleotide piece of the conserved sequence block II of the D-loop. This arrangement around the deletion in Kearns-Sayre syndrome bears some resemblance to the arrangement in the Pearson marrow- pancreas syndrome described by A. Rotig et al. (1991, Genomics 10: 502--504). 10 refs., 1 fig.

  4. Expressed Sequence Tags Analysis and Design of Simple Sequence Repeats Markers from a Full-Length cDNA Library in Perilla frutescens (L.

    Directory of Open Access Journals (Sweden)

    Eun Soo Seong

    2015-01-01

    Full Text Available Perilla frutescens is valuable as a medicinal plant as well as a natural medicine and functional food. However, comparative genomics analyses of P. frutescens are limited due to a lack of gene annotations and characterization. A full-length cDNA library from P. frutescens leaves was constructed to identify functional gene clusters and probable EST-SSR markers via analysis of 1,056 expressed sequence tags. Unigene assembly was performed using basic local alignment search tool (BLAST homology searches and annotated Gene Ontology (GO. A total of 18 simple sequence repeats (SSRs were designed as primer pairs. This study is the first to report comparative genomics and EST-SSR markers from P. frutescens will help gene discovery and provide an important source for functional genomics and molecular genetic research in this interesting medicinal plant.

  5. Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease

    Science.gov (United States)

    Beilina, Alexandria; Rudenko, Iakov N.; Kaganovich, Alice; Civiero, Laura; Chau, Hien; Kalia, Suneil K.; Kalia, Lorraine V.; Lobbestael, Evy; Chia, Ruth; Ndukwe, Kelechi; Ding, Jinhui; Nalls, Mike A.; Olszewski, Maciej; Hauser, David N.; Kumaran, Ravindran; Lozano, Andres M.; Baekelandt, Veerle; Greene, Lois E.; Taymans, Jean-Marc; Greggio, Elisa; Cookson, Mark R.; Nalls, Mike A.; Plagnol, Vincent; Martinez, Maria; Hernandez, Dena G; Sharma, Manu; Sheerin, Una-Marie; Saad, Mohamad; Simón-Sánchez, Javier; Schulte, Claudia; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Arepalli, Sampath; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M A; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M; Brockmann, Kathrin; Brooks, Janet; Burn, David J; Charlesworth, Gavin; Chen, Honglei; Chong, Sean; Clarke, Carl E; Cookson, Mark R; Cooper, J Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T; van Dijk, Karin D; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Gibbs, J Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Gústafsson, Ómar; Harris, Clare; van Hilten, Jacobus J; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E; Huttenlocher, Johanna; Illig, Thomas; München, Helmholtz Zentrum; Jónsson, Pálmi V; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; München, Helmholtz Zentrum; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R; Morrison, Karen E; Mudanohwo, Ese; O’Sullivan, Sean S; Pearson, Justin; Perlmutter, Joel S; Pétursson, Hjörvar; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Shoulson, Ira; Sidransky, Ellen; Smith, Colin; Spencer, Chris C A; Stefánsson, Hreinn; Steinberg, Stacy; Stockton, Joanna D; Strange, Amy; Talbot, Kevin; Tanner, Carlie M; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J; Uitterlinden, André G; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H; Winder-Rhodes, Sophie; Stefánsson, Kári; Hardy, John; Heutink, Peter; Brice, Alexis; Gasser, Thomas; Singleton, Andrew B; Wood, Nicholas W; Chinnery, Patrick F; Arepalli, Sampath; Cookson, Mark R; Dillman, Allissa; Ferrucci, Luigi; Gibbs, J Raphael; Hernandez, Dena G; Johnson, Robert; Longo, Dan L; Majounie, Elisa; Nalls, Michael A; O’Brien, Richard; Singleton, Andrew B; Traynor, Bryan J; Troncoso, Juan; van der Brug, Marcel; Zielke, H Ronald; Zonderman, Alan B

    2014-01-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein–protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G–associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy–lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms. PMID:24510904

  6. Sequence-specific DNA alkylation and transcriptional inhibition by long-chain hairpin pyrrole-imidazole polyamide-chlorambucil conjugates targeting CAG/CTG trinucleotide repeats.

    Science.gov (United States)

    Asamitsu, Sefan; Kawamoto, Yusuke; Hashiya, Fumitaka; Hashiya, Kaori; Yamamoto, Makoto; Kizaki, Seiichiro; Bando, Toshikazu; Sugiyama, Hiroshi

    2014-09-01

    Introducing novel building blocks to solid-phase peptide synthesis, we readily synthesized long-chain hairpin pyrrole-imidazole (PI) polyamide-chlorambucil conjugates 3 and 4 via the introduction of an amino group into a GABA (γ-turn) contained in 3, to target CAG/CTG repeat sequences, which are associated with various hereditary disorders. A high-resolution denaturing polyacrylamide sequencing gel revealed sequence-specific alkylation both strands at the N3 of adenines or guanines in CAG/CTG repeats by conjugates 3 and 4, with 11bp recognition. In vitro transcription assays using conjugate 4 revealed that specific alkylation inhibited the progression of RNA polymerase at the alkylating sites. Chiral substitution of the γ-turn with an amino group resulted in higher binding affinity observed in SPR assays. These assays suggest that conjugates 4 with 11bp recognition has the potential to cause specific DNA damage and transcriptional inhibition at the alkylating sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation.

    Science.gov (United States)

    Velazquez Camacho, Oscar; Galan, Carmen; Swist-Rosowska, Kalina; Ching, Reagan; Gamalinda, Michael; Karabiber, Fethullah; De La Rosa-Velazquez, Inti; Engist, Bettina; Koschorz, Birgit; Shukeir, Nicholas; Onishi-Seebacher, Megumi; van de Nobelen, Suzanne; Jenuwein, Thomas

    2017-08-01

    The Suv39h1 and Suv39h2 histone lysine methyltransferases are hallmark enzymes at mammalian heterochromatin. We show here that the mouse Suv39h2 enzyme differs from Suv39h1 by containing an N-terminal basic domain that facilitates retention at mitotic chromatin and provides an additional affinity for major satellite repeat RNA. To analyze an RNA-dependent interaction with chromatin, we purified native nucleosomes from mouse ES cells and detect that Suv39h1 and Suv39h2 exclusively associate with poly-nucleosomes. This association was attenuated upon RNaseH incubation and entirely lost upon RNaseA digestion of native chromatin. Major satellite repeat transcripts remain chromatin-associated and have a secondary structure that favors RNA:DNA hybrid formation. Together, these data reveal an RNA-mediated mechanism for the stable chromatin interaction of the Suv39h KMT and suggest a function for major satellite non-coding RNA in the organization of an RNA-nucleosome scaffold as the underlying structure of mouse heterochromatin.

  8. Preference of the recombination sites involved in the formation of extrachromosomal copies of the human alphoid Sau3A repeat family.

    Science.gov (United States)

    Ohki, R; Oishi, M; Kiyama, R

    1995-01-01

    The human alphoid Sau3A repetitive family DNA is one of the DNA species that are actively amplified to form extrachromosomal circular DNA in several cell lines. The circularization takes place between two of the five approximately 170 bp subunits with an average of 73.1% homology as well as between identical subunits. To investigate the nature of the recombination reaction, we cloned and analyzed the subunits containing recombination junctions. Analysis of a total of 68 junctions revealed that recombination had occurred preferentially at four positions 10-25 (A), 40-50 (B), 85-90 (C) and 135-160 (D) in the 170bp subunit structure. Two regions (B and C) were overlapped with the regions with higher homology between subunits, while other two regions (A and D) cannot be explained solely by the regional homology between the subunits. These regions were located at both junctions of the nucleosomal and the linker region, and overlapped with the binding motifs for alpha protein and CENP-B. Approximately 90% of the recombination occurred between the subunits located next but one (+/- 2 shift), although the frequency of recombination between the adjoining subunits (+/- 1 shift) was approximately 10%. Images PMID:8559653

  9. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae).

    Science.gov (United States)

    Park, D-S; Suh, S-J; Hebert, P D N; Oh, H-W; Hong, K-J

    2011-08-01

    Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.

  10. A novel mtDNA ND6 gene mutation associated with LHON in a Caucasian family.

    Science.gov (United States)

    Zhadanov, Sergey I; Atamanov, Vasily V; Zhadanov, Nikolay I; Oleinikov, Oleg V; Osipova, Ludmila P; Schurr, Theodore G

    2005-07-15

    Leber's hereditary optic neuropathy (LHON) is a frequent cause of inherited blindness. A routine screening for common mtDNA mutations constitutes an important first in its diagnosis. However, a substantial number of LHON patients do not harbor known variants, both pointing to the genetic heterogeneity of LHON and bringing into question its genetic diagnosis. We report a familial case that exhibited typical features of LHON but lacked any of the common mutations. Genetic analysis revealed a novel pathogenic defect in the ND6 gene at 14279A that was not detected in any haplogroup-matched controls screened for it, nor has it been previously reported. This mutation causes a substantial conformational change in the secondary structure of the polypeptide matrix coil and may explain the LHON expression. Thus, it expands the spectrum of deleterious changes affecting ND6-encoding subunit and further highlights the functional significance of this gene, providing additional clues to the disease pathogenesis.

  11. DNA barcode identification of freshwater snails in the family Bithyniidae from Thailand.

    Science.gov (United States)

    Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Ruangsittichai, Jiraporn; Ruangjirachuporn, Wipaporn; Boonmars, Thidarut; Viyanant, Vithoon; Pierossi, Paola; Hebert, Paul D N; Tesana, Smarn

    2013-01-01

    Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5' region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy.

  12. DNA barcode identification of freshwater snails in the family Bithyniidae from Thailand.

    Directory of Open Access Journals (Sweden)

    Jutharat Kulsantiwong

    Full Text Available Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini, the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5' region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %, whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %. Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy.

  13. Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining

    Directory of Open Access Journals (Sweden)

    Rebecca Cook

    2015-03-01

    Full Text Available Deficiencies in DNA double-strand break (DSB repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1 is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ. Support of cNHEJ involves a mechanism independent of RB1’s cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution.

  14. Stimulation of BK virus DNA replication by NFI family transcription factors.

    Science.gov (United States)

    Liang, Bo; Tikhanovich, Irina; Nasheuer, Heinz Peter; Folk, William R

    2012-03-01

    BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind. Six nuclear factor I (NFI) binding sites occur in sequences flanking the late side of the core origin (the enhancer) of the archetype virus, and their mutation, either individually or in toto, reduces BKV DNA replication when placed in competition with templates containing intact BKV NCCRs. NFI family members interacted with the helicase domain of BKV Tag in pulldown assays, suggesting that NFI helps recruit Tag to the viral core origin and may modulate its function. However, Tag may not be the sole target of the replication-modulatory activities of NFI: the NFIC/CTF1 isotype stimulates BKV template replication in vitro at low concentrations of DNA polymerase-α primase (Pol-primase), and the p58 subunit of Pol-primase associates with NFIC/CTF1, suggesting that NFI also recruits Pol-primase to the NCCR. These results suggest that NFI proteins (and the signaling pathways that target them) activate BKV replication and contribute to the consequent pathologies caused by acute infection.

  15. A highly parallel method for synthesizing DNA repeats enables the discovery of ‘smart’ protein polymers

    Science.gov (United States)

    Amiram, Miriam; Quiroz, Felipe Garcia; Callahan, Daniel J.; Chilkoti, Ashutosh

    2011-02-01

    Robust high-throughput synthesis methods are needed to expand the repertoire of repetitive protein-polymers for different applications. To address this need, we developed a new method, overlap extension rolling circle amplification (OERCA), for the highly parallel synthesis of genes encoding repetitive protein-polymers. OERCA involves a single PCR-type reaction for the rolling circle amplification of a circular DNA template and simultaneous overlap extension by thermal cycling. We characterized the variables that control OERCA and demonstrated its superiority over existing methods, its robustness, high-throughput and versatility by synthesizing variants of elastin-like polypeptides (ELPs) and protease-responsive polymers of glucagon-like peptide-1 analogues. Despite the GC-rich, highly repetitive sequences of ELPs, we synthesized remarkably large genes without recursive ligation. OERCA also enabled us to discover ‘smart’ biopolymers that exhibit fully reversible thermally responsive behaviour. This powerful strategy generates libraries of repetitive genes over a wide and tunable range of molecular weights in a ‘one-pot’ parallel format.

  16. Nuclear DNA C-values in 30 species double the familial representation in pteridophytes.

    Science.gov (United States)

    Obermayer, Renate; Leitch, Ilia J; Hanson, Lynda; Bennett, Michael D

    2002-08-01

    Nuclear DNA C-values and genome size are important biodiversity characters with fundamental biological significance. Yet C-value data for pteridophytes, a diverse group of vascular plants with approx. 9000 extant species, remain scarce. A recent survey by Bennett and Leitch (2001, Annals of Botany 87: 335-345) found that C-values were reported for only 48 pteridophyte species. To improve phylogenetic representation in this group and to check previously reported estimates, C-values for 30 taxa in 17 families were measured using flow cytometry for all but one species. This technique proved generally applicable, but the ease with which C-value data were generated varied greatly between materials. Comparing the new data with those previously published revealed several large discrepancies. After discounting doubtful data, C-values for 62 pteridophyte species remained acceptable for analysis. The present work has increased the number of such species' C-values by 93 %, and more than doubled the number of families represented (from 10 to 21). Analysis shows that pteridophyte C-values vary approx. 450-fold, from 0-16 pg in Selaginella kraussiana to 72.7 pg in Psilotum nudum var. gasa. Superimposing C-value data onto a robust phylogeny of pteridophytes suggests some possible trends in C-value evolution and highlights areas for future work.

  17. Imprinting mutations suggested by abnormal DNA methylation patterns in familial angelman and Prader-Willi syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Reis, A. (Freie Universitaet, Berlin (Germany)); Dittrich, B.; Buiting, K.; Gillessen-Kaesbach, G.; Horsthemke, B. (Institut fuer Humangenetik, Essen (United Kingdom)); Greger, V.; Lalande, M. (Harvard Medical School, Boston, MA (United States)); Anvret, M. (Karolinska Hospital, Stockholm (Sweden))

    1994-05-01

    The D15S9 and D15S63 loci in the Prader-Willi/Angelman syndrome region on chromosome 15 are subject to parent-of-origin-specific DNA methylation. The authors have found two Prader-Willi syndrome families in which the patients carry a maternal methylation imprint on the paternal chromosome. In one of these families, the patients have a small deletion encompassing the gene for the small nuclear ribonucleoprotein polypeptide N, which maps 130 kb telomeric to D15S63. Furthermore, they have identified a pair of nondeletion Angelman syndrome sibs and two isolated Angelman syndrome patients who carry a paternal methylation imprint on the maternal chromosome. These Angelman and Prader-Willi syndrome patients may have a defect in the imprinting process in 15q11-13. The authors propose a model in which a cis-acting mutation prevents the resetting of the imprinting signal in the germ line and thus disturbs the expression of imprinted genes in this region. 39 refs., 4 figs., 1 tab.

  18. Eubacterial SpoVG homologs constitute a new family of site-specific DNA-binding proteins.

    Directory of Open Access Journals (Sweden)

    Brandon L Jutras

    Full Text Available A site-specific DNA-binding protein was purified from Borrelia burgdorferi cytoplasmic extracts, and determined to be a member of the highly conserved SpoVG family. This is the first time a function has been attributed to any of these ubiquitous bacterial proteins. Further investigations into SpoVG orthologues indicated that the Staphylococcus aureus protein also binds DNA, but interacts preferentially with a distinct nucleic acid sequence. Site-directed mutagenesis and domain swapping between the S. aureus and B. burgdorferi proteins identified that a 6-residue stretch of the SpoVG α-helix contributes to DNA sequence specificity. Two additional, highly conserved amino acid residues on an adjacent β-sheet are essential for DNA-binding, apparently by contacts with the DNA phosphate backbone. Results of these studies thus identified a novel family of bacterial DNA-binding proteins, developed a model of SpoVG-DNA interactions, and provide direction for future functional studies on these wide-spread proteins.

  19. Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria.

    Science.gov (United States)

    Bideshi, Dennis K; Renault, Sylvaine; Stasiak, Karine; Federici, Brian A; Bigot, Yves

    2003-09-01

    Baculovirus repeated open reading frame (bro) genes and their relatives constitute a multigene family, typically with multiple copies per genome, known to occur among certain insect dsDNA viruses and bacteriophages. Little is known about the evolutionary history and function of the proteins encoded by these genes. Here we have shown that bro and bro-like (bro-l) genes occur among viruses of two additional invertebrate viral families, Ascoviridae and Iridoviridae, and in prokaryotic class II transposons. Analysis of over 100 sequences showed that the N-terminal region, consisting of two subdomains, is the most conserved region and contains a DNA-binding motif that has been characterized previously. Phylogenetic analysis indicated that these proteins are distributed among eight groups, Groups 1-7 consisting of invertebrate virus proteins and Group 8 of proteins in bacteriophages and bacterial transposons. No bro genes were identified in databases of invertebrate or vertebrate genomes, vertebrate viruses and transposons, nor in prokaryotic genomes, except in prophages or transposons of the latter. The phylogenetic relationship between bro genes suggests that they have resulted from recombination of viral genomes that allowed the duplication and loss of genes, but also the acquisition of genes by horizontal transfer over evolutionary time. In addition, the maintenance and diversity of bro-l genes in different types of invertebrate dsDNA viruses, but not in vertebrate viruses, suggests that these proteins play an important role in invertebrate virus biology. Experiments with the unique orf2 bro gene of Autographa californica multicapsid nucleopolyhedrovirus showed that it is not required for replication, but may enhance replication during the occlusion phase of reproduction.

  20. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Carmo, Edson; Neves, Rogerio O; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by C ot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by C ot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using C ot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, C ot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of C ot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position.

  1. A Cold Case and a Warm Conversation: A Discourse Analysis of Focus Groups on Large-scale DNA Familial Searching

    NARCIS (Netherlands)

    Klarenbeek, Annette; Renes, Reint Jan

    2013-01-01

    In this case study, we want to gain insight into how residents of three municipalities communicate about the new murder scenario of the cold case of Marianne Vaatstra and the possibility of a large-scale DNA familial searching. We investigate how stakeholders shape their arguments in conversation wi

  2. A Cold Case and a Warm Conversation. : A Discourse Analysis of Focus Groups on Large-scale DNA Familial Searching.

    NARCIS (Netherlands)

    Klarenbeek, Annette; Renes, Reint-Jan

    2013-01-01

    In this case study, we want to gain insights into how residents of three municipalities communicate about the new murder scenario of the cold case of Marianne Vaatstra and the possibility of a large-scale DNA familial searching. We investigate how stakeholders shape their arguments in conversation w

  3. REPdenovo: Inferring De Novo Repeat Motifs from Short Sequence Reads.

    Directory of Open Access Journals (Sweden)

    Chong Chu

    Full Text Available Repeat elements are important components of eukaryotic genomes. One limitation in our understanding of repeat elements is that most analyses rely on reference genomes that are incomplete and often contain missing data in highly repetitive regions that are difficult to assemble. To overcome this problem we develop a new method, REPdenovo, which assembles repeat sequences directly from raw shotgun sequencing data. REPdenovo can construct various types of repeats that are highly repetitive and have low sequence divergence within copies. We show that REPdenovo is substantially better than existing methods both in terms of the number and the completeness of the repeat sequences that it recovers. The key advantage of REPdenovo is that it can reconstruct long repeats from sequence reads. We apply the method to human data and discover a number of potentially new repeats sequences that have been missed by previous repeat annotations. Many of these sequences are incorporated into various parasite genomes, possibly because the filtering process for host DNA involved in the sequencing of the parasite genomes failed to exclude the host derived repeat sequences. REPdenovo is a new powerful computational tool for annotating genomes and for addressing questions regarding the evolution of repeat families. The software tool, REPdenovo, is available for download at https://github.com/Reedwarbler/REPdenovo.

  4. Genome-wide identification and comparative analysis of cytosine-5 DNA methyltransferases and demethylase families in wild and cultivated peanut

    Directory of Open Access Journals (Sweden)

    Pengfei eWang

    2016-02-01

    Full Text Available AbstractDNA methylation plays important roles in genome protection, regulation of gene expression and was associated with plants development. Plant DNA methylation pattern was mediated by cytosine-5 DNA methyltransferases and demethylase. Although the genomes of AA and BB wild peanuts have been fully sequence, these two gene families have not been studied. In this study we report the identification and analysis of putative cytosine-5 DNA methyltransferases (C5-MTases and demethylase in AA and BB wild peanuts. Cytosine-5 DNA methyltransferases in AA and BB wild peanuts could be classified in known MET, CMT and DRM2 groups based on their domain organization. This result was supported by the gene and protein structural characteristics and phylogenetic analysis. We found that some wild peanut DRM2 numbers didn’t contain UBA domain which was different from other plants such as Arabidopsis, maize, soybean. Five DNA demethylase were found in AA genome and five in BB genome. The selective pressure analysis showed that wild peanut C5-MTases gene mainly underwent purifying selection but many positive selection sites can be detected. Conversely, DNA demethylase genes mainly underwent positive selection during evolution. Additionally, the expression dynamic of cytosine-5 DNA methyltransferases and demethylase genes in different cultivated peanut tissues were analyzed. Expression result showed that cold, heat or drought stress could influence the expression level of C5-MTases and DNA demethylase genes in cultivated peanut. These results are useful for better understanding the complexity of these two gene families, and will facilitate epigenetic studies in peanut.

  5. Distinct Roles for Interfacial Hydration in Site-Specific DNA Recognition by ETS-Family Transcription Factors.

    Science.gov (United States)

    Xhani, Suela; Esaki, Shingo; Huang, Kenneth; Erlitzki, Noa; Poon, Gregory M K

    2017-04-06

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. Unlike other ETS homologues, such as Ets-1, DNA recognition by PU.1 is highly sensitive to its osmotic environment due to excess interfacial hydration in the complex. To investigate interfacial hydration in the two homologues, we mutated a conserved tyrosine residue, which is exclusively engaged in coordinating a well-defined water contact between the protein and DNA among ETS proteins, to phenylalanine. The loss of this water-mediated contact blunted the osmotic sensitivity of PU.1/DNA binding, but did not alter binding under normo-osmotic conditions, suggesting that PU.1 has evolved to maximize osmotic sensitivity. The homologous mutation in Ets-1, which was minimally sensitive to osmotic stress due to a sparsely hydrated interface, reduced DNA-binding affinity at normal osmolality but the complex became stabilized by osmotic stress. Molecular dynamics simulations of wildtype and mutant PU.1 and Ets-1 in their free and DNA-bound states, which recapitulated experimental features of the proteins, showed that abrogation of this tyrosine-mediated water contact perturbed the Ets-1/DNA complex not through disruption of interfacial hydration, but by inhibiting local dynamics induced specifically in the bound state. Thus, a configurationally identical water-mediated contact plays mechanistically distinct roles in mediating DNA recognition by structurally homologous ETS transcription factors.

  6. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)).

    Science.gov (United States)

    Lim, Seonhee; Song, Insil; Guengerich, F Peter; Choi, Jeong-Yun

    2012-08-20

    Archaeal and eukaryotic B-family DNA polymerases (pols) mainly replicate chromosomal DNA but stall at lesions, which are often bypassed with Y-family pols. In this study, a B-family pol Vent (exo(-)) from the euryarchaeon Thermococcus litoralis was studied with three types of DNA lesions-N(2)-alkylG, O(6)-alkylG, and an abasic (AP) site-in comparison with a model Y-family pol Dpo4 from Sulfolobus solfataricus, to better understand the effects of various DNA modifications on binding, bypass efficiency, and fidelity of pols. Vent (exo(-)) readily bypassed N(2)-methyl(Me)G and O(6)-MeG, but was strongly blocked at O(6)-benzyl(Bz)G and N(2)-BzG, whereas Dpo4 efficiently bypassed N(2)-MeG and N(2)-BzG and partially bypassed O(6)-MeG and O(6)-BzG. Vent (exo(-)) bypassed an AP site to an extent greater than Dpo4, corresponding with steady-state kinetic data. Vent (exo(-)) showed ~110-, 180-, and 300-fold decreases in catalytic efficiency (k(cat)/K(m)) for nucleotide insertion opposite an AP site, N(2)-MeG, and O(6)-MeG but ~1800- and 5000-fold decreases opposite O(6)-BzG and N(2)-BzG, respectively, as compared to G, whereas Dpo4 showed little or only ~13-fold decreases opposite N(2)-MeG and N(2)-BzG but ~260-370-fold decreases opposite O(6)-MeG, O(6)-BzG, and the AP site. Vent (exo(-)) preferentially misinserted G opposite N(2)-MeG, T opposite O(6)-MeG, and A opposite an AP site and N(2)-BzG, while Dpo4 favored correct C insertion opposite those lesions. Vent (exo(-)) and Dpo4 both bound modified DNAs with affinities similar to unmodified DNA. Our results indicate that Vent (exo(-)) is as or more efficient as Dpo4 in synthesis opposite O(6)-MeG and AP lesions, whereas Dpo4 is much or more efficient opposite (only) N(2)-alkylGs than Vent (exo(-)), irrespective of DNA-binding affinity. Our data also suggest that Vent (exo(-)) accepts nonbulky DNA lesions (e.g., N(2)- or O(6)-MeG and an AP site) as manageable substrates despite causing error-prone synthesis, whereas Dpo4

  7. 黑斑原(鱼兆)微卫星DNA 富集文库构建与鉴定%CONSTRUCTION AND IDENTIFICATION OF DNA LIBRARIES ENRICHED FOR MICROSATELLITE REPEAT SEQUENCES OF GLYPTOSTERNUM MACULATUM

    Institute of Scientific and Technical Information of China (English)

    郭宝英; 谢从新; 祁鹏志; 吴常文; 邓一兵

    2011-01-01

    采用磁珠富集法,利用生物素标记的(CA)12 寡核苷酸探针从黑斑原(鱼兆)基因组DNA MboI 酶切的400-1000 bp 片段中筛选CA/GT 微卫星位点,洗脱的杂交片段克隆到pMD18-T 载体上构建富集微卫星基因组文库后,通过PCR 筛选检测出720 个阳性克隆,占所有克隆的89.2%,从阳性克隆中随机选取139 个进行测序,序列分析发现,124 个克隆含有7 个以上的重复序列,其中完全的为80 个(64.5%),不完全的为40 个(32.3%),复合的为15 个(3.2%),重复次数范围为7-165 次,平均为52 次.在124 条序列中共59 条可以设计引物.%Microsatellite marker (SSR) has been widely used in population genetics and genetic map construction. In order to determine the genetic diversity of G. Maculatum, this study was undertaken to develop and characterize the micro satellite sequence firstly for further to develop the micro satellite markers. Genomic DNA was extracted from muscle tissue using a traditional proteinase K digestion and phenol-chloroform extraction procedure with RNA removed by Rnase. Approximately 2 u.g of total genomic DNA was digested with Mbo\\, then ligated to the adapters (Linker A and Linker B). The treated DNA sample was then pooled and fragments were separated on a 1.5% agarose gel prior to size selection. The resulting fragments (400-1000 bp) were extracted from the gel matrix using a column and amplified 20 cycles with Linker B primers. The amplified DNA was hybridized with 5μL of 5'-biotinylated (CA)12repeat oligos in a total volume of 100 μL of 6x SSC and 0.1% SDS. The mixture was incubated at 95℃ for 5min, followed by anneal at 65℃ for 60min and cooled to room temperature. During this hybridization, the 100 μL (per treatment) of Streptavidin coated beads was resuspended in 300 μL l× hybridization buffer (6x SSC + 0.1% SDS) and washed three times. The hybridization mixture was added to the washed beads and incubated for 30 min at room temperature. The beads were

  8. Characterization of family IV UDG from Aeropyrum pernix and its application in hot-start PCR by family B DNA polymerase.

    Directory of Open Access Journals (Sweden)

    Xi-Peng Liu

    Full Text Available Recombinant uracil-DNA glycosylase (UDG from Aeropyrum pernix (A. pernix was expressed in E. coli. The biochemical characteristics of A. pernix UDG (ApeUDG were studied using oligonucleotides carrying a deoxyuracil (dU base. The optimal temperature range and pH value for dU removal by ApeUDG were 55-65°C and pH 9.0, respectively. The removal of dU was inhibited by the divalent ions of Zn, Cu, Co, Ni, and Mn, as well as a high concentration of NaCl. The opposite base in the complementary strand affected the dU removal by ApeUDG as follows: U/C≈U/G>U/T≈U/AP≈U/->U/U≈U/I>U/A. The phosphorothioate around dU strongly inhibited dU removal by ApeUDG. Based on the above biochemical characteristics and the conservation of amino acid residues, ApeUDG was determined to belong to the IV UDG family. ApeUDG increased the yield of PCR by Pfu DNA polymerase via the removal of dU in amplified DNA. Using the dU-carrying oligonucleotide as an inhibitor and ApeUDG as an activator of Pfu DNA polymerase, the yield of undesired DNA fragments, such as primer-dimer, was significantly decreased, and the yield of the PCR target fragment was increased. This strategy, which aims to amplify the target gene with high specificity and yield, can be applied to all family B DNA polymerases.

  9. Genomic cartography and proposal of nomenclature for the repeated, interspersed elements of the Leishmania major SIDER2 family and identification of SIDER2-containing transcripts.

    Science.gov (United States)

    Requena, Jose M; Rastrojo, Alberto; Garde, Esther; López, Manuel C; Thomas, M Carmen; Aguado, Begoña

    2017-03-01

    The genomes of most eukaryotic organisms contain a large number of transposable elements that are able to move from one genomic site to another either by transferring of DNA mobile elements (transposons) or transpose via reverse transcription of an RNA intermediate (retroposons). An exception to this rule is found in protists of the subgenus Leishmania, in which active retroposons degenerated after a flourishing era, leaving only retroposon remains; these have been classified into two families: SIDER1 and SIDER2. In this work, we have re-examined the elements belonging to the family SIDER2 present in the genome of Leishmania major with the aim of providing a nomenclature that will facilitate a future reference to particular elements. According to sequence conservation, the 1100 SIDER2 elements have been grouped into subfamilies, and the inferred taxonomic relationships have also been incorporated into the nomenclature. Additionally, we are providing detailed data regarding the genomic distribution of these elements and their association with specific transcripts, based on the recently established transcriptome for L. major. Thus, the presented data can help to study and better understand the roles played by these degenerated retroposons in both regulation of gene expression and genome plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly cy-dye labelled DNA.

    Directory of Open Access Journals (Sweden)

    Samantha A Wynne

    Full Text Available Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10 of Pyrococcus furiosus (Pfu polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP in PCR and synthesise highly fluorescent "CyDNA" densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers.

  11. Improved recombinant antibody production by CHO cells using a production enhancer DNA element with repeated transgene integration at a predetermined chromosomal site.

    Science.gov (United States)

    Kawabe, Yoshinori; Inao, Takanori; Komatsu, Shodai; Huang, Guan; Ito, Akira; Omasa, Takeshi; Kamihira, Masamichi

    2017-03-01

    Chinese hamster ovary (CHO) cells are one of the most useful host cell lines for the production of biopharmaceutical proteins. Although a series of production processes have been refined to improve protein productivity and cost performance, establishing producer cells is still time-consuming and labor-intensive. Recombinase-mediated site-specific gene integration into a predetermined chromosomal locus may enable predictable protein expression, reducing the laborious process of cell screening. We previously developed an accumulative site-specific gene integration system (AGIS) using Cre recombinase and mutated loxP sites for transgene integration and amplification in the CHO cell genome. Epigenetic modifier elements such as insulators are effective DNA cis-regulatory elements for stabilizing transgene expression. Here, we attempted to enhance transgene expression in recombinant CHO cells generated by AGIS using a production enhancer DNA element (PE) derived from the CHO genome. The PE was introduced into an expression unit for a recombinant scFv-Fc antibody. The effect on scFv-Fc productivity of PE position and orientation within the transgene was evaluated, while keeping the background chromosomal structure constant. For the optimal PE arrangement, scFv-Fc productivity was enhanced 2.6-fold compared with an expression unit without a PE. The enhancing effect of the PE on transgene expression was also observed when two or three PE-flanked expression units were inserted as tandem repeats. These results indicate that AGIS using the PE-flanked expression unit is a promising approach for establishing producer cell lines for biopharmaceutical protein production.

  12. Bov-B long interspersed repeated DNA (LINE) sequences are present in Vipera ammodytes phospholipase A2 genes and in genomes of Viperidae snakes.

    Science.gov (United States)

    Kordis, D; Gubensek, F

    1997-06-15

    Ammodytin L is a myotoxic Ser49 phospholipase A2 (PLA2) homologue, which is tissue-specifically expressed in the venom glands of Vipera ammodytes. The complete DNA sequence of the gene and its 5' and 3' flanking regions has been determined. The gene consists of five exons separated by four introns. Comparative analysis of the ammodytin L and ammodytoxin C genes shows that all intron and flanking sequences are considerably more conserved (93-97%) than the mature protein-coding exons. The pattern of nucleotide substitutions in protein-coding exons is not random but occurs preferentially on the first and the second positions of codons, which suggests positive Darwinian evolution for a new function. An Ruminantia specific ART-2 retroposon, recently recognised as a 5'-truncated Bov-B long interspersed repeated DNA (LINE) sequence, was identified in the fourth intron of both genes. This result suggests that ammodytin L and ammodytoxin C genes are derived by duplication of a common ancestral gene. The phylogenetic distribution of Bov-B LINE among vertebrate classes shows that, besides the Ruminantia, it is limited to Viperidae snakes (Vipera ammodytes, Vipera palaestinae, Echis coloratus, Bothrops alternatus, Trimeresurus flavoviridis and Trimeresurus gramineus). The copy number of the 3' end of Bov-B LINE in the Vipera ammodytes genome is between 62,000 and 75,000. The absence of Bov-B LINE at orthologous positions in other snake PLA2 genes indicates that its retrotransposition in the V. ammodytes PLA2 gene locus has occurred quite recently, about 5 My ago. The amplification of Bov-B LINEs in snakes may have occurred before the divergence of the Viperinae and Crotalinae subfamilies. Due to its wide distribution in Viperidae snakes it may be a valuable phylogenetic marker. The neighbor-joining phylogenetic tree shows two clusters of truncated Bov-B LINE, a Bovidae and a snake cluster, indicating an early horizontal transfer of this transposable element.

  13. DNA cassette exchange in ES cells mediated by Flp recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs.

    Science.gov (United States)

    Seibler, J; Schübeler, D; Fiering, S; Groudine, M; Bode, J

    1998-05-05

    The repeated modification of a genomic locus is a technically demanding but powerful strategy to analyze the function of a particular gene product or the role of cis-regulatory DNA elements in mammalian cells. The initial step is "tagging" a site with a selectable marker which is done by homologous recombination (HR) to modify a known locus or by random integration to study cis-regulatory elements at a reproducibly accessible genomic location. The tag is then used to target the construct of choice during an exchange step. Presented here is a novel technique in which the exchange is independent of HR and does not introduce vector sequences. It relies on our previous studies on the replacement of DNA cassettes by FLP-recombinase, whereby some common limitations can be overcome. To this end, the tag, a hygtk positive/negative selection marker, is integrated into the genome of embryonic stem (ES) cells. This marker is flanked by a wild-type Flp-recognition target (FRT) site on one end and by a modified heterospecific FRT site on the other. Successful Flp-mediated replacement of the hygtk cassette is enriched by ganciclovir (GANC) selection for cells that lack the encoded fusion protein. Thereby, the hygtk gene can be exchanged for virtually any sequence in a single efficient step without the need of introducing a positive selectable marker. The system can hence be used to analyze the function of either a gene product or regulatory sequences in ES cells or the transgenic mice derived thereof.

  14. Comprehensive Molecular Phylogeny of the Sub-Family Dipterocarpoideae (Dipterocarpaceae) Based on Chloroplast DNA Sequences

    National Research Council Canada - National Science Library

    Gamage, Dayananda Thawalama; Silva, Morley P. de; Inomata, Nobuyuki; Yamazaki, Tsuneyuki; Szmidt, Alfred E

    2006-01-01

    .... Although several previous studies addressed the phylogeny of the Dipterocarpaceae family, relationships among many of its genera from the Dipterocarpoideae sub-family are still not well understood...

  15. Using DNA-barcoding to make the necrobiont beetle family Cholevidae accessible for forensic entomology.

    Science.gov (United States)

    Schilthuizen, Menno; Scholte, Cindy; van Wijk, Renske E J; Dommershuijzen, Jessy; van der Horst, Devi; Zu Schlochtern, Melanie Meijer; Lievers, Rik; Groenenberg, Dick S J

    2011-07-15

    The beetle family Cholevidae (Coleoptera: Staphylinoidea), sometimes viewed as the subfamily Cholevinae of the Leiodidae, consists of some 1700 species worldwide. With the exception of specialized cave-dwelling species and species living in bird and mammal nests and burrows, the species are generalized soil-dwellers that, at least in temperate regions, are mostly found on vertebrate cadavers. Although they have been regularly reported from human corpses, and offer potential because of many species' peak activity in the cold season, they have not been a focus of forensic entomologists so far. This is probably due to their small size and the difficulty in identifying the adults and their larvae. In this paper, we show that DNA-barcoding can help make this group of necrobiont beetles available as a tool for forensic research. We collected 86 specimens of 20 species of the genera Catops, Fissocatops, Apocatops, Choleva, Nargus, Ptomaphagus, and Sciodrepoides from the Netherlands and France and show that a broad "barcoding gap" allows almost all species to be easily and unambiguously identified by the sequence of the "barcoding gene" cytochrome c oxidase I (COI). This opens up the possibility of adding Cholevidae to the set of insect taxa routinely used in forensic entomology.

  16. Efficient detection of unpaired DNA requires a member of the rad54-like family of homologous recombination proteins.

    Science.gov (United States)

    Samarajeewa, Dilini A; Sauls, Pegan A; Sharp, Kevin J; Smith, Zachary J; Xiao, Hua; Groskreutz, Katie M; Malone, Tyler L; Boone, Erin C; Edwards, Kevin A; Shiu, Patrick K T; Larson, Erik D; Hammond, Thomas M

    2014-11-01

    Meiotic silencing by unpaired DNA (MSUD) is a process that detects unpaired regions between homologous chromosomes and silences them for the duration of sexual development. While the phenomenon of MSUD is well recognized, the process that detects unpaired DNA is poorly understood. In this report, we provide two lines of evidence linking unpaired DNA detection to a physical search for DNA homology. First, we have found that a putative SNF2-family protein (SAD-6) is required for efficient MSUD in Neurospora crassa. SAD-6 is closely related to Rad54, a protein known to facilitate key steps in the repair of double-strand breaks by homologous recombination. Second, we have successfully masked unpaired DNA by placing identical transgenes at slightly different locations on homologous chromosomes. This masking falls apart when the distance between the transgenes is increased. We propose a model where unpaired DNA detection during MSUD is achieved through a spatially constrained search for DNA homology. The identity of SAD-6 as a Rad54 paralog suggests that this process may be similar to the searching mechanism used during homologous recombination. Copyright © 2014 by the Genetics Society of America.

  17. Next-generation repeat-free FISH probes for DNA amplification in glioblastoma in vivo: Improving patient selection to MDM2-targeted inhibitors.

    Science.gov (United States)

    Brunelli, Matteo; Eccher, Albino; Cima, Luca; Trippini, Tobia; Pedron, Serena; Chilosi, Marco; Barbareschi, Mattia; Scarpa, Aldo; Pinna, Giampietro; Cabrini, Giulio; Pilotto, Sara; Carbognin, Luisa; Bria, Emilio; Tortora, Giampaolo; Fioravanzo, Adele; Schiavo, Nicola; Meglio, Mario; Sava, Teodoro; Belli, Laura; Martignoni, Guido; Ghimenton, Claudio

    2017-01-01

    A next-generation FISH probe mapping to the MDM2 locus-specific region has recently been designed. The level of MDM2 gene amplification (high versus low) may allow selection of patients for cancer treatment with MDM2 inhibitors and may predict their responsiveness. We investigated the spectrum of MDM2 gene alterations using the new probes in vivo after visualizing single neoplastic cells in situ from a series of glioblastomas. Signals from next-generation repeat-free FISH interphase probes were identified in tissue microarrays that included 3 spots for each of the 48 cases. The murine double minutes (MDM2)-specific DNA probe and the satellite enumeration probe for chromosome 12 were used. Three cases (6%) showed more than 25 signals (high gene amplification), and 7 (15%) showed 3-10 signals (gains); among these, 4 cases (8%) had an equal number of MDM2 and centromeric signals on chromosome 12 (polyploidy). Genomic heterogeneity was observed only in 3 cases with low gene amplification. In our series, 6% of glioblastomas exhibited high MDM2 amplification (in vivo) with a pattern related to the known double minutes/chromothripsis phenomenon (in situ), and only cases with low amplification showed genomic heterogeneity. We concluded that the rate of MDM2 gene amplification can be a useful predictive biomarker to improve patient selection.

  18. Variation of TTC Repeat Pattern In The Dna of Mycobacterium Leprae Isolates Obtained from Archeological Bones and Leprosy Patients From East Nusa Tenggara

    Directory of Open Access Journals (Sweden)

    Dinar Adriaty

    2012-12-01

    Full Text Available The existence of leprosy or kusta or Morbus Hansen or Hansen’s disease has been known for years, including in Indonesia. Starting from the discovery of Mycobacterium leprae isolates from ancient bone (about 1.000 years B.C, the archaeological excavations results in East Nusa Tenggara, interesting questions arise about how the development of leprosy in eastern Indonesia is. Biology molecular study would become a powerful tool to investigate the presence of leprosy bacillary whether there are similarities between the genomes of M. leprae isolates in the primeval and the present. PCR examinations were performed on mandibular bone fragments from ancient human who lived 1000 years B.C. discovered in archaeological surveys on the island of Lembata and three leprosy patients from East Nusa Tenggara. The DNA extraction was performed using a kit from Qiagen products and its TTC repeating pattern was seen with the method of direct sequencing. It turned out that the TTC profile obtained from samples of archaeological was as many as 13 copies, while the repetition of TTC in three samples of leprosy patients were 15, 17 and 26 copies. The different number of TTC repetition shows the different isolates of M. leprae between in the ancient times and the present. Further studies are needed to verify the differences in the genome that occur, for example from the study of SNPs (single nucleotide polymorphisms.

  19. [Conformational polymorphysm of G-rich fragments of DNA Alu-repeats. II. the putative role of G-quadruplex structures in genomic rearrangements].

    Science.gov (United States)

    Varizhuk, A M; Sekridova, A V; Tankevich, M V; Podgorsky, V S; Smirnov, I P; Pozmogova, G E

    2016-11-01

    Three evolutionary conserved sites of Alu repeats (PQS2, PQS3 and PQS4) were shown to form stable inter- and intramolecular G-quadruplexes (GQs) in vitro. Structures and topologies of these GQs were elucidated using spectral methods. Self-association of G-rich Alu fragments was studied. Dimeric GQ formation from two distal identical or different putative quadruplex sites - (PQS2)2, (PQS3)2 or PQS2-PQS3 - within one lengthy DNA strand was demonstrated by a FRET-based method. Oligomer PQS4 (folded into a parallel intramolecular GQ) was shown to form stacks of quadruplexes that are stabilized by stacking interactions of external G-tetrads (this was confirmed by DOSY NMR, AFM microscopy and differential CD spectroscopy). Comparative analysis of the properties of various GQs allowed us to put forward a hypothesis of two general mechanisms of intermolecular GQ-dependant genomic rearrangements: 1) formation of a dimeric GQs; 2) association of pre-folded intramolecular parallel GQs from different strands into GQ-stacks. Thus, the observed co-localization of G-rich motifs of Alu elements with double-strand break hotspots and rearrangement hotspots may be accounted for by the specific secondary structure of these motifs. At the same time, this is likely primarily due to high abundance of such G-rich Alu fragments in the genome.

  20. Subunit interaction and regulation of activity through terminal domains of the family D DNA polymerase from Pyrococcus horikoshii.

    Science.gov (United States)

    Shen, Y; Tang, X-F; Matsui, E; Matsui, I

    2004-04-01

    Family D DNA polymerase (PolD) has recently been found in the Euryarchaeota subdomain of Archaea. Its genes are adjacent to several other genes related to DNA replication, repair and recombination in the genome, suggesting that this enzyme may be the major DNA replicase in Euryarchaeota. We successfully cloned, expressed, and purified the family D DNA polymerase from Pyrococcus horikoshii (PolDPho). By site-directed mutagenesis, we identified amino acid residues Asp-1122 and Asp-1124 of a large subunit as the essential residues responsible for DNA-polymerizing activity. We analysed the domain structure using proteins truncated at the N- and C-termini of both small and large subunits (DP1Pho and DP2Pho), and identified putative regions responsible for subunit interaction, oligomerization and regulation of the 3'-5' exonuclease activity in PolDPho. It was also found that the internal region of the putative zinc finger motif (cysteine cluster II) at the C-terminal of DP2Pho is involved in the 3'-5' exonuclease activity. Using gel filtration analysis, we determined the molecular masses of the recombinant PolDPho and the N-terminal putative dimerization domain of the large subunit, and proposed that PolD from P. horikoshii probably forms a heterotetrameric structure in solution. Based on these results, a model regarding the subunit interaction and regulation of activity of PolDPho is proposed.

  1. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution.

    Science.gov (United States)

    Paesold, Susanne; Borchardt, Dietrich; Schmidt, Thomas; Dechyeva, Daryna

    2012-11-01

    We developed a reference karyotype for B. vulgaris which is applicable to all beet cultivars and provides a consistent numbering of chromosomes and genetic linkage groups. Linkage groups of sugar beet were assigned to physical chromosome arms by FISH (fluorescent in situ hybridization) using a set of 18 genetically anchored BAC (bacterial artificial chromosome) markers. Genetic maps of sugar beet were correlated to chromosome arms, and North-South orientation of linkage groups was established. The FISH karyotype provides a technical platform for genome studies and can be applied for numbering and identification of chromosomes in related wild beet species. The discrimination of all nine chromosomes by BAC probes enabled the study of chromosome-specific distribution of the major repetitive components of sugar beet genome comprising pericentromeric, intercalary and subtelomeric satellites and 18S-5.8S-25S and 5S rRNA gene arrays. We developed a multicolor FISH procedure allowing the identification of all nine sugar beet chromosome pairs in a single hybridization using a pool of satellite DNA probes. Fiber-FISH was applied to analyse five chromosome arms in which the furthermost genetic marker of the linkage group was mapped adjacently to terminal repetitive sequences on pachytene chromosomes. Only on two arms telomere arrays and the markers are physically linked, hence these linkage groups can be considered as terminally closed making the further identification of distal informative markers difficult. The results support genetic mapping by marker localization, the anchoring of contigs and scaffolds for the annotation of the sugar beet genome sequence and the analysis of the chromosomal distribution patterns of major families of repetitive DNA.

  2. Glycidol-carbohydrate hybrids: a new family of DNA alkylating agents.

    Science.gov (United States)

    Toshima, Kazunobu; Okuno, Yukiko; Matsumura, Shuichi

    2003-10-06

    Novel and chiral glycidol-carbohydrate hybrids possessing an epoxy group as a DNA alkylating moiety were designed and synthesized. These artificial hybrids selectively alkylated DNA at the N-7 sites of the guanines and cleaved DNA without any additives. The binding ability of the glycidol was significantly enhanced by the attachment of the carbohydrate.

  3. The E-subgroup Pentatricopeptide Repeat Protein family in Arabidopsis thaliana and confirmation of the responsiveness PPR96 to abiotic stresses

    Directory of Open Access Journals (Sweden)

    Jia-Ming Liu

    2016-12-01

    Full Text Available Pentatricopeptide repeat (PPR proteins are extensive in all eukaryotes. Their functions remain as yet largely unknown. Mining potential stress responsive PPRs, and checking whether known PPR editing factors are affected in the stress treatments. It is beneficial to elucidate the regulation mechanism of PPRs involved in biotic and abiotic stress. Here, we explored the characteristics and origin of the 105 E subgroup PPRs in Arabidopsis thaliana. Phylogenetic analysis categorized the E subgroup PPRs into five discrete groups (Cluster I to V, and they may have a common origin in both A. thaliana and rice. An in silico expression analysis of the 105 E subgroup PPRs in A. thaliana was performed using available microarray data. 34 PPRs were differentially expressed during A. thaliana seed imbibition, seed development stage(s, and flowers development processes. To explore potential stress responsive PPRs, differential expression of 92 PPRs was observed in A. thaliana seedlings subjected to different abiotic stresses. qPCR data of E subgroup PPRs under stress conditions revealed that the expression of 5 PPRs was responsive to abiotic stresses. In addition, PPR96 is involved in plant responses to salt, abscisic acid (ABA, and oxidative stress. The T-DNA insertion mutation inactivating PPR96 expression results in plant insensitivity to salt, ABA, and oxidative stress. The PPR96 protein is localized in the mitochondria, and altered transcription levels of several stress-responsive genes under abiotic stress treatments. Our results suggest that PPR96 may important function in a role connecting the regulation of oxidative respiration and environmental responses in A. thaliana.

  4. In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS.

    Science.gov (United States)

    Sun, Fei; Li, Chunling; Jeong, Dowon; Sohn, Changmo; He, Chuan; Bae, Taeok

    2010-04-01

    Staphylococcus aureus uses the SaeRS two-component system to control the expression of many virulence factors such as alpha-hemolysin and coagulase; however, the molecular mechanism of this signaling has not yet been elucidated. Here, using the P1 promoter of the sae operon as a model target DNA, we demonstrated that the unphosphorylated response regulator SaeR does not bind to the P1 promoter DNA, while its C-terminal DNA binding domain alone does. The DNA binding activity of full-length SaeR could be restored by sensor kinase SaeS-induced phosphorylation. Phosphorylated SaeR is more resistant to digestion by trypsin, suggesting conformational changes. DNase I footprinting assays revealed that the SaeR protection region in the P1 promoter contains a direct repeat sequence (GTTAAN(6)GTTAA [where N is any nucleotide]). This sequence is critical to the binding of phosphorylated SaeR. Mutational changes in the repeat sequence greatly reduced both the in vitro binding of SaeR and the in vivo function of the P1 promoter. From these results, we concluded that SaeR recognizes the direct repeat sequence as a binding site and that binding requires phosphorylation by SaeS.

  5. Characterization of cDNA encoding human placental anticoagulant protein (PP4): Homology with the lipocortin family

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Abel, K.J.; Bohn, H.; Loebermann, H.; Lottspeich, F.; Kuepper, H. (Research Institutes, Postfach (West Germany))

    1988-06-01

    A cDNA library prepared from human placenta was screened for sequences encoding the placental protein 4 (PP4). PP4 is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade. Partial amino acid sequence information from PP4-derived cyanogen bromide fragments was used to design three oligonucleotide probes for screening the library. From 10{sup 6} independent recombinants, 18 clones were identified that hybridized to all three probes. These 18 recombinants contained cDNA inserts encoding a protein of 320 amino acid residues. In addition to the PP4 cDNA the authors identified 9 other recombinants encoding a protein with considerable similarity (74%) to PP4, which was termed PP4-X. PP4 and PP4-X belong to the lipocortin family, as judged by their homology to lipocortin I and calpactin I.

  6. Segregation pattern and biochemical effect of the G3460A mtDNA mutation in 27 members of LHON family.

    Science.gov (United States)

    Kaplanová, Vilma; Zeman, Jirí; Hansíková, Hana; Cerná, Leona; Houst'ková, Hana; Misovicová, Nadezda; Houstek, Josef

    2004-08-30

    Inheritance and expression of mitochondrial DNA (mtDNA) mutations are crucial for the pathogenesis of Leber hereditary optic neuropathy (LHON). We have investigated the segregation and functional consequences of G3460A mtDNA mutation in 27 members of a three-generation family with LHON syndrome. Specific activity of respiratory chain complex I in platelets was reduced in average to 56%, but no direct correlation between the mutation load and its biochemical expression was found. Heteroplasmy in blood, platelets and hair follicles varied from 7% to 100%. Segregation pattern exhibited tissue specificity and influence of different nuclear backgrounds in four branches of the pedigree. Longitudinal analysis revealed a significant (p=0.02) decrease in blood mutation load. Although enzyme assay showed reduction of complex I activity, our results give additional support to the hypothesis that expression of LHON mutation depends on complex nuclear-mitochondrial interaction.

  7. Isolation, characterization and cDNA sequencing of a Kazal family proteinase inhibitor from seminal plasma of turkey (Meleagris gallopavo).

    Science.gov (United States)

    Słowińska, Mariola; Olczak, Mariusz; Wojtczak, Mariola; Glogowski, Jan; Jankowski, Jan; Watorek, Wiesław; Amarowicz, Ryszard; Ciereszko, Andrzej

    2008-06-01

    The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.

  8. Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5-bisphosphate carboxylase and the 32,000-dalton QB protein: Phylogenetic implications

    Science.gov (United States)

    Reith, Michael; Cattolico, Rose Ann

    1986-01-01

    The chloroplast DNA of the chromophytic alga Olisthodiscus luteus has been physically mapped with four restriction enzymes. An inverted repeat of 22 kilobase pairs is present in this 150-kilobase-pair plastid genome. The inverted repeat contains the genes for the large and small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and also codes for the 32,000-dalton QB protein. These observations demonstrate that significant differences exist in chloroplast genome structure and organization among major plant taxa. Images PMID:16578794

  9. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation.

    Directory of Open Access Journals (Sweden)

    Jason Gertz

    2011-08-01

    Full Text Available The methylation of cytosines in CpG dinucleotides is essential for cellular differentiation and the progression of many cancers, and it plays an important role in gametic imprinting. To assess variation and inheritance of genome-wide patterns of DNA methylation simultaneously in humans, we applied reduced representation bisulfite sequencing (RRBS to somatic DNA from six members of a three-generation family. We observed that 8.1% of heterozygous SNPs are associated with differential methylation in cis, which provides a robust signature for Mendelian transmission and relatedness. The vast majority of differential methylation between homologous chromosomes (>92% occurs on a particular haplotype as opposed to being associated with the gender of the parent of origin, indicating that genotype affects DNA methylation of far more loci than does gametic imprinting. We found that 75% of genotype-dependent differential methylation events in the family are also seen in unrelated individuals and that overall genotype can explain 80% of the variation in DNA methylation. These events are under-represented in CpG islands, enriched in intergenic regions, and located in regions of low evolutionary conservation. Even though they are generally not in functionally constrained regions, 22% (twice as many as expected by chance of genes harboring genotype-dependent DNA methylation exhibited allele-specific gene expression as measured by RNA-seq of a lymphoblastoid cell line, indicating that some of these events are associated with gene expression differences. Overall, our results demonstrate that the influence of genotype on patterns of DNA methylation is widespread in the genome and greatly exceeds the influence of imprinting on genome-wide methylation patterns.

  10. Recent Advances of Repeat-induced Point Mutation (RIP) of DNA Sequence in Fungi%真菌中 DNA 重复序列诱导点突变的研究进展

    Institute of Scientific and Technical Information of China (English)

    冯凤鹃; 曲志才; 田李; 王转斌

    2014-01-01

    Repeat -induced point mutations ( RIP) was discovered in Neurospora crassa in 1987 by Selker. RIP searches for sequence duplications in haploid nuclei of premeiotic tissue and then litters them with numerous C to T mutations.T+A rich fragments so that the G-C pairs in duplications can be mutated to A -T.In addition, RIP’ s sequences , which are concentrated in centromeric regions , and are predominantly relics of transposons , are left methylated .Mobile transposable elements are among the primary drivers of the evolution of eukaryotic genomes . For fungi , repeat-induced point mutation ( RIP) silencing minimizes deleterious effects of transposons by mutating multicopy DNA during meiosis .To explore the impact of RIP-mutated transposons is conducive to generate evolu-tionary inferences for phylogenetic and population genetic analyses .The paper has reviewed the mechanism of RIP and the progress of RIP in fungi .%1987年,由Selker等在粗糙脉孢菌中首次发现重复序列诱导点突变( repeat-induced point mu-tation,RIP)。在重复序列诱导点突变过程中,搜寻前减数分裂组织单倍体核中DNA的重复序列,然后发生众多的碱基C到T的突变,产生富碱基T+A片段,从而使重复序列中的G-C碱基对发生转换突变成为A-T碱基对。此外,发生RIP的序列多集中在着丝粒区域,主要是转座子甲基化后的遗迹。移动转座子是真核生物基因组进化的主要驱动力。对于真菌,重复序列诱导点突变( RIP)在减数分裂过程中通过突变多拷贝DNA,能最大限度地减少转座子的影响,因此对RIP的研究在一定程度上能有助于了解基因组进化的真谛。综述了重复序列诱导点突变的产生机制,以及真菌中重复序列诱导点突变的研究进展。

  11. Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family

    Directory of Open Access Journals (Sweden)

    Rothblatt Jonathan

    2008-07-01

    Full Text Available Abstract Background In contrast to the three mammalian p53 family members, p53, which is generally involved in DNA damage responses, and p63 and p73 which are primarily needed for developmental regulation, cep-1 encodes for the single C. elegans p53-like gene. cep-1 acts as a transcription activator in a primordial p53 pathway that involves CEP-1 activation and the CEP-1 dependent transcriptional induction of the worm BH3 only domain encoding genes egl-1 and ced-13 to induce germ cell apoptosis. EGL-1 and CED-13 proteins inactivate Bcl-2 like CED-9 to trigger CED-4 and CED-3 caspase dependent germ cell apoptosis. To address the function of p53 in global transcriptional regulation we investigate genome-wide transcriptional responses upon DNA damage and cep-1 deficiency. Results Examining C. elegans expression profiles using whole genome Affymetrix GeneChip arrays, we found that 83 genes were induced more than two fold upon ionizing radiation (IR. None of these genes, with exception of an ATP ribosylase homolog, encode for known DNA repair genes. Using two independent cep-1 loss of function alleles we did not find genes regulated by cep-1 in the absence of IR. Among the IR-induced genes only three are dependent on cep-1, namely egl-1, ced-13 and a novel C. elegans specific gene. The majority of IR-induced genes appear to be involved in general stress responses, and qRT-PCR experiments indicate that they are mainly expressed in somatic tissues. Interestingly, we reveal an extensive overlap of gene expression changes occurring in response to DNA damage and in response to bacterial infection. Furthermore, many genes induced by IR are also transcriptionally regulated in longevity mutants suggesting that DNA damage and aging induce an overlapping stress response. Conclusion We performed genome-wide gene expression analyses which indicate that only a surprisingly small number of genes are regulated by CEP-1 and that DNA damage induced apoptosis via the

  12. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase.

    Science.gov (United States)

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi

    2013-07-05

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  13. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Hideshi Yokoyama

    2013-07-01

    Full Text Available Archaea-specific D-family DNA polymerase (PolD forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  14. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  15. Large-scale analysis of tandem repeat variability in the human genome.

    Science.gov (United States)

    Duitama, Jorge; Zablotskaya, Alena; Gemayel, Rita; Jansen, An; Belet, Stefanie; Vermeesch, Joris R; Verstrepen, Kevin J; Froyen, Guy

    2014-05-01

    Tandem repeats are short DNA sequences that are repeated head-to-tail with a propensity to be variable. They constitute a significant proportion of the human genome, also occurring within coding and regulatory regions. Variation in these repeats can alter the function and/or expression of genes allowing organisms to swiftly adapt to novel environments. Importantly, some repeat expansions have also been linked to certain neurodegenerative diseases. Therefore, accurate sequencing of tandem repeats could contribute to our understanding of common phenotypic variability and might uncover missing genetic factors in idiopathic clinical conditions. However, despite long-standing evidence for the functional role of repeats, they are largely ignored because of technical limitations in sequencing, mapping and typing. Here, we report on a novel capture technique and data filtering protocol that allowed simultaneous sequencing of thousands of tandem repeats in the human genomes of a three generation family using GS-FLX-plus Titanium technology. Our results demonstrated that up to 7.6% of tandem repeats in this family (4% in coding sequences) differ from the reference sequence, and identified a de novo variation in the family tree. The method opens new routes to look at this underappreciated type of genetic variability, including the identification of novel disease-related repeats.

  16. The PCNA-RFC families of DNA clamps and clamp loaders.

    Science.gov (United States)

    Majka, Jerzy; Burgers, Peter M J

    2004-01-01

    The proliferating cell nuclear antigen PCNA functions at multiple levels in directing DNA metabolic pathways. Unbound to DNA, PCNA promotes localization of replication factors with a consensus PCNA-binding domain to replication factories. When bound to DNA, PCNA organizes various proteins involved in DNA replication, DNA repair, DNA modification, and chromatin modeling. Its modification by ubiquitin directs the cellular response to DNA damage. The ring-like PCNA homotrimer encircles double-stranded DNA and slides spontaneously across it. Loading of PCNA onto DNA at template-primer junctions is performed in an ATP-dependent process by replication factor C (RFC), a heteropentameric AAA+ protein complex consisting of the Rfc1, Rfc2, Rfc3, Rfc4, and Rfc5 subunits. Loading of yeast PCNA (POL30) is mechanistically distinct from analogous processes in E. coli (beta subunit by the gamma complex) and bacteriophage T4 (gp45 by gp44/62). Multiple stepwise ATP-binding events to RFC are required to load PCNA onto primed DNA. This stepwise mechanism should permit editing of this process at individual steps and allow for divergence of the default process into more specialized modes. Indeed, alternative RFC complexes consisting of the small RFC subunits together with an alternative Rfc1-like subunit have been identified. A complex required for the DNA damage checkpoint contains the Rad24 subunit, a complex required for sister chromatid cohesion contains the Ctf18 subunit, and a complex that aids in genome stability contains the Elg1 subunit. Only the RFC-Rad24 complex has a known associated clamp, a heterotrimeric complex consisting of Rad17, Mec3, and Ddc1. The other putative clamp loaders could either act on clamps yet to be identified or act on the two known clamps.

  17. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  18. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  19. Histone deacetylase complexes promote trinucleotide repeat expansions.

    Directory of Open Access Journals (Sweden)

    Kim Debacker

    2012-02-01

    Full Text Available Expansions of DNA trinucleotide repeats cause at least 17 inherited neurodegenerative diseases, such as Huntington's disease. Expansions can occur at frequencies approaching 100% in affected families and in transgenic mice, suggesting that specific cellular proteins actively promote (favor expansions. The inference is that expansions arise due to the presence of these promoting proteins, not their absence, and that interfering with these proteins can suppress expansions. The goal of this study was to identify novel factors that promote expansions. We discovered that specific histone deacetylase complexes (HDACs promote CTG•CAG repeat expansions in budding yeast and human cells. Mutation or inhibition of yeast Rpd3L or Hda1 suppressed up to 90% of expansions. In cultured human astrocytes, expansions were suppressed by 75% upon inhibition or knockdown of HDAC3, whereas siRNA against the histone acetyltransferases CBP/p300 stimulated expansions. Genetic and molecular analysis both indicated that HDACs act at a distance from the triplet repeat to promote expansions. Expansion assays with nuclease mutants indicated that Sae2 is one of the relevant factors regulated by Rpd3L and Hda1. The causal relationship between HDACs and expansions indicates that HDACs can promote mutagenesis at some DNA sequences. This relationship further implies that HDAC3 inhibitors being tested for relief of expansion-associated gene silencing may also suppress somatic expansions that contribute to disease progression.

  20. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    Science.gov (United States)

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected.

  1. DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder

    OpenAIRE

    2016-01-01

    Background Bipolar disorder (BD) is a severe, familial psychiatric condition. Progress in understanding the aetiology of BD has been hampered by substantial phenotypic and genetic heterogeneity. We sought to mitigate these confounders by studying a multi-generational family multiply affected by BD and major depressive disorder (MDD), who carry an illness-linked haplotype on chromosome 4p. Within a family, aetiological heterogeneity is likely to be reduced, thus conferring greater power to det...

  2. Leber's hereditary optic neuroretinopathy (LHON) associated with mitochondrial DNA point mutation G11778A in two Croatian families.

    Science.gov (United States)

    Martin-Kleiner, Irena; Gabrilovac, Jelka; Bradvica, Mario; Vidović, Tomislav; Cerovski, Branimir; Fumić, Ksenija; Boranić, Milivoj

    2006-03-01

    Leber's hereditary optic neuroretinopathy (LHON) is manifested as a bilateral acute or subacute loss of central vision due to optic atrophy. It is linked to point mutations of mitochondrial DNA, which is inherited maternally. The most common mitochondrial DNA point mutations associated with LHON are G3460A, G11778A and T14484C. These mutations are linked with the defects of subunits of the complex I (NADH-dehydrogenase-ubiquinone reductase) in mitochondria. The G11778A mitochondrial DNA point mutation is manifested by a severe visual impairment. In this paper two Croatian families with the LHON G11778A mutation are presented. Three LHON patients from two families were younger males which had the visual acuity of 0.1 or below, the ophthalmoscopy revealed telangiectatic microangiopathy and papilloedema, while Goldmann kinetic perimetry showed a central scotoma. The mothers and female relatives were LHON mutants without symptoms, whereas their sons suffered from a severe visual impairment. Molecular diagnosis helps to explain the cause of LHON disease.

  3. The Mitochondrial DNA Mutation at Position 11778 in Chinese Families with Leber's Hereditary Optic Neuropathy

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    We amplified the 340 bp of mitochondrial DMA (mtDNA) by PCR including the recognized sequence of restriction enzyme of SfaN I . After amplification and digestion of SfaN I , two bands of 190 bp and 150 bp appeared in the mtDNA of four normal individuals but only one band of 340 bp appeared in the mtDNA with the mutation of G to A at the site of the nucleotide 11778 because such mutation destroyed the recognized sequence of SfaN I . We studied the mtDNAs of the patients with Leber's hereditary optic neur...

  4. Characterization of cDNA from the miracidial antigen family of Schistosoma japonicum (Chinese strain)

    Institute of Scientific and Technical Information of China (English)

    余传信; 平山謙二; 朱荫昌; 菊池三惠子; 殷旭仁

    2003-01-01

    Objective To identify the egg antigens related to the formation of hepatic granulomas and fibrosis of Schistosomiasis japonica.Methods The egg cDNA library of Schistosoma japonicum (S.japonicum) was constructed and screened by immunological methods with the pooled sera of advanced schistosomiasis patients. The inserted foreign DNA fragments of positive clones were sequenced. The sequence data were analyzed using Wdnasis 2.5 and compared with Genebank data using blast software. Conclusion The cDNA sequence of the miracidial antigen of S.japonicum (Chinese strain) was obtained for the first time.

  5. The use of DNA markers in the pre-clinical diagnosis of familial ...

    African Journals Online (AJOL)

    Histopathological proof of FAP was .... second degree, provided further evidence that probes Pi227 .... eventually enable the development of rapid DNA-based .... non-Jewish adult G.,a gangliosidosis patients share a common genetic defect.

  6. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae)

    Science.gov (United States)

    Jan, Catherine

    2016-01-01

    The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species. PMID:27688959

  7. Molecular cytogenetics of Alstroemeria: identification of parental genomes in interspecific hybrids and characterization of repetitive DNA families in constitutive heterochromatin.

    Science.gov (United States)

    Kuipers, A G; van Os, D P; de Jong, J H; Ramanna, M S

    1997-02-01

    The genus Alstroemeria consists of diploid (2n = 2x = 16) species originating mainly from Chile and Brazil. Most cultivars are triploid or tetraploid interspecific hybrids. C-banding of eight species revealed obvious differentiation of constitutive heterochromatin within the genus. The present study focused on the molecular (cyto)genetic background of this differentiation. Genomic slot-blot analysis demonstrated strong conservation of major parts of the genomes among six species. The chromosomes of A. aurea and A. ligtu, species with pronounced interstitial C-bands, were found to contain large amounts of highly repetitive and species-specific DNA. The variation in size, number and intensity of strongly probed bands of major repetitive DNA families observed in genomic Southern blots of Sau3A, HaeIII, and MseI digests indicated a strong correlation between variation in genomic DNA composition and different C-banding patterns among Alstroemeria species. Genomic in situ hybridization (GISH) revealed a clear distinction between parental chromosomes in the hybrids between Chilean and Brazilian species and also between Chilean species, as long as at least one of the parental species possessed prominent C-banding. Regarding the latter, discriminative hybridization resulted from highly repetitive species specific DNA in the heterochromatic chromosome regions of A. aurea and A. ligtu, and caused GISH banding patterns that coincided with the C-banding patterns.

  8. Two families with Leber's hereditary optic neuropathy carrying G11778A and T14502C mutations with haplogroup H2a2a1 in mitochondrial DNA.

    Science.gov (United States)

    Qiao, Chen; Wei, Tanwei; Hu, Bo; Peng, Chunyan; Qiu, Xueping; Wei, Li; Yan, Ming

    2015-08-01

    The mitochondrial haplogroup has been reported to affect the clinical expression of Leber's hereditary optic neuropathy (LHON). The present study aimed to investigate the interaction between mutations and the haplogroup of mitochondrial DNA (mtDNA) in families. Two unrelated families with LHON were enrolled in the study, and clinical, genetic and molecular characterizations were determined in the affected and unaffected family members. Polymerase chain reaction direct sequencing was performed using 24 pairs of overlapping primers for whole mtDNA to screen for mutations and haplogroup. Bioinformatics analysis was performed to evaluate the pathogenic effect of these mtDNA mutations and the haplogroup. The G11778A mutation was identified in the two families. In addition, the members of family 2 exhibited the T14502C mutation and those in family 1 exhibited the T3394C and T14502C mutations, which were regarded as secondary mutations. The penetrance of visual loss in families 1 and 2 were 30.8 and 33.3%, respectively. In addition, the two families were found to be in the H2a2a1 haplogroup. In this limited sample size, it was demonstrated that the H2a2a1 haplogroup had a possible protective effect against LHON. Additional modifying factors, including environmental factors, lifestyle, estrogen levels and nuclear genes may also be important in LHON.

  9. Statistical analysis of simple repeats in the human genome

    Science.gov (United States)

    Piazza, F.; Liò, P.

    2005-03-01

    The human genome contains repetitive DNA at different level of sequence length, number and dispersion. Highly repetitive DNA is particularly rich in homo- and di-nucleotide repeats, while middle repetitive DNA is rich of families of interspersed, mobile elements hundreds of base pairs (bp) long, among which belong the Alu families. A link between homo- and di-polymeric tracts and mobile elements has been recently highlighted. In particular, the mobility of Alu repeats, which form 10% of the human genome, has been correlated with the length of poly(A) tracts located at one end of the Alu. These tracts have a rigid and non-bendable structure and have an inhibitory effect on nucleosomes, which normally compact the DNA. We performed a statistical analysis of the genome-wide distribution of lengths and inter-tract separations of poly(X) and poly(XY) tracts in the human genome. Our study shows that in humans the length distributions of these sequences reflect the dynamics of their expansion and DNA replication. By means of general tools from linguistics, we show that the latter play the role of highly-significant content-bearing terms in the DNA text. Furthermore, we find that such tracts are positioned in a non-random fashion, with an apparent periodicity of 150 bases. This allows us to extend the link between repetitive, highly mobile elements such as Alus and low-complexity words in human DNA. More precisely, we show that Alus are sources of poly(X) tracts, which in turn affect in a subtle way the combination and diversification of gene expression and the fixation of multigene families.

  10. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    Science.gov (United States)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  11. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    OpenAIRE

    Hideshi Yokoyama; Kazuhiko Yamasaki; Ikuo Matsui; Eriko Matsui

    2013-01-01

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large sub...

  12. A ranking index for quality assessment of forensic DNA profiles forensic DNA profiles

    Science.gov (United States)

    2010-01-01

    Background Assessment of DNA profile quality is vital in forensic DNA analysis, both in order to determine the evidentiary value of DNA results and to compare the performance of different DNA analysis protocols. Generally the quality assessment is performed through manual examination of the DNA profiles based on empirical knowledge, or by comparing the intensities (allelic peak heights) of the capillary electrophoresis electropherograms. Results We recently developed a ranking index for unbiased and quantitative quality assessment of forensic DNA profiles, the forensic DNA profile index (FI) (Hedman et al. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles, Biotechniques 47 (2009) 951-958). FI uses electropherogram data to combine the intensities of the allelic peaks with the balances within and between loci, using Principal Components Analysis. Here we present the construction of FI. We explain the mathematical and statistical methodologies used and present details about the applied data reduction method. Thereby we show how to adapt the ranking index for any Short Tandem Repeat-based forensic DNA typing system through validation against a manual grading scale and calibration against a specific set of DNA profiles. Conclusions The developed tool provides unbiased quality assessment of forensic DNA profiles. It can be applied for any DNA profiling system based on Short Tandem Repeat markers. Apart from crime related DNA analysis, FI can therefore be used as a quality tool in paternal or familial testing as well as in disaster victim identification. PMID:21062433

  13. A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients.

    Science.gov (United States)

    Morales, Fernando; Vásquez, Melissa; Santamaría, Carolina; Cuenca, Patricia; Corrales, Eyleen; Monckton, Darren G

    2016-04-01

    Somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 is age-dependent, tissue-specific and expansion-biased, contributing toward the tissue-specificity and progressive nature of the symptoms. Previously, using regression modelling of repeat instability we showed that variation in the rate of somatic expansion in blood DNA contributes toward variation in age of onset, directly implicating somatic expansion in the disease pathway. Here, we confirm these results using a larger more genetically homogenous Costa Rican DM1 cohort (p<0.001). Interestingly, we also provide evidence that supports subtle sex-dependent differences in repeat length-dependent age at onset and somatic mutational dynamics. Previously, we demonstrated that variation in the rate of somatic expansion was a heritable quantitative trait. Given the important role that DNA mismatch repair genes play in mediating expansions in mouse models, we tested for modifier gene effects with 13 DNA mismatch gene polymorphisms (one each in MSH2, PMS2, MSH6 and MLH1; and nine in MSH3). After correcting for allele length and age effects, we identified three polymorphisms in MSH3 that were associated with variation in somatic instability: Rs26279 (p=0.003); Rs1677658 (p=0.009); and Rs10168 (p=0.031). However, only the association with Rs26279 remained significant after multiple testing correction. Although we revealed a statistically significant association between Rs26279 and somatic instability, we did not detect an association with the age at onset. Individuals with the A/A genotype for Rs26279 tended to show a greater propensity to expand the CTG repeat than other genotypes. Interestingly, this SNP results in an amino acid change in the critical ATPase domain of MSH3 and is potentially functionally dimorphic. These data suggest that MSH3 is a key player in generating somatic variation in DM1 patients and further highlight MSH3 as a potential therapeutic target.

  14. TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat -1.

    Directory of Open Access Journals (Sweden)

    Erin L Doyle

    Full Text Available TAL effectors are re-targetable transcription factors used for tailored gene regulation and, as TAL effector-nuclease fusions (TALENs, for genome engineering. Their hallmark feature is a customizable central string of polymorphic amino acid repeats that interact one-to-one with individual DNA bases to specify the target. Sequences targeted by TAL effector repeats in nature are nearly all directly preceded by a thymine (T that is required for maximal activity, and target sites for custom TAL effector constructs have typically been selected with this constraint. Multiple crystal structures suggest that this requirement for T at base 0 is encoded by a tryptophan residue (W232 in a cryptic repeat N-terminal to the central repeats that exhibits energetically favorable van der Waals contacts with the T. We generated variants based on TAL effector PthXo1 with all single amino acid substitutions for W232. In a transcriptional activation assay, many substitutions altered or relaxed the specificity for T and a few were as active as wild type. Some showed higher activity. However, when replicated in a different TAL effector, the effects of the substitutions differed. Further, the effects differed when tested in the context of a TALEN in a DNA cleavage assay, and in a TAL effector-DNA binding assay. Substitution of the N-terminal region of the PthXo1 construct with that of one of the TAL effector-like proteins of Ralstonia solanacearum, which have arginine in place of the tryptophan, resulted in specificity for guanine as the 5' base but low activity, and several substitutions for the arginine, including tryptophan, destroyed activity altogether. Thus, the effects on specificity and activity generated by substitutions at the W232 (or equivalent position are complex and context dependent. Generating TAL effector scaffolds with high activity that robustly accommodate sites without a T at position 0 may require larger scale re-engineering.

  15. Kinetic characterization of exonuclease-deficient Staphylococcus aureus PolC, a C-family replicative DNA polymerase.

    Directory of Open Access Journals (Sweden)

    Indrajit Lahiri

    Full Text Available PolC is the C-family replicative polymerase in low G+C content Gram-positive bacteria. To date several structures of C-family polymerases have been reported, including a high resolution crystal structure of a ternary complex of PolC with DNA and incoming deoxynucleoside triphosphate (dNTP. However, kinetic information needed to understand the enzymatic mechanism of C-family polymerases is limited. For this study we have performed a detailed steady-state and pre-steady-state kinetic characterization of correct dNTP incorporation by PolC from the Gram-positive pathogen Staphylococcus aureus, using a construct lacking both the non-conserved N-terminal domain and the 3'-5' exonuclease domain (Sau-PolC-ΔNΔExo. We find that Sau-PolC-ΔNΔExo has a very fast catalytic rate (k(pol 330 s(-1 but also dissociates from DNA rapidly (k(off ∼150 s(-1, which explains the low processivity of PolC in the absence of sliding clamp processivity factor. Although Sau-PolC-ΔNΔExo follows the overall enzymatic pathway defined for other polymerases, some significant differences exist. The most striking feature is that the nucleotidyl transfer reaction for Sau-PolC-ΔNΔExo is reversible and is in equilibrium with dNTP binding. Simulation of the reaction pathway suggests that rate of pyrophosphate release, or a conformational change required for pyrophosphate release, is much slower than rate of bond formation. The significance of these findings is discussed in the context of previous data showing that binding of the β-clamp processivity factor stimulates the intrinsic nucleotide incorporation rate of the C-family polymerases, in addition to increasing processivity.

  16. Studies of the CAG repeat in the Machado-Joseph disease gene in Taiwan.

    Science.gov (United States)

    Hsieh, M; Tsai, H F; Lu, T M; Yang, C Y; Wu, H M; Li, S Y

    1997-08-01

    Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration characterized by cerebellar ataxia and pyramidal signs associated in varying degrees with a dystonic-rigid extrapyramidal syndrome or peripheral amyotrophy. Unstable CAG trinucleotide repeat expansion in the MJD gene on the long arm of chromosome 14 has been identified as the pathological mutation for MJD. While investigating the distribution of CAG repeat lengths of the MJD gene in Taiwan's population, we have identified 18 MJD-affected patients and 12 at-risk individuals in seven families. In addition, we have analyzed the range of CAG repeat lengths in 96 control individuals. The CAG repeat number ranged from 13 to 44 in the controls and 72-85 in the affected and at-risk individuals. Our results indicated that the CAG repeat number was inversely correlated with the age of onset. The differences in CAG repeat length between parent and child and between siblings are greater with paternal transmission than maternal transmission. Our data show a tendency towards the phenomenon of anticipation in the MJD families but do not support unidirectional expansion of CAG repeats during transmission. We also demonstrated that PCR amplification of the CAG repeats in the MJD gene from villous DNA was possible and might prove useful as a diagnostic tool for affected families in the future.

  17. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes

    Institute of Scientific and Technical Information of China (English)

    LIU Nian; ZHU Yong; WEI ZongXian; CHEN Jie; WANG QingBiao; JIAN ShuGuang; ZHOU DangWei; SHI Jing; YANG Yong; ZHONG Yang

    2009-01-01

    Araucariaceae is one of the most primitive families of the living conifers,and its phylogenetic relationships and divergence times are critically important issues.The DNA sequences of 8 genes,i.e.,nuclear ribosomal 18S and 26S rRNA,chloroplast 16S rRNA,rbcL,mafK and rps4,and mitochondrial coxl and atp1,obtained from this study and GenBank were used for constructing the molecular phylogenetic trees of Araucariaceae,indicating that the phylogenetic relationships among the three genera of this family should be ((Wollemia,Agathis),Araucaria).On the basis of the fossil calibrations of Wollemia and the two tribes Araucaria and Eutacta of the genus Araucaria,the divergence time of Araucariaceae was estimated to be (308±53) million years ago,that is,the origin of the family was in the Late Carboniferous rather than Triassic as a traditional view.With the same gene combination,the divergence times of the genera Araucaria and Agathis were (246 ±47) and (61±5) Ma,respectively.Statistical analyses on the phylogenetic trees generated by using different genes and comparisons of thedivergence times estimated by using those genes suggested that the chloroplast mafK and rps4 genes are most suitable for investigating the phylogenetic relationships and divergence times of the family Araucariaceae.

  18. DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition.

    Science.gov (United States)

    Ollier, Marie; Radosevic-Robin, Nina; Kwiatkowski, Fabrice; Ponelle, Flora; Viala, Sandrine; Privat, Maud; Uhrhammer, Nancy; Bernard-Gallon, Dominique; Penault-Llorca, Frédérique; Bignon, Yves-Jean; Bidet, Yannick

    2015-01-01

    Among breast cancers, 10 to 15% of cases would be due to hereditary risk. In these familial cases, mutations in BRCA1 and BRCA2 are found in only 15% to 20%, meaning that new susceptibility genes remain to be found. Triple-negative breast cancers represent 15% of all breast cancers, and are generally aggressive tumours without targeted therapies available. Our hypothesis is that some patients with triple negative breast cancer could share a genetic susceptibility different from other types of breast cancers. We screened 36 candidate genes, using pyrosequencing, in all the 50 triple negative breast cancer patients with familial history of cancer but no BRCA1 or BRCA2 mutation of a population of 3000 families who had consulted for a familial breast cancer between 2005 and 2013. Any mutations were also sequenced in available relatives of cases. Protein expression and loss of heterozygosity were explored in tumours. Seven deleterious mutations in 6 different genes (RAD51D, MRE11A, CHEK2, MLH1, MSH6, PALB2) were observed in one patient each, except the RAD51D mutation found in two cases. Loss of heterozygosity in the tumour was found for 2 of the 7 mutations. Protein expression was absent in tumour tissue for 5 mutations. Taking into consideration a specific subtype of tumour has revealed susceptibility genes, most of them in the homologous recombination DNA repair pathway. This may provide new possibilities for targeted therapies, along with better screening and care of patients.

  19. Deployment Repeatability

    Science.gov (United States)

    2016-04-01

    controlled to great precision, but in a Cubesat , there may be no attitude determination at all. Such a Cubesat might treat sun angle and tumbling rates as...could be sensitive to small differences in motor controller timing. In these cases, the analyst might choose to model the entire deployment path, with...knowledge of the material damage model or motor controller timing precision. On the other hand, if many repeated and environmentally representative

  20. Structure-function analysis of ribonucleotide bypass by B family DNA replicases

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Anders R.; Murray, Michael S.; Passer, Andrew R.; Pedersen, Lars C.; Kunkel, Thomas A. [NIH

    2013-11-01

    Ribonucleotides are frequently incorporated into DNA during replication, they are normally removed, and failure to remove them results in replication stress. This stress correlates with DNA polymerase (Pol) stalling during bypass of ribonucleotides in DNA templates. Here we demonstrate that stalling by yeast replicative Pols δ and ε increases as the number of consecutive template ribonucleotides increases from one to four. The homologous bacteriophage RB69 Pol also stalls during ribonucleotide bypass, with a pattern most similar to that of Pol ε. Crystal structures of an exonuclease-deficient variant of RB69 Pol corresponding to multiple steps in single ribonucleotide bypass reveal that increased stalling is associated with displacement of Tyr391 and an unpreferred C2´-endo conformation for the ribose. Even less efficient bypass of two consecutive ribonucleotides in DNA correlates with similar movements of Tyr391 and displacement of one of the ribonucleotides along with the primer-strand DNA backbone. These structure–function studies have implications for cellular signaling by ribonucleotides, and they may be relevant to replication stress in cells defective in ribonucleotide excision repair, including humans suffering from autoimmune disease associated with RNase H2 defects.

  1. The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family.

    Science.gov (United States)

    Hunt, Alison C; Servín-González, Luis; Kelemen, Gabriella H; Buttner, Mark J

    2005-01-01

    The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-negative bacteria. Constructed DeltabldC mutants were defective in differentiation and antibiotic production. They failed to form an aerial mycelium on minimal medium and showed severe delays in aerial mycelium formation on rich medium. In addition, they failed to produce the polyketide antibiotic actinorhodin, and bldC was shown to be required for normal and sustained transcription of the pathway-specific activator gene actII-orf4. Although DeltabldC mutants produced the tripyrrole antibiotic undecylprodigiosin, transcripts of the pathway-specific activator gene (redD) were reduced to almost undetectable levels after 48 h in the bldC mutant, in contrast to the bldC+ parent strain in which redD transcription continued during aerial mycelium formation and sporulation. This suggests that bldC may be required for maintenance of redD transcription during differentiation. bldC is expressed from a single promoter. S1 nuclease protection assays and immunoblotting showed that bldC is constitutively expressed and that transcription of bldC does not depend on any of the other known bld genes. The bldC18 mutation that originally defined the locus causes a Y49C substitution that results in instability of the protein.

  2. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family

    DEFF Research Database (Denmark)

    Franch, Oskar; Iacovelli, Federico; Falconi, Mattia

    2016-01-01

    and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724–9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin...... forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening–closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation...

  3. Family structure and breakfast consumption of 11-15 year old boys and girls in Scotland, 1994-2010: a repeated cross-sectional study

    Directory of Open Access Journals (Sweden)

    Levin Kate A

    2012-03-01

    Full Text Available Abstract Background The benefits of breakfast during childhood and adolescence have been reported previously though few studies have considered family structure inequalities in breakfast consumption. The proportion of young people living in non-traditional family types has increased in recent years, strengthening the need to describe and monitor the impact of the changing family unit on adolescent breakfast consumption. This study aimed to describe changes in daily breakfast consumption among adolescents in Scotland between 1994 and 2010, while also considering family structure inequalities, and the degree to which these have changed over time. Methods Data from the 1994, 1998, 2002, 2006 and 2010 Scottish Health Behaviour in School-aged Children (HBSC surveys were analysed using logistic multilevel regression models for binary outcome variable daily breakfast consumption. Results Daily breakfast consumption among adolescents increased between 1994 and 2010, although there were differences by age and sex. In fact those aged over 14.5 years saw decreases in breakfast consumption, and girls saw significantly larger increases than boys. Daily breakfast consumption was more prevalent among adolescents from 'both parent' families, with lowest prevalence among those from single parent families. Trends in daily breakfast consumption between 1994 and 2010 also varied by family structure. While prevalence of daily breakfast consumption increased among those living with 'both parents', the largest proportion of the population, prevalence decreased over time among adolescents of single parent families, and particularly among those living with their father. Conclusions Family structure inequalities in daily breakfast consumption increased between 1994 and 2010, while breakfast consumption across the population as a whole increased. As the proportion of young people living in an alternative family structure continues to grow it is important to understand why

  4. The Y-Family DNA Polymerase Dpo4 Uses a Template Slippage Mechanism To Create Single-Base Deletions

    Energy Technology Data Exchange (ETDEWEB)

    Y Wu; R Wilson; J Pata

    2011-12-31

    The Y-family polymerases help cells tolerate DNA damage by performing translesion synthesis, yet they also can be highly error prone. One distinctive feature of the DinB class of Y-family polymerases is that they make single-base deletion errors at high frequencies in repetitive sequences, especially those that contain two or more identical pyrimidines with a 5? flanking guanosine. Intriguingly, different deletion mechanisms have been proposed, even for two archaeal DinB polymerases that share 54% sequence identity and originate from two strains of Sulfolobus. To reconcile these apparent differences, we have characterized Dpo4 from Sulfolobus solfataricus using the same biochemical and crystallographic approaches that we have used previously to characterize Dbh from Sulfolobus acidocaldarius. In contrast to previous suggestions that Dpo4 uses a deoxynucleoside triphosphate (dNTP)-stabilized misalignment mechanism when creating single-base deletions, we find that Dpo4 predominantly uses a template slippage deletion mechanism when replicating repetitive DNA sequences, as was previously shown for Dbh. Dpo4 stabilizes the skipped template base in an extrahelical conformation between the polymerase and the little-finger domains of the enzyme. This contrasts with Dbh, in which the extrahelical base is stabilized against the surface of the little-finger domain alone. Thus, despite sharing a common deletion mechanism, these closely related polymerases use different contacts with the substrate to accomplish the same result.

  5. Paternal inheritance of mitochondrial DNA in the sheep (Ovine aries)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Paternal inheritance of mitochondria DNA in sheep was discovered by examination of 152 sheep from 38 hybrid families for mtDNA D-loop polymorphisms using PCR-RFLP, amplification of repeated sequence somain, and PCR-SSCP of the D-loop 5′ end region of a 253 bp fragment. Our findings have provided the first evidence of paternal inheritance of mtDNA in sheep and possible mechanisms of paternal inheritance were discussed.

  6. Decreased DNA repair capacity in familial, but not in sporadic Alzheimer's disease

    NARCIS (Netherlands)

    M.E.T.I. Boerrigter; C.M. van Duijn (Cock); E. Mullaart; P. Eikelenboom (Piet); C.M.A. van der Togt; D.L. Knook; J. Vijg (Jan); A. Hofman (Albert)

    1991-01-01

    textabstractUsing the alkaline filter elution technique we determined the induction and disappearance of DNA single-strand breaks (SSB) in freshly isolated peripheral blood lymphocytes (PBL) from 43 Alzheimer's disease (AD) patients and 48 normal, healthy age- and sex-matched control subjects

  7. How a Small Family of Yeast IDPs Control Complicated Processes Related to DNA Replication

    DEFF Research Database (Denmark)

    Marabini, Riccardo

    Ribonucleotide reductase (RNR) and proliferating cell nuclear antigen (PCNA) are two essential proteins involved in DNA replication. RNR catalyzes the last and rate limiting step of the deoxyribonucleotide biosynthetic pathway. The dysregulation of RNR has been related to higher mutation rate...

  8. Identification of BC005512 as a DNA damage responsive murine endogenous retrovirus of GLN family involved in cell growth regulation.

    Directory of Open Access Journals (Sweden)

    Yuanfeng Wu

    Full Text Available Genotoxicity assessment is of great significance in drug safety evaluation, and microarray is a useful tool widely used to identify genotoxic stress responsive genes. In the present work, by using oligonucleotide microarray in an in vivo model, we identified an unknown gene BC005512 (abbreviated as BC, official full name: cDNA sequence BC005512, whose expression in mouse liver was specifically induced by seven well-known genotoxins (GTXs, but not by non-genotoxins (NGTXs. Bioinformatics revealed that BC was a member of the GLN family of murine endogenous retrovirus (ERV. However, the relationship to genotoxicity and the cellular function of GLN are largely unknown. Using NIH/3T3 cells as an in vitro model system and quantitative real-time PCR, BC expression was specifically induced by another seven GTXs, covering diverse genotoxicity mechanisms. Additionally, dose-response and linear regression analysis showed that expression level of BC in NIH/3T3 cells strongly correlated with DNA damage, measured using the alkaline comet assay,. While in p53 deficient L5178Y cells, GTXs could not induce BC expression. Further functional studies using RNA interference revealed that down-regulation of BC expression induced G1/S phase arrest, inhibited cell proliferation and thus suppressed cell growth in NIH/3T3 cells. Together, our results provide the first evidence that BC005512, a member from GLN family of murine ERV, was responsive to DNA damage and involved in cell growth regulation. These findings could be of great value in genotoxicity predictions and contribute to a deeper understanding of GLN biological functions.

  9. The 28S-18S rDNA intergenic spacer from Crithidia fasciculata: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursor.

    Science.gov (United States)

    Schnare, M N; Collings, J C; Spencer, D F; Gray, M W

    2000-09-15

    In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from approximately 11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an approximately 55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A' pre-rRNA processing sites within the 5' external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5' ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C. fasciculata and Trypanosoma brucei involves 3'-terminal addition of three A residues that are not present in the corresponding DNA sequences.

  10. Severe and rapidly progressing cognitive phenotype in a SCA17-family with only marginally expanded CAG/CAA repeats in the TATA-box binding protein gene: A case report

    Directory of Open Access Journals (Sweden)

    Nielsen Troels

    2012-08-01

    Full Text Available Abstract Background The autosomal dominant spinocerebellar ataxias (SCAs confine a group of rare and heterogeneous disorders, which present with progressive ataxia and numerous other features e.g. peripheral neuropathy, macular degeneration and cognitive impairment, and a subset of these disorders is caused by CAG-repeat expansions in their respective genes. The diagnosing of the SCAs is often difficult due to the phenotypic overlap among several of the subtypes and with other neurodegenerative disorders e.g. Huntington’s disease. Case presentation We report a family in which the proband had rapidly progressing cognitive decline and only subtle cerebellar symptoms from age 42. Sequencing of the TATA-box binding protein gene revealed a modest elongation of the CAG/CAA-repeat of only two repeats above the non-pathogenic threshold of 41, confirming a diagnosis of SCA17. Normally, repeats within this range show reduced penetrance and result in a milder disease course with slower progression and later age of onset. Thus, this case presented with an unusual phenotype. Conclusions The current case highlights the diagnostic challenge of neurodegenerative disorders and the need for a thorough clinical and paraclinical examination of patients presenting with rapid cognitive decline to make a precise diagnosis on which further genetic counseling and initiation of treatment modalities can be based.

  11. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells.

    Science.gov (United States)

    Shatz, Maria; Menendez, Daniel; Resnick, Michael A

    2012-08-15

    The transcription factor p53 regulates genes associated with a wide range of functions, including the Toll-like receptor (TLR) set of innate immunity genes, suggesting that p53 also modulates the human immune response. The TLR family comprises membrane glycoproteins that recognize pathogen-associated molecular patterns (PAMP) and mediate innate immune responses, and TLR agonists are being used as adjuvants in cancer treatments. Here, we show that doxorubicin, 5-fluorouracil, and UV and ionizing radiation elicit changes in TLR expression that are cell line- and damage-specific. Specifically, treatment-induced expression changes led to increased downstream cytokine expression in response to ligand stimulation. The effect of DNA stressors on TLR expression was mainly mediated by p53, and several p53 cancer-associated mutants dramatically altered the pattern of TLR gene expression. In all cell lines tested, TLR3 induction was p53-dependent, whereas induction of TLR9, the most stress-responsive family member, was less dependent on status of p53. In addition, each of the 10 members of the innate immune TLR gene family tested was differentially inducible. Our findings therefore show that the matrix of p53 status, chromosome stress, and responsiveness of individual TLRs should be considered in TLR-based cancer therapies.

  12. Genome-wide analysis of ets-family DNA-binding in vitro and in vivo

    National Research Council Canada - National Science Library

    Wei, G.H; Badis, G; Berger, M.F; Kivioja, T; Palin, K; Enge, M; Bonke, M; Jolma, A; Varjosalo, M; Gehrke, A.R; Yan, J.A; Talukder, S; Turunen, M; Taipale, M; Stunnenberg, H.G; Ukkonen, E; Hughes, T.R; Bulyk, M.L; Taipale, J

    2010-01-01

    ... these questions, we have in this work concentrated on the study of the large ETS family of TFs, whose members have diverse functions and activities in physiology and oncogenesis ( Bartel , 2000 ; Sharrocks, 2001 ; Kumar‐Sinha , 2008 ). The first ETS factor identified was ETS1, which was discovered as a homolog of the avian leukaemia virus E26 oncoge...

  13. Phylogenetic relationships among the family Ommastrephidae (Mollusca: Cephalopoda) inferred from two mitochondrial DNA gene sequences.

    Science.gov (United States)

    Wakabayashi, T; Suzuki, N; Sakai, M; Ichii, T; Chow, S

    2012-09-01

    Squids of the family Ommastrephidae are distributed worldwide, and the family includes many species of commercial importance. To investigate phylogenetic relationships among squid species of the family Ommastrephidae, partial nucleotide sequences of two mitochondrial gene loci (cytochrome c oxidase subunit I [1277bp] and 16S rRNA [443bp]) of 15 ommastrephid species and two outgroup species from the families Loliginidae and Enoploteuthidae were determined and used to construct parsimony and distance based phylogenetic trees. The molecular data provided several new phylogenetic inferences. The monophyletic status of three subfamilies (Illicinae, Todarodinae and Ommastrephinae) was well supported, although phylogenetic relationships between the subfamilies were not resolved. Inclusion of a problematic species, Ornithoteuthis volatilis, to Todarodinae was indicated. Within Todarodinae, the Japanese common squid Todarodes pacificus was observed to have much closer relationship to the species of the genus Nototodarus than to its congener (Todarodes filippovae). These results indicate that re-evaluation of several morphological key characters for ommastrephid taxonomy may be necessary.

  14. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family

    Science.gov (United States)

    Franch, Oskar; Iacovelli, Federico; Falconi, Mattia; Juul, Sissel; Ottaviani, Alessio; Benvenuti, Claudia; Biocca, Silvia; Ho, Yi-Ping; Knudsen, Birgitta R.; Desideri, Alessandro

    2016-07-01

    In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands.In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous

  15. DNA

    Science.gov (United States)

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  16. The tumorigenic diversity of the three PLAG family members is associated with different DNA binding capacities.

    Science.gov (United States)

    Hensen, Karen; Van Valckenborgh, Isabelle C C; Kas, Koen; Van de Ven, Wim J M; Voz, Marianne L

    2002-03-01

    Pleomorphic adenoma gene (PLAG) 1, the main translocation target in pleomorphic adenomas of the salivary glands, is a member of a new subfamily of zinc finger proteins comprising the tumor suppressor candidate PLAG-like1 (also called ZAC1 or lost on transformation 1) and PLAGL2. In this report, we show that NIH3T3 cells overexpressing PLAG1 or PLAGL2 display the typical markers of neoplastic transformation: (a) the cells lose cell-cell contact inhibition; (b) show anchorage-independent growth; and (c) are able to induce tumors in nude mice. In contrast, PLAGL1 has been shown to prevent the proliferation of tumor cells by inducing cell cycle arrest and apoptosis. This difference in function is also reflected in their DNA binding, as we show here that the three PLAG proteins, although highly homologous in their DNA-binding domain, bind different DNA sequences in a distinct fashion. Interestingly, the PLAG1- and PLAGL2-induced transformation is accompanied by a drastic up-regulation of insulin-like growth factor-II, which we prove is a target of PLAG1 and PLAGL2. This strongly suggests that the oncogenic capacity of PLAG1 and PLAGL2 is mediated at least partly by activating the insulin-like growth factor-II mitogenic pathway.

  17. Characterization of a Y-Family DNA Polymerase eta from the Eukaryotic Thermophile Alvinella pompejana

    Science.gov (United States)

    Kashiwagi, Sayo; Kuraoka, Isao; Fujiwara, Yoshie; Hitomi, Kenichi; Cheng, Quen J.; Fuss, Jill O.; Shin, David S.; Masutani, Chikahide; Tainer, John A.; Hanaoka, Fumio; Iwai, Shigenori

    2010-01-01

    Human DNA polymerase η (HsPolη) plays an important role in translesion synthesis (TLS), which allows for replication past DNA damage such as UV-induced cis-syn cyclobutane pyrimidine dimers (CPDs). Here, we characterized ApPolη from the thermophilic worm Alvinella pompejana, which inhabits deep-sea hydrothermal vent chimneys. ApPolη shares sequence homology with HsPolη and contains domains for binding ubiquitin and proliferating cell nuclear antigen. Sun-induced UV does not penetrate Alvinella's environment; however, this novel DNA polymerase catalyzed efficient and accurate TLS past CPD, as well as 7,8-dihydro-8-oxoguanine and isomers of thymine glycol induced by reactive oxygen species. In addition, we found that ApPolη is more thermostable than HsPolη, as expected from its habitat temperature. Moreover, the activity of this enzyme was retained in the presence of a higher concentration of organic solvents. Therefore, ApPolη provides a robust, human-like Polη that is more active after exposure to high temperatures and organic solvents. PMID:20936172

  18. The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C

    2015-01-01

    Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes.

  19. CAG repeat expansions in bipolar and unipolar disorders

    Energy Technology Data Exchange (ETDEWEB)

    Oruc, L.; Verheyen, G.R.; Raeymaekers, P.; Van Broeckhoven, C. [Univ. of Antwerp (Belgium)] [and others

    1997-03-01

    Family, twin, and adoption studies consistently have indicated that the familial aggregation of bipolar (BP) disorder and unipolar recurrent major depression (UPR) is accounted for largely by genetic factors. However, the mode of inheritance is complex. One of the possible explanations could be that a gene with variable penetrance and variable expression is involved. Recently there have been reports on a new class of genetic diseases caused by an abnormal trinucleotide-repeat expansion (TRE). In a number of genetic disorders, these dynamic mutations were proved to be the biological basis for the clinically observed phenomenon of anticipation. DNA consisting of repeated triplets of nucleotides becomes unstable and increases in size over generations within families, giving rise to an increased severity and/or an earlier onset of the disorder. It has been recognized for a long time that anticipation occurs in multiplex families transmitting mental illness. More recent studies also suggest that both BP disorder and UPR show features that are compatible with anticipation. Although the findings of anticipation in BP disorders and in UPR must be interpreted with caution because of the possible presence of numerous ascertainment biases, they support the hypothesis that pathological TREs are implicated in the transmission of these disorders. TRE combined with variable penetrance of expression could explain the complex transmission pattern observed in BP disorder. In view of this, the recent reports of an association between CAG-repeat length and BP disorder in a Belgian, Swedish, and British population are promising. 14 refs., 1 fig., 1 tab.

  20. Expanded complexity of unstable repeat diseases

    OpenAIRE

    Polak, Urszula; McIvor, Elizabeth; Dent, Sharon Y.R.; Wells, Robert D.; Napierala, Marek.

    2012-01-01

    Unstable Repeat Diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly expansion, of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequen...

  1. Chloroplast DNA inversions and the origin of the grass family (Poaceae).

    OpenAIRE

    Doyle, J.J.; Davis, J I; Soreng, R J; Garvin, D; Anderson, M J

    1992-01-01

    The phylogenetic affinities of the grass family (Poaceae) have long been debated. The chloroplast genomes of at least some grasses have been known to possess three inversions relative to the typical gene arrangement found in most flowering plants. We have surveyed for the presence of these inversions in grasses and other monocots by polymerase chain reaction amplification with primers constructed from sequences flanking the inversion end points. Amplification phenotypes diagnostic for the lar...

  2. Genomic DNA copy-number alterations of the let-7 family in human cancers.

    Directory of Open Access Journals (Sweden)

    Yanling Wang

    Full Text Available In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e, breast cancer (let-7a-2, and ovarian cancer (let-7a-3/let-7b. For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer.

  3. Triage of HR-HPV positive women with minor cytological abnormalities: a comparison of mRNA testing, HPV DNA testing, and repeat cytology using a 4-year follow-up of a population-based study.

    Directory of Open Access Journals (Sweden)

    Maria Persson

    Full Text Available OBJECTIVE: Expression of the viral E6/E7 oncogenes of high-risk human papillomaviruses (HR-HPV is necessary for malignant conversion and maintenance in cervical tissue. In order to determine whether HR-HPV E6/E7 mRNA testing more effectively predicts precancerous lesions and invasive cervical cancer than HR-HPV DNA testing, we aimed to compare triage using HR-HPV E6/E7 mRNA testing by APTIMA HPV Assay (APTIMA to HPV16 DNA testing, HPV16/18 DNA testing, and repeat cytology. METHODS: Liquid-based (PreservCyt cell samples were obtained from HR-HPV-positive women diagnosed with atypical squamous cells of undetermined significance (ASCUS and low-grade squamous intraepithelial lesions (LSIL within the framework of the population-based cervical cancer screening program in Stockholm, Sweden. Samples were tested for HR-HPV E6/E7 mRNA by APTIMA (Gene-Probe Inc., San Diego, CA, USA. Women were followed up for 4 years after the index cytology via medical and laboratory records, and the Stockholm Oncology Center. RESULTS: Nine of 25 (36% women in the ASCUS group, and 64 of 180 (36% women in the LSIL group developed cervical intraepithelial neoplasia (CIN grade 2 or worse during 4 years of follow-up. 162 (74% women were APTIMA-positive, and APTIMA had the highest sensitivity to predict CIN2 or worse and CIN3 or worse in the ASCUS (77.8% and 100% and LSIL (78.1 and 75.8% groups, although specificity was insufficient (<50%. HPV16 DNA testing and repeat cytology were more specific than APTIMA. CONCLUSION: The results of this population-based study with comprehensive follow-up support the use of APTIMA as a triage test for women with ASCUS. More focused investigation is required for women with LSIL.

  4. Assembly of supramolecular DNA complexes containing both G-quadruplexes and i-motifs by enhancing the G-repeat-bearing capacity of i-motifs

    Science.gov (United States)

    Cao, Yanwei; Gao, Shang; Yan, Yuting; Bruist, Michael F.; Wang, Bing; Guo, Xinhua

    2017-01-01

    The single-step assembly of supramolecular complexes containing both i-motifs and G-quadruplexes (G4s) is demonstrated. This can be achieved because the formation of four-stranded i-motifs appears to be little affected by certain terminal residues: a five-cytosine tetrameric i-motif can bear ten-base flanking residues. However, things become complex when different lengths of guanine-repeats are added at the 3′ or 5′ ends of the cytosine-repeats. Here, a series of oligomers d(XGiXC5X) and d(XC5XGiX) (X = A, T or none; i < 5) are designed to study the impact of G-repeats on the formation of tetrameric i-motifs. Our data demonstrate that tetramolecular i-motif structure can tolerate specific flanking G-repeats. Assemblies of these oligonucleotides are polymorphic, but may be controlled by solution pH and counter ion species. Importantly, we find that the sequences d(TGiAC5) can form the tetrameric i-motif in large quantities. This leads to the design of two oligonucleotides d(TG4AC7) and d(TGBrGGBrGAC7) that self-assemble to form quadruplex supramolecules under certain conditions. d(TG4AC7) forms supramolecules under acidic conditions in the presence of K+ that are mainly V-shaped or ring-like containing parallel G4s and antiparallel i-motifs. d(TGBrGGBrGAC7) forms long linear quadruplex wires under acidic conditions in the presence of Na+ that consist of both antiparallel G4s and i-motifs. PMID:27899568

  5. High-Resolution DNA Melt Curve Analysis of the Clustered, Regularly Interspaced Short-Palindromic-Repeat Locus of Campylobacter jejuni▿ †

    OpenAIRE

    Price, Erin P; Smith, Helen; Huygens, Flavia; Giffard, Philip M.

    2007-01-01

    A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short ...

  6. PTSD and DNA Methylation in Select Immune Function Gene Promoter Regions: A Repeated Measures Case-control Study of U.S. Military Service Members

    Science.gov (United States)

    2013-06-24

    other relevant exposures which may influ- ence DNA methylation, such as dietary factors (folate, vitamin B12 intake) (Fenech, 2001; Piyathilake and...of folic acid and Vitamin B12 in genomic stability of human cells. Mutat. Res. 475, 57–67. doi:10.1016/S0027- 5107(01)00069-0 Feng, J., and Fan, G...42, 746–753. Oliveira, N. F., Damm, G. R., Andia, D. C., Salmon , C., Nociti, F. H. Jr., Line, S. R., et al. (2009). DNA methylation status of the

  7. DNA variation in myoMIRs of the 1, 133, and 208 families in hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ana I. Corao

    2011-08-01

    Full Text Available MicroRNAs (miRNAs are small RNAs that bind to mRNAs and regulate gene expression. MyoMirs are miRNAs implicated in cardiogenesis. Some MyoMirs have been found deregulated in hearts from patients with left ventricular hypertrophy (LVH. DNA variants at these miRNAs could contribute to the risk of developing hypertrophic cardiomyopathy (HCM. To test this hypothesis we used single strand conformation analysis and direct sequencing to search for DNA variants in the mir-208a, miR-208b, miR-133a-1, miR-133a-2, miR-133b, miR-1-1, and miR-1-2 genes in patients with HCM (n=245, LVH secondary to hypertension (n=120, and healthy controls (n=250. We found several nucleotide variants. Genotyping of patients and healthy controls showed significantly associations between a 133a-1 polymorphism and HCM and a 133b polymorphism and hypertensive- LVH. We concluded that rare variants in these mature miRNAs would be rarely found among HCM patients, but miR-133a-1 and 133b polymorphisms could contribute to the risk of developing cardiac hypertrophy.

  8. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA.

    Science.gov (United States)

    Waits, L P; Sullivan, J; O'Brien, S J; Ward, R H

    1999-10-01

    The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species.

  9. The future of forensic DNA analysis

    Science.gov (United States)

    Butler, John M.

    2015-01-01

    The author's thoughts and opinions on where the field of forensic DNA testing is headed for the next decade are provided in the context of where the field has come over the past 30 years. Similar to the Olympic motto of ‘faster, higher, stronger’, forensic DNA protocols can be expected to become more rapid and sensitive and provide stronger investigative potential. New short tandem repeat (STR) loci have expanded the core set of genetic markers used for human identification in Europe and the USA. Rapid DNA testing is on the verge of enabling new applications. Next-generation sequencing has the potential to provide greater depth of coverage for information on STR alleles. Familial DNA searching has expanded capabilities of DNA databases in parts of the world where it is allowed. Challenges and opportunities that will impact the future of forensic DNA are explored including the need for education and training to improve interpretation of complex DNA profiles. PMID:26101278

  10. Recommendations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on quality control of autosomal Short Tandem Repeat allele frequency databasing (STRidER)

    DEFF Research Database (Denmark)

    Bodner, Martin; Bastisch, Ingo; Butler, John M.

    2016-01-01

    for mitochondrial mtDNA, and YHRD for Y-chromosomal loci) that centralized quality control and data curation is essential to minimize error. The concepts employed for quality control involve software-aided likelihood-of-genotype, phylogenetic, and population genetic checks that allow the researchers to compare...

  11. The cDNA sequence for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain) reveals a multidomain protein with internal repeats

    DEFF Research Database (Denmark)

    Sarin, C T; Tack, B F; Kristensen, Torsten;

    1986-01-01

    We have isolated and sequenced a full-length cDNA clone for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain). This sequence predicts a 339 amino acid (Mr 38,493) protein containing an N-terminal region of 20 amino acids, known to interact with a 10 kd protein (light chain), and...

  12. Chloroplast DNA phylogeography reveals repeated range expansion in a widespread aquatic herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and adjacent areas.

    Directory of Open Access Journals (Sweden)

    Jin-Ming Chen

    Full Text Available BACKGROUND: The Qinghai-Tibetan Plateau (QTP is one of the most extensive habitats for alpine plants in the world. Climatic oscillations during the Quaternary ice age had a dramatic effect on species ranges on the QTP and the adjacent areas. However, how the distribution ranges of aquatic plant species shifted on the QTP in response to Quaternary climatic changes remains almost unknown. METHODOLOGY AND PRINCIPAL FINDINGS: We studied the phylogeography and demographic history of the widespread aquatic herb Hippuris vulgaris from the QTP and adjacent areas. Our sampling included 385 individuals from 47 natural populations of H. vulgaris. Using sequences from four chloroplast DNA (cpDNA non-coding regions, we distinguished eight different cpDNA haplotypes. From the cpDNA variation in H. vulgaris, we found a very high level of population differentiation (G ST = 0.819 but the phylogeographical structure remained obscure (N ST = 0.853>G ST = 0.819, P>0.05. Phylogenetic analyses revealed two main cpDNA haplotype lineages. The split between these two haplotype groups can be dated back to the mid-to-late Pleistocene (ca. 0.480 Myr. Mismatch distribution analyses showed that each of these had experienced a recent range expansion. These two expansions (ca. 0.12 and 0.17 Myr might have begun from the different refugees before the Last Glacial Maximum (LGM. CONCLUSIONS/SIGNIFICANCE: This study initiates a research on the phylogeography of aquatic herbs in the QTP and for the first time sheds light on the response of an alpine aquatic seed plant species in the QTP to Quaternary climate oscillations.

  13. Illegitimacy and sibship assignments in oil palm (Elaeis guineensis Jacq.) half-sib families using single locus DNA microsatellite markers.

    Science.gov (United States)

    Hama-Ali, Emad Omer; Alwee, Sharifah Shahrul Rabiah Syed; Tan, Soon Guan; Panandam, Jothi Malar; Ling, Ho Chai; Namasivayam, Parameswari; Peng, Hoh Boon

    2015-05-01

    Oil palm breeding has been progressing very well in Southeast Asia, especially in Malaysia and Indonesia. Despite this progress, there are still problems due to the difficulty of controlled crossing in oil palm. Contaminated/illegitimate progeny has appeared in some breeding programs; late and failure of detection by the traditional method causes a waste of time and labor. The use of molecular markers improves the integrity of breeding programs in perennial crops such as oil palm. Four half-sib families with a total of 200 progeny were used in this study. Thirty polymorphic single locus DNA microsatellites markers were typed to identify the illegitimate individuals and to obtain the correct parental and progeny assignments by using the CERVUS and COLONY programs. Three illegitimate palms (1.5%) were found, and 16 loci proved to be sufficient for sibship assignments without parental genotypes by using the COLONY program. The pairwise-likelihood score (PLS) method was better for half-sib family assignments than the full likelihood (FL) method.

  14. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas.

    Science.gov (United States)

    Dong, Chen; Hu, Huigang; Xie, Jianghui

    2016-12-01

    DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.

  15. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance.

    Science.gov (United States)

    Schermerhorn, Kelly M; Gardner, Andrew F

    2015-09-04

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼ 2.5 s(-1)) and especially tight nucleotide binding (Kd (dNTP) ∼ 1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3'-5' exonuclease hydrolysis activity in the presence of Mg(2+) and Mn(2+). Interestingly, substituting Mn(2+) for Mg(2+) accelerated hydrolysis rates > 40-fold (kexo ≥ 110 s(-1) versus ≥ 2.5 s(-1)). Preference for Mn(2+) over Mg(2+) in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance*

    Science.gov (United States)

    Schermerhorn, Kelly M.; Gardner, Andrew F.

    2015-01-01

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. PMID:26160179

  17. Local repeat sequence organization of an intergenic spacer in the chloroplast genome of Chlamydomonas reinhardtii leads to DNA expansion and sequence scrambling: a complex mode of “copy-choice replication”?

    Indian Academy of Sciences (India)

    Mahendra D Wagle; Subhojit Sen; Basuthkar J Rao

    2001-12-01

    Parent-specific, randomly amplified polymorphic DNA (RAPD) markers were obtained from total genomic DNA of Chlamydomonas reinhardtii. Such parent-specific RAPD bands (genomic fingerprints) segregated uniparentally (through mt+) in a cross between a pair of polymorphic interfertile strains of Chlamydomonas (C. reinhardtii and C. minnesotti), suggesting that they originated from the chloroplast genome. Southern analysis mapped the RAPD-markers to the chloroplast genome. One of the RAPD-markers, ``P2” (1.6 kb) was cloned, sequenced and was fine mapped to the 3 kb region encompassing 3′ end of 23S, full 5S and intergenic region between 5S and psbA. This region seems divergent enough between the two parents, such that a specific PCR designed for a parental specific chloroplast sequence within this region, amplified a marker in that parent only and not in the other, indicating the utility of RAPD-scan for locating the genomic regions of sequence divergence. Remarkably, the RAPD-product, ``P2” seems to have originated from a PCR-amplification of a much smaller (about 600 bp), but highly repeat-rich (direct and inverted) domain of the 3 kb region in a manner that yielded no linear sequence alignment with its own template sequence. The amplification yielded the same uniquely ``sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a ``unique” new sequence, had lost the repetitive organization of the template genome where it had originated from and perhaps represented a ``complex path” of copy-choice replication.

  18. Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294

    Directory of Open Access Journals (Sweden)

    Spengler Ulrich

    2005-11-01

    Full Text Available Abstract Background Red wine (RW is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. Methods Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB were determined by single cell gel electrophoresis (Comet Assay in untreated cells and after induction of oxidative stress ex vivo with H2O2 (300 μM, 20 min. Results Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H2O2 induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H2O2 induced SB. Conclusion The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects.

  19. In vitro nucleosome positioning features of DNA repeats sequence associated with human genetic disease%与人遗传病相关的DNA重复序列的体外核小体定位特性

    Institute of Scientific and Technical Information of China (English)

    柴荣; 赵宏宇; 蔡禄

    2013-01-01

    Objective To investigate the nucleosome positioning of DNA repeats sequence ire vitro which can cause human genetic disease. Methods The recombinant plasmids containing (GAA)42, (ATTCT)43, (GCCT)18 and 601 sequence were cloned. The histone and plasmids were used to assemble chromatin structure ire vitro,and then analyzed by agarose gel electrophoresis after micrococcal nuclease digestion. Results The plasmid containing ATTCT repeats sequence was easier to form nucleosome than GAA containing repeats sequence ire vitro. Conclusions The recombinant plasmids' ability to form chromatin structure was changed because of the insert of the different repeats sequence fragment.%目的 研究与人遗传病相关的DNA重复序列的体外核小体定位.方法 构建含有(GAA)42、(ATTCT)43、(GCCT)18和601序列的重组质粒,体外利用盐透析将质粒与组蛋白八聚体组装形成染色质结构,微球菌核酸酶消化后,用琼脂糖凝胶电泳分析染色质的结构.结果 含有ATTCT重复序列的质粒较含GAA重复序列质粒在体外易于形成核小体.结论 在重组质粒中,由于引入的重复序列片段形成核小体能力的不同会影响其局部染色质结构.

  20. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase

    DEFF Research Database (Denmark)

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck

    2014-01-01

    remain largely unexplored. To increase our understanding of the ASB proteins function, we conducted a family-wide SILAC (Stable Isotope Labeling by Amino acids in Cell Culture)-based protein-protein interaction analysis. This investigation led to the identification of novel as well as known ASB...... in vivo. In summary, we provide a comprehensive protein-protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases....

  1. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.

    Science.gov (United States)

    Gabsalilow, Lilia; Schierling, Benno; Friedhoff, Peter; Pingoud, Alfred; Wende, Wolfgang

    2013-04-01

    Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE-MutH is a programmable nickase.

  2. Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites

    Directory of Open Access Journals (Sweden)

    Neal F. Lue

    2015-05-01

    Full Text Available In principle, alterations in the telomere repeat sequence would be expected to disrupt the protective nucleoprotein complexes that confer stability to chromosome ends, and hence relatively rare events in evolution. Indeed, numerous organisms in diverse phyla share a canonical 6 bp telomere repeat unit (5’-TTAGGG-3’/5’-CCCTAA-3’, suggesting common descent from an ancestor that carries this particular repeat. All the more remarkable, then, are the extraordinarily divergent telomere sequences that populate the Saccharomycotina subphylum of budding yeast. These sequences are distinguished from the canonical telomere repeat in being long, occasionally degenerate, and frequently non-G/C-rich. Despite the divergent telomere repeat sequences, studies to date indicate that the same families of single-strand (ss and double-strand (ds telomere binding proteins (i.e., the Cdc13 and Rap1 families are responsible for telomere protection in Saccharomycotina yeast. The recognition mechanisms of the protein family members therefore offer an informative paradigm for understanding the co-evolution of DNA-binding proteins and the cognate target sequences. Existing data suggest three potential, inter-related solutions to the DNA recognition problem: (i duplication of the recognition protein and functional modification; (ii combinatorial recognition of target site; and (iii flexibility of the recognition surfaces of the DNA-binding proteins to adopt alternative conformations. Evidence in support of these solutions and the relevance of these solutions to other DNA-protein regulatory systems are discussed.

  3. Impact of a novel homozygous mutation in nicotinamide nucleotide transhydrogenase on mitochondrial DNA integrity in a case of familial glucocorticoid deficiency

    Directory of Open Access Journals (Sweden)

    Yasuko Fujisawa

    2015-06-01

    General significance: By studying a family affected with a novel point mutation in the NNT gene, a gene–dose response was found for various mitochondrial outcomes providing for novel insights into the role of NNT in the maintenance of mtDNA integrity beyond that described for preventing oxidative stress.

  4. Homoplasmy of the G7444A mtDNA and heterozygosity of the GJB2 c.35delG mutations in a family with hearing loss

    DEFF Research Database (Denmark)

    Kokotas, Haris; Grigoriadou, Maria; Li, Yang;

    2011-01-01

    Mitochondrial mutations have been shown to be responsible for syndromic as well as non-syndromic hearing loss. The G7444A mitochondrial DNA mutation affects COI/the precursor of tRNA(Ser(UCN)), encoding the first subunit of cytochrome oxidase. Here we report on the first Greek family with the G7444...

  5. Primary analysis of repeat elements of the Asian seabass (Lates calcarifer transcriptome and genome

    Directory of Open Access Journals (Sweden)

    Inna eKuznetsova

    2014-07-01

    Full Text Available As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n=24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8-14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionally conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates.

  6. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.

    Science.gov (United States)

    Tobiason, D M; Buchner, J M; Thiel, W H; Gernert, K M; Karls, A C

    2001-02-01

    Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.

  7. Alu repeats as markers for human population genetics

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Bazan, H. [Louisiana State Univ., New Orleans, LA (United States). Medical Center] [and others

    1993-09-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 97.9% nucleotide identity with each other and an average of 98.9% nucleotide identity with the HS subfamily consensus sequence. HS Alu family members are thought to be derived from a single source ``master`` gene, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 in. and 3 in. unique flanking DNA sequences from each HS Alu that allows the locus to be assayed for the presence or absence of an Alu repeat. Individual HS Alu sequences were found to be either monomorphic or dimorphic for the presence or absence of each repeat. The monomorphic HS Alu family members inserted in the human genome after the human/great ape divergence (which is thought to have occurred 4--6 million years ago), but before the radiation of modem man. The dimorphic HS Alu sequences inserted in the human genome after the radiation of modem man (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project as well. HS Alu family member insertion dimorphism differs from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) because individuals share HS Alu family member insertions based upon identity by descent from a common ancestor as a result of a single event which occurred one time within the human population. The VNTR and RFLP polymorphisms may arise multiple times within a population and are identical by state only.

  8. DNA barcoding of authentic and substitute samples of herb of the family Asparagaceae and Asclepiadaceae based on the ITS2 region

    Directory of Open Access Journals (Sweden)

    Padmalatha S Rai

    2012-01-01

    Full Text Available Background : Herbal drugs used to treat illness according to Ayurveda are often misidentified or adulterated with similar plant materials. Objective: To aid taxonomical identification, we used DNA barcoding to evaluate authentic and substitute samples of herb and phylogenetic relationship of four medicinal plants of family Asparagaceace and Asclepiadaceae. Materials and Methods : DNA extracted from dry root samples of two authentic and two substitutes of four specimens belonging to four species were subjected to polymerase chain reaction (PCR and DNA sequencing. Primers for nuclear DNA (nu ITS2 and plastid DNA (matK and rpoC1 were used for PCR and sequence analysis was performed by Clustal W. The intraspecific variation and interspecific divergence were calculated using MEGA V 4.0. Statistical Analysis : Kimura′s two parameter model, neighbor joining and bootstrapping methods were used in this work. Results: The result indicates the efficiency of amplification for ITS2 candidate DNA barcodes was 100% for four species tested. The average interspecific divergence is 0.12 and intraspecific variation was 0.232 in the case of two Asparagaceae species. In two Asclepiadaceae species, average interspecific divergence and intraspecific variation were 0.178 and 0.004 respectively. Conclusions: Our findings show that the ITS2 region can effectively discriminate Asparagus racemosus and Hemidesmus indicus from its substitute samples and hence can resolve species admixtures in raw samples. The ITS2 region may be used as one of the standard DNA barcodes to identify closely related species of family Asclepiadaceae but was noninformative for Asparagaceae species suggesting a need for the development of new markers for each family. More detailed studies involving more species and substitutes are warranted.

  9. A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of C. albicans.

    Science.gov (United States)

    Ishii, N; Yamamoto, M; Lahm, H W; Iizumi, S; Yoshihara, F; Nakayama, H; Arisawa, M; Aoki, Y

    1997-02-01

    Electromobility shift assays with a DNA probe containing the Saccharomyces cerevisiae ENO1 RPG box identified a specific DNA-binding protein in total protein extracts of Candida albicans. The protein, named Rbf1p (RPG-box-binding protein 1), bound to other S. cerevisiae RPG boxes, although the nucleotide recognition profile was not completely the same as that of S. cerevisiae Rap 1p (repressor-activator protein 1), an RPG-box-binding protein. The repetitive sequence of the C. albicans chromosomal telomere also competed with RPG-box binding to Rbf1p. For further analysis, we purified Rbf1p 57,600-fold from C. albicans total protein extracts, raised mAbs against the purified protein and immunologically cloned the gene, whose ORF specified a protein of 527 aa. The bacterially expressed protein showed RPG-box-binding activity with the same profile as that of the purified one. The Rbf1p, containing two glutamine-rich regions that are found in many transcription factors, showed transcriptional activation capability in S. cerevisiae and was predominantly observed in nuclei. These results suggest that Rbf1p is a transcription factor with telomere-binding activity in C. albicans.

  10. Crystal structure and DNA binding activity of a PadR family transcription regulator from hypervirulent Clostridium difficile R20291.

    Science.gov (United States)

    Isom, Catherine E; Menon, Smita K; Thomas, Leonard M; West, Ann H; Richter-Addo, George B; Karr, Elizabeth A

    2016-10-04

    Clostridium difficile is a spore-forming obligate anaerobe that can remain viable for extended periods, even in the presence of antibiotics, which contributes to the persistence of this bacterium as a human pathogen during host-to-host transmission and in hospital environments. We examined the structure and function of a gene product with the locus tag CDR20291_0991 (cdPadR1) as part of our broader goal aimed at elucidating transcription regulatory mechanisms involved in virulence and antibiotic resistance of the recently emergent hypervirulent C. difficile strain R20291. cdPadR1 is genomically positioned near genes that are involved in stress response and virulence. In addition, it was previously reported that cdPadR1 and a homologue from the historical C. difficile strain 630 (CD630_1154) were differentially expressed when exposed to stressors, including antibiotics. The crystal structure of cdPadR1 was determined to 1.9 Å resolution, which revealed that it belongs to the PadR-s2 subfamily of PadR transcriptional regulators. cdPadR1 binds its own promoter and other promoter regions from within the C. difficile R20291 genome. DNA binding experiments demonstrated that cdPadR1 binds a region comprised of inverted repeats and an AT-rich core with the predicted specific binding motif, GTACTAT(N2)ATTATA(N)AGTA, within its own promoter that is also present in 200 other regions in the C. difficile R20291 genome. Mutation of the highly conserved W in α4 of the effector binding/oligomerization domain, which is predicted to be involved in multi-drug recognition and dimerization in other PadR-s2 proteins, resulted in alterations of cdPadR1 binding to the predicted binding motif, potentially due to loss of higher order oligomerization. Our results indicate that cdPadR1 binds a region within its own promoter consisting of the binding motif GTACTAT(N2)ATTATA(N)AGTA and seems to associate non-specifically with longer DNA fragments in vitro, which may facilitate promoter and

  11. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family.

    Science.gov (United States)

    Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  12. A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications.

    Science.gov (United States)

    Burroughs, A Maxwell; Aravind, L

    2014-01-01

    A protein family including mammalian NEMF, Drosophila caliban, yeast Tae2, and bacterial FpbA-like proteins was first defined over a decade ago and found to be universally distributed across the three domains/superkingdoms of life. Since its initial characterization, this family of proteins has been tantalizingly linked to a wide range of biochemical functions. Tapping the enormous wealth of genome information that has accumulated since the initial characterization of these proteins, we perform a detailed computational analysis of the family, identifying multiple conserved domains. Domains identified include an enzymatic domain related to the formamidopyrimidine (Fpg), MutM, and Nei/EndoVIII family of DNA glycosylases, a novel, predicted RNA-binding domain, and a domain potentially mediating protein-protein interactions. Through this characterization, we predict that the DNA glycosylase-like domain catalytically operates on double-stranded RNA, as part of a hitherto unknown base modification mechanism that probably targets rRNAs. At least in archaea, and possibly eukaryotes, this pathway might additionally include the AMMECR1 family of proteins. The predicted RNA-binding domain associated with this family is also observed in distinct architectural contexts in other proteins across phylogenetically diverse prokaryotes. Here it is predicted to play a key role in a new pathway for tRNA 4-thiouridylation along with TusA-like sulfur transfer proteins.

  13. Distribution and evolution of simple repeats in the mtDNA D-loop in mammalian%简单重复DNA序列在哺乳动物mtDNA D-loop区的分布及进化特征

    Institute of Scientific and Technical Information of China (English)

    危金普; 潘学峰; 李红权; 段斐

    2011-01-01

    Simple sequence repeats (SSR) distribute extensively in genomes of all organisms.but the molecular mechanism underlined is poorly understood.In this study, we characterized distribution and biological significance of the simple repetitive DNA sequences in the D-Ioop region in mitochondria DNA of 256 mammal species, and classified the mammal carriers into three groups including 53 species with hexanucleotide repeats, 104 species with other types of simple repeats (>6 bp) and 99 species without any repeat sequences, respectively.Furthermore, we found that the hexanucleotide repeats dispersed significantly in the interval space between CSBI and CSB2, while other repeats dispersed mainly in the termination region, central conserved region and the conserve sequence block (CSB) regions.In addition, comparison on the base composition and the DNA contexts of the central conserved region, CSB1, CSB2, and CSB3 revealed a lack of significant differences in similarity among different species with or without repeat sequences.Moreover, a phylogenetic analysis with 256 mammal species using N-J method suggested loss of the repeat sequences in mammals in evolution.%简单重复序列广泛分布于从原核到真核生物的基因组中,其形成的分子机理目前尚不明确.对NCBI数据库中已有256种哺乳动物线粒体DNA(mtDNA)D-loop区进行序列比对分析,根据其所含有的简单重复序列类型分为3组,分别是53种哺乳动物含有六核苷酸重复序列;104种哺乳动物含有非六核苷酸重复序列(>6bp);99种哺乳动物不含有任何重复序列.通过碱基序列分析比对,发现六核苷酸重复序列集中分布在CSB1-CSB2间隔区,而非六核苷酸重复可以分布于终止区(TAS)、中央保守(Central domain)以及CSB(Central sequence block)区.通过比较含有重复序列与不含重复序列的功能保守区发现,简单重复序列的存在并不明确影响D-loop区内的中央保守区以及CSB1、CSB2、CSB3三个功

  14. Analysis of repeated measures data

    CERN Document Server

    Islam, M Ataharul

    2017-01-01

    This book presents a broad range of statistical techniques to address emerging needs in the field of repeated measures. It also provides a comprehensive overview of extensions of generalized linear models for the bivariate exponential family of distributions, which represent a new development in analysing repeated measures data. The demand for statistical models for correlated outcomes has grown rapidly recently, mainly due to presence of two types of underlying associations: associations between outcomes, and associations between explanatory variables and outcomes. The book systematically addresses key problems arising in the modelling of repeated measures data, bearing in mind those factors that play a major role in estimating the underlying relationships between covariates and outcome variables for correlated outcome data. In addition, it presents new approaches to addressing current challenges in the field of repeated measures and models based on conditional and joint probabilities. Markov models of first...

  15. Cloning of full-length cDNA of Microsporum canis membrane protein PQ-loop repeat protein gene%犬小孢子菌膜蛋白PQ-LRP基因全长cDNA的克隆

    Institute of Scientific and Technical Information of China (English)

    庞娟; 祝逸平; 杨国玲

    2012-01-01

    Objective To clone the full-length cDNA of Microsporum canis membrane protein PQ-loop repeat protein (PQ-LRP) gene,so as to investigate the roles of PQ-LRP in the pathogenesis of tinea capitis.Methods A Microsporum canis strain (A518) from a patient with tinea capitis served as the experimental strain.Rapid cDNA end amplification (RACE) was performed to clone the full length cDNA sequence of PQLRP gene.Bioinformatics methods were used to make a preliminary functional analysis of the gene.Results The cDNA of PQ-LRP gene was obtained with a full length of 1522 bp,including the 5' untranslated region (49 bp),coding region (1080 bp) and 3' untranslated region (393 bp).The coding region encoded a protein precursor including 359 amino acid residues.The cloned cDNA of PQ-LRP gene shared an 81% nucleotide identity with that of Trichophyton tonsurans and a 79% nucleotide identity with that of Trichophyton rubrum.Conclusions The full-length cDNA of Microsporum canis membrane protein PQ-LRP gene has been successfully cloned,which will provide an important basis for further researches into the roles of PQ-LRP in Microsporum canis-associated diseases.%目的 克隆犬小孢子菌膜蛋白PQ-LRP(PQ-loop repeat protein)基因全长cDNA,探讨在头癣发病机制中的作用.方法 选用犬小孢子菌头癣株(A518)为实验株,采用cDNA快速末端扩增法(RACE),克隆PQ-LRP基因的全长序列.结合生物信息学方法对获得的序列进行初步功能分析.结果 获得犬小孢子菌PQ-LRP全长序列为1522 bp,拥有一个1080 bp的开放阅读框,编码359个氨基酸,5 '非编码区为49 bp,3 '非编码区为393 bp;同源性比对与断发毛癣菌的PQ-LRP同源性达到81%,与红色毛癣菌PQ-LRP同源性达到79%.结论 克隆出犬小孢子菌膜蛋白PQ-LRP cDNA全长序列,为研究膜蛋白PQ-LRP基因在犬小孢子菌病中的功能奠定基础.

  16. Engineered holliday junctions as single-molecule reporters for protein-DNA interactions with application to a MerR-family regulator.

    Science.gov (United States)

    Sarkar, Susanta K; Andoy, Nesha May; Benítez, Jaime J; Chen, Peng R; Kong, Jason S; He, Chuan; Chen, Peng

    2007-10-17

    Protein-DNA interactions are essential for gene maintenance, replication, and expression. Characterizing how proteins interact with and change the structure of DNA is crucial in elucidating the mechanisms of protein function. Here, we present a novel and generalizable method of using engineered DNA Holliday junctions (HJs) that contain specific protein-recognition sequences to report protein-DNA interactions in single-molecule FRET measurements, utilizing the intrinsic structural dynamics of HJs. Because the effects of protein binding are converted to the changes in the structure and dynamics of HJs, protein-DNA interactions that involve small structural changes of DNA can be studied. We apply this method to investigate how the MerR-family regulator PbrR691 interacts with DNA for transcriptional regulation. Both apo- and holo-PbrR691 bind the stacked conformers of the engineered HJ, change their structures, constrain their conformational distributions, alter the kinetics, and shift the equilibrium of their structural dynamics. The information obtained maps the potential energy surfaces of HJ before and after PbrR691 binding and reveals the protein actions that force DNA structural changes for transcriptional regulation. The ability of PbrR691 to bind both HJ conformers and still allow HJ structural dynamics also informs about its conformational flexibility that may have significance for its regulatory function. This method of using engineered HJs offers quantification of the changes both in structure and in dynamics of DNA upon protein binding and thus provides a new tool to elucidate the correlation of structure, dynamics, and function of DNA-binding proteins.

  17. Mechanistic Heterogeneity in Site Recognition by the Structurally Homologous DNA-binding Domains of the ETS Family Transcription Factors Ets-1 and PU.1*

    Science.gov (United States)

    Wang, Shuo; Linde, Miles H.; Munde, Manoj; Carvalho, Victor D.; Wilson, W. David; Poon, Gregory M. K.

    2014-01-01

    ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a “dry” mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1·DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages. PMID:24952944

  18. Rational design of alpha-helical tandem repeat proteins with closed architectures

    Science.gov (United States)

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  19. Rational design of α-helical tandem repeat proteins with closed architectures.

    Science.gov (United States)

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L; Bradley, Philip

    2015-12-24

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks. The overall architecture of tandem repeat protein structures--which is dictated by the internal geometry and local packing of the repeat building blocks--is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed α-solenoid repeat structures (α-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the amino (N) and carboxy (C) termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed α-solenoid repeats with a left-handed helical architecture that--to our knowledge--is not yet present in the protein structure database.

  20. Exome sequencing of germline DNA from non-BRCA1/2 familial breast cancer cases selected on the basis of aCGH tumor profiling.

    Directory of Open Access Journals (Sweden)

    Florentine S Hilbers

    Full Text Available The bulk of familial breast cancer risk (∼70% cannot be explained by mutations in the known predisposition genes, primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array comparative genomic hybridization (aCGH. Linkage analysis in these families revealed a region on chromosome 4 with a LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2 hereditary breast cancer families have a very heterogeneous genetic basis.

  1. The Pathogenic Role of Low Range Repeats in SCA17.

    Directory of Open Access Journals (Sweden)

    Jung Hwan Shin

    Full Text Available SCA17 is an autosomal dominant cerebellar ataxia with expansion of the CAG/CAA trinucleotide repeats in the TATA-binding protein (TBP gene. SCA17 can have various clinical presentations including parkinsonism, ataxia, chorea and dystonia. SCA17 is diagnosed by detecting the expanded CAG repeats in the TBP gene; however, in the literature, pathologic repeat numbers as low as 41 overlap with normal repeat