WorldWideScience

Sample records for repeated cannabinoid administration

  1. Repeated morphine treatment-mediated hyperalgesia, allodynia and spinal glial activation are blocked by co-administration of a selective cannabinoid receptor type-2 agonist

    OpenAIRE

    Tumati, Suneeta; Largent-Milnes, Tally M.; Keresztes, Attila; Ren, Jiyang; Roeske, William R.; Vanderah, Todd W; Varga, Eva V.

    2012-01-01

    Spinal glial activation has been implicated in sustained morphine-mediated paradoxical pain sensitization. Since activation of glial CB2 cannabinoid receptors attenuates spinal glial activation in neuropathies, we hypothesized that CB2 agonists may also attenuate sustained morphine–mediated spinal glial activation and pain sensitization. Our data indicate that co-administration of a CB2-selective agonist (AM 1241) attenuates morphine (intraperitoneal; twice daily; 6 days)-mediated thermal hyp...

  2. Chronic Cannabinoid Administration in Vivo Compromises Extinction of Fear Memory

    Science.gov (United States)

    Lin, Hui-Ching; Mao, Sheng-Chun; Chen, Po-See; Gean, Po-Wu

    2008-01-01

    Endocannabinoids are critically involved in the extinction of fear memory. Here we examined the effects of repeated cannabinoid administration on the extinction of fear memory in rats and on inhibitory synaptic transmission in medial prefrontal cortex (mPFC) slices. Rats were treated with the CB1 receptor agonist WIN55212-2 (WIN 10 mg/kg, i.p.)…

  3. Intraperirhinal cortex administration of the synthetic cannabinoid, HU210, disrupts object recognition memory in rats.

    Science.gov (United States)

    Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D

    2015-03-25

    Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory.

  4. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats.

    Directory of Open Access Journals (Sweden)

    Hila Abush

    Full Text Available The use of cannabis can impair cognitive function, especially short-term memory. A controversial question is whether long-term cannabis use during the late-adolescence period can cause irreversible deficits in higher brain function that persist after drug use stops. In order to examine the short- and long-term effects of chronic exposure to cannabinoids, rats were administered chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg for two weeks during the late adolescence period (post-natal days 45-60 and tested for behavioral and electrophysiological measures of cognitive performance 24 hrs, 10 and 30 days after the last drug injection. The impairing effects of chronic WIN on short-term memory in the water maze and the object recognition tasks as well as long-term potentiation (LTP in the ventral subiculum (vSub-nucleus accumbens (NAc pathway were temporary as they lasted only 24 h or 10 d after withdrawal. However, chronic WIN significantly impaired hippocampal dependent short-term memory measured in the object location task 24 hrs, 10, 30, and 75 days after the last drug injection. Our findings suggest that some forms of hippocampal-dependent short-term memory are sensitive to chronic cannabinoid administration but other cognitive impairments are temporary and probably result from a residue of cannabinoids in the brain or acute withdrawal effects from cannabinoids. Understanding the effects of cannabinoids on cognitive function may provide us with tools to overcome these impairments and for cannabinoids to be more favorably considered for clinical use.

  5. Augmentation of the development of behavioral tolerance to cannabinoid administration through pavlovian conditioning.

    Science.gov (United States)

    Hill, Matthew N; Gorzalka, Boris B; Choi, Joyce W

    2004-01-01

    This investigation examined the effects, in female rats, of a Pavlovian conditioning paradigm on the development of tolerance to hypolocomotion induced by the cannabinoid agonist HU-210. Rats were administered HU-210 and placebo in either an associative or a nonassociative fashion. The results indicated that rats in the associative paradigm developed tolerance significantly faster than those in the nonassociative group (p developed, the associative group of rats was administered HU-210 and placebo in the opposite environments. There were no differences found in locomotion between the CS+ and CS- environments following administration of HU-210. However, when the placebo was administered in the CS+ environment, there was a trend towards increased activity levels (p = 0.06), suggesting withdrawal-like behavior. These findings indicate that the underlying physiological mechanisms of tolerance development in the cannabinoid system are hastened by conditioning, but that these physiological alterations are not contingent upon the associative parameters used for drug administration.

  6. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice

    Directory of Open Access Journals (Sweden)

    Martín-Moreno Ana María

    2012-01-01

    Full Text Available Abstract Background Alzheimer's disease (AD brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential. Methods We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein (APP mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the drinking water during 4 months on inflammatory and cognitive parameters, and on 18F-fluoro-deoxyglucose (18FDG uptake by positron emission tomography (PET. Results Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased 18FDG uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-α mRNA expression found in the AD model. Increased cortical β-amyloid (Aβ levels were significantly reduced in the mouse model by both cannabinoids. Noteworthy both cannabinoids enhanced Aβ transport across choroid plexus cells in vitro. Conclusions In summary we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aβ clearance.

  7. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function.

    Science.gov (United States)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    2017-01-01

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CB1 receptor agonist WIN55,212-2 (WIN) in rats. Lister Hooded male rats were treated intramuscularly with nandrolone (15mg/kg) or vehicle for 14 consecutive days, and then allowed to self-administer WIN (12.5μg/kg/infusion) intravenously. After reaching stable drug intake, self-administration behavior was extinguished to examine drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Other behavioral parameters presumed to influence drug-taking and drug-seeking behaviors were examined to gain more insight into the behavioral specificity of nandrolone treatment. Finally, animals were sacrificed for analysis of CB1 receptor density and function in selected brain areas. We found that nandrolone-treated rats self-administered up to 2 times more cannabinoid than vehicle-treated rats, but behaved similarly to control rats when tested for drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Enhanced cannabinoid intake by nandrolone-treated rats was not accompanied by changes in locomotor activity, sensorimotor gating, or memory function. However, our molecular data show that after chronic WIN self-administration nandrolone-treated rats display altered CB1 receptor density and function in selected brain areas. We hypothesize that increased cannabinoid self-administration in nandrolone-treated rats results from a nandrolone-induced decrease in reward function, which rats seem to compensate by voluntarily increasing their cannabinoid intake. Altogether, our findings corroborate the hypothesis that chronic exposure to anabolic-androgenic steroids induces dysfunction of the reward pathway in rats and might represent a potential risk factor for abuse of

  8. Long-term consequences of URB597 administration during adolescence on cannabinoid CB1 receptor binding in brain areas.

    Science.gov (United States)

    Marco, Eva María; Rubino, Tiziana; Adriani, Walter; Viveros, María-Paz; Parolaro, Daniela; Laviola, Giovanni

    2009-02-27

    Despite the alarming increment in the use and abuse of cannabis preparations among young people, little is known about possible long-term consequences of targeting the endocannabinoid system during the critical developmental period of adolescence. Therefore, we aimed to analyze possible long-lasting neurobiological consequences of enhancing endocannabinoid signalling during adolescence, by means of blocking anandamide (AEA) hydrolysis. Adolescent Wistar male rats were administered an inhibitor of AEA hydrolysis, i.e. URB597 (0, 0.1 or 0.5 mg/kg/day from postnatal days 38 to 43). The expression of brain cannabinoid receptor type 1 (CB1R) was then analyzed by [(3)H]CP-55,940 auto-radiographic binding at adulthood. Repeated URB597 administration during adolescence persistently modified CB1R binding in a region-dependent manner. A long-lasting decrease of CB1R binding levels was found in caudate-putamen, nucleus accumbens, ventral tegmental area and hippocampus, while an opposite increment was observed in the locus coeruleus. Present results provide evidence for long-lasting effects of adolescent URB597 administration. Activation of endocannabinoid transmission during the still plastic phase of adolescence may have implications for the maturational end-point of the endocannabinoid system itself, which could lead to permanent alterations in neuronal brain circuits and behavioural responses. Insights into the developmental trajectories of this neuromodulatory system may help us to better understand and prevent outcomes of neonatal and adolescent cannabis exposure.

  9. Repeated administration of adenosine increases its cardiovascular effects in rats.

    Science.gov (United States)

    Vidrio, H; García-Márquez, F; Magos, G A

    1987-01-20

    Hypotensive and negative chronotropic responses to adenosine in anesthetized rats increased after previous administration of the nucleoside. Bradycardia after adenosine in the isolated perfused rat heart was also potentiated after repeated administration at short intervals. This self-potentiation could be due to extracellular accumulation of adenosine and persistent stimulation of receptors caused by saturation or inhibition of cellular uptake of adenosine.

  10. Evaluation of WIN 55,212-2 self-administration in rats as a potential cannabinoid abuse liability model

    Science.gov (United States)

    Lefever, Timothy W.; Marusich, Julie A.; Antonazzo, Kateland R.; Wiley, Jenny L.

    2014-01-01

    Because Δ9-tetrahydrocannabinol (THC) has been a false negative in rat intravenous self-administration procedures, evaluation of the abuse potential of candidate cannabinoid medications has proved difficult. One lab group has successfully trained self-administration of the aminoalkylindole WIN55,212-2 in rats; however, their results have not been independently replicated. The purpose of this study was to extend their model by using a within-subjects design, with the goal of establishing a robust method suitable for substitution testing of other cannabinoids. Male Long-Evans rats were trained to self-administer WIN55,212-2 (0.01 mg/kg/infusion) on a fixed ratio 3 schedule. Dose-effect curves for WIN55,212-2 were determined, followed by vehicle substitution and a dose-effect curve with THC. WIN55,212-2 self-administration was acquired; however, substitution with THC did not maintain responding above vehicle levels. Dose-dependent attenuation by rimonabant confirmed CB1 receptor mediation of WIN55,212-2’s reinforcing effects. Vehicle substitution resulted in a session-dependent decrease in responding (i.e., extinction). While this study provides systematic replication of previous studies, lack of substitution with THC is problematic and suggests that WIN55,212-2 self-administration may be of limited usefulness as a screening tool for detection of the reinforcing effects of potential cannabinoid medications. Clarification of underlying factors responsible for failure of THC to maintain self-administration in cannabinoid-trained rats is needed. PMID:24412835

  11. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.

    Science.gov (United States)

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean-François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-08-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.

  12. Behavioral Determinants of Cannabinoid Self-Administration in Old World Monkeys.

    Science.gov (United States)

    John, William S; Martin, Thomas J; Nader, Michael A

    2017-02-01

    Reinforcing effects of Δ(9)-tetrahydrocannabinol (THC), the primary active ingredient in marijuana, as assessed with self-administration (SA), has only been established in New World primates (squirrel monkeys). The objective of this study was to investigate some experimental factors that may enhance intravenous SA of THC and the cannabinoid receptor (CBR) agonist CP 55 940 in Old World monkeys (rhesus and cynomolgus), a species that has been used extensively in biomedical research. In one experiment, male rhesus monkeys (N=9) were trained to respond under a fixed-ratio 10 schedule of food presentation. The effects of CP 55 940 (1.0-10 μg/kg, i.v.) and THC (3.0-300 μg/kg, i.v.) on food-maintained responding and body temperature were determined in these subjects prior to giving them access to self-administer each drug. Both drugs dose-dependently decreased food-maintained responding. CP 55 940 (0.001-3.0 μg/kg) functioned as a reinforcer in three monkeys, whereas THC (0.01-10 μg/kg) did not have reinforcing effects in any subject. CP 55 940 was least potent to decrease food-maintained responding in the monkeys in which CP 55 940 functioned as a reinforcer. Next, THC was administered daily to monkeys until tolerance developed to rate-decreasing effects. When THC SA was reexamined, it functioned as a reinforcer in three monkeys. In a group of cocaine-experienced male cynomolgus monkeys (N=4), THC SA was examined under a second-order schedule of reinforcement; THC functioned as reinforcer in two monkeys. These data suggest that SA of CBR agonists may be relatively independent of their rate-decreasing effects in Old World monkeys. Understanding individual differences in vulnerability to THC SA may lead to novel treatment strategies for marijuana abuse.Neuropsychopharmacology advance online publication, 1 February 2017; doi:10.1038/npp.2017.2.

  13. Safety of Moxifloxacin following repeated intramuscular administration in Wistar rats

    Directory of Open Access Journals (Sweden)

    K.A. Sadariya

    Full Text Available Moxifloxacin is a novel fourth generation fluoroquinolone with broad spectrum of antibacterial activity. The study was conducted to evaluate the safety of Moxifloxacin (5.0 mg/kg after repeated intramuscular administration at 24 h interval for 14 days in male and female wistar rats. Hematological (Haemoglobin, RBC, WBC, MCV, MCH, MCHC, HCT and DLC, blood biochemical parameters (AST, ALT, ALP, Total Bilirubin, Total Serum Protein, Serum Albumin, Globulin, Serum Creatinine, Urea, Uric acid and Blood glucose and histopathological examination of various tissues were carried out in the present study. Male and female animals of any group did not reveal any clinical symptoms and mortality attributable to the 14 days intramuscular administration of Moxifloxacin. The data were compared by unpaired two tail `t` test using Graph Pad Prism (Version 4.00. All above hematological and blood biochemical parameters were found to fluctuate within normal range during treatment period and the mean values were not significantly differ (p < 0.05 from corresponding control values. Moreover, no gross or microscopic changes were found in the liver, kidney, heart, spleen, stomach, intestine and joint cartilages of the treated wistar rats. Results indicate that daily administration of Moxifloxacin for 14 days seems to be safe and well tolerated in rats. [Veterinary World 2010; 3(10.000: 449-452

  14. Safety of Ketoprofen in Cow calves following repeated intravenous administration

    Directory of Open Access Journals (Sweden)

    R. D. Singh

    2009-06-01

    Full Text Available Ketoprofen is a non steroidal anti-inflammatory drug (NSAID used for its anti-inflammatory,analgesic and antipyretic properties in Veterinary Medicine. The present study was planned to assess safety of ketoprofen (3 mg.kg-1 after repeated intravenous administration at 24 hours interval for five days in six crossbred cow calves (6-12 months age and weighing between 60-122 kg. Ketoprofen in calves was found safe based on evaluation of haematological (Hb, PCV, TLC and DLC, blood biochemical (AKP, ACP, AST, ALT, LDH, Total bilirubin, Serum Creatinine, BUN, Serum total protein, Serum albumin and Blood glucose parameters. [Vet. World 2009; 2(3.000: 105-107

  15. Interaction between orexin A and cannabinoid system in the lateral hypothalamus of rats and effects of subchronic intraperitoneal administration of cannabinoid receptor inverse agonist on food intake and the nutritive utilization of protein.

    Science.gov (United States)

    Merroun, I; El Mlili, N; Martinez, R; Porres, J M; Llopis, J; Ahabrach, H; Aranda, P; Sanchez Gonzalez, C; Errami, M; Lopez-Jurado, M

    2015-04-01

    Crosstalk may occur between cannabinoids and other systems controlling appetite, since cannabinoid receptors are present in hypothalamic circuits involved in feeding regulation, and likely to interact with orexin. In this study, an immunohistochemical approach was used to examine the effect of the intracerebroventricular administration of cannabinoid receptor inverse agonist AM 251 on orexin neuropeptide in the hypothalamic system. AM-activated neurons were identified using c-Fos as a marker of neuronal activity. The results obtained show that AM 251 decreases orexin A immunoreactivity, and that it increases c-Fos-immunoreactive neurons within the hypothalamus when compared with the vehicle-injected control group. We also studied the effects of subchronic intraperitoneal administration of AM 251 on food intake, body weight, and protein utilization. The administration of AM 251 at 1, 2, or 5 mg/kg led to a significant reduction in food intake, along with a significant decrease in the digestive utilization of protein in the groups injected with 1 and 2 mg/kg. There was a dose-related slowdown in weight gain, especially at the doses of 2 and 5 mg/kg, during the initial days of the trial. The absence of this effect in the pair-fed group reveals that any impairment to digestibility was the result of administering AM 251. These data support our conclusion that hypothalamic orexigenic neuropeptides are involved in the reduction of appetite and mediated by the cannabinoid receptor inverse agonist. Furthermore, the subchronic administration of AM 251, in addition to its effect on food intake, has significant effects on the digestive utilization of protein.

  16. The medicinal use of cannabis and cannabinoids--an international cross-sectional survey on administration forms.

    Science.gov (United States)

    Hazekamp, Arno; Ware, Mark A; Muller-Vahl, Kirsten R; Abrams, Donald; Grotenhermen, Franjo

    2013-01-01

    Cannabinoids, including tetrahydrocannabinol and cannabidiol, are the most important active constituents of the cannabis plant. Over recent years, cannabinoid-based medicines (CBMs) have become increasingly available to patients in many countries, both as pharmaceutical products and as herbal cannabis (marijuana). While there seems to be a demand for multiple cannabinoid-based therapeutic products, specifically for symptomatic amelioration in chronic diseases, therapeutic effects of different CBMs have only been directly compared in a few clinical studies. The survey presented here was performed by the International Association for Cannabinoid Medicines (IACM), and is meant to contribute to the understanding of cannabinoid-based medicine by asking patients who used cannabis or cannabinoids detailed questions about their experiences with different methods of intake. The survey was completed by 953 participants from 31 countries, making this the largest international survey on a wide variety of users of cannabinoid-based medicine performed so far. In general, herbal non-pharmaceutical CBMs received higher appreciation scores by participants than pharmaceutical products containing cannabinoids. However, the number of patients who reported experience with pharmaceutical products was low, limiting conclusions on preferences. Nevertheless, the reported data may be useful for further development of safe and effective medications based on cannabis and single cannabinoids.

  17. Cannabinoids, cannabinoid receptors and tinnitus.

    Science.gov (United States)

    Smith, Paul F; Zheng, Yiwen

    2016-02-01

    One hypothesis suggests that tinnitus is a form of sensory epilepsy, arising partly from neuronal hyperactivity in auditory regions of the brain such as the cochlear nucleus and inferior colliculus. Although there is currently no effective drug treatment for tinnitus, anti-epileptic drugs are used in some cases as a potential treatment option. There is increasing evidence to suggest that cannabinoid drugs, i.e. cannabinoid receptor agonists, can also have anti-epileptic effects, at least in some cases and in some parts of the brain. It has been reported that cannabinoid CB1 receptors and the endogenous cannabinoid, 2-arachidonylglycerol (2-AG), are expressed in the cochlear nucleus and that they are involved in the regulation of plasticity. This review explores the question of whether cannabinoid receptor agonists are likely to be pro- or anti-epileptic in the cochlear nucleus and therefore whether cannabinoids and Cannabis itself are likely to make tinnitus better or worse.

  18. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function

    NARCIS (Netherlands)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    2017-01-01

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CBI rec

  19. Suppressing effect of COR659 on alcohol, sucrose, and chocolate self-administration in rats: involvement of the GABAB and cannabinoid CB1 receptors.

    Science.gov (United States)

    Maccioni, Paola; Colombo, Giancarlo; Lorrai, Irene; Zaru, Alessandro; Carai, Mauro A M; Gessa, Gian Luigi; Brizzi, Antonella; Mugnaini, Claudia; Corelli, Federico

    2017-05-24

    COR659 [methyl2-(4-chlorophenylcarboxamido)-4-ethyl-5-methylthiophene-3-carboxylate] is a new, positive allosteric modulator (PAM) of the GABAB receptor. This study evaluated whether COR659 shared with previously tested GABAB PAMs the capacity to reduce alcohol self-administration in rats. Treatment with non-sedative doses of COR659 (2.5, 5, and 10 mg/kg; i.p.) suppressed lever-responding for alcohol (15% v/v) in Sardinian alcohol-preferring (sP) rats under the fixed ratio (FR) 4 (FR4) and progressive ratio (PR) schedules of reinforcement; COR659 was more potent and effective than the reference GABAB PAM, GS39783. Treatment with COR659, but not GS39783, suppressed (a) lever-responding for a sucrose solution (1-3% w/v) in sP rats under the FR4 and PR schedules, (b) lever-responding for a chocolate solution [5% (w/v) Nesquik®] in Wistar rats under the FR10 and PR schedules, and (c) cue-induced reinstatement of chocolate seeking in Wistar rats. Treatment with COR659 was completely ineffective on lever-responding (FR10) for regular food pellets in food-deprived Wistar rats. Pretreatment with the GABAB receptor antagonist, SCH50911, partially blocked COR659-induced reduction of alcohol self-administration, being ineffective on reduction of chocolate self-administration. Pretreatment with the cannabinoid CB1 receptor antagonist, AM4113, fully blocked COR659-induced reduction of chocolate self-administration, being ineffective on reduction of alcohol self-administration. COR659 might exert its behavioral effects via a composite mechanism: (i) positive allosteric modulation of the GABAB receptor, responsible for a large proportion of reduction of alcohol self-administration; (ii) an action at other receptor system(s), including the cannabinoid CB1 receptor, through which COR659 affects seeking and consumption of highly palatable foods.

  20. Pharmacokinetic evaluation of pamidronate after oral administration: a study on dose proportionality, absolute bioavailability, and effect of repeated administration

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Flesch, G; Hauffe, S A

    1993-01-01

    30 minutes at constant infusion rate. Repeated peroral doses (75 and 150 mg) were administered to 12 females (aged 51-70 years) for 10 consecutive days. Urinary excretion of pamidronate after peroral and i.v. administration was used for estimation of pamidronate absorption. Renal excretion...

  1. An unusual case of homicide by use of repeated administration of organophosphate insecticides.

    Science.gov (United States)

    De Letter, E A; Cordonnier, J A C M; Piette, M H A

    2002-03-01

    We present an unusual murder case by use of repeated administration of organophosphate insecticides. A 49-year-old woman suffering from mental retardation, epileptic fits and acromegaly was poisoned by her husband. At first, her death was considered as a 'sudden and unexpected' natural death. Abdominal abscesses of pancreatic origin found at autopsy were compatible with repeated administration of pesticides with anticholinergic action. In her medical history at least one episode consistent with an organophosphate intoxication was retrieved. Thorough inquiry revealed that the victim had ingested phosphamidon and/or omethoate orally. Organophosphate intoxication should be considered when unexplained neurological symptoms are associated with pancreatic disturbances.

  2. The influence of cannabinoids on learning and memory processes of the dorsal striatum.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2015-11-01

    Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system.

  3. Video Teleconference Administration of the Repeatable Battery for the Assessment of Neuropsychological Status

    Science.gov (United States)

    Galusha-Glasscock, Jeanine M.; Horton, Daniel K.; Weiner, Myron F.; Cullum, C. Munro

    2016-01-01

    Teleneuropsychology applications are growing, but a limited number of assessment tools have been studied in this context. The present investigation was designed to determine the feasibility and reliability of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) administration by comparing video teleconference (VTC) with face-to-face (FF) test conditions. Eighteen adult subjects over age 55 with and without cognitive impairment were administered Forms A and B of the RBANS in VTC and FF settings in counterbalanced fashion. Similar RBANS scores were obtained in both test conditions, with generally high correlations between administration methods. Results support the feasibility and reliability of remote administration of the RBANS via VTC. PMID:26446834

  4. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  5. Repeated administration of histamine improves memory retrieval of inhibitory avoidance by lithium in mice.

    Science.gov (United States)

    Zarrindast, Mohammad Reza; Parsaei, Leila; Ahmadi, Shamseddin

    2008-01-01

    The influence of repeated administration of histamine on lithium-induced state dependency has been investigated. A single-trial step-down inhibitory avoidance task was used to assess memory in adult male NMRI mice. Intraperitoneal (i.p.) administration of lithium (10 mg/kg), immediately after training (post-training), impaired inhibitory avoidance memory on the test day. Pre-test administration of lithium reversed amnesia induced by the drug given after training, with the maximum response at a dose of 10 mg/kg. Repeated intracerebroventricular (i.c.v.) administration of histamine (20 microg/mouse) for 3 consecutive days followed by 5 days of no drug treatment improved memory retrieval of inhibitory avoidance by a pre-test lower dose (5 mg/kg i.p.) of lithium. In contrast, 3 days of i.c.v. injections of both the histamine H1 receptor antagonist pyrilamine (40 microg/mouse) and the histamine H2 receptor antagonist ranitidine (6.25 and 12.5 microg/mouse) prevented the improving effect of pre-test lithium (10 mg/kg i.p.) on memory retrieval. The results suggest that the repeated administration of histaminergic agents may induce a sensitization which affects the memory impairment induced by lithium.

  6. Effect of tramadol on metamizol pharmacokinetics and pharmacodynamics after single and repeated administrations in arthritic rats.

    Science.gov (United States)

    Moreno-Rocha, Luis Alfonso; López-Muñoz, Francisco Javier; Medina-López, José Raúl; Domínguez-Ramírez, Adriana Miriam

    2016-11-01

    Combined administration of certain doses of opioid compounds with a non-steroidal anti-inflammatory drug can produce additive or supra-additive effects while reducing unwanted effects. We have recently reported that co-administration of metamizol with tramadol produces antinociceptive effect potentiation, after acute treatment. However, none information about the effect produced by the combination after chronic or repeated dose administration exists. The aims of this study were to investigate whether the antinociceptive synergism produced by the combination of metamizol and tramadol (177.8 + 17.8 mg/kg, s.c. respectively) is maintained after repeated treatment and whether the effects observed are primarily due to pharmacodynamic interactions or may be related to pharmacokinetics changes. Administration of metamizol plus tramadol acute treatment significantly enhanced the antinociceptive effect of the drugs given alone (P metamizol and tramadol was found under acute treatment (P > 0.05). The mechanism involved in the synergism of the antinociceptive effect observed with the combination of metamizol and tramadol in single dose cannot be attributed to a pharmacokinetic interaction, and other pharmacodynamic interactions have to be considered. On the other hand, when metamizol and tramadol were co-administered under repeated administrations, a pharmacokinetic interaction and tolerance development occurred. Differences found in metamizol active metabolites' pharmacokinetics (P < 0.05) were related to the development of tolerance produced by the combination after repeated doses. This work shows an additional preclinical support for the combination therapy. The clinical utility of this combination in a suitable dose range should be evaluated in future studies.

  7. Effect of tramadol on metamizol pharmacokinetics and pharmacodynamics after single and repeated administrations in arthritic rats

    Directory of Open Access Journals (Sweden)

    Luis Alfonso Moreno-Rocha

    2016-11-01

    Full Text Available Combined administration of certain doses of opioid compounds with a non-steroidal anti-inflammatory drug can produce additive or supra-additive effects while reducing unwanted effects. We have recently reported that co-administration of metamizol with tramadol produces antinociceptive effect potentiation, after acute treatment. However, none information about the effect produced by the combination after chronic or repeated dose administration exists. The aims of this study were to investigate whether the antinociceptive synergism produced by the combination of metamizol and tramadol (177.8 + 17.8 mg/kg, s.c. respectively is maintained after repeated treatment and whether the effects observed are primarily due to pharmacodynamic interactions or may be related to pharmacokinetics changes. Administration of metamizol plus tramadol acute treatment significantly enhanced the antinociceptive effect of the drugs given alone (P  0.05. The mechanism involved in the synergism of the antinociceptive effect observed with the combination of metamizol and tramadol in single dose cannot be attributed to a pharmacokinetic interaction, and other pharmacodynamic interactions have to be considered. On the other hand, when metamizol and tramadol were co-administered under repeated administrations, a pharmacokinetic interaction and tolerance development occurred. Differences found in metamizol active metabolites’ pharmacokinetics (P < 0.05 were related to the development of tolerance produced by the combination after repeated doses. This work shows an additional preclinical support for the combination therapy. The clinical utility of this combination in a suitable dose range should be evaluated in future studies.

  8. Brexpiprazole Alters Monoaminergic Systems following Repeated Administration: an in Vivo Electrophysiological Study

    OpenAIRE

    Oosterhof, Chris A.; Mansari, Mostafa El; Bundgaard, Christoffer; Blier, Pierre

    2015-01-01

    Background: Brexpiprazole was recently approved as adjunctive therapy for depression and treatment of schizophrenia in adults. To complement results from a previous study in which its acute effects were characterized, the present study assessed the effect of repeated brexpiprazole administration on monoaminergic systems. Methods: Brexpiprazole (1mg/kg, subcutaneous) or vehicle was administered once daily for 2 and 14 days. Single-unit electrophysiological recordings from noradrenaline neurons...

  9. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... dried plant materials. Chemical tests show that their active ingredients are man-made cannabinoid compounds. Synthetic cannabinoid users report some effects similar to those produced by marijuana: elevated mood relaxation altered perception symptoms of psychosis Synthetic cannabinoids can ...

  10. Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells.

    Science.gov (United States)

    Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig

    2014-05-01

    Continuous oncogenic processes that generate cancer require an on-going treatment approach to eliminate the transformed cells, and prevent their further development. Here, we studied the ability of T cells expressing a chimeric antibody-based receptor (CAR) to offer a therapeutic benefit for breast cancer induced by erbB-2. We tested CAR-modified T cells (T-bodies) specific to erbB-2 for their antitumor potential in a mouse model overexpressing a human erbB-2 transgene that develops mammary tumors. Comparing the antitumor reactivity of CAR-modified T cells under various therapeutic settings, either prophylactic, prior to tumor development, or therapeutically. We found that repeated administration of CAR-modified T cells is required to eliminate spontaneously developing mammary cancer. Systemic, as well as intratumoral administered CAR-modified T cells accumulated at tumor sites and eventually eliminated the malignant cells. Interestingly, within a few weeks after a single CAR T cells' administration, and rejection of primary lesion, tumors usually relapsed both in treated mammary gland and at remote sites; however, repeated injections of CAR-modified T cells were able to control the secondary tumors. Since spontaneous tumors can arise repeatedly, especially in the case of syndromes characterized by specific susceptibility to cancer, multiple administrations of CAR-modified T cells can serve to control relapsing disease.

  11. Evaluation of the endogenous cannabinoid system in mediating the behavioral effects of dipyrone (metamizol) in mice.

    Science.gov (United States)

    Schlosburg, Joel E; Radanova, Lilyana; Di Marzo, Vincenzo; Imming, Peter; Lichtman, Aron H

    2012-10-01

    Dipyrone is a common nonopioid analgesic and antipyretic, which, in many countries, is available over the counter and is more widely used than paracetamol or aspirin. However, the exact mechanisms by which dipyrone acts remain inconclusive. Two novel arachidonoyl-conjugated metabolites are formed in mice following the administration of dipyrone that are dependent on the activity of fatty acid amide hydrolase (FAAH), which also represents the major catabolic enzyme of the endogenous cannabinoid ligand anandamide. These arachidonoyl metabolites not only inhibit cyclooxygenase (COX-1/COX-2) but also bind to cannabinoid receptors at low micromolar concentrations. The relative contributions of cannabinoid receptors and FAAH in the overall behavioral response to dipyrone remain untested. Accordingly, the two primary objectives of the present study were to determine whether the behavioral effects of dipyrone would (a) be blocked by cannabinoid receptor antagonists and (b) occur in FAAH mice. Here, we report that thermal antinociceptive, hypothermic, and locomotor suppressive actions of dipyrone are mediated by a noncannabinoid receptor mechanism of action and occurred after acute or repeated administration irrespective of FAAH. These findings indicate that FAAH-dependent arachidonoyl metabolites and cannabinoid receptors are not requisites by which dipyrone exerts these pharmacological effects under noninflammatory conditions.

  12. Changes on metabolic parameters induced by acute cannabinoid administration (CBD, THC in a rat experimental model of nutritional vitamin A deficiency

    Directory of Open Access Journals (Sweden)

    Loubna El Amrani

    2013-06-01

    Full Text Available Introduction: Vitamin A deficiency can result from malnutrition, malabsorption of vitamin A, impaired vitamin metabolism associated with liver disease, or chronic debilitating diseases like HIV infection or cancer. Background & aims: Cannabis administration has been described as a palliative symptom management therapy in such pathological stages. Therefore, this research aimed to study the effects of acute administration of cannabidiol (CBD or thetrahydrocannabinol (THC on the levels of retinol in plasma and in the liver, and biochemical parameters related to lipid and glucose metabolism (cholesterolaemia, triglyceridemia and glycemia in a rat experimental model of vitamin A deficiency. Methods: The experimental animal model of Vitamin A deficiency was developed during a 50-day experimental period in which rats consumed a vitamin A-free diet. Cannabidiol (10 mg/kg body weight or thetrahydrocannabinol (5 mg/kg body weight were administered intraperitoneally 2 hours prior to sacrifice of the animals. Results: The nutritional deficiency caused a significant decrease in plasmatic and liver contents of retinol and biochemical parameters of glycemic, lipidic, and mineral metabolism. Acute intraperitoneal administration of Cannabidiol and thetrahydrocannabinol did not improve the indices of vitamin A status in either control or vitamin A-deficient rats. However, it had a significant effect on specific biochemical parameters such as glucose, triglycerides, and cholesterol. Conclusion: Under our experimental conditions, the reported effects of cannabinoid administration on certain signs of nutritional vitamin A deficiency appeared to be mediated through mechanisms other than changes in retinol metabolism or its mobilization after the acute administration of such compounds.

  13. Pharmacokinetics of marbofloxacin after single intravenous and repeat oral administration to cats.

    Science.gov (United States)

    Albarellos, G A; Montoya, L; Landoni, M F

    2005-09-01

    The pharmacokinetic properties of marbofloxacin, a third generation fluoroquinolone, were investigated in six cats after single intravenous (IV) and repeat oral (PO) administration at a daily dose of 2 mg/kg. Marbofloxacin serum concentration was analysed by microbiological assay using Klebsiella pneumoniae ATCC 10031 as micro-organism test. Serum marbofloxacin disposition was best described by bicompartmental and mono-compartmental open models with first-order elimination after IV and oral dosing respectively. After IV administration, distribution was rapid (T(1/2(d)) 0.23+/-0.24 h) and wide, as reflected by the steady-state volume of distribution of 1.01+/-0.15 L/kg. Elimination from the body was slow with a body clearance of 0.09+/-0.02 L/h kg and a T(1/2) of 7.98+/-0.57 h. After repeat oral administration, absorption half-life was 0.86+/-1.59 h and T(max) of 1.94+/-2.11 h. Bioavailability was almost complete (99+/-29%) with a peak plasma concentration at the steady-state of 1.97+/-0.61 mug/mL. Drug accumulation was not significant after six oral administrations. Calculation of efficacy predictors showed that marbofloxacin has good therapeutic profile against Gram-negative and Gram-positive bacteria with a MIC(50) value <0.25 microg/mL.

  14. Effect of repeated oral administration on taurocholate on hepatic excretory function in the rat.

    Science.gov (United States)

    Watkins, J B; Klaassen, C D

    1981-07-01

    The effect of repeated administration of taurocholate on bile acid pool size, biliary composition and biliary excretory capacity for bile acids and two xenobiotics was determined. The bile acid pool was increased 50 to 60% by oral administration of sodium taurocholate (300--900 mg/kg, 10 ml/kg) every 12 hr for 2 days to male Sprague-Dawley rats. Bile flow, biliary excretion of bile acids, cholesterol and phospholipid and the concentrations of phospholipid and bile acids in bile were increased in rats treated with 750 mg of taurocholate per kg. No effect was observed on Na+,K+ or Cl- levels. The biliary transport maximum for taurocholate was increased by 30% in rats treated with 750 mg/kg. In contrast, the plasma disappearance and biliary excretion of phenol-3,6-dibromphthalein and ouabain were not affected by taurocholate administration.

  15. Varenicline impairs extinction and enhances reinstatement across repeated cycles of nicotine self-administration in rats.

    Science.gov (United States)

    Macnamara, Claire L; Holmes, Nathan M; Westbrook, R Fred; Clemens, Kelly J

    2016-06-01

    Varenicline is a partial nicotine receptor agonist widely prescribed as a smoking cessation medication. Repeated (or long-term) use of varenicline has been proposed as a treatment option for tobacco addiction. However the effect of repeated varenicline use on motivation for nicotine is unknown. Here the intravenous nicotine self-administration paradigm in rats was used to model the consequences of varenicline treatment across repeated cycles of administration, extinction and reinstatement. Rats acquired nicotine self-administration across 20 days before undergoing 6 days of extinction, where each extinction session was preceded by a single injection of varenicline or saline. This was followed by a single varenicline-free nicotine-primed reinstatement test. All rats then reacquired nicotine self-administration for 10 days followed by a second cycle of extinction. Across this period, rats either received a second cycle of varenicline (VAR-VAR) or saline (SAL-SAL), or the alternative treatment (SAL-VAR, VAR-SAL), followed by a final reinstatement test. Treatment with varenicline increased responding across the first cycle of extinction, but did not affect responding in the reinstatement test. Across the second cycle, varenicline again increased responding across extinction, and critically, rats treated with varenicline across cycle 1 and saline across cycle 2 (Group VAR-SAL) exhibited more reinstatement than rats in any other group. The effect of VAR on nicotine seeking was not due to its effects on locomotor activity. Instead, the results suggest that a history of VAR can increase vulnerability to reinstatement/relapse when its treatment is discontinued. The possible mechanisms of this increased vulnerability are discussed.

  16. Effects of nicotine gum on repeated administration of the Stroop test.

    Science.gov (United States)

    Provost, S C; Woodward, R

    1991-01-01

    Using a double-blind procedure, 24 non-smoking subjects chewed either 2 mg nicorette gum or a placebo for 20 min, before completing a Stroop test on three occasions. Colour-word reading and simple colour naming times were consistent across repeats, and were unaffected by nicotine. However, the time taken to name the colour of incongruous colour word stimuli declined across trials. This increase in speed across repeats was significantly greater in those subjects who had received nicotine. These data are consistent with previous reports of a decreased Stroop effect following nicotine administration, but are not compatible with a simple model which assumes that nicotine alters the way in which information is filtered by selective attentional mechanisms. The present results can be explained by postulating that nicotine influences either the rate at which colour naming become more automatic, or changes the way in which resources are allocated to non-automatic processes.

  17. Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats.

    Science.gov (United States)

    Sun, Jinling; Tian, Lin; Cui, Ruisi; Li, Xinwang

    2017-04-01

    Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis.

  18. Repeated administration of imipramine modifies GABAergic transmission in rat frontal cortex.

    Science.gov (United States)

    Wabno, Joanna; Hess, Grzegorz

    2013-05-01

    Alterations in the functions of brain gamma-aminobutyric acid (GABA) inhibitory system and a distortion in the balance between excitatory and inhibitory synaptic transmission have been hypothesized to be possible causes of mood disorders. Experimental evidence points to modifications of GABAergic transmission as a result of prolonged treatment with antidepressant drugs, however, the influence of the tricyclic antidepressant imipramine on inhibitory synaptic transmission in the rat cerebral cortex has not yet been investigated. Therefore, in the present study the effects of single and repeated administration of imipramine were evaluated ex vivo in slices of the rat frontal cortex using electrophysiological approach. In slices prepared 2 days after the last drug administration from animals receiving imipramine for 14 days (dose 10 mg/kg p.o., twice daily) the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from layer II/III pyramidal neurons was decreased, while the mean amplitude of sIPSCs was increased. These effects were absent in slices obtained from rats which received imipramine once. Application of N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN 082), a selective mGluR7 allosteric agonist, to the slice incubation medium resulted in a decrease in the mean frequency of sIPSCs in preparations obtained from repeated imipramine-treated animals, in contrast to slices originating from control rats where no AMN 082-induced effects were observed. Repeated imipramine treatment reduced protein density levels of the three tested GABAA receptor subunits: α 1, β 2 and γ 2. These data indicate that repeated treatment of normal rats with imipramine results in a modification of the release mechanism of GABA from presynaptic terminals and its modulation by mGluR7 receptors as well as in an alteration in GABAA receptor subunit protein levels in the rat cerebral cortex.

  19. Persistence and accumulation of micronucleated hepatocytes in liver of rats after repeated administration of diethylnitrosamine.

    Science.gov (United States)

    Narumi, Kazunori; Ashizawa, Koji; Fujiishi, Yohei; Tochinai, Ryota; Okada, Emiko; Tsuzuki, Yasuhiro; Tatemoto, Hideki; Hamada, Shuichi; Kaneko, Kimiyuki; Ohyama, Wakako

    2013-08-15

    A repeat-dose micronucleus assay in adult rat liver was recently developed [Mutat. Res. 747 (2012) 234-239]. This assay demonstrated a high detectability of hepatocarcinogens at relatively low doses, as indicated by dose-dependent micronucleus induction. Because the adult rat liver is known to have a long life-span, this desirable property of the assay will be an advantage in detecting micronucleated hepatocytes (MNHEPs) that have persisted for long periods in the liver following repeated dosing. However, no data directly supporting the underlying mechanisms have been published to date. In the present study, we verified the mechanisms by means of pulse-labeling of micronucleated hepatocytes with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). The rodent hepatocarcinogen diethylnitrosamine (DEN) was repeatedly administered orally to male Crl:CD (SD) rats (6 weeks old) for up to 2 weeks, and EdU was injected intraperitoneally on days 1, 7, or 14. Hepatocytes were isolated by use of a non-perfusion technique at 24h, 1 week, or 2 weeks after EdU injection and analyzed for EdU incorporation and micronucleus formation. The results of our study confirmed that MNHEPs labeled with EdU on the first day of DEN administration persisted until 2 weeks post-administration in the rat livers. However, the frequency of MHNEPs among EdU-labeled hepatocytes decreased over time. In addition, the number of terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL)-positive cells in the liver tissue increased, suggesting selective removal of micronucleated cells. Theoretical calculation of the cumulative MNHEP frequency on each of the days on which DEN was administered, taking into account the rate of loss, came out closer to the actual value observed in the liver micronucleus test. Taken together, these results indicate that although micronucleated cells induced in rat livers by administration of the genotoxic hepatocarcinogen DEN undergo selective removal, they

  20. Morphine Analgesia Modification in Normotensive and Hypertensive Female Rats after Repeated Fluoxetine Administration.

    Science.gov (United States)

    Kosiorek-Witek, Anna; Makulska-Nowak, Helena Elżbieta

    2016-01-01

    The purpose of this investigation was to determine through the use of fluoxetine the effect of administering a serotonin reuptake inhibitor over several days on the antinociceptive action of μ-morphine type opioid receptor agonist. Investigations were performed on rats of both sexes, both the WKY normotensive strains as well as on the SHR genetically conditioned hypertensive strains. Results showed that the efficacy of morphine analgesia is higher in the SHR strain compared to normotensive rats (WKY). Surprisingly, repeated administration of fluoxetine reduced morphine analgesia, with the weakening of opioid antinociceptive action comparable to the duration of serotonin reuptake inhibitor administration. It was also concluded that the antinociceptive action of morphine in female rats and the alteration of its efficacy as a result of fluoxetine premedication for several days depend on oestrus cycle phase. The highest sensitivity of female rats to morphine was reported in the dioestrus and oestrus phases; much lower values were reported for the metoestrus phase.

  1. Antinociceptive effects of tramadol in co-administration with metamizol after single and repeated administrations in rats.

    Science.gov (United States)

    Moreno-Rocha, Luis Alfonso; Domínguez-Ramírez, Adriana Miriam; Cortés-Arroyo, Alma Rosa; Bravo, Guadalupe; López-Muñoz, Francisco Javier

    2012-11-01

    Combinations of two analgesic drugs of the same or different class are widely used in clinical therapy to enhance its antinociceptive effects and reduce the side effects. In order to evaluate a possible antinociceptive synergistic interaction of metamizol s.c., a nonsteroidal antiinflammatory drug (NSAID), and tramadol s.c., an atypical opioid (opioid receptor agonist), were administered alone or in combination. In the present study, the antinociceptive efficacy and the possible development of pharmacological tolerance produced by the combination tramadol plus metamizol during a 4-day treatment in rats using the plantar test was evaluated. Male Wistar rats were s.c. injected with tramadol (17.8 mg/kg), metamizol (177.8 mg/kg) or the combination tramadol plus metamizol three times a day for 4 days. Both metamizol and tramadol produced antinociceptive effects with a low rate trend towards tolerance development at the end of the treatment. The antinociceptive efficacy of tramadol and metamizol co-administration gradually decreased after the second injection. These data suggest that when the combination is given in a unique administration it results in an important potentiation of their individual antinociceptive effects. But, the repeated coadministration of tramadol plus metamizol results in a development of tolerance.

  2. Alteration in metabolism and toxicity of acetaminophen upon repeated administration in rats.

    Science.gov (United States)

    Kim, Sun J; Lee, Min Y; Kwon, Do Y; Kim, Sung Y; Kim, Young C

    2009-10-01

    Our previous studies showed that administration of a subtoxic dose of acetaminophen (APAP) to female rats increased generation of carbon monoxide from dichloromethane, a metabolic reaction catalyzed mainly by cytochrome P450 (CYP) 2E1. In this study we examined the changes in metabolism and toxicity of APAP upon repeated administration. An intraperitoneal dose of APAP (500 mg/kg) alone did not increase aspartate aminotransferase, alanine aminotransferase, or sorbitol dehydrogenase activity in serum, but was significantly hepatotoxic when the rats had been pretreated with an identical dose of APAP 18 h earlier. The concentrations and disappearance of APAP and its metabolites in plasma were monitored for 8 h after the treatment. APAP pretreatment reduced the elevation of APAP-sulfate, but increased APAP-cysteine concentrations in plasma. APAP or APAP-glucuronide concentrations were not altered. Administration of a single dose of APAP 18 h before sacrifice increased microsomal CYP activities measured with p-nitrophenol, p-nitroanisole, and aminopyrine as probes. Expression of CYP2E1, CYP3A, and CYP1A proteins in the liver was also elevated significantly. The results suggest that administration of APAP at a subtoxic dose may result in an induction of hepatic CYP enzymes, thereby altering metabolism and toxicological consequences of various chemical substances that are substrates for the same enzyme system.

  3. Latent inhibition is disrupted by acute and repeated administration of corticosterone.

    Science.gov (United States)

    Shalev, U.; Feldon, J.; Weiner, I.

    1998-12-01

    Latent inhibition (LI), namely, a retardation in conditioning to a stimulus, as a consequence of its prior non- reinforced pre-exposure, is disrupted in amphetamine-treated rats and humans and in some subsets of schizophrenic patients. One factor that has been repeatedly implicated in precipitating and/or exacerbating psychotic episodes is stress. Since a principal biological response to stress is the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, leading, as its end product, to the secretion of corticosterone, the present experiments tested whether increase in corticosterone levels following exogenous corticosterone administration would disrupt LI. Both repeated (Experiment 1) and acute (Experiment 2) administration of corticosterone led to LI disruption, providing evidence for the involvement of the HPA axis alterations in LI and further supporting the viability of disrupted LI as an animal model of psychosis. Both regimens also increased amphetamine-induced activity. We suggest that disrupted LI may reflect a cognitive mechanism whereby prolonged periods of increased corticosterone levels can lead to 'sensory flooding' characteristic of psychosis.

  4. Repeated Administration of Bone Marrow-Derived Cells Prevents Disease Progression in Experimental Silicosis

    Directory of Open Access Journals (Sweden)

    Miquéias Lopes-Pacheco

    2013-12-01

    Full Text Available Background/Aims: Bone marrow-derived cells (BMDCs reduced mechanical and histologic changes in the lung in a murine model of silicosis, but these beneficial effects did not persist in the course of lung injury. We hypothesized that repeated administration of BMDCs may decrease lung inflammation and remodeling thus preventing disease progression. Methods: One hundred and two C57BL/6 mice were randomly divided into SIL (silica, 20 mg intratracheally [IT] and control (C groups (saline, IT. C and SIL groups were further randomized to receive BMDCs (2×106 cells or saline IT 15 and 30 days after the start of the protocol. Results: By day 60, BMDCs had decreased the fractional area of granuloma and the number of polymorphonuclear cells, macrophages (total and M1 phenotype, apoptotic cells, the level of transforming growth factor (TGF-β‚ and types I and III collagen fiber content in the granuloma. In the alveolar septa, BMDCs reduced the amount of collagen and elastic fibers, TGF-β, and the number of M1 and apoptotic cells. Furthermore, interleukin (IL-1β, IL-1R1, caspase-3 mRNA levels decreased and the level of IL-1RN mRNA increased. Lung mechanics improved after BMDC therapy. The presence of male donor cells in lung tissue was not observed using detection of Y chromosome DNA. Conclusion: repeated administration of BMDCs reduced inflammation, fibrogenesis, and elastogenesis, thus improving lung mechanics through the release of paracrine factors.

  5. Comparison of behavioral effects after single and repeated administrations of four benzodiazepines in three mice behavioral models.

    Science.gov (United States)

    Bourin, M; Hascoet, M; Mansouri, B; Colombel, M C; Bradwejn, J

    1992-01-01

    The behavioral and clinical profiles of various benzodiazepines after acute and chronic treatment are not well defined and may differ. The aim of this study was to evaluate the behavioral profiles of alprazolam, bromazepam, diazepam and lorazepam in mice after single and repeated (every half-life for seven half-lives) administrations using a stimulation-sedation test (actimeter), a myorelaxation test (rotarod), and an anxiolysis test ("four plates"). A dose range from 0.03 to 4 mg/kg was used. A single administration of alprazolam showed stimulating and anxiolytic effects which diminished after repeated administration. Lorezapam's sedative effect diminished but its anxiolytic effect increased upon repeated administration. Except for lorazepam, the myorelaxing effect of all four drugs increased after repeated treatment. These results suggest that the behavioral profile of benzodiazepines may not be identical during acute and chronic treatment. These differences may be present in clinical treatment and warrant investigation in humans. PMID:1637802

  6. Comparison of behavioral effects after single and repeated administrations of four benzodiazepines in three mice behavioral models.

    Science.gov (United States)

    Bourin, M; Hascoet, M; Mansouri, B; Colombel, M C; Bradwejn, J

    1992-06-01

    The behavioral and clinical profiles of various benzodiazepines after acute and chronic treatment are not well defined and may differ. The aim of this study was to evaluate the behavioral profiles of alprazolam, bromazepam, diazepam and lorazepam in mice after single and repeated (every half-life for seven half-lives) administrations using a stimulation-sedation test (actimeter), a myorelaxation test (rotarod), and an anxiolysis test ("four plates"). A dose range from 0.03 to 4 mg/kg was used. A single administration of alprazolam showed stimulating and anxiolytic effects which diminished after repeated administration. Lorezapam's sedative effect diminished but its anxiolytic effect increased upon repeated administration. Except for lorazepam, the myorelaxing effect of all four drugs increased after repeated treatment. These results suggest that the behavioral profile of benzodiazepines may not be identical during acute and chronic treatment. These differences may be present in clinical treatment and warrant investigation in humans.

  7. Pharmacokinetics and tissue disposition of meloxicam in beef calves after repeated oral administration.

    Science.gov (United States)

    Coetzee, J F; Mosher, R A; Griffith, G R; Gehring, R; Anderson, D E; KuKanich, B; Miesner, M

    2015-12-01

    The objective of this study was to investigate the pharmacokinetics and tissue disposition of meloxicam after repeated oral administration in calves. Thirteen male British × Continental beef calves aged 4 to 6 months and weighing 297-392 kg received 0.5 mg/kg meloxicam per os once daily for 4 days. Plasma meloxicam concentrations were determined in 8 calves over 6 days after first treatment. Calves were randomly assigned to be euthanized at 5, 10, 15 (n = 3/timepoint), and 19 days (n = 4) after final administration. Meloxicam concentrations were determined in plasma (LOQ= 0.025 μg/mL) and muscle, liver, kidney, and fat samples (LOQ = 2 ng/g) after extraction using validated LC-MS-MS methods. The mean (± SD) Cmax , Cmin , and Caverage plasma meloxicam concentrations were 4.52 ± 0.87 μg/mL, 2.95 ± 0.77 μg/mL, and 3.84 ± 0.81 μg/mL, respectively. Mean (± SD) tissue meloxicam concentrations were highest in liver (226.67 ± 118.16 ng/g) and kidney samples (52.73 ± 39.01 ng/g) at 5 days after final treatment. Meloxicam concentrations were below the LOQ in all tissues at 15 days after treatment. These findings suggest that tissue from meloxicam-treated calves will have low residue concentrations by 21 days after repeated oral administration.

  8. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training

    NARCIS (Netherlands)

    Morena, M.; Roozendaal, B.; Trezza, V.; Ratano, P.; Peloso, A.; Hauer, D.; Atsak, P.; Trabace, L.; Cuomo, V.; McGaugh, J.L.; Schelling, G.; Campolongo, P.

    2014-01-01

    Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The ex

  9. Evaluation of safety profile of black shilajit after 91 days repeated administration in rats

    Institute of Scientific and Technical Information of China (English)

    Velmurugan C; Vivek B; Wilson E; Bharathi T; Sundaram T

    2012-01-01

    Objective: To evaluate the safety of shilajit by 91 days repeated administration in different dose levels in rats. Methods: In this study the albino rats were divided into four groups. Group I received vehicle and group II, III and IV received 500, 2500 and 5000 mg/kg of shilajit, respectively. Finally animals were sacrificed and subjected to histopathology and iron was estimated by flame atomic absorption spectroscopy and graphite furnace. Results: The result showed that there were no significant changes in iron level of treated groups when compared with control except liver (5000 mg/kg) and histological slides of all organs revealed normal except negligible changes in liver and intestine with the highest dose of shilajit. The weight of all organs was normal when compared with control. Conclusions: The result suggests that black shilajit, an Ayurvedic formulation, is safe for long term use as a dietary supplement for a number of disorders like iron deficiency anaemia.

  10. Anxiolytic profile of fluoxetine as monitored following repeated administration in animal rat model of chronic mild stress

    Directory of Open Access Journals (Sweden)

    Muhammad Farhan

    2016-09-01

    Full Text Available Background: Fluoxetine, a selective serotonin re-uptake inhibitor (SSRI, has been proposed to be more effective as an antidepressive drug as compared to other SSRIs. After chronic SSRI administration, the increase in synaptic levels of 5-HT leads to desensitization of somatodentritic 5-HT autoreceptors in the raphe nuclei. Chronic stress may alter behavioral, neurochemical and physiological responses to drug challenges and novel stressors. Methods: Twenty four male rats were used in this study. Animals of CMS group were exposed to CMS. Animals of stressed and unstressed group were administrated with fluoxetine at dose of 1.0 mg/kg s well as 5.0 mg/kg repeatedly for 07 days 1 h before exposed to CMS. The objective of the present study was to evaluate that repeated treatment with fluoxetine could attenuate CMS-induced behavioral deficits. Results: Treatment with fluoxetine attenuated CMS-induced behavioral deficits. Fluoxetine administration induced hypophagia in unstressed as well as CMS rats. Acute and repeated administration of fluoxetine increased motor activity in familiar environment but only repeated administration increased exploratory activity in open field. Anxiolytic effects of fluoxetine were greater in unstressed rats. These anxiolytic effects were produced as result of repeated administration not on acute administration of fluoxetine at 1.0 mg/kg as well as 5.0 mg/kg. Conclusion: The present study demonstrated that CMS exposure resulted into behavioral deficits and produced depressive-like symptoms. Fluoxetine, an SSRI, administration attenuated behavioral deficits induced by CMS. Anxiolytic effects of repeated fluoxetine administration were greater in unstressed than CMS animals.

  11. Repeated administration of dopaminergic agents in the dorsal hippocampus and morphine-induced place preference.

    Science.gov (United States)

    Zarrindast, M-R; Nasehi, M; Rostami, P; Rezayof, A; Fazli-Tabaei, S

    2005-03-01

    The aim of the present experiments was to investigate whether repeated intra-hippocampal CA1 (intra-CA1) administration of dopaminergic agents can affect morphine-induced conditioned place preference (CPP). Effects of repeated intra-CA1 injections of dopamine (DA) receptor agonists and antagonists on morphine-induced CPP in rats were investigated using an unbiased 3-day schedule of place conditioning. Animals receiving once-daily subcutaneous (s.c.) injections of morphine (1-9 mg/kg) or saline (1.0 ml/kg, s.c.) showed a significant place preference in a dose-dependent manner: the maximum response was observed with 3 mg/kg morphine. Three days' intra-CA1 injections of apomorphine (0.25-1 microg/rat) followed by 5 days free of the drug, significantly decreased morphine CPP (1 and 3 mg/kg, s.c.). Moreover, pre-treatment with the highest dose of apomorphine (1 microg/rat) altered the effect of morphine to an aversive response. The morphine (1 and 3 mg/kg) CPP was also significantly decreased in animals that previously received three intra-CA1 injections of SKF 38393 (2-9 microg/rat), quinpirole (1-3 microg/rat) or sulpiride (1-3 microg/rat), and significantly increased in animals that had previously received three intra-CA1 injections of SCH 23390 (0.02 microg/rat). The 3-day pre-treatment with apomorphine, SKF 38393 or quinpirole reduced locomotor activity in the test session, while SCH 23390 and sulpiride did not have any influence on locomotor activity. It is concluded that repeated injections of DA receptor agents in the dorsal hippocampus, followed by 5 days free of the drugs, can affect morphine reward.

  12. The inhibition of cocaine-induced locomotor activity by CART 55-102 is lost after repeated cocaine administration.

    Science.gov (United States)

    Job, Martin O; Shen, Li L; Kuhar, Michael J

    2013-08-29

    CART peptide is known for having an inhibitory effect on cocaine- and dopamine-mediated actions after acute administration of cocaine and dopamine. In this regard, it is postulated to be a homeostatic, regulatory factor on dopaminergic activity in the nucleus accumbens (NAc). However, there is no data on the effect of CART peptide after chronic administration of cocaine, and this study addresses this. It was found that CART peptide blunted cocaine-induced locomotion (LMA) after acute administration of cocaine, as expected, but it did not affect cocaine-mediated LMA after chronic administration of cocaine. The loss of CART peptide's inhibitory effect did not return for up to 9 weeks after stopping the repeated cocaine administration. It may not be surprising that homeostatic regulatory mechanisms in the NAc are lost after repeated cocaine administration, and that this may be a mechanism in the development of addiction.

  13. Penetration of prulifloxacin into gynaecological tissues after single and repeated oral administrations.

    Science.gov (United States)

    Gorlero, Franco; Lorenzi, Paola; Rosignoli, Maria Teresa; Picollo, Rossella; Ruggieri, Alessandro; Barattè, Simona; Dionisio, Paolo

    2007-01-01

    This study aimed to evaluate the penetration into gynaecological tissues of ulifloxacin, the active metabolite of prulifloxacin, a once-daily fluoroquinolone administered once or in repeated doses. This was an open-label, randomised study that included 20 consenting female inpatients (age range 40-65 years) requiring total simple hysterectomy as a result of benign disease. Three groups of patients were enrolled: group A (four patients whose gynaecological tissue samples were used to set up the bioanalytical method); group B (eight patients treated 3 hours before surgery with one 600 mg tablet of prulifloxacin); group C (eight patients treated with prulifloxacin 600 mg once daily for 3 days and undergoing surgery 3 hours after the last dose). Patients to be treated with prulifloxacin were randomly allocated to group B or C. During surgery, samples of blood were collected jointly with healthy tissue removed from the endometrium, proximal fallopian tube, vaginal posterior fornix and portio vaginalis. Ulifloxacin concentrations in plasma and gynaecological tissues were determined by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) bioanalytical method. An intrastudy assessment of the bioanalytical method performance was also conducted for plasma and tissues using calibration and quality control data (spiked samples). Ulifloxacin mean concentrations were always higher in group C than in group B patients, both in plasma (0.76 vs 0.53 microg/mL) and in gynaecological tissues, namely fallopian tube (1.38 vs 0.81 microg/g), posterior fornix (1.48 vs 1.05 microg/g), portio vaginalis (1.46 vs 1.45 microg/g) and endometrium (2.20 vs 1.39 microg/g), as expected after repeated drug administrations. Tissue concentrations observed after repeated administrations were generally higher than the ulifloxacin minimum inhibitory concentrations for pathogens more frequently involved in gynaecological bacterial infections. The mean tissue/plasma ratios ranged between 1.5 and

  14. Distribution and excretion of arsenic in cynomolgus monkey following repeated administration of diphenylarsinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yayoi [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba, Ibaraki (Japan); Negishi, Takayuki [Aoyama Gakuin University, Department of Chemistry and Biological Science, Tokyo (Japan); Mizumura, Ayano; Watanabe, Takayuki [Chiba University, Graduate School of Pharmaceutical Sciences, Chiba (Japan); Hirano, Seishiro [Chiba University, Graduate School of Pharmaceutical Sciences, Chiba (Japan); National Institute for Environmental Studies, Research Center for Environmental Risk, Tsukuba, Ibaraki (Japan)

    2008-08-15

    Diphenylarsinic acid (DPAA), a possible product of degradation of arsenic-containing chemical weapons, was detected in well water in Kamisu City, Ibaraki Prefecture, Japan, in 2003. Although some individuals in this area have been affected by drinking DPAA-containing water, toxicological findings on DPAA are limited. To elucidate the mechanism of its toxicity, it is necessary to determine the metabolic behavior of DPAA in the body. In this study, pregnant cynomolgus monkeys at the 50th day of pregnancy were used. The monkeys were treated daily with 1.0 mg DPAA/kg body weight using a nasogastric tube, and the distribution and excretion of arsenic were examined after the repeated administration and 198-237 days after the last administration of DPAA. Fecal excretion was higher than urinary excretion (ca. 3:2 ratio), and arsenic accumulated in the hair and erythrocytes. Distribution of DAPP to plasma and hemolyzed erythrocytes was also examined by high-performance liquid chromatography-inductively coupled argon plasma mass spectrometry (HPLC-ICP MS). Two peaks were found in the elution profile of arsenic, due to free and probably protein-bound DPAA. The protein-bound arsenic compounds were presumably trivalent diphenylarsenic compounds, since free DPAA was recovered after treatment of heat-denatured samples with hydrogen peroxide. (orig.)

  15. [Repeated perioperative administration of fructose and sorbitol in a female patient with hereditary fructose intolerance [HFI)].

    Science.gov (United States)

    Sachs, M; Asskali, F; Förster, H; Encke, A

    1993-03-01

    The present paper reports on an adult female patient whose hereditary fructose intolerance (HFI) was at first not diagnosed and who, within the space of 2 years after repeated elective surgery and the perioperative administration of fructose and sorbitol, developed "hepatic and renal failure of unclear origin." At a later stage we were able to establish the diagnosis of HFI by means of a fructose tolerance test in both she and her brother, for whom intolerance to fruit and desserts had been known since early childhood. In addition, literature references to fatalities following the parenteral application of fructose and sorbitol were analyzed. During the course of fructose infusion in both the patient and her brother with HFI, the following metabolic changes were noted: hypoglycemia, elevated rise in the blood fructose concentration, hyperlactacidemia, elevated rise in the blood fructose concentration, hyperlactacidemia, and hyperammonemia. These metabolic changes proved to be reversible after discontinuing the fructose infusion. Analysis of the literature on the fatalities following parenteral fructose administration established that fruit and dessert intolerance was known for all collated patients with HFI, and that, clearly, no regular metabolic tests had been conducted.

  16. Cannabinoids as novel anti-inflammatory drugs.

    Science.gov (United States)

    Nagarkatti, Prakash; Pandey, Rupal; Rieder, Sadiye Amcaoglu; Hegde, Venkatesh L; Nagarkatti, Mitzi

    2009-10-01

    Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors. The discovery of Δ9-tetrahydrocannabinol (THC) as the major psychoactive principle in marijuana, as well as the identification of cannabinoid receptors and their endogenous ligands, has led to a significant growth in research aimed at understanding the physiological functions of cannabinoids. Cannabinoid receptors include CB1, which is predominantly expressed in the brain, and CB2, which is primarily found on the cells of the immune system. The fact that both CB1 and CB2 receptors have been found on immune cells suggests that cannabinoids play an important role in the regulation of the immune system. Recent studies demonstrated that administration of THC into mice triggered marked apoptosis in T cells and dendritic cells, resulting in immunosuppression. In addition, several studies showed that cannabinoids downregulate cytokine and chemokine production and, in some models, upregulate T-regulatory cells (Tregs) as a mechanism to suppress inflammatory responses. The endocannabinoid system is also involved in immunoregulation. For example, administration of endocannabinoids or use of inhibitors of enzymes that break down the endocannabinoids, led to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Manipulation of endocannabinoids and/or use of exogenous cannabinoids in vivo can constitute a potent treatment modality against inflammatory disorders. This review will focus on the potential use of cannabinoids as a new class of anti-inflammatory agents against a number of inflammatory and autoimmune diseases that are primarily triggered by activated T cells or other cellular immune components.

  17. Repeated otilonium bromide administration prevents neurotransmitter changes in colon of rats underwent to wrap restraint stress.

    Science.gov (United States)

    Traini, Chiara; Evangelista, Stefano; Girod, Vincent; Faussone-Pellegrini, Maria Simonetta; Vannucchi, Maria Giuliana

    2017-04-01

    Otilonium bromide (OB) is a spasmolytic drug successfully used for the treatment of irritable bowel syndrome (IBS). Its efficacy has been attributed to the block of L- and T-type Ca(2+) channels and muscarinic and tachykinin receptors in the smooth muscle. Furthermore, in healthy rats, repeated OB administration modified neurotransmitter expression and function suggesting other mechanisms of action. On this basis, we investigated whether repeated OB treatment prevented the functional and neurochemical changes observed in the colon of rats underwent to wrap restrain stress (WRS) a psychosocial stressor considered suitable to reproduce the main IBS signs and symptoms. In control, WRS and OB/WRS rats functional parameters were measured in vivo and morphological investigations were done ex vivo in the colon. The results showed that OB counteracts most of the neurotransmitters changes caused by WRS. In particular, the drug prevents the decrease in SP-, NK1r-, nNOS-, VIP-, and S100β-immunoreactivity (IR) and the increase in CGRP-, and CRF1r-IR. On the contrary, OB does not affect the increase in CRF2r-IR neurons observed in WRS rats and does not interfere with the mild mucosal inflammation due to WRS. Finally, OB per se increases the Mr2 expression in the muscle wall and decreases the number of the myenteric ChAT-IR neurons. Functional findings show a significantly reduction in the number of spontaneous abdominal contraction in OB treated rats. The ability of OB to block L-type Ca(2+) channels, also expressed by enteric neurons, might represent a possible mechanism through which OB exerts its actions. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Early maternal deprivation and neonatal single administration with a cannabinoid agonist induce long-term sex-dependent psychoimmunoendocrine effects in adolescent rats.

    Science.gov (United States)

    Llorente, Ricardo; Arranz, Lorena; Marco, Eva-María; Moreno, Enrique; Puerto, Marta; Guaza, Carmen; De la Fuente, Mónica; Viveros, Maria-Paz

    2007-07-01

    Maternal deprivation [24h on postnatal day 9] might represent an animal model of schizophrenia and behavioural and neurochemical alterations observed in adulthood may be mediated by hippocampal impairments induced by abnormally increased glucocorticoids due to neonatal stress. We aimed to provide new data for psychoimmunoendocrine characterization of this animal model by evaluating its effects in adolescent rats of both genders. In previous studies we found that cannabinoid compounds counteracted the enhanced impulsivity of maternally deprived animals and that the cannabinoid receptor agonist WIN 55,212-2 showed neuroprotective properties in neonatal rats. So, we hypothesised that this compound could counteract at least some of the detrimental effects that we expected to find in maternally deprived animals. Accordingly, the drug was administered immediately after the maternal deprivation period. Maternally deprived males showed significantly decreased motor activity in the holeboard and the plus-maze. The cannabinoid agonist induced, exclusively in males, a significant anxiogenic-like effect, which was reversed by maternal deprivation. In the forced swimming test, both treatments independently induced depressive-like responses. Maternal deprivation reduced immunological function whereas the drug exerted tissue-dependent effects on the immune parameters analysed. Maternally deprived females showed reduced corticosterone levels whereas the cannabinoid agonist increased hormone concentration in all groups. In general, the results show detrimental effects of both treatments as well as intriguing interactions, notably in relation to emotional behaviour and certain immunological responses.

  19. Pharmacokinetics of marbofloxacin in lactating cows after repeated intramuscular administrations and pharmacodynamics against mastitis isolated strains.

    Science.gov (United States)

    Schneider, M; Vallé, M; Woehrlé, F; Boisramé, B

    2004-01-01

    The plasma and milk pharmacokinetics of marbofloxacin, a fluoroquinolone antibacterial compound, were evaluated in dairy cows, as well as its pharmacodynamic characteristics against mastitis-isolated pathogens. Marbofloxacin was given intramuscularly as a 10% aqueous solution to dairy cows either at a single dose or at repeated doses of 2 mg/kg once daily for 3 d. Blood and milk samples were collected for the determination of the concentration of marbofloxacin and of its putative metabolites: N-desmethyl-marbofloxacin and N-oxide-marbofloxacin. Bacterial field isolates were from milk samples collected from dairy cows suspected of having an intramammary infection. After identification, the minimal inhibitory concentration (MIC) was determined against the isolated strains. The maximal marbofloxacin concentration (Cmax) observed in milk after the first administration was 1.024 microg/mL, and the area under the curve during the first dosing interval was 6.513 microg/h per milliliter. After the third administration, these parameters were slightly increased (about 20% at most). Both metabolites were detected in the milk, but their concentrations were below the limit of quantification. The MIC against 90% of the population (MIC90) of Escherichia coli was 0.016 microg/mL, and it was 0.229 microg/mL against Staphylococcus aureus. The following surrogate clinical outcome markers were obtained against E. coli strains: a Cmax/MIC ratio of 67 and an area under the curve/MIC ratio of 407 h. Hence, a possible efficacy of marbofloxacin in the treatment of E. coli-induced mastitis could be expected as the endpoints of 10 and 250 h, respectively, are reached.

  20. Cannabinoids and Pain

    Directory of Open Access Journals (Sweden)

    J Michael Walker

    2001-01-01

    Full Text Available Cannabinoids have been used to treat pain for many centuries. However, only during the past several decades have rigorous scientific methods been applied to understand the mechanisms of cannabinoid action. Cannabinoid receptors were discovered in the late 1980s and have been found to mediate the effects of cannabinoids on the nervous system. Several endocannabinoids were subsequently identified. Many studies of cannabinoid analgesia in animals during the past century showed that cannabinoids block all types of pain studied. These effects were found to be due to the suppression of spinal and thalamic nociceptive neurons, independent of any actions on the motor systems. Spinal, supraspinal and peripheral sites of cannabinoid analgesia have been identified. Endocannabinoids are released upon electrical stimulation of the periaqueductal gray, and in response to inflammation in the extremities. These observations and others thus suggest that a natural function of cannabinoid receptors and their endogenous ligands is to regulate pain sensitivity. The therapeutic potential of cannabinoids remains an important topic for future investigations, with previous work suggesting utility in clinical studies of cancer and surgical pain. New modes of delivery and/or new compounds lacking the psychotropic properties of the standard cannabinoid ligands offer promise for cannabinoid therapeutics for pain.

  1. Cannabinoids on the Brain

    Directory of Open Access Journals (Sweden)

    Andrew J. Irving

    2002-01-01

    Full Text Available Cannabis has a long history of consumption both for recreational and medicinal uses. Recently there have been significant advances in our understanding of how cannabis and related compounds (cannabinoids affect the brain and this review addresses the current state of knowledge of these effects. Cannabinoids act primarily via two types of receptor, CB1 and CB2, with CB1 receptors mediating most of the central actions of cannabinoids. The presence of a new type of brain cannabinoid receptor is also indicated. Important advances have been made in our understanding of cannabinoid receptor signaling pathways, their modulation of synaptic transmission and plasticity, the cellular targets of cannabinoids in different central nervous system (CNS regions and, in particular, the role of the endogenous brain cannabinoid (endocannabinoid system. Cannabinoids have widespread actions in the brain: in the hippocampus they influence learning and memory; in the basal ganglia they modulate locomotor activity and reward pathways; in the hypothalamus they have a role in the control of appetite. Cannabinoids may also be protective against neurodegeneration and brain damage and exhibit anticonvulsant activity. Some of the analgesic effects of cannabinoids also appear to involve sites within the brain. These advances in our understanding of the actions of cannabinoids and the brain endocannabinoid system have led to important new insights into neuronal function which are likely to result in the development of new therapeutic strategies for the treatment of a number of key CNS disorders.

  2. The effects of repeated opioid administration on locomotor activity: II. Unidirectional cross-sensitization to cocaine.

    Science.gov (United States)

    Smith, Mark A; Greene-Naples, Jennifer L; Felder, Jennifer N; Iordanou, Jordan C; Lyle, Megan A; Walker, Katherine L

    2009-08-01

    Sensitization refers to an increase in sensitivity to the effects of a drug and is believed to play a role in the etiology of substance use disorders. Cross-sensitization has been observed between drugs from different pharmacological classes and may play a role in the escalation of drug use in polydrug-abusing populations. The purpose of this study was to examine cross-sensitization between opioids and cocaine and to determine the extent to which cross-sensitization is mediated by an opioid's selectivity for mu, kappa, and delta receptors. Separate groups of rats were treated with opioid receptor agonists and antagonists every other day for 10 days, and the locomotor effects of cocaine were tested 8 days later. The mu agonists, morphine and buprenorphine, and the delta agonist, BW373U86 [(+/-)-4-[(R(*))-[(2S(*),5R(*))-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide hydrochloride], produced cross-sensitization to cocaine, such that repeated administration of these drugs over a 10-day period significantly enhanced cocaine's locomotor effects when tested later. Coadministration of the opioid antagonist naltrexone prevented morphine and buprenorphine from producing cross-sensitization. Coadministration of naltrexone, but not the delta antagonist naltrindole, also prevented BW373U86 from producing cross-sensitization. The kappa agonist spiradoline failed to produce cross-sensitization, but coadministration of spiradoline prevented morphine and buprenorphine from producing cross-sensitization. The ability of spiradoline to block cross-sensitization was itself blocked by the kappa antagonist nor-binaltorphimine. The mixed mu/kappa opioids butorphanol, nalbuphine, and nalorphine did not produce cross-sensitization under any condition examined. These data indicate that agonist activity at mu receptors positively modulates cross-sensitization between opioids and cocaine, whereas agonist activity at kappa receptors negatively modulates

  3. Repeated oral administration of chitosan/DNA nanoparticles delivers functional FVIII with the absence of antibodies in hemophilia A mice.

    Science.gov (United States)

    Dhadwar, S S; Kiernan, J; Wen, J; Hortelano, G

    2010-12-01

    Current treatment of hemophilia A is expensive and involves regular infusions of factor (F)VIII concentrates. The supply of functional FVIII is further compromised by the generation of neutralizing antibodies. Thus, the development of an alternative safe, cost effective, non-invasive treatment that circumvents immune response induction is desirable. To evaluate the feasibility of oral administration of chitosan nanoparticles containing FVIII DNA to provide sustainable FVIII activity in hemophilia A mice. Nanoparticles were characterized for morphology, DNA protection and transfection efficiency. Oral administration of nanoparticles containing canine FVIII in C57Bl/6 FVIII(-/-) hemophilia A mice was evaluated for biodistribution, plasma FVIII activity and phenotypic correction. Sustainable FVIII expression was elucidated after repeated nanoparticle administration. Immune responses to repeated oral nanoparticle administration were also investigated. Chitosan nanoparticles had a particle size range of 200-400 nm and protected DNA from endonuclease and pH degradation. In addition, nanoparticles transfected HEK 293 cells resulted in expression of eGFP, luciferase and FVIII. Hemophilia A mice that ingested chitosan nanoparticles demonstrated transient canine FVIII expression reaching > 100 mU 1 day after treatment, together with partial phenotypic correction. The delivered FVIII plasmid DNA was detected in the intestine and, to a lesser extent, in the liver. Importantly, repeated weekly administrations restored FVIII activity. Furthermore, inhibitors and non-neutralizing FVIII antibodies were not detectable. Repeat oral administration of FVIII DNA formulated in chitosan nanoparticles resulted in sustained FVIII activity in hemophilic mice, and thus may provide a non-invasive alternative treatment for hemophilia A. © 2010 International Society on Thrombosis and Haemostasis.

  4. Assessment of low-dose cisplatin as a model of nausea and emesis in beagle dogs, potential for repeated administration.

    Science.gov (United States)

    Kenward, Hannah; Pelligand, Ludovic; Elliott, Jonathan

    2014-08-01

    Cisplatin is a highly emetogenic cancer chemotherapy agent, which is often used to induce nausea and emesis in animal models. The cytotoxic properties of cisplatin also cause adverse events that negatively impact on animal welfare preventing repeated administration of cisplatin. In this study, we assessed whether a low (subclinical) dose of cisplatin could be utilized as a model of nausea and emesis in the dog while decreasing the severity of adverse events to allow repeated administration. The emetic, nausea-like behavior and potential biomarker response to both the clinical dose (70 mg/m2) and low dose (15 mg/m2) of cisplatin was assessed. Plasma creatinine concentrations and granulocyte counts were used to assess adverse effects on the kidneys and bone marrow, respectively. Nausea-like behavior and emesis was induced by both doses of cisplatin, but the latency to onset was greater in the low-dose group. No significant change in plasma creatinine was detected for either dose groups. Granulocytes were significantly reduced compared with baseline (P = 0.000) following the clinical, but not the low-dose cisplatin group. Tolerability of repeated administration was assessed with 4 administrations of an 18 mg/m2 dose cisplatin. Plasma creatinine did not change significantly. Cumulative effects on the granulocytes occurred, they were significantly decreased (P = 0.03) from baseline at 3 weeks following cisplatin for the 4th administration only. Our results suggest that subclinical doses (15 and 18 mg/m2) of cisplatin induce nausea-like behavior and emesis but have reduced adverse effects compared with the clinical dose allowing for repeated administration in crossover studies.

  5. Novel cannabinoid receptors

    OpenAIRE

    Brown, A J

    2007-01-01

    Cannabinoids have numerous physiological effects. In the years since the molecular identification of the G protein-coupled receptors CB1 and CB2, the ion channel TRPV1, and their corresponding endogenous ligand systems, many cannabinoid-evoked actions have been shown conclusively to be mediated by one of these specific receptor targets. However, there remain several examples where these classical cannabinoid receptors do not explain observed pharmacology. Studies using mice genetically delete...

  6. Influence of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist (WIN 55,212-2) and inverse agonist (AM 251) on the regulation of food intake and hypothalamic serotonin levels.

    Science.gov (United States)

    Merroun, Ikram; Errami, Mohammed; Hoddah, Hanaa; Urbano, Gloria; Porres, Jesús M; Aranda, Pilar; Llopis, Juan; López-Jurado, María

    2009-05-01

    The effect of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist WIN 55,212-2 or inverse agonist AM 251 on food intake and extracellular levels of serotonin and acetic acid 5-hydroxy-indol from presatiated rats was studied. Compared to the vehicle-injected control, the intracerebroventricular administration of WIN 55,212-2 was associated with a significant increase in food intake, whereas the administration of AM 251 caused a significant reduction in this respect. These results were accompanied by considerable reductions or increases in serotonin and acetic acid 5-hydroxy-indol levels compared to the vehicle-injected control and the baseline values for the different experimental groups studied. Intraperitoneal administration of WIN 55,212-2 at doses of 1 and 2 mg/kg promoted hyperphagia up to 6 h after injection, whereas administration of a higher dose (5 mg/kg) significantly inhibited food intake and motor behaviour in partially satiated rats. Administration of any of the AM 251 doses studied (0.5, 1, 2, 5 mg/kg) led to a significant decrease in the amount of food ingested from 2 h after the injection, compared to the vehicle-injected control group, with the most striking effect being observed when the 5 mg/kg dose was injected.

  7. Short-term repeated corticosterone administration enhances glutamatergic but not GABAergic transmission in the rat motor cortex.

    Science.gov (United States)

    Kula, Joanna; Blasiak, Anna; Czerw, Anna; Tylko, Grzegorz; Sowa, Joanna; Hess, Grzegorz

    2016-04-01

    It has been demonstrated that stress impairs performance of skilled reaching and walking tasks in rats due to the action of glucocorticoids involved in the stress response. Skilled reaching and walking are controlled by the primary motor cortex (M1); however, it is not known whether stress-related impairments in skilled motor tasks are related to functional and/or structural alterations within the M1. We studied the effects of single and repeated injections of corticosterone (twice daily for 7 days) on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) recorded from layer II/III pyramidal neurons in ex vivo slices of the M1, prepared 2 days after the last administration of the hormone. We also measured the density of dendritic spines on pyramidal cells and the protein levels of selected subunits of AMPA, NMDA, and GABAA receptors after repeated corticosterone administration. Repeatedly administered corticosterone induced an increase in the frequency but not in the amplitude of sEPSCs, while a single administration had no effect on the recorded excitatory currents. The frequency and amplitude of sIPSCs as well as the excitability of pyramidal cells were changed neither after single nor after repeated corticosterone administration. Treatment with corticosterone for 7 days did not modify the density of dendritic spines on pyramidal neurons. Corticosterone influenced neither the protein levels of GluA1, GluA2, GluN1, GluN2A, and GluN2B subunits of glutamate receptors nor those of α1, β2, and γ2 subunits of the GABAA receptor. The increase in sEPSCs frequency induced by repeated corticosterone administration faded out within 7 days. These data indicate that prolonged administration of exogenous corticosterone selectively and reversibly enhances glutamatergic, but not GABAergic transmission in the rat motor cortex. Our results suggest that corticosterone treatment results in an enhancement of spontaneous glutamate release from presynaptic

  8. Pharmacokinetics of Repeated Melatonin Drug Administrations Prior to and After Surgery

    DEFF Research Database (Denmark)

    Harpsøe, Nathja Groth; Andersen, Lars Peter Kloster; Mielke, Louise Vennegaard

    2016-01-01

    treatment protocol was standardized between patients. During the study, each patient received two separate oral administrations of melatonin 10 mg. Melatonin was administered 60 min before surgery, and at 9:00 p.m. the evening after surgery. The pharmacokinetic variables absorption half-life (t ½ absorption...... not differ between the study phases (p > 0.05). CONCLUSIONS: These preliminary results indicate that postoperative melatonin dose should be augmented compared with preoperative administration if corresponding melatonin plasma levels are intended. Furthermore, postoperative administration times should...... be advanced compared with preoperative administration....

  9. Cannabinoids and zebrafish

    NARCIS (Netherlands)

    Akhtar, Muhammad Tayyab

    2013-01-01

    Cannabinoids are a group of terpenophenolic compounds and are naturally found in the cannabis plant (Cannabis sativa L). Δ9-Tetrahydrocannabinol (Δ9-THC) is the psychoactive cannabinoid. The high lipophilicity of Δ9-THC is a hindering factor in the further development of this compound into a large s

  10. The delayed lung responses to single and repeated intratracheal administration of pure cobalt and hard metal powder in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Lasfargues, G.; Lardot, C.; Lauwerys, R.; Lison, D. [Catholic Univ. of Louvain (Belgium)] [and others

    1995-05-01

    Epidemiological and clinical studies suggest that inhalation of cobalt metal dust (Co) mixed with tungsten carbide particles (WC), but not of cobalt dust alone, may cause interstitial pulmonary lesions (hard metal disease). In previous studies in the rat, we have demonstrated the greater acute pulmonary toxicity of a WC-Co mixture was greater compared to Co or WC alone. The present study compares the delayed lung response after intratracheal administration of Co or WC-Co particles. The responses were also compared with those obtained after treatment with arsenic trioxide and crystalline silica used as reference materials producing an acute toxic insult and progressive fibrogenic response, respectively. Cellular and biochemical parameters were measured in bronchoalveolar lavage fluid following single and repeated intratracheal instillations. The results indicate the delayed lung response observed after WC-Co is different from that after cobalt metal alone. A single intratracheal dose of WC-Co (1, 5, or 10 mg/100 g body wt) induced an acute alveolitis which persisted for at least 1 month. Four months after a single instillation of WC-Co, no clear histological lung fibrosis could however be evidenced, indicating a reversibility of the lesions. The effects of cobalt (0.06, 0.3, or 0.6 mg/100 g body wt) were very modest, if any. Following repeated intratracheal instillations, increased lung hydroxyproline content and histopathological evidence of interstitial fibrosis were observed after WC-Co (4x1 mg/100 g body wt), but not after administration of each component separately, i.e., Co (4x0.06 mg/100 g body wt) or WC (4x1 mg/100 g body wt). The mechanism of the fibrotic reaction induced by WC-Co seems different from the progressive inflammatory reaction induced by crystalline silica. We suggest that it might result from a scarring reaction elicited by repeated acute insults as observed after repeated administration of arsenic trioxide. 34 refs., 10 figs., 3 tabs.

  11. Repeated Administration of Mercury Intensifies Brain Damage in Multiple Sclerosis through Mitochondrial Dysfunction

    Science.gov (United States)

    Kahrizi, Farzad; Salimi, Ahmad; Noorbakhsh, Farshid; Faizi, Mehrdad; Mehri, Freshteh; Naserzadeh, Parvaneh; Naderi, Nima; Pourahmad, Jalal

    2016-01-01

    In this study we investigated the additive effect of mercury on the brain mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE) model. Experimental animals (female C57BL/6 mice) are divided into four groups (n = 8); control, Hg, EAE, EAE with Hg. EAE model of MS induced by injecting myelin oligodendrocyte glycoprotein (MOG). Neurobehavioral alterations are recorded and then mice were sacrificed at day 28 and brain mitochondria were isolated and mitochondrial toxicity parameters including mitochondrial swelling, reactive oxygen species (ROS) formation, collapse of mitochondrial membrane potential (MMP) and cytochrome c release were measured. Our results showed that repeated treatment of mercury following induction of EAE in mice significantly increased the neurobehavioral scores, as well as mitochondrial toxicity through ROS formation, mitochondrial swelling, collapse of MMP and cytochrome c release. Our findings proved that repeated exposure with mercury accelerates progression of MS through mitochondrial damage related to oxidative stress and finally apoptosis.

  12. Cannabinoids and Dementia: A Review of Clinical and Preclinical Data

    Directory of Open Access Journals (Sweden)

    Michael Halpern

    2010-08-01

    Full Text Available The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia. We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD, Huntington’s disease (HD, Parkinson’s disease (PD and vascular dementia (VD. Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro. However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce. While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia. Further research is needed, including in vivo models of dementia and human studies.

  13. Evaluation of statistical tools used in short-term repeated dose administration toxicity studies with rodents.

    Science.gov (United States)

    Kobayashi, Katsumi; Pillai, K Sadasivan; Sakuratani, Yuki; Abe, Takemaru; Kamata, Eiichi; Hayashi, Makoto

    2008-02-01

    In order to know the different statistical tools used to analyze the data obtained from twenty-eight-day repeated dose oral toxicity studies with rodents and the impact of these statistical tools on interpretation of data obtained from the studies, study reports of 122 numbers of twenty-eight-day repeated dose oral toxicity studies conducted in rats were examined. It was found that both complex and easy routes of decision trees were followed for the analysis of the quantitative data. These tools include Scheffe's test, non-parametric type Dunnett's and Scheffe's tests with very low power. Few studies used the non-parametric Dunnett type test and Mann-Whitney's U test. Though Chi-square and Fisher's tests are widely used for analysis of qualitative data, their sensitivity to detect a treatment-related effect is questionable. Mann-Whitney's U test has better sensitivity to analyze qualitative data than the chi-square and Fisher's tests. We propose Dunnett's test for analysis of quantitative data obtained from twenty-eight-day repeated dose oral toxicity tests and for qualitative data, Mann-Whitney's U test. For both tests, one-sided test with p=0.05 may be applied.

  14. Repeated Intrathecal Triamcinolone Acetonide Administration in Progressive Multiple Sclerosis: A Review

    Directory of Open Access Journals (Sweden)

    Mazen Abu-Mugheisib

    2011-01-01

    Full Text Available At the present time, anti-inflammatory, immunomodulatory, or immunosuppressive treatments of multiple sclerosis (MS are mainly effective in the early phases of the disease but are of less advantage in progressive phases. Current therapeutic strategies of both primary and secondary progressive MS are rare. One alternative may be intrathecal application of triamcinolone acetonide (TCA. Number of papers deal with advantages and disadvantages of intrathecal administration in MS. Former trials lacked detailed selection of MS patients, with small sample sizes, low steroid dosages, and only a small number of intrathecal administration of short acting steroids. The present paper summarizes recent trials performed following a different treatment regime. They were conducted in patients with progressive MS suffering mainly from spinal symptoms and documented a significant improvement of EDSS and walking distance (WD. Intrathecal TCA administration is a proposal to take into account as one therapy option in patients with a progressive clinical course and predominantly spinal symptoms.

  15. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents - current status

    Energy Technology Data Exchange (ETDEWEB)

    Stojanov, Dragan [University of Nis, Faculty of Medicine, Nis (Serbia); Center for Radiology, Nis (Serbia); Aracki-Trenkic, Aleksandra [Center for Radiology, Nis (Serbia); Benedeto-Stojanov, Daniela [University of Nis, Faculty of Medicine, Nis (Serbia)

    2016-05-15

    Gadolinium-based contrast agents (GBCAs) have been used clinically since 1988 for contrast-enhanced magnetic resonance imaging (CE-MRI). Generally, GBCAs are considered to have an excellent safety profile. However, GBCA administration has been associated with increased occurrence of nephrogenic systemic fibrosis (NSF) in patients with severely compromised renal function, and several studies have shown evidence of gadolinium deposition in specific brain structures, the globus pallidus and dentate nucleus, in patients with normal renal function. Gadolinium deposition in the brain following repeated CE-MRI scans has been demonstrated in patients using T1-weighted unenhanced MRI and inductively coupled plasma mass spectroscopy. Additionally, rodent studies with controlled GBCA administration also resulted in neural gadolinium deposits. Repeated GBCA use is associated with gadolinium deposition in the brain. This is especially true with the use of less-stable, linear GBCAs. In spite of increasing evidence of gadolinium deposits in the brains of patients after multiple GBCA administrations, the clinical significance of these deposits continues to be unclear. Here, we discuss the current state of scientific evidence surrounding gadolinium deposition in the brain following GBCA use, and the potential clinical significance of gadolinium deposition. There is considerable need for further research, both to understand the mechanism by which gadolinium deposition in the brain occurs and how it affects the patients in which it occurs. (orig.)

  16. The influence of repeated administration of poloxamer 407 on serum lipoproteins and protease activity in mouse liver and heart.

    Science.gov (United States)

    Korolenko, Tatyana A; Tuzikov, Fedor V; Johnston, Thomas P; Tuzikova, Natalia A; Kisarova, Yana A; Zhanaeva, Svetlana Ya; Alexeenko, Tatyana V; Zhukova, Natalia A; Brak, Ivan V; Spiridonov, Victor K; Filjushina, Elena E; Cherkanova, Marina S; Monoszon, Anna A

    2012-11-01

    The effects of repeated administration of poloxamer 407 (P-407) on lipoprotein-cholesterol (LP-C) and lipoprotein-triglyceride (LP-TG) fractions and subfractions, as well as the effect on liver and heart proteases, were studied. Repeated administration of P-407 to male CBA mice resulted in a model of atherosclerosis with increased diastolic blood pressure; there was a drastic increase in total serum cholesterol and especially TG. A novel small-angle X-ray scattering method for the determination of the fractional and subfractional composition of LP-C and LP-TG was used. In chronically P-407-treated mice, P-407 significantly increased atherogenic low-density lipoprotein C (LDL-C) fractions, as well as intermediate-density lipoprotein C (IDL-C), and LDL₁₋₃-C subfractions, and very-low-density lipoprotein-C (VLDL-C) fractions, as well as VLDL₁₋₂-C and VLDL₃₋₅-C subfractions), to a lesser extent, the total anti-atherogenic high-density lipoprotein C (HDL-C) fraction, as well as HDL₂-C and HDL₃-C subfractions. Additionally, we demonstrated an increase in the serum chitotriosidase activity, without significant changes in serum matrix metalloprotease (MMP) activity. Morphological changes observed in P-407-treated mice included atherosclerosis in the heart and storage syndrome in the liver macrophages. P-407 significantly increased the activity of cysteine, aspartate proteases, and MMPs in the heart, and only the activity of cathepsin B and MMPs in the liver of mice. Thus, repeated administration of P-407 to mice induced atherosclerosis secondary to sustained dyslipidemia and formation of foamy macrophages in liver, and also modulated the activity of heart and liver proteases.

  17. The effects of repeated intravenous iohexol administration on renal function in healthy beagles – a preliminary report

    Directory of Open Access Journals (Sweden)

    Kirberger Robert M

    2012-08-01

    Full Text Available Abstract Background Contrast induced nephrotoxicity (CIN is a well described syndrome in humans undergoing contrast medium examinations. To date CIN has received minimal attention in the veterinary literature despite increasing use of contrast medium examinations in computed tomographic studies. Methods This prospective study evaluated the effect of 1290 mg/kg iohexol given intravenously to 5 normal beagle dogs in a divided dose at an interval of 6–8 weeks. Renal function was evaluated by means of scintigraphically determined glomerular filtration rate (GFR and a variety of laboratory assays. Results Only GFR showed a significant decrease (17% after the second injection but not to a clinically or pathologically significant level. Conclusions No clinically significant effect of repeated contrast medium administration was determined in this limited study. However in dogs with reduced renal function the risk of CIN is likely to increase dramatically post contrast administration.

  18. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility

    Science.gov (United States)

    Bai, Yuhong; Zhang, Yi; Zhang, Jingping; Mu, Qingxin; Zhang, Weidong; Butch, Elizabeth R.; Snyder, Scott E.; Yan, Bing

    2010-09-01

    Soluble carbon nanotubes show promise as materials for in vivo delivery and imaging applications. Several reports have described the in vivo toxicity of carbon nanotubes, but their effects on male reproduction have not been examined. Here, we show that repeated intravenous injections of water-soluble multiwalled carbon nanotubes into male mice can cause reversible testis damage without affecting fertility. Nanotubes accumulated in the testes, generated oxidative stress and decreased the thickness of the seminiferous epithelium in the testis at day 15, but the damage was repaired at 60 and 90 days. The quantity, quality and integrity of the sperm and the levels of three major sex hormones were not significantly affected throughout the 90-day period. The fertility of treated male mice was unaffected; the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those that mated with untreated male mice.

  19. Cannabis and Cannabinoids (PDQ)

    Science.gov (United States)

    ... Professionals Questions to Ask about Your Treatment Research Cannabis and Cannabinoids (PDQ®)–Patient Version Overview Go to ... treatment (see Question 9 ). Questions and Answers About Cannabis What is Cannabis ? Cannabis , also known as marijuana , ...

  20. Repeated oral administration of capsaicin increases anxiety-like behaviours with prolonged stress-response in rats

    Indian Academy of Sciences (India)

    Y-J Choi; J Y Kim; S B Yoo; J-H Lee; J W Jahng

    2013-09-01

    This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of capsaicin. Stereotypy counts and rostral grooming were significantly increased, and caudal grooming decreased, in capsaicin-treated rats during the ambulatory activity test. In elevated plus maze test, not only the time spent in open arms but also the percent arm entry into open arms was reduced in capsaicin-treated rats compared with control rats. In forced swim test, although swimming duration was decreased, struggling increased in the capsaicin group, immobility duration did not differ between the groups. Repeated oral capsaicin did not affect the basal levels of plasma corticosterone; however, the stress-induced elevation of plasma corticosterone was prolonged in capsaicin treated rats. Oral capsaicin exposure significantly increased c-Fos expression not only in the nucleus tractus of solitarius but also in the paraventricular nucleus. Results suggest that repeated oral exposure to capsaicin increases anxiety-like behaviours in rats, and dysfunction of the hypothalamic-pituitary-adrenal axis may play a role in its pathophysiology.

  1. Changes on metabolic parameters induced by acute cannabinoid administration (CBD, THC) in a rat experimental model of nutritional vitamin A deficiency.

    Science.gov (United States)

    El Amrani, Loubna; Porres, Jesús M; Merzouki, Abderrahmane; Louktibi, Abdelaziz; Aranda, Pilar; López-Jurado, María; Urbano, Gloria

    2013-01-01

    Introducción: La deficiencia en vitamina A está asociada a la malnutrición, malabsorción de este nutriente, metabolismo alterado de vitaminas por enfermedad hepática, o enfermedades crónicas debilitantes como VIH, cáncer o infección. La administración de cannabis ha sido descrita como una terapia eficaz en el tratamiento sintomático de determinadas manifestaciones de la deficiencia nutricional en vitamina A y de diversas enfermedades crónicas debilitantes. Objetivos: El objetivo de este trabajo era estudiar el efecto de la administración de tetrahidrocannabinol (THC) y cannabidiol (CBD) sobre las concentraciones plasmáticas y hepáticas de retinol y sobre parámetros bioquímicos relacionados con el metabolismo glucídico y lipídico (colesterolemia, trigliceridemia, glucemia) en un modelo experimental de rata deficiente en vitamina A. Métodos: El modelo experimental de deficiencia en vitamina A se desarrolló durante un periodo experimental de 50 días en los que las ratas consumieron una dieta libre en vitamina A. La administración de tetrahidrocannabinol (THC) (10 mg/kg peso corporal) y cannabidiol (CBD) (5 mg/kg peso corporal) se llevo a cabo por vía intraperitoneal 2 horas antes del sacrificio de los animales al final del periodo experimental. Resultados: La deficiencia nutricional en vitamina A causó un descenso significativo en el contenido plasmático y hepático de retinol y en parámetros bioquímicos de metabolismo glucídico, lipídico y mineral. La administración intraperitoneal aguda de tetrahidrocannabinol y cannabidiol no mejoró los índices de estado nutricional de vitamina A en ratas deficientes o control. Sin embargo, tuvo un efecto significativo sobre parámetros bioquímicos específicos como la glucemia, colesterolemia y trigliceridemia. Conclusión: Bajo nuestras condiciones experimentales, el efecto de la administración de cannabinoides sobre determinadas manifestaciones de la deficiencia en vitamina A parece estar

  2. Effect of Repeated Administration of hCG on Ovarian Response in PMSG-superovulated Ouled Djellal Ewes (Algeria

    Directory of Open Access Journals (Sweden)

    Lamraoui, R.

    2014-01-01

    Full Text Available The objective of this study was to evaluate the effect of repeated administration of hCG on ovarian response in PMSG-superovulated ewes. Intravaginal pessaries containing 40 mg fluorogestone acetate (FGA were inserted in all ewes (n=9 and remained in situ for 14 days. Two days prior to pessary removal, all ewes were treated with 1000 IU of PMSG. On the day of sponge removal (day 0, the females were randomly assigned to 2 treatments. The first group (n=3 did not receive any hCG, while the second group (n=6 treated inter-muscular with hCG (500 IU during days 0-2. On day 8, laparotomy was performed to assess numbers of corpora lutea (CL and anovulatory follicles (AF. Blood samples were collected for analysis of serum progesterone (P4 using radioimmunoassay (RIA method. The results obtained for first and second group was in number of CL (6.33±1.15 and 10.50±5.54, number of AF (2 ±3.46 and 4.16±5.70, then the levels of P4 (5.75± 4.45 and 13.22±6.80 ng/ml, respectively. These results indicate that the repeated administration of hCG post-sponge removal increases number of CL and improves luteal function in ewes after PMSG-superovulatory treatment.

  3. Liquid chromatographic determination and depletion profile of oxytetracycline in milk after repeated intramuscular administration in sheep.

    Science.gov (United States)

    Fletouris, Dimitrios J; Papapanagiotou, Elias P; Nakos, Dimitrios S

    2008-12-01

    A simple, rapid and specific ion-pair liquid chromatographic method for the routine determination of the marker residue of oxytetracycline in sheep milk, at levels as low as 20 microg/kg, has been developed. Milk samples were acidified and extracted with acetonitrile. The extracts were purified by treatment with ammonium sulphate and concentrated into diluted phosphoric acid. Separation was carried out isocratically on a Nucleosil C(18) column using a mobile phase that contained both positively and negatively charged pairing ions. The in-house validated method gave overall recoveries and overall relative standard deviations better than 86% and 4.6%, respectively. The method was successfully applied to study the depletion of oxytetracycline in sheep milk and to estimate the withdrawal period after intramuscular administration of a commercial oxytetracycline formulation.

  4. Behavioral and neurochemical effects of repeated MDMA administration during late adolescence in the rat.

    Science.gov (United States)

    Cox, Brittney M; Shah, Mrudang M; Cichon, Teri; Tancer, Manuel E; Galloway, Matthew P; Thomas, David M; Perrine, Shane A

    2014-01-01

    Adolescents and young adults disproportionately abuse 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy'); however, since most MDMA research has concentrated on adults, the effects of MDMA on the developing brain remain obscure. Therefore, we evaluated place conditioning to MDMA (or saline) during late adolescence and assessed anxiety-like behavior and monoamine levels during abstinence. Rats were conditioned to associate 5 or 10mg/kg MDMA or saline with contextual cues over 4 twice-daily sessions. Five days after conditioning, anxiety-like behavior was examined with the open field test and brain tissue was collected to assess serotonin (5-hydroxytryptamine, 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal raphe, amygdala, and hippocampus by high-pressure liquid chromatography (HPLC). In a separate group of rats, anxiety-like and avoidant behaviors were measured using the light-dark box test under similar experimental conditions. MDMA conditioning caused a place aversion at 10, but not at 5, mg/kg, as well as increased anxiety-like behavior in the open field and avoidant behavior in light-dark box test at the same dose. Additionally, 10mg/kg MDMA decreased 5-HT in the dorsal raphe, increased 5-HT and 5-HIAA in the amygdala, and did not alter levels in the hippocampus. Overall, we show that repeated high (10mg/kg), but not low (5mg/kg), dose MDMA during late adolescence in rats increases anxiety-like and avoidant behaviors, accompanied by region-specific alterations in 5-HT levels during abstinence. These results suggest that MDMA causes a region-specific dysregulation of the serotonin system during adolescence that may contribute to maladaptive behavior.

  5. Repeated Oral Administration of Oleanolic Acid Produces Cholestatic Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yasha Xu

    2013-03-01

    Full Text Available Oleanolic acid (OA is a triterpenoid and a fantastic molecule with many beneficial effects. However, high-doses and long-term use can produce adverse effects. This study aimed to characterize the hepatotoxic potential of OA. Mice were given OA at doses of 100–3,000 µmol/kg (45–1,350 mg/kg, po for 10 days, and the hepatotoxicity was determined by serum biochemistry, histopathology, and toxicity-related gene expression via real-time RT-PCR. Animal body weight loss was evident at OA doses of 1,000 µmol/kg and above. Serum alanine aminotransferase activities were increased in a dose-dependent manner, indicative of hepatotoxicity. Serum total bilirubin concentrations were increased, indicative of cholestasis. OA administration produced dose-dependent pathological lesions to the liver, including inflammation, hepatocellular apoptosis, necrosis, and feathery degeneration indicative of cholestasis. These lesions were evident at OA doses of 500 µmol/kg and above. Real-time RT-PCR revealed that OA produced dose-dependent increases in acute phase proteins (MT-1, Ho-1, Nrf2 and Nqo1, decreases in bile acid synthesis genes (Cyp7a1 and Cyp8b1, and decreases in liver bile acid transporters (Ntcp, Bsep, Oatp1a1, Oatp1b2, and Ostβ. Thus, the clinical use of OA and OA-type triterpenoids should balance the beneficial effects and toxicity potentials.

  6. PHARMACOLOGY OF CANNABINOIDS

    Directory of Open Access Journals (Sweden)

    Ilonka Ferjan

    2015-06-01

    Full Text Available The discovery of cannabinoid receptors and endocannabinoid system has led to the potential therapeutic use of cannabis derivatives. Cannabinoids acting through the CB1 receptors modulate the release of other neurotransmitters in central nervous system, whereas the activation of peripheral CB2 receptors results in decreased inflammatory response and increased apoptosis of some tumor cells populations. The cannabinoids have been authorized for chemotherapy-induced nausea and vomiting; stimulation of appetite; to alleviate neuropathic pain and spasticity in multiple sclerosis, and to reduce pain in cancer patients. Efficacy in other diseases and clinical conditions should be proven in ongoing or future clinical trials. Isolation and identification of different cannabinoids from cannabis and synthesis of novel, more selective, derivatives widens their therapeutic potential. However, there are numerous adverse effects reported, especially when cannabinoids formulations with unknown quantitative and qualitative composition are used. Addiction, tolerance, withdrawal symptoms, increased risk of acute myocardial re-infarction, and increased risk of psychosis or worsening of psychosis are the most common adverse effects of cannabinoids. Acute adverse effects e. g. severe central nervous system depression, are more pronounced in children than in adults. Potential cannabinoid medicines should be subject to the same regulations as other potential drugs. Safety and efficacy of any potential drug candidate, regardless whether it is plant-derived or synthesized, should be proven in non-clinical studies and clinical trials, as well as the marketing authorization must be issued by the appropriate drug authority. Patients deserve a quality manufactured product, which always contains the specified amount of "Remedium cardinale."

  7. Tolerance in the anxiolytic profile following repeated administration of diazepam but not buspirone is associated with a decrease in the responsiveness of postsynaptic 5-HT-1A receptors.

    Science.gov (United States)

    Khan, Asma; Haleem, D J

    2007-12-01

    To understand the role of serotonin (5-hydroxytryptamine; 5-HT)-1A receptors in the treatment of anxiety and the development of tolerance to benzodiazepines the present study was designed to monitor the responsiveness of postsynaptic 5-HT-1A receptors following repeated administration of diazepam and buspirone. Results show that tolerance in the anxiolytic profile is produced following repeated administration (2 weeks) of diazepam (2 mg/kg) but not buspirone (0.5 mg/kg). The behavioral effects of 8-OH-DPAT at a dose of 0.25 mg/kg were monitored 3 days after repeated administration of saline or buspirone or diazepam. The results show that 8-OH-DPAT elicited forepaw treading was smaller in repeated diazepam but not repeated buspirone injected rats, while hyperlocomotive effects of 8-OH-DPAT were smaller in both repeated buspirone and repeated diazepam injected rats. The results suggest that postsynaptic 5-HT-1A receptor-dependent responses were attenuated following long-term administration of diazepam but not buspirone. Role of 5-HT-1A receptors in the development of tolerance to the anxiolytic effects of diazepam but not buspirone is discussed.

  8. The Synthetic Cannabinoids Phenomenon.

    Science.gov (United States)

    Karila, Laurent; Benyamina, Amine; Blecha, Lisa; Cottencin, Olivier; Billieux, Joël

    2016-01-01

    « Spice » is generally used to describe the diverse types of herbal blends that encompass synthetic cannabinoids on the market. The emergence of smokable herbal products containing synthetic cannabinoids, which mimic the effects of cannabis, appears to become increasingly popular, in the new psychoactive substances landscape. In 2014, the existence of 134 different types of synthetic cannabinoids were reported by the European Union Early Warning System. These drugs are mainly sold online as an alternative to controlled and regulated psychoactive substances. They appear to have a life cycle of about 1-2 years before being replaced by a next wave of products. Legislation controlling these designer drugs has been introduced in many countries with the objective to limit the spread of existing drugs and control potential new analogs. The majority of the synthetic cannabinoids are full agonists at the CB1 receptor and do not contain tobacco or cannabis. They are becoming increasingly popular in adolescents, students and clubbers as an abused substance. Relatively high incidence of adverse effects associated with synthetic cannabinoids use has been documented in the literature. Numerous fatalities linked with their use and abuse have been reported. In this paper, we will review the available data regarding the use and effects of synthetic cannabinoids in humans in order to highlight their impact on public health. To reach this objective, a literature search was performed on two representative databases (Pubmed, Google Scholar), the Erowid Center website (a US non-profit educational organization that provides information about psychoactive plants and chemicals), and various governmental websites. The terms used for the database search were: "synthetic cannabinoids", "spice", "new psychoactive substances", and/or "substance use disorder", and/or "adverse effects", and/or "fatalities". The search was limited to years 2005 to 2016 due to emerging scientific literature at

  9. Cannabinoids and anxiety.

    Science.gov (United States)

    Moreira, Fabrício A; Wotjak, Carsten T

    2010-01-01

    The term cannabinoids encompasses compounds produced by the plant Cannabis sativa, such as delta9-tetrahydrocannabinol, and synthetic counterparts. Their actions occur mainly through activation of cannabinoid type 1 (CB1) receptors. Arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG) serve as major endogenous ligands (endocannabinoids) of CB1 receptors. Hence, the cannabinoid receptors, the endocannabinoids, and their metabolizing enzymes comprise the endocannabinoid system. Cannabinoids induce diverse responses on anxiety- and fear-related behaviors. Generally, low doses tend to induce anxiolytic-like effects, whereas high doses often cause the opposite. Inhibition of endocannabinoid degradation seems to circumvent these biphasic effects by enhancing CB1 receptor signaling in a temporarily and spatially restricted manner, thus reducing anxiety-like behaviors. Pharmacological blockade or genetic deletion of CB1 receptors, in turn, primarily exerts anxiogenic-like effects and impairments in extinction of aversive memories. Interestingly, pharmacological blockade of Transient Receptor Potential Vanilloid Type-1 (TRPV1) channel, which can be activated by anandamide as well, has diametrically opposite consequences. This book chapter summarizes and conceptualizes our current knowledge about the role of (endo)cannabinoids in fear and anxiety and outlines implications for an exploitation of the endocannabinoid system as a target for new anxiolytic drugs.

  10. Repeated methamphetamine administration differentially alters fos expression in caudate-putamen patch and matrix compartments and nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Jakub P Jedynak

    Full Text Available BACKGROUND: The repeated administration of psychostimulant drugs produces a persistent and long-lasting increase ("sensitization" in their psychomotor effects, which is thought to be due to changes in the neural circuitry that mediate these behaviors. One index of neuronal activation used to identify brain regions altered by repeated exposure to drugs involves their ability to induce immediate early genes, such as c-fos. Numerous reports have demonstrated that past drug experience alters the ability of drugs to induce c-fos in the striatum, but very few have examined Fos protein expression in the two major compartments in the striatum--the so-called patch/striosome and matrix. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used immunohistochemistry to investigate the effects of pretreatment with methamphetamine on the ability of a subsequent methamphetamine challenge to induce Fos protein expression in the patch and matrix compartments of the dorsolateral and dorsomedial caudate-putamen and in the ventral striatum (nucleus accumbens. Animals pretreated with methamphetamine developed robust psychomotor sensitization. A methamphetamine challenge increased the number of Fos-positive cells in all areas of the dorsal and ventral striatum. However, methamphetamine challenge induced Fos expression in more cells in the patch than in the matrix compartment in the dorsolateral and dorsomedial caudate-putamen. Furthermore, past experience with methamphetamine increased the number of methamphetamine-induced Fos positive cells in the patch compartment of the dorsal caudate putamen, but not in the matrix or in the core or shell of the nucleus accumbens. CONCLUSIONS/SIGNIFICANCE: These data suggest that drug-induced alterations in the patch compartment of the dorsal caudate-putamen may preferentially contribute to some of the enduring changes in brain activity and behavior produced by repeated treatment with methamphetamine.

  11. Region-specific induction of deltaFosB by repeated administration of typical versus atypical antipsychotic drugs.

    Science.gov (United States)

    Atkins, J B; Chlan-Fourney, J; Nye, H E; Hiroi, N; Carlezon, W A; Nestler, E J

    1999-08-01

    Whereas acute administration of many types of stimuli induces c-Fos and related proteins in brain, recent work has shown that chronic perturbations cause the region-specific accumulation of novel Fos-like proteins of 35-37 kD. These proteins, termed chronic FRAs (Fos-related antigens), have recently been shown to be isoforms of DeltaFosB, which accumulate in brain due to their enhanced stability. In the present study, we sought to extend earlier findings that documented the effects of acute administration of antipsychotic drugs (APDs) on induction of Fos-like proteins by investigating the ability of typical and aytpical APDs, after chronic administration, to induce these DeltaFosB isoforms in several brain regions implicated in the clinical actions of these agents. By Western blotting we found that chronic administration of the typical APD, haloperidol, dramatically induces DeltaFosB in caudate-putamen (CP), a brain region associated with the extrapyramidal side effects of this drug. A smaller induction was seen in the nucleus accumbens (NAc) and prefrontal cortex (PFC), brain regions associated with the antipsychotic effects of the drug. In contrast, chronic administration of the prototype atypical APD clozapine failed to significantly increase levels of DeltaFosB in any of the three brain regions, and even tended to reduce DeltaFosB levels in the NAc. Two putative atypical APDs, risperidone and olanzapine, produced small but still significant increases in the levels of DeltaFosB in CP, but not NAc or PFC. Studies with selective receptor antagonists suggested that induction of DeltaFosB in CP and NAc is most dependent on antagonism of D2-D3 dopamine receptors, with antagonism of D1-like receptors most involved in the PFC. Immunohistochemical analysis confirmed the greater induction of DeltaFosB in CP by typical versus atypical APDs, with no significant induction seen in PFC with either class of APD. Together, these findings demonstrate that repeated administration

  12. Cannabinoids and Epilepsy.

    Science.gov (United States)

    Rosenberg, Evan C; Tsien, Richard W; Whalley, Benjamin J; Devinsky, Orrin

    2015-10-01

    Cannabis has been used for centuries to treat seizures. Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies. In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Δ9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy. These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures. Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.

  13. Permanent relief from intermittent cold stress-induced fibromyalgia-like abnormal pain by repeated intrathecal administration of antidepressants

    Directory of Open Access Journals (Sweden)

    Mukae Takehiro

    2011-09-01

    Full Text Available Abstract Background Fibromyalgia (FM is characterized by chronic widespread pain, which is often refractory to conventional painkillers. Numerous clinical studies have demonstrated that antidepressants are effective in treating FM pain. We previously established a mouse model of FM-like pain, induced by intermittent cold stress (ICS. Results In this study, we find that ICS exposure causes a transient increase in plasma corticosterone concentration, but not in anxiety or depression-like behaviors. A single intrathecal injection of an antidepressant, such as milnacipran, amitriptyline, mianserin or paroxetine, had an acute analgesic effect on ICS-induced thermal hyperalgesia at post-stress day 1 in a dose-dependent manner. In addition, repeated daily antidepressant treatments during post-stress days 1-5 gradually reversed the reduction in thermal pain threshold, and this recovery was maintained for at least 7 days after the final treatment. In addition, relief from mechanical allodynia, induced by ICS exposure, was also observed at day 9 after the cessation of antidepressant treatment. In contrast, the intravenous administration of these antidepressants at conventional doses failed to provide relief. Conclusions These results suggest that the repetitive intrathecal administration of antidepressants permanently cures ICS-induced FM pain in mice.

  14. Spicing thing up: Synthetic cannabinoids

    Science.gov (United States)

    Spaderna, Max; Addy, Peter H; D’Souza, Deepak Cyril

    2013-01-01

    Rationale Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. Objectives The availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Results Spice is sold under the guise of potpourri or incense. Unlike THC, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid-receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. Conclusions There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug-detection tests for synthetic cannabinoids need to become clinically available. PMID:23836028

  15. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice.

    Science.gov (United States)

    Schiavon, Angélica Pupin; Bonato, Jéssica Mendes; Milani, Humberto; Guimarães, Francisco Silveira; Weffort de Oliveira, Rúbia Maria

    2016-01-04

    Therapeutic effects of antidepressants and atypical antipsychotics may arise partially from their ability to stimulate neurogenesis. Cannabidiol (CBD), a phytocannabinoid present in Cannabis sativa, presents anxiolytic- and antipsychotic-like effects in preclinical and clinical settings. Anxiolytic-like effects of repeated CBD were shown in chronically stressed animals and these effects were parallel with increased hippocampal neurogenesis. However, antidepressant-like effects of repeated CBD administration in non-stressed animals have been scarcely reported. Here we investigated the behavioral consequences of single or repeated CBD administration in non-stressed animals. We also determined the effects of CBD on cell proliferation and neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ). Single CBD 3mg/kg administration resulted in anxiolytic-like effect in mice submitted to the elevated plus maze (EPM). In the tail suspension test (TST), single or repeated CBD administration reduced immobility time, an effect that was comparable to those of imipramine (20 mg/kg). Moreover, repeated CBD administration at a lower dose (3 mg/kg) increased cell proliferation and neurogenesis, as seen by an increased number of Ki-67-, BrdU- and doublecortin (DCX)-positive cells in both in DG and SVZ. Despite its antidepressant-like effects in the TST, repeated CBD administration at a higher dose (30 mg/kg) decreased cell proliferation and neurogenesis in the hippocampal DG and SVZ. Our findings show a dissociation between behavioral and proliferative effects of repeated CBD and suggest that the antidepressant-like effects of CBD may occur independently of adult neurogenesis in non-stressed Swiss mice.

  16. Early Effects of Single and Low-Frequency Repeated Administration of Teriparatide, hPTH(1-34), on Bone Formation and Resorption in Ovariectomized Rats.

    Science.gov (United States)

    Isogai, Yukihiro; Takao-Kawabata, Ryoko; Takakura, Aya; Sugimoto, Emika; Nakazono, Osamu; Ikegaki, Ichiro; Kuriyama, Hiroshi; Ishizuya, Toshinori

    2015-10-01

    Intermittent repeated administration of teriparatide (TPTD) has potent anabolic effects on bones in vivo. However, TPTD has both anabolic and catabolic effects on osteoblasts in vitro, and the mechanisms underlying its promotion of bone formation are unclear. This study aimed to elucidate the time-dependent changes in bone formation and resorption by examining changes in bone turnover markers and bone tissue over time after TPTD administration with low frequency in ovariectomized rats. The amount of serum osteocalcin, a bone formation marker, was transiently reduced after single TPTD administration, but increased thereafter, remaining increased for several days. In contrast, the amount of excreted urinary C-telopeptide, a bone resorption marker, increased transiently after single TPTD administration, and subsequently returned to control levels on the day after administration. Tissue histomorphometric analyses conducted 8 h after administration showed no changes in bone formation or bone resorption parameters. However, at 48 h, the bone formation parameters OS/BS and Ob.S/BS were increased, while the bone resorption parameter ES/BS was decreased. After repeated TPTD administration for 4 weeks, OS/BS, Ob.S/BS, and MS/BS increased, while Oc.S/BS decreased. Serum osteocalcin at 4 weeks after repeated administration was significantly correlated with OS/BS and Ob.S/BS. These present findings indicate that TPTD has dual, time-dependent effects on bone resorption and bone formation. Immediately after single administration, there was transient promotion of bone resorption and suppression of bone formation. However, sustained stimulation of bone formation occurred thereafter. Furthermore, these data suggest that this sustained bone formation led to anabolic effects with repeated TPTD administration.

  17. Cannabinoids: Medical implications.

    Science.gov (United States)

    Schrot, Richard J; Hubbard, John R

    2016-01-01

    Herbal cannabis has been used for thousands of years for medical purposes. With elucidation of the chemical structures of tetrahydrocannabinol (THC) and cannabidiol (CBD) and with discovery of the human endocannabinoid system, the medical usefulness of cannabinoids has been more intensively explored. While more randomized clinical trials are needed for some medical conditions, other medical disorders, like chronic cancer and neuropathic pain and certain symptoms of multiple sclerosis, have substantial evidence supporting cannabinoid efficacy. While herbal cannabis has not met rigorous FDA standards for medical approval, specific well-characterized cannabinoids have met those standards. Where medical cannabis is legal, patients typically see a physician who "certifies" that a benefit may result. Physicians must consider important patient selection criteria such as failure of standard medical treatment for a debilitating medical disorder. Medical cannabis patients must be informed about potential adverse effects, such as acute impairment of memory, coordination and judgment, and possible chronic effects, such as cannabis use disorder, cognitive impairment, and chronic bronchitis. In addition, social dysfunction may result at work/school, and there is increased possibility of motor vehicle accidents. Novel ways to manipulate the endocannbinoid system are being explored to maximize benefits of cannabinoid therapy and lessen possible harmful effects.

  18. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity

    NARCIS (Netherlands)

    Campolongo, P.; Morena, M.; Scaccianoce, S.; Trezza, V.; Chiarotti, F.; Schelling, G.; Cuomo, V.; Roozendaal, B.

    2013-01-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.

  19. 78 FR 28735 - Schedules of Controlled Substances: Temporary Placement of Three Synthetic Cannabinoids Into...

    Science.gov (United States)

    2013-05-16

    ... Administrator that the placement of these synthetic cannabinoids and their salts, isomers and salts of isomers... chronic abuse of products laced with synthetic cannabinoids has also been linked to addiction and...)(2,2,3,3- tetramethylcyclopropyl)methanone, its optical, positional, and geometric isomers, salts...

  20. Use of polyglycerol (PG), instead of polyethylene glycol (PEG), prevents induction of the accelerated blood clearance phenomenon against long-circulating liposomes upon repeated administration.

    Science.gov (United States)

    Abu Lila, Amr S; Nawata, Kosuke; Shimizu, Taro; Ishida, Tatsuhiro; Kiwada, Hiroshi

    2013-11-01

    The accelerated blood clearance (ABC) phenomenon accounts for the rapid systemic clearance of PEGylated nanocarriers upon repeated administrations. IgM production against the polyethylene glycol (PEG) coating in PEGylated liposomes is now known to be responsible for such unexpected pharmacokinetical alterations. The ABC phenomenon poses a remarkable clinical challenge by reducing the therapeutic efficacy of encapsulated drugs and causing harmful effects due to the altered tissue distribution pattern of the drugs. In this study, we investigated the in vivo performance of liposomes modified with polyglycerol (PG) upon repeated injection, and the in vivo therapeutic efficacy of such liposomes when they encapsulated a cytotoxic agent, doxorubicin (DXR). Repeated injection of PEG-coated liposomes in rats induced the ABC phenomenon, while repeated injection of PG-coated liposomes did not. In addition, DXR-containing PG-coated liposomes showed antitumor activity that was superior to that of free DXR and similar to that of DXR-containing PEG-coated liposomes upon repeated administration. These results indicate that polyglycerol (PG) might represent a promising alternative to PEG via enhancing the in vivo performance of liposomes by not eliciting the ABC phenomenon upon repeated administration.

  1. The effect of repeated nicotine administration on the performance of drug-naive rats in a five-choice serial reaction time task.

    Science.gov (United States)

    Blondel, A; Simon, H; Sanger, D J; Moser, P

    1999-11-01

    Nicotine improves cognitive performance both in animals and in humans, particularly in tests involving attentional processes. The five-choice serial reaction time task (5-CSRTT) is widely used as a model of attentional performance in rats, and previous studies have demonstrated effects of nicotine in this task on measures such as improved reaction time. Using a modified version of this task (in which rats were required to respond to the disappearance of one of five stimulus lights), we evaluated the effects of repeated nicotine administration (0.3 mg/kg, intraperitoneally, on three occasions over 7 days) in drug-naive rats. After the first administration, nicotine increased accuracy and reduced inappropriate responding (anticipatory responses and responses during time-out) compared to performance following vehicle administration on the preceding day. However, with repeated administration the improvement in accuracy disappeared, and other effects became apparent. Thus, after the third administration the main effects of nicotine were to increase inappropriate responding and to reduce reaction times. A fourth administration 1-2 weeks later produced similar results to the third administration, suggesting that the effects of nicotine were now constant. Despite the general increase in inappropriate responding, there was no impairment in accuracy. In contrast to the response to repeated nicotine, the performance of the rats on the 3 vehicle days remained constant. These data demonstrate that the administration of nicotine to drug-naive subjects improves performance in the 5-CSRTT but that with repeated administration this effect disappears and is replaced by a profile in which inappropriate and impulsive responding predominate.

  2. Evaluation of the abuse potential of AM281, a new synthetic cannabinoid CB1 receptor antagonist.

    Science.gov (United States)

    Botanas, Chrislean Jun; de la Peña, June Bryan; Dela Pena, Irene Joy; Tampus, Reinholdgher; Kim, Hee Jin; Yoon, Seong Shoon; Seo, Joung-Wook; Jeong, Eun Ju; Cheong, Jae Hoon

    2015-11-01

    AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) is a new synthetic cannabinoid CB1 receptor antagonist. Similar to other cannabinoid antagonists, AM281 has been suggested to have therapeutic indications. However, recent reports have suggested that cannabinoid CB1 receptor antagonists may share similar behavioral effects with other drugs of abuse such as cocaine and amphetamine. These reports cast doubts on the safety profile of AM281. Thus, in the present study we evaluated the abuse potential (rewarding and reinforcing effects) of AM281 through two of the most widely used animal models for assessing the abuse potential of drugs: the conditioned place preference (CPP) and self-administration (SA) tests. Experiments were performed in Sprague-Dawley rats in various dosages [CPP (0.1, 0.5 or 2.5mg/kg), SA (0.005, 0.025 or 0.1mg/kg/infusion)]. We also delved into the consequences of repeated drug exposure on the subsequent response to the drug. Thus, parallel experiments were carried out in rats pretreated with AM281 for 7 or 14 days. Our findings indicated that AM281, at any dose, did not induce CPP and SA in drug-naïve rats. Interestingly, significant CPP (0.5mg/kg of AM281), but not SA, was observed in 14 days pretreated rats. These observations suggest that AM281 per se has no or minimal rewarding and reinforcing properties, but alterations in neuronal functions and behavior due to repeated AM281 exposure may contribute in part to the abuse potential of this drug. In view of this finding, we advocate the careful use, monitoring, and dispensation of AM281.

  3. Paradoxical reaction of raynaud phenomenon following the repeated administration of iloprost in a patient with diffuse cutaneous systemic sclerosis.

    Science.gov (United States)

    Barreira, Rebeca Iglesias; García, Belén Bardán; López, Mónica Granero; Legazpi, Iria Rodríguez; Díaz, Hortensia Álvarez; Penín, Isaura Rodríguez

    2012-10-01

    To report a paradoxical reaction of Raynaud phenomenon following the repeated administration of iloprost in a patient with diffuse cutaneous systemic sclerosis with vascular involvement. In January 2006, a 40-year-old male was diagnosed with diffuse cutaneous systemic sclerosis with pulmonary, esophageal, cutaneous, and vascular involvement (Raynaud phenomenon, with digital ulcers on his hands). In December 2008, treatment with iloprost was started due to worsening disease. Nine cycles of iloprost were administered at a rate of 0.5-1 ng/kg/min (6 hours per day, for 5 days every 6-8 weeks); the patient tolerated this treatment well. However, on the fourth day of cycles 10 and 11, the patient developed paradoxical Raynaud phenomenon in the hand with perfusion when the infusion was increased to 1 ng/kg/min, requiring treatment to be stopped. Treatment was continued during cycles 12 and 13 at 0.5 ng/kg/min; the patient tolerated the treatment well, although paradoxical Raynaud phenomenon occurred when the rate of infusion was increased. Raynaud phenomenon is extremely common in patients with scleroderma, and often is severe. Iloprost has vasodilating, antiplatelet, cytoprotective, and immunomodulating properties, and has been found to be an efficacious alternative to nifedipine for the treatment of Raynaud phenomenon in patients with scleroderma. The Naranjo probability scale indicated that iloprost was the probable cause of the paradoxical Raynaud phenomenon in this patient. This case demonstrates a probable relationship between the rate of infusion of iloprost and the paradoxical reaction of Raynaud phenomenon.

  4. Effect of repeated oral administration of levofloxacin, enrofloxacin, and meloxicam on antioxidant parameters and lipid peroxidation in rabbits.

    Science.gov (United States)

    Khan, Adil Mehraj; Rampal, Satyavan; Sood, Naresh Kumar

    2016-03-09

    The effect of 21 days of repeated oral administration of levofloxacin and enrofloxacin both alone and in combination with meloxicam, on the oxidative balance in blood was evaluated in rabbits. Rabbits were randomly allocated to six groups of four animals each. Control group was gavaged 5% dextrose and 2% benzyl alcohol. Three groups were exclusively gavaged meloxicam (0.2 mg/kg body weight o.d.), levofloxacin hemihydrate (10 mg/kg body weight b.i.d 12 h), and enrofloxacin (20 mg/kg body weight o.d.), respectively. Two other groups were co-gavaged meloxicam with levofloxacin hemihydrate and enrofloxacin, respectively. A reduction (p meloxicam both alone and in combination with levofloxacin, whereas an increase (p meloxicam-alone treated group and inhibited (p meloxicam co-treated group. The activity of catalase was non-significantly different between various groups. Enrofloxacin-treated groups had higher (p meloxicam both alone and in combination with levofloxacin (p meloxicam.

  5. Upregulation of nucleoside triphosphate diphosphohydrolase-1 and ecto-5'-nucleotidase in rat hippocampus after repeated low-dose dexamethasone administration.

    Science.gov (United States)

    Drakulić, Dunja; Stanojlović, Miloš; Nedeljković, Nadežda; Grković, Ivana; Veličković, Nataša; Guševac, Ivana; Mitrović, Nataša; Buzadžić, Ivana; Horvat, Anica

    2015-04-01

    Although dexamethasone (DEX), a synthetic glucocorticoid receptor (GR) analog with profound effects on energy metabolism, immune system, and hypothalamic-pituitary-adrenal axis, is widely used therapeutically, its impact on the brain is poorly understood. The aim of the present study was to explore the effect of repeated low-dose DEX administration on the activity and expression of the ectonucleotidase enzymes which hydrolyze and therefore control extracellular ATP and adenosine concentrations in the synaptic cleft. Ectonucleotidases tested were ectonucleoside triphosphate diphosphohydrolase 1-3 (NTPDase1-3) and ecto-5'-nucleotidase (eN), whereas the effects were evaluated in two brain areas that show different sensitivity to glucocorticoid action, hippocampus, and cerebral cortex. In the hippocampus, but not in cerebral cortex, modest level of neurodegenerative changes as well as increase in ATP, ADP, and AMP hydrolysis and upregulation of NTPDase1 and eN mRNA expression ensued under the influence of DEX. The observed pattern of ectonucleotidase activation, which creates tissue volume with enhanced capacity for adenosine formation, is the hallmark of the response after different insults to the brain.

  6. Oxaza adamantyl cannabinoids. A new class of cannabinoid receptor probes.

    Science.gov (United States)

    Le Goanvic, David; Tius, Marcus A

    2006-09-29

    The preparation of C3 oxaza adamantyl cannabinoids has been described starting from phloroglucinol. Straightforward manipulations of the aromatic ring lead to a bromononaflate that is a benzyne precursor and that serves as a common intermediate for the synthesis of diverse C3-substituted tricyclic cannabinoids. Generation of the benzyne in the presence of an oxaza adamantyl amide anion results in efficient and regiospecific addition to C3 of the aromatic ring. This represents an attractive strategy for the synthesis of classical tricyclic cannabinoids that bear a modified aromatic appendage. The oxaza adamantyl cannabinoids that have been prepared represent a new class of ligands for the CB1 and CB2 receptors.

  7. Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of d-luciferin: effect on intensity, time kinetics and repeatability of photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Keyaerts, Marleen; Vanhove, Chris; Caveliers, Vicky; Bossuyt, Axel; Lahoutte, Tony [Vrije Universiteit Brussel (VUB), In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Brussels (Belgium); University Hospital Brussels (UZ-Brussel), Department of Nuclear Medicine, Brussels (Belgium); Verschueren, Jacob [University of Antwerp, Bio-Imaging lab, Department of Biomedical Sciences, Antwerp (Belgium); Bos, Tomas J. [Vrije Universiteit Brussel (VUB), Department of Haematology and Immunology, Brussels (Belgium); Tchouate-Gainkam, Lea O.; Peleman, Cindy [Vrije Universiteit Brussel (VUB), In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Brussels (Belgium); Breckpot, Karine [Vrije Universiteit Brussel (VUB), Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Brussels (Belgium)

    2008-05-15

    In vivo bioluminescence imaging (BLI) is a promising technique for non-invasive tumour imaging. d-luciferin can be administrated intraperitonealy or intravenously. This will influence its availability and, therefore, the bioluminescent signal. The aim of this study is to compare the repeatability of BLI measurement after IV versus IP administration of d-luciferin and assess the correlation between photon emission and histological cell count both in vitro and in vivo. Fluc-positive R1M cells were subcutaneously inoculated in nu/nu mice. Dynamic BLI was performed after IV or IP administration of d-luciferin. Maximal photon emission (PE{sub max}) was calculated. For repeatability assessment, every acquisition was repeated after 4 h and analysed using Bland-Altman method. A second group of animals was serially imaged, alternating IV and IP administration up to 21 days. When mice were killed, PE{sub max} after IV administration was correlated with histological cell number. The coefficients of repeatability were 80.2% (IV) versus 95.0% (IP). Time-to-peak is shorter, and its variance lower for IV (p < 0.0001). PE{sub max} was 5.6 times higher for IV. A trend was observed towards lower photon emission per cell in larger tumours. IV administration offers better repeatability and better sensitivity when compared to IP. In larger tumours, multiple factors may contribute to underestimation of tumour burden. It might, therefore, be beneficial to test novel therapeutics on small tumours to enable an accurate evaluation of tumour burden. (orig.)

  8. Cannabinoids and their medicinal potential

    Directory of Open Access Journals (Sweden)

    Deepika Tikoo

    2012-04-01

    Full Text Available Cannabis sativa L preparations have been used therapeutically since many years. Inspite of their medicinal value, the danger of its abusive potential led to the ban on its use in clinical practice in many countries. The recent research and in depth knowledge about the cannabinoid system which throw a light on their disease management potential has paved way for the cannabinoids to become a new therapeutic focus of attention. Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors which include CB1, predominantly expressed in the brain and CB2 which is primarily found in the cells of the immune system. Despite the addictive properties of cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases such as anorexia, pain, inflammation, obesity, cardiovascular disorders, neurodegenerative diseases, cancer, gastrointestinal diseases, hepatic disorders, skin related diseases, respiratory disorders like asthma and eye diseases like glaucoma have suggested cannabinoid agonists/ antagonists/ cannabinoids related compounds as potential treatment options. Developments of new specific ligands for the cannabinoid receptors are now underway and it needs to be seen, if in future, they can prove to be a boon for the medical world. The paper reviews the current understanding of the cannabinoid receptors, their ligands and their possible role in various diseases supported by preclinical and clinical studies. [Int J Basic Clin Pharmacol 2012; 1(2.000: 48-59

  9. The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus

    Directory of Open Access Journals (Sweden)

    Irit eAkirav

    2011-06-01

    Full Text Available Cannabinoid agonists generally have a disruptive effect on memory, learning, and operant behavior that is considered to be hippocampus-dependent. Nevertheless, under certain conditions, cannabinoid receptor activation may facilitate neuronal learning processes. For example, CB1 receptors are essential for the extinction of conditioned fear associations, indicating an important role for this receptor in neuronal emotional learning and memory. This review examines the diverse effects of cannabinoids on hippocampal memory and plasticity. It shows how the effects of cannabinoid receptor activation may vary depending on the route of administration, the nature of the task (aversive or not, and whether it involves emotional memory formation (e.g. conditioned fear and extinction learning or non-emotional memory formation (e.g. spatial learning. It also examines the memory stage under investigation (acquisition, consolidation, retrieval, extinction, and the brain areas involved. Differences between the effects of exogenous and endogenous agonists are also discussed. The apparently biphasic effects of cannabinoids on anxiety is noted as this implies that the effects of cannabinoid receptor agonists on hippocampal learning and memory may be attributable to a general modulation of anxiety or stress levels and not to memory per se. The review concludes that cannabinoids have diverse effects on hippocampal memory and plasticity that cannot be categorized simply into an impairing or an enhancing effect. A better understanding of the involvement of cannabinoids in memory processes will help determine whether the benefits of the clinical use of cannabinoids outweigh the risks of possible memory impairments.

  10. Repeated administration of D-amphetamine induces loss of [I-123]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study

    NARCIS (Netherlands)

    J. Booij; K. de Bruin; W.B. Gunning

    2006-01-01

    In recent years, several PET and SPECT studies have shown loss of striatal dopamine transporter (DAT) binding in arnphetamine (AMPH) users. However, the use of DAT SPECT tracers to detect AMPH-induced changes in DAT binding has not been validated. We therefore examined if repeated administration of

  11. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion

  12. Pharmacological blockade of either, cannabinoid CB1 or CB2 receptors, prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rats.

    Directory of Open Access Journals (Sweden)

    EDUARDO eBLANCO-CALVO

    2014-01-01

    Full Text Available Addiction to major drugs of abuse such as cocaine has been recently linked to alterations on adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulated this proliferative response since pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors by modulating not only neurogenesis but also cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation . To this end we examined if pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg or CB2 receptors (AM630, 3 mg/kg affects cell proliferation (labeled with BrdU, found in the subventricular zone (SVZ of the lateral ventricles and the dentate subgranular zone (SGZ. In addition, we measured cell apoptosis (monitored by the expression of cleaved caspase-3 and glial activation ( by analizing the expression of GFAP and Iba-1 in the striatum and hippocampus, during acute or repeated (4 days cocaine administration (20 mg/kg. Results showed that acute cocaine decreased the number of BrdU+ cells in SVZ and SGZ. In contrast, repeated cocaine reduced the number of BrdU+ cells in SVZ only. Both acute and repeated cocaine increased the number of cleaved caspase-3+, GFAP+ and Iba1+ cells in the hippocampus, an effect counteracted by AM630 or Rimonabant that increased the number of BrdU+, GFAP+ and Iba1+ cells in the hippocampus. These results indicate that changes on neurogenic, apoptotic and gliosis processes, which were produced as a consequence of repeated cocaine administration, were normalized by the pharmacological blockade of CB1 and CB2. The restoring effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with a prevention of the induction of conditioned locomotion, but not of cocaine-induced sensitization.

  13. Vaping Synthetic Cannabinoids: A Novel Preclinical Model of E-Cigarette Use in Mice

    Directory of Open Access Journals (Sweden)

    Timothy W Lefever

    2017-03-01

    Full Text Available Smoking is the most common route of administration for cannabis; however, vaping cannabis extracts and synthetic cannabinoids (“fake marijuana” in electronic cigarette devices has become increasingly popular. Yet, most animal models used to investigate biological mechanisms underlying cannabis use employ injection as the route of administration. This study evaluated a novel e-cigarette device that delivers aerosolized cannabinoids to mice. The effects of aerosolized and injected synthetic cannabinoids (CP 55,940, AB-CHMINACA, XLR-11, and JWH-018 in mice were compared in a battery of bioassays in which psychoactive cannabinoids produce characteristic effects. The most potent cannabinoids (CP 55,940 and AB-CHMINACA produced the full cannabinoid profile (ie, hypothermia, hypolocomotion, and analgesia, regardless of the route of administration. In contrast, aerosolized JWH-018 and XLR-11 did not produce the full profile of cannabimimetic effects. Results of time course analysis for hypothermia showed that aerosol exposure to CP 55,940 and AB-CHMINACA produced faster onset of effects and shorter duration of action than injection. The ability to administer cannabinoids to rodents using the most common route of administration among humans provides a method for collecting preclinical data with enhanced translational relevance.

  14. Delta(9)-tetrahydrocannabinol, 11-hydroxy-delta(9)-tetrahydrocannabinol and 11-nor-9-carboxy-delta(9)-tetrahydrocannabinol in human plasma after controlled oral administration of cannabinoids.

    Science.gov (United States)

    Goodwin, Robert S; Gustafson, Richard A; Barnes, Allan; Nebro, Wesenyalsh; Moolchan, Eric T; Huestis, Marilyn A

    2006-08-01

    A clinical study to investigate the pharmacokinetics and pharmacodynamics of oral tetrahydrocannabinol was performed. This randomized, double-blind, placebo-controlled, within-subject, inpatient study compared the effects of THC-containing hemp oils in liquid and capsule form to dronabinol (synthetic THC) in doses used for appetite stimulation. The National Institute on Drug Abuse Institutional Review Board approved the protocol and each participant provided informed consent. Detection times and concentrations of THC, 11-hydroxy-Delta-tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Delta-tetrahydrocannabinol (THCCOOH) in plasma were determined by gas chromatography-mass spectrometry [limits of quantification (LOQ)=0.5, 0.5, and 1.0 ng/mL, respectively] after oral THC administration. Six volunteers ingested liquid hemp oil (0.39 and 14.8 mg THC/d), hemp oil in capsules (0.47 mg THC/d), dronabinol capsules (7.5 mg THC/d), and placebo. Plasma specimens were collected during and after each dosing condition. THC and 11-OH-THC concentrations were low and never exceeded 6.1 ng/mL. Analytes were detectable 1.5 hour after initiating dosing with the 7.5 mg THC/d regimen and 4.5 hour after starting the 14.8 mg THC/d sessions. THCCOOH was detected 1.5 hour after the first dose, except for the 0.47 mg THC/d session, which required 4.5 hour for concentrations to reach the LOQ. THCCOOH concentrations peaked at 3.1 ng/mL during dosing with the low-dose hemp oils. Plasma THC and 11-OH-THC concentrations were negative for all participants at all doses within 15.5 hours after the last THC dose. Plasma THCCOOH persisted for at least 39.5 hours after the end of dosing and at much higher concentrations (up to 43.0 ng/mL). This study demonstrated that subjects who used high THC content hemp oil (347 mug/mL) as a dietary supplement had THC and metabolites in plasma in quantities comparable to those of patients using dronabinol for appetite stimulation. There was a significant

  15. Risk of sensitization in healthy adults following repeated administration of rdESAT-6 skin test reagent by the Mantoux injection technique

    DEFF Research Database (Denmark)

    Lillebaek, Troels; Bergstedt, Winnie; Tingskov, Pernille N;

    2009-01-01

    1 open clinical trial was to assess the sensitization risk and safety of repeated administration of rdESAT-6 reagent in 31 healthy adult volunteers. Three groups of volunteers received two fixed doses of 0.1 microg rdESAT-6 28, 56 or 112 days apart, respectively. After the second injection......Limited specificity of the tuberculin skin test incited the development of the intradermal Mycobacterium tuberculosis-specific rdESAT-6 skin test. Animal studies have shown, however, that there is a possible risk of sensitization when repeated injections of rdESAT-6 are given. The aim of this phase...

  16. Repeated intravenous administrations of teneurin-C terminal associated peptide (TCAP)-1 attenuates reinstatement of cocaine seeking by corticotropin-releasing factor (CRF) in rats.

    Science.gov (United States)

    Erb, Suzanne; McPhee, Matthew; Brown, Zenya J; Kupferschmidt, David A; Song, Lifang; Lovejoy, David A

    2014-08-01

    The teneurin c-terminal associated peptides (TCAP) have been implicated in the regulation of the stress response, possibly via a corticotropin-releasing factor (CRF)-related mechanism. We have previously shown that repeated intracerebroventricular (ICV) injections of TCAP-1 attenuate the reinstatement of cocaine seeking by CRF in rats. Here, we determined whether intravenous (IV) administrations of TCAP-1 would likewise attenuate CRF-induced reinstatement, and whether this effect would vary depending on the rat's history of cocaine self administration. Rats were trained to self-administer cocaine for 10 days, during once daily sessions that were either 3h ("short access"; ShA) or 6h ("long access"; LgA). Rats were then given five daily injections of TCAP-1 (0, 300, or 3,000 pmol, IV) in their home cage. Subsequently, they were returned to the self-administration chambers where extinction of cocaine seeking and testing for CRF-induced reinstatement of cocaine seeking was carried out. Repeated IV administrations of TCAP-1 were efficacious in attenuating CRF-induced reinstatement of cocaine seeking, but at different doses in ShA and LgA rats. Taken together, the findings extend previous work showing a consistent effect of repeated ICV TCAP-1 on CRF-induced reinstatement of cocaine seeking, and point to a potential therapeutic benefit of TCAP-1 in attenuating cocaine seeking behaviors.

  17. Administration

    DEFF Research Database (Denmark)

    Bogen handler om den praksis, vi kalder administration. Vi er i den offentlige sektor i Danmark hos kontorfolkene med deres sagsmapper, computere, telefoner,, lovsamlinger,, retningslinier og regneark. I bogen udfoldes en mangfoldighed af konkrete historier om det administrative arbejde fra...... forskellige områder i den offentlige sektor. Hensigten er at forstå den praksis og faglighed der knytter sig til det administrative arbejde...

  18. Pharmacokinetics of repeated sodium salicylate administration to laying hens: evidence for time dependent increase in drug elimination from plasma and eggs.

    Directory of Open Access Journals (Sweden)

    Błażej Poźniak

    Full Text Available Salicylates were the first non-steroid anti-inflammatory drugs (NSAIDs to be used in any species and are still widely used in humans and livestock. However, the data on their pharmacokinetics in animals is limited, especially after repeated administration. Evidence exist that in chickens (Gallus gallus salicylate (SA may induce its own elimination. The aim of this study was to investigate salicylate pharmacokinetics and egg residues during repeated administration of sodium salicylate (SS to laying hens. Pharmacokinetics of SA was assessed during 14 d oral administration of SS at daily doses of 50 mg/kg and 200 mg/kg body weight to laying hens. On the 1st, 7th and 14th d a 24 h-long pharmacokinetic study was carried out, whereas eggs were collected daily. Salicylate concentrations in plasma and eggs were determined using high-performance liquid chromatography with ultraviolet detection and pharmacokinetic variables were calculated using a non-compartmental model. Mean residence time (MRT, minimal plasma concentration (Cmin, C16h and elimination half-life (T1/2el of SA showed gradual decrease in layers administered with a lower dose. Total body clearance (ClB increased. Layers administered with the higher dose showed a decrease only in the T1/2el. In the low dose group, SA was found only in the egg white and was low throughout the experiment. Egg whites from the higher dose group showed initially high SA levels which significantly decreased during the experiment. Yolk SA levels were lower and showed longer periods of accumulation and elimination. Repeated administration of SS induces SA elimination, although this effect may differ depending on the dose and production type of a chicken. Decreased plasma drug concentration may have clinical implications during prolonged SS treatment.

  19. Cannabinoid receptor localization in brain

    Energy Technology Data Exchange (ETDEWEB)

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  20. Cannabinoids & Stress: impact of HU-210 on behavioral tests of anxiety in acutely stressed mice.

    Science.gov (United States)

    Kinden, Renee; Zhang, Xia

    2015-05-01

    Anxiety disorders are one of the most prevalent classes of mental disorders affecting the general population, but current treatment strategies are restricted by their limited efficacy and side effect profiles. Although the cannabinoid system is speculated to be a key player in the modulation of stress responses and emotionality, the vast majority of current research initiatives had not incorporated stress exposure into their experimental designs. This study was the first to investigate the impact of exogenous cannabinoid administration in an acutely stressed mouse model, where CD1 mice were pre-treated with HU-210, a potent CB1R agonist, prior to acute stress exposure and subsequent behavioral testing. Exogenous cannabinoid administration induced distinct behavioral phenotypes in stressed and unstressed mice. While low doses of HU-210 were anxiolytic in unstressed subjects, this effect was abolished when mice were exposed to an acute stressor. The administration of higher HU-210 doses in combination with acute stress exposure led to severe locomotor deficits that were not previously observed at the same dose in unstressed subjects. These findings suggest that exogenous cannabinoids and acute stress act synergistically in an anxiogenic manner. This study underlies the importance of including stress exposure into future anxiety-cannabinoid research due to the differential impact of cannabinoid administration on stressed and unstressed subjects.

  1. Pharmacokinetics of Cannabinoids

    Directory of Open Access Journals (Sweden)

    Iain J McGilveray

    2005-01-01

    Full Text Available Delta-9-tetrahydrocannabinol (Δ-9-THC is the main psychoactive ingredient of cannabis (marijuana. The present review focuses on the pharmacokinetics of THC, but also includes known information for cannabinol and cannabidiol, as well as the synthetic marketed cannabinoids, dronabinol (synthetic THC and nabilone. The variability of THC in plant material (0.3% to 30% leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level of 152±86.3 ng/mL occured approximately 10 min after inhalation. Oral THC, on the other hand, is only 4% to 12% bioavailable and absorption is highly variable. THC is eliminated from plasma in a multiphasic manner, with low amounts detectable for over one week after dosing. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20% and 100% of parent, respectively. THC is widely distributed, particularly to fatty tissues, but less than 1% of an administered dose reaches the brain, while the spleen and body fat are long-term storage sites. The elimination of THC and its many metabolites (from all routes occurs via the feces and urine. Metabolites persist in the urine and feces for severalweeks. Nabilone is well absorbed and the pharmacokinetics, although variable, appear to be linear from oral doses of 1 mg to 4 mg (these doses show a plasma elimination half-life of approximately 2 h. As with THC, there is a high first-pass effect, and the feces to urine ratio of excretion is similar to other cannabinoids. Pharmacokineticpharmacodynamic modelling with plasma THC versus cardiac and psychotropic effects show that after equilibrium is reached, the intensity of effect is proportional to the plasma THC profile. Clinical trials have found that nabilone produces less tachycardia and less euphoria than THC for a similar antiemetic response.

  2. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids.

    Science.gov (United States)

    Carriba, Paulina; Ortiz, Oskar; Patkar, Kshitij; Justinova, Zuzana; Stroik, Jessica; Themann, Andrea; Müller, Christa; Woods, Anima S; Hope, Bruce T; Ciruela, Francisco; Casadó, Vicent; Canela, Enric I; Lluis, Carme; Goldberg, Steven R; Moratalla, Rosario; Franco, Rafael; Ferré, Sergi

    2007-11-01

    The mechanism of action responsible for the motor depressant effects of cannabinoids, which operate through centrally expressed cannabinoid CB1 receptors, is still a matter of debate. In the present study, we report that CB1 and adenosine A2A receptors form heteromeric complexes in co-transfected HEK-293T cells and rat striatum, where they colocalize in fibrilar structures. In a human neuroblastoma cell line, CB1 receptor signaling was found to be completely dependent on A2A receptor activation. Accordingly, blockade of A2A receptors counteracted the motor depressant effects produced by the intrastriatal administration of a cannabinoid CB1 receptor agonist. These biochemical and behavioral findings demonstrate that the profound motor effects of cannabinoids depend on physical and functional interactions between striatal A2A and CB1 receptors.

  3. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H;

    2010-01-01

    -induced phosphorylation of Erk2 in the prefrontal cortex occurs following acute, but not repeated administration. Our results demonstrate that repeated agonist administration increases the number of alpha7 nAChRs in the brain, and leads to coupling versus uncoupling of specific intracellular signaling....... Here we investigate the effects of repeated agonism on alpha7 nAChR receptor levels and responsiveness in vivo in rats. Using [(125)I]-alpha-bungarotoxin (BTX) autoradiography we show that acute or repeated administration with the selective alpha7 nAChR agonist A-582941 increases the number of alpha7 n......-120596 and NS1738 do not increase [(125)I]-BTX binding. Furthermore, A-582941-induced increase in Arc and c-fos mRNA expression in the prefrontal cortex is enhanced and unaltered, respectively, after repeated administration, demonstrating that the alpha7 nAChRs remain responsive. Contrarily, A-582941...

  4. Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord.

    Science.gov (United States)

    Shi, L; Tang, G P; Gao, S J; Ma, Y X; Liu, B H; Li, Y; Zeng, J M; Ng, Y K; Leong, K W; Wang, S

    2003-07-01

    Gene delivery into the spinal cord provides a potential approach to the treatment of spinal cord traumatic injury, amyotrophic lateral sclerosis, and spinal muscular atrophy. These disorders progress over long periods of time, necessitating a stable expression of functional genes at therapeutic levels for months or years. We investigated in this study the feasibility of achieving prolonged transgene expression in the rat spinal cord through repeated intrathecal administration of plasmid DNA complexed with 25 kDa polyethylenimine (PEI) into the lumbar subarachnoid space. With a single injection, DNA/PEI complexes could provide transgene expression in the spinal cord 40-fold higher than naked plasmid DNA. The transgene expression at the initial level persisted for about 5 days, with a low-level expression being detectable for at least 8 weeks. When repeated dosing was tested, a 70% attenuation of gene expression was observed following reinjection at a 2-week interval. This attenuation was associated with apoptotic cell death and detected even using complexes containing a noncoding DNA that did not mediate any gene expression. When each component of the complexes, PEI polymer or naked DNA alone, were tested in the first dosing, no reduction was found. Using polyethylene glycol (PEG)-grafted PEI for DNA complexes, no attenuation of gene expression was detected after repeated intrathecal injections, even in those rats receiving three doses, administered 2 weeks apart. Lumbar puncture is a routine and relatively nontraumatic clinical procedure. Repeated administration of DNA complexed with PEG-grafted PEI through this less invasive route may prolong the time span of transgene expression when needed, providing a viable strategy for the gene therapy of spinal cord disorders.

  5. Acute and repeated intranasal oxytocin administration exerts anti-aggressive and pro-affiliative effects in male rats

    NARCIS (Netherlands)

    Calcagnoli, Federica; Kreutzmann, Judith C.; de Boer, Sietse F.; Althaus, Monika; Koolhaas, Jaap M.

    2015-01-01

    Socio-emotional deficits and impulsive/aggressive outbursts are prevalent symptoms of many neuropsychiatric disorders, and intranasal administration of oxytocin (OXT) is emerging as a putative novel therapeutic approach to curb these problems. Recently, we demonstrated potent anti-aggressive and pro

  6. Repeated 2% sevoflurane administration in 7‑ and 60-day-old rats : Neurotoxicity and neurocognitive dysfunction.

    Science.gov (United States)

    Huang, He; Liu, Cun-Ming; Sun, Jie; Jin, Wen-Jie; Wu, Yu-Qing; Chen, Jing

    2017-09-15

    Sevoflurane is one of the most widely used inhalation anesthetics in pediatric anesthesia. A large number of studies have demonstrated that repeated treatment with high concentrations or long durations of sevoflurane anesthesia during the neonatal period can induce neuroapoptosis and long-term learning disability. In clinical practice, we observed that a subset of patients underwent minor surgery under sevoflurane anesthesia more than once from birth to adolescence. Therefore, this research was conducted to investigate whether a 2% concentration of sevoflurane (clinically relevant usage of sevoflurane) for 1 h (a short duration) can induce neuroapoptosis and neurocognitive dysfunction in adolescent rats that received sevoflurane (2% for 1 h) during the neonatal period. Group I: neonatal rats at postnatal day 7 (PND-7) were treated with oxygen under controlled conditions and then raised to PND-60. Group II: PND-7 rats were treated with 2% sevoflurane for 1 h and then raised to PND-60. Group III: the PND-60 rats were treated with 2% sevoflurane for 1 h and in group IV the PND-7 rats were treated with 2% sevoflurane for 1 h and then anesthetized with 2% sevoflurane for 1 h at PND-60 again. The expression of caspase-3, Bax and Bcl-2 in the hippocampal dentate gyrus (DG) were measured by Western blot analysis. Neuroapoptosis in the hippocampal DG was assessed using NeuN/caspase-3 double-immunofluorescence staining. Spatial reference memory was tested by the Morris water maze test. The present data showed that sevoflurane (2% for 1 h) did not induce obvious hippocampal neuroapoptosis in the PND-7 rats and PND-60 rats; their performance in hippocampal-dependent spatial memory was not significantly impaired; however, the rats in group IV showed poor performance in the Morris water maze test and the neuroapoptosis in group IV was significantly increased. Our findings suggested that sevoflurane can induce neuroapoptosis and cognitive dysfunction in

  7. Effect of repeated oral administration of Bifidobacterium longum BB536 on apomorphine-induced rearing behavior in mice

    OpenAIRE

    ORIKASA, Shuzo; NABESHIMA, Kazumi; Iwabuchi, Noriyuki; Xiao, Jin-zhong

    2016-01-01

    Schizophrenia is a chronic psychiatric illness. Disruption of the dopaminergic system has been suggested to be the pathogenic cause of this disease. The effect of Bifidobacterium longum BB536 (BB536) on schizophrenic behavior was investigated in an animal model. Daily administration of BB536 (109 CFU/mouse, p.o. for 2 weeks) was found to reduce rearing behavior augmented by the dopamine receptor agonist apomorphine and to decrease the resting level of plasma corticosterone and the ratio of ky...

  8. Biodistribution of BPA and BSH after single, repeated and simultaneous administrations for neutron-capture therapy of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, H. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan)], E-mail: ichikawa@pharm.kobegakuin.ac.jp; Taniguchi, E. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan); Fujimoto, T. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Fukumori, Y. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586 (Japan)

    2009-07-15

    The effect of administration mode of L-BPA and BSH on the biodistribution in the melanoma-bearing hamsters was investigated. In single intravenous (i.v.) administration, BSH (100 mg BSH/kg) showed no significant retention of {sup 10}B in all the tissues, including tumors, while long-term retention of {sup 10}B in the tumor, muscle and brain was observed with L-BPA (500 mg BPA/kg). The dose escalation of L-BPA and the simultaneous single administration of L-BPA and BSH were not so effective at increasing boron accumulation in tumor after bolus i.v. injection. The boron concentration in tumor was 41 {mu}g B/g after single bolus i.v. injection even at the dose of 1000 mg BPA/kg. In contrast, two sequential bolus i.v. injections of L-BPA with the dose of 500 mg BPA/kg each was found to be effective at increasing {sup 10}B accumulation in the tumor; the maximum {sup 10}B concentration in the tumor reached 52 {mu}g B/g at 3 h after the second i.v. injection.

  9. Cannabinoids for epilepsy.

    Science.gov (United States)

    Gloss, David; Vickrey, Barbara

    2014-03-05

    Marijuana appears to have anti-epileptic effects in animals. It is not currently known if it is effective in patients with epilepsy. Some states in the United States of America have explicitly approved its use for epilepsy. To assess the efficacy and safety of cannabinoids when used as monotherapy or add-on treatment for people with epilepsy. We searched the Cochrane Epilepsy Group Specialized Register (9 September 2013), Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (2013, Issue 8), MEDLINE (Ovid) (9 September 2013), ISI Web of Knowledge (9 September 2013), CINAHL (EBSCOhost) (9 September 2013), and ClinicalTrials.gov (9 September 2013). In addition, we included studies we personally knew about that were not found by the searches, as well as searched the references in the identified studies. Randomized controlled trials (RCTs) whether blinded or not. Two authors independently selected trials for inclusion and extracted the data. The primary outcome investigated was seizure freedom at one year or more, or three times the longest interseizure interval. Secondary outcomes included responder rate at six months or more, objective quality of life data, and adverse events. We found four randomized trial reports that included a total of 48 patients, each of which used cannabidiol as the treatment agent. One report was an abstract and another was a letter to the editor. Anti-epileptic drugs were continued in all studies. Details of randomisation were not included in any study report. There was no investigation of whether the control and treatment participant groups were the same or different. All the reports were low quality.The four reports only answered the secondary outcome about adverse effects. None of the patients in the treatment groups suffered adverse effects. No reliable conclusions can be drawn at present regarding the efficacy of cannabinoids as a treatment for epilepsy. The dose of 200 to 300 mg daily of cannabidiol was

  10. Cannabinoids: occurrence and medicinal chemistry.

    Science.gov (United States)

    Appendino, G; Chianese, G; Taglialatela-Scafati, O

    2011-01-01

    With an inventory of several hundreds secondary metabolites identified, Cannabis sativa L. (hemp) is one of the phytochemically best characterized plant species. The biomedical relevance of hemp undoubtedly underlies the wealth of data on its constituents and their biological activities, and cannabinoids, a class of unique meroterpenoids derived from the alkylation of an olivetollike alkyl resorcinol with a monoterpene unit, are the most typical constituents of Cannabis. In addition to the well-known psychotropic properties of Δ(9)-THC, cannabinoids have been reported to show potential in various fields of medicine, with the capacity to address unmet needs like the relief of chemotherapy-derived nausea and anorexia, and symptomatic mitigation of multiple sclerosis. Many of the potential therapeutic uses of cannabinoids are related to the interaction with (at least) two cannabinoid G-protein coupled receptors (CB1 and CB2). However, a number of activities, like the antibacterial or the antitumor properties are non totally dependent or fully independent from the interaction with these proteins. These pharmacological activities are particularly interesting since, in principle, they could be easily dissociated by the unwanted psychotropic effects. This review aims at giving readers a survey of the more recent advances in both phytochemistry of C. sativa, the medicinal chemistry of cannabinoids, and their distribution in plants, highlighting the impact that research in these hot fields could have for modern medicinal chemistry and pharmacology.

  11. Agmatine and a cannabinoid agonist, WIN 55212-2, interact to produce a hypothermic synergy.

    Science.gov (United States)

    Rawls, Scott M; Tallarida, Ronald J; Zisk, Jacob

    2006-12-28

    Agmatine blocks morphine withdrawal symptoms and enhances morphine analgesia in rats. Yet, the role of agmatine in the pharmacological effects of other abused drugs has not been investigated. The present study investigates the effect of agmatine administration on the hypothermic response to cannabinoids. Hypothermia is an effective endpoint because cannabinoid agonists produce a rapid, reproducible, and significant decrease in body temperature that is abolished by cannabinoid CB(1) receptor antagonists. WIN 55212-2, a cannabinoid agonist, was administered to rats by itself and with agmatine. WIN 55212-2 (1, 2.5, 5 and 10 mg/kg, i.m.) caused a significant hypothermia. Agmatine (10, 25 and 50 mg/kg, i.p.) was ineffective. For combined administration, agmatine (50 mg/kg, i.p.) enhanced the hypothermic effect of WIN 55212-2 (1, 2.5, 5 and 10 mg/kg, i.m.). The enhancement was strongly synergistic, indicated by a 2.7-fold increase in the relative potency of WIN 55212-2. The central administration of agmatine (25 and 50 mug/rat, i.c.v.) significantly increased the hypothermic effect of WIN 55212-2 (2.5 mg/kg, i.m.). This indicates that agmatine acts through a central mechanism to augment cannabinoid-evoked hypothermia. Idazoxan (2 mg/kg, i.p.), an imidazoline antagonist, blocked the enhancement by agmatine, thus suggesting that imidazoline receptor activation is required for agmatine to enhance cannabinoid-evoked hypothermia. The present data reveal that agmatine and a cannabinoid agonist interact to produce a hypothermic synergy in rats. These results show that agmatine acts in the brain and via imidazoline receptors to enhance cannabinoid-evoked hypothermia.

  12. The effects of repeated administration of camphor-crataegus berry extract combination on blood pressure and on attentional performance - a randomized, placebo-controlled, double-blind study.

    Science.gov (United States)

    Erfurt, L; Schandry, R; Rubenbauer, S; Braun, U

    2014-09-25

    The present study investigated the effects of repeated administration of Korodin(®), a combination of camphor and crataegus berry extract, on blood pressure and attentional functioning. This study was conducted based on a randomized, placebo-controlled, double-blind design. 54 persons participated (33 female, 21 male) with a mean age of 24.3 years. Blood pressure and body mass index were in the normal range. Participants received 20 drops of either Korodin(®) or a placebo for four times with interjacent time intervals of about 10 min. Blood pressure was measured sphygmomanometrically before and after each administration. Attentional performance was quantified by using two paper-and-pencil tests, the d2 Test of Attention and Digit Symbol Test. Greater increases in blood pressure occurred after the four Korodin(®) administrations in comparison to the four placebo administrations. The performance in two parameters of d2 Test of Attention was consistently superior after the intake of Korodin(®). The excellent tolerability and safety of Korodin(®), even after a total consumption of 80 drops, was confirmed. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Effect of repeated oral administration of Bifidobacterium longum BB536 on apomorphine-induced rearing behavior in mice.

    Science.gov (United States)

    Orikasa, Shuzo; Nabeshima, Kazumi; Iwabuchi, Noriyuki; Xiao, Jin-Zhong

    2016-01-01

    Schizophrenia is a chronic psychiatric illness. Disruption of the dopaminergic system has been suggested to be the pathogenic cause of this disease. The effect of Bifidobacterium longum BB536 (BB536) on schizophrenic behavior was investigated in an animal model. Daily administration of BB536 (10(9) CFU/mouse, p.o. for 2 weeks) was found to reduce rearing behavior augmented by the dopamine receptor agonist apomorphine and to decrease the resting level of plasma corticosterone and the ratio of kynurenine to tryptophan. These results suggest the potential of BB536 for supplemental treatment of the symptoms of schizophrenia.

  14. Repeated post-exercise administration with a mixture of leucine and glucose alters the plasma amino acid profile in Standardbred trotters

    Directory of Open Access Journals (Sweden)

    Nostell Katarina EA

    2012-02-01

    Full Text Available Abstract Background The branched chain amino acid leucine is a potent stimulator of insulin secretion. Used in combination with glucose it can increase the insulin response and the post exercise re-synthesis of glycogen in man. Decreased plasma amino acid concentrations have been reported after intravenous or per oral administration of leucine in man as well as after a single per oral dose in horses. In man, a negative correlation between the insulin response and the concentrations of isoleucine, valine and methionine have been shown but results from horses are lacking. This study aims to determine the effect of repeated per oral administration with a mixture of glucose and leucine on the free amino acid profile and the insulin response in horses after glycogen-depleting exercise. Methods In a crossover design, after a glycogen depleting exercise, twelve Standardbred trotters received either repeated oral boluses of glucose, 1 g/kg body weight (BW at 0, 2 and 4 h with addition of leucine 0.1 g/kg BW at 0 and 4 h (GLU+LEU, or repeated boluses of water at 0, 2 and 4 h (CON. Blood samples for analysis of glucose, insulin and amino acid concentrations were collected prior to exercise and over a 6 h post-exercise period. A mixed model approach was used for the statistical analyses. Results Plasma leucine, isoleucine, valine, tyrosine and phenylalanine concentrations increased after exercise. Post-exercise serum glucose and plasma insulin response were significantly higher in the GLU+LEU treatment compared to the CON treatment. Plasma leucine concentrations increased after supplementation. During the post-exercise period isoleucine, valine and methionine concentrations decreased in both treatments but were significantly lower in the GLU+LEU treatment. There was no correlation between the insulin response and the response in plasma leucine, isoleucine, valine and methionine. Conclusions Repeated post-exercise administration with a mixture of leucine

  15. Loss of phenotype of parvalbumin interneurons in rat prefrontal cortex is involved in antidepressant- and propsychotic-like behaviors following acute and repeated ketamine administration.

    Science.gov (United States)

    Zhou, ZhiQiang; Zhang, GuangFen; Li, XiaoMin; Liu, XiaoYu; Wang, Nan; Qiu, LiLi; Liu, WenXue; Zuo, ZhiYi; Yang, JianJun

    2015-04-01

    Accumulating evidence has demonstrated that single subanesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant-like effects. Nevertheless, repeated subanesthetic doses of ketamine produce psychosis-like effects with dysfunction of parvalbumin (PV) interneurons. We hypothesized that PV interneurons play an important role in the antidepressant-like actions of ketamine, and different changes in PV interneurons occur with the antidepressant-like and propsychotic-like effects of ketamine. To test this hypothesis, ketamine's antidepressant-like effects were evaluated by the forced swimming test. Ketamine-induced stereotyped behaviors and hyperactivity actions and the function of PV interneurons were also assessed. We demonstrated that an acute dose of 10 mg/kg ketamine induced significant antidepressant-like effects and reduced the levels of PV and the gamma-aminobutyric acid (GABA)-producing enzyme GAD67 in the rat prefrontal cortex. Moreover, inhibition of ketamine-induced loss of PV by apocynin blocked these antidepressant-like effects. Repeated administration of 30 mg/kg ketamine elicited stereotyped behaviors and hyperactivity actions as well as a longer duration of PV and GAD67 loss, higher brain glutamate levels, and lower brain GABA levels than acute single dose of ketamine. Our results reveal that the loss of phenotype of PV interneurons in the prefrontal cortex contributes to the antidepressant-like actions and is also involved in the propsychotic-like behaviors following acute and repeated ketamine administration, which may be partially mediated by the disinhibition of glutamate signaling. The different degrees and durations of the actions on PV interneurons produced by the two regimens of ketamine may partly underline the behavioral variance between the antidepressant- and propsychotic-like effects.

  16. Synthetic cannabinoids: analysis and metabolites.

    Science.gov (United States)

    Elsohly, Mahmoud A; Gul, Waseem; Wanas, Amira S; Radwan, Mohamed M

    2014-02-27

    Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these "synthetic cannabinoids" with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.

  17. Hepatotoxicity assessment of Mn-doped ZnS quantum dots after repeated administration in mice

    Directory of Open Access Journals (Sweden)

    Yang YJ

    2015-09-01

    Full Text Available Yanjie Yang,1,2 Shuang-Yu Lv,2 Bianfei Yu,1 Shuang Xu,1 Jianmin Shen,3 Tong Zhao,1 Haixia Zhang1 1Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu, 2School of Medicine, Henan University, Kaifeng, Henan, 3Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People’s Republic of China Abstract: Doped ZnS quantum dots (QDs have a longer dopant emission lifetime and potentially lower cytotoxicity compared to other doped QDs. The liver is the key organ for clearance and detoxification of xenobiotics by phagocytosis and metabolism. The present study was designed to synthesize and evaluate the hepatotoxicity of Mn-doped ZnS QDs and their polyethylene glycol-coated counterparts (1 mg/kg and 5 mg/kg in mice. The results demonstrated that daily injection of Mn-doped ZnS QDs and polyethylene glycol-coated QDs via tail vein for 7 days did not influence body weight, relative liver weight, serum aminotransferases (alanine aminotransferase and aspartate aminotransferase, the levels of antioxidant enzymes (catalase, glutathione peroxidase, and superoxide dismutase, or malondialdehyde in the liver. Analysis of hepatocyte ultrastructure showed that Mn-doped ZnS QDs and polyethylene glycol-coated QDs mainly accumulated in mitochondria at 24 hours after repeated intravenous injection. No damage to cell nuclei or mitochondria was observed with either of the QDs. Our results indicate that Mn-doped ZnS QDs did not cause obvious damage to the liver. This study will assist in the development of Mn-doped ZnS QDs-based bioimaging and biomedical applications in the future. Keywords: liver, serum aminotransferases, antioxidant enzymes, ultrastructure

  18. 76 FR 71351 - Prospective Grant of Exclusive License: Development of Cannabinoid(s) and Cannabidiol(s) Based...

    Science.gov (United States)

    2011-11-17

    ... Cannabinoid(s) and Cannabidiol(s) Based Therapeutics To Treat Hepatic Encephalopathy in Humans. AGENCY... be limited to: The development and sale of cannabinoid(s) and cannabidiol(s) based therapeutics as... chronic neurodegenerative diseases. Nonpsychoactive cannabinoids, such as Cannabidiol (CBD),...

  19. Alcohol and cannabinoids differentially affect HIV infection and function of human monocyte-derived dendritic cells (MDDC

    Directory of Open Access Journals (Sweden)

    Marisela eAgudelo

    2015-12-01

    Full Text Available During human immunodeficiency virus (HIV infection, alcohol has been known to induce inflammation while cannabinoids have been shown to have an anti-inflammatory role. For instance cannabinoids have been shown to reduce susceptibility to HIV-1 infection and attenuate HIV replication in macrophages. Recently, we demonstrated that alcohol induces cannabinoid receptors and regulates cytokine production by monocyte-derived dendritic cells (MDDC. However, the ability of alcohol and cannabinoids to alter MDDC function during HIV infection has not been clearly elucidated yet. In order to study the potential impact of alcohol and cannabinoids on differentiated MDDC infected with HIV, monocytes were cultured for 7 days with GM-CSF and IL-4, differentiated MDDC were infected with HIV-1Ba-L and treated with EtOH (0.1 and 0.2%, THC (5 and 10 uM, or JWH-015 (5 and 10 uM for 4-7 days. HIV infection of MDDC was confirmed by p24 and Long Terminal Repeats (LTR estimation. MDDC endocytosis assay and cytokine array profiles were measured to investigate the effects of HIV and substances of abuse on MDDC function. Our results show the HIV+EtOH treated MDDC had the highest levels of p24 production and expression when compared with the HIV positive controls and the cannabinoid treated cells. Although both cannabinoids, THC and JWH-015 had lower levels of p24 production and expression, the HIV+JWH-015 treated MDDC had the lowest levels of p24 when compared to the HIV+THC treated cells. In addition, MDDC endocytic function and cytokine production were also differentially altered after alcohol and cannabinoid treatments. Our results show a differential effect of alcohol and cannabinoids, which may provide insights into the divergent inflammatory role of alcohol and cannabinoids to modulate MDDC function in the context of HIV infection.

  20. Cannabinoids facilitate the swallowing reflex elicited by the superior laryngeal nerve stimulation in rats.

    Directory of Open Access Journals (Sweden)

    Rahman Md Mostafeezur

    Full Text Available Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1 and 2 (CB2. The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN, with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67 or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid neurons in the central pattern generator for swallowing.

  1. Cellular Composition of the Spleen and Changes in Splenic Lysosomes in the Dynamics of Dyslipidemia in Mice Caused by Repeated Administration of Poloxamer 407.

    Science.gov (United States)

    Goncharova, N V; Shurlygina, A V; Mel'nikova, E V; Karmatskikh, O L; Avrorov, P A; Loktev, K V; Korolenko, T A

    2015-11-01

    We studied the effect of dyslipidemia induced by poloxamer 407 (300 mg/kg twice a week for 30 days) on cellular composition of the spleen and splenocyte lysosomes in mice. Changes in blood lipid profile included elevated concentrations of total cholesterol, aterogenic LDL, and triglycerides most pronounced in 24 h after the last poloxamer 407 injection; gradual normalization of lipid profile was observed in 4 days (except triglycerides) and 10 days. The most pronounced changes in the spleen (increase in organ weight and number of cells, inhibition in apoptosis, and reduced accumulation of vital dye acridine orange in lysosomes) were detected on day 4; on day 10, the indices returned to normal. Cathepsin D activity in the spleen also increased at these terms. The relationship between changes in the cellular composition of the spleen and dynamics of serum lipid profile in mice in dyslipidemia caused by repeated administrations of relatively low doses of poloxamer 407 is discussed.

  2. Repeated ketamine administration alters N-methyl-d-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    Science.gov (United States)

    Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  3. A cannabinoid CB(1) receptor antagonist ameliorates impairment of recognition memory on withdrawal from MDMA (Ecstasy).

    Science.gov (United States)

    Nawata, Yoko; Hiranita, Takato; Yamamoto, Tsuneyuki

    2010-01-01

    (+/-)-3,4-Methylenedioxymethamphetamine (MDMA, 'Ecstasy') abusers have persistent neuropsychiatric deficits including memory impairments after the cessation of abuse. On the other hand, cannabinoid CB(1) receptors have been implicated in learning/memory, and are highly expressed in the hippocampus, a region of the brain believed to have an important function in certain forms of learning and memory. In this study, we clarified the mechanism underlying the cognitive impairment that develops during MDMA withdrawal from the standpoint of the cannabinoid CB(1) receptors. Mice were administered MDMA (10 mg/kg, i.p.) once a day for 7 days. On the 7th day of withdrawal, a novel object recognition task was performed and the amount of cannabinoid CB(1) receptor protein was measured with western blotting. Recognition performance was impaired on the 7th day of withdrawal. This impairment was blocked by AM251, a cannabinoid CB(1) receptor antagonist, administered 30 min before the training trial or co-administered with MDMA. At this time, the level of cannabinoid CB(1) receptor protein increased significantly in the hippocampus but not the prefrontal cortex or striatum. This increase of CB(1) receptor protein in the hippocampus was also blocked by the co-administration of AM251. Furthermore, CB(1) receptor knockout mice showed no impairment of recognition performance on the withdrawal from MDMA. The impairment of recognition memory during withdrawal from MDMA may result from the activation of cannabinoid CB(1) receptors in the hippocampus.

  4. Antiaversive Effects of Cannabinoids: Is the Periaqueductal Gray Involved?

    Directory of Open Access Journals (Sweden)

    F. S. Guimarães

    2008-12-01

    Full Text Available Cannabinoids play an important role in activity-dependent changes in synaptic activity and can interfere in several brain functions, including responses to aversive stimuli. The regions responsible for their effects, however, are still unclear. Cannabinoid type 1 (CB1 receptors are widely distributed in the central nervous system and are present in the periaqueductal gray (PAG, a midbrain structure closely involved in responses related to aversive states. Accordingly, exposure to stressful stimuli increases endocannabinoid (eCB levels in the PAG, and local administration of CB1 agonists or drugs that facilitate eCB-mediated neurotransmission produces antinociceptive and antiaversive effects. To investigate if these drugs would also interfere in animal models that are sensitive to anxiolytic drugs, we verified the responses to intra-PAG injection of CB1 agonists in rats submitted to the elevated plus-maze, the Vogel punished licking test, or contextual aversive conditioning model. The drugs induced anxiolytic-like effects in all tests. The same was observed with the transient receptor potential vanilloid type 1 (TRPV1 antagonist capsazepine and with cannabidiol, a nonpsychotomimetic phytocannabinoid that produces anxiolytic-like effects after systemic administration in humans and laboratory animals. These results, therefore, suggest that the PAG could be an important site for the antiaversive effects of cannabinoids.

  5. Beyond THC: The New Generation of Cannabinoid Designer Drugs

    National Research Council Canada - National Science Library

    Fattore, Liana; Fratta, Walter

    2011-01-01

    Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC), the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs...

  6. Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease

    Directory of Open Access Journals (Sweden)

    Despina Kokona

    2016-01-01

    Full Text Available The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP. This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease.

  7. Cannabinoid hyperemesissyndrom som årsag til langvarig kvalme og opkastning hos cannabismisbrugere

    DEFF Research Database (Denmark)

    Vindsand Naver, Astrid; Theede, Klaus

    2015-01-01

    Cannabinoid hyperemesis syndrome causing prolonged nausea and vomiting in patients with cannabis abuse Cannabis is one of the most used drugs worldwide. The link between repeated episodes of nausea, vomiting, and cannabis abuse is often missed in patients with prolonged cannabis abuse and is named...... cannabinoid hyperemesis syndrome. Characteristically, the symptoms appear in a cyclical pattern and are relieved by long, hot baths. Physical examination, radiology and endoscopy are often normal. The symptoms resolve with cessation of cannabis abuse. Health professionals must be aware of this syndrome...... in order to detect the patients early and to avoid extensive medical workup....

  8. The acceptability of repeat Internet-based hybrid diet assessment of previous 24-h dietary intake: administration of the Oxford WebQ in UK Biobank.

    Science.gov (United States)

    Galante, Julieta; Adamska, Ligia; Young, Alan; Young, Heather; Littlejohns, Thomas J; Gallacher, John; Allen, Naomi

    2016-02-28

    Although dietary intake over a single 24-h period may be atypical of an individual's habitual pattern, multiple 24-h dietary assessments can be representative of habitual intake and help in assessing seasonal variation. Web-based questionnaires are convenient for the participant and result in automatic data capture for study investigators. This study reports on the acceptability of repeated web-based administration of the Oxford WebQ--a 24-h recall of frequency from a set food list suitable for self-completion from which energy and nutrient values can be automatically generated. As part of the UK Biobank study, four invitations to complete the Oxford WebQ were sent by email over a 16-month period. Overall, 176 012 (53% of those invited) participants completed the online version of the Oxford WebQ at least once and 66% completed it more than once, although only 16% completed it on all four occasions. The response rate for any one round of invitations varied between 34 and 26%. On most occasions, the Oxford WebQ was completed on the same day that they received the invitation, although this was less likely if sent on a weekend. Participants who completed the Oxford WebQ tended to be white, female, slightly older, less deprived and more educated, which is typical of health-conscious volunteer-based studies. These findings provide preliminary evidence to suggest that repeated 24-h dietary assessment via the Internet is acceptable to the public and a feasible strategy for large population-based studies.

  9. Cannabinoids in health and disease

    OpenAIRE

    Kogan, Natalya M.; Mechoulam, Raphael

    2007-01-01

    Cannabis sativa L. preparations have been used in medicine for millenia. However, concern over the dangers of abuse led to the banning of the medicinal use of marijuana in most countries in the 1930s. Only recently, marijuana and individual natural and synthetic cannabinoid receptor agonists and antagonists, as well as chemically related compounds, whose mechanism of action is still obscure, have come back to being considered of therapeutic value. However, their use is highly restricted. Desp...

  10. Opioid-Sparing Effect of Cannabinoids: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Nielsen, Suzanne; Sabioni, Pamela; Trigo, Jose M; Ware, Mark A; Betz-Stablein, Brigid D; Murnion, Bridin; Lintzeris, Nicholas; Khor, Kok Eng; Farrell, Michael; Smith, Andrew; Le Foll, Bernard

    2017-08-01

    Cannabinoids, when co-administered with opioids, may enable reduced opioid doses without loss of analgesic efficacy (ie, an opioid-sparing effect). The aim of this study was to conduct a systematic review to determine the opioid-sparing potential of cannabinoids. Eligible studies included pre-clinical and clinical studies for which the outcome was either analgesia or opioid dose requirements. Clinical studies included controlled studies and case series. We searched Scopus, Cochrane Database of Systematic Reviews, Medline, and Embase. Nineteen pre-clinical and nine clinical studies met the search criteria. Seventeen of the 19 pre-clinical studies provided evidence of synergistic effects from opioid and cannabinoid co-administration. Our meta-analysis of pre-clinical studies indicated that the median effective dose (ED50) of morphine administered in combination with delta-9-tetrahydrocannabinol (delta-9-THC) is 3.6 times lower (95% confidence interval (CI) 1.95, 6.76; n=6) than the ED50 of morphine alone. In addition, the ED50 for codeine administered in combination with delta-9-THC was 9.5 times lower (95% CI 1.6, 57.5, n=2) than the ED50 of codeine alone. One case series (n=3) provided very-low-quality evidence of a reduction in opioid requirements with cannabinoid co-administration. Larger controlled clinical studies showed some clinical benefits of cannabinoids; however, opioid dose changes were rarely reported and mixed findings were observed for analgesia. In summary, pre-clinical studies provide robust evidence of the opioid-sparing effect of cannabinoids, whereas one of the nine clinical studies identified provided very-low-quality evidence of such an effect. Prospective high-quality-controlled clinical trials are required to determine the opioid-sparing effect of cannabinoids.

  11. Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats

    Directory of Open Access Journals (Sweden)

    Malki Rana

    2008-04-01

    Full Text Available Abstract Background Many studies have focused on the implication of the serotonin and dopamine systems in neuroadaptive responses to the recreational drug 3,4-methylenedioxy-metamphetamine (MDMA. Less attention has been given to the major excitatory neurotransmitter glutamate known to be implicated in schizophrenia and drug addiction. The aim of the present study was to investigate the effect of repeated intermittent MDMA administration upon gene-transcript expression of the glutamate transporters (EAAT1, EAAT2-1, EAAT2-2, the glutamate receptor subunits of AMPA (GluR1, GluR2, GluR3, the glutamate receptor subunits of NMDA (NR1, NR2A and NR2B, as well as metabotropic glutamate receptors (mGluR1, mGluR2, mGluR3, mGluR5 in six different brain regions. Adolescent male Sprague Dawley rats received MDMA at the doses of 3 × 1 and 3 × 5 mg/kg/day, or 3× vehicle 3 hours apart, every 7th day for 4 weeks. The gene-transcript levels were assessed using real-time PCR validated with a range of housekeeping genes. Results The findings showed pronounced enhancements in gene-transcript expression of GluR2, mGluR1, mGluR5, NR1, NR2A, NR2B, EAAT1, and EAAT2-2 in the cortex at bregma +1.6. In the caudate putamen, mRNA levels of GluR3, NR2A, and NR2B receptor subunits were significantly increased. In contrast, the gene-transcript expression of GluR1 was reduced in the hippocampus. In the hypothalamus, there was a significant increase of GluR1, GluR3, mGluR1, and mGluR3 gene-transcript expressions. Conclusion Repeated intermittent MDMA administration induces neuroadaptive changes in gene-transcript expressions of glutamatergic NMDA and AMPA receptor subunits, metabotropic receptors and transporters in regions of the brain regulating reward-related associative learning, cognition, and memory and neuro-endocrine functions.

  12. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  13. Repeated administration of D-amphetamine induces loss of [{sup 123}I]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan [Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam (Netherlands)]. E-mail: j.booij@amc.uva.nl; Bruin, Kora de [Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam (Netherlands); Gunning, W. Boudewijn [Department of Neurology, Epilepsy Centre Kempenhaeghe, 5590 AB Heeze (Netherlands)

    2006-04-15

    In recent years, several PET and SPECT studies have shown loss of striatal dopamine transporter (DAT) binding in amphetamine (AMPH) users. However, the use of DAT SPECT tracers to detect AMPH-induced changes in DAT binding has not been validated. We therefore examined if repeated administration of D-AMPH or methamphetamine (METH) may induce loss of binding to striatal DATs in rats by using an experimental biodistribution study design and a SPECT tracer for the DAT ([{sup 123}I]FP-CIT). Methods: Groups of male rats (n=10 per group) were treated with D-AMPH (10 mg/kg body weight), METH (10 mg/kg body weight), or saline, twice a day for 5 consecutive days. Five days later, [{sup 123}I]FP-CIT was injected intravenously, and 2 h later, the rats were sacrificed and radioactivity was assayed. Results: In D-AMPH but not METH-treated rats, striatal [{sup 123}I]FP-CIT uptake was significantly lower (approximately 17%) than in the control group. Conclusion: These data show that [{sup 123}I]FP-CIT can be used to detect AMPH-induced changes in DAT binding and may validate the use of DAT radiotracers to study AMPH-induced changes in striatal DAT binding in vivo.

  14. The effect of repeated administrations of llama ovulation-inducing factor (OIF/NGF) during the peri-ovulatory period on corpus luteum development and function in llamas.

    Science.gov (United States)

    Fernández, A; Ulloa-Leal, C; Silva, M; Norambuena, C; Adams, G P; Guerra, M; Ratto, M H

    2014-10-01

    The objective of the study was to test the hypothesis that repeated administrations of OIF/NGF during the peri-ovulatory period (pre-ovulatory, ovulatory, early post-ovulatory), will enhance the luteotrophic effect in llamas. Female llamas were examined daily by transrectal ultrasonography in B- and Doppler-mode using a scanner equipped with a 7.5-MHz linear-array transducer to monitor ovarian follicle and luteal dynamics. When a growing follicle ≥7mm was detected, llamas were assigned randomly to one of the three groups and given 1mg of purified OIF/NGF im (intramuscular) (a) pre-ovulation (single dose; n=12), (b) pre-ovulation and at the time of ovulation (2 doses, n=10), or (c) pre-ovulation, at the time of ovulation, and 24h after ovulation (3 doses, n=10). The pre-ovulatory follicle diameter at the time of treatment, ovulation rate and the first day of CL detection did not differ (P=0.3) among groups. However, maximum CL diameter was greatest (P=0.003) in llamas in the 2-dose group, and smallest in the 3-dose group. Accordingly, the 2 dose-group had the largest day-to-day profile for CL diameter (Pllama seminal plasma is luteotrophic and the effect on CL size and function is affected by the number and timing of treatments during the peri-ovulatory period.

  15. An In Vivo Evaluation of the Effect of Repeated Administration and Clearance of Targeted Contrast Agents on Molecular Imaging Signal Enhancement

    Directory of Open Access Journals (Sweden)

    Jason E. Streeter, Paul A. Dayton

    2013-01-01

    Full Text Available Competitive inhibition diminishes ligand adhesion as receptor sites become occupied with competing ligands. It is unknown if this effect occurs in ultrasound molecular imaging studies where endothelial binding sites become occupied with adherent bubbles or bubble fragments. The goal of this pilot study was to assess the effect that repeated administration and clearance of targeted agents has on successive adhesion. Two groups of animals were imaged with 3-D ultrasonic molecular imaging. Injections and imaging were performed on Group 1 at time 0 and 60 minutes. Group 2 received injections of microbubbles at 0, 15, 30, 45 and 60 minutes with imaging at 0 and 60 minutes. At 60 minutes, Group 1 targeting relative to baseline was not significantly different from Group 2 (1.06±0.27 vs. 1.08±0.34, p=0.93. Data suggest that multiple injections of targeted microbubbles do not block sufficient binding sites to bias molecular imaging data in serial studies.

  16. Cannabinoid Concentrations in Hair from Documented Cannabis Users

    Science.gov (United States)

    Huestis, Marilyn A.; Gustafson, Richard A.; Moolchan, Eric T.; Bames, Allan; Bourland, James A.; Sweeney, Stacy A.; Hayes, Eugene F.; Carpenter, Patrick M.; Smith, Michael L.

    2008-01-01

    Fifty-three head hair specimens were collected from 38 males with a history of cannabis use documented by questionnaire, urinalysis and controlled, double blind administration of Δ9-tetrahydrocannabinol (THC) in an institutional review board approved protocol. The subjects completed a questionnaire indicating daily cannabis use (N = 18) or non-daily use, i.e. 1 to 5 cannabis cigarettes per week, (N = 20). Drug use was also documented by a positive cannabinoid urinalysis, a hair specimen was collected from each subject and they were admitted to a closed research unit. Additional hair specimens were collected following smoking of two 2.7% THC cigarettes (N = 13) or multiple oral doses totaling 116 mg THC (N = 2). Cannabinoid concentrations in all hair specimens were determined by ELISA and GCMSMS. Pre- and post dose detection rates did not differ statistically, therefore, all 53 specimens were considered as one group for further comparisons. Nineteen specimens (36%) had no detectable THC or 11-nor-9-carboxy-THC (THCCOOH) at the GCMSMS limits of quantification (LOQ) of 1.0 and 0.1 pg/mg hair, respectively. Two specimens (3.8%) had measurable THC only, 14 (26%) THCCOOH only, and 18 (34%) both cannabinoids. Detection rates were significantly different (p 0.3, Fisher's exact test). For specimens with detectable cannabinoids, concentrations ranged from 3.4 to > 100 pg THC/mg and 0.10 to 7.3 pg THCCOOH/mg hair. THC and THCCOOH concentrations were positively correlated (r = 0.38, p < 0.01, Pearson's product moment correlation). Using an immunoassay cutoff concentration of 5 pg THC equivalents/mg hair, 83% of specimens that screened positive were confirmed by GCMSMS at a cutoff concentration of 0.1 pg THCCOOH/mg hair. PMID:16963215

  17. Influence of pre-exposure to morphine on cannabinoid-induced impairment of spatial memory in male rats.

    Science.gov (United States)

    Farahmandfar, Maryam; Kadivar, Mehdi; Naghdi, Nasser; Choopani, Samira; Zarrindast, Mohammad-Reza

    2013-11-01

    In the present study, we investigated the effects of repeated morphine pre-treatment on impairment of spatial memory acquisition induced by intra dorsal hippocampus (intra-CA1) administration of the non-selective cannabinoid CB1/CB2 receptor agonist, WIN55,212-2 in adult male rats. 2-day version of Morris water maze task has been used for the assessment of spatial memory. On the training day, rats were trained by a single training session of eight trials and 24 h later a probe trial test consist of 60s free swim period without a platform and the visible test was administered. Animals received pre-treatment subcutaneous (s.c.) injections of morphine, once daily for three days followed by five days drug-free treatment before training trials. The results indicated that bilateral pre-training intra-CA1 infusions of WIN55,212-2 (0.25 and 0.5 μg/rat) impaired acquisition of spatial memory on the training and test day. The amnesic effect of WIN55, 212-2 (0.5 μg/rat) was prevented in rats previously injected with morphine (20 mg/kg/day × 3 days, s.c.). Improvement in spatial memory acquisition in morphine-pretreated rats was inhibited by once daily administration of naloxone (1 and 2 mg/kg, s.c.) 15 min prior to injection of morphine for three days. The results suggest that sub-chronic morphine treatment may produced sensitization to cannabinoids, which in turn reversed the impairment of spatial memory acquisition induced by WIN55,212-2 and mu- opioid receptors may play an important role in this effect.

  18. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Dolores Hernán Pérez de la Ossa

    Full Text Available Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9-Tetrahydrocannabinol (THC and Cannabidiol (CBD - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  19. Genetic vs. pharmacological inactivation of COMT influences cannabinoid-induced expression of schizophrenia-related phenotypes.

    Science.gov (United States)

    O'Tuathaigh, Colm M P; Clarke, Gerard; Walsh, Jeremy; Desbonnet, Lieve; Petit, Emilie; O'Leary, Claire; Tighe, Orna; Clarke, Niamh; Karayiorgou, Maria; Gogos, Joseph A; Dinan, Ted G; Cryan, John F; Waddington, John L

    2012-10-01

    Catechol-O-methyltransferase (COMT) is an important enzyme in the metabolism of dopamine and disturbance in dopamine function is proposed to be central to the pathogenesis of schizophrenia. Clinical epidemiological studies have indicated cannabis use to confer a 2-fold increase in risk for subsequent onset of psychosis, with adolescent-onset use conveying even higher risk. There is evidence that a high activity COMT polymorphism moderates the effects of adolescent exposure to cannabis on risk for adult psychosis. In this paper we compared the effect of chronic adolescent exposure to the cannabinoid WIN 55212 on sensorimotor gating, behaviours related to the negative symptoms of schizophrenia, anxiety- and stress-related behaviours, as well as ex-vivo brain dopamine and serotonin levels, in COMT KO vs. wild-type (WT) mice. Additionally, we examined the effect of pretreatment with the COMT inhibitor tolcapone on acute effects of this cannabinoid on sensorimotor gating in C57BL/6 mice. COMT KO mice were shown to be more vulnerable than WT to the disruptive effects of adolescent cannabinoid treatment on prepulse inhibition (PPI). Acute pharmacological inhibition of COMT in C57BL/6 mice also modified acute cannabinoid effects on startle reactivity, as well as PPI, indicating that chronic and acute loss of COMT can produce dissociable effects on the behavioural effects of cannabinoids. COMT KO mice also demonstrated differential effects of adolescent cannabinoid administration on sociability and anxiety-related behaviour, both confirming and extending earlier reports of COMT×cannabinoid effects on the expression of schizophrenia-related endophenotypes.

  20. WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors.

    Science.gov (United States)

    Pamplona, Fabrício Alano; Takahashi, Reinaldo Naoto

    The memory deficits induced by cannabinoid agonists have been found in several behavioral paradigms. Nevertheless, there is evidence that not all types of memory are impaired after cannabinoid administration. The aim of this study was to investigate whether the cannabinoid agonist WIN 55212-2 (WIN) is able to influence the acquisition of fear conditioning using tone and contextual versions. For tone-fear conditioning, male Wistar rats were placed in the conditioning chamber and after 3 min, a sound (CS) was presented for 10s that terminated with a 1-s electric footshock (1.5 mA). For contextual-fear conditioning, a similar procedure was used but no sound was presented. Twenty-four hours after, the animals were re-exposed to the respective CS (tone or conditioning chamber) and the freezing behavior was registered. A subsequent experiment investigated a possible state-dependent effect of WIN by administering WIN or control solution 30 min before conditioning and before testing. WIN (2.5 and 5.0 mg/kg) administered i.p. 30 min before impaired contextual fear conditioning but did not modify the freezing behavior elicited by tone presentation. These animals did not show any state-dependent effects of WIN. Further, the impaired contextual conditioning was prevented by preadministration of SR141716A (1.0 mg/kg, i.p.) or SR147778 (1.0 mg/kg, i.p.), selective cannabinoid CB1 receptor antagonists. The present findings highlight that cannabinoid agonists effects are selective for the hippocampus-dependent aversive memories in rats. This effect appears to be related to the activation of CB1 cannabinoid receptors and confirms that cannabinoids might provide a novel approach for the treatment of unpleasant memories.

  1. 75 FR 71635 - Schedules of Controlled Substances: Temporary Placement of Five Synthetic Cannabinoids Into...

    Science.gov (United States)

    2010-11-24

    ... cannabinoids. They have not been approved by the U.S. Food and Drug Administration for human consumption. These... sold over the Internet and in tobacco and smoke shops, drug paraphernalia shops, and convenience stores... for human consumption, retailers promote that routine urinalysis tests will not typically detect...

  2. Two different methods for repeated intrathecal administration in rats%大鼠鞘内反复给药两种方法的比较

    Institute of Scientific and Technical Information of China (English)

    任占杰; 于志军; 张增臻; 张成明; 张广学

    2009-01-01

    Objective To compare the feasibility of direct spinal puncture and reserving micro-catheter in spinal space during repeated intrathecal administration. Methods Forty Sprague-Dawley rats were randomly divided into 2 groups:direct spinal puncture (group puncture) and reserving micro-catheter in spinal space group (group reserve). The duration of operation were recorded. 5 days after operation, rata in both groups were intrathecally administerde morphine(10 μg/10μl) for 7 days and thermal withdrawal latency(TWL) were assessed. Results The operation in group reserve took shorter time than the group puncture, but micro-catheter were pulled out in 5 rats in group reserve. There is no difference of TWL between two groups. Conclusion Both methods are suitable for repeated intrathecal administration.%目的 比较大鼠蛛网膜下腔长期置管和反复蛛网膜下腔穿刺两种给药方法的难易程度及反复给药的可行性.方法 40只清洁级SD大鼠以随机数字表法分为置管组和穿刺组各20只.置管组通过蛛网膜下腔长期置管给药,穿刺组反复行蛛网膜下腔穿刺给药.记录每次进行操作所用的时间.2组均从实验第5天开始鞘内注射吗啡10 μg/1μl,连续给药7 d,用热辐射法测定大鼠热缩足潜伏期(TWL).对2组实验时间和TWL进行比较分析.结果 置管组操作时间较穿刺组短,差异有统计学意义(P<0.01).置管组5只大鼠导管脱出.鞘内给药后,置管组和穿刺组TWL测定值均较基础值增加,差异有统计学意义(P<0.01).2组间TWL测定值差异无统计学意义.结论 蛛网膜下腔长期置管和反复蛛网膜下腔穿刺均可作为鞘内多次给药方法,但在选择时应该考虑到操作难易程度、给药方式、反复给药并发症等因素的影响.

  3. Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists.

    Science.gov (United States)

    Greineisen, William E; Turner, Helen

    2010-05-01

    The active constituents of Cannabis sativa have been used for centuries as recreational drugs and medicinal agents. Today, marijuana is the most prevalent drug of abuse in the United States and, conversely, therapeutic use of marijuana constituents are gaining mainstream clinical and political acceptance. Given the documented contributions of endocannabinoid signaling to a range of physiological systems, including cognitive function, and the control of eating behaviors, it is unsurprising that cannabinoid receptor agonists and antagonists are showing significant clinical potential. In addition to the neuroactive effects of cannabinoids, an emerging body of data suggests that both endogenous and exogenous cannabinoids are potently immunoactive. The central premise of this review article is that the immunological effects of cannabinoids should be considered in the context of each prescribing decision. We present evidence that the immunological effects of cannabinoid receptor agonists and antagonists are highly relevant to the spectrum of disorders for which cannabinoid therapeutics are currently offered.

  4. Therapeutic potential of cannabinoid-based drugs.

    Science.gov (United States)

    Klein, Thomas W; Newton, Catherine A

    2007-01-01

    Cannabinoid-based drugs modeled on cannabinoids originally isolated from marijuana are now known to significantly impact the functioning of the endocannabinoid system of mammals. This system operates not only in the brain but also in organs and tissues in the periphery including the immune system. Natural and synthetic cannabinoids are tricyclic terpenes, whereas the endogenous physiological ligands are eicosanoids. Several receptors for these compounds have been extensively described, CB1 and CB2, and are G protein-coupled receptors; however, cannabinoid-based drugs are also demonstrated to function independently of these receptors. Cannabinoids regulate many physiological functions and their impact on immunity is generally antiinflammatory as powerful modulators of the cytokine cascade. This anti-inflammatory potency has led to the testing of these drugs in chronic inflammatory laboratory paradigms and even in some human diseases. Psychoactive and nonpsychoactive cannabinoid-based drugs such as Delta9-tetrahydrocannabinol, cannabidiol, HU-211, and ajulemic acid have been tested and found moderately effective in clinical trials of multiple sclerosis, traumatic brain injury, arthritis, and neuropathic pain. Furthermore, although clinical trials are not yet reported, preclinical data with cannabinoid-based drugs suggest efficacy in other inflammatory diseases such as inflammatory bowel disease, Alzheimer's disease, atherosclerosis, and osteoporosis.

  5. Feeding induced by cannabinoids is mediated independently of the melanocortin system.

    Directory of Open Access Journals (Sweden)

    Puspha Sinnayah

    Full Text Available BACKGROUND: Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that peripherally administered CB1-R antagonist (AM251 or agonist equally suppressed or stimulated feeding respectively in A(y , which lack a functional melanocortin system, and wildtype mice, demonstrating that cannabinoid effects on feeding do not require melanocortin circuitry. CB1-R antagonist or agonist administered into the ventral tegmental area (VTA equally suppressed or stimulated feeding respectively, in both genotypes. In addition, peripheral and central cannabinoid administration similarly induced c-Fos activation in brain sites suggesting mediation via motivational dopaminergic circuitry. Amperometry-detected increases in evoked dopamine (DA release by the CB1-R antagonist in nucleus accumbens slices indicates that AM251 modulates DA release from VTA terminals. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that the effects of cannabinoids on energy balance are independent of hypothalamic melanocortin circuitry and is primarily driven by the reward system.

  6. Toxic Effects of Cannabis and Cannabinoids: Animal Data

    Directory of Open Access Journals (Sweden)

    Pierre Beaulieu

    2005-01-01

    Full Text Available The present article reviews the main toxic effects of cannabis and cannabinoids in animals. Toxic effects can be separated into acute and chronic classifications. Acute toxicity studies show that it is virtually impossible to die from acute administration of marijuana or tetrahydrocannabinol, the main psychoactive component of cannabis. Chronic toxicity involves lesions of airway and lung tissues, as well as problems of neurotoxicity, tolerance and dependence, and dysregulations in the immune and hormonal systems. Animal toxicity data, however, are difficult to extrapolate to humans.

  7. Cannabinoids and bone: friend or foe?

    Science.gov (United States)

    Idris, Aymen I; Ralston, Stuart H

    2010-10-01

    The endocannabinoid system is recognized to play an important role in regulating a variety of physiological processes, including appetite control and energy balance, pain perception, and immune responses. The endocannabinoid system has also recently been implicated in the regulation of bone metabolism. Endogenously produced cannabinoids are hydrophobic molecules derived from hydrolysis of membrane phospholipids. These substances, along with plant-derived and synthetic cannabinoids, interact with the type 1 (CB(1)) and 2 (CB(2)) cannabinoid receptors and the GPR55 receptor to regulate cellular function through a variety of signaling pathways. Endocannabinoids are produced in bone, but the mechanisms that regulate their production are unclear. Skeletal phenotyping of mice with targeted inactivation of cannabinoid receptors and pharmacological studies have shown that cannabinoids play a key role in the regulation of bone metabolism. Mice with CB(1) deficiency have high peak bone mass as a result of an osteoclast defect but develop age-related osteoporosis as a result of impaired bone formation and accumulation of bone marrow fat. Mice with CB(2) deficiency have relatively normal peak bone mass but develop age-related osteoporosis as a result of increased bone turnover with uncoupling of bone resorption from bone formation. Mice with GPR55 deficiency have increased bone mass as a result of a defect in the resorptive activity of osteoclasts, but bone formation is unaffected. Cannabinoids are also produced within synovial tissues, and preclinical studies have shown that cannabinoid receptor ligands are effective in the treatment of inflammatory arthritis. These data indicate that cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown play important roles in bone remodeling and in the pathogenesis of joint disease.

  8. Cannabinoids modulate Olig2 and polysialylated neural cell adhesion molecule expression in the subventricular zone of post-natal rats through cannabinoid receptor 1 and cannabinoid receptor 2.

    Science.gov (United States)

    Arévalo-Martín, Angel; García-Ovejero, Daniel; Rubio-Araiz, Ana; Gómez, Oscar; Molina-Holgado, Francisco; Molina-Holgado, Eduardo

    2007-09-01

    The subventricular zone (SVZ) is a source of post-natal glial precursors that can migrate to the overlying white matter, where they may differentiate into oligodendrocytes. We showed that, in the post-natal SVZ ependymocytes, radial glia and astrocyte-like cells express cannabinoid receptor 1 (CB1), whereas cannabinoid receptor 2 (CB2) is found in cells expressing the polysialylated neural cell adhesion molecule. To study CB1 and CB2 function, post-natal rats were exposed to selective CB1 or CB2 agonists (arachidonyl-2-chloroethylamide and JWH-056, respectively) for 15 days. Accordingly, we found that CB1 activation increases the number of Olig2-positive cells in the dorsolateral SVZ, whereas CB2 activation increases polysialylated neural cell adhesion molecule expression in this region. As intense myelination occurs during the first weeks of post-natal development, we examined how modulating these factors affected the expression of myelin basic protein. Pharmacological administration of agonists and antagonists of CB1 and CB2 showed that the activation of both receptors is needed to augment the expression of myelin basic protein in the subcortical white matter.

  9. Nonpsychotropic cannabinoids, abnormal cannabidiol and canabigerol-dimethyl heptyl, act at novel cannabinoid receptors to reduce intraocular pressure.

    Science.gov (United States)

    Szczesniak, Anna-Maria; Maor, Yehoshua; Robertson, Harold; Hung, Orlando; Kelly, Melanie E M

    2011-10-01

    The objective of our study was to examine the pharmacology of the intraocular pressure (IOP)-lowering actions of the behaviorally inactive cannabinoids, abnormal cannabidiol (abn-CBD), and a cannabigerol analog, cannabigerol-dimethyl heptyl (CBG-DMH), in comparison to that of the nonselective cannabinoid 1 receptor (CB(1)R) and CB(2)R agonist, WIN55,212-2, in Brown Norway rats. The IOP was measured noninvasively using a hand-held tonometer in nonanesthetized animals. The IOP measurements were taken every 15 min for a period of 2 h after drug administration. All drugs were administered via intraperitoneal (i.p.) injections, and abn-CBD and CBG-DMH were also given topically. Both abn-CBD and CBG-DMH reduced IOP when administrated i.p. at doses of ≥2.5 mg/kg or topically at concentrations of 1%-2%. The IOP-lowering effects of abn-CBD and CBG-DMH were reduced by i.p. administration of O-1918 (2.5 mg/kg), a selective antagonist of the abn-CBD-sensitive cannabinoid-related receptor (CBx), but were unaffected by the CB(1)R antagonist, AM251 (2.5 mg/kg), or the CB(2)R antagonist, AM630 (2.5 mg/kg). In contrast, the IOP-lowering action of WIN55,212-2 was completely blocked by the CB(1)R-selective antagonist, AM251, and was unaffected by the CBx receptor antagonist, O-1918. However, similar to the nonpsychotropic cannabinoids, the ocular hypotensive actions of WIN55,212-2 were also insensitive to block by the CB(2)R antagonist, AM630. Consistent with this, the selective CB(2)R agonist, HU-308 (2 mg/kg) failed to reduce IOP in Brown Norway rats. Concurrent application of a dose of WIN55,212-2 that was subthreshold to reduce IOP (0.25 mg/kg), together with a topical dose of either abn-CBD (0.5%) or CBG-DMH (0.25%), respectively, potentiated the ocular hypotensive effect of either compound applied alone. This study demonstrates that the atypical cannabinoid, abn-CBD, and the cannabigerol analog, CBG-DMH, decrease IOP in the normotensive Brown Norway rat eye independent of CB

  10. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders.

  11. Cannabinoid facilitation of fear extinction memory recall in humans

    Science.gov (United States)

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  12. Pharmacokinetics of (+/-)-4-diethylamino-1,1-dimethylbut-2-yn-1-yl 2-cyclohexyl-2-hydroxy-2-phenylacetate monohydrochloride monohydrate. 2nd communication: tissue levels and enzyme activity in rats after repeated administration, and placental and milk transfer after single administration.

    Science.gov (United States)

    Nakamura, A; Hirota, T; Sugihara, K; Watanabe, S; Tougou, K; Morino, A; Ezumi, Y; Takaichi, M

    1997-02-01

    The absorption, distribution and excretion of radioactivity in rats were studied during and after repeated oral administration of 30 mg/kg of NS-21 ((+/-)-4-diethylamino-1, 1-dimethylbut-2-yn-1-yl 2-cyclohexyl-2-hydroxy-2-phenylacetate monohydrochloride monohydrate, CAS 129927-33-4) once a day for 21 days. The plasma concentrations of radioactivity 24 h after each administration of 14C-NS-21 reached a steady state on the 5th day. 48 h after the 21st administration, the plasma concentrations of radioactivity were under the detection limit. The plasma concentrations of the radioactivity after the 7th oral administration of 14C-NS-21 was higher than that after the single administration, but similar to those after the 14th and 21st administrations. There were no marked differences in the elimination half-lives after each administration. The urinary and fecal excretion of the radioactivity was 21.5 and 81.3%, respectively, within 168 h after the 21st administration. In most tissues, no radioactivity was observed 336 h after the 21st administration. Repeated oral administration of 30 and 100 mg/kg of NS-21 once a day for 7 days had no effect on the cytochrome P-450 content, aniline hydroxylase and aminopyrine N-demethylase activity in rat liver. The transfer of radioactivity into fetuses and milk was investigated after single oral administration of 14C-NS-21 to female rats. In the 18th day pregnant rats, the radioactivity concentrations were lower in most fetal tissues than in the maternal plasma. After oral administration of 14C-NS-21 to lactating rats, the concentrations of radioactivity were higher in the milk than in the maternal plasma during an 8-h period. No radioactivity was observed in milk 48 h after administration.

  13. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

    Science.gov (United States)

    Hashemizadeh, Shiva; Sardari, Maryam; Rezayof, Ameneh

    2014-06-03

    In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats. A conditioned place preference (CPP) apparatus was used for the assessment of rewarding effects of the drugs in adult male Wistar rats. Subcutaneous (s.c.) administration of nicotine (0.2mg/kg) induced a significant CPP, without any effect on the locomotor activity during the testing phase. Intra-BLA microinjection of a non-selective cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.1-0.5 μg/rat) with an ineffective dose of nicotine (0.1mg/kg, s.c.) induced a significant place preference. On the other hand, intra-BLA administration of AM251 (20-60 ng/rat), a selective cannabinoid CB1 receptor antagonist inhibited the acquisition of nicotine-induced place preference. It should be considered that the microinjection of the same doses of WIN 55,212-2 or AM251 into the BLA, by itself had no effect on the CPP score. The administration of a higher dose of AM251 (60 ng/rat) during the acquisition decreased the locomotor activity of animals on the testing phase. Interestingly, the microinjection of AM251 (20 and 40 ng/rat), but not WIN55,212-2 (0.1-0.5 μg/rat), into the BLA inhibited the expression of nicotine-induced place preference without any effect on the locomotor activity. Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.

  14. Sustainable Production of Cannabinoids with Supercritical Carbon Dioxide Technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all cannabinoi

  15. Prospects for cannabinoid therapies in viral encephalitis.

    Science.gov (United States)

    Solbrig, Marylou V; Fan, Yijun; Hazelton, Paul

    2013-11-06

    Cannabinoids are promising therapies to support neurogenesis and decelerate disease progression in neuroinflammatory and degenerative disorders. Whether neuroprotective effects of cannabinoids are sustainable during persistent viral infection of the CNS is not known. Using a rodent model of chronic viral encephalitis based on Borna Disease (BD) virus, in which 1 week treatment with the general cannabinoid WIN 55,212-2 has been shown to be neuroprotective (Solbrig et al., 2010), we examine longer term (2 week treatment) effects of a general (CB1 and CB2) cannabinoid receptor agonist WIN55,212-2 (1mg/kg ip twice per day) or a specific (CB2) cannabinoid receptor agonist HU-308 (5mg/kg ip once daily) on histopathology, measures of frontostriatal neurogenesis and gliogenesis, and viral load. We find that WIN and HU-308 differ in their ability to protect new BrdU(+) cells. The selective CB2 agonist HU increases BrdU(+) cells in prefrontal cortex (PFC), significantly increases BrdU(+) cells in striatum, differentially regulates polydendrocytes vs. microglia/macrophages, and reduces immune activation at a time WIN-treated rats appear tolerant to the anti-inflammatory effect of their cannabinoid treatment. WIN and HU had little direct viral effect in PFC and striatum, yet reduced viral signal in hippocampus. Thus, HU-308 action on CB2 receptors, receptors known to be renewed during microglia proliferation and action, is a nontolerizing mechanism of controlling CNS inflammation during viral encephalitis by reducing microglia activation, as well as partially limiting viral infection, and uses a nonpsychotropic cannabinoid agonist.

  16. Repeated Superovulation via PMSG/hCG Administration Induces 2-Cys Peroxiredoxins Expression and Overoxidation in the Reproductive Tracts of Female Mice.

    Science.gov (United States)

    Park, Sun-Ji; Kim, Tae-Shin; Kim, Jin-Man; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2015-12-01

    Superovulation induced by exogenous gonadotropin treatment (PMSG/hCG) increases the number of available oocytes in humans and animals. However, Superovulatory PMSG/hCG treatment is known to affect maternal environment, and these effects may result from PMSG/hCG treatment-induced oxidative stress. 2-Cys peroxiredoxins (2-Cys Prxs) act as antioxidant enzymes that protect cells from oxidative stress induced by various exogenous stimuli. Therefore, the objective of this study was to test the hypothesis that repeated PMSG/hCG treatment induces 2-Cys Prx expression and overoxidation in the reproductive tracts of female mice. Immunohistochemistry and western blotting analyses further demonstrated that, after PMSG/hCG treatment, the protein expression levels of 2-Cys Prxs increased most significantly in the ovaries, while that of Prx1 was most affected by PMSG/hCG stimulation in all tissues of the female reproductive tract. Repeated PMSG/hCG treatment eventually leads to 2-Cys Prxs overoxidation in all reproductive organs of female mice, and the abundance of the 2-Cys Prxs-SO2/3 proteins reported here supports the hypothesis that repeated superovulation induces strong oxidative stress and damage to the female reproductive tract. Our data suggest that excessive oxidative stress caused by repeated PMSG/hCG stimulation increases 2-Cys Prxs expression and overoxidation in the female reproductive organs. Intracellular 2-Cys Prx therefore plays an important role in maintaining the reproductive organ environment of female mice upon exogenous gonadotropin treatment.

  17. Altered gene expression and functional activity of opioid receptors in the cerebellum of CB1 cannabinoid receptor knockout mice after acute treatments with cannabinoids.

    Science.gov (United States)

    Páldyová, Estera; Bereczki, E; Sántha, M; Wenger, T; Borsodi, Anna; Benyhe, S

    2007-01-01

    Numerous studies have shown functional links between the cannabinoid and opioid systems. The goal of this study was to evaluate whether acute treatments by endogenous cannabinoid agonist, selective CB1 or CB2 receptor antagonists modulate the expression of mu- (MOR) and delta- (DOR) opioid receptor mRNA levels and functional activity in the cerebellum of transgenic mice deficient in the CB1 type of cannabis receptors. We examined the effect of noladin ether (endogenous cannabinoid agonist) pretreatment on MOR and DOR mRNA expression by using reverse transcription and real-time polimerase chain reaction (PCR) and the ability of subsequent application of the opioid agonists to activate G-proteins, as measured by [35S]GTPgammaS binding, in wild-type (CB1+/+) and CB1 cannabinoid receptor deficient (CB1-/-, 'knockout', K.O.) mice. The acute administration of noladin ether markedly reduced MOR-mediated G-protein activation and caused a significant increase in the level of MOR mRNAs in the cerebella of wildtype, but not in the CB1-/- mice. No significant differences were observed in DOR functional activity and mRNA expression in wild-type animals. In CB1-/- mice the expression of DOR mRNA increased after noladin ether treatment, but no changes were found in DOR functional activity. In addition, Rimonabant (selective central cannabinoid CB1 receptor antagonist) and SR144528 (selective peripheral cannabinoid CB2 receptor antagonist) caused significant potentiation in MOR functional activity in the wild-type animals, whereas DOR mediated G-protein activation was increased in the CB1-/- mice. In contrast, Rimonabant and SR144528 decreased the MOR and DOR mRNA expressions in both CB1+/+ and CB1-/- mice. Taken together, these results indicate that acute treatment with cannabinoids causes alterations in MOR and DOR mRNA expression and functional activity in the cerebella of wild-type and CB1 knockout mice indicating indirect interactions between these two signaling systems.

  18. The effects of cannabinoids on the brain.

    Science.gov (United States)

    Ameri, A

    1999-07-01

    Cannabinoids have a long history of consumption for recreational and medical reasons. The primary active constituent of the hemp plant Cannabis sativa is delta9-tetrahydrocannabinol (delta9-THC). In humans, psychoactive cannabinoids produce euphoria, enhancement of sensory perception, tachycardia, antinociception, difficulties in concentration and impairment of memory. The cognitive deficiencies seem to persist after withdrawal. The toxicity of marijuana has been underestimated for a long time, since recent findings revealed delta9-THC-induced cell death with shrinkage of neurons and DNA fragmentation in the hippocampus. The acute effects of cannabinoids as well as the development of tolerance are mediated by G protein-coupled cannabinoid receptors. The CB1 receptor and its splice variant CB1A, are found predominantly in the brain with highest densities in the hippocampus, cerebellum and striatum. The CB2 receptor is found predominantly in the spleen and in haemopoietic cells and has only 44% overall nucleotide sequence identity with the CB1 receptor. The existence of this receptor provided the molecular basis for the immunosuppressive actions of marijuana. The CB1 receptor mediates inhibition of adenylate cyclase, inhibition of N- and P/Q-type calcium channels, stimulation of potassium channels, and activation of mitogen-activated protein kinase. The CB2 receptor mediates inhibition of adenylate cyclase and activation of mitogen-activated protein kinase. The discovery of endogenous cannabinoid receptor ligands, anandamide (N-arachidonylethanolamine) and 2-arachidonylglycerol made the notion of a central cannabinoid neuromodulatory system plausible. Anandamide is released from neurons upon depolarization through a mechanism that requires calcium-dependent cleavage from a phospholipid precursor in neuronal membranes. The release of anandamide is followed by rapid uptake into the plasma and hydrolysis by fatty-acid amidohydrolase. The psychoactive cannabinoids

  19. Acute effects of synthetic cannabinoids: Update 2015.

    Science.gov (United States)

    Tournebize, Juliana; Gibaja, Valérie; Kahn, Jean-Pierre

    2017-01-01

    Cannabis is the most widely used illicit drug in the United States and Europe. In recent years, a range of new substances with cannabis-like effects-known as synthetic cannabinoids (SCs)-have suddenly burst on the drug scene. However, there is limited information about the clinical hazards linked to the use of these emerging substances. This review summarizes the literature to date relating the health effects of SCs. A systematic literature review of original case studies was performed using PubMed and Web of Science (January 1980-July 2015). Only articles in which a drug screening was reported were included in this review. Forty-six articles meeting the inclusion criteria were included in this review, reporting data on 114 patients who went to hospital emergency departments after exposure to SCs. The majority of patients were adolescent or young adult males (14-25 years; 24.5 ± 10.1 years). The most common route of administration was smoking. The SCs most involved were John William Huffman (JWH) derivatives, followed by XRL-11, ADB-PINACA, AM-2201, MAM-2201, and 5F-PB-22. This analysis showed that the use of these substances may cause minor and moderate side effects similar to those of cannabis intoxication, including tachycardia, nausea, somnolence, hallucinations, paranoia, xerostomia, and injected conjunctivae among others. However, atypical cannabis intoxication effects and worse complications (such as renal injuries, aggressiveness, cerebral ischemia, myocardial infarction, etc.) were also observed, which led to a significant morbidity were also observed. Some SCs were highlighted as being involved in 24 cases of deaths. In this review, the nature and frequency of the signs and symptoms of SC poisoning were estimated in order to inform health professionals about the health risks of these new and emerging substances.

  20. A cannabinoid link between mitochondria and memory.

    Science.gov (United States)

    Hebert-Chatelain, Etienne; Desprez, Tifany; Serrat, Román; Bellocchio, Luigi; Soria-Gomez, Edgar; Busquets-Garcia, Arnau; Pagano Zottola, Antonio Christian; Delamarre, Anna; Cannich, Astrid; Vincent, Peggy; Varilh, Marjorie; Robin, Laurie M; Terral, Geoffrey; García-Fernández, M Dolores; Colavita, Michelangelo; Mazier, Wilfrid; Drago, Filippo; Puente, Nagore; Reguero, Leire; Elezgarai, Izaskun; Dupuy, Jean-William; Cota, Daniela; Lopez-Rodriguez, Maria-Luz; Barreda-Gómez, Gabriel; Massa, Federico; Grandes, Pedro; Bénard, Giovanni; Marsicano, Giovanni

    2016-11-24

    Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.

  1. Non-clinical safety evaluation of single and repeated intramuscular administrations of MAGE-A3 Cancer Immunotherapeutic in rabbits and cynomolgus monkeys.

    Science.gov (United States)

    Destexhe, Eric; Grosdidier, Emilie; Baudson, Nathalie; Forster, Roy; Gerard, Catherine; Garçon, Nathalie; Segal, Lawrence

    2015-07-01

    The MAGE-A3 recombinant protein combined with AS15 immunostimulant (MAGE-A3 Cancer Immunotherapeutic) is under development by GlaxoSmithKline for the treatment of lung cancer and melanoma. We performed non-clinical safety studies evaluating potential local and systemic toxic effects induced by MAGE-A3 Cancer Immunotherapeutic in rabbits (study 1) and cynomolgus monkeys (study 2). Animals were allocated to two groups to receive a single (rabbits) or 25 repeated (every 2 weeks) injections (monkeys) of MAGE-A3 Cancer Immunotherapeutic (treatment groups) or saline (control groups). All rabbits were sacrificed 3 days post-injection and monkeys 3 days following last injection (3/5 per gender per group) or after a 3-month treatment-free period (2/5 per gender per group). Local and systemic reactions and MAGE-A3-specific immune responses (monkeys) were assessed. Macroscopic and microscopic (for rabbits, injection site only) post-mortem examinations were performed on all animals. No systemic toxicity or unscheduled mortalities were recorded. Single (rabbits) and repeated (monkeys; up to four times at the same site) injections were well tolerated. Following five to seven repeated injections, limb circumferences increased up to 26% (5 h post-injection), but returned to normal after 1-8 days. Three days after the last injection, enlargements of iliac, popliteal, axillary and inguinal lymph nodes, and increased incidence or severity of mononuclear inflammatory cell infiltrates was observed in injected muscles of treated monkeys. No treatment-related macroscopic findings were recorded after the treatment-free period. MAGE-A3-specific antibody and T-cell responses were raised in all treated monkeys, confirming test item exposure. Single or repeated intramuscular injections of MAGE-A3 Cancer Immunotherapeutic were well tolerated in rabbits and monkeys.

  2. The cannabinoid system and pain.

    Science.gov (United States)

    Woodhams, Stephen G; Chapman, Victoria; Finn, David P; Hohmann, Andrea G; Neugebauer, Volker

    2017-09-15

    Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology". Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cannabinoids: Glutamatergic Transmission and Kynurenines.

    Science.gov (United States)

    Colín-González, Ana Laura; Aguilera, Gabriela; Santamaría, Abel

    2016-01-01

    The endocannabinoid system (ECS) comprises a complex of receptors, enzymes, and endogenous agonists that are widely distributed in the central nervous system of mammals and participates in a considerable number of neuromodulatory functions, including neurotransmission, immunological control, and cell signaling. In turn, the kynurenine pathway (KP) is the most relevant metabolic route for tryptophan degradation to form the metabolic precursor NAD(+). Recent studies demonstrate that the control exerted by the pharmacological manipulation of the ECS on the glutamatergic system in the brain may offer key information not only on the development of psychiatric disorders like psychosis and schizophrenia-like symptoms, but it also may constitute a solid basis for the development of therapeutic strategies to combat excitotoxic events occurring in neurological disorders like Huntington's disease (HD). Part of the evidence pointing to the last approach is based on experimental protocols demonstrating the efficacy of cannabinoids to prevent the deleterious actions of the endogenous neurotoxin and KP metabolite quinolinic acid (QUIN). These findings intuitively raise the question about what is the precise role of the ECS in tryptophan metabolism through KP and vice versa. In this chapter, we will review basic concepts on the physiology of both the ECS and the KP to finally describe those recent findings combining the components of these two systems and hypothesize the future course that the research in this emerging field will take in the next years.

  4. Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms

    Directory of Open Access Journals (Sweden)

    Nissar A. Darmani

    2010-07-01

    Full Text Available Cannabinoids are used clinically on a subacute basis as prophylactic agonist antiemetics for the prevention of nausea and vomiting caused by chemotherapeutics. Cannabinoids prevent vomiting by inhibition of release of emetic neurotransmitters via stimulation of presynaptic cannabinoid CB1 receptors. Cannabis-induced hyperemesis is a recently recognized syndrome associated with chronic cannabis use. It is characterized by repeated cyclical vomiting and learned compulsive hot water bathing behavior. Although considered rare, recent international publications of numerous case reports suggest the contrary. The syndrome appears to be a paradox and the pathophysiological mechanism(s underlying the induced vomiting remains unknown. Although some traditional hypotheses have already been proposed, the present review critically explores the basic science of these explanations in the clinical setting and provides more current mechanisms for the induced hyperemesis. These encompass: (1 pharmacokinetic factors such as long half-life, chronic exposure, lipid solubility, individual variation in metabolism/excretion leading to accumulation of emetogenic cannabinoid metabolites, and/or cannabinoid withdrawal; and (2 pharmacodynamic factors including switching of the efficacy of Δ9-THC from partial agonist to antagonist, differential interaction of Δ9-THC with Gs and Gi signal transduction proteins, CB1 receptor desensitization or downregulation, alterations in tissue concentrations of endocannabinoid agonists/inverse agonists, Δ9-THC-induced mobilization of emetogenic metabolites of the arachidonic acid cascade, brainstem versus enteric actions of Δ9-THC, and/or hypothermic versus hyperthermic actions of Δ9-THC. In addition, human and animal findings suggest that chronic exposure to cannabis may not be a prerequisite for the induction of vomiting but is required for the intensity of emesis.

  5. Schedules of controlled substances: temporary placement of three synthetic cannabinoids into Schedule I. Final order.

    Science.gov (United States)

    2013-05-16

    The Deputy Administrator of the Drug Enforcement Administration (DEA) is issuing this final order to temporarily schedule three synthetic cannabinoids under the Controlled Substances Act (CSA) pursuant to the temporary scheduling provisions of 21 U.S.C. 811(h). The substances are (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144), [1-(5-fluoro-pentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone (5-fluoro-UR-144, XLR11) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA, AKB48). This action is based on a finding by the Deputy Administrator that the placement of these synthetic cannabinoids and their salts, isomers and salts of isomers into Schedule I of the CSA is necessary to avoid an imminent hazard to the public safety. As a result of this order, the full effect of the CSA and the Controlled Substances Import and Export Act (CSIEA) and their implementing regulations including criminal, civil and administrative penalties, sanctions and regulatory controls of Schedule I substances will be imposed on the manufacture, distribution, possession, importation, and exportation of these synthetic cannabinoids.

  6. Enhanced central serotonin release from slices of rat hypothalamus following repeated nialamide administration: evidence supporting the overactive serotonin receptor theory of depression

    Energy Technology Data Exchange (ETDEWEB)

    Offord, S.J.

    1986-01-01

    Researchers are suggesting unipolar affective disorders may be related to an abnormality in biogenic amine receptor-sensitivity. This abnormality may be a result of a dysfunction in central serotonin (5-HT) release mechanisms. 5-HT neurotransmission is modulated by presynaptic autoreceptors, which are members of the 5-HT/sub 1/ receptor subtype. The autoreceptor is thought to play an important role in the homeostasis of the central 5-HT synapse and could be a site at which some antidepressants mediate their therapeutic effect. The number of 5-HT/sub 1/ type receptor binding sites are reduced and behavior mediated by this receptor is abolished following repeated injections of monoamine oxidase inhibitor type antidepressants. These changes did not occur following a single injection. It was hypothesized that repeated treatment with a monoamine oxidase inhibitor would reduce the sensitivity of 5-HT autoreceptors and enhance 5-HT release. Rats were pretreated with single or repeated (twice daily for 7 days) intraperitoneal injections of nialamide (40 mg/kg) or chlorimipramine (10 mg/kg) and the ability of the autoreceptor agonist to inhibit potassium-induced /sup 3/H-5-HT release was evaluated using an in vitro superfusion system. These changes in 5-HT autoreceptor activity are consistent with other reports evaluating monoamine oxidase inhibitors on 5-HT/sub 1/ type receptors. It is hypothesized that the changes in 5-HT neurotransmission are related to the antidepressant mechanism of monoamine oxidase inhibitors.

  7. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

    Science.gov (United States)

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.

    2013-01-01

    In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  8. Cannabis tea revisited: a systematic evaluation of the cannabinoid composition of cannabis tea.

    Science.gov (United States)

    Hazekamp, Arno; Bastola, Krishna; Rashidi, Hassan; Bender, Johan; Verpoorte, Rob

    2007-08-15

    Cannabis is one of the oldest known medicinal plants, and a large variety of biological activities have been described. The main constituents, the cannabinoids, are thought to be most important for these activities. Although smoking of cannabis is by far the most common way of consumption, a significant part of medicinal users consume it in the form of a tea. However, not much is known about the composition of cannabis tea, or the effect of different parameters during preparation, handling or storage. In this study we used the high-grade cannabis available in Dutch pharmacies to study the cannabinoid composition of tea under standardized and quantitative conditions. Experimental conditions were systematically varied in order to mimic the possible variations made by medicinal users. During analysis there was a specific focus on the cannabinoid tetrahydrocannabinol and its acidic precursor, tetrahydrocannabinolic acid. Also the role of non-psychoactive cannabinoids as components of cannabis tea are discussed. The results obtained in this study provide a clear quantitative insight in the phytochemistry of cannabis tea preparation and can contribute to a better appreciation of this mode of cannabis administration.

  9. Effects of Repeated Electroacupuncture on Gene Expression of Cannabinoid Receptor-1 and Dopamine 1 Receptor in Nucleus Accumbens-Caudate Nucleus Region in Inflammatory-pain Rats%反复电针对佐剂性关节炎大鼠伏隔核-尾状核区大麻素CB1受体与多巴胺Dl受体基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    寿鉴; 赵颖倩; 徐鸣曙; 葛林宝

    2011-01-01

    Objective To observe the effect of repeated electroacupuncture (EA) on the expression of cannabinoid receptor-1 (CB 1 ) mRNA and dopamine 1 receptor (D 1 ) mRNA in Nucleus Accumbens (NAC)-Caudate Nucleus (CN) region in inflammatory-pain rats, so as to study its underlying mechanism in analgesia. Methods A total of 30 SD rats were randomized into normal control, model, EA, EA + AM 251 and WIN 552 12-2 groups, with 6 cases in each group. EA (2 Hz/100 Hz, 1 - 3 mA)was applied to "Zusanli"(ST 36) and "Kunlun"(BL 60) for 30 min, once every other day, and 4 sessions all together. Arthritis model was established by injection of Freund's complete adjuvant 0.05 mL in the rat's left ankle. Thermal pain threshold (paw withdrawal latency, PWL) was detected before and after modeling and after repeated EA and/or intraperitoneal injection of AM 251 (an inverse antagonist at the CB 1 cannabinoid receptor, 0. 1 mg/1 00 g) and WIN 55212-2 (a potent cannabinoid receptor agonist, 0.2 mg/100 g). The expression of CB 1 receptor mRNA and D 1 receptor mRNA in the NAC-CN region was measured by real time fluorescence quantitative-polymerase chain reaction. Results Compared with the control group, the pain threshold values of the model group was decreased significantly (P<0.01). In comparison with the model group, the pain threshold values of the EA group and WIN 55212-2 group were increased considerably on day 10 (P<0.01). No significant differences were found between the EA+AM 251 and model groups and between the EA and WIN 55212-2 groups in PWL after the treatment (P>0.05).Compared with the control group, both CB 1 R mRNA and D 1 R mRNA expression levels in the model group were increased slightly, while in comparison with the model group and EA+ AM 251 group, CB 1 R mRNA and D 1 R mRNA expression levels in the EAgroup and WIN 55212-2 group were upregulated obviously. No significant differences were found between the EA+ AM 251 and model groups and between the EA and WIN 55212

  10. Cannabinoid hyper-emesis syndrome: An enigma

    Directory of Open Access Journals (Sweden)

    Neeraj Gupta

    2013-01-01

    Full Text Available Marijuana is one of the most frequently abused illicit substances in the world especially Australia. Cannabinoid Hyperemesis Syndrome (CHS is characterized by a triad of symptoms: Cyclic vomiting, chronic marijuana use, and compulsive bathing. It involves recurrent episodes of self-limited nausea and vomiting lasting several days and patients are asymptomatic between episodes. We believe that Cannabinoid Hyper emesis Syndrome is much more common than currently recognized. We present a unique case with an apparent positive family history of the same clinical entity.

  11. Effect of repeated mass drug administration with praziquantel and track and treat of taeniosis cases on the prevalence of taeniosis in Taenia solium endemic rural communities of Tanzania

    DEFF Research Database (Denmark)

    Braae, Uffe Christian; Magnussen, Pascal; Ndawi, Benedict

    This study evaluated the effect of mass drug administration (MDA) with praziquantel administered to school-aged children (SAC) combined with ‘track and treat’ of taeniosis cases on the prevalence of taeniosis. The study was conducted in 14 villages in Mbozi and Mbeya district, Tanzania. SAC recei...

  12. Effect of repeated mass drug administration with praziquantel and track and treat of taeniosis cases on the prevalence of taeniosis in Taenia solium endemic rural communities of Tanzania

    DEFF Research Database (Denmark)

    Braae, Uffe Christian; Magnussen, Pascal; Ndawi, Benedict

    2017-01-01

    This study evaluated the effect of mass drug administration (MDA) with praziquantel administered to school-aged children (SAC) combined with ‘track and treat’ of taeniosis cases in the general population on the copro-antigen (Ag) prevalence of taeniosis. The study was conducted in 14 villages in ...

  13. Effects of single or repeated administration of a carbamate, propoxur, and an organophosphate, DDVP, on jejunal cholinergic activities and contractile responses in rats.

    Science.gov (United States)

    Kobayashi, H; Sato, I; Akatsu, Y; Fujii, S; Suzuki, T; Matsusaka, N; Yuyama, A

    1994-01-01

    Wistar rats were injected once or repeatedly for 10 days with dichlorvos (DDVP, 5 mg kg-1), propoxur (10 mg kg-1), oxotremorine (0.1 mg kg-1) or atropine (5 mg kg-1). Animals were killed 20 min or 24 h after single or consecutive injections, respectively, for determinations of cholinergic activities and contractile responses to acetylcholine (ACh) of the jejunum. Single treatments: while DDVP and propoxur decreased acetylcholinesterase (AChE) activity, oxotremorine and atropine did not. Although DDVP, propoxur and oxotremorine increased levels of ACh, atropine decreased them. Contractile responses to ACh were enhanced by DDVP and reduced by oxotremorine and atropine. The Bmax value of binding of [3H]quinuclidinyl benzylate (QNB) to muscarinic ACh receptors was decreased by atropine. Consecutive treatments: DDVP and oxotremorine decreased AChE activity markedly and slightly, respectively. Although DDVP and oxotremorine increased levels of ACh, propoxur decreased them. Without affecting the contractile responses, DDVP caused a reduction and propoxur and atropine caused an increase in the Bmax value for binding of [3H]QNB. Both the contractile responses and the value of Bmax for binding of [3H]-QNB were decreased by oxotremorine. In summary, propoxur and DDVP showed similar effects mainly through their anticholinesterase properties in the case of single injection, but DDVP had similar effects to those of oxotremorine and propoxur had similar effects to those of atropine in the case of repeated injection.

  14. Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus.

    Science.gov (United States)

    Fan, Mingyue; Jin, Wei; Zhao, Haifeng; Xiao, Yining; Jia, Yanqiu; Yin, Yu; Jiang, Xin; Xu, Jing; Meng, Nan; Lv, Peiyuan

    2015-09-15

    Lithium has been reported to have neuroprotective effects, but the preventive and treated role on cognition impairment and the underlying mechanisms have not been determined. In the present study, C57Bl/6 mice were subjected to repeated bilateral common carotid artery occlusion to induce the learning and memory deficits. 2 mmol/kg or 5 mmol/kg of lithium chloride (LiCl) was injected intraperitoneally per day before (for 7 days) or post (for 28 days) the operation. This repeated cerebral ischemia-reperfusion (IR) induced dynamic overexpression of ratio of Bcl-2/Bax and BDNF in hippocampus of mice. LiCl pretreatment and treatment significantly decreased the escape latency and increased the percentage of time that the mice spent in the target quadrant in Morris water maze. 2 mmol/kg LiCl evidently reversed the morphologic changes, up-regulated the survival neuron count and increased the BDNF gene and protein expression. 5 mmol/kg pre-LiCl significantly increased IR-stimulated reduce of Bcl-2/Bax and p-CREB/CREB. These results described suggest that pre-Li and Li treatment may induce a pronounced prevention on cognitive impairment. These effects may relay on the inhibition of apoptosis and increasing BDNF and p-CREB expression.

  15. EFFECT OF CANNABINOIDS ON TESTICULAR ISCHEMIA-REPERFUSION INJURY IN RAT

    Directory of Open Access Journals (Sweden)

    H. Sepehri

    2006-11-01

    Full Text Available Anandamide is an endogenous ligand for cannabinoid receptors and has endothelial protective effect against ischemic preconditioning. The purpose of this study was to investigate the effects of cannabinoids on reperfusion injury due to testicular torsion-detorsion (T/D. A total of 36 adult male Sprague-Dawley rats were divided into 6 groups. Testicular ischemia was achieved by twisting the right testes 720◦ counters clockwise for 1 hour and reperfusion was allowed for 4 hours after detorsion. In baseline (normal group, bilateral orchiectomies performed after anesthesia. Sham operated group was served as a control group. Torsion/detorsion group underwent 1 hour testicular torsion and 4 hours of detorsion. Anandamide (cannabinoid agonist group received pretreatment with intraperitoneally anandamide 30 min before torsion. AM251 (CB1 antagonist group, received intraperitoneally injection of AM251 45 min before torsion. Anandamid/AM251 (An/AM group received administrations of AM251 45 min before torsion and anandamide 30 min before torsion. The ipsilateral malondialdehyde (MDA level in T/D group were significantly higher versus control and base line groups. Ipsilateral MDA values in anandamid group were significantly lower than T/D and An/AM groups. There were also significant decreases in catalase activity in T/D group compared with control and base line groups. These values were significantly higher in cannabinoid group versus T/D and An/AM groups. Anandamide increased ipsilateral intratesticular antioxidative markers and decreased free radicals formation during reperfusion phase after unilateral testicular torsion, which was reflected in lesser testicular MDA level. Furthermore, the effects of anandamide were mediated via cannabinoid receptors, since AM251 could abolish these effects.

  16. Chemical constituents of marijuana: the complex mixture of natural cannabinoids.

    Science.gov (United States)

    Elsohly, Mahmoud A; Slade, Desmond

    2005-12-22

    The cannabis plant (Cannabis sativa L.) and products thereof (such as marijuana, hashish and hash oil) have a long history of use both as a medicinal agent and intoxicant. Over the last few years there have been an active debate regarding the medicinal aspects of cannabis. Currently cannabis products are classified as Schedule I drugs under the Drug Enforcement Administration (DEA) Controlled Substances act, which means that the drug is only available for human use as an investigational drug. In addition to the social aspects of the use of the drug and its abuse potential, the issue of approving it as a medicine is further complicated by the complexity of the chemical make up of the plant. This manuscript discusses the chemical constituents of the plant with particular emphasis on the cannabinoids as the class of compounds responsible for the drug's psychological properties.

  17. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action ...

  18. Combined cannabinoid therapy via an oromucosal spray.

    Science.gov (United States)

    Perez, Jordi

    2006-08-01

    Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1,000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects. Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome.

  19. Repeated administration of Yokukansan inhibits DOI-induced head-twitch response and decreases expression of 5-hydroxytryptamine (5-HT)2A receptors in the prefrontal cortex.

    Science.gov (United States)

    Egashira, Nobuaki; Iwasaki, Katsunori; Ishibashi, Ayumi; Hayakawa, Kazuhide; Okuno, Ryoko; Abe, Moe; Uchida, Naoki; Mishima, Kenichi; Takasaki, Kotaro; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-08-01

    Behavioral and psychological symptoms of dementia (BPSD) are commonly seen in patients with Alzheimer's disease (AD) and other forms of senile dementia. BPSD have a serious impact on the quality of life of dementia patients, as well as their caregivers. However, an effective drug therapy for BPSD has not been established. Recently, the traditional Japanese medicine Yokukansan (YKS, Yi-gan san in Chinese) has been reported to improve BPSD in a randomized, single-blind, placebo-controlled study. Moreover, abnormalities of the serotonin (5-HT) system such as 5-HT2A receptors have been reported to be associated with BPSD of AD patients. In the present study, we investigated the effect of YKS on head-twitch response induced by 2,5-dimethoxy-4-iodoamphetamine (DOI, 5 mg/kg, i.p.) in mice, a behavioral response that is mediated, in part, by 5-HT2A receptors. Acute treatment with YKS (100 and 300 mg/kg, p.o.) had no effect on the DOI-induced head-twitch response, whilst 14 days repeated treatment with YKS (300 mg/kg, p.o.) significantly inhibited this response. Moreover, repeated treatment with YKS (300 mg/kg, p.o.) decreased expression of 5-HT2A receptors in the prefrontal cortex, which is part of the circuitry mediating the head-twitch response. These findings suggest that the inhibition of DOI-induced head-twitch response by YKS may be mediated, in part, by altered expression of 5-HT2A receptors in the prefrontal cortex, which suggests the involvement of the 5-HT system in psychopharmacological effects of YKS.

  20. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties.

    Science.gov (United States)

    García-Arencibia, Moisés; González, Sara; de Lago, Eva; Ramos, José A; Mechoulam, Raphael; Fernández-Ruiz, Javier

    2007-02-23

    We have recently demonstrated that two plant-derived cannabinoids, Delta9-tetrahydrocannabinol and cannabidiol (CBD), are neuroprotective in an animal model of Parkinson's disease (PD), presumably because of their antioxidant properties. To further explore this issue, we examined the neuroprotective effects of a series of cannabinoid-based compounds, with more selectivity for different elements of the cannabinoid signalling system, in rats with unilateral lesions of nigrostriatal dopaminergic neurons caused by local application of 6-hydroxydopamine. We used the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA), the CB2 receptor agonist HU-308, the non-selective agonist WIN55,212-2, and the inhibitors of the endocannabinoid inactivation AM404 and UCM707, all of them administered i.p. Daily administration of ACEA or WIN55,212-2 did not reverse 6-hydroxydopamine-induced dopamine (DA) depletion in the lesioned side, whereas HU-308 produced a small recovery that supports a possible involvement of CB2 but not CB1 receptors. AM404 produced a marked recovery of 6-hydroxydopamine-induced DA depletion and tyrosine hydroxylase deficit in the lesioned side. Possibly, this is caused by the antioxidant properties of AM404, which are derived from the presence of a phenolic group in its structure, rather than by the capability of AM404 to block the endocannabinoid transporter, because UCM707, another transporter inhibitor devoid of antioxidant properties, did not produce the same effect. None of these effects were observed in non-lesioned contralateral structures. We also examined the timing for the effect of CBD to provide neuroprotection in this rat model of PD. We found that CBD, as expected, was able to recover 6-hydroxydopamine-induced DA depletion when it was administered immediately after the lesion, but it failed to do that when the treatment started 1 week later. In addition, the effect of CBD implied an upregulation of mRNA levels for Cu,Zn-superoxide dismutase

  1. [Drug discrimination properties and cytotoxicity of the cannabinoid receptor ligands].

    Science.gov (United States)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2012-06-01

    The worldwide distribution of smokable herbal mixtures called "Spice" that contain synthetic cannabinoids with a pharmacological activity similar to delta 9-tetrahydrocannabinol (delta 9-THC) has been reported. The synthetic cannabinoids induce behavior and have biochemical properties similar to naturally occurring cannabinoids such as delta 9-THC. In drug discrimination procedures, animal behavior is differentially reinforced depending on the presence or absence of specific drug stimuli. This review seeks to establish an animal model to serve as a discriminative stimulus of the synthetic cannabinoids, to determine whether this discriminative stimulus is identical to that of delta 9-THC. Much data have been obtained in drug discrimination experiments with various synthetic cannabinoids. In the discriminative study, synthetic cannabinoids such as CP-55,940 and WIN-55,212-2 were substituted for delta 9-THC in rats trained to discriminate delta 9-THC from the vehicle. These discriminative effects of synthetic cannabinoids were antagonized by CB1 antagonist SR-141,716A. The discriminative effects of synthetic cannabinoids may overlap with the delta 9-THC cue mediated by CB1 receptors. In in vitro study using NG 108-15 cell lines, synthetic cannabinoids have produced strong cytotoxicities that were suppressed by pretreatment with the CB1 receptor antagonist. Furthermore, pretreatment with caspase inhibitors suppressed these synthetic-cannabinoid-induced cytotoxicities in NG 108-15 cells. These findings indicate that the cytotoxicity of synthetic cannabinoids towards NG 108-15 cells is mediated by the CB1 receptors and further suggest that caspase cascades may play an important role in the cytotoxicities induced by these synthetic cannabinoids. In conclusion, synthetic cannabinoid abuse could be a health hazard for humans.

  2. GABAA receptors modulate cannabinoid-evoked hypothermia.

    Science.gov (United States)

    Rawls, S M; Tallarida, R J; Kon, D A; Geller, E B; Adler, Martin W

    2004-05-01

    Cannabinoids evoke hypothermia by stimulating central CB(1) receptors. GABA induces hypothermia via GABA(A) or GABA(B) receptor activation. CB(1) receptor activation increases GABA release in the hypothalamus, a central locus for thermoregulation, suggesting that cannabinoid and GABA systems may be functionally linked in body temperature regulation. We investigated whether GABA receptors modulate the hypothermic actions of [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one] (WIN 55212-2), a selective cannabinoid agonist, in male Sprague-Dawley rats. WIN 55212-2 (2.5 mg/kg im) produced a rapid hypothermia that peaked 45-90 min postinjection. The hypothermia was attenuated by bicuculline (2 mg/kg ip), a GABA(A) antagonist. However, SCH 50911 (1-10 mg/kg ip), a GABA(B) blocker, did not antagonize the hypothermia. Neither bicuculline (2 mg/kg) nor SCH 50911 (10 mg/kg) by itself altered body temperature. We also investigated a possible role for CB(1) receptors in GABA-generated hypothermia. Muscimol (2.5 mg/kg ip), a GABA(A) agonist, or baclofen (5 mg/kg ip), a GABA(B) agonist, evoked a significant hypothermia. Blockade of CB(1) receptors with SR141716A (2.5 mg/kg im) did not antagonize muscimol- or baclofen-induced hypothermia, indicating that GABA-evoked hypothermia does not contain a CB(1)-sensitive component. Our results implicate GABA(A) receptors in the hypothermic actions of cannabinoids and provide further evidence of a functional link between cannabinoid and GABA systems.

  3. Targeting the cannabinoid system for pain relief?

    Science.gov (United States)

    Chiou, Lih-Chu; Hu, Sherry Shu-Jung; Ho, Yu-Cheng

    2013-12-01

    Marijuana has been used to relieve pain for centuries, but its analgesic mechanism has only been understood during the past two decades. It is mainly mediated by its constituents, cannabinoids, through activating central cannabinoid 1 (CB1) receptors, as well as peripheral CB1 and CB2 receptors. CB2-selective agonists have the benefit of lacking CB1 receptor-mediated CNS side effects. Anandamide and 2-arachidonoylglycerol (2-AG) are two intensively studied endogenous lipid ligands of cannabinoid receptors, termed endocannabinoids, which are synthesized on demand and rapidly degraded. Thus, inhibitors of their degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase (MAGL), respectively, may be superior to direct cannabinoid receptor ligands as a promising strategy for pain relief. In addition to the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, we also review recent studies that revealed a novel analgesic mechanism, involving 2-AG in the periaqueductal gray (PAG), a midbrain region for initiating descending pain inhibition. It is initiated by Gq-protein-coupled receptor (GqPCR) activation of the phospholipase C (PLC)-diacylglycerol lipase (DAGL) enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia. This GqPCR-PLC-DAGL-2-AG retrograde disinhibition mechanism in the PAG can be initiated by activating type 5 metabotropic glutamate receptor (mGluR5), muscarinic acetylcholine (M1/M3), and orexin (OX1) receptors. mGluR5-mediated disinhibition can be initiated by glutamate transporter inhibitors, or indirectly by substance P, neurotensin, cholecystokinin, capsaicin, and AM404, the bioactive metabolite of acetaminophen in the brain. The putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is also discussed.

  4. 76 FR 11075 - Schedules of Controlled Substances: Temporary Placement of Five Synthetic Cannabinoids Into...

    Science.gov (United States)

    2011-03-01

    ... advance understanding of drug-receptor interactions regarding the cannabinoid system. Developed and... ``cannabinoid'' is a class of chemical compounds in the marijuana plant that are structurally related. The cannabinoid 9- tetrahydrocannabinol (THC) is the primary psychoactive constituent of marijuana....

  5. Modulation of pilocarpine-induced seizures by cannabinoid receptor 1.

    Directory of Open Access Journals (Sweden)

    Rebecca L Kow

    Full Text Available Administration of the muscarinic agonist pilocarpine is commonly used to induce seizures in rodents for the study of epilepsy. Activation of muscarinic receptors has been previously shown to increase the production of endocannabinoids in the brain. Endocannabinoids act at the cannabinoid CB1 receptors to reduce neurotransmitter release and the severity of seizures in several models of epilepsy. In this study, we determined the effect of CB1 receptor activity on the induction in mice of seizures by pilocarpine. We found that decreased activation of the CB1 receptor, either through genetic deletion of the receptor or treatment with a CB1 antagonist, increased pilocarpine seizure severity without modifying seizure-induced cell proliferation and cell death. These results indicate that endocannabinoids act at the CB1 receptor to modulate the severity of pilocarpine-induced seizures. Administration of a CB1 agonist produced characteristic CB1-dependent behavioral responses, but did not affect pilocarpine seizure severity. A possible explanation for the lack of effect of CB1 agonist administration on pilocarpine seizures, despite the effects of CB1 antagonist administration and CB1 gene deletion, is that muscarinic receptor-stimulated endocannabinoid production is acting maximally at CB1 receptors to modulate sensitivity to pilocarpine seizures.

  6. Collaborative work to evaluate toxicity on male reproductive organs by repeated dose studies in rats 22). Effects of 2- and 4-week administration of theobromine on the testis.

    Science.gov (United States)

    Funabashi, H; Fujioka, M; Kohchi, M; Tateishi, Y; Matsuoka, N

    2000-10-01

    The effects of theobromine, a xanthine derivative, on the testis were compared between rats dosed for 2 and 4 weeks to determine whether a 2-week dosing period is long enough to detect toxicity. Theobromine was administered orally to male Sprague-Dawley rats at dose levels of 250 and 500 mg/kg for 2 weeks starting at the age of 6 or 8 weeks, and for 4 weeks from the age of 6 weeks. Histopathological examination of reproductive organs revealed toxic findings in the testis at 500 mg/kg after 2 weeks of dosing at both ages, and at 250 and 500 mg/kg after 4 weeks of dosing. The primary findings were degeneration/necrosis and desquamation of spermatids and spermatocytes, vacuolization of seminiferous tubules, and multinucleated giant cell formation. These findings were present mainly in stages I-VI and XII-XIV. From these results, it is concluded that the toxic effects of theobromine on the testis can be detected by repeated dosing for 2 weeks as well as for 4 weeks.

  7. Repeated administration of AC-5216, a ligand for the 18 kDa translocator protein, improves behavioral deficits in a mouse model of post-traumatic stress disorder.

    Science.gov (United States)

    Qiu, Zhi-Kun; Zhang, Li-Ming; Zhao, Nan; Chen, Hong-Xia; Zhang, You-Zhi; Liu, Yan-Qin; Mi, Tian-Yue; Zhou, Wen-Wen; Li, Yang; Yang, Ri-Fang; Xu, Jiang-Ping; Li, Yun-Feng

    2013-08-01

    Post-traumatic stress disorder (PTSD) is a severely disabling anxiety disorder that may occur following exposure to a serious traumatic event. It is a psychiatric condition that can afflict anyone who has experienced a life-threatening or violent event. Previous studies have shown that changes in 18 kDa translocator protein (TSPO) expression (or function), a promising target for treating neurological disorders without benzodiazepine-like side effects, may correlate with PTSD. However, few studies have investigated the anti-PTSD effects of TSPO ligands. AC-5216, a ligand for TSPO, induces anxiolytic- and anti-depressant-like effects in animal models. The present study aimed to determine whether AC-5216 ameliorates PTSD behavior in mice. Following the training session consisting of exposure to inescapable electric foot shocks, animals were administered AC-5216 daily during the behavioral assessments, i.e., situational reminders (SRs), the open field (OF) test, the elevated plus-maze (EPM) test, and the staircase test (ST). The results indicated that exposure to foot shocks induced long-term behavioral deficiencies in the mice, including freezing and anxiety-like behavior, which were significantly ameliorated by repeated treatment with AC-5216 but without any effect on spontaneous locomotor activity or body weight. In summary, this study demonstrated the anti-PTSD effects of AC-5216 treatment, suggesting that TSPO may represent a therapeutic target for anti-PTSD drug discovery and that TSPO ligands may be a promising new class of drugs for the future treatment of PTSD.

  8. Consequences of Adolescent Exposure to the Cannabinoid Receptor Agonist WIN55,212-2 on Working Memory in Female Rats

    Directory of Open Access Journals (Sweden)

    Erin K. Kirschmann

    2017-07-01

    Full Text Available Marijuana is a prevalent illicit substance used by adolescents, and several studies have indicated that adolescent use can lead to long-term cognitive deficits including problems with attention and memory. However, preclinical animal studies that observe cognitive deficits after cannabinoid exposure during adolescence utilize experimenter administration of doses of cannabinoids that may exceed what an organism would choose to take, suggesting that contingency and dose are critical factors that need to be addressed in translational models of consequences of cannabinoid exposure. Indeed, we recently developed an adolescent cannabinoid self-administration paradigm in male rats, and found that prior adolescent self-administration of the cannabinoid receptor agonist WIN55,212-2 (WIN resulted in improved working memory performance in adulthood. In addition, the doses self-administered were not as high as those that are found to produce memory deficits. However, given known sex differences in both drug self-administration and learning and memory processes, it is possible that cannabinoid self-administration could have different cognitive consequences in females. Therefore, we aimed to explore the effects of self-administered vs. experimenter-administered WIN in adolescent female rats on adult cognitive function. Female rats were trained to self-administer WIN daily throughout adolescence (postnatal day 34–59. A control group self-administered vehicle solution. The acute effects of adolescent WIN self-administration on memory were determined using a short-term spatial memory test 24 h after final SA session; and the long-term effects on cognitive performance were assessed during protracted abstinence in adulthood using a delayed-match-to-sample working memory task. In a separate experiment, females were given daily intraperitoneal (IP injections of a low or high dose of WIN, corresponding to self-administered and typical experimenter

  9. Effects of cannabinoids and their receptors on viral infections.

    Science.gov (United States)

    Tahamtan, Alireza; Tavakoli-Yaraki, Masoumeh; Rygiel, Tomasz P; Mokhtari-Azad, Talat; Salimi, Vahid

    2016-01-01

    Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis. There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication. The present study reviews current insights into the role of cannabinoids and their receptors on viral infections. The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection. Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections.

  10. Increased Expression of Cannabinoid CB1 Receptors in Achilles Tendinosis

    Science.gov (United States)

    Björklund, Emmelie; Forsgren, Sture; Alfredson, Håkan; Fowler, Christopher J.

    2011-01-01

    Background The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB1) in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis. Methodology Cannabinoid CB1 receptor immunoreactivity (CB1IR) was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons. Principal Findings CB1IR was seen as a granular pattern in the tenocytes. CB1IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB1 receptor expression in tendinosis tissue compared to control tissue. Conclusion Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder. PMID:21931835

  11. Increased expression of cannabinoid CB₁ receptors in Achilles tendinosis.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available BACKGROUND: The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB₁ in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis. METHODOLOGY: Cannabinoid CB₁ receptor immunoreactivity (CB₁IR was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons. PRINCIPAL FINDINGS: CB₁IR was seen as a granular pattern in the tenocytes. CB₁IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB₁ receptor expression in tendinosis tissue compared to control tissue. CONCLUSION: Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder.

  12. Effects of neuropeptide FF and related peptides on the antinociceptive activities of VD-hemopressin(α) in naive and cannabinoid-tolerant mice.

    Science.gov (United States)

    Pan, Jia-Xin; Wang, Zi-Long; Li, Ning; Zhang, Nan; Wang, Pei; Tang, Hong-Hai; Zhang, Ting; Yu, Hong-Ping; Zhang, Run; Zheng, Ting; Fang, Quan; Wang, Rui

    2015-11-15

    Neuropeptide FF (NPFF) system has recently been reported to modulate cannabinoid-induced antinociception. The aim of the present study was to further investigate the roles of NPFF system in the antinociceptive effects induced by intracerebroventricular (i.c.v.) administration of mouse VD-hemopressin(α), a novel endogenous agonist of cannabinoid CB1 receptor, in naive and VD-hemopressin(α)-tolerant mice. The effects of NPFF system on the antinociception induced by VD-hemopressin(α) were investigated in the radiant heat tail-flick test in naive mice and VD-hemopressin(α)-tolerant mice. The cannabinoid-tolerant mice were produced by given daily injections of VD-hemopressin(α) (20 nmol, i.c.v.) for 5 days and the antinociception was measured on day 6. In naive mice, intracerebroventricular injection of NPFF dose-dependently attenuated central analgesia of VD-hemopressin(α). In contrast, neuropeptide VF (NPVF) and D.NP(N-Me)AFLFQPQRF-NH2 (dNPA), two highly selective agonists for Neuropeptide FF1 and Neuropeptide FF2 receptors, enhanced VD-hemopressin(α)-induced antinociception in a dose-dependent manner. In addition, the VD-hemopressin(α)-modulating activities of NPFF and related peptides were antagonized by the Neuropeptide FF receptors selective antagonist 1-adamantanecarbonyl-RF-NH2 (RF9). In VD-hemopressin(α)-tolerant mice, NPFF failed to modify VD-hemopressin(α)-induced antinociception. However, both neuropeptide VF and dNPA dose-dependently potentiated the antinociception of VD-hemopressin(α) and these cannabinoid-potentiating effects were reduced by RF9. The present works support the cannabinoid-modulating character of NPFF system in naive and cannabinoid-tolerant mice. In addition, the data suggest that a chronic cannabinoid treatment modifies the pharmacological profiles of NPFF, but not the cannabinoid-potentiating effects of neuropeptide VF and dNPA.

  13. Cannabinoids in oral fluid by on-site immunoassay and by GC-MS using two different oral fluid collection devices.

    Science.gov (United States)

    Desrosiers, Nathalie A; Milman, Garry; Mendu, Damodara R; Lee, Dayong; Barnes, Allan J; Gorelick, David A; Huestis, Marilyn A

    2014-07-01

    Oral fluid (OF) enables non-invasive sample collection for on-site drug testing, but performance of on-site tests with occasional and frequent smokers' OF to identify cannabinoid intake requires further evaluation. Furthermore, as far as we are aware, no studies have evaluated differences between cannabinoid disposition among OF collection devices with authentic OF samples after controlled cannabis administration. Fourteen frequent (≥4 times per week) and 10 occasional (less than twice a week) adult cannabis smokers smoked one 6.8% ∆(9)-tetrahydrocannabinol (THC) cigarette ad libitum over 10 min. OF was collected with the StatSure Saliva Sampler, Oral-Eze, and Draeger DrugTest 5000 test cassette before and up to 30 h after cannabis smoking. Test cassettes were analyzed within 15 min and gas chromatography-mass spectrometry cannabinoid results were obtained within 24 h. Cannabinoid concentrations with the StatSure and Oral-Eze devices were compared and times of last cannabinoid detection (t(last)) and DrugTest 5000 test performance were assessed for different cannabinoid cutoffs. 11-nor-9-Carboxy-THC (THCCOOH) and cannabinol concentrations were significantly higher in Oral-Eze samples than in Stat-Sure samples. DrugTest 5000 t(last) for a positive cannabinoid test were median (range) 12 h (4-24 h) and 21 h (1- ≥ 30 h) for occasional and frequent smokers, respectively. Detection windows in screening and confirmatory tests were usually shorter for occasional than for frequent smokers, especially when including THCCOOH ≥20 ng L(-1) in confirmation criteria. No differences in t(last) were observed between collection devices, except for THC ≥2 μg L(-1). We thus report significantly different THCCOOH and cannabinol, but not THC, concentrations between OF collection devices, which may affect OF data interpretation. The DrugTest 5000 on-site device had high diagnostic sensitivity, specificity, and efficiency for cannabinoids.

  14. Cannabinoids in the management of difficult to treat pain

    OpenAIRE

    Russo, Ethan

    2008-01-01

    Ethan B RussoGW Pharmaceuticals, Vashon, WA, USAAbstract: This article reviews recent research on cannabinoid analgesia via the endocannabinoid system and non-receptor mechanisms, as well as randomized clinical trials employing cannabinoids in pain treatment. Tetrahydrocannabinol (THC, Marinol®) and nabilone (Cesamet®) are currently approved in the United States and other countries, but not for pain indications. Other synthetic cannabinoids, such as ajulemic acid, are in devel...

  15. Prospects for cannabinoid therapies in basal ganglia disorders

    OpenAIRE

    Fernández-Ruiz, Javier; Moreno-Martet, Miguel; Rodríguez-Cueto, Carmen; Palomo-Garo, Cristina; Gómez-Cañas, María; Valdeolivas, Sara; Guaza, Carmen; Romero, Julián; Guzmán, Manuel; Mechoulam, Raphael; Ramos, José A

    2011-01-01

    Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ9-tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxid...

  16. GPR55: a new member of the cannabinoid receptor clan?

    OpenAIRE

    Pertwee, R. G.

    2007-01-01

    In this issue of the British Journal of Pharmacology, Ryberg et al. present convincing in vitro evidence that the orphan GPCR, GPR55, is a cannabinoid receptor. GPR55 was activated by a range of plant, synthetic and endogenous cannabinoids and blocked by the non-psychoactive phytocannabinoid, cannabidiol. Their experiments have revealed several differences between the pharmacology of GPR55 and the established cannabinoid CB1 and CB2 receptors. For example, the CB1 receptor antagonist, AM251, ...

  17. Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs

    Science.gov (United States)

    Turcotte, Caroline; Blanchet, Marie-Renée; Laviolette, Michel; Flamand, Nicolas

    2016-01-01

    Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids. PMID:27695418

  18. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    Directory of Open Access Journals (Sweden)

    Mattias Svensson

    2010-08-01

    Full Text Available Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC. Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.

  19. Cannabinoids: A New Group of Agonists of PPARs

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2007-11-01

    Full Text Available Cannabinoids have been used medicinally and recreationally for thousands of years and their effects were proposed to occur mainly via activation of the G-protein-coupled receptor CB1/CB2 (cannabinoid receptor 1/2. Discovery of potent synthetic analogs of the natural cannabinoids as clinically useful drugs is the sustained aim of cannabinoid research. This demands that these new compounds be free of the psychotropic effects that connected with the recreational use of cannabinoids. In preclinical studies cannabinoids displayed many of the characteristics of nonsteroidal anti-inflammatory drugs (NSAIDs and it seems to be free of unwanted side effects. An increasing number of therapeutic actions of cannabinoid are being reported that do not appear to be mediated by either CB1 or CB2, and recently nuclear receptor superfamily PPARs (peroxisome-proliferator-activated receptors have been suggested as the target of certain cannabinoids. This review summarizes the evidence for cannabinoid activation on PPARs and possible associated remedial potentials.

  20. Cannabinoid Hyperemesis Syndrome: A Paradoxical Cannabis Effect

    Directory of Open Access Journals (Sweden)

    Ivonne Marie Figueroa-Rivera

    2015-01-01

    Full Text Available Despite well-established antiemetic properties of marijuana, there has been increasing evidence of a paradoxical effect in the gastrointestinal tract and central nervous system, given rise to a new and underrecognized clinical entity called the Cannabinoid Hyperemesis Syndrome. Reported cases in the medical literature have established a series of patients exhibiting a classical triad of symptoms: cyclic vomiting, chronic marijuana use, and compulsive bathing. We present a case of a 29-year-old man whose clinical presentation strongly correlates with cannabinoid hyperemesis syndrome. Despite a diagnosis of exclusion, this syndrome should be considered plausible in the setting of a patient with recurrent intractable vomiting and a strong history of cannabis use as presented in this case.

  1. 3'-functionalized adamantyl cannabinoid receptor probes.

    Science.gov (United States)

    Ogawa, Go; Tius, Marcus A; Zhou, Han; Nikas, Spyros P; Halikhedkar, Aneetha; Mallipeddi, Srikrishnan; Makriyannis, Alexandros

    2015-04-09

    The aliphatic side chain plays a pivotal role in determining the cannabinergic potency of tricyclic classical cannabinoids, and we have previously shown that this chain could be substituted successfully by adamantyl or other polycyclic groups. In an effort to explore the pharmacophoric features of these conformationally fixed groups, we have synthesized a series of analogues in which the C3 position is substituted directly with an adamantyl group bearing functionality at one of the tertiary carbon atoms. These substituents included the electrophilic isothiocyanate and photoactivatable azido groups, both of which are capable of covalent attachment with the target protein. Our results show that substitution at the 3'-adamantyl position can lead to ligands with improved affinities and CB1/CB2 selectivities. Our work has also led to the development of two successful covalent probes with high affinities for both cannabinoid receptors, namely, the electrophilic isothiocyanate AM994 and the photoactivatable aliphatic azido AM993 analogues.

  2. Acute rhabdomyolysis following synthetic cannabinoid ingestion

    Directory of Open Access Journals (Sweden)

    Demilade A Adedinsewo

    2016-01-01

    Full Text Available Context: Novel psychoactive substances, including synthetic cannabinoids, are becoming increasingly popular, with more patients being seen in the emergency room following acute ingestion. These substances have been associated with a wide range of adverse effects. However, identification of complications, clinical toxicity, and management remain challenging. Case Report: We present the case of a young African-American male who developed severe agitation and bizarre behavior following acute K2 ingestion. Laboratory studies revealed markedly elevated serum creatine phosphokinase (CPK with normal renal function. The patient was managed with aggressive intravenous (IV fluid hydration and treatment of underlying psychiatric illness. Conclusion: We recommend the routine evaluation of renal function and CPK levels with early initiation of IV hydration among patients who present to the emergency department following acute ingestion of synthetic cannabinoids to identify potential complications early as well as institute early supportive therapy.

  3. Are cannabinoids effective in multiple sclerosis?

    Directory of Open Access Journals (Sweden)

    Rodrigo Meza

    2017-03-01

    Full Text Available Resumen En el último tiempo, se han descrito diversos beneficios con el uso de cannabinoides en diferentes situaciones clínicas. Dentro de ellas se ha planteado un posible efecto en el control de la esclerosis múltiple, pero la real utilidad clínica es tema de debate. Para responder a esta pregunta utilizamos la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en múltiples bases de datos. Identificamos 25 revisiones sistemáticas que en conjunto incluyen 35 estudios que responden la pregunta de interés, entre ellos 26 estudios aleatorizados. Extrajimos los datos, realizamos un metanálisis y preparamos una tabla de resumen de los resultados utilizando el método GRADE. Concluimos que el uso de cannabinoides en esclerosis múltiple no reduce la espasticidad ni el dolor, y probablemente se asocia a efectos adversos frecuentes.

  4. Acute Rhabdomyolysis Following Synthetic Cannabinoid Ingestion

    OpenAIRE

    Adedinsewo, Demilade A.; Oluwaseun Odewole; Taylor Todd

    2016-01-01

    Context: Novel psychoactive substances, including synthetic cannabinoids, are becoming increasingly popular, with more patients being seen in the emergency room following acute ingestion. These substances have been associated with a wide range of adverse effects. However, identification of complications, clinical toxicity, and management remain challenging. Case Report: We present the case of a young African-American male who developed severe agitation and bizarre behavior following acute K2 ...

  5. Treatment of Tourette Syndrome with Cannabinoids

    Directory of Open Access Journals (Sweden)

    Kirsten R. Müller-Vahl

    2013-01-01

    Full Text Available Cannabinoids have been used for hundred of years for medical purposes. To day, the cannabinoid delta-9-tetrahydrocannabinol (THC and the cannabis extract nabiximols are approved for the treatment of nausea, anorexia and spasticity, respectively. In Tourette syndrome (TS several anecdotal reports provided evidence that marijuana might be effective not only in the suppression of tics, but also in the treatment of associated behavioural problems. At the present time there are only two controlled trials available investigating the effect of THC in the treatment of TS. Using both self and examiner rating scales, in both studies a significant tic reduction could be observed after treatment with THC compared to placebo, without causing significant adverse effects. Available data about the effect of THC on obsessive-compulsive symptoms are inconsistent. According to a recent Cochrane review on the efficacy of cannabinoids in TS, definite conclusions cannot be drawn, because longer trials including a larger number of patients are missing. Notwithstanding this appraisal, by many experts THC is recommended for the treatment of TS in adult patients, when first line treatments failed to improve the tics. In treatment resistant adult patients, therefore, treatment with THC should be taken into consideration.

  6. The discovery of a cannabinoid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Devane, W.A.

    1989-01-01

    A tritiated form of CP-55,940, a Pfizer cannabinoid analog that is 20- to 100-fold more potent than {Delta}{sup 9}-tetrahydrocannabinol in various in vivo and in vitro models of cannabimimetric activity, was used as the tool with which to probe for a cannabinoid receptor in rat cortical membranes. The bound and free ligand were successfully separated using a centrifugation assay. Specific binding was saturable, rapidly attained, and completely reversible. The K{sub D}'s derived from kinetic analysis of binding agreed well with the K{sub D}'s derived from saturation and displacement analysis. The ({sup 3}H)CP-55,940 binding site exhibited high affinity with a K{sub D} of 68 pM as determined by LIGAND analysis of homologous displacement studies. The ability of other cannabinoid drugs to displace ({sup 3}H)CP-55,940 binding correlated well with the potency of these drugs in in vivo and in vitro models of cannabimimetic activity. The K{sub i} of {Delta}{sup 9}-THC was 1.6 nM. Cannabidiol and cannabigerol, which both lack psychoactivity in man, displaced specific binding by less than 50% at 1 {mu}M.

  7. Role of cannabinoids in chronic liver diseases

    Institute of Scientific and Technical Information of China (English)

    Anna Parfieniuk; Robert Flisiak

    2008-01-01

    Cannabinoids are a group of compounds acting primarily via CB1 and CB2 receptors. The expression of cannabinoid receptors in normal liver is low or absent. However, many reports have proven up-regulation of the expression of CB1 and CB2 receptors in hepatic myofibroblasts and vascular endothelial cells, as well as increased concentration of endocannabinoids in liver in the course of chronic progressive liver diseases. It has been shown that CB1 receptor signalling exerts profibrogenic and proinflammatory effects in liver tissue, primarily due to the stimulation of hepatic stellate cells, whereas the activation of CB2 receptors inhibits or even reverses liver fibrogenesis. Similarly, CB1 receptor stimulation contributes to progression of liver steatosis. In end-stage liver disease, the endocannabi-noid system has been shown to contribute to hepatic encephalopathy and vascular effects, such as portal hypertension, splanchnic vasodilatation, relative pe-ripheral hypotension and probably cirrhotic cardiomy-opathy. So far, available evidence is based on cellular cultures or animal models. Clinical data on the effects of cannabinoids in chronic liver diseases are limited. However, recent studies have shown the contribution of cannabis smoking to the progression of liver fibrosis and steatosis. Moreover, controlling CB1 or CB2 signal-ling appears to be an attractive target in managing liver diseases.

  8. [Cannabinoids in the control of pain].

    Science.gov (United States)

    Shaladi, Ali Muftah; Crestani, Francesco; Tartari, Stefano; Piva, Bruno

    2008-12-01

    Hemp (Cannabis sativa L.) has been used since remotes ages as a herbal remedy. Only recently the medical community highlighted the pharmacological scientific bases of its effects. The most important active principle, Delta-9-tetrahydrocannabinol, was identified in the second half of the last century, and subsequently two receptors were identified and cloned: CB1 that is primarily present in the central nervous system, and CB2 that is present on the cells of the immune system. Endogenous ligands, called endocannabinoids, were characterized. The anandamide was the first one to be discovered. The effectiveness of the cannabinoids in the treatment of nausea and vomit due to anti-neoplastic chemotherapy and in the wasting-syndrome during AIDS is recognized. Moreover, the cannabinoids are analgesic, and their activity is comparable to the weak opioids. Furthermore, parallels exist between opioid and cannabinoid receptors, and evidence is accumulating that the two systems sometimes may operate synergistically. The interest of the pharmaceutical companies led to the production of various drugs, whether synthetic or natural derived. The good ratio between the polyunsatured fatty acids omega-3 and omega-6 of the oil of Cannabis seeds led to reduction of the phlogosis and an improvement of the pain symptoms in patients with chronic musculo-skeletal inflammation.

  9. Quantification of Cannabinoid Content in Cannabis

    Science.gov (United States)

    Tian, Y.; Zhang, F.; Jia, K.; Wen, M.; Yuan, Ch.

    2015-09-01

    Cannabis is an economically important plant that is used in many fields, in addition to being the most commonly consumed illicit drug worldwide. Monitoring the spatial distribution of cannabis cultivation and judging whether it is drug- or fiber-type cannabis is critical for governments and international communities to understand the scale of the illegal drug trade. The aim of this study was to investigate whether the cannabinoids content in cannabis could be spectrally quantified using a spectrometer and to identify the optimal wavebands for quantifying the cannabinoid content. Spectral reflectance data of dried cannabis leaf samples and the cannabis canopy were measured in the laboratory and in the field, respectively. Correlation analysis and the stepwise multivariate regression method were used to select the optimal wavebands for cannabinoid content quantification based on the laboratory-measured spectral data. The results indicated that the delta-9-tetrahydrocannabinol (THC) content in cannabis leaves could be quantified using laboratory-measured spectral reflectance data and that the 695 nm band is the optimal band for THC content quantification. This study provides prerequisite information for designing spectral equipment to enable immediate quantification of THC content in cannabis and to discriminate drug- from fiber-type cannabis based on THC content quantification in the field.

  10. Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection.

    Science.gov (United States)

    Rosenberg, Evan C; Patra, Pabitra H; Whalley, Benjamin J

    2017-05-01

    The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy. Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings. We found that acute CB1R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB1R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges. Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system. Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported. Furthermore, the effects of several plant

  11. Effect of repeated mass drug administration with praziquantel and track and treat of taeniosis cases on the prevalence of taeniosis in Taenia solium endemic rural communities of Tanzania.

    Science.gov (United States)

    Braae, Uffe Christian; Magnussen, Pascal; Ndawi, Benedict; Harrison, Wendy; Lekule, Faustin; Johansen, Maria Vang

    2017-01-01

    This study evaluated the effect of mass drug administration (MDA) with praziquantel administered to school-aged children (SAC) combined with 'track and treat' of taeniosis cases in the general population on the copro-antigen (Ag) prevalence of taeniosis. The study was conducted in 14 villages in Mbozi and Mbeya district, Tanzania. SAC made up 34% of the population and received MDA with praziquantel (40mg/kg) in 2012 (both districts) and in 2013 (Mbozi only). Three cross-sectional population-based surveys were performed in 2012 (R0), 2013 (R1), and 2014 (R2). In each survey approximately 3000 study subjects of all ages were tested for taeniosis using copro-Ag-ELISA. In total 9064 people were tested and copro-Ag-ELISA positive cases were offered treatment 6-8 months after sampling. The copro-Ag prevalence of taeniosis was significantly higher (Χ(2)-test, p=0.007) in Mbozi (3.0%) at R0 compared to Mbeya (1.5%). Twelve months after MDA in both districts (R1), the copro-Ag prevalence had dropped significantly in both Mbozi (2.0%, p=0.024) and in Mbeya (0.3%, p=0.004), but the significant difference between the districts persisted (Χ(2)-test, p<0.001). Ten months after the second round of MDA in Mbozi and 22 month after the first MDA (R2), the copro-Ag prevalence had dropped significantly again in Mbozi (0.8%, p<0.001), but had slightly increased in Mbeya (0.5%, p=0.051), with no difference between the two districts (Χ(2)-test, p=0.51). The taeniosis cases tracked and treated between round R0 and R2 represented 9% of the projected total number of taeniosis cases within the study area, based on the copro-Ag prevalence and village population data. Among SAC in Mbozi, infection significantly decreased at R1 (p=0.004, OR 0.12, CI: 0.02-0.41) and R2 (p=0.001, OR 0.24, CI: 0.09-0.53) when comparing to R0. In Mbeya infection significant decreased at R1 (p=0.013, OR 0.14, CI: 0.02-0.55), but no difference was found for R2 (p=0. 089), when comparing to R0 among SAC. This study

  12. Deployment Repeatability

    Science.gov (United States)

    2016-04-01

    controlled to great precision, but in a Cubesat , there may be no attitude determination at all. Such a Cubesat might treat sun angle and tumbling rates as...could be sensitive to small differences in motor controller timing. In these cases, the analyst might choose to model the entire deployment path, with...knowledge of the material damage model or motor controller timing precision. On the other hand, if many repeated and environmentally representative

  13. Cannabinoid-induced changes in respiration of brain mitochondria.

    Science.gov (United States)

    Fišar, Zdeněk; Singh, Namrata; Hroudová, Jana

    2014-11-18

    Cannabinoids exert various biological effects that are either receptor-mediated or independent of receptor signaling. Mitochondrial effects of cannabinoids were interpreted either as non-receptor-mediated alteration of mitochondrial membranes, or as indirect consequences of activation of plasma membrane type 1 cannabinoid receptors (CB1). Recently, CB1 receptors were confirmed to be localized to the membranes of neuronal mitochondria, where their activation directly regulates respiration and energy production. Here, we performed in-depth analysis of cannabinoid-induced changes of mitochondrial respiration using both an antagonist/inverse agonist of CB1 receptors, AM251 and the cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol (THC), cannabidiol, anandamide, and WIN 55,212-2. Relationships were determined between cannabinoid concentration and respiratory rate driven by substrates of complex I, II or IV in pig brain mitochondria. Either full or partial inhibition of respiratory rate was found for the tested drugs, with an IC50 in the micromolar range, which verified the significant role of non-receptor-mediated mechanism in inhibiting mitochondrial respiration. Effect of stepwise application of THC and AM251 evidenced protective role of AM251 and corroborated the participation of CB1 receptor activation in the inhibition of mitochondrial respiration. We proposed a model, which includes both receptor- and non-receptor-mediated mechanisms of cannabinoid action on mitochondrial respiration. This model explains both the inhibitory effect of cannabinoids and the protective effect of the CB1 receptor inverse agonist.

  14. A user’s guide to cannabinoid therapies in oncology

    Science.gov (United States)

    Maida, V.; Daeninck, P.J.

    2016-01-01

    “Cannabinoid” is the collective term for a group of chemical compounds that either are derived from the Cannabis plant, are synthetic analogues, or occur endogenously. Although cannabinoids interact mostly at the level of the currently recognized cannabinoid receptors, they might have cross reactivity, such as at opioid receptors. Patients with malignant disease represent a cohort within health care that have some of the greatest unmet needs despite the availability of a plethora of guideline-driven disease-modulating treatments and pain and symptom management options. Cannabinoid therapies are varied and versatile, and can be offered as pharmaceuticals (nabilone, dronabinol, and nabiximols), dried botanical material, and edible organic oils infused with cannabis extracts. Cannabinoid therapy regimens can be creative, involving combinations of all of the aforementioned modalities. Patients with malignant disease, at all points of their disease trajectory, could be candidates for cannabinoid therapies whether as monotherapies or as adjuvants. The most studied and established roles for cannabinoid therapies include pain, chemotherapy-induced nausea and vomiting, and anorexia. Moreover, given their breadth of activity, cannabinoids could be used to concurrently optimize the management of multiple symptoms, thereby reducing overall polypharmacy. The use of cannabinoid therapies could be effective in improving quality of life and possibly modifying malignancy by virtue of direct effects and in improving compliance or adherence with disease-modulating treatments such as chemotherapy and radiation therapy. PMID:28050136

  15. Cannabinoids in the management of spasticity associated with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Anna Maria Malfitano

    2008-08-01

    Full Text Available Anna Maria Malfitano, Maria Chiara Proto, Maurizio BifulcoDipartimento di Scienze Farmaceutiche, Università degli Studi di SalernoAbstract: The endocannabinoid system and cannabinoid-based treatments have been involved in a wide number of diseases. In particular, several studies suggest that cannabinoids and endocannabinoids may have a key role in the pathogenesis and therapy of multiple sclerosis (MS. In this study we highlight the main findings reported in literature about the relevance of cannabinoid drugs in the management and treatment of MS. An increasing body of evidence suggests that cannabinoids have beneficial effects on the symptoms of MS, including spasticity and pain. In this report we focus on the effects of cannabinoids in the relief of spasticity describing the main findings in vivo, in the mouse experimental allergic encephalomyelitis model of MS. We report on the current treatments used to control MS symptoms and the most recent clinical studies based on cannabinoid treatments, although long-term studies are required to establish whether cannabinoids may have a role beyond symptom amelioration in MS.Keywords: cannabinoids, multiple sclerosis, spasticity

  16. Functional role of cannabinoid receptors in urinary bladder

    Directory of Open Access Journals (Sweden)

    Pradeep Tyagi

    2010-01-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa (marijuana, and their derivatives produce a wide spectrum of central and peripheral effects, some of which may have clinical applications. The discovery of specific cannabinoid receptors and a family of endogenous ligands of those receptors has attracted much attention to the general cannabinoid pharmacology. In recent years, studies on the functional role of cannabinoid receptors in bladder have been motivated by the therapeutic effects of cannabinoids on voiding dysfunction in multiple sclerosis patients. In this review, we shall summarize the literature on the expression of cannabinoid receptors in urinary bladder and the peripheral influence of locally and systemically administered cannabinoids in the bladder. The ongoing search for cannabinoid-based therapeutic strategies devoid of psychotropic effects can be complemented with local delivery into bladder by the intravesical route. A greater understanding of the role of the peripheral CB 1 and CB 2 receptor system in lower urinary tract is necessary to allow the development of new treatment for pelvic disorders.

  17. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    2016-01-01

    Full Text Available The expression patterns of the cannabinoid receptor type 1 (CB1R and the cannabinoid receptor type 2 (CB2R are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells and CB2R is exclusively found in the retinal glia (Müller cells. However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp. in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.

  18. Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors.

    Science.gov (United States)

    López Rodríguez, Ana Belén; Mateos Vicente, Beatriz; Romero-Zerbo, Silvana Y; Rodriguez-Rodriguez, Noé; Bellini, María José; Rodriguez de Fonseca, Fernando; Bermudez-Silva, Francisco Javier; Azcoitia, Iñigo; Garcia-Segura, Luis M; Viveros, María-Paz

    2011-09-01

    The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.

  19. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys.

    Science.gov (United States)

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha; Beierschmitt, Amy; Palmour, Roberta; Casanova, Christian; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp.) in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.

  20. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  1. Safety Issues Concerning the Medical Use of Cannabis and Cannabinoids

    Directory of Open Access Journals (Sweden)

    Mark A Ware

    2005-01-01

    Full Text Available Safety issues are a major barrier to the use of cannabis and cannabinoid medications for clinical purposes. Information on the safety of herbal cannabis may be derived from studies of recreational cannabis use, but cannabis exposure and effects may differ widely between medical and recreational cannabis users. Standardized, quality-controlled cannabinoid products are available in Canada, and safety profiles of approved medications are available through the Canadian formulary. In the present article, the evidence behind major safety issues related to cannabis use is summarized, with the aim of promoting informed dialogue between physicians and patients in whom cannabinoid therapy is being considered. Caution is advised in interpreting these data, because clinical experience with cannabinoid use is in the early stages. There is a need for long-term safety monitoring of patients using cannabinoids for a wide variety of conditions, to further guide therapeutic decisions and public policy.

  2. Cannabinoids Prevent the Development of Behavioral and Endocrine Alterations in a Rat Model of Intense Stress

    Science.gov (United States)

    Ganon-Elazar, Eti; Akirav, Irit

    2012-01-01

    Cannabinoids have recently emerged as a possible treatment of stress- and anxiety-related disorders such as post-traumatic stress disorder (PTSD). Here, we examined whether cannabinoid receptor activation could prevent the effects of traumatic stress on the development of behavioral and neuroendocrine measures in a rat model of PTSD, the single-prolonged stress (SPS) model. Rats were injected with the CB1/CB2 receptor agonist WIN55,212-2 (WIN) systemically or into the basolateral amygdala (BLA) at different time points following SPS exposure and were tested 1 week later for inhibitory avoidance (IA) conditioning and extinction, acoustic startle response (ASR), hypothalamic-pituitary-adrenal (HPA) axis function, and anxiety levels. Exposure to SPS enhanced conditioned avoidance and impaired extinction while enhancing ASR, negative feedback on the HPA axis, and anxiety. WIN (0.5 mg/kg) administered intraperitoneally 2 or 24 h (but not 48 h) after SPS prevented the trauma-induced alterations in IA conditioning and extinction, ASR potentiation, and HPA axis inhibition. WIN microinjected into the BLA (5 μg/side) prevented SPS-induced alterations in IA and ASR. These effects were blocked by intra-BLA co-administration of the CB1 receptor antagonist AM251 (0.3 ng/side), suggesting the involvement of CB1 receptors. These findings suggest that (i) there may be an optimal time window for intervention treatment with cannabinoids after exposure to a highly stressful event, (ii) some of the preventive effects induced by WIN are mediated by an activation of CB1 receptors in the BLA, and (iii) cannabinoids could serve as a pharmacological treatment of stress- and trauma-related disorders. PMID:21918506

  3. Can the benefits of cannabinoid receptor stimulation on neuroinflammation, neurogenesis and memory during normal aging be useful in AD prevention?

    Directory of Open Access Journals (Sweden)

    Marchalant Yannick

    2012-01-01

    Full Text Available Abstract Background Alzheimer's disease has become a growing socio-economical concern in developing countries where increased life expectancy is leading to large aged populations. While curing Alzheimer's disease or stopping its progression does not appear within reach in a foreseeable future, new therapies capable of delaying the pathogenesis would represent major breakthroughs. Presentation of the hypothesis The growing number of medical benefits of cannabinoids, such as their ability to regulate age-related processes like neuroinflammation, neurogenesis and memory, raise the question of their potential role as a preventive treatment of AD. Testing the hypothesis To test this hypothesis, epidemiological studies on long term, chronic cannabinoid users could enlighten us on the potential benefits of these compounds in normal and pathological ageing processes. Systematic pharmacological (and thus more mechanistic investigations using animal models of Alzheimer's disease that have been developed would also allow a thorough investigation of the benefits of cannabinoid pharmacotherapy in the pathogenesis of Alzheimer's disease. Implications of the hypothesis The chronic administration of non-selective cannabinoids may delay the onset of cognitive deficits in AD patients; this will dramatically reduce the socio-economic burden of AD and improve the quality of life of the patients and their families.

  4. Pain as a reward: changing the meaning of pain from negative to positive co-activates opioid and cannabinoid systems.

    Science.gov (United States)

    Benedetti, Fabrizio; Thoen, Wilma; Blanchard, Catherine; Vighetti, Sergio; Arduino, Claudia

    2013-03-01

    Pain is a negative emotional experience that is modulated by a variety of psychological factors through different inhibitory systems. For example, endogenous opioids and cannabinoids have been found to be involved in stress and placebo analgesia. Here we show that when the meaning of the pain experience is changed from negative to positive through verbal suggestions, the opioid and cannabinoid systems are co-activated and these, in turn, increase pain tolerance. We induced ischemic arm pain in healthy volunteers, who had to tolerate the pain as long as possible. One group was informed about the aversive nature of the task, as done in any pain study. Conversely, a second group was told that the ischemia would be beneficial to the muscles, thus emphasizing the usefulness of the pain endurance task. We found that in the second group pain tolerance was significantly higher compared to the first one, and that this effect was partially blocked by the opioid antagonist naltrexone alone and by the cannabinoid antagonist rimonabant alone. However, the combined administration of naltrexone and rimonabant antagonized the increased tolerance completely. Our results indicate that a positive approach to pain reduces the global pain experience through the co-activation of the opioid and cannabinoid systems. These findings may have a profound impact on clinical practice. For example, postoperative pain, which means healing, can be perceived as less unpleasant than cancer pain, which means death. Therefore, the behavioral and/or pharmacological manipulation of the meaning of pain can represent an effective approach to pain management.

  5. THE NEURONAL DISTRIBUTION OF CANNABINOID RECEPTOR TYPE 1 IN THE TRIGEMINAL GANGLION OF THE RAT

    OpenAIRE

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of...

  6. Cannabinoid hyperemesis syndrome with extreme hydrophilia

    Directory of Open Access Journals (Sweden)

    Enuh HA

    2013-08-01

    Full Text Available Hilary A Enuh,1 Julia Chin,1 Jay Nfonoyim21Department of Medicine, 2Critical Care Unit, Richmond University Medical Center, Staten Island, NY, USAAbstract: Marijuana is the most widely used recreational drug in the US. Hyperemetic hydrophilic syndrome is a previously described but infrequently recognized condition of cannabinoid abuse with hyperemesis and obsessive hot showering. We present a 47-year-old male known marijuana addict with intractable abdominal pain who could not wait for physical examination, meal, or medication, because of obsessive compulsive warm baths. He had a history of epilepsy and addiction to marijuana, which he took on the day of admission. He presented to the hospital with a seizure, complicated by nausea, vomiting, and severe abdominal pain. His examination was unremarkable, except for mild epigastric tenderness. His laboratory and radiological tests were within normal limits, except for a positive urine drug screen for marijuana and opiates. He took himself immediately to the bathroom and remained under a hot shower with the exception of two 15-minute breaks for the rest of the day. He stated that it made him feel better than medication. Receiving medication and even eating was a problem because of this compulsive showering. Abstinence from marijuana during the hospital stay made the patient's nausea and vomiting resolve significantly. Cannabinoid hyperemesis is a differential diagnosis among patients with intractable nausea, vomiting, and obsessive hot bathing. The syndrome is an unmistakable indication of marijuana addiction. A thorough history and observation is very valuable. Recognition of this entity will reduce unnecessary testing and utilization of health care resources.Keywords: cannabinoid, compulsive bathing, cyclic vomiting, hyperemesis, hydrophilia, marijuana

  7. Human studies of cannabinoids and medicinal cannabis.

    Science.gov (United States)

    Robson, P

    2005-01-01

    Cannabis has been known as a medicine for several thousand years across many cultures. It reached a position of prominence within Western medicine in the nineteenth century but became mired in disrepute and legal controls early in the twentieth century. Despite unremitting world-wide suppression, recreational cannabis exploded into popular culture in the 1960s and has remained easily obtainable on the black market in most countries ever since. This ready availability has allowed many thousands of patients to rediscover the apparent power of the drug to alleviate symptoms of some of the most cruel and refractory diseases known to humankind. Pioneering clinical research in the last quarter of the twentieth century has given some support to these anecdotal reports, but the methodological challenges to human research involving a pariah drug are formidable. Studies have tended to be small, imperfectly controlled, and have often incorporated unsatisfactory synthetic cannabinoid analogues or smoked herbal material of uncertain composition and irregular bioavailability. As a result, the scientific evaluation of medicinal cannabis in humans is still in its infancy. New possibilities in human research have been opened up by the discovery of the endocannabinoid system, a rapidly expanding knowledge of cannabinoid pharmacology, and a more sympathetic political environment in several countries. More and more scientists and clinicians are becoming interested in exploring the potential of cannabis-based medicines. Future targets will extend beyond symptom relief into disease modification, and already cannabinoids seem to offer particular promise in the treatment of certain inflammatory and neurodegenerative conditions. This chapter will begin with an outline of the development and current status of legal controls pertaining to cannabis, following which the existing human research will be reviewed. Some key safety issues will then be considered, and the chapter will conclude with

  8. Exposição repetida à cafeína aumenta a atividade locomotora induzida pelo femproporex em ratos adolescentes e adultos Repeated administration of caffeine increases femproporex-induced locomotor activity in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    Ana Helena Paro

    2008-09-01

    Full Text Available A cafeína e o femproporex são substâncias psicoestimulantes. O femproporex é muito utilizado no Brasil como anorexígeno enquanto a cafeína é amplamente consumida como constituinte regular da dieta. A administração repetida de psicoestimulantes induz sensibilização comportamental que se caracteriza pelo aumento progressivo dos seus efeitos locomotores. Pode ocorrer ainda sensibilização cruzada entre essas substâncias. Investigamos se a administração repetida de cafeína aumenta a locomoção induzida pelo femproporex em ratos adolescentes e adultos. Quarenta e oito ratos adolescentes (dia pós-natal 27 e 32 adultos (dia pós-natal 60 foram distribuídos em dois grupos que receberam injeção intra-peritoneal de 10,0 mg/kg de cafeína (CAF (adolescentes N = 24; adultos N = 16 ou salina (SAL (adolescentes N = 24; adultos N = 16 diariamente durante 10 dias. Três dias após a última injeção, cada grupo CAF ou SAL foi subdividido em dois subgrupos que receberam injeção i.p. de salina (SAL (1 mL/kg ou femproporex (FEM (2,0 mg/kg. Após as injeções, a atividade locomotora foi avaliada automaticamente em intervalos de 5 minutos durante 1 hora. Nossos resultados demonstraram que em ratos adolescentes e adultos o pré-tratamento com CAF aumenta a atividade locomotora induzida pela administração aguda de FEM, sugerindo que a cafeína causa sensibilização aos efeitos locomotores desse derivado anfetamínico.Caffeine and femproporex are psychostimulants drugs widely consumed in Brazil. Behavioral sensitization is defined as an augmentation in the behavioral effect of a psychostimulant upon re-administration. Repeated administration of a psychostimulant produces behavioral sensitization to that drug and cross-sensitization to other drugs. We investigated whether repeated administration of caffeine increases femproporex-induced locomotor activity in adolescent and adult rats. Forty-eight adolescent (postnatal day 27 and 32 adult

  9. Converging action of alcohol consumption and cannabinoid receptor activation on adult hippocampal neurogenesis.

    Science.gov (United States)

    Alén, Francisco; Mouret, Aurélie; Viveros, Maria-Paz; Llorente, Ricardo; Lepousez, Gabriel; Lledo, Pierre-Marie; López-Moreno, José Antonio

    2010-03-01

    Alcoholism is characterized by successive periods of abstinence and relapse, resulting from long-lasting changes in various circuits of the central nervous system. Accumulating evidence points to the endocannabinoid system as one of the most relevant biochemical systems mediating alcohol addiction. The endocannabinoid system regulates adult neurogenesis, a form of long-lasting adult plasticity that occurs in a few areas of the brain, including the dentate gyrus. Because exposure to psychotropic drugs regulates adult neurogenesis, it is possible that neurogenesis might be implicated in the pathophysiology, and hence treatment, of neurobiological illnesses related to drugs of abuse. Here, we investigated the sensitivity of adult hippocampal neurogenesis to alcohol and the cannabinoid receptor agonist WIN 55,212-2 (WIN). Specifically, we analysed the potential link between alcohol relapse, cannabinoid receptor activation, and adult neurogenesis. Adult rats were exposed to subchronic alcohol binge intoxication and received the cannabinoid receptor agonist WIN. Another group of rats were subjected to an alcohol operant self-administration task. Half of these latter animals had continuous access to alcohol, while the other half were subjected to alcohol deprivation, with or without WIN administration. WIN treatment, when administered during alcohol deprivation, resulted in the greatest increase in alcohol consumption during relapse. Together, forced alcohol binge intoxication and WIN administration dramatically reduced hippocampal neurogenesis. Furthermore, adult neurogenesis inversely correlated with voluntary consumption of alcohol. These findings suggest that adult hippocampal neurogenesis is a key factor involved in drug abuse and that it may provide a new strategy for the treatment of alcohol addiction and dependence.

  10. Antidepressant-like effect of tetrahydroisoquinoline amines in the animal model of depressive disorder induced by repeated administration of a low dose of reserpine: behavioral and neurochemical studies in the rat.

    Science.gov (United States)

    Antkiewicz-Michaluk, Lucyna; Wąsik, Agnieszka; Możdżeń, Edyta; Romańska, Irena; Michaluk, Jerzy

    2014-07-01

    Animal models are widely used to study antidepressant-like effect in rodents. However, it should be mentioned that pharmacological models do not always take into account the complexity of the disease process. In the present paper, we demonstrated that repeated but not acute treatment with a low dose of reserpine (0.2 mg/kg i.p.) led to a pharmacological model of depression which was based on its inhibitory effect on the vesicular monoamine transporter 2, and monoamines depleting action in the brain. In fact, we observed that chronic treatment with a low dose of reserpine induced a distinct depressive-like behavior in the forced swim test (FST), and additionally, it produced a significant decrease in the level of dopamine, noradrenaline, and serotonin in the brain structures. 1,2,3,4-Tetrahydroisoquinoline (TIQ) and its close methyl derivative, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) are exo/endogenous amines present naturally in the mammalian brain which demonstrated a significant antidepressant-like effect in the FST and the reserpine model of depression in the rat. Both compounds, TIQ and 1MeTIQ, administered chronically in a dose of 25 mg/kg (i.p.) together with reserpine completely antagonized reserpine-produced depression as assessed by the immobility time and swimming time. Biochemical data were in agreement with behavioral experiments and demonstrated that chronic treatment with a low dose of reserpine in contrast to acute administration produced a significant depression of monoamines in the brain structures and impaired their metabolism. These neurochemical effects obtained after repeated reserpine (0.2 mg/kg i.p.) in the brain structures were completely antagonized by joint TIQ or 1MeTIQ (25 mg/kg i.p.) administration with chronic reserpine. A possible molecular mechanism of action of TIQ and 1MeTIQ responsible for their antidepressant action is discussed. On the basis of the presented behavioral and biochemical studies, we suggest that both

  11. Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit.

    Science.gov (United States)

    Ganon-Elazar, Eti; Akirav, Irit

    2013-09-01

    Considerable evidence suggests that cannabinoids modulate the behavioral and physiological response to stressful events. We have recently shown that activating the cannabinoid system using the CB1/CB2 receptor agonist WIN55,212-2 (WIN) in proximity to exposure to single-prolonged stress (SPS), a rat model of emotional trauma, prevented the stress-induced enhancement of acoustic startle response, the impairment in avoidance extinction and the enhanced negative feedback on the hypothalamic-pituitary-adrenal (HPA) axis (Ganon-Elazar and Akirav, 2012). Some of the effects were found to be mediated by CB1 receptors in the basolateral amygdala (BLA). Here we examined whether cannabinoid receptor activation in a putative brain circuit that includes the BLA, hippocampus and prefrontal cortex (PFC), could prevent the effects of traumatic stress on contextual fear extinction and alterations in glucocorticoid receptor (GR) protein levels. We found that: (i) SPS impaired contextual fear extinction tested one week after trauma exposure and that WIN prevented the stress-induced impairment of extinction when microinjected immediately after trauma exposure into the BLA or hippocampus (5 μg), but not when microinjected into the PFC, (ii) the ameliorating effects of WIN on contextual extinction were prevented by blocking GRs in the BLA and hippocampus, and (iii) SPS up regulated GRs in the BLA, PFC and hippocampus and systemic WIN administration (0.5 mg/kg) after trauma exposure normalized GR levels in the BLA and hippocampus, but not in the PFC. Cannabinoid receptor activation in the aftermath of trauma exposure may regulate the emotional response to the trauma and prevent stress-induced impairment of extinction and GR up regulation through the mediation of CB1 receptors in the BLA and hippocampus. Taken together, the findings suggest that the interaction between the cannabinoid and glucocorticoid systems is crucial in the modulation of emotional trauma.

  12. The Endocannabinoid System, Cannabinoids, and Pain

    Directory of Open Access Journals (Sweden)

    Perry G. Fine

    2013-10-01

    Full Text Available The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB1 receptors and in the periphery (primarily but not exclusively CB2 receptors are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking, as well as regulatory or legal constraints. However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles. This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.

  13. Cannabinoid antagonist in nanostructured lipid carriers (NLCs): design, characterization and in vivo study.

    Science.gov (United States)

    Esposito, Elisabetta; Ravani, Laura; Drechsler, Markus; Mariani, Paolo; Contado, Catia; Ruokolainen, Janne; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Nastruzzi, Claudio; Cortesi, Rita

    2015-03-01

    This study describes the preparation, characterization, and in vivo evaluation in rats of nanostructured lipid carriers (NLCs) encapsulating rimonabant (RMN) as prototypical cannabinoid antagonist. A study was conducted in order to optimize NLC production by melt and ultrasonication method. NLCs were prepared by alternatively adding the lipid phase into the aqueous one (direct protocol) or the aqueous phase into the lipid one (reverse protocol). RMN-NLCs have been characterized by cryogenic transmission electron microscopy (cryo-TEM), X-ray, photon correlation spectroscopy (PCS) and sedimentation field flow fractionation (SdFFF). Reverse NLCs were treated with polysorbate 80. RMN release kinetics have been determined in vitro by dialysis method. In vivo RMN biodistribution in rats was evaluated after intranasal (i.n.) administration of reverse RMN-NLC. The reverse protocol enabled to prevent the lost of lipid phase and to achieve higher RMN encapsulation efficacy (EE) with respect to the direct protocol (98% w/w versus 67% w/w). The use of different protocols did not affect NLC morphology and dimensional distribution. An in vitro dissolutive release rate of RMN was calculated. The in vivo data indicate that i.n. administration of RMN by reverse NLC treated with polysorbate 80 increased RMN concentration in the brain with respect to the drug in solution. The nanoencapsulation protocol presented here appears as an optimal strategy to improve the low solubility of cannabinoid compounds in an aqueous system suitable for in vivo administration.

  14. Case Series of Synthetic Cannabinoid Intoxication from One Toxicology Center

    Directory of Open Access Journals (Sweden)

    Kenneth D. Katz

    2016-05-01

    Full Text Available Synthetic cannabinoid use has risen at alarming rates. This case series describes 11 patients exposed to the synthetic cannabinoid, MAB-CHMINACA who presented to an emergency department with life-threatening toxicity including obtundation, severe agitation, seizures and death. All patients required sedatives for agitation, nine required endotracheal intubation, three experienced seizures, and one developed hyperthermia. One developed anoxic brain injury, rhabdomyolysis and died. A significant number were pediatric patients. The mainstay of treatment was aggressive sedation and respiratory support. Synthetic cannabinoids pose a major public health risk. Emergency physicians must be aware of their clinical presentation, diagnosis and treatment.

  15. Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice.

    Science.gov (United States)

    Patel, Kartikkumar Navinchandra; Joharapurkar, Amit Arvind; Patel, Vishal; Kshirsagar, Samadhan Govind; Bahekar, Rajesh; Srivastava, Brijesh Kumar; Jain, Mukul R

    2014-12-01

    Cannabinoid 1 (CB1) receptor antagonists reduce body weight and improve insulin sensitivity. Preclinical data indicates that an acute dose of CB1 antagonist rimonabant causes an increase in blood glucose. A stable analog of glucagon-like peptide 1 (GLP-1), exendin-4 improves glucose-stimulated insulin secretion in pancreas, and reduces appetite through activation of GLP-1 receptors in the central nervous system and liver. We hypothesized that the insulin secretagogue effect of GLP-1 agonist exendin-4 may synergize with the insulin-sensitizing action of rimonabant. Intraperitoneal as well as intracerebroventricular administration of rimonabant increased serum glucose upon glucose challenge in overnight fasted, diet-induced obese C57 mice, with concomitant rise in serum glucagon levels. Exendin-4 reversed the acute hyperglycemia induced by rimonabant. The combination of exendin-4 and rimonabant showed an additive effect in the food intake, and sustained body weight reduction upon repeated dosing. The acute efficacy of both the compounds was additive for inducing nausea-like symptoms in conditioned aversion test in mice, whereas exendin-4 treatment antagonized the effect of rimonabant on forced swim test upon chronic dosing. Thus, the addition of exendin-4 to rimonabant produces greater reduction in food intake owing to increased aversion, but reduces the other central nervous system side effects of rimonabant. The hyperglucagonemia induced by rimonabant is partially responsible for enhancing the antiobesity effect of exendin-4.

  16. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    Science.gov (United States)

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-05

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways.

  17. Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices.

    Science.gov (United States)

    Castaneto, Marisol S; Wohlfarth, Ariane; Desrosiers, Nathalie A; Hartman, Rebecca L; Gorelick, David A; Huestis, Marilyn A

    2015-05-01

    Synthetic cannabinoids (SC), originally developed as research tools, are now highly abused novel psychoactive substances. We present a comprehensive systematic review covering in vivo and in vitro animal and human pharmacokinetics and analytical methods for identifying SC and their metabolites in biological matrices. Of two main phases of SC research, the first investigated therapeutic applications, and the second abuse-related issues. Administration studies showed high lipophilicity and distribution into brain and fat tissue. Metabolite profiling studies, mostly with human liver microsomes and human hepatocytes, structurally elucidated metabolites and identified suitable SC markers. In general, SC underwent hydroxylation at various molecular sites, defluorination of fluorinated analogs and phase II metabolites were almost exclusively glucuronides. Analytical methods are critical for documenting intake, with different strategies applied to adequately address the continuous emergence of new compounds. Immunoassays have different cross-reactivities for different SC classes, but cannot keep pace with changing analyte targets. Gas chromatography and liquid chromatography mass spectrometry assays - first for a few, then numerous analytes - are available but constrained by reference standard availability, and must be continuously updated and revalidated. In blood and oral fluid, parent compounds are frequently present, albeit in low concentrations; for urinary detection, metabolites must be identified and interpretation is complex due to shared metabolic pathways. A new approach is non-targeted HRMS screening that is more flexible and permits retrospective data analysis. We suggest that streamlined assessment of new SC's pharmacokinetics and advanced HRMS screening provide a promising strategy to maintain relevant assays.

  18. Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands

    Directory of Open Access Journals (Sweden)

    You Haitao

    2011-11-01

    Full Text Available Abstract Background Both T-type calcium channels and cannabinoid receptors modulate signalling in the primary afferent pain pathway. Here, we investigate the analgesics activities of a series of novel cannabinoid receptor ligands with T-type calcium channel blocking activity. Results Novel compounds were characterized in radioligand binding assays and in vitro functional assays at human and rat CB1 and CB2 receptors. The inhibitory effects of these compounds on transient expressed human T-type calcium channels were examined in tsA-201 cells using standard whole-cell voltage clamp techniques, and their analgesic effects in response to various administration routes (intrathecally, intraplantarly, intraperitoneally assessed in the formalin model. A series of compounds were synthesized and evaluated for channel and receptor activity. Compound NMP-7 acted as non-selective CB1/CB2 agonist while NMP4 was found to be a CB1 partial agonist and CB2 inverse agonist. Furthermore, NMP-144 behaved as a selective CB2 inverse agonist. All of these three compounds completely inhibited peak Cav3.2 currents with IC50 values in the low micromolar range. All compounds mediated analgesic effects in the formalin model, but depending on the route of administration, could differentially affect phase 1 and phase 2 of the formalin response. Conclusions Our results reveal that a set of novel cannabinioid receptor ligands potently inhibit T-type calcium channels and show analgesic effects in vivo. Our findings suggest possible novel means of mediating pain relief through mixed T-type/cannabinoid receptor ligands.

  19. Association between a cannabinoid receptor gene (CNR1) polymorphism and cannabinoid-induced alterations of the auditory event-related P300 potential.

    Science.gov (United States)

    Stadelmann, Andreas M; Juckel, Georg; Arning, Larissa; Gallinat, Jürgen; Epplen, Jörg T; Roser, Patrik

    2011-05-27

    Numerous studies demonstrated a close relationship between cannabis abuse and schizophrenia with similar impairments in cognitive processing, particularly in P300 generation. Recently, an (AAT)n triplet repeat polymorphism within the cannabinoid receptor gene CNR1 has been found to be associated with both schizophrenia and substance dependence, and to modulate the P300 potential. As previously reported, both acute oral Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the main psychoactive constituent of cannabis, and standardized cannabis extract containing Δ(9)-THC and cannabidiol (CBD) revealed a significant reduction of P300 amplitudes in healthy subjects but did not show any differences among each other. The aim of this study was to investigate whether the (AAT)n polymorphism differentially modulates the effects of Δ(9)-THC and cannabis extract on P300 generation in 20 healthy volunteers during an auditory choice reaction task. For the >10/>10 genotype, there was a significant decrease of P300 amplitude as well as a significant prolongation of P300 latency under pure Δ(9)-THC but not under cannabis extract. Moreover, we found a significant correlation between the number of AAT repeats and P300 variables for the Δ(9)-THC condition. Our data thus indicate that the CNR1 gene seems to be involved in the regulation of the P300 wave as a marker of selective attention and working memory. Moreover, it appears that variations within CNR1 may differentially alter the sensitivity to the acute effects of cannabinoids on P300 generation in healthy subjects.

  20. Analysis of synthetic cannabinoids in herbal blends by means of nano-liquid chromatography.

    Science.gov (United States)

    Merola, Gustavo; Aturki, Zeineb; D'Orazio, Giovanni; Gottardo, Rossella; Macchia, Teodora; Tagliaro, Franco; Fanali, Salvatore

    2012-12-01

    In this study, a rapid and simultaneous separation of 12 synthetic cannabinoids and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) in herbal blends was obtained by means of nano-liquid chromatography (nano-LC). The nano-LC experiments were performed in a 100μm i.d. capillary column packed with Cogent(®) bidentate C(18) silica particles for 25.0cm. All compounds were resolved using an isocratic elution mode in less than 30min. A mobile phase containing ACN/MeOH/H(2)O/formic acid 69/5/25/1 (v/v/v/v) was employed for the chromatographic separation. The developed analytical method was validated in terms of precision, linearity, sensitivity and accuracy. Under optimal nano-LC-UV conditions, the resulting RSD percentages for intra-day and inter-day repeatability, related to retention time and peak area, were below 2.98 and 6.40%, respectively. Limits of detection and quantification were 0.2 and 0.5μg/mL, respectively, for all the studied compounds. Linearity was assessed in the concentration range of interest for all analytes with determination coefficients r(2)≥0.9975. The method was then applied to the determination of synthetic cannabinoids in herbal blends. Quantitative analyses of the cannabimimetic compounds in six products showed that there was a wide difference in the concentration of the studied compounds among different products. Further, the nano-LC system was coupled with a mass spectrometer measuring the MS and MS-MS spectra to unequivocally identify the cannabinoids present in smoking mixtures.

  1. Cannabinoids: is there a potential treatment role in epilepsy?

    Science.gov (United States)

    Blair, Robert E; Deshpande, Laxmikant S; DeLorenzo, Robert J

    2015-01-01

    Cannabinoids have been used medicinally for centuries, and in the last decade, attention has focused on their broad therapeutic potential particularly in seizure management. While some cannabinoids have demonstrated anticonvulsant activity in experimental studies, their efficacy for managing clinical seizures has not been fully established. This commentary will touch on our understanding of the brain endocannabinoid system's regulation of synaptic transmission in both physiological and pathophysiological conditions, and review the findings from both experimental and clinical studies on the effectiveness of cannabinoids to suppress epileptic seizures. At present, there is preliminary evidence that non-psychoactive cannabinoids may be useful as anticonvulsants, but additional clinical trials are needed to fully evaluate the efficacy and safety of these compounds for the treatment of epilepsy.

  2. Cannabinoids and cancer: pros and cons of an antitumour strategy

    OpenAIRE

    2006-01-01

    In the last two decades, research has dramatically increased the knowledge of cannabinoids biology and pharmacology. In mammals, compounds with properties similar to active components of Cannabis sativa, the so called ‘endocannabinoids', have been shown to modulate key cell-signalling pathways involved in cancer cell growth, invasion and metastasis. To date, cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increased evidences showed direct antiprol...

  3. Detection and quantification of selected cannabinoids in coping control

    OpenAIRE

    Nessa, Anna Hesby

    2010-01-01

    The use and misuse of substances from the cannabis plant has been verified for a long time, with tetrahydrocannabinol (THC) and cannabidiol (CBD) being the two main psychoactive constituents’. In doping controls, cannabinoids are prohibited substances in competition. As a marker for the consumption of cannabinoids, the main metabolite of THC, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), is used. In order to exclude passive smokers from being declared as positive cases, the World An...

  4. Pharmacological activation/inhibition of the cannabinoid system affects alcohol withdrawal-induced neuronal hypersensitivity to excitotoxic insults.

    Directory of Open Access Journals (Sweden)

    Marina Rubio

    Full Text Available Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic challenge. Ethanol withdrawal increased N-methyl-D-aspartate (NMDA-evoked neuronal death, probably by altering the ratio between GluN2A and GluN2B NMDA receptor subunits. The stimulation of the endocannabinoid system with the cannabinoid agonist HU-210 decreased NMDA-induced neuronal death exclusively in ethanol-withdrawn neurons. This neuroprotection could be explained by a decrease in NMDA-stimulated calcium influx after the administration of HU-210, found exclusively in ethanol-withdrawn neurons. By contrast, the inhibition of the cannabinoid system with the CB1 receptor antagonist rimonabant (SR141716 during ethanol withdrawal increased death of ethanol-withdrawn neurons without any modification of NMDA-stimulated calcium influx. Moreover, chronic administration of rimonabant increased NMDA-stimulated toxicity not only in withdrawn neurons, but also in control neurons. In summary, we show for the first time that the stimulation of the endocannabinoid system is protective against the hyperexcitability developed during alcohol withdrawal. By contrast, the blockade of the endocannabinoid system is highly counterproductive during alcohol withdrawal.

  5. Epileptiform activity in the CA1 region of the hippocampus becomes refractory to attenuation by cannabinoids in part because of endogenous γ-aminobutyric acid type B receptor activity.

    Science.gov (United States)

    Messer, Ricka D; Levine, Eric S

    2012-07-01

    The anticonvulsant properties of marijuana have been known for centuries. The recently characterized endogenous cannabinoid system thus represents a promising target for novel anticonvulsant agents; however, administration of exogenous cannabinoids has shown mixed results in both human epilepsy and animal models. The ability of cannabinoids to attenuate release of both excitatory and inhibitory neurotransmitters may explain the variable effects of cannabinoids in different models of epilepsy, but this has not been well explored. Using acute mouse brain slices, we monitored field potentials in the CA1 region of the hippocampus to characterize systematically the effects of the cannabinoid agonist WIN55212-2 (WIN) on evoked basal and epileptiform activity. WIN, acting presynaptically, significantly reduced the amplitude and slope of basal field excitatory postsynaptic potentials as well as stimulus-evoked epileptiform responses induced by omission of magnesium from the extracellular solution. In contrast, the combination of omission of magnesium plus elevation of potassium induced an epileptiform response that was refractory to attenuation by WIN. The effect of WIN in this model was partially restored by blocking γ-aminobutyric acid type B (GABA(B) ), but not GABA(A) , receptors. Subtle differences in models of epileptiform activity can profoundly alter the efficacy of cannabinoids. Endogenous GABA(B) receptor activation played a role in the decreased cannabinoid sensitivity observed for epileptiform activity induced by omission of magnesium plus elevation of potassium. These results suggest that interplay between presynaptic G protein-coupled receptors with overlapping downstream targets may underlie the variable efficacy of cannabinoids in different models of epilepsy.

  6. Cannabinoids inhibit fibrogenesis in diffuse systemic sclerosis fibroblasts.

    Science.gov (United States)

    Garcia-Gonzalez, Estrella; Selvi, Enrico; Balistreri, Epifania; Lorenzini, Sauro; Maggio, Roberta; Natale, Maria-Rita; Capecchi, Pier-Leopoldo; Lazzerini, Pietro-Enea; Bardelli, Marco; Laghi-Pasini, Franco; Galeazzi, Mauro

    2009-09-01

    It has been demonstrated that the endocannabinoid system is up-regulated in pathologic fibrosis and that modulation of the cannabinoid receptors might limit the progression of uncontrolled fibrogenesis. The aim of this study was to investigate whether the synthetic cannabinoid receptor agonist WIN55,212-2 could modulate fibrogenesis in an in vitro model of dcSSc. The expression of cannabinoid receptors CB1 and CB2 was assessed in dcSSc fibroblasts and healthy control fibroblasts. To investigate the effect of WIN55,212-2 on dcSSc fibrogenesis, we studied type I collagen, profibrotic cytokines, fibroblast transdifferentiation into myofibroblasts, apoptotic processes and activation of the extracellular signal-related kinase 1/2 pathway prior to and after the treatment with the synthetic cannabinoid at increasing concentrations. Both CB1 and CB2 receptors were over-expressed in dcSSc fibroblasts compared with healthy controls. WIN55,212-2 caused a reduction in extracellular matrix deposition and counteracted several behavioural abnormalities of scleroderma fibroblasts including transdifferentiation into myofibroblasts and resistance to apoptosis. The anti-fibrogenic effect of WIN55,212-2 was not reverted by selective cannabinoid antagonists. Our preliminary findings suggest that cannabinoids are provided with an anti-fibrotic activity, thereby possibly representing a new class of agents targeting fibrosis diseases.

  7. Cannabinoid receptors and cholecystokinin in feeding inhibition.

    Science.gov (United States)

    Alén, Francisco; Ramírez-López, M Teresa; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando; Orio, Laura

    2013-01-01

    The endocannabinoid system functions as a potent regulator of feeding behavior and energy balance through complex central and peripheral mechanisms. Recent findings have demonstrated the existence of cooperation between peripheral cannabinoid CB1 receptors and the satiety hormone cholecystokinin (CCK). The two systems have opposing actions in the modulation of feeding: while endocannabinoids such as anandamide promote feeding, CCK controls gastrointestinal motility and appetite suppression. In this review, we examine the individual contribution of endocannabinoids and CCK in the modulation of appetite and explore the interaction between the two systems. We also highlight the potential benefits of simultaneously targeting peripheral CB1 and CCK1 receptors to design new therapies to fight obesity. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. A New Animal Model of Depression Induced by Repeated Central Lipopolysaccharide Administration%一个中枢炎性免疫诱发长时程抑郁样行为的新模型

    Institute of Scientific and Technical Information of China (English)

    汤明明; 潘玉芹; 林文娟

    2014-01-01

    -like behavior at - and after- 24h post-LPS injection. In this study, single and triple central LPS administration were used to induce depressive-like behavior respectively. Sprague-Dawley rats were randomly divided into LPS group and control group. LPS (100ng/rat, one injection; or once every second day, total three times) or isotonic saline was administered by intracerebroventricular microinjection. The depressive-like behavior was measured by preference to saccharin, locomotor activity and immobility time of tail suspension. The result indicated that single central LPS injection induced partial depressive-like behaviors. There was significant difference in locomotor activity, but not in the preference of saccharin and immobility time of tail suspension. However, repeated central LPS administration induced significant depressive-like behaviors after 24h of the last LPS injection. The animals with triple central LPS administration consumed less saccharin solution, exhibited less locomotor activity in the open field, and maintained immobility time in tail suspension. The changes in locomotor activity and immobility time of tail suspension were even apparent until 72h after the last LPS injection. Our results demonstrate that a new effective model of depression can be established by means of repeated lateral ventricle LPS injections, and the induced depressive-like behavior has longer time duration than by the peripheral injection of LPS.

  9. Interaction between cannabinoid compounds and diazepam on anxiety-like behaviour of mice.

    Science.gov (United States)

    Naderi, Nima; Haghparast, Abbas; Saber-Tehrani, Ali; Rezaii, Neguine; Alizadeh, Amir-Mohammad; Khani, Abbas; Motamedi, Fereshteh

    2008-03-01

    Previous studies have suggested that cannabinoidergic system is involved in anxiety. However, a complete picture of cannabinoid association in the anxiety is still lacking. In the present study, we investigated the possible interaction between cannabinoidergic and GABAergic systems in the anxiety-like behaviour of mice. Intraperitoneal (i.p.) administration of the cannabinoid receptor agonist WIN55212-2 (0.25-5 mg/kg), the endocannabinoid transport inhibitor AM404 (0.25-2 mg/kg) and diazepam (0.25-8 mg/kg) dose dependently exhibited an anxiolytic effect evaluated in terms of increase in the percentage of time spent in the open arms in the elevated plus maze (EPM) test. Administration of certain fixed-ratio combinations (3:1 and 1:1) of WIN55212-2 and diazepam produced a synergistic anxiolytic effect, while the 1:3 combination produced an additive effect. In hole-board test, administration of certain ratios of WIN55212-2-diazepam combination significantly altered the animal behaviour compared to groups that received each drug alone. Co-administration of AM404 (1 and 2 mg/kg) and diazepam (0.5 mg/kg) abolished the anxiolytic effect of the former drug in EPM and the latter in hole-board test, respectively. The combination of an ineffective dose of the fatty acid amide hydrolase (FAAH) inhibitor, URB597 (0.3 mg/kg, i.p.) on anxiety-related responses with an ineffective dose of diazepam (0.25 mg/kg, i.p.) led to a synergistic effect. Co-administration of the CB1 receptor antagonist, AM251 (5 mg/kg) and an effective dose of diazepam (2 mg/kg, i.p.) attenuated diazepam-induced elevation of percentage of time spent in open arm, while lower dose of AM251 (0.5 mg/kg) failed to inhibit diazepam-induced anxiolytic effect. Taken together, the present study showed that co-administration of exogenous cannabinoids and diazepam produce additive or synergistic effect at different combinations. Moreover, it has been shown that enhancement of the function of endocannabinoids could

  10. Traditional marijuana, high-potency cannabis and synthetic cannabinoids: increasing risk for psychosis.

    Science.gov (United States)

    Murray, Robin M; Quigley, Harriet; Quattrone, Diego; Englund, Amir; Di Forti, Marta

    2016-10-01

    Epidemiological evidence demonstrates that cannabis use is associated with an increased risk of psychotic outcomes, and confirms a dose-response relationship between the level of use and the risk of later psychosis. High-potency cannabis and synthetic cannabinoids carry the greatest risk. Experimental administration of tetrahydrocannabinol, the active ingredient of cannabis, induces transient psychosis in normal subjects, but this effect can be ameliorated by co-administration of cannabidiol. This latter is a constituent of traditional hashish, but is largely absent from modern high-potency forms of cannabis. Argument continues over the extent to which genetic predisposition is correlated to, or interacts with, cannabis use, and what proportion of psychosis could be prevented by minimizing heavy use. As yet, there is not convincing evidence that cannabis use increases risk of other psychiatric disorders, but there are no such doubts concerning its detrimental effect on cognitive function. All of the negative aspects are magnified if use starts in early adolescence. Irrespective of whether use of cannabis is decriminalized or legalized, the evidence that it is a component cause of psychosis is now sufficient for public health messages outlining the risk, especially of regular use of high-potency cannabis and synthetic cannabinoids. © 2016 World Psychiatric Association.

  11. Traditional marijuana, high‐potency cannabis and synthetic cannabinoids: increasing risk for psychosis

    Science.gov (United States)

    Murray, Robin M.; Quigley, Harriet; Quattrone, Diego; Englund, Amir; Di Forti, Marta

    2016-01-01

    Epidemiological evidence demonstrates that cannabis use is associated with an increased risk of psychotic outcomes, and confirms a dose‐response relationship between the level of use and the risk of later psychosis. High‐potency cannabis and synthetic cannabinoids carry the greatest risk. Experimental administration of tetrahydrocannabinol, the active ingredient of cannabis, induces transient psychosis in normal subjects, but this effect can be ameliorated by co‐administration of cannabidiol. This latter is a constituent of traditional hashish, but is largely absent from modern high‐potency forms of cannabis. Argument continues over the extent to which genetic predisposition is correlated to, or interacts with, cannabis use, and what proportion of psychosis could be prevented by minimizing heavy use. As yet, there is not convincing evidence that cannabis use increases risk of other psychiatric disorders, but there are no such doubts concerning its detrimental effect on cognitive function. All of the negative aspects are magnified if use starts in early adolescence. Irrespective of whether use of cannabis is decriminalized or legalized, the evidence that it is a component cause of psychosis is now sufficient for public health messages outlining the risk, especially of regular use of high‐potency cannabis and synthetic cannabinoids. PMID:27717258

  12. Cannabinoids increase type 1 cannabinoid receptor expression in a cell culture model of striatal neurons: implications for Huntington's disease.

    Science.gov (United States)

    Laprairie, Robert B; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2013-09-01

    The type 1 cannabinoid receptor (CB1) is a G protein-coupled receptor that is expressed at high levels in the striatum. Activation of CB1 increases expression of neuronal trophic factors and inhibits neurotransmitter release from GABA-ergic striatal neurons. CB1 mRNA levels can be elevated by treatment with cannabinoids in non-neuronal cells. We wanted to determine whether cannabinoid treatment could induce CB1 expression in a cell culture model of striatal neurons and, if possible, determine the molecular mechanism by which this occurred. We found that treatment of STHdh(7/7) cells with the cannabinoids ACEA, mAEA, and AEA produced a CB1receptor-dependent increase in CB1 promoter activity, mRNA, and protein expression. This response was Akt- and NF-κB-dependent. Because decreased CB1 expression is thought to contribute to the pathogenesis of Huntington's disease (HD), we wanted to determine whether cannabinoids could increase CB1 expression in STHdh(7/111) and (111/111) cells expressing the mutant huntingtin protein. We observed that cannabinoid treatment increased CB1 mRNA levels approximately 10-fold in STHdh(7/111) and (111/111) cells, compared to vehicle treatment. Importantly, cannabinoid treatment improved ATP production, increased the expression of the trophic factor BDNF-2, and the mitochondrial regulator PGC1α, and reduced spontaneous GABA release, in HD cells. Therefore, cannabinoid-mediated increases in CB1 levels could reduce the severity of some molecular pathologies observed in HD.

  13. Cannabinoid antagonist SLV326 induces convulsive seizures and changes in the interictal EEG in rats

    Science.gov (United States)

    de Bruin, Natasja; Heijink, Liesbeth; Kruse, Chris; Vinogradova, Lyudmila; Lüttjohann, Annika; van Luijtelaar, Gilles; van Rijn, Clementina M.

    2017-01-01

    Cannabinoid CB1 antagonists have been investigated for possible treatment of e.g. obesity-related disorders. However, clinical application was halted due to their symptoms of anxiety and depression. In addition to these adverse effects, we have shown earlier that chronic treatment with the CB1 antagonist rimonabant may induce EEG-confirmed convulsive seizures. In a regulatory repeat-dose toxicity study violent episodes of “muscle spasms” were observed in Wistar rats, daily dosed with the CB1 receptor antagonist SLV326 during 5 months. The aim of the present follow-up study was to investigate whether these violent movements were of an epileptic origin. In selected SLV326-treated and control animals, EEG and behavior were monitored for 24 hours. 25% of SLV326 treated animals showed 1 to 21 EEG-confirmed generalized convulsive seizures, whereas controls were seizure-free. The behavioral seizures were typical for a limbic origin. Moreover, interictal spikes were found in 38% of treated animals. The frequency spectrum of the interictal EEG of the treated rats showed a lower theta peak frequency, as well as lower gamma power compared to the controls. These frequency changes were state-dependent: they were only found during high locomotor activity. It is concluded that long term blockade of the endogenous cannabinoid system can provoke limbic seizures in otherwise healthy rats. Additionally, SLV326 alters the frequency spectrum of the EEG when rats are highly active, suggesting effects on complex behavior and cognition. PMID:28151935

  14. In vitro and non-invasive in vivo effects of the cannabinoid-1 receptor (CB1R) agonist AM841 on gastrointestinal motor function in the rat

    Science.gov (United States)

    Abalo, R; Chen, C; Vera, G; Fichna, J; Thakur, GA; López-Pérez, AE; Makriyannis, A; Martín-Fontelles, MI; Storr, M

    2015-01-01

    Background Cannabinoids have been traditionally used for the treatment of gastrointestinal (GI) symptoms, but the associated central effects, through cannabinoid-1 receptors (CB1R), constitute an important drawback. Our aims were to characterize the effects of the recently developed highly potent long-acting megagonist AM841 on GI motor function and to determine its central effects in rats. Methods Male Wistar rats were used for in vitro and in vivo studies. The effect of AM841 was tested on electrically-induced twitch contractions of GI preparations (in vitro) and on GI motility measured radiographically after contrast administration (in vivo). Central effects of AM841 were evaluated using the cannabinoid tetrad. The non-selective cannabinoid agonist WIN 55,212-2 (WIN) was used for comparison. The CB1R (AM251) and CB2R (AM630) antagonists were used to characterize cannabinoid receptor-mediated effects of AM841. Key results AM841 dose-dependently reduced in vitro contractile activity of rat GI preparations via CB1R, but not CB2R or opioid receptors. In vivo, AM841 acutely and potently reduced gastric emptying and intestinal transit in a dose-dependent and AM251-sensitive manner. The in vivo GI effects of AM841 at 0.1 mg kg−1 were comparable to those induced by WIN at 5 mg kg−1. However, at this dose, AM841 did not induce any sign of the cannabinoid tetrad, whereas WIN induced significant central effects. Conclusions & Inferences The CB1R megagonist AM841 may potently depress GI motor function in the absence of central effects. This effect may be mediated peripherally and may be useful in the treatment of GI motility disorders. PMID:26387676

  15. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  16. Association between a genetic variant of type-1 cannabinoid receptor and inflammatory neurodegeneration in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Silvia Rossi

    Full Text Available Genetic ablation of type-1 cannabinoid receptors (CB1Rs exacerbates the neurodegenerative damage of experimental autoimmune encephalomyelitis, the rodent model of multiple sclerosis (MS. To address the role on CB1Rs in the pathophysiology of human MS, we first investigated the impact of AAT trinucleotide short tandem repeat polymorphism of CNR1 gene on CB1R cell expression, and secondly on the inflammatory neurodegeneration process responsible for irreversible disability in MS patients. We found that MS patients with long AAT repeats within the CNR1 gene (≥12 in both alleles had more pronounced neuronal degeneration in response to inflammatory white matter damage both in the optic nerve and in the cortex. Optical Coherence Tomography (OCT, in fact, showed more severe alterations of the retinal nerve fiber layer (RNFL thickness and of the macular volume (MV after an episode of optic neuritis in MS patients carrying the long AAT genotype of CNR1. MS patients with long AAT repeats also had magnetic resonance imaging (MRI evidence of increased gray matter damage in response to inflammatory lesions of the white matter, especially in areas with a major role in cognition. In parallel, visual abilities evaluated at the low contrast acuity test, and cognitive performances were negatively influenced by the long AAT CNR1 genotype in our sample of MS patients. Our results demonstrate the biological relevance of the (AATn CNR1 repeats in the inflammatory neurodegenerative damage of MS.

  17. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training

    Science.gov (United States)

    Morena, Maria; Roozendaal, Benno; Trezza, Viviana; Ratano, Patrizia; Peloso, Andrea; Hauer, Daniela; Atsak, Piray; Trabace, Luigia; Cuomo, Vincenzo; McGaugh, James L.; Schelling, Gustav; Campolongo, Patrizia

    2014-01-01

    Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The experiments first examined whether the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) are released by aversive training. Inhibitory avoidance training with higher footshock intensity produced increased levels of AEA in the amygdala, hippocampus, and medial prefrontal cortex (mPFC) shortly after training in comparison with levels assessed in rats trained with lower footshock intensity or unshocked controls exposed only to the training apparatus. In contrast, 2-AG levels were not significantly elevated. The additional finding that posttraining infusions of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which selectively increases AEA levels at active synapses, administered into the basolateral complex of the amygdala (BLA), hippocampus, or mPFC enhanced memory strongly suggests that the endogenously released AEA modulates memory consolidation. Moreover, in support of the view that this emotional training-associated increase in endocannabinoid neurotransmission, and its effects on memory enhancement, depends on the integrity of functional interactions between these different brain regions, we found that disruption of BLA activity blocked the training-induced increases in AEA levels as well as the memory enhancement produced by URB597 administered into the hippocampus or mPFC. Thus, the findings provide evidence that emotionally arousing training increases AEA levels within prefrontal-limbic circuits and strongly suggest that this cannabinoid activation regulates emotional arousal effects on memory consolidation. PMID:25489086

  18. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play.

    Science.gov (United States)

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J M J; Trezza, Viviana; Manzoni, Olivier J J

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  19. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play

    Directory of Open Access Journals (Sweden)

    Antonia Manduca

    2016-11-01

    Full Text Available Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R or mu-opioid receptor (MOR antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC. Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of mediates social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  20. Behavioral effects of the novel potent cannabinoid CB1 agonist AM 4054.

    Science.gov (United States)

    McLaughlin, Peter J; Thakur, Ganesh A; Vemuri, V Kiran; McClure, Evan D; Brown, Cara M; Winston, Keisha M; Wood, Jodianne T; Makriyannis, Alexandros; Salamone, John D

    2013-08-01

    Due to the ubiquity of the CB1 cannabinoid receptor throughout the nervous system, as well as the many potential therapeutic uses of CB1 agonist-based interventions, it is desirable to synthesize novel probes of the CB1 receptor. Here, the acute behavioral effects of systemic (i.p.) administration of the putative novel CB1 full agonist AM 4054 were tested in rats. In Experiment 1, a dose range (0.15625-1.25 mg/kg) of AM 4054 produced effects consistent with CB1 agonism in the cannabinoid tetrad of tasks in rats, including induction of analgesia, catalepsy, hypothermia, and locomotor suppression. These effects were reversed with the CB1-selective inverse agonist AM 251 in Experiment 2, indicating that AM 4054 produced CB1 receptor-mediated effects. Analysis of open-field activity indicated that the reduction in locomotion is more consistent with general motor slowing than anxiogenesis. AM 4054 (0.0625-0.5 mg/kg) also dose-dependently reduced fixed-ratio 5 (FR5) operant responding for food in Experiment 3, and microanalysis of the timing and rate of lever pressing indicated a pattern of suppression similar to other CB1 agonists. Minimum doses of AM 4054 (0.125-0.3125 mg/kg) required to produce significant effects in these behavioral assays were lower than those of many CB1 agonists. It is likely that AM 4054 is a potent pharmacological tool for assessment of cannabinoid receptor function. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Cannabinoids modulate spontaneous synaptic activity in retinal ganglion cells.

    Science.gov (United States)

    Middleton, T P; Protti, D A

    2011-09-01

    The endocannabinoid (ECB) system has been found throughout the central nervous system and modulates cell excitability in various forms of short-term plasticity. ECBs and their receptors have also been localized to all retinal cells, and cannabinoid receptor activation has been shown to alter voltage-dependent conductances in several different retinal cell types, suggesting a possible role for cannabinoids in retinal processing. Their effects on synaptic transmission in the mammalian retina, however, have not been previously investigated. Here, we show that exogenous cannabinoids alter spontaneous synaptic transmission onto retinal ganglion cells (RGCs). Using whole-cell voltage-clamp recordings in whole-mount retinas, we measured spontaneous postsynaptic currents (SPSCs) in RGCs in adult and young (P14-P21) mice. We found that the addition of an exogenous cannabinoid agonist, WIN55212-2 (5 μM), caused a significant reversible reduction in the frequency of SPSCs. This change, however, did not alter the kinetics of the SPSCs, indicating a presynaptic locus of action. Using blockers to isolate inhibitory or excitatory currents, we found that cannabinoids significantly reduced the release probability of both GABA and glutamate, respectively. While the addition of cannabinoids reduced the frequency of both GABAergic and glutamatergic SPSCs in both young and adult mice, we found that the largest effect was on GABA-mediated currents in young mice. These results suggest that the ECB system may potentially be involved in the modulation of signal transmission in the retina. Furthermore, they suggest that it might play a role in the developmental maturation of synaptic circuits, and that exogenous cannabinoids are likely able to disrupt retinal processing and consequently alter vision.

  2. The endocannabinoids anandamide and virodhamine modulate the activity of the candidate cannabinoid receptor GPR55

    OpenAIRE

    Sharir, Haleli; Console-Bram, Linda; Mundy, Christina; Steven N. Popoff; Kapur, Ankur; Abood, Mary E.

    2012-01-01

    The role of cannabinoid receptors in inflammation has been the topic of many research endeavors. Despite this effort, to date the involvement of the endocannabinoid system (ECS) in inflammation remains obscure. The ambiguity of cannabinoid involvement may be explained by the existence of cannabinoid receptors, other than CB1 and CB2, or a consequence of interaction of endocannabinoids with other signaling systems. GPR55 has been proposed to be a cannabinoid receptor; however the interaction o...

  3. Study on absorption and accumulation of mercury in rats by repeated administration of Yuhong ointment%玉红膏重复给药大鼠体内汞的吸收及蓄积研究

    Institute of Scientific and Technical Information of China (English)

    邱恒; 孙新民; 黄雯; 胡小靖; 王旗; 牟稷征; 王丽霞

    2013-01-01

    Objective:To study in vivo mercury absorption and accumulation through repeated transdermal administration of Yuhong ointment containing calomel,in order to provide scientific evidences for clinical safe medication.Method:A total of 100 SD rats were randomly classified into five groups:the control group,the Yuhong ointment group,the double-concentration Yuhong Ointment group,the quadruple-concentration Yuhong ointment group and the 1.6% calomel group.The rats were treated with the dosage of 0.04 g · cm-2 by repeated transdermal administration for 2,4 weeks.After the drug discontinuance for 4 weeks,the levels of mercury in blood,urine,and tissues of heart,liver,brain and kidney were determined,respectively.Result:Compared with the control group,the blood mercury level of the Yuhong ointment group show no obvious change after treatment for 4 weeks.However,the levels of mercury in blood and urine of other experimental groups increased significantly with time and the increase in dosage,and so did the level of mercury in major organ.At 4 weeks,all experimental groups showed increase in the content of mercury,and kidneys displayed the highest level,whereas brain displayed the lowest level.After the drug discontinuance for 4 weeks,the mercury level in blood and urine of every dose group recovered to normal,with significant decline in the content of mercury in each organ.Conclusion:After transdermal administration in rats for 4 weeks,there was no obvious absorption of mercury in blood.Mercury was mainly accumulated in kidneys and excreted through urine.The results suggest that the patients' mercury content and kidney function indexes need to be monitored in long-term clinical use of Yuhong ointment.%目的:通过经皮重复给予大鼠不同浓度含轻粉玉红膏,考察体内汞的吸收及蓄积情况,为临床安全用药提供科学依据.方法:将100只SD大鼠随机分成5组:对照组、玉红膏组、2倍浓度玉红膏组、4倍浓度玉红膏组和1.6%

  4. C3-heteroaroyl cannabinoids as photolabeling ligands for the CB2 cannabinoid receptor.

    Science.gov (United States)

    Dixon, Darryl D; Tius, Marcus A; Thakur, Ganesh A; Zhou, Han; Bowman, Anna L; Shukla, Vidyanand G; Peng, Yan; Makriyannis, Alexandros

    2012-08-15

    A series of tricyclic cannabinoids incorporating a heteroaroyl group at C3 were prepared as probes to explore the binding site(s) of the CB1 and CB2 receptors. This relatively unexplored structural motif is shown to be CB2 selective with K(i) values at low nanomolar concentrations when the heteroaromatic group is 3-benzothiophenyl (41) or 3-indolyl (50). When photoactivated, the lead compound 41 was shown to successfully label the CB2 receptor through covalent attachment at the active site while 50 failed to label. The benzothiophenone moiety may be a photoactivatable moiety suitable for selective labeling.

  5. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  6. Cannabinoid antagonist in nanostructured lipid carriers (NLCs): design, characterization and in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Elisabetta; Ravani, Laura [Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara (Italy); Drechsler, Markus [BIMF/Soft Matter Electron Microscopy, University of Bayreuth (Germany); Mariani, Paolo [Department of Life and Environmental Sciences and CNISM, Università Politecnica delle Marche, I-60100 Ancona (Italy); Contado, Catia [Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara (Italy); Ruokolainen, Janne [Department of Applied Physics, Aalto University, 00076 Aalto (Finland); Ratano, Patrizia; Campolongo, Patrizia [Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Roma (Italy); Trezza, Viviana [Department of Science, Roma Tre University, 00146 Roma (Italy); Nastruzzi, Claudio, E-mail: nas@unife.it [Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara (Italy); Cortesi, Rita [Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara (Italy)

    2015-03-01

    This study describes the preparation, characterization, and in vivo evaluation in rats of nanostructured lipid carriers (NLCs) encapsulating rimonabant (RMN) as prototypical cannabinoid antagonist. A study was conducted in order to optimize NLC production by melt and ultrasonication method. NLCs were prepared by alternatively adding the lipid phase into the aqueous one (direct protocol) or the aqueous phase into the lipid one (reverse protocol). RMN-NLCs have been characterized by cryogenic transmission electron microscopy (cryo-TEM), X-ray, photon correlation spectroscopy (PCS) and sedimentation field flow fractionation (SdFFF). Reverse NLCs were treated with polysorbate 80. RMN release kinetics have been determined in vitro by dialysis method. In vivo RMN biodistribution in rats was evaluated after intranasal (i.n.) administration of reverse RMN-NLC. The reverse protocol enabled to prevent the lost of lipid phase and to achieve higher RMN encapsulation efficacy (EE) with respect to the direct protocol (98% w/w versus 67% w/w). The use of different protocols did not affect NLC morphology and dimensional distribution. An in vitro dissolutive release rate of RMN was calculated. The in vivo data indicate that i.n. administration of RMN by reverse NLC treated with polysorbate 80 increased RMN concentration in the brain with respect to the drug in solution. The nanoencapsulation protocol presented here appears as an optimal strategy to improve the low solubility of cannabinoid compounds in an aqueous system suitable for in vivo administration. - Highlights: • Rimonabant (RMN) can be encapsulated in nanostructured lipid carriers (NLCs). • Nanoencapsulation improves RMN solubility in a stable physiologic aqueous formulation. • RMN is released in vitro from NLC by a controlled dissolutive release modality. • I.n. administration leads to higher RMN concentration in the brain with respect to plasma. • NLC increases RMN concentration in the brain with respect to

  7. Update on the Role of Cannabinoid Receptors after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Luciano S. A. Capettini

    2012-01-01

    Full Text Available Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1 and type 2 (CB2 transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role of CB1 and CB2 receptors in ischemic stroke. While CB1 receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, the CB2 activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke.

  8. Pro-drugs for indirect cannabinoids as therapeutic agents.

    Science.gov (United States)

    Ashton, John

    2008-10-01

    Medicinal cannabis, cannabis extracts, and other cannabinoids are currently in use or under clinical trial investigation for the control of nausea, emesis and wasting in patients undergoing chemotherapy, the control of neuropathic pain and arthritic pain, and the control of the symptoms of multiple sclerosis. The further development of medicinal cannabinoids has been challenged with problems. These include the psychoactivity of cannabinoid CB1 receptor agonists and the lack of availability of highly selective cannabinoid receptor full agonists (for the CB1 or CB2 receptor), as well as problems of pharmacokinetics. Global activation of cannabinoid receptors is usually undesirable, and so enhancement of local endocannabinoid receptor activity with indirect cannabimimetics is an attractive strategy for therapeutic modulation of the endocannabinoid system. However, existing drugs of this type tend to be metabolized by the same enzymes as their target endocannabinoids and are not yet available in a form that is clinically useful. A potential solution to these problems may now have been suggested by the discovery that paracetamol (acetaminophen) exerts its analgesic (and probably anti-pyretic) effects by its degradation into an anandamide (an endocannabinoid) reuptake inhibitor (AM404) within the body, thus classifying it as pro-drug for an indirect cannabimimetic. Given the proven efficacy and safety of paracetamol, the challenge now is to develop related drugs, or entirely different substrates, into pro-drug indirect cannabimimetics with a similar safety profile to paracetamol but at high effective dose titrations.

  9. The therapeutic potential of cannabinoids for movement disorders.

    Science.gov (United States)

    Kluger, Benzi; Triolo, Piera; Jones, Wallace; Jankovic, Joseph

    2015-03-01

    There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders.

  10. Coadministration of indomethacin and minocycline attenuates established paclitaxel-induced neuropathic thermal hyperalgesia: Involvement of cannabinoid CB1 receptors.

    Science.gov (United States)

    Parvathy, Subramanian S; Masocha, Willias

    2015-06-18

    Taxanes such as paclitaxel, which are chemotherapeutic drugs, cause dose-dependent painful neuropathy in some patients. We investigated whether coadministration of minocycline and indomethacin produces antinociceptive effects in mice with paclitaxel-induced neuropathic thermal hyperalgesia and if the cannabinoid system is involved. Previously, we reported that coadministration of these two drugs results in antinociception against inflammatory pain at doses where either drug alone lack significant activity. In the current study, we observed that treatment of female mice with indomethacin or minocycline alone did not affect established paclitaxel-induced thermal hyperalgesia, whereas coadministration of the two drugs attenuated it. In male mice indomethacin had some antihyperalgesic activity, whilst minocycline did not. Coadministration of the two drugs had supraadditive antihyperalgesic activity in male mice. Administration of a cannabinoid CB1 receptor antagonist AM 251 blocked the antihyperalgesic effects of the combination of minocycline and indomethacin in both male and female mice. In conclusion our results indicate that coadministration of minocycline and indomethacin abrogates established paclitaxel-induced neuropathic thermal hyperalgesia in mice, and the potentiation of the antinociceptive effects of this combination involves the cannabinoid system.

  11. Blockade of cannabinoid CB1 and CB2 receptors does not prevent the antipruritic effect of systemic paracetamol.

    Science.gov (United States)

    Saglam, Gulis; Gunduz, Ozgur; Ulugol, Ahmet

    2014-12-01

    Cannabinoid CB1 receptors have been shown to mediate the antinociceptive, but not the hypothermic, action of the worldwide used analgesic, paracetamol. Since itch and pain sensations share many similarities, the purpose of the present study was to investigate whether blockade of cannabinoid CB1 and CB2 receptors participates in the antipruritic activity of paracetamol in mice. Scratching behavior was induced by intradermal serotonin injection into the rostral part of the back of the mice. After serotonin administration, scratching of the injected site by the hind paws were videotaped and counted for 30 min. Serotonin-induced scratching behavior was attenuated with high-dose paracetamol (300 mg/kg). The CB1 receptor antagonist, AM-251 (1 mg/kg), and the CB2 receptor antagonist, SR-144528 (1 mg/kg), did not alter the anti-scratching behavioral effect of paracetamol. Our results indicate that, in contrast to its antinociceptive action, but similar to its hypothermic effect, cannabinoid receptors are not involved in the antipruritic activity of paracetamol.

  12. Dose-dependent teratogenicity of the synthetic cannabinoid CP-55,940 in mice.

    Science.gov (United States)

    Gilbert, Marcoita T; Sulik, Kathleen K; Fish, Eric W; Baker, Lorinda K; Dehart, Deborah B; Parnell, Scott E

    Potent synthetic cannabinoids (SCBs) are illegally distributed drugs of abuse that are frequently consumed in spite of their adverse consequences. This study was designed to determine if the toxicity observed in adults also extends to the prenatal period by examining the developmental toxicity/teratogenicity of one of these SCBs, CP-55,940, in a mammalian model. First, immunohistochemistry was employed for cannabinoid receptor 1 (CB1) localization within gestational day (GD) 8 mouse embryos; this receptor was identified in the cranial neural plate, suggesting that the endogenous cannabinoid system may be involved in normal development. Based on this information and on previous avian teratogenicity studies, the current investigation focused on cannabinoid exposure during neurulation. The treatment paradigm involved acute i.p. administration of vehicle, 0.0625, 0.125, 0.25, 0.5, 1.0, or 2.0mg/kg CP-55,940 to time-mated C57Bl/6J mice on their 8th day of pregnancy (n>10 litters per treatment group). On GD 17, litters were harvested and examined for numbers of live, dead, or resorbed fetuses, as well as for fetal weight, length, and gross morphological abnormalities. No effect on litter size, fetal weight, or crown rump length was seen at any of the CP-55,940 dosages tested. Major malformations involving the craniofacies and/or eyes were noted in all drug-treated groups. Selected fetuses with craniofacial malformations were histologically sectioned and stained, allowing investigation of brain anomalies. Observed craniofacial, ocular, and brain abnormalities in drug-treated fetuses included lateral and median facial clefts, cleft palate, microphthalmia, iridial coloboma, anophthalmia, exencephaly, holoprosencephaly, and cortical dysplasia. With the most commonly observed defects involving the eyes, the incidence and severity of readily identifiable ocular malformations were utilized as a basis for dose-response analyses. Ocular malformation ratings revealed dose

  13. Evaluation of principal cannabinoids in airborne particulates

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, C., E-mail: balducci@iia.cnr.it [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy); Nervegna, G.; Cecinato, A. [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy)

    2009-05-08

    The determination of delta(9)-tetrahydrocannabinol ({Delta}{sup 9}-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm{sup -3} of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  14. Nicotine and cannabinoids: parallels, contrasts and interactions.

    Science.gov (United States)

    Viveros, Maria-Paz; Marco, Eva M; File, Sandra E

    2006-01-01

    After a brief outline of the nicotinic and cannabinoid systems, we review the interactions between the pharmacological effects of nicotine and cannabis, two of the most widely used drugs of dependence. These drugs are increasingly taken in combination, particularly among the adolescents and young adults. The review focuses on addiction-related processes, gateway and reverse gateway theories of addiction and therapeutic implications. It then reviews studies on the important period of adolescence, an area that is in urgent need of further investigation and in which the importance of sex differences is emerging. Three other areas of research, which might be particularly relevant to the onset and/or maintenance of dependence, are then reviewed. Firstly, the effects of the two drugs on anxiety-related behaviours are discussed and then their effects on food intake and cognition, two areas in which they have contrasting effects. Certain animal studies suggest that reinforcing effects are likely to be enhanced by joint consumption of nicotine and cannabis, as also may be anxiolytic effects. If this was the case in humans, the latter might be viewed as an advantage particularly by adolescent girls, although the increased weight gain associated with cannabis would be a disadvantage. The two drugs also have opposite effects on cognition and the possibility of long-lasting cognitive impairments resulting from adolescent consumption of cannabis is of particular concern.

  15. Kinetic and metabolic profiles of synthetic cannabinoids NNEI and MN-18.

    Science.gov (United States)

    Kevin, Richard C; Lefever, Timothy W; Snyder, Rodney W; Patel, Purvi R; Gamage, Thomas F; Fennell, Timothy R; Wiley, Jenny L; McGregor, Iain S; Thomas, Brian F

    2017-08-18

    In 2014 and 2015, synthetic cannabinoid receptor agonists NNEI (N-1-naphthalenyl-1-pentyl-1H-indole-3-carboxamide) and MN-18 (N-1-naphthalenyl-1-pentyl-1H-indazole-3-carboxamide) were detected in recreationally used and abused products in multiple countries, and were implicated in episodes of poisoning and toxicity. Despite this, the pharmacokinetic profiles of NNEI and MN-18 have not been characterized. In the present study NNEI and MN-18 were incubated in rat and human liver microsomes and hepatocytes, to estimate kinetic parameters and to identify potential metabolic pathways, respectively. These parameters and pathways were then examined in vivo, via analysis of blood and urine samples from catheterized male rats following intraperitoneal (3 mg/kg) administration of NNEI and MN-18. Both NNEI and MN-18 were rapidly cleared by rat and human liver microsomes, and underwent a range of oxidative transformations during incubation with rat and human hepatocytes. Several unique metabolites were identified for the forensic identification of NNEI and MN-18 intake. Interestingly, NNEI underwent a greater number of biotransformations (20 NNEI metabolites versus 10 MN-18 metabolites), yet parent MN-18 was eliminated at a faster rate than NNEI in vivo. Additionally, in vivo elimination was more rapid than in vitro estimates. These data highlight that even closely related synthetic cannabinoids can possess markedly distinct pharmacokinetic profiles, which can vary substantially between in vitro and in vivo models. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling.

    Science.gov (United States)

    Dudok, Barna; Barna, László; Ledri, Marco; Szabó, Szilárd I; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G; Henstridge, Christopher M; Balla, Gyula Y; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2015-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.

  17. Cannabinoids alleviate experimentally induced intestinal inflammation by acting at central and peripheral receptors.

    Directory of Open Access Journals (Sweden)

    Jakub Fichna

    Full Text Available In an attempt to further investigate the role of cannabinoid (CB system in the pathogenesis of inflammatory bowel diseases, we employed two recently developed ligands, AM841 (a covalently acting CB agonist and CB13 (a peripherally-restricted CB agonist to establish whether central and peripheral CB sites are involved in the anti-inflammatory action in the intestine.AM841 (0.01, 0.1 and 1 mg/kg, i.p. significantly decreased inflammation scores in dextran sulfate sodium (DSS- and 2,4,6-trinitrobenzene sulfonic acid (TNBS-treated mice when administered before induction of colitis or as a treatment of existing intestinal inflammation. The effect was absent in CB1, CB2 and CB(1/2-deficient mice. A peripherally-restricted agonist CB13 did not alleviate colitis when given i.p. (0.1 mg/kg, but significantly decreased inflammation score after central administration (0.1 µg/animal.This is the first evidence that central and peripheral CB receptors are responsible for the protective and therapeutic action of cannabinoids in mouse models of colitis. Our observations provide new insight to CB pharmacology and validate the use of novel ligands AM841 and CB13 as potent tools in CB-related research.

  18. Cannabis smoke condensate III: the cannabinoid content of vaporised Cannabis sativa.

    Science.gov (United States)

    Pomahacova, B; Van der Kooy, F; Verpoorte, R

    2009-11-01

    Cannabis sativa is a well-known recreational drug and, as such, a controlled substance of which possession and use are illegal in most countries of the world. Due to the legal constraints on the possession and use of C. sativa, relatively little research on the medicinal qualities of this plant has been conducted. Interest in the medicinal uses of this plant has, however, increased in the last decades. The methods of administration for medicinal purposes are mainly through oral ingestion, smoking, and nowadays also inhalation through vaporization. During this study the commercially available Volcano vaporizing device was compared with cannabis cigarette smoke. The cannabis smoke and vapor (obtained at different temperatures) were quantitatively analyzed by high-performance liquid chromatography (HPLC). In addition, different quantities of cannabis material were also tested with the vaporizer. The cannabinoids:by-products ratio in the vapor obtained at 200 degrees C and 230 degrees C was significantly higher than in the cigarette smoke. The worst ratio of cannabinoids:by-products was obtained from the vaporized cannabis sample at 170 degrees C.

  19. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  20. [The mechanism of action of cannabis and cannabinoids].

    Science.gov (United States)

    Scholten, W K

    2006-01-21

    The effect ofcannabis can be explained on the basis of the function of the cannabinoid receptor system, which consists of CB receptors (CB1, CB2), endoligands to activate these receptors and an enzyme--fatty acid amidohydrolase--to metabolize the endoligands. The endoligands of the cannabinoid receptor system are arachidonic acid-like substances, and are called endocannabinoids. Indications exist that the body also contains arachidonic acid-like substances that inhibit fatty acid amido hydrolase. Various cannabinoids have diverse effects on the receptors, functioning as agonists, antagonists or partial antagonists, as well as affecting the vanilloid receptor. Many known effects ofcannabis can be explained on the basis of this mechanism of action as can the use ofcannabis in various conditions including multiple sclerosis, Parkinson's disease, glaucoma, nausea, vomiting and rheumatoid arthritis.

  1. Cannabinoides y su posible uso en el glaucoma

    Directory of Open Access Journals (Sweden)

    Beatriz Zozaya Aldana

    2011-09-01

    Full Text Available Aunque la planta Cannabis sativa ha sido empleada desde la más remota antigüedad con fines medicinales, uno de sus derivados, la marihuana, se ha convertido en la droga de uso ilegal más consumida en el mundo. Asimismo tanto el Cannabis como sus cannabinoides se emplean como terapéutico en pocas enfermedades generalmente neurológicas. Se realizó una revisión bibliográfica para exponer el posible uso de los cannabinoides en la terapéutica del glaucoma. Para ello se tuvo en cuenta la literatura disponible sobre el tema, durante el período enero a septiembre de 2010. Se ha comprobado el efecto hipotensor ocular de los cannabinoides al disminuir la producción de humor acuoso, y aumentar la excreción de humor acuoso a través de la malla trabecular y la vía uveoescleral, efecto compatible con el hallazgo de elevadas concentraciones de receptores de cannabinoides rCB1 y rCB2; además, el tetrahidrocannabinol ha demostrado disminuir el efecto neurodegenerativo en modelos de isquemia cerebral en ratas y se evidenció también el efecto beneficioso de los cannabinoides al disminuir la degeneración secundaria asociada al glaucoma mediada por la excitotoxicidad del glutamato. Estos hallazgos sobre el efecto beneficioso de los cannabinoides como hipotensores oculares y por su efecto neuroprotector, transmiten un mensaje esperanzador sobre la función que estos podrían desempeñar en el campo del glaucoma, aunque para mayor seguridad y eficacia serían necesarios ensayos clínicos encaminados a valorar su aplicabilidad en la práctica clínica diaria.

  2. Cannabinoids enhance gastric X/A-like cells activity.

    Directory of Open Access Journals (Sweden)

    Bogusław Sawicki

    2008-06-01

    Full Text Available It has been reported that cannabinoids may cause overeating in humans and in laboratory animals. Although, endogenous cannabinoids and their receptors (CB1 have been found in the hypothalamus, and recently also in gastrointestinal tract, the precise mechanism of appetite control by cannabinoids remains unknown. Recently, ghrelin--a hormone secreted mainly from the stomach X/A-like cells was proposed to be an appetite stimulating agent. The aim of this study was the evaluation of the influence of a single ip injection of a stable analogue of endogenous cannabinoid--anandamide, R-(+-methanandamide (2.5 mg/kg and CP 55,940 (0.25 mg/kg, an exogenous agonist of CB1 receptors, on ghrelin plasma concentration and on ghrelin immunoreactivity in the gastric mucosa of male Wistar rats. Four hours after a single injection of both cannabinoids or vehicle, the animals were anaesthetized and blood was taken from the abdominal aorta to determinate plasma ghrelin concentration by RIA. Subsequently, the animals underwent resection of distal part of stomach. Immunohistochemical study of gastric mucosa, using the EnVision method and specific monoclonal antibodies against ghrelin was performed. The intensity of ghrelin immunoreactivity in X/A-like cells was analyzed using Olympus Cell D image analysis system. The attenuation of ghrelin-immunoreactivity of gastric mucosa, after a single injection of R-(+-methanandamide and CP 55,940 was accompanied by a significant increase of ghrelin plasma concentration. These results indicate that stimulation of appetite exerted by cannabinoids may be connected with an increase of ghrelin secretion from gastric X/A-like cells.

  3. Beyond THC: the new generation of cannabinoid designer drugs

    Directory of Open Access Journals (Sweden)

    Liana eFattore

    2011-09-01

    Full Text Available Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC, the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs. From 2008, synthetic cannabinoids were detected in herbal smoking mixtures sold on websites and in head shops under the brand name of Spice Gold, Yucatan Fire, Aroma, and others. Although these products (also known as Spice drugs or legal highs do not contain tobacco or cannabis, when smoked they produce effects similar to THC. Intoxication, withdrawal, psychosis and death have been recently reported after consumption, posing difficult social, political and health challenges. More than 140 different Spice products have been identified to date. The ability to induce strong cannabis-like psychoactive effects, along with the fact that they are readily available on the Internet, still legal in many countries, marketed as natural safe substances, and undetectable by conventional drug screening tests, has rendered these drugs very popular and particularly appealing to young and drug-naïve individuals seeking new experiences. An escalating number of compounds with cannabinoid receptor activity are currently being found as ingredients of Spice, of which almost nothing is known in terms of pharmacology, toxicology and safety. Since legislation started to control the synthetic cannabinoids identified in these herbal mixtures, many new analogs have appeared on the market. New cannabimimetic compounds are likely to be synthesized in the near future to replace banned synthetic cannabinoids, leading to a dog chasing its tail situation. Spice smokers are exposed to drugs that are extremely variable in composition and potency, and are at risk of serious, if not lethal, outcomes. Social and health professionals should maintain a high degree of alertness for Spice use and its possible psychiatric effects in vulnerable people.

  4. Operant alcohol self-administration in dependent rats: focus on the vapor model.

    Science.gov (United States)

    Vendruscolo, Leandro F; Roberts, Amanda J

    2014-05-01

    Alcoholism (alcohol dependence) is characterized by a compulsion to seek and ingest alcohol (ethanol), loss of control over intake, and the emergence of a negative emotional state during withdrawal. Animal models are critical in promoting our knowledge of the neurobiological mechanisms underlying alcohol dependence. Here, we review the studies involving operant alcohol self-administration in rat models of alcohol dependence and withdrawal with the focus on the alcohol vapor model. In 1996, the first articles were published reporting that rats made dependent on alcohol by exposure to alcohol vapors displayed increased operant alcohol self-administration during acute withdrawal compared with nondependent rats (i.e., not exposed to alcohol vapors). Since then, it has been repeatedly demonstrated that this model reliably produces physical and motivational symptoms of alcohol dependence. The functional roles of various systems implicated in stress and reward, including opioids, dopamine, corticotropin-releasing factor (CRF), glucocorticoids, neuropeptide Y (NPY), γ-aminobutyric acid (GABA), norepinephrine, and cannabinoids, have been investigated in the context of alcohol dependence. The combination of models of alcohol withdrawal and dependence with operant self-administration constitutes an excellent tool to investigate the neurobiology of alcoholism. In fact, this work has helped lay the groundwork for several ongoing clinical trials for alcohol dependence. Advantages and limitations of this model are discussed, with an emphasis on what future directions of great importance could be.

  5. Repeat-until-success quantum repeaters

    Science.gov (United States)

    Bruschi, David Edward; Barlow, Thomas M.; Razavi, Mohsen; Beige, Almut

    2014-09-01

    We propose a repeat-until-success protocol to improve the performance of probabilistic quantum repeaters. Conventionally, these rely on passive static linear-optics elements and photodetectors to perform Bell-state measurements (BSMs) with a maximum success rate of 50%. This is a strong impediment for entanglement swapping between distant quantum memories. Every time a BSM fails, entanglement needs to be redistributed between the corresponding memories in the repeater link. The key ingredients of our scheme are repeatable BSMs. Under ideal conditions, these turn probabilistic quantum repeaters into deterministic ones. Under realistic conditions, our protocol too might fail. However, using additional threshold detectors now allows us to improve the entanglement generation rate by almost orders of magnitude, at a nominal distance of 1000 km, compared to schemes that rely on conventional BSMs. This improvement is sufficient to make the performance of our scheme comparable to the expected performance of some deterministic quantum repeaters.

  6. Evaluation of Phytocannabinoids from High Potency Cannabis sativa using In Vitro Bioassays to Determine Structure-Activity Relationships for Cannabinoid Receptor 1 and Cannabinoid Receptor 2

    OpenAIRE

    2014-01-01

    Cannabis has been around for thousands of years and has been used recreationally, medicinally, and for fiber. Over 500 compounds have been isolated from Cannabis sativa with approximately 105 being cannabinoids. Of those 105 compounds, Δ9-tetrahydrocannabinol has been determined as the primary constituent, which is also responsible for the psychoactivity associated with Cannabis. Cannabinoid receptors belong to the large superfamily of G protein-coupled receptors. Targeting the cannabinoid re...

  7. Acute overactive endocannabinoid signaling induces glucose intolerance, hepatic steatosis, and novel cannabinoid receptor 1 responsive genes.

    Directory of Open Access Journals (Sweden)

    Maxwell A Ruby

    Full Text Available Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1. Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP, perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251 and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control, IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2, which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50% the majority (303 of 533 of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and

  8. Cannabinoids and Reproduction: A Lasting and Intriguing History

    Directory of Open Access Journals (Sweden)

    Gilda Cobellis

    2010-10-01

    Full Text Available Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.

  9. Chemical probes for the study of the endogenous cannabinoid system

    OpenAIRE

    Rueda Zubiaurre, Ainoa

    2016-01-01

    La química biológica nació hace dos décadas con objeto de estudiar la interfase entre la química y la biología, utilizando para ello herramientas capaces de interrogar los distintos sistemas biológicos, facilitando así la comprensión de los mismos.1-3 Sin embargo, existen sistemas biológicos de gran relevancia cuyo estudio no ha sido abordado hasta ahora. Uno de ellos es el sistema cannabinoide endógeno (endogenous cannabinoid system, ECS), que durante los últimos años ha sido relacionado con...

  10. Cardiotoxicity associated with the synthetic cannabinoid, K9, with laboratory confirmation.

    Science.gov (United States)

    Young, Amy C; Schwarz, Evan; Medina, Genevieve; Obafemi, Adebisi; Feng, Sing-Yi; Kane, Colin; Kleinschmidt, Kurt

    2012-09-01

    Synthetic cannabinoids have been popular recreational drugs of abuse for their psychoactive properties. Five of the many synthetic cannabinoids have been recently banned in the United States because of their unknown and potentially harmful adverse effects. Little is known about these substances. They are thought to have natural cannabinoid-like effects but have different chemical structures. Adverse effects related to synthetic cannabinoids are not well known. We provide clinical effects and patient outcome following K9 use. In addition, we briefly review synthetic cannabinoids. We present a 17-year-old adolescent boy with chest pain, tachycardia, and then bradycardia associated with smoking K9. Two synthetic cannabinoids, JWH-018 and JWH-073, were confirmed on laboratory analysis. In addition to the limited current data, we demonstrate harmful adverse effects related to toxicity of 2 synthetic cannabinoids. Further studies are needed.

  11. Cannabinoides y su posible uso en el glaucoma Cannabinoids and their possible use in the treatment of glaucoma

    Directory of Open Access Journals (Sweden)

    Beatriz Zozaya Aldana

    2011-09-01

    Full Text Available Aunque la planta Cannabis sativa ha sido empleada desde la más remota antigüedad con fines medicinales, uno de sus derivados, la marihuana, se ha convertido en la droga de uso ilegal más consumida en el mundo. Asimismo tanto el Cannabis como sus cannabinoides se emplean como terapéutico en pocas enfermedades generalmente neurológicas. Se realizó una revisión bibliográfica para exponer el posible uso de los cannabinoides en la terapéutica del glaucoma. Para ello se tuvo en cuenta la literatura disponible sobre el tema, durante el período enero a septiembre de 2010. Se ha comprobado el efecto hipotensor ocular de los cannabinoides al disminuir la producción de humor acuoso, y aumentar la excreción de humor acuoso a través de la malla trabecular y la vía uveoescleral, efecto compatible con el hallazgo de elevadas concentraciones de receptores de cannabinoides rCB1 y rCB2; además, el tetrahidrocannabinol ha demostrado disminuir el efecto neurodegenerativo en modelos de isquemia cerebral en ratas y se evidenció también el efecto beneficioso de los cannabinoides al disminuir la degeneración secundaria asociada al glaucoma mediada por la excitotoxicidad del glutamato. Estos hallazgos sobre el efecto beneficioso de los cannabinoides como hipotensores oculares y por su efecto neuroprotector, transmiten un mensaje esperanzador sobre la función que estos podrían desempeñar en el campo del glaucoma, aunque para mayor seguridad y eficacia serían necesarios ensayos clínicos encaminados a valorar su aplicabilidad en la práctica clínica diaria.Although the Cannabis Sativa plant has been used since the most remote ancient times for medicinal purposes, one of its derivatives, marijuana, has become the most commonly used illegal drug in the world. Similarly, both Cannabis and the cannabinoids are used therapeutically in a small number of general neurological pathologies. Literature review was made to set forth the possible use of

  12. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death.

    Science.gov (United States)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain.

  13. 经皮反复给予玉红膏对大鼠器官毒性的研究%Organ toxicity of Yuhong Ointment(玉红膏) after repeated transdermal administration in rats

    Institute of Scientific and Technical Information of China (English)

    胡小靖; 孙新民; 黄雯; 邱恒; 牟稷征; 王丽霞; 王旗

    2013-01-01

    Objective To observe the effects of Yuhong Ointment on rat's liver and kidney functions and histomorphology of heart,brain,liver,kidney and spleen after transdermal administration repeatedly,in order to provide experimental evidences for safe use of Yuhong Ointment in clinical practice.Methods A total of 100 SPF SD rats of equal number of both genders,weighting 200 g,were divided into 5 groups:matrix control group,1 time concentration of Yuhong Ointment group (containing 0.4% calomel),2 times concentration of Yuhong Ointment group (containing 0.8% calomel),4 times concentration of Yuhong Ointment group (containing 1.6% calomel) and calomel group (containing 1.6% calomel) by drawn lots randomly,each group comprised 20 rats.The model of rat's skin injury was prepared.Yuhong Ointment in different concentrations were applied on the skin-impaired once daily for 28 days.The levels of alanine aminotransferase (ALT),aspartate aminotransferase (AST),blood urea nitrogen (BUN),creatinine (Cr) and N-acetyl beta-D glucosaminidase (NAG) of rats in different groups were measured before treatment,14 and 28 days after treatment,and 28 days after drug withdrawal,respectively.Ten rats in every group were sacrificed on 28 days after treatment and 28 days after drug withdrawal,respectively.The heart,brain,liver,kidney,and spleen of rats in different groups were taken and weighed up.The organ coefficients were calculated and the histomorphological changes of liver,kidney and spleen were examined.Results There were no statistically significant differences in levels of serum ALT、AST、BUN、Cr and NAG in rats among the different concentrations of Yuhong Ointment groups,1.6% calomel group and matrix control group (all P > 0.05).The level of serum Cr in rat of 1.6% calomel group was significantly higher than that of matrix control group 28 days after drug withdrawal (P < 0.05).The kidney coefficients of rats in 2 times and 4 times concentration of Yuhong Ointment group and

  14. Contactless decontamination of hair samples: cannabinoids.

    Science.gov (United States)

    Restolho, José; Barroso, Mário; Saramago, Benilde; Dias, Mário; Afonso, Carlos A M

    2017-02-01

    Room temperature ionic liquids (ILs) have already been shown to provide efficient extraction media for several systems, and to capture volatile compounds, namely opiates. In this work, a novel, contactless, artefact-free extraction procedure for the removal of Δ(9) -tetrahrydrocannabinol (THC) from the surface of human hair is presented. To prepare in vitro cannabinoids-contaminated hair, samples were flushed with hashish smoke for 7 h. The decontamination experiments were carried at 100 °C for 24 h, according to the procedure previously described. Fifty-three ILs were screened and presented decontamination efficiencies ranging from 0 to 96 %. Although the majority of the ILs presented efficiencies above 90%, the 1-ethanol-3-methyl tetrafluoroborate (96%) was chosen for further process optimization. The Design of Experiments results demonstrated that all studied variables were significant for the process and the obtained optimum conditions were: 100 °C, 13 h and 175 mg of IL. In the work of Perrotin-Brunel et al. (J. Mol. Struct. 2011, 987, 67), it is demonstrated that, at 100 °C, full conversion of tetrahydrocannabinolic acid (THCA) into THC is obtained after 60 min. Since our decontamination takes place over 13 h at 100 °C, full conversion of THCA into THC is expected. Additionally, our method was compared with the method proposed by Cairns et al. (Forensic Sci. Int. 2004, 145, 97), through the analysis of 15 in vitro contaminated hair samples. The results demonstrated that with our method a mean extraction efficiency of 11 % higher was obtained. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Modelling of the concentration--effect relationship of THC on central nervous system parameters and heart rate -- insight into its mechanisms of action and a tool for clinical research and development of cannabinoids.

    Science.gov (United States)

    Strougo, A; Zuurman, L; Roy, C; Pinquier, J L; van Gerven, J M A; Cohen, A F; Schoemaker, R C

    2008-09-01

    Pharmacokinetics after pulmonary administration of delta-9-tetrahydrocannabinol (THC) and its major metabolites 11-OH-THC and 11-nor-9-COOH-THC was quantified. Additionally, the relationship between THC and its effects on heart rate, body sway and several visual analogue scales was investigated using pharmacokinetic-pharmacodynamic (PK-PD) modelling. This provided insights useful for the research and development of novel cannabinoids and the physiology and pharmacology of cannabinoid systems. First, the PK-PD model gave information reflecting various aspects of cannabinoid systems. The delay between THC concentration and effect was quantified in equilibration half-lives of 7.68 min for heart rate and from 39.2 to 84.8 min for the CNS responses. This suggests that the effect of THC on the different responses could be due to different sites of action or different physiological mechanisms. Differences in the shape of the concentration-effect relationship could indicate various underlying mechanisms. Second, the PK-PD model can be used for prediction of THC concentration and effect profiles. It is illustrated how this can be used to optimise studies with entirely different trial designs. Third, many new cannabinoid agonists and antagonists are in development. PK-PD models for THC can be used as a reference for new agonists or as tools to quantitate the pharmacological properties of cannabinoid antagonists.

  16. Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB₁.

    Science.gov (United States)

    Koller, Verena J; Zlabinger, Gerhard J; Auwärter, Volker; Fuchs, Sabine; Knasmueller, Siegfried

    2013-07-01

    Products containing synthetic cannabinoids are consumed as a surrogate for marihuana due to their non-detectability with commonly used drug tests and their strong cannabimimetic effects. Because data concerning their toxicological properties are scarce, the cytotoxic, genotoxic, immunomodulatory, and hormonal activities of four naphthoylindole compounds (JWH-018, JWH-073, JWH-122 and JWH-210) and of one benzoylindole (AM-694) were studied in human cell lines and primary cells; tetrahydrocannabinol was included as the classical non-endogenous cannabinoid receptor ligand. All compounds induced damage to the cell membranes of buccal (TR146) and breast (MCF-7) derived cells at concentrations of ≥75-100 μM. No cytotoxic responses were seen in other assays which reflect mitochondrial damage, protein synthesis, and lysosomal activities. JWH-073 and JWH-122 induced DNA migration in buccal and liver cells (HepG2) in single cell gel electrophoresis assays, while JWH-210 was only in the latter cell line active. No estrogenic activities were detected in bone marrow cells (U2-OS), but all compounds caused anti-estrogenic effects at levels between 2.1 and 23.0 μM. Furthermore, no impact on cytokine release (i.e., on IL-10, IL-6, IL-12/23p40 and TNFα levels) was seen in LPS-stimulated human PBMCs, except with JWH-210 and JWH-122 which caused a decrease of TNFα and IL-12/23p40. All toxic effects were observed with concentrations higher than those expected in body fluids of users. Since genotoxic effects are in general linear over a wide concentration range and the exposure levels may be higher in epithelial cells than [corrected] in serum, further experimental work is required to find out if DNA damage takes place in drug users.

  17. Cannabinoids as potential new therapy for the treatment of gliomas.

    Science.gov (United States)

    Parolaro, Daniela; Massi, Paola

    2008-01-01

    Gliomas constitute the most frequent and malignant primary brain tumors. Current standard therapeutic strategies (surgery, radiotherapy and chemotherapeutics, e.g., temozolomide, carmustin or carboplatin) for their treatment are only palliative and survival diagnosis is normally 6-12 months. The development of new therapeutic strategies for the management of gliomas is therefore essential. Interestingly, cannabinoids have been shown to exert antiproliferative effects on a wide spectrum of cells in culture. Of interest, cannabinoids have displayed a great potency in reducing glioma tumor growth either in vitro or in animal experimental models, curbing the growth of xenografts generated by subcutaneous or intratecal injection of glioma cells in immune-deficient mice. Moreover, cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of nontransformed counterparts. A pilot clinical trial on patients with glioblastoma multiforme demonstrated their good safety profile together and remarkable antitumor effects, and may set the basis for further studies aimed at better evaluating the potential anticancer activity of cannabinoids.

  18. The role of cannabinoids and leptin in neurological diseases.

    Science.gov (United States)

    Agar, E

    2015-12-01

    Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.

  19. Therapeutic Mechanisms for Cannabinoid-Promoted Survival of Oligodendrocytes

    Science.gov (United States)

    2013-06-21

    inflammatory response (51 ; 168). Although the results obtained by CB-52 in vitro and 74 in vivo seem to be paradoxical , several possibilities might be... Obesity 30:13-8 160. Pertwee R, Howlett A, Abood M, Alexander S, Di Marzo V, et al. 2010. Cannabinoid receptors and their ligands: beyond CB and CB

  20. Peripheral metabolic effects of endocannabinoids and cannabinoid receptor blockade.

    Science.gov (United States)

    Engeli, Stefan

    2008-01-01

    The endocannabinoid system consists of endogenous arachidonic acid derivates that activate cannabinoid receptors. The two most prominent endocannabinoids are anandamide and 2-arachidonoyl glycerol. In obesity, increased concentrations of circulating and tissue endocannabinoid levels have been described, suggesting increased activity of the endocannabinoid system. Increased availability of endocannabinoids in obesity may over-stimulate cannabinoid receptors. Blockade of cannabinoid type 1 (CB1) receptors was the only successful clinical development of an anti-obesity drug during the last decade. Whereas blockade of CB1 receptors acutely reduces food intake, the long-term effects on metabolic regulation are more likely mediated by peripheral actions in liver, skeletal muscle, adipose tissue, and the pancreas. Lipogenic effects of CB1 receptor signalling in liver and adipose tissue may contribute to regional adipose tissue expansion and insulin resistance in the fatty liver. The association of circulating 2-arachidonoyl glycerol levels with decreased insulin sensitivity strongly suggests further exploration of the role of endocannabinoid signalling for insulin sensitivity in skeletal muscle, liver, and adipose tissue. A few studies have suggested a specific role for the regulation of adiponectin secretion from adipocytes by endocannabinoids, but that has to be confirmed by more experiments. Also, the potential role of CB1 receptor blockade for the stimulation of energy expenditure needs to be studied in the future. Despite the current discussion of safety issues of cannabinoid receptor blockade, these findings open a new and exciting perspective on endocannabinoids as regulators of body weight and metabolism.

  1. Cannabinoids in the management of difficult to treat pain.

    Science.gov (United States)

    Russo, Ethan B

    2008-02-01

    This article reviews recent research on cannabinoid analgesia via the endocannabinoid system and non-receptor mechanisms, as well as randomized clinical trials employing cannabinoids in pain treatment. Tetrahydrocannabinol (THC, Marinol((R))) and nabilone (Cesamet((R))) are currently approved in the United States and other countries, but not for pain indications. Other synthetic cannabinoids, such as ajulemic acid, are in development. Crude herbal cannabis remains illegal in most jurisdictions but is also under investigation. Sativex((R)), a cannabis derived oromucosal spray containing equal proportions of THC (partial CB(1) receptor agonist ) and cannabidiol (CBD, a non-euphoriant, anti-inflammatory analgesic with CB(1) receptor antagonist and endocannabinoid modulating effects) was approved in Canada in 2005 for treatment of central neuropathic pain in multiple sclerosis, and in 2007 for intractable cancer pain. Numerous randomized clinical trials have demonstrated safety and efficacy for Sativex in central and peripheral neuropathic pain, rheumatoid arthritis and cancer pain. An Investigational New Drug application to conduct advanced clinical trials for cancer pain was approved by the US FDA in January 2006. Cannabinoid analgesics have generally been well tolerated in clinical trials with acceptable adverse event profiles. Their adjunctive addition to the pharmacological armamentarium for treatment of pain shows great promise.

  2. Clinical pharmacology of cannabinoids in early phase drug development

    NARCIS (Netherlands)

    Zuurman, Hillie Henka

    2008-01-01

    Although cannabis is especially known for its recreational use as a ‘soft drug’, its potential therapeutic properties have been recognized for hundreds of years. Since the isolation of THC from Cannabis sativa L, the discovery of cannabinoid receptors and their natural ligands (endocannabinoids) the

  3. Overvej cannabinoid hyperemesis-syndrom ved recidiverende opkastninger

    DEFF Research Database (Denmark)

    Nordholm-Carstensen, Andreas

    2014-01-01

    Cannabinoid hyperemesis syndrome (CHS) is characterised by unrelenting nausea, recurrent vomiting, abdominal pain and compulsive, hot bathing behaviour. The symptoms contrast the traditional effects associated with cannabis use. We report a "textbook example" of a 26-year-old man with CHS. CHS...

  4. Cannabinoids: New Promising Agents in the Treatment of Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Sabrina Giacoppo

    2014-11-01

    Full Text Available Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies. To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms. Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders. This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated.

  5. Synthetic cannabinoids 2015: An update for pediatricians in clinical practice.

    Science.gov (United States)

    Castellanos, Daniel; Gralnik, Leonard M

    2016-02-01

    Synthetic cannabinoids are a group of substances in the world of designer drugs that have become increasingly popular over the past few years. Synthetic cannabinoids are a chemically diverse group of compounds functionally similar to THC. Since first appearing on the world market a few years ago these compounds have evolved rapidly. Newer more potent analogues have been developed. Identifying youth who abuse these substances can be difficult. Newer forms of consumption have also evolved. These products are now manufactured in products that look like natural cannabis resin and in liquid cartridges used in electronic cigarettes. Synthetic cannabinoids appear to be associated with potentially dangerous health effects that are more severe than that of marijuana. Some synthetic cannabinoid compounds have been associated with serious physical consequences, such as, seizures, myocardial infarction and renal damage. In addition, psychoactive effects, such as aggression, confusion, anxiety and psychosis have also been reported. The diagnosis remains primarily clinical with toxicological confirmation difficult due to manufacturers constantly developing new analogues to avoid detection. Pediatricians are urged to familiarize themselves with these drugs and the typical presentations of patients who use them.

  6. Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice.

    Science.gov (United States)

    Morgan, Daniel J; Davis, Brian J; Kearn, Chris S; Marcus, David; Cook, Alex J; Wager-Miller, Jim; Straiker, Alex; Myoga, Michael H; Karduck, Jeffrey; Leishman, Emma; Sim-Selley, Laura J; Czyzyk, Traci A; Bradshaw, Heather B; Selley, Dana E; Mackie, Ken

    2014-04-09

    For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430). However, the role of these serine residues in tolerance and dependence for cannabinoids in vivo was unclear. Therefore, we generated mice where S426 and S430 were mutated to nonphosphorylatable alanines (S426A/S430A). S426A/S430A mutant mice were more sensitive to acutely administered delta-9-tetrahydrocannabinol (Δ(9)-THC), have delayed tolerance to Δ(9)-THC, and showed increased dependence for Δ(9)-THC. S426A/S430A mutants also showed increased responses to elevated levels of endogenous cannabinoids. CB1R desensitization in the periaqueductal gray and spinal cord following 7 d of treatment with Δ(9)-THC was absent in S426A/S430A mutants. Δ(9)-THC-induced downregulation of CB1R in the spinal cord was also absent in S426A/S430A mutants. Cultured autaptic hippocampal neurons from S426A/S430A mice showed enhanced endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and reduced agonist-mediated desensitization of DSE. These results indicate that S426 and S430 play major roles in the acute response to, tolerance to, and dependence on cannabinoids. Additionally, S426A/S430A mice are a novel model for studying pathophysiological processes thought to involve excessive endocannabinoid signaling such as drug addiction and metabolic disease. These mice also validate the approach of mutating GRK phosphorylation sites involved in desensitization as a general means to confer exaggerated signaling to GPCRs in vivo.

  7. Qualitative and quantitative measurement of cannabinoids in cannabis using modified HPLC/DAD method.

    Science.gov (United States)

    Patel, Bhupendra; Wene, Daniel; Fan, Zhihua Tina

    2017-08-10

    This study presents an accurate and high throughput method for the quantitative determination of various cannabinoids in cannabis plant material using high pressure liquid chromatography (HPLC) with a diode array detector (DAD). Sample extraction and chromatographic analysis conditions for the measurement of cannabinoids in the complex cannabis plant material matrix were optimized. The Agilent Poroshell 120 SB-C18 column provided high resolution for all target analytes with a short run time (10minutes) given the core shell technology. The aqueous buffer mobile phase was optimized with ammonium acetate at pH 4.75. The change in the mobile phase and the new column ensured a separation between cannabidiol (CBD and cannabigerol (CBG) along with cannabigerol and tetrahydrocannabinolic acid (THCA), which were not well separated by previous publications, improved buffering capacity, and provided analytical performance stability. Moreover, baseline drifting was significantly minimized by the use of a low concentration buffer solution (25mM ammonium acetate). In addition, evaporation and reconstitution of the sample residue with a methanol-organic pure (OP) water solution (65:35) significantly reduced the matrix interference. The modified extraction produced good recoveries (>91%) for each of the eight cannabinoids. The optimized method was validated for specificity, linearity, sensitivity, precision, accuracy, and stability. The combined relative standard deviation (%RSD) for intra-day and inter-day precision for all eight analytes varied from 2.5% to 5.2% and 0.28% to 5.5%, respectively. The %RSD for the repeatability study varied from 1.1% to 5.5%. The recoveries from spiked cannabis matrix samples were greater than 90% for all analytes, except delta-8-tetrahydrocannabinol (Δ(8)-THC), which was 80%. The recoveries varied from 81% to 107% with a precision of 0.7-8.1%RSD. Delta-9-tetrahydrocannabinol (Δ(9)-THC) in all of the cannabis samples (n=635) was less than 10

  8. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  9. Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence.

    Science.gov (United States)

    Abboussi, Oualid; Said, Nadia; Fifel, Karim; Lakehayli, Sara; Tazi, Abdelouahhab; El Ganouni, Soumaya

    2016-04-01

    Chronic exposure to cannabinoids during adolescence results in long-lasting behavioral deficits that match some symptomatologic aspects of schizophrenia. The aim of this study was to investigate the reversibility of the emotional and the cognitive effects of chronic exposure to cannabinoids during adolescence, via subsequent modulation of the serotoninergic 5-HT4 and dopaminergic D3 receptors. RS67333 as a 5-HT4 agonist and U-99194A as a D3 antagonist were administered separately at 1 mg/kg and 20 mg/kg, and in combination at 0.5 mg/kg and 10 mg/kg to adult animals undergoing chronic treatment with the synthetic cannabinoid receptor agonist WIN55,212-2 (1 mg/kg) during adolescence. Animals were tested for anxiety-like behavior and episodic-like memory in the open field and novel object recognition tests respectively 30 minutes after the last drug administration. Chronic WIN55,212-2 treated animals exhibited a lasting disruption of episodic memory and increased anxiety levels. The effect on episodic-like memory were partially restored by acute administration of RS67333 and U-99194A and completely by administration of both drugs in combination at lower doses. However, only RS67333 (20 mg/kg) improved the anxiogenic-like effect of WIN55,212-2. These findings give further support that chronic exposure to cannabinoids during adolescence may be used as an animal model for schizophrenia, and highlight D3 and 5-HT4 receptors as potential targets for an enhanced treatment of the cognitive aspect of this disease.

  10. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    Science.gov (United States)

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action.

  11. The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation.

    Science.gov (United States)

    Bow, Eric W; Rimoldi, John M

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles.

  12. The Structure–Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation

    Science.gov (United States)

    Bow, Eric W.; Rimoldi, John M.

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (−)-Δ9-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure–CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure–activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure–activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  13. The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55.

    Science.gov (United States)

    Schuelert, Niklas; McDougall, Jason J

    2011-08-01

    Cannabinoids classically act via CB₁ and CB₂ receptors to modulate nociception; however, recent findings suggest that some cannabinoids bind to atypical receptors. One such receptor is GPR55 which is activated by the abnormal cannabidiol analogue O-1602. This study investigated whether the synthetic GPR55 agonist O-1602 can alter joint nociception in a rat model of acute joint inflammation. Acute (24 h) inflammatory joint pain was induced in male Wistar rats by intra-articular injection of 2% kaolin and 2% carrageenan. Single unit extracellular recordings were made from arthritic joint afferents in response to mechanical rotation of the knee. Peripheral administration of O-1602 significantly reduced movement-evoked firing of nociceptive C fibres and this effect was blocked by the GPR55 receptor antagonist O-1918. Co-administration of the CB₁ and CB₂ antagonists (AM281 and AM630 respectively) had no effect on O-1602 responses. This study clearly shows that atypical cannabinoid receptors are involved in joint nociception and these novel targets may be advantageous for the treatment of inflammatory pain.

  14. Cannabinoids for treatment of chronic non-cancer pain; a systematic review of randomized trials

    OpenAIRE

    Mary E Lynch; Campbell, Fiona

    2011-01-01

    Effective therapeutic options for patients living with chronic pain are limited. The pain relieving effect of cannabinoids remains unclear. A systematic review of randomized controlled trials (RCTs) examining cannabinoids in the treatment of chronic non-cancer pain was conducted according to the PRISMA statement update on the QUORUM guidelines for reporting systematic reviews that evaluate health care interventions. Cannabinoids studied included smoked cannabis, oromucosal extracts of cannabi...

  15. A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis

    Science.gov (United States)

    Wilsey, Barth L; Deutsch, Reena; Samara, Emil; Marcotte, Thomas D; Barnes, Allan J; Huestis, Marilyn A; Le, Danny

    2016-01-01

    A randomized, placebo-controlled crossover trial utilizing vaporized cannabis containing placebo and 6.7% and 2.9% delta-9-tetrahydrocannabinol (THC) was performed in 42 subjects with central neuropathic pain related to spinal cord injury and disease. Subjects received two administrations of the study medication in a 4-hour interval. Blood samples for pharmacokinetic evaluation were collected, and pain assessment tests were performed immediately after the second administration and 3 hours later. Pharmacokinetic data, although limited, were consistent with literature reports, namely dose-dependent increase in systemic exposure followed by rapid disappearance of THC. Dose-dependent improvement in pain score was evident across all pain scale elements. Using mixed model regression, an evaluation of the relationship between plasma concentrations of selected cannabinoids and percent change in items from the Neuropathic Pain Scale was conducted. Changes in the concentration of THC and its nonpsychotropic metabolite, 11-nor-9-carboxy-THC, were related to percent change from baseline of several descriptors (eg, itching, burning, and deep pain). However, given the large number of multiple comparisons, false-discovery-rate-adjusted P-values were not significant. Plans for future work are outlined to explore the relationship of plasma concentrations with the analgesic response to different cannabinoids. Such an appraisal of descriptors might contribute to the identification of distinct pathophysiologic mechanisms and, ultimately, the development of mechanism-based treatment approaches for neuropathic pain, a condition that remains difficult to treat. PMID:27621666

  16. Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis.

    Science.gov (United States)

    Fu, Weisi; Taylor, Bradley K

    2015-05-19

    Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that, a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Four weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10-100μg) dose-dependently reduced both mechanical and cold hypersensitivity without producing signs of sedation or ataxia. The anti-hyperalgesic effects of JWH-133 could be dose-dependently prevented by intrathecal co-administration of the CB2 antagonist, AM-630 (1-3μg). Our results suggest that JWH-133 acts at CB2 receptors, most likely within the dorsal horn of the spinal cord, to suppress the hypersensitivity associated with experimental autoimmune encephalomyelitis. These are the first pre-clinical studies to directly promote CB2 as a promising target for the treatment of central pain in an animal model of multiple sclerosis.

  17. Involvement of Cannabinoid Signaling in Vincristine-Induced Gastrointestinal Dysmotility in the Rat

    Science.gov (United States)

    Vera, Gema; López-Pérez, Ana E.; Uranga, José A.; Girón, Rocío; Martín-Fontelles, Ma Isabel; Abalo, Raquel

    2017-01-01

    Background: In different models of paralytic ileus, cannabinoid receptors are overexpressed and endogenous cannabinoids are massively released, contributing to gastrointestinal dysmotility. The antitumoral drug vincristine depresses gastrointestinal motility and a similar mechanism could participate in this effect. Therefore, our aim was to determine, using CB1 and CB2 antagonists, whether an increased endocannabinoid tone is involved in vincristine-induced gastrointestinal ileus. Methods: First, we confirmed the effects of vincristine on the gut mucosa, by conventional histological techniques, and characterized its effects on motility, by radiographic means. Conscious male Wistar rats received an intraperitoneal injection of vincristine (0.1–0.5 mg/kg), and barium sulfate (2.5 ml; 2 g/ml) was intragastrically administered 0, 24, or 48 h later. Serial X-rays were obtained at different time-points (0–8 h) after contrast. X-rays were used to build motility curves for each gastrointestinal region and determine the size of stomach and caecum. Tissue samples were taken for histology 48 h after saline or vincristine (0.5 mg/kg). Second, AM251 (a CB1 receptor antagonist) and AM630 (a CB2 receptor antagonist) were used to determine if CB1 and/or CB2 receptors are involved in vincristine-induced gastrointestinal dysmotility. Key results: Vincristine induced damage to the mucosa of ileum and colon and reduced gastrointestinal motor function at 0.5 mg/kg. The effect on motor function was particularly evident when the study started 24 h after administration. AM251, but not AM630, significantly prevented vincristine effect, particularly in the small intestine, when administered thrice. AM251 alone did not significantly alter gastrointestinal motility. Conclusions: The fact that AM251, but not AM630, is capable of reducing the effect of vincristine suggests that, like in other experimental models of paralytic ileus, an increased cannabinoid tone develops and is at least

  18. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  19. Lethal high: acute disseminated encephalomyelitis (ADEM) triggered by toxic effect of synthetic cannabinoid black mamba

    National Research Council Canada - National Science Library

    Kiran Samra; Ian S Boon; Gregory Packer; Saiju Jacob

    2017-01-01

    .... His symptoms started after smoking a synthetic cannabinoid (black mamba ) 5 days earlier. Over 48 hours, he developed aphasia, generalised hypertonia, hyper-reflexia and dense left hemiparesis...

  20. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression.

    Science.gov (United States)

    Rieder, Sadiye Amcaoglu; Chauhan, Ashok; Singh, Ugra; Nagarkatti, Mitzi; Nagarkatti, Prakash

    2010-08-01

    Cannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors. With the recent discovery of the cannabinoid receptors (CB1 and CB2) and the endocannabinoid system, research in this field has expanded exponentially. Cannabinoids have been shown to act as potent immunosuppressive and anti-inflammatory agents and have been shown to mediate beneficial effects in a wide range of immune-mediated diseases such as multiple sclerosis, diabetes, septic shock, rheumatoid arthritis, and allergic asthma. Cannabinoid receptor 1 (CB1) is mainly expressed on the cells of the central nervous system as well as in the periphery. In contrast, cannabinoid receptor 2 (CB2) is predominantly expressed on immune cells. The precise mechanisms through which cannabinoids mediate immunosuppression is only now beginning to be understood and can be broadly categorized into four pathways: apoptosis, inhibition of proliferation, suppression of cytokine and chemokine production and induction of T regulatory cells (T regs). Studies from our laboratory have focused on mechanisms of apoptosis induction by natural and synthetic cannabinoids through activation of CB2 receptors. In this review, we will focus on apoptotic mechanisms of immunosuppression mediated by cannabinoids on different immune cell populations and discuss how activation of CB2 provides a novel therapeutic modality against inflammatory and autoimmune diseases as well as malignancies of the immune system, without exerting the untoward psychotropic effects.

  1. Development and Validation of a Reliable and Robust Method for the Analysis of Cannabinoids and Terpenes in Cannabis.

    Science.gov (United States)

    Giese, Matthew W; Lewis, Mark A; Giese, Laura; Smith, Kevin M

    2015-01-01

    The requirements for an acceptable cannabis assay have changed dramatically over the years resulting in a large number of laboratories using a diverse array of analytical methodologies that have not been properly validated. Due to the lack of sufficiently validated methods, we conducted a single- laboratory validation study for the determination of cannabinoids and terpenes in a variety of commonly occurring cultivars. The procedure involves high- throughput homogenization to prepare sample extract, which is then profiled for cannabinoids and terpenes by HPLC-diode array detector and GC-flame ionization detector, respectively. Spike recovery studies for terpenes in the range of 0.03-1.5% were carried out with analytical standards, while recovery studies for Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid, and cannabigerolic acid and their neutral counterparts in the range of 0.3-35% were carried out using cannabis extracts. In general, accuracy at all levels was within 5%, and RSDs were less than 3%. The interday and intraday repeatabilities of the procedure were evaluated with five different cultivars of varying chemotype, again resulting in acceptable RSDs. As an example of the application of this assay, it was used to illustrate the variability seen in cannabis coming from very advanced indoor cultivation operations.

  2. Regulative effect of anandamide-mediated cannabinoid receptor in rats with visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Yu-qin HE

    2012-11-01

    Full Text Available Objective  To investigate the role of anandamide(ANA-mediated cannabinoid receptor 1(CB1 on the acquisition of visceral hypersensitivity in rats, and explore its underlying mechanism. Methods  The visceral hypersensitivity non-noxious/noxious colorectal distension (NNCRD/NCRD model of rat was reproduced by ovalbumin (OVA sensitization combined with NNCRD/NCRD. Fifty-four rats were randomly divided into control group (n=7, saline+CRD group (n=7, OVA+CRD+dimethyl sulfoxide (DMSO group (n=8, OVA+CRD+different concentrations of ANA (0.5, 5.0, 10.0mg/kg groups (8 each, and OVA+CRD+ANA+AM251 group (n=8. The expression and quantitative assessment of CB1 were monitored by immunoflurorescence and laser scanning confocal analysis. The visceral sensitivity was evaluated by the area under curve (AUC of myoelectrical activity of abdominal wall muscle. Results  By NCRD at 80mmHg, the density of CB1 immunofluorescence intensity was significantly higher in L4–L6 of the spinal cord of the rats in saline+CRD group compared with that in control group (P 0.05. By NCRD at 80mmHg, the VMR-AUC increased obviously in OVA+CRD+DMSO group as compared with that of saline+CRD group, but it decreased significantly in OVA+CRD+high concentration ANA group (P < 0.05. When AM251 was intravenously given, VMR-AUC increased significantly in OVA+CRD+ANA+AM251 group compared with that in OVA+CRD+different concentrations of ANA groups (P < 0.05. Conclusions Intravenous administration of ANA may mitigate the visceral nociception induced by basic OVAsensitization combined with NCRD stimulation in CB1-mediated manner. It indicated that anandamide-mediated CB1 cannabinoid receptor may regulate the development and maintenance of visceral hypersensitivity.

  3. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Onaivi

    Full Text Available BACKGROUND: Addiction and major depression are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of cannabinoid CB2 receptors (CB2-Rs in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R but not (H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. We report for the using electron microscopy the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity.

  4. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

    Science.gov (United States)

    Di Giacomo, Daniele; De Domenico, Emanuela; Sette, Claudio; Geremia, Raffaele; Grimaldi, Paola

    2016-04-01

    Type 2 cannabinoid receptor (CB2) has been proposed to play a pivotal role in meiotic entry of male germ cells, similar to retinoic acid (RA). In this study, we showed that activation of CB2with the specific agonist JWH133 [3-(1',1'-dimethylbutyl)-1-deoxy-8-THC] (IC5010(-6)M) mimics epigenetic events induced by RA (IC5010(-7)M) in spermatogonia. Both JWH133 and RA treatments stimulate the expression of the meiotic genes c-KitandStra8, by up-regulating H3K4me3 and down-regulating H3K9me2 levels in genomic regions flanking the transcription start site. Moreover, both agents increase the expression ofPrdm9, the gene encoding a meiosis-specific histone, H3K4me3 methyltransferase, which marks hotspots of recombination in prophase I, thus resulting in a global increase in H3K4me3. Notably, prolonged administration of JWH133 to immature 7 dpp CD-1 mice induced an acceleration of the onset of spermatogenesis, whereas the specific CB2antagonist delayed germ cell differentiation. Thus, both hyper- and hypostimulation of CB2disrupted the temporal dynamics of the spermatogenic cycle. These findings highlight the importance of proper CB2signaling for the maintenance of a correct temporal progression of spermatogenesis and suggest a possible adverse effect of cannabis in deregulating this process.-Di Giacomo, D., De Domenico, E., Sette, C., Geremia, R., Grimaldi, P. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

  5. Interplay between serotonin and cannabinoid function in the amygdala in fear conditioning.

    Science.gov (United States)

    Nasehi, Mohammad; Davoudi, Kamelia; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-04-01

    The possible interactions between the cannabinoid and serotonin systems in the regions of the brain involved in emotional learning and memory formation have been studied by some researchers. In view of the key role of the amygdala in the acquisition and expression of fear memory, we investigated the involvement of basolateral amygdala (BLA) serotonin 5-HT4 receptors in arachidonylcyclopropylamide (ACPA; selective CB1 cannabinoid receptor agonist)-induced fear memory consolidation impairment. In our study, a context and tone fear conditioning apparatus was used for testing fear conditioning in adult male NMRI mice. The results showed that intraperitoneal administration of ACPA 0.5 or 0.05, 0.1 and 0.5mg/kg immediately after training decreased the percentage of freezing time in context or tone fear conditioning respectively, suggesting a context- or tone-dependent fear memory consolidation impairment. Post-training intra-BLA microinjections of RS67333, as 5-HT4 serotonin receptor agonist, at doses of 0.025 and 0.05 µg/mouse also impaired context or tone memory consolidation, while RS23597, as 5-HT4 serotonin receptor antagonist, did not produce a marked difference in both fear memories as compared with the control group. Moreover, a subthreshold dose of RS67333 did not alter ACPA response in both fear conditionings. Interestingly, a subthreshold dose of RS23597 potentiated or reversed ACPA response at the dose of 0.01 or 0.05 respectively. It is concluded that BLA serotonin 5-HT4 receptors are involved in tone-dependent fear memory consolidation impairment induced by CB1 activation using ACPA, suggesting a modulatory role for serotonin 5-HT4 receptor.

  6. Interaction between the cholecystokinin and endogenous cannabinoid systems in cued fear expression and extinction retention.

    Science.gov (United States)

    Bowers, Mallory E; Ressler, Kerry J

    2015-02-01

    Post-traumatic stress disorder (PTSD) is thought to develop, in part, from improper inhibition of fear. Accordingly, one of the most effective treatment strategies for PTSD is exposure-based psychotherapy. Ideally, neuroscience would inform adjunct therapies that target the neurotransmitter systems involved in extinction processes. Separate studies have implicated the cholecystokinin (CCK) and endocannabinoid systems in fear; however, there is a high degree of anatomical colocalization between the cannabinoid 1 receptor (Cnr1) and CCK in the basolateral amygdala (BLA), a brain region critical for emotion regulation. Although most research has focused on GABA and GABAergic plasticity as the mechanism by which Cnr1 mediates fear inhibition, we hypothesize that a functional interaction between Cnr1 and CCKB receptor (CCKBR) is critical for fear extinction processes. In this study, systemic pharmacological manipulation of the cannabinoid system modulated cued fear expression in C57BL/6J mice after consolidation of auditory fear conditioning. Knockout of the CCKBR, however, had no effect on fear- or anxiety-like behaviors. Nonetheless, administration of a Cnr1 antagonist increased freezing behavior during a cued fear expression test in wild-type subjects, but had no effect on freezing behavior in CCKBR knockout littermates. In addition, we found that Cnr1-positive fibers form perisomatic clusters around CCKBR-positive cell bodies in the BLA. These CCKBR-positive cells comprise a molecularly heterogenous population of excitatory and inhibitory neurons. These findings provide novel evidence that Cnr1 contributes to cued fear expression via an interaction with the CCK system. Dysfunctional Cnr1-CCKBR interactions might contribute to the etiology of, or result from, fear-related psychiatric disease.

  7. Role of Cannabinoids in the Regulation of Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Aymen I Idris

    2012-11-01

    Full Text Available The endocannabinoid system plays a key role in regulating a variety of physiological processes such as appetite control and energy balance, pain perception, and immune responses. Recent studies have implicated the endocannabinoid system in the regulation of bone cell activity and bone remodelling. These studies showed that endogenous cannabinoid ligands, cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown all play important roles in bone mass and in the regulation of bone disease. These findings suggest that the endocannabinoid pathway could be of value as a therapeutic target for the prevention and treatment of bone diseases. Here, we review the role of the skeletal endocannabinoid system in the regulation of bone remodelling in health and disease.

  8. [Neuroprotective mechanisms of cannabinoids in brain ischemia and neurodegenerative disorders].

    Science.gov (United States)

    Osuna-Zazuetal, Marcela Amparo; Ponce-Gómez, Juan Antonio; Pérez-Neri, Iván

    2015-06-01

    One of the most important causes of morbidity and mortality is neurologic dysfunction; its high incidence has led to an intense research of the mechanisms that protect the central nervous system from hypoxia and ischemia. The mayor challenge is to block the biochemical events leading to neuronal death. This may be achieved by neuroprotective mechanisms that avoid the metabolic and immunologic cascades that follow a neurological damage. When it occurs, several pathophysiological events develop including cytokine release, oxidative stress and excitotoxicity. Neuroprotective effects of cannabinoids to all those mechanisms have been reported in animal models of brain ischemia, excitotoxicity, brain trauma and neurodegenerative disorders. Some endocannabinoid analogs are being tested in clinical studies (I-III phase) for acute disorders involving neuronal death (brain trauma and ischemia). The study of the cannabinoid system may allow the discovery of effective neuroprotective drugs for the treatment of neurological disorders.

  9. Optical Properties of Synthetic Cannabinoids with Negative Indexes

    CERN Document Server

    Shen, Yao

    2016-01-01

    Some kinds of psychoactive drugs have the structures which are called split-ring resonators (SRRs). SRRs might result in negative permittivity and permeability simultaneously in electromagnetic field. Simultaneous negative indexes can lead to the famous phenomenon of negative refraction. This optical property makes it possible to distinguish synthetic cannabinoids from other abusive psychoactive drugs in the UV-vis region. This optical method is non-damaged and superior in forensic science. In this paper, we use tight-binding model calculating the permittivity and permeability of the main ingredients of synthetic cannabinoids. At the same time, we give two more results of zolpidem and caffeine. Further we discuss the negative refraction of the category of zepam qualitatively.

  10. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation.

    Science.gov (United States)

    Rom, Slava; Persidsky, Yuri

    2013-06-01

    An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB(1), CB(2)) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer's disease to name a few), mainly mediated by CB(2) activation. Development of CB(2) agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB(2) activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection.

  11. Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa).

    Science.gov (United States)

    Pollastro, Federica; Taglialatela-Scafati, Orazio; Allarà, Marco; Muñoz, Eduardo; Di Marzo, Vincenzo; De Petrocellis, Luciano; Appendino, Giovani

    2011-09-23

    The waxy fraction from the variety Carma of fiber hemp (Cannabis sativa) afforded the unusual cannabinoid 4, identified as the farnesyl prenylogue of cannabigerol (CBG, 1) on the basis of its spectroscopic properties. A comparative study of the profile of 4 and 1 toward metabotropic (CB1, CB2) and ionotropic (TRPV1, TRPV2, TRPM8, TRPA1) targets of phytocannabinoids showed that prenylogation increased potency toward CB2 by ca. 5-fold, with no substantial difference toward the other end-points, except for a decreased affinity for TRPM8. The isolation of 4 suggests that C. sativa could contain yet-to-be-discovered prenylogous versions of medicinally relevant cannabinoids, for which their biological profiles could offer interesting opportunities for biomedical exploitation.

  12. Cannabinoids production in Cannabis sativa L.: An in vitro approach

    OpenAIRE

    Farag, Sayed

    2014-01-01

    Cannabis sativa L. (Cannabaceae) is the oldest known medicinal plant. For millennia, the plant has also been used for fibre and oil production.The most prominent feature of C. sativa is the psychoactive effect ascribed to its secondary metabolites, cannabinoids (mainly to tetrahydrocannabinol, THC). However, many other pharmacological properties of the aforementioned specialized compounds have been described. Currently, the demand for THC for various medical applications is substantial, while...

  13. Endothelial atypical cannabinoid receptor: do we have enough evidence?

    Science.gov (United States)

    Bondarenko, Alexander I

    2014-12-01

    Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1 , non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions. © 2014 The British Pharmacological Society.

  14. Potencial terapéutico de los cannabinoides

    Directory of Open Access Journals (Sweden)

    L. M. Torres

    2013-06-01

    Full Text Available Los cannabinoides demuestran eficacia en modelos experimentales de dolor agudo y crónico. Parecen seguros en los ensayos desarrollados para algunas indicaciones de dolor y otras. Las nuevas tecnologías han abierto nuevas posibilidades de tratamiento al proporcionar nuevas vías de administración. Se precisan ensayos en pacientes para determinar el verdadero rol de estas sustancias en el tratamiento del dolor.

  15. Cannabinoid Receptors: A Novel Target for Therapy of Prostate Cancer

    Science.gov (United States)

    2007-02-01

    effects and tumor regression (1-5). Cannabinoids have shown to induce apoptosis in gliomas (6), PC-12 pheochromocytoma (7), CHP 100 neuroblastoma (8) and...induce apoptosis in gliomas (6), PC-12 pheochromocytoma (7), CHP 100 neuroblastoma (8), and hippocampal neurons (9) in vitro , and most interestingly...for devising strategies for the management of human prostate cancer because apoptosis is a physiological and discrete way of cell death different from

  16. Pharmacology of cannabinoids in the treatment of epilepsy.

    Science.gov (United States)

    Gaston, Tyler E; Friedman, Daniel

    2017-05-01

    The use of cannabis products in the treatment of epilepsy has long been of interest to researchers and clinicians alike; however, until recently very little published data were available to support its use. This article summarizes the available scientific data of pharmacology from human and animal studies on the major cannabinoids which have been of interest in the treatment of epilepsy, including ∆9-tetrahydrocannabinol (∆9-THC), cannabidiol (CBD), ∆9-tetrahydrocannabivarin (∆9-THCV), cannabidivarin (CBDV), and ∆9-tetrahydrocannabinolic acid (Δ9-THCA). It has long been known that ∆9-THC has partial agonist activity at the endocannabinoid receptors CB1 and CB2, though it also binds to other targets which may modulate neuronal excitability and neuroinflammation. The actions of Δ9-THCV and Δ9-THCA are less well understood. In contrast to ∆9-THC, CBD has low affinity for CB1 and CB2 receptors and other targets have been investigated to explain its anticonvulsant properties including TRPV1, voltage gated potassium and sodium channels, and GPR55, among others. We describe the absorption, distribution, metabolism, and excretion of each of the above mentioned compounds. Cannabinoids as a whole are very lipophilic, resulting in decreased bioavailability, which presents challenges in optimal drug delivery. Finally, we discuss the limited drug-drug interaction data available on THC and CBD. As cannabinoids and cannabis-based products are studied for efficacy as anticonvulsants, more investigation is needed regarding the specific targets of action, optimal drug delivery, and potential drug-drug interactions. This article is part of a Special Issue titled Cannabinoids and Epilepsy. Published by Elsevier Inc.

  17. Characterization of the synthetic cannabinoid MDMB-CHMCZCA

    Directory of Open Access Journals (Sweden)

    Carina Weber

    2016-12-01

    Full Text Available The synthetic cannabinoid MDMB-CHMCZCA was characterized by various spectroscopic techniques including NMR spectroscopy and tandem mass spectrometry. The synthetic sample was found to be of S-configuration by VCD spectroscopy and comparison of the data with DFT calculations, while ECD spectroscopy was found to be inconclusive in this case. The enantiomeric purity of samples from test purchases and police seizures was assessed by a self-developed chiral HPLC method.

  18. Finding cannabinoids in hair does not prove cannabis consumption

    OpenAIRE

    Bjoern Moosmann; Nadine Roth; Volker Auwärter

    2015-01-01

    Hair analysis for cannabinoids is extensively applied in workplace drug testing and in child protection cases, although valid data on incorporation of the main analytical targets, ∆9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-THC (THC-COOH), into human hair is widely missing. Furthermore, ∆9-tetrahydrocannabinolic acid A (THCA-A), the biogenetic precursor of THC, is found in the hair of persons who solely handled cannabis material. In the light of the serious consequences of positive tes...

  19. Screening of cannabinoids, benzoylecgonine and opiates in whole blood and urine using emit II plus immunoassay and konelab 30

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Christiansen, Nobuko; Müller, Irene Breum

    2004-01-01

    Screening,cannabinoids,benzoylecgonine,opiates in whole blood and urine, emit II, immunoassay,konelab 30......Screening,cannabinoids,benzoylecgonine,opiates in whole blood and urine, emit II, immunoassay,konelab 30...

  20. The effect of spinally administered WIN 55,212-2, a cannabinoid agonist, on thermal pain sensitivity in diabetic rats

    Directory of Open Access Journals (Sweden)

    Samane Jahanabadi

    2016-04-01

    Conclusion: These data show that cannabinoids have potent antinociceptive effects through direct actions in the spinal dorsal horn of nociceptive pathway. This suggests that intrathecally administered cannabinoids may offer hopeful strategies for the treatment of diabetic neuropathic pain.

  1. Cytotoxicity of synthetic cannabinoids found in "Spice" products: the role of cannabinoid receptors and the caspase cascade in the NG 108-15 cell line.

    Science.gov (United States)

    Tomiyama, Kenichi; Funada, Masahiko

    2011-11-10

    The worldwide distribution of "Spice" that contains synthetic cannabinoids with a pharmacological activity similar to Δ⁹-tetrahydrocannabinol has been reported. In the current study, we evaluated the cytotoxicity of the synthetic cannabinoids, CP-55,940, CP-47,497 and CP-47,497-C8 towards NG 108-15 cells and investigated their mechanism of cytotoxicity. CP-55,940, CP-47,497 and CP-47,497-C8 were all cytotoxic for NG 108-15 cells in a concentration-dependent manner. The cytotoxicity of these synthetic cannabinoids was suppressed by preincubation with the selective CB₁ receptor antagonist AM251, but not with the selective CB₂ receptor antagonist AM630. Preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity of these synthetic cannabinoids for NG 108-15 cells. Induction of apoptosis by these cannabinoids was also confirmed by staining of the cells with annexin V. Our results indicate that the cytotoxicity of synthetic cannabinoids towards NG 108-15 cells is mediated by the CB₁ receptor, but not by the CB₂ receptor, and further suggest that caspase-cascades may play an important role in the apoptosis induced by these synthetic cannabinoids.

  2. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats.

    Science.gov (United States)

    Adamczyk, Przemysław; Miszkiel, Joanna; McCreary, Andrew C; Filip, Małgorzata; Papp, Mariusz; Przegaliński, Edmund

    2012-03-20

    There is evidence that indicates that tonic activation of cannabinoid CB1 receptors plays a role in extinction/reinstatement of cocaine seeking-behavior but is not involved in the maintenance of cocaine self-administration. To further explore the importance of other endocannabinoid-related receptors in an animal model of cocaine addiction, the present paper examines cannabinoid CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) and the transient receptor potential vanilloid type-1 (TRPV1) receptor antagonist N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) on intravenous (i.v.) cocaine self-administration and extinction/reinstatement of cocaine-seeking behavior in rats. For comparison and reference purposes, the effect of the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was also examined. Moreover, for comparison effects of those drugs on operant lever responding for artificial (cocaine) vs. natural (food) reward, food self-administration was also evaluated. Our findings show that AM251 (1-3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.3-1mg/kg) did not affect cocaine self-administration. However, AM251 (0.1-1mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) decreased cocaine-induced reinstatement of cocaine-seeking behavior, and AM251 (0.3-1mg/kg) decreased cue-induced reinstatement. Moreover, AM251 (3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) slightly decreased food self-administration behavior, but only AM251 (3mg/kg) reduced food reward. In conclusion, our results indicate for the first time, that tonic activation of CB2 or TRPV1 receptors is involved in cocaine-induced reinstatement of cocaine-seeking behavior, but their activity is not necessary for the rewarding effect of this psychostimulant. In contrast to CB1 receptors, neither CB2 nor

  3. Therapeutic potential of cannabinoids in neurodegenerative disorders: a selective review.

    Science.gov (United States)

    Velayudhan, Latha; Van Diepen, Erik; Marudkar, Mangesh; Hands, Oliver; Suribhatla, Srinivas; Prettyman, Richard; Murray, Jonathan; Baillon, Sarah; Bhattacharyya, Sagnik

    2014-01-01

    The endocannabinoid system (ECS) is now recognised as an important modulator of various central nervous system processes. More recently, an increasing body of evidence has accumulated to suggest antioxidant, anti-inflammatory and neuroprotective roles of ECS. In this review we discuss the role and therapeutic potential of ECS in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, Huntington's disease, Tourette's syndrome, brain ischemia and amyotrophic lateral sclerosis (ALS). Elements of the ECS, such as fatty acid amide hydrolase or the cannabinoid receptors are now considered as promising pharmacological targets for some diseases. Although still preliminary, recent reports suggest that modulation of the ECS may constitute a novel approach for the treatment of AD. There are windows of opportunity in conditions caused by acute events such as trauma and ischemia as well in conditions that may involve altered functionality of the target receptors of the ECS, such as in AD. The ECS changes in Parkinson's disease could be compensatory as well as pathogenic of the illness process and needs further understanding and clinical studies are still in the preliminary stage. There is not enough evidence to support use of cannabinoids in treating Huntington's disease, tics and obsessive compulsive behaviour in Tourette's syndrome. Evidence on therapeutic use of cannabinoids in multiple sclerosis and ALS is currently limited. A major challenge for future research is the development of novel compounds with more selectivity for various components of the ECS which could target different neurotoxic pathways and be used in combination therapy.

  4. The potential role of cannabinoids in epilepsy treatment.

    Science.gov (United States)

    De Caro, Carmen; Leo, Antonio; Citraro, Rita; De Sarro, Caterina; Russo, Roberto; Calignano, Antonio; Russo, Emilio

    2017-09-04

    Epilepsy is one of the world's oldest recognized and prevalent neurological diseases. It has a great negative impact on patients' quality of life (QOL) as a consequence of treatment resistant seizures in about 30% of patients together with drugs' side effects and comorbidities. Therefore, new drugs are needed and cannabinoids, above all cannabidiol, have recently gathered attention. Areas covered: This review summarizes the scientific data from human and animal studies on the major cannabinoids which have been of interest in the treatment of epilepsy, including drugs acting on the endocannabinoid system. Expert commentary: Despite the fact that cannabis has been used for many purposes over 4 millennia, the development of drugs based on cannabinoids has been very slow. Only recently, research has focused on their potential effects and CBD is the first treatment of this group with clinical evidence of efficacy in children with Dravet syndrome; moreover, other studies are currently ongoing to confirm its effectiveness in patients with epilepsy. On the other hand, it will be of interest to understand whether drugs acting on the endocannabinoid system will be able to reach the market and prove their known preclinical efficacy also in patients with epilepsy.

  5. Cannabinoids and glucocorticoids modulate emotional memory after stress.

    Science.gov (United States)

    Akirav, Irit

    2013-12-01

    Bidirectional and functional relationships between glucocorticoids and the endocannabinoid system have been demonstrated. Here, I review the interaction between the endocannabinoid and glucocorticoid/stress systems. Specifically, stress is known to produce rapid changes in endocannabinoid signaling in stress-responsive brain regions. In turn, the endocannabinoid system plays an important role in the downregulation and habituation of hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to stress. Glucocorticoids also recruit the endocannabinoid system to exert rapid negative feedback control of the HPA axis during stress. It became increasingly clear, however, that cannabinoid CB1 receptors are also abundantly expressed in the basolateral amygdala (BLA) and other limbic regions where they modulate emotional arousal effects on memory. Enhancing cannabinoids signaling using exogenous CB1 receptor agonists prevent the effects of acute stress on emotional memory. I propose a model suggesting that the ameliorating effects of exogenously administered cannabinoids on emotional learning after acute stress are mediated by the decrease in the activity of the HPA axis via GABAergic mechanisms in the amygdala. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons.

    Science.gov (United States)

    Losonczy, Attila; Biró, Agota A; Nusser, Zoltan

    2004-02-03

    Cortical information processing requires an orchestrated interaction between a large number of pyramidal cells and albeit fewer, but highly diverse GABAergic interneurons (INs). The diversity of INs is thought to reflect functional and structural specializations evolved to control distinct network operations. Consequently, specific cortical functions may be selectively modified by altering the input-output relationship of unique IN populations. Here, we report that persistently active cannabinoid receptors, the site of action of endocannabinoids, and the psychostimulants marijuana and hashish, switch off the output (mute) of a unique class of hippocampal INs. In paired recordings between cholecystokinin-immunopositive, mossy fiber-associated INs, and their target CA3 pyramidal cells, no postsynaptic currents could be evoked with single presynaptic action potentials or with repetitive stimulations at frequencies <25 Hz. Cannabinoid receptor antagonists converted these "mute" synapses into high-fidelity ones. The selective muting of specific GABAergic INs, achieved by persistent presynaptic cannabinoid receptor activation, provides a state-dependent switch in cortical networks.

  7. Finding cannabinoids in hair does not prove cannabis consumption.

    Science.gov (United States)

    Moosmann, Bjoern; Roth, Nadine; Auwärter, Volker

    2015-10-07

    Hair analysis for cannabinoids is extensively applied in workplace drug testing and in child protection cases, although valid data on incorporation of the main analytical targets, ∆9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-THC (THC-COOH), into human hair is widely missing. Furthermore, ∆9-tetrahydrocannabinolic acid A (THCA-A), the biogenetic precursor of THC, is found in the hair of persons who solely handled cannabis material. In the light of the serious consequences of positive test results the mechanisms of drug incorporation into hair urgently need scientific evaluation. Here we show that neither THC nor THCA-A are incorporated into human hair in relevant amounts after systemic uptake. THC-COOH, which is considered an incontestable proof of THC uptake according to the current scientific doctrine, was found in hair, but was also present in older hair segments, which already grew before the oral THC intake and in sebum/sweat samples. Our studies show that all three cannabinoids can be present in hair of non-consuming individuals because of transfer through cannabis consumers, via their hands, their sebum/sweat, or cannabis smoke. This is of concern for e.g. child-custody cases as cannabinoid findings in a child's hair may be caused by close contact to cannabis consumers rather than by inhalation of side-stream smoke.

  8. Electroacupuncture Inhibition of Hyperalgesia in Rats with Adjuvant Arthritis: Involvement of Cannabinoid Receptor 1 and Dopamine Receptor Subtypes in Striatum

    Directory of Open Access Journals (Sweden)

    Yin Shou

    2013-01-01

    Full Text Available Electroacupuncture (EA has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36 and Kunlun (BL60 acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P=0.001. The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression.

  9. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    OpenAIRE

    Ana ePalomino; Francisco Javier ePavon; Eduardo eBlanco Calvo; Antonia eSerrano; Sergio eArrabal; Patricia eRivera; Antonio eVargas; Ainhoa eBilbao; Leticia eRubio; Fernando eRodriguez de Fonseca; Juan eSuarez

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid recept...

  10. Quantum repeated games revisited

    CERN Document Server

    Frackiewicz, Piotr

    2011-01-01

    We present a scheme for playing quantum repeated 2x2 games based on the Marinatto and Weber's approach to quantum games. As a potential application, we study twice repeated Prisoner's Dilemma game. We show that results not available in classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games.

  11. Repeated administration of meta-chlorophenylpiperazine or 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane produces tolerance to its stimulatory effect on adrenocorticotropin hormone but not prolactin or corticosterone secretion in rats.

    Science.gov (United States)

    Mazzola-Pomietto, P; Aulakh, C S; Huang, S J; Murphy, D L

    1996-11-01

    In an attempt to clarify whether m-chlorophenylpiperazine-(m-CPP) and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane-(DOI) induced increases in plasma adrenocorticotropin hormone, corticosterone and prolactin secretion are mediated by the same or different mechanisms, we studied the time course of development of tolerance to the neuroendocrine effects of m-CPP (2.5 mg/kg/day) and DOI (2.5 mg/kg/day) in rats and, furthermore, also evaluated possible cross-tolerance in responses to m-CPP and DOI. We observed the development of tolerance in adrenocorticotropin hormone responses after a single i.p. injection of m-CPP. However, there was no cross-tolerance to DOI when chronic (13 days) m-CPP-treated animals were challenged with DOI (2.5 mg/kg). Injections of DOI (2.5 mg/kg) for six days were required before tolerance developed to the effect of DOI on adrenocorticotropin hormone. Furthermore, cross-tolerance was observed when DOI-treated animals (2.5 mg/kg/day x 6) were challenged with m-CPP (2.5 mg/kg) on day 7. In contrast, daily administration of m-CPP and DOI for 13 days did not produce tolerance to their stimulating effects on corticosterone and prolactin secretion. Hypothalamic levels of 5-hydroxyindoleacetic acid but not 5-HT were significantly reduced after acute or subchronic administration of both m-CPP and DOI. Furthermore, no change in the approximate 50% reduction in 5-hydroxyindoleacetic acid after m-CPP was observed after subchronic administration of this drug. These findings suggest that separate mechanisms mediate m-CPP and DOI-induced adrenocorticotropin hormone secretion in rats.

  12. Efecto neuroprotector de los cannabinoides en las enfermedades neurodegenerativas

    Directory of Open Access Journals (Sweden)

    Carlos Suero-García

    2015-01-01

    Full Text Available Objetivos: Se analiza la situación actual de las investigaciones relacionadas con las sustancias cannabinoides, así como su interacción con el organismo, clasificación, efectos terapéuticos y su uso en las enfermedades neurodegenerativas. Métodos: Se realiza una exhaustiva revisión bibliográfica relacionada con las sustancias cannabinoides y sus derivados sintéticos, haciendo especial hincapié en la forma de interactuar con el organismo y los efectos que provocan dichas interacciones. Concretamente, se estudiarán sus efectos neuroantiinflamatorio y analgésico lo que conlleva al efecto neuroprotector en enfermedades neurodegenerativas tales como Alzheimer, Parkinson, Huntington, esclerosis múltiple y esclerosis lateral amiotrófica. Resultados: Desde hace miles de años la planta Cannabis Sativa ha sido utilizada por muchas culturas con distintos fines, de ocio, textiles, analgésicos, pero no es hasta finales del siglo XX cuando se empieza a incentivar los estudios científicos relacionados con ésta. La planta posee una mezcla de unos 400 componentes, de los cuales 60 pertenecen al grupo de los cannabinoides siendo los principales el cannabinol, cannabidiol y tetrahidrocannabinol. Con el descubrimiento de las sustancias cannabinoides, sus derivados, y los receptores que interactúan, se amplían las posibilidades terapéuticas teniendo un especial interés el efecto neuroprotector que estas sustancias contienen. Conclusiones. Se ha demostrado el gran potencial de los cannabinoides como sustancias terapéuticas más allá de su uso analgésico o antiemético, esto es, en enfermedades neurodegenerativas en las que pueden no solo disminuir los síntomas, sino frenar el proceso de la enfermedad. Otra posible aplicación puede ser en el campo oncológico, siendo particularmente intensa la actividad investigadora realizada en los últimos 15 años.

  13. Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: design, synthesis, structure-activity relationships, physicochemical properties and biological activity

    NARCIS (Netherlands)

    Blaazer, A.R.; Lange, J.H.M.; van der Neut, M.A.W.; Mulder, A.; den Boon, F.S.; Werkman, T.R.; Kruse, C.G.; Wadman, W.J.

    2011-01-01

    The discovery, synthesis and structure-activity relationship (SAR) of a novel series of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor ligands are reported. Based on the aminoalkylindole class of cannabinoid receptor agonists, a biphenyl moiety was introduced as novel lipophilic indole 3-acyl

  14. Metabolomics and bioanalysis of terpenoid derived secondary metabolites : Analysis of Cannabis sativa L. metabolite production and prenylases for cannabinoid production

    NARCIS (Netherlands)

    Muntendam, Remco

    2015-01-01

    Cannabinoid research has gained a renenewed interest by both the public and scientist. Focus is mainly directed to the medicinal activities, as reported for various cannabinoid structures. This thesis focusses on prenyl-derived secondary metabolites with main focus on cannabinoids. Firstly the produ

  15. A Gut Gone to Pot: A Case of Cannabinoid Hyperemesis Syndrome due to K2, a Synthetic Cannabinoid

    Directory of Open Access Journals (Sweden)

    Anene Ukaigwe

    2014-01-01

    Full Text Available Cannabinoid Hyperemesis Syndrome (CHS was first described in 2004. Due to its novelty, CHS is often unrecognized by clinicians leading to expensive workup of these patients with cyclical symptoms. It may take up to 9 years to diagnose CHS. CHS is characterized by cyclical nausea and vomiting, abdominal pain, and an unusual compulsion to take hot showers in the presence of chronic use of cannabinoids. Cannabicyclohexanol is a synthetic cannabinoid, popularly known as K2 spice. It is a popular marijuana alternative among teenagers and young adults since it is readily available as herbal incense. Unlike marijuana, many users know that K2 is not detected in conventional urine drug screens, allowing those users to conceal their intake from typical detection methods. Serum or urine gas chromatography mass spectrophotometry is diagnostic, though not widely available. Thus, it is imperative for clinicians to recognize CHS, even with negative UDS, to provide cost-effective care. We present a 38-year-old man with a 10-year history of cannabis, and 1-year history of K2 abuse admitted with 1-week history of episodes of nausea, vomiting of clear fluids, and epigastric discomfort. Symptoms are relieved only by hot showers. Extensive laboratory, radiologic, and endoscopic evaluation was unrevealing. CHS was diagnosed, based on proposed criteria by Simonetti et al.

  16. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    Science.gov (United States)

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds.

  17. Evaluation of a radioimmunoassay (/sup 125/I) kit for cannabinoid metabolites in urine and whole blood

    Energy Technology Data Exchange (ETDEWEB)

    Childs, P.S.; McCurdy, H.H.

    The Abuscreen kit (Roche Diagnostics) for the analysis of 11-nor-..delta../sup 9/-tetrahydrocannabinol-9-carboxylic acid and other cannabinoids in urine was evaluated in terms of its accuracy, reproducibility, and sensitivity. A procedure is also presented for the analysis of total cannabinoids in whole blood using the RIA kit.

  18. Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Christoph W Michalski

    Full Text Available BACKGROUND: While cannabinoids have been shown to ameliorate liver fibrosis, their effects in chronic pancreatitis and on pancreatic stellate cells (PSC are unknown. METHODOLOGY/PRINCIPAL FINDINGS: The activity of the endocannabinoid system was evaluated in human chronic pancreatitis (CP tissues. In vitro, effects of blockade and activation of cannabinoid receptors on pancreatic stellate cells were characterized. In CP, cannabinoid receptors were detected predominantly in areas with inflammatory changes, stellate cells and nerves. Levels of endocannabinoids were decreased compared with normal pancreas. Cannabinoid-receptor-1 antagonism effectuated a small PSC phenotype and a trend toward increased invasiveness. Activation of cannabinoid receptors, however, induced de-activation of PSC and dose-dependently inhibited growth and decreased IL-6 and MCP-1 secretion as well as fibronectin, collagen1 and alphaSMA levels. De-activation of PSC was partially reversible using a combination of cannabinoid-receptor-1 and -2 antagonists. Concomitantly, cannabinoid receptor activation specifically decreased invasiveness of PSC, MMP-2 secretion and led to changes in PSC phenotype accompanied by a reduction of intracellular stress fibres. CONCLUSIONS/SIGNIFICANCE: Augmentation of the endocannabinoid system via exogenously administered cannabinoid receptor agonists specifically induces a functionally and metabolically quiescent pancreatic stellate cell phenotype and may thus constitute an option to treat inflammation and fibrosis in chronic pancreatitis.

  19. Differential cannabinoid receptor expression during reactive gliosis: a possible implication for a nonpsychotropic neuroprotection.

    Science.gov (United States)

    De Filippis, Daniele; Steardo, Antonio; D'Amico, Alessandra; Scuderi, Caterina; Cipriano, Mariateresa; Esposito, Giuseppe; Iuvone, Teresa

    2009-03-31

    Activated microglia and astrocytes produce a large number of inflammatory and neurotoxic substances in various brain pathologies, above all during neurodegenerative disorders. In the search for new neuroprotective compounds, interest has turned to marijuana derivatives, since in several in vitro, in vivo, and clinical studies, they have shown a great ability to control neuroinflammation. Despite the emerging evidence regarding pharmacological activities of cannabinoids, their effective introduction into clinical therapy still remains controversial and strongly limited by their unavoidable psychotropicity. Since the psychotropic effect of cannabinoids is generally linked to the activation of the CB1 receptor on neurons, the aim of our review is to clarify the function of the two cannabinoid receptors on glial cells and the differential role played by them, highlighting the emerging evidence of a CB2-mediated control of neuroinflammation that could liberate cannabinoids from the slavery of their central side effects. Despite the emerging evidence regarding pharmacological activities of cannabinoids, however their effective introduction in the clinical therapy remains still controversial and strongly limited by their unavoidable psychotropicity. Since the psychotropic effect of cannabinoids is generally linked to the activation of CB1 receptor on neurons, aim of our review is to clarify the functioning of the two cannabinoid receptors on glial cells and the differential role played by them, highlighting the emerging evidence of a CB2-mediated control of neuro-inflammation that could liberate cannabinoids from the slavery of the central side effects.

  20. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    Science.gov (United States)

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.

  1. Cloning and pharmacological characterization of the dog cannabinoid CB₂receptor.

    Science.gov (United States)

    Ndong, Christian; O'Donnell, Dajan; Ahmad, Sultan; Groblewski, Thierry

    2011-11-01

    Comparison of human, rat and mouse cannabinoid CB(2) receptor primary sequences has shown significant divergence at the mRNA and protein sequence level, raising the possibility of species specific pharmacological properties. Additionally, given the importance of the dog as a non-rodent species for predicting human safety during the drug development process, we cloned the dog CB(2) receptor gene and characterized its in-vitro pharmacological properties in a recombinant expression system. A 1.1 kb dog peripheral cannabinoid receptor (dCB(2)) fragment encoding a 360 amino acid protein was cloned from dog spleen cDNA. Analysis of the cloned dCB(2) polypeptide sequence revealed that it shares between 76 and 82% homology with rat, mouse, human and predicted chimpanzee cannabinoid CB(2) receptors. The dog CB(2) receptor expressed in CHO cells displayed similar binding affinities for various synthetic and endogenous cannabinoids as compared to those measured for the human and rat cannabinoid CB(2) receptors. However, these ligands exhibited altered functional potencies and efficacies for the dog cannabinoid CB(2) receptor, which was also found to be negatively coupled to adenylate cyclase activity. These complex pharmacological differences observed across species for the cannabinoid CB(2) receptor suggest that caution should be exerted when analyzing the outcome of animal efficacy and safety studies, notably those involving cannabinoid CB(2) receptor targeting molecules tested in the dog.

  2. Understanding the Growing Threat of Synthetic Cannabinoids and Its Implications on University-Based Counselors

    Science.gov (United States)

    Golubovic, Nedeljko; Dew, Brian J.

    2017-01-01

    The rise in synthetic cannabinoid use has been one of the nation's most alarming drug-related trends. Considering the popularity of use among young adults, college counselors are likely to be among the 1st professionals to treat clients who use these drugs. In this article, the unique aspects of synthetic cannabinoids are reviewed, implications…

  3. (Endo)cannabinoid signaling in human bronchial epithelial and smooth muscle cells

    NARCIS (Netherlands)

    Gkoumassi, Effimia

    2007-01-01

    We investigated the pathways used by various (endo)cannabinoids in regulating intracellular calcium homeostasis, adenylyl cyclase and ERK signaling, in bronchial epithelial cells as well as smooth muscle cells. In DDT1 MF2 smooth muscle cells the synthetic cannabinoid CP55,940 increases [Ca2+]i by a

  4. Cannabinoid CB1 receptors of the dorsal hippocampus are important for induction of conditioned place preference (CPP) but do not change morphine CPP.

    Science.gov (United States)

    Zarrindast, Mohammad-Reza; Nouri, Maryam; Ahmadi, Shamseddin

    2007-08-13

    Interactions between cannabinoid and opioid systems have been reported in many studies. In the present study, we have investigated influence of cannabinoid CB1 receptor mechanism on the acquisition of conditioned place preference (CPP) induced by morphine in male Wistar rats. The cannabinoid CB1 receptor agonist (WIN55,212-2) and antagonist (AM251) were injected bilaterally into the dorsal hippocampus. Morphine and naloxone were injected subcutaneously (s.c.). The conditioning treatments with injections of morphine (6 and 9 mg/kg) induced a CPP for the drug-associated place. When administered into the dorsal hippocampus, WIN55,212-2 (1 microg/rat) induced CPP, but significantly did not alter CPP induced by a sub-effective dose of morphine (3 mg/kg). Moreover, administration of different doses of AM251 (50 and 100 ng/rat) into the dorsal hippocampus induced CPP, while did not change CPP by the sub-effective dose of morphine. Naloxone alone (1 mg/kg) induced conditioned place aversion (CPA). The drug (0.5 and 1 mg/kg) also caused CPA when co-administered with WIN55,212-2 (1 microg/rat). These results suggest that endocannabinoid system in the dorsal hippocampus is important for the CPP paradigm. However, agents did not alter morphine-induced CPP.

  5. Strain differences in the expression of endocannabinoid genes and in cannabinoid receptor binding in the brain of Lewis and Fischer 344 rats.

    Science.gov (United States)

    Coria, Santiago M; Roura-Martínez, David; Ucha, Marcos; Assis, María Amparo; Miguéns, Miguel; García-Lecumberri, Carmen; Higuera-Matas, Alejandro; Ambrosio, Emilio

    2014-08-04

    The Lewis (LEW) and Fischer 344 (F344) rat strains have been proposed as a model to study certain genetic influences on drug use. These strains differ in terms of the self-administration of several drugs, and in their expression of various components of the dopaminergic, glutamatergic, GABAergic and endogenous opioid neurotransmitter systems. As the endocannabinoid system is linked to these systems, we investigated whether these two strains exhibit differences in cannabinoid receptor binding and in the expression of cannabinoid-related genes. Quantitative autoradiography of [(3)H]-CP 55,940 binding levels and real-time PCR assays were used. F344 rats displayed higher levels of cannabinoid receptor binding in the lateral globus pallidus and weaker CNR1 gene expression in the prefrontal cortex (PFc) than LEW rats. Moreover, the N-acyl phosphatidylethanolamine-specific phospholipase D/fatty acid amide hydrolase ratio was greater in the PFc and NAcc of F344 rats. Our results suggest that the endocannabinoid system may be a mediator of the individual differences that exist in the susceptibility to the rewarding effects of drugs of abuse. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands

    DEFF Research Database (Denmark)

    Pertwee, R G; Howlett, A C; Abood, M E

    2010-01-01

    There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid ¿(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor...... antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non....../or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor...

  7. Cannabis, Cannabinoids, and Cerebral Metabolism: Potential Applications in Stroke and Disorders of the Central Nervous System.

    Science.gov (United States)

    Latorre, Julius Gene S; Schmidt, Elena B

    2015-09-01

    No compound has generated more attention in both the scientific and recently in the political arena as much as cannabinoids. These diverse groups of compounds referred collectively as cannabinoids have both been vilified due to its dramatic and potentially harmful psychotropic effects and glorified due to its equally dramatic and potential application in a number of acute and chronic neurological conditions. Previously illegal to possess, cannabis, the plant where natural form of cannabinoids are derived, is now accepted in a growing number of states for medicinal purpose, and some even for recreational use, increasing opportunities for more scientific experimentation. The purpose of this review is to summarize the growing body of literature on cannabinoids and to present an overview of our current state of knowledge of the human endocannabinoid system in the hope of defining the future of cannabinoids and its potential applications in disorders of the central nervous system, focusing on stroke.

  8. Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: an exploratory review.

    Science.gov (United States)

    Ostadhadi, Sattar; Rahmatollahi, Mahdieh; Dehpour, Ahmad-Reza; Rahimian, Reza

    2015-03-01

    Cannabinoids (the active constituents of Cannabis sativa) and their derivatives have got intense attention during recent years because of their extensive pharmacological properties. Cannabinoids first developed as successful agents for alleviating chemotherapy associated nausea and vomiting. Recent investigations revealed that cannabinoids have a wide range of therapeutic effects such as appetite stimulation, inhibition of nausea and emesis, suppression of chemotherapy or radiotherapy-associated bone loss, chemotherapy-induced nephrotoxicity and cardiotoxicity, pain relief, mood amelioration, and last but not the least relief from insomnia. In this exploratory review, we scrutinize the potential of cannabinoids to counteract chemotherapy-induced side effects. Moreover, some novel and yet important pharmacological aspects of cannabinoids such as antitumoral effects will be discussed.

  9. Cannabinoid and nitric oxide signaling interplay in the modulation of hippocampal hyperexcitability: Study on electrophysiological and behavioral models of temporal lobe epilepsy in the rat.

    Science.gov (United States)

    Carletti, F; Gambino, G; Rizzo, V; Ferraro, G; Sardo, P

    2015-09-10

    A growing bulk of evidence suggests that cannabinoid system plays a pivotal role in the control of hyperexcitability phenomena. Notwithstanding, the anticonvulsant action of cannabinoids has not been fully addressed, in particular the involvement of potential cellular neuromodulators, for instance nitric oxide. In the current study, we focused on two distinct rat models of temporal lobe epilepsy, the Maximal Dentate Activation and the pilocarpine-induced acute seizures, providing both electrophysiological and behavioral data on cannabinoid and nitrergic system interplay. We evaluated the antiepileptic effects of WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone (WIN), a CB agonist, and of 7-Nitroindazole (7NI), a preferential neuronal nitric oxide synthase (nNOS) inhibitor, at different doses, alone and in combination. MDA study showed that these drugs protected animals in a dose-dependent manner from electrically induced epileptiform discharges. In pilocarpine model, a dose-related activity of 7NI and WIN: a) decreased the behavioral scoring, used to describe the severity of chemically induced acute seizures; b) affected latency of the onset of acute convulsions; c) dampened mortality rate. Interestingly, the combination of the treatments brought to light that individually ineffective doses of WIN turn into effective when nNOS activity is pharmacologically inhibited in both experimental conditions. This effect is mediated by CB1 receptor since the co-administration of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), a CB1 receptor specific antagonist, thwarted the 7NI-WIN convergent action. In the light of this, our findings suggest a putative antagonism between CBr-activated pathway and NO signaling in the context of neuronal hyperexcitability and contribute to elucidate possible synaptic processes underlying neuroprotective

  10. Effects of Se-phenyl thiazolidine-4-carboselenoate on mechanical and thermal hyperalgesia in brachial plexus avulsion in mice: mediation by cannabinoid CB1 and CB2 receptors.

    Science.gov (United States)

    Del Fabbro, Lucian; Borges Filho, Carlos; Cattelan Souza, Leandro; Savegnago, Lucielli; Alves, Diego; Henrique Schneider, Paulo; de Salles, Helena Domingues; Jesse, Cristiano R

    2012-09-26

    In this study, we investigated the therapeutic effects of treatment with (R)-Se-phenyl thiazolidine-4-carboselenoate (Se-PTC), an organic selenium compound with antinociceptive properties, against mechanical and thermal hyperalgesia induced by brachial plexus avulsion (BPA), a neuropathic model in mice. The involvement of cannabinoid CB(1) and CB(2) receptors in the Se-PTC anti-hyperalgesic effect was also investigated. Se-PTC treatment at (25 and 50mg/kg, per oral, p.o.) lowered (BPA model) induced mechanical and thermal hyperalgesia in mice. Pretreatment with cannabinoid CB(1) (AM251; 1mg/kg, intraperitoneally, i.p.), or CB(2) (AM630; 3mg/kg, i.p.) receptor antagonists reverted the mechanical and thermal anti-hyperalgesic effect of Se-PTC (25mg/kg) in the BPA model. Selective CB(1) (ACEA, 10mg/kg, i.p.) and CB(2) (JWH-133, 10mg/kg, i.p.) receptor agonists lowered mechanical and thermal hyperalgesia in the BPA model, and this effect was prevented by selective CB(1) and CB(2) receptor antagonists. Gabapentin (70mg/kg, p.o.), positive control administration also lowered mechanical and thermal hyperalgesia in the BPA model. The results suggest that the mechanical and thermal hyperalgesia observed following BPA in mice is dependent on cannabinoid receptors. The results indicate that modulating cannabinoid receptors represent a valuable approach for the treatment of neuropathic pain. In conclusion, the results suggested that Se-PTC produces pronounced mechanical and thermal anti-hyperalgesic effects in neuropathic models in mice by modulating CB(1) and CB(2) receptors.

  11. CB1 cannabinoid receptor-mediated anandamide signalling reduces the defensive behaviour evoked through GABAA receptor blockade in the dorsomedial division of the ventromedial hypothalamus.

    Science.gov (United States)

    Dos Anjos-Garcia, Tayllon; Ullah, Farhad; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2017-02-01

    The effects of cannabinoids in brain areas expressing cannabinoid receptors, such as hypothalamic nuclei, are not yet well known. Several studies have demonstrated the role of hypothalamic nuclei in the organisation of behavioural responses induced through innate fear and panic attacks. Panic-prone states are experimentally induced in laboratory animals through a reduction in the GABAergic activity. The aim of the present study was to examine panic-like elaborated defensive behaviour evoked by GABAA receptor blockade with bicuculline (BIC) in the dorsomedial division of the ventromedial hypothalamus (VMHdm). We also aimed to characterise the involvement of endocannabinoids and the CB1 cannabinoid receptor in the modulation of elaborated defence behavioural responses organised with the VMHdm. The guide-cannula was stereotaxicaly implanted in VMHdm and the animals were treated with anandamide (AEA) at different doses, and the effective dose was used after the pre-treatment with the CB1 receptor antagonist AM251, followed by GABAA receptor blockade in VMHdm. The results showed that the intra-hypothalamic administration of AEA at an intermediate dose (5 pmol) attenuated defence responses induced through the intra-VMHdm microinjection of bicuculline (40 ng). This effect, however, was inhibited when applied central microinjection of the CB1 receptor antagonist AM251 in the VMHdm. Moreover, AM251 potentiates de non-oriented escape induced by bicuculline, effect blocked by pre-treatment with the TRPV1 channel antagonist 6-I-CPS. These results indicate that AEA modulates the pro-aversive effects of intra-VMHdm-bicuculline treatment, recruiting CB1 cannabinoid receptors and the TRPV1 channel is involved in the AM251-related potentiation of bicuculline effects on non-oriented escape behaviour.

  12. Cannabinoid Receptor CB2 Is Involved in Tetrahydrocannabinol-Induced Anti-Inflammation against Lipopolysaccharide in MG-63 Cells

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2015-01-01

    Full Text Available Cannabinoid Δ9-tetrahydrocannabinol (THC is effective in treating osteoarthritis (OA, and the mechanism, however, is still elusive. Activation of cannabinoid receptor CB2 reduces inflammation; whether the activation CB2 is involved in THC-induced therapeutic action for OA is still unknown. Cofilin-1 is a cytoskeleton protein, participating in the inflammation of OA. In this study, MG-63 cells, an osteosarcoma cell-line, were exposed to lipopolysaccharide (LPS to mimic the inflammation of OA. We hypothesized that the activation of CB2 is involved in THC-induced anti-inflammation in the MG-63 cells exposed to LPS, and the anti-inflammation is mediated by cofilin-1. We found that THC suppressed the release of proinflammatory factors, including tumor necrosis factor α (TNF-α, interleukin- (IL- 1β, IL-6, and IL-8, decreased nuclear factor-κB (NF-κB expression, and inhibited the upregulation of cofilin-1 protein in the LPS-stimulated MG-63 cells. However, administration of CB2 receptor antagonist or the CB2-siRNA, not CB1 antagonist AM251, partially abolished the THC-induced anti-inflammatory effects above. In addition, overexpression of cofilin-1 significantly reversed the THC-induced anti-inflammatory effects in MG-63 cells. These results suggested that CB2 is involved in the THC-induced anti-inflammation in LPS-stimulated MG-63 cells, and the anti-inflammation may be mediated by cofilin-1.

  13. First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry.

    Science.gov (United States)

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Liu, Hua-Fen; Huestis, Marilyn A

    2013-10-01

    Since the federal authorities scheduled the first synthetic cannabinoids, JWH-018 and JWH-073, new synthetic cannabinoids were robustly marketed. N-(1-Adamantyl)-1-pentylindazole-3-carboxamide (AKB-48), also known as APINACA, was recently observed in Japanese herbal smoking blends. The National Forensic Laboratory Information System registered 443 reports of AKB-48 cases in the USA from March 2010 to January 2013. In May 2013, the Drug Enforcement Administration listed AKB-48 as a Schedule I drug. Recently, AKB-48 was shown to have twice the CB1 receptor binding affinity than CB2. These pharmacological effects and the difficulty in detecting the parent compound in urine highlight the importance of metabolite identification for developing analytical methods for clinical and forensic investigations. Using human hepatocytes and TripleTOF mass spectrometry, we identified 17 novel phase I and II AKB-48 metabolites, products of monohydroxylation, dihydroxylation, or trihydroxylation on the aliphatic adamantane ring or N-pentyl side chain. Glucuronide conjugation of some mono- and dihydroxylated metabolites also occurred. Oxidation and dihydroxylation on the adamantane ring and N-pentyl side chain formed a ketone. More metabolites were identified after 3 h of incubation than at 1 h. For the first time, we present a AKB-48 metabolic scheme obtained from human hepatocytes and high-resolution mass spectrometry. These data are needed to develop analytical methods to identify AKB-48 consumption in clinical and forensic testing.

  14. Schedules of Controlled Substances: Temporary Placement of Six Synthetic Cannabinoids (5F-ADB, 5F-AMB, 5F-APINACA, ADB-FUBINACA, MDMB- CHMICA and MDMB-FUBINACA) Into Schedule I. Notice of Intent.

    Science.gov (United States)

    2016-12-21

    The Administrator of the Drug Enforcement Administration is issuing this notice of intent to temporarily schedule six synthetic cannabinoids: methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate [5F-ADB; 5F-MDMB-PINACA]; methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3-methylbutanoate [5F-AMB]; N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide [5F-APINACA, 5F-AKB48]; N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide [ADB-FUBINACA]; methyl 2-(1-(cyclohexylmethyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate [MDMB-CHMICA, MMB-CHMINACA] and methyl 2-(1-(4-fluorobenzyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate [MDMB-FUBINACA], into schedule I pursuant to the temporary scheduling provisions of the Controlled Substances Act (CSA). This action is based on a finding by the Administrator that the placement of these synthetic cannabinoids into schedule I of the Controlled Substances Act is necessary to avoid an imminent hazard to the public safety. Any final order will impose the administrative, civil, and criminal sanctions and regulatory controls applicable to schedule I substances under the Controlled Substances Act on the manufacture, distribution, possession, importation, exportation of, and research and conduct with, instructional activities of these synthetic cannabinoids.

  15. Reconfigurable multiport EPON repeater

    Science.gov (United States)

    Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio

    2009-11-01

    An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.

  16. Revisiting the TALE repeat.

    Science.gov (United States)

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  17. Cannabinoid Receptors Are Overexpressed in CLL but of Limited Potential for Therapeutic Exploitation.

    Science.gov (United States)

    Freund, Patricia; Porpaczy, Edit A; Le, Trang; Gruber, Michaela; Pausz, Clemens; Staber, Philipp; Jäger, Ulrich; Vanura, Katrina

    2016-01-01

    The cannabinoid receptors 1 and 2 (CNR1&2) are overexpressed in a variety of malignant diseases and cannabinoids can have noteworthy impact on tumor cell viability and tumor growth. Patients diagnosed with chronic lymphocytic leukemia (CLL) present with very heterogeneous disease characteristics translating into highly differential risk properties. To meet the urgent need for refinement in risk stratification at diagnosis and the search for novel therapies we studied CNR expression and response to cannabinoid treatment in CLL. Expression levels of CNR1&2 were determined in 107 CLL patients by real-time PCR and analyzed with regard to prognostic markers and survival. Cell viability of primary CLL cells was determined in suspension and co-culture after incubation in increasing cannabinoid concentrations under normal and reduced serum conditions and in combination with fludarabine. Impact of cannabinoids on migration of CLL cells towards CXCL12 was determined in transwell plates. We found CNR1&2 to be overexpressed in CLL compared to healthy B-cells. Discriminating between high and low expressing subgroups, only high CNR1 expression was associated with two established high risk markers and conferred significantly shorter overall and treatment free survival. Viability of CLL primary cells was reduced in a dose dependent fashion upon incubation with cannabinoids, however, healthy cells were similarly affected. Under serum reduced conditions, no significant differences were observed within suspension and co-culture, respectively, however, the feeder layer contributed significantly to the survival of CLL cells compared to suspension culture conditions. No significant differences were observed when treating CLL cells with cannabinoids in combination with fludarabine. Interestingly, biologic activity of cannabinoids was independent of both CNR1&2 expression. Finally, we did not observe an inhibition of CXCL12-induced migration by cannabinoids. In contrast to other tumor

  18. Evaluation of first generation synthetic cannabinoids on binding at non-cannabinoid receptors and in a battery of in vivo assays in mice.

    Science.gov (United States)

    Wiley, Jenny L; Lefever, Timothy W; Marusich, Julie A; Grabenauer, Megan; Moore, Katherine N; Huffman, John W; Thomas, Brian F

    2016-11-01

    Anecdotal reports suggest that abused synthetic cannabinoids produce cannabis-like "highs," but some of their effects may also differ from traditional cannabinoids such as Δ(9)-tetrahydrocannabinol (THC). This study examined the binding affinities of first-generation indole-derived synthetic cannabinoids at cannabinoid and noncannabinoid receptors and their effects in a functional observational battery (FOB) and drug discrimination in mice. All seven compounds, except JWH-391, had favorable affinity (≤159 nM) for both cannabinoid receptors. In contrast, binding at noncannabinoid receptors was absent or weak. In the FOB, THC and the six active compounds disrupted behaviors in CNS activation and muscle tone/equilibrium domains. Unlike THC, however, synthetic cannabinoids impaired behavior across a wider dose and domain range, producing autonomic effects and signs of CNS excitability and sensorimotor reactivity. In addition, mice acquired JWH-018 discrimination, and THC and JWH-073 produced full substitution whereas the 5-HT2B antagonist mianserin did not substitute in mice trained to discriminate JWH-018 or THC. Urinary metabolite analysis showed that the compounds were extensively metabolized, with metabolites that could contribute to their in vivo effects. Together, these results show that, while first-generation synthetic cannabinoids shared some effects that were similar to those of THC, they also possessed effects that differed from traditional cannabinoids. The high nanomolar (or absent) affinities of these compounds at receptors for most major neurotransmitters suggests that these divergent effects may be related to the greater potencies and/or efficacies at CB1 receptors; however, action(s) at noncannabinoid receptors yet to be assessed or via different signaling pathways cannot be ruled out.

  19. Cannabinoid Hyperemesis Syndrome: Case Report of a Paradoxical Reaction with Heavy Marijuana Use

    Directory of Open Access Journals (Sweden)

    Benjamin Cox

    2012-01-01

    Full Text Available Cannabinoid hyperemesis syndrome (CHS is a rare constellation of clinical findings that includes a history of chronic heavy marijuana use, severe abdominal pain, unrelenting nausea, and intractable vomiting. A striking component of this history includes the use of hot showers or long baths that help to alleviate these symptoms. This is an underrecognized syndrome that can lead to expensive and unrevealing workups and can leave patients self-medicating their nausea and vomiting with the very substance that is causing their symptoms. Long-term treatment of CHS is abstinence from marijuana use—but the acute symptomatic treatment of CHS has been a struggle for many clinicians. Many standard medications used for the symptomatic treatment of CHS (including ondansetron, promethazine, and morphine have repeatedly been shown to be ineffective. Here we present the use of lorazepam as an agent that successfully and safely treats the tenacious symptoms of CHS. Additionally, we build upon existing hypotheses for the pathogenesis of CHS to try to explain why a substance that has been used for thousands of years is only now beginning to cause this paradoxical hyperemesis syndrome.

  20. Recursive quantum repeater networks

    CERN Document Server

    Van Meter, Rodney; Horsman, Clare

    2011-01-01

    Internet-scale quantum repeater networks will be heterogeneous in physical technology, repeater functionality, and management. The classical control necessary to use the network will therefore face similar issues as Internet data transmission. Many scalability and management problems that arose during the development of the Internet might have been solved in a more uniform fashion, improving flexibility and reducing redundant engineering effort. Quantum repeater network development is currently at the stage where we risk similar duplication when separate systems are combined. We propose a unifying framework that can be used with all existing repeater designs. We introduce the notion of a Quantum Recursive Network Architecture, developed from the emerging classical concept of 'recursive networks', extending recursive mechanisms from a focus on data forwarding to a more general distributed computing request framework. Recursion abstracts independent transit networks as single relay nodes, unifies software layer...

  1. Cannabinoids in treatment-resistant epilepsy: A review.

    Science.gov (United States)

    O'Connell, Brooke K; Gloss, David; Devinsky, Orrin

    2017-05-01

    Treatment-resistant epilepsy (TRE) affects 30% of epilepsy patients and is associated with severe morbidity and increased mortality. Cannabis-based therapies have been used to treat epilepsy for millennia, but only in the last few years have we begun to collect data from adequately powered placebo-controlled, randomized trials (RCTs) with cannabidiol (CBD), a cannabis derivative. Previously, information was limited to case reports, small series, and surveys reporting on the use of CBD and diverse medical marijuana (MMJ) preparations containing: tetrahydrocannabinol (THC), CBD, and many other cannabinoids in differing combinations. These RCTs have studied the safety and explored the potential efficacy of CBD use in children with Dravet Syndrome (DS) and Lennox-Gastaut Syndrome (LGS). The role of the placebo response is of paramount importance in studying medical cannabis products given the intense social and traditional media attention, as well as the strong beliefs held by many parents and patients that a natural product is safer and more effective than FDA-approved pharmaceutical agents. We lack valid data on the safety, efficacy, and dosing of artisanal preparations available from dispensaries in the 25 states and District of Columbia with MMJ programs and online sources of CBD and other cannabinoids. On the other hand, open-label studies with 100mg/ml CBD (Epidiolex®, GW Pharmaceuticals) have provided additional evidence of its efficacy along with an adequate safety profile (including certain drug interactions) in children and young adults with a spectrum of TREs. Further, Phase 3 RCTs with Epidiolex support efficacy and adequate safety profiles for children with DS and LGS at doses of 10- and 20-mg/kg/day. This article is part of a Special Issue titled "Cannabinoids and Epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Uso terapéutico de los cannabinoides

    OpenAIRE

    Capellà Hereu, Dolors; Duran Delmas, M.

    2004-01-01

    Actualmente hay dos cannabinoides comercializados en algunos países para uso terapéutico. El dronabinol o D9tetrahidrocannabinol (THC) y su análogo babilona para el tratamiento de las náuseas y vómitos secundarios a la quimioterapia antineoplásica que no responde a los tratamientos habituales; pero su lugar en terapéutica como antieméticos ha sido cuestionado porque no se dispone de ensayos clínicos comparativos con los tratamientos de referencia (inhibidores de la serotonina). El dronabinol ...

  3. Methylhonokiol attenuates neuroinflammation: a role for cannabinoid receptors?

    OpenAIRE

    Gertsch Jürg; Anavi-Goffer Sharon

    2012-01-01

    Abstract The cannabinoid type-2 G protein-coupled (CB2) receptor is an emerging therapeutic target for pain management and immune system modulation. In a mouse model of Alzheimer’s disease (AD) the orally administered natural product 4′-O-methylhonokiol (MH) has been shown to prevent amyloidogenesis and progression of AD by inhibiting neuroinflammation. In this commentary we discuss an intriguing link between the recently found CB2 receptor-mediated molecular mechanisms of MH and its anti-inf...

  4. Cannabinoid Receptors: A Novel Target for Treating Prostate Cancer

    Science.gov (United States)

    2006-02-01

    prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (a mixed CB1 / CB2 agonist) resulted in...34 CBI receptor, and the "peripheral" CB2 receptor. Recently we have shown that expression levels of both cannabinoid receptors CB1 and CB2 are higher...in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (a mixed CB1 / CB2 agonist

  5. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid

    OpenAIRE

    Haj, Christeene G.; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M.; Yektin, Zhana; Mechoulam,Raphael; Feldmann, Mark; Gallily, Ruth

    2015-01-01

    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ9-tetrahydrocannabinol (Δ9-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therape...

  6. Cannabinoid-induced autophagy regulates suppressor of cytokine signaling-3 in intestinal epithelium.

    Science.gov (United States)

    Koay, Luan C; Rigby, Rachael J; Wright, Karen L

    2014-07-15

    Autophagy is a catabolic process involved in homeostatic and regulated cellular protein recycling and degradation via the lysosomal degradation pathway. Emerging data associate impaired autophagy, increased activity in the endocannabinoid system, and upregulation of suppressor of cytokine signaling-3 (SOCS3) protein expression during intestinal inflammation. We have investigated whether these three processes are linked. By assessing the impact of the phytocannabinoid cannabidiol (CBD), the synthetic cannabinoid arachidonyl-2'-chloroethylamide (ACEA), and the endocannabinoid N-arachidonoylethanolamine (AEA) on autophagosome formation, we explored whether these actions were responsible for cyclic SOCS3 protein levels. Our findings show that all three cannabinoids induce autophagy in a dose-dependent manner in fully differentiated Caco-2 cells, a model of mature intestinal epithelium. ACEA and AEA induced canonical autophagy, which was cannabinoid type 1 receptor-mediated. In contrast, CBD was able to bypass the cannabinoid type 1 receptor and the canonical pathway to induce autophagy, albeit to a lesser extent. Functionally, all three cannabinoids reduced SOCS3 protein expression, which was reversed by blocking early and late autophagy. In conclusion, the regulatory protein SOCS3 is regulated by autophagy, and cannabinoids play a role in this process, which could be important when therapeutic applications for the cannabinoids in inflammatory conditions are considered.

  7. Framework for sex differences in adolescent neurobiology: a focus on cannabinoids.

    Science.gov (United States)

    Viveros, Maria-Paz; Marco, Eva M; López-Gallardo, Meritxell; Garcia-Segura, Luis Miguel; Wagner, Edward J

    2011-08-01

    This review highlights the salient findings that have furthered our understanding of how sex differences are initiated during development and maintained throughout life. First we discuss how gonadal steroid hormones organize the framework for sex differences within critical periods of development-namely, during those exposures which occur in utero and post-partum, as well as those which occur during puberty. Given the extensive precedence of sex differences in cannabinoid-regulated biology, we then focus on the disparities within the endogenous cannabinoid system, as well as those observed with exogenously administered cannabinoids. We start with how the expression of cannabinoid CB(1) receptors is regulated throughout development. This is followed by a discussion of differential vulnerability to the pathological sequelae stemming from cannabinoid exposure during adolescence. Next we talk about sex differences in the interactions between cannabinoids and other drugs of abuse, followed by the organizational and activational roles of gonadal steroids in establishing and maintaining the sex dependence in the biological actions of cannabinoids. Finally, we discuss ways to utilize this knowledge to strategically target critical developmental windows of vulnerability/susceptibility and thereby implement more effective therapeutic interventions for afflictions that may be more prevalent in one sex vs. the other.

  8. Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents

    Science.gov (United States)

    Ladin, Daniel A.; Soliman, Eman; Griffin, LaToya; Van Dross, Rukiyah

    2016-01-01

    Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority. Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history. Cannabinoid activity is regulated by the endocannabinoid system (ECS), which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown. More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death. However, many studies investigated these effects using in vitro models which may not adequately mimic tumor growth and metastasis. As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical animal models and to examine the current standing of cannabinoids that are being tested in human cancer patients.

  9. Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Daniel A. Ladin

    2016-10-01

    Full Text Available Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority. Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history. Cannabinoid activity is regulated through the endocannabinoid system, which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown. More recently, cannabinoids have gained special attention for their role in cancer development and reduction. However, many studies investigated these roles using in vitro models which may not adequately mimic tumor growth and metastasis. As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical models and to examine the current standing of cannabinoids currently being tested in human cancer patients.

  10. ConA 重复给药建立 ACLF 免疫状态动态转变的小鼠模型%Establishment of Model of Dynamic Change of Immune Status of ACLF Induced by ConA Repeated Administration in Mice

    Institute of Scientific and Technical Information of China (English)

    张楠楠; 杨淑殷; 陈柳莹; 尹珊; 王十锦; 刘三海; 王蓓蓓; 汪铮; 李海

    2016-01-01

    背景:慢加急性肝衰竭(ACLF)是我国常见的肝衰竭类型,目前尚缺乏能有效模拟 ACLF 免疫状态动态转变的动物模型。目的:通过刀豆球蛋白 A(ConA)重复给药,建立模拟 ACLF 免疫状态动态转变的动物模型。方法:小鼠随机分为对照组和 ConA 重复给药组,ConA 重复给药组小鼠给予球后内眦静脉丛注射 ConA 15 mg/ kg,每隔48 h 一次,共5次,对照组给予等体积0.9% NaCl 溶液。CBA 法检测外周血 IL-6、IL-10、IL-12、TNF-α、IFN-γ、MCP-1水平,并测定 IL-10/ TNF-α比值;流式细胞术检测外周血中单核细胞 HLA-DR 表达、CD4+ T 细胞数量及其比例以及 PD-1表达。结果:随着给药次数增加,ConA 重复给药组小鼠外周血细胞因子从促炎细胞因子为主转变成抗炎细胞因子为主。与对照组相比,ConA 重复给药组外周血中单核细胞 HLA-DR 表达下降(P <0.05);CD4+ T 细胞数量和比例下降(P <0.05),PD-1表达上调(P <0.05)。结论:本研究通过 ConA 重复刺激成功建立了模拟 ACLF 免疫状态从全身炎症反应综合征(SIRS)到代偿性抗炎反应综合征(CARS)动态转变的动物模型。%Background:Acute-on-chronic liver failure( ACLF)is a commonly seen liver failure in China,and lacking an animal model that can effectively simulate the dynamic change of immune status of ACLF. Aims:To establish an animal model that can simulate dynamic change of immune status of ACLF by repeated administration of concanavalin A(ConA). Methods:Mice were randomly divided into normal control group and ConA repeated administration group. Mice in ConA repeated administration group were injected with ConA 15 mg/ kg through retrobulbar angular vein every 48 hours for 5 times,and mice in control group were injected with same volume of 0. 9% NaCl solution. Serum levels of IL-6,IL-10,IL- 12,TNF-α,IFN-γ,MCP-1 in peripheral blood were assessed by CBA assay,and the

  11. Prejunctional and peripheral effects of the cannabinoid CB(1) receptor inverse agonist rimonabant (SR 141716).

    Science.gov (United States)

    van Diepen, Hester; Schlicker, Eberhard; Michel, Martin C

    2008-10-01

    Rimonabant is an inverse agonist specific for cannabinoid receptors and selective for their cannabinoid-1 (CB(1)) subtype. Although CB(1) receptors are more abundant in the central nervous system, rimonabant has many effects in the periphery, most of which are related to prejunctional modulation of transmitter release from autonomic nerves. However, CB(1) receptors are also expressed in, e.g., adipocytes and endothelial cells. Rimonabant inhibits numerous cardiovascular cannabinoid effects, including the decrease of blood pressure by central and peripheral (cardiac and vascular) sites of action, with the latter often being endothelium dependent. Rimonabant may also antagonize cannabinoid effects in myocardial infarction and in hypotension associated with septic shock or liver cirrhosis. In the gastrointestinal tract, rimonabant counteracts the cannabinoid-induced inhibition of secretion and motility. Although not affecting most cannabinoid effects in the airways, rimonabant counteracts inhibition of smooth-muscle contraction by cannabinoids in urogenital tissues and may interfere with embryo attachment and outgrowth of blastocysts. It inhibits cannabinoid-induced decreases of intraocular pressure. Rimonabant can inhibit proliferation of, maturation of, and energy storage by adipocytes. Among the many cannabinoid effects on hormone secretion, only some are rimonabant sensitive. The effects of rimonabant on the immune system are not fully clear, and it may inhibit or stimulate proliferation in several types of cancer. We conclude that direct effects of rimonabant on adipocytes may contribute to its clinical role in treating obesity. Other peripheral effects, many of which occur prejunctionally, may also contribute to its overall clinical profile and lead to additional indications as well adverse events.

  12. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors

    Science.gov (United States)

    O'Sullivan, S E

    2007-01-01

    Cannabinoids act at two classical cannabinoid receptors (CB1 and CB2), a 7TM orphan receptor and the transmitter-gated channel transient receptor potential vanilloid type-1 receptor. Recent evidence also points to cannabinoids acting at members of the nuclear receptor family, peroxisome proliferator-activated receptors (PPARs, with three subtypes α, β (δ) and γ), which regulate cell differentiation and lipid metabolism. Much evidence now suggests that endocannabinoids are natural activators of PPARα. Oleoylethanolamide regulates feeding and body weight, stimulates fat utilization and has neuroprotective effects mediated through activation of PPARα. Similarly, palmitoylethanolamide regulates feeding and lipid metabolism and has anti-inflammatory properties mediated by PPARα. Other endocannabinoids that activate PPARα include anandamide, virodhamine and noladin. Some (but not all) endocannabinoids also activate PPARγ; anandamide and 2-arachidonoylglycerol have anti-inflammatory properties mediated by PPARγ. Similarly, ajulemic acid, a structural analogue of a metabolite of Δ9-tetrahydrocannabinol (THC), causes anti-inflammatory effects in vivo through PPARγ. THC also activates PPARγ, leading to a time-dependent vasorelaxation in isolated arteries. Other cannabinoids which activate PPARγ include N-arachidonoyl-dopamine, HU210, WIN55212-2 and CP55940. In contrast, little research has been carried out on the effects of cannabinoids at PPARδ. In this newly emerging area, a number of research questions remain unanswered; for example, why do cannabinoids activate some isoforms and not others? How much of the chronic effects of cannabinoids are through activation of nuclear receptors? And importantly, do cannabinoids confer the same neuro- and cardioprotective benefits as other PPARα and PPARγ agonists? This review will summarize the published literature implicating cannabinoid-mediated PPAR effects and discuss the implications thereof. PMID:17704824

  13. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  14. Cannabinoid receptor signaling regulates liver development and metabolism.

    Science.gov (United States)

    Liu, Leah Y; Alexa, Kristen; Cortes, Mauricio; Schatzman-Bone, Stephanie; Kim, Andrew J; Mukhopadhyay, Bani; Cinar, Resat; Kunos, George; North, Trista E; Goessling, Wolfram

    2016-02-15

    Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function.

  15. Crystal Structure of the Human Cannabinoid Receptor CB1.

    Science.gov (United States)

    Hua, Tian; Vemuri, Kiran; Pu, Mengchen; Qu, Lu; Han, Gye Won; Wu, Yiran; Zhao, Suwen; Shui, Wenqing; Li, Shanshan; Korde, Anisha; Laprairie, Robert B; Stahl, Edward L; Ho, Jo-Hao; Zvonok, Nikolai; Zhou, Han; Kufareva, Irina; Wu, Beili; Zhao, Qiang; Hanson, Michael A; Bohn, Laura M; Makriyannis, Alexandros; Stevens, Raymond C; Liu, Zhi-Jie

    2016-10-20

    Cannabinoid receptor 1 (CB1) is the principal target of Δ(9)-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.

  16. Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid.

    Science.gov (United States)

    Kozela, Ewa; Juknat, Ana; Vogel, Zvi

    2017-07-31

    The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes.

  17. Cannabinoids inhibit cellular respiration of human oral cancer cells.

    Science.gov (United States)

    Whyte, Donna A; Al-Hammadi, Suleiman; Balhaj, Ghazala; Brown, Oliver M; Penefsky, Harvey S; Souid, Abdul-Kader

    2010-01-01

    The primary cannabinoids, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and Delta(8)-tetrahydrocannabinol (Delta(8)-THC) are known to disturb the mitochondrial function and possess antitumor activities. These observations prompted us to investigate their effects on the mitochondrial O(2) consumption in human oral cancer cells (Tu183). This epithelial cell line overexpresses bcl-2 and is highly resistant to anticancer drugs. A phosphorescence analyzer that measures the time-dependence of O(2) concentration in cellular or mitochondrial suspensions was used for this purpose. A rapid decline in the rate of respiration was observed when Delta(9)-THC or Delta(8)-THC was added to the cells. The inhibition was concentration-dependent, and Delta(9)-THC was the more potent of the two compounds. Anandamide (an endocannabinoid) was ineffective; suggesting the effects of Delta(9)-THC and Delta(8)-THC were not mediated by the cannabinoidreceptors. Inhibition of O(2) consumption by cyanide confirmed the oxidations occurred in the mitochondrial respiratory chain. Delta(9)-THC inhibited the respiration of isolated mitochondria from beef heart. These results show the cannabinoids are potent inhibitors of Tu183 cellular respiration and are toxic to this highly malignant tumor.

  18. Cannabis, Cannabinoids, and Sleep: a Review of the Literature.

    Science.gov (United States)

    Babson, Kimberly A; Sottile, James; Morabito, Danielle

    2017-04-01

    The current review aims to summarize the state of research on cannabis and sleep up to 2014 and to review in detail the literature on cannabis and specific sleep disorders from 2014 to the time of publication. Preliminary research into cannabis and insomnia suggests that cannabidiol (CBD) may have therapeutic potential for the treatment of insomnia. Delta-9 tetrahydrocannabinol (THC) may decrease sleep latency but could impair sleep quality long-term. Novel studies investigating cannabinoids and obstructive sleep apnea suggest that synthetic cannabinoids such as nabilone and dronabinol may have short-term benefit for sleep apnea due to their modulatory effects on serotonin-mediated apneas. CBD may hold promise for REM sleep behavior disorder and excessive daytime sleepiness, while nabilone may reduce nightmares associated with PTSD and may improve sleep among patients with chronic pain. Research on cannabis and sleep is in its infancy and has yielded mixed results. Additional controlled and longitudinal research is critical to advance our understanding of research and clinical implications.

  19. Cannabinoids and centrak neuropathic pain. A review (Cannabinoidi e dolore neuropatico centrale. Una rassegna

    Directory of Open Access Journals (Sweden)

    Francesco Crestani

    2014-03-01

    Full Text Available Only recently, the medical community highlighted the pharmacological scientific bases of the effects of Cannabis. The most important active principle, Delta-9-tetrahydrocannabinol was identified in the second half of the last century, and receptors were subsequently identified and endogenous ligands, called endocannabinoids, were characterized. The effectiveness of the cannabinoids in the treatment of nausea and vomit due to anti-neoplastic chemotherapy and in the wasting-syndrome during AIDS is recognized. Moreover, the cannabinoids have shown analgesic properties, particularly interesting with regard to the central neuropathic pain. This article will review the current knowledge and will give practical guidance on how to proceed in prescribing cannabinoids.

  20. The role of cannabinoids in prostate cancer: Basic science perspective and potential clinical applications

    OpenAIRE

    2012-01-01

    Prostate cancer is a global public health problem, and it is the most common cancer in American men and the second cause for cancer-related death. Experimental evidence shows that prostate tissue possesses cannabinoid receptors and their stimulation results in anti-androgenic effects. To review currently relevant findings related to effects of cannabinoid receptors in prostate cancer. PubMed search utilizing the terms “cannabis,” “cannabinoids,” “prostate cancer,” and “cancer pain management,...

  1. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current

    OpenAIRE

    Lauckner, Jane E.; Jensen, Jill B.; Chen, Huei-Ying; Lu, Hui-Chen; Hille, Bertil; Mackie, Ken

    2008-01-01

    The CB1 cannabinoid receptor mediates many of the psychoactive effects of Δ9THC, the principal active component of cannabis. However, ample evidence suggests that additional non-CB1/CB2 receptors may contribute to the behavioral, vascular, and immunological actions of Δ9THC and endogenous cannabinoids. Here, we provide further evidence that GPR55, a G protein-coupled receptor, is a cannabinoid receptor. GPR55 is highly expressed in large dorsal root ganglion neurons and, upon activation by va...

  2. Cannabinoid Receptor–Interacting Protein 1a Modulates CB1 Receptor Signaling and Regulation

    OpenAIRE

    Smith, Tricia H.; Blume, Lawrence C.; Straiker, Alex; Cox, Jordan O.; David, Bethany G.; McVoy, Julie R. Secor; Sayers, Katherine W.; Poklis, Justin L.; Abdullah, Rehab A.; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Maurice R. Elphick; Howlett, Allyn C; Selley, Dana E

    2015-01-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor–interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca2+ channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated ...

  3. A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis

    Directory of Open Access Journals (Sweden)

    Wilsey BL

    2016-08-01

    Full Text Available Barth L Wilsey,1,2 Reena Deutsch,3 Emil Samara,4 Thomas D Marcotte,3 Allan J Barnes,5 Marilyn A Huestis,5,6 Danny Le1,2 1VA Northern California Health Care System, Mather, CA, 2Department of Physical Medicine and Rehabilitation, University of California, Sacramento, CA, 3Department of Psychiatry, University of California, San Diego, La Jolla, CA, 4PharmaPolaris International, Davis, CA, 5Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, Baltimore, MD, 6University of Maryland School of Medicine, Baltimore, MD, USA Abstract: A randomized, placebo-controlled crossover trial utilizing vaporized cannabis containing placebo and 6.7% and 2.9% delta-9-tetrahydrocannabinol (THC was performed in 42 subjects with central neuropathic pain related to spinal cord injury and disease. Subjects received two administrations of the study medication in a 4-hour interval. Blood samples for pharmacokinetic evaluation were collected, and pain assessment tests were performed immediately after the second administration and 3 hours later. Pharmacokinetic data, although limited, were consistent with literature reports, namely dose-dependent increase in systemic exposure followed by rapid disappearance of THC. Dose-dependent improvement in pain score was evident across all pain scale elements. Using mixed model regression, an evaluation of the relationship between plasma concentrations of selected cannabinoids and percent change in items from the Neuropathic Pain Scale was conducted. Changes in the concentration of THC and its nonpsychotropic metabolite, 11-nor-9-carboxy-THC, were related to percent change from baseline of several descriptors (eg, itching, burning, and deep pain. However, given the large number of multiple comparisons, false-discovery-rate-adjusted P-values were not significant. Plans for future work are outlined to explore the relationship of plasma concentrations with the analgesic response to different cannabinoids. Such an

  4. The Pentapeptide Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  5. Differential physiological and behavioral cues observed in individuals smoking botanical marijuana versus synthetic cannabinoid drugs.

    Science.gov (United States)

    Chase, Peter B; Hawkins, Jeff; Mosier, Jarrod; Jimenez, Ernest; Boesen, Keith; Logan, Barry K; Walter, Frank G

    2016-01-01

    Synthetic cannabinoid use has increased in many states, and medicinal and/or recreational marijuana use has been legalized in some states. These changes present challenges to law enforcement drug recognition experts (DREs) who determine whether drivers are impaired by synthetic cannabinoids or marijuana, as well as to clinical toxicologists who care for patients with complications from synthetic cannabinoids and marijuana. Our goal was to compare what effects synthetic cannabinoids and marijuana had on performance and behavior, including driving impairment, by reviewing records generated by law enforcement DREs who evaluated motorists arrested for impaired driving. Data were from a retrospective, convenience sample of de-identified arrest reports from impaired drivers suspected of using synthetic cannabinoids (n = 100) or marijuana (n = 33). Inclusion criteria were arrested drivers who admitted to using either synthetic cannabinoids or marijuana, or who possessed either synthetic cannabinoids or marijuana; who also had a DRE evaluation at the scene; and whose blood screens were negative for alcohol and other drugs. Exclusion criteria were impaired drivers arrested with other intoxicants found in their drug or alcohol blood screens. Blood samples were analyzed for 20 popular synthetic cannabinoids by using liquid chromatography-tandem mass spectrometry. Delta-9-tetrahydrocannabinol (THC) and THC-COOH were quantified by gas chromatography-mass spectrometry. Statistical significance was determined by using Fisher's exact test or Student's t-test, where appropriate, to compare the frequency of characteristics of those in the synthetic cannabinoid group versus those in the marijuana group. 16 synthetic cannabinoid and 25 marijuana records met selection criteria; the drivers of these records were arrested for moving violations. Median age for the synthetic cannabinoid group (n = 16, 15 males) was 20 years (IQR 19-23 years). Median age for the marijuana group (n = 25, 21

  6. Repeating the Past

    Science.gov (United States)

    Moore, John W.

    1998-05-01

    As part of the celebration of the Journal 's 75th year, we are scanning each Journal issue from 25, 50, and 74 years ago. Many of the ideas and practices described are so similar to present-day "innovations" that George Santayana's adage (1) "Those who cannot remember the past are condemned to repeat it" comes to mind. But perhaps "condemned" is too strong - sometimes it may be valuable to repeat something that was done long ago. One example comes from the earliest days of the Division of Chemical Education and of the Journal.

  7. Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors.

    Science.gov (United States)

    Urigüen, Leyre; Pérez-Rial, Sandra; Ledent, Catherine; Palomo, Tomás; Manzanares, Jorge

    2004-06-01

    The role of cannabinoid CB(1) receptors in the action of anxiolytics was examined. Deletion of CB(1) receptors resulted in increased anxiety-like behaviours in light/dark box, elevated plus maze and social interaction tests. Mutant mice presented basal low corticosterone concentrations and low proopiomelanocortin gene expression in the anterior lobe of the pituitary gland compared to wild-type mice. Ten minutes of restraint stress resulted in a twofold increase in corticosterone concentrations in the plasma of mutant mice, compared to wild-type mice. Bromazepam (50 or 100 microg/kg) markedly increased the time spent in light area in wild-type animals, though both doses were without effect in mutant mice. Administration of buspirone (1 or 2 mg/kg) produced anxiolytic effects in wild-type mice. In contrast, only the highest dose of buspirone had anxiolytic results in mutant mice. Our findings reveal that CB(1) receptors are involved in the regulation of emotional responses, and play a pivotal role in the action mechanism of anxiolytics. They suggest that alterations in the functional activity of the CB(1) receptor may be related to the emergence of anxiety disorders, and may affect treatment with anxiolytics.

  8. Suppression of human monocyte interleukin-1beta production by ajulemic acid, a nonpsychoactive cannabinoid.

    Science.gov (United States)

    Zurier, Robert B; Rossetti, Ronald G; Burstein, Sumner H; Bidinger, Bonnie

    2003-02-15

    Oral administration of ajulemic acid (AjA), a cannabinoid acid devoid of psychoactivity, reduces joint tissue damage in rats with adjuvant arthritis. Because interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNFalpha) are central to the progression of inflammation and joint tissue injury in patients with rheumatoid arthritis, we investigated human monocyte IL-1beta and TNFalpha responses after the addition of AjA to cells in vitro. Peripheral blood and synovial fluid monocytes (PBM and SFM) were isolated from healthy subjects and patients with inflammatory arthritis, respectively, treated with AjA (0-30 microM) in vitro, and then stimulated with lipopolysaccharide. Cells were harvested for mRNA, and supernatants were collected for cytokine assay. Addition of AjA to PBM and SFM in vitro reduced both steady-state levels of IL-1beta mRNA and secretion of IL-1beta in a concentration-dependent manner. Suppression was maximal (50.4%) at 10 microM AjA (Parthritis. Development of nonpsychoactive therapeutically useful synthetic analogs of Cannabis constituents, such as AjA, may help resolve the ongoing debate about the use of marijuana as medicine.

  9. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol.

    Science.gov (United States)

    Russo, Ethan; Guy, Geoffrey W

    2006-01-01

    This study examines the current knowledge of physiological and clinical effects of tetrahydrocannabinol (THC) and cannabidiol (CBD) and presents a rationale for their combination in pharmaceutical preparations. Cannabinoid and vanilloid receptor effects as well as non-receptor mechanisms are explored, such as the capability of THC and CBD to act as anti-inflammatory substances independent of cyclo-oxygenase (COX) inhibition. CBD is demonstrated to antagonise some undesirable effects of THC including intoxication, sedation and tachycardia, while contributing analgesic, anti-emetic, and anti-carcinogenic properties in its own right. In modern clinical trials, this has permitted the administration of higher doses of THC, providing evidence for clinical efficacy and safety for cannabis based extracts in treatment of spasticity, central pain and lower urinary tract symptoms in multiple sclerosis, as well as sleep disturbances, peripheral neuropathic pain, brachial plexus avulsion symptoms, rheumatoid arthritis and intractable cancer pain. Prospects for future application of whole cannabis extracts in neuroprotection, drug dependency, and neoplastic disorders are further examined. The hypothesis that the combination of THC and CBD increases clinical efficacy while reducing adverse events is supported.

  10. The cannabinoid beta-caryophyllene (BCP) induces neuritogenesis in PC12 cells by a cannabinoid-receptor-independent mechanism.

    Science.gov (United States)

    Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Sisti, Flávia Malvestio; Fernandes, Laís Silva; Ferreira, Rafaela Scalco; de Freitas, Osvaldo; Santos, Antônio Cardozo

    2017-01-05

    Beta-caryophyllene (BCP) is a phytocannabinoid whose neuroprotective activity has been mainly associated with selective activation of cannabinoid-type-2 (CB2) receptors, inhibition of microglial activation and decrease of inflammation. Here, we addressed the potential of BCP to induce neuritogenesis in PC12 cells, a model system for primary neuronal cells that express trkA receptors, respond to NGF and do not express CB2 receptors. We demonstrated that BCP increases the survival and activates the NGF-specific receptor trkA in NGF-deprived PC12 cells, without increasing the expression of NGF itself. The neuritogenic effect of BCP in PC12 cells was abolished by k252a, an inhibitor of the NGF-specific receptor trkA. Accordingly, BCP did not induce neuritogenesis in SH-SY5Y neuroblastoma cells, a neuronal model that does not express trkA receptors and do not respond to NGF. Additionally, we demonstrated that BCP increases the expression of axonal-plasticity-associated proteins (GAP-43, synapsin and synaptophysin) in PC12 cells. It is known that these proteins are up-regulated by NGF in neurons and neuron-like cells, such as PC12 cells. Altogether, these findings suggest that BCP activates trka receptors and induces neuritogenesis by a mechanism independent of NGF or cannabinoid receptors. This is the first study to show such effects of BCP and their beneficial role in neurodegenerative processes should be further investigated.

  11. All-optical repeater.

    Science.gov (United States)

    Silberberg, Y

    1986-06-01

    An all-optical device containing saturable gain, saturable loss, and unsaturable loss is shown to transform weak, distorted optical pulses into uniform standard-shape pulses. The proposed device performs thresholding, amplification, and pulse shaping as required from an optical repeater. It is shown that such a device could be realized by existing semiconductor technology.

  12. Bidirectional Manchester repeater

    Science.gov (United States)

    Ferguson, J.

    1980-01-01

    Bidirectional Manchester repeater is inserted at periodic intervals along single bidirectional twisted pair transmission line to detect, amplify, and transmit bidirectional Manchester 11 code signals. Requiring only 18 TTL 7400 series IC's, some line receivers and drivers, and handful of passive components, circuit is simple and relatively inexpensive to build.

  13. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    Science.gov (United States)

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  14. Cannabinoid derivate-loaded PLGA nanocarriers for oral administration: formulation, characterization, and cytotoxicity studies

    Directory of Open Access Journals (Sweden)

    Prados J

    2012-11-01

    Full Text Available Lucía Martín-Banderas,1 Josefa Álvarez-Fuentes,1 Matilde Durán-Lobato,1 José Prados,2 Consolación Melguizo,2 Mercedes Fernández-Arévalo,1 Mª Ángeles Holgado11Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville, Spain; 2Institute of Biopathology and Regenerative Medicine (IBIMER, School of Medicine, University of Granada, Granada, SpainAbstract: CB13 (1-Naphthalenyl[4-(pentyloxy-1-naphthalenyl]methanone-loaded poly(lactic-co-glycolic acid nanoparticles (NPs were produced by nanoprecipitation and tested for their in vitro release behavior and in vitro cytotoxicity assays. The effects of several formulation parameters such as polymer type, surfactant concentration, and initial drug amount were studied. NPs had a particle size 90–300 nm in diameter. Results obtained show that the main influence on particle size was the type of polymer employed during the particle production: the greater the hydrophobicity, the smaller the particle size. In terms of encapsulation efficiency (%, high values were achieved (~68%–90% for all formulations prepared due to the poor solubility of CB13 in the external aqueous phase. Moreover, an inverse relationship between release rate and NP size was found. On the other hand, low molecular weight and low lactide content resulted in a less hydrophobic polymer with increased rates of water absorption, hydrolysis, and erosion. NPs showed no cytotoxicity and may be considered to be appropriate for drug-delivery purposes.Keywords: neuropathic pain, CB13, nanoprecipitation

  15. Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence: a hippocampal proteomic study in mice.

    Directory of Open Access Journals (Sweden)

    Jarrah R Spencer

    2013-02-01

    Full Text Available Neuregulin 1 (NRG1 is linked to an increased risk of developing schizophrenia and cannabis dependence. Mice that are hypomorphic for Nrg1 (Nrg1 HET mice display schizophrenia-relevant behavioural phenotypes and aberrant expression of serotonin and glutamate receptors. Nrg1 HET mice also display idiosyncratic responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (THC. To gain traction on the molecular pathways disrupted by Nrg1 hypomorphism and Nrg1-cannabinoid interactions we conducted a proteomic study. Adolescent wildtype (WT and Nrg1 HET mice were exposed to repeated injections of vehicle or THC and their hippocampi were submitted to 2D gel proteomics. Comparison of WT and Nrg1 HET mice identified proteins linked to molecular changes in schizophrenia that have not been previously associated with Nrg1. These proteins are involved in vesicular release of neurotransmitters such as SNARE proteins; enzymes impacting serotonergic neurotransmission, and; proteins affecting growth factor expression. Nrg1 HET mice treated with THC expressed a distinct protein expression signature compared to WT mice. Replicating prior findings, THC caused proteomic changes in WT mice suggestive of greater oxidative stress and neurodegeneration. We have previously observed that THC selectively increased hippocampal NMDA receptor binding of adolescent Nrg1 HET mice. Here we observed outcomes consistent with heightened NMDA-mediated glutamatergic neurotransmission. This included differential expression of proteins involved in NMDA receptor trafficking to the synaptic membrane; lipid raft stabilization of synaptic NMDA receptors; and homeostatic responses to dampen excitotoxicity. These findings uncover for the first time novel proteins altered in response to Nrg1 hypomorphism and Nrg1-cannabinoid interactions that improves our molecular understanding of Nrg1 signaling and Nrg1-mediated genetic vulnerability to the neurobehavioural effects

  16. Rapid Identification of Synthetic Cannabinoids in Herbal Incenses with DART-MS and NMR.

    Science.gov (United States)

    Marino, Michael A; Voyer, Brandy; Cody, Robert B; Dane, A John; Veltri, Mercurio; Huang, Ling

    2016-01-01

    The usage of herbal incenses containing synthetic cannabinoids has caused an increase in medical incidents and triggered legislations to ban these products throughout the world. Law enforcement agencies are experiencing sample backlogs due to the variety of the products and the addition of new and still-legal compounds. In our study, proton nuclear magnetic resonance (NMR) spectroscopy was employed to promptly screen the synthetic cannabinoids after their rapid, direct detection on the herbs and in the powders by direct analysis in real time mass spectrometry (DART-MS). A simple sample preparation protocol was employed on 50 mg of herbal sample matrices for quick NMR detection. Ten synthetic cannabinoids were discovered in fifteen herbal incenses. The combined DART-MS and NMR methods can be used to quickly screen synthetic cannabinoids in powder and herbal samples, serving as a complementary approach to conventional GC-MS or LC-MS methods.

  17. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela, E-mail: daniela.parolaro@uninsubria.it [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  18. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  19. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies

    NARCIS (Netherlands)

    Zurolo, E.; Iyer, A.M.; Spliet, W.G.M.; van Rijen, P.C.; Troost, D.; Gorter, J.A.; Aronica, E.

    2010-01-01

    Recent data support the involvement of the endocannabinoid signaling in early brain development, as well as a key role of cannabinoid receptors (CBR) in pathological conditions associated with unbalanced neuronal excitability and inflammation. Using immunocytochemistry, we explored the expression an

  20. Cannabinoids and Tremor Induced by Motor-related Disorders: Friend or Foe?

    Science.gov (United States)

    Arjmand, Shokouh; Vaziri, Zohreh; Behzadi, Mina; Abbassian, Hassan; Stephens, Gary J; Shabani, Mohammad

    2015-10-01

    Tremor arises from an involuntary, rhythmic muscle contraction/relaxation cycle and is a common disabling symptom of many motor-related diseases such as Parkinson disease, multiple sclerosis, Huntington disease, and forms of ataxia. In the wake of anecdotal, largely uncontrolled, observations claiming the amelioration of some symptoms among cannabis smokers, and the high density of cannabinoid receptors in the areas responsible for motor function, including basal ganglia and cerebellum, many researchers have pursued the question of whether cannabinoid-based compounds could be used therapeutically to alleviate tremor associated with central nervous system diseases. In this review, we focus on possible effects of cannabinoid-based medicines, in particular on Parkinsonian and multiple sclerosis-related tremors and the common probable molecular mechanisms. While, at present, inconclusive results have been obtained, future investigations should extend preclinical studies with different cannabinoids to controlled clinical trials to determine potential benefits in tremor.

  1. Adjuvant topical therapy with a cannabinoid receptor agonist in facial postherpetic neuralgia.

    Science.gov (United States)

    Phan, Ngoc Quan; Siepmann, Dorothee; Gralow, Ingrid; Ständer, Sonja

    2010-02-01

    Postherpetic neuralgia is a frequent adverse event in herpes zoster patients and difficult to treat. Conventional analgetic therapy often fails to reduce the burning pain transmitted by unmyelinated nerve fibers. These nerves express cannabinoid receptors which exert a role in modulation of nociceptive symptoms. Therefore, topical therapy with cannabinoid receptor agonist seems likely to suppress local burning pain. In an open-labeled trial, 8 patients with facial postherpetic neuralgia received a cream containing the cannabinoid receptor agonist N-palmitoylethanolamine. The course of symptoms was scored with the visual analog scale. 5 of 8 patients (62.5 %) experienced a mean pain reduction of 87.8 %. Therapy was tolerated by all patients. No unpleasant sensations or adverse events occurred. Topical cannabinoid receptor agonists are an effective and well-tolerated adjuvant therapy option in postherpetic neuralgia.

  2. In Vitro Metabolite Profiling of ADB-FUBINACA, A New Synthetic Cannabinoid

    National Research Council Canada - National Science Library

    Jeremy Carlier; Xingxing Diao; Ariane Wohlfarth; Karl Scheidweiler; Marilyn A. Huestis

    ...-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1Hindazole- 3-carboxamide (ADB-FUBINACA) is an emerging synthetic cannabinoid whose toxicological and metabolic data are currently unavailable. Methods...

  3. Predicting the CRIP1a-cannabinoid 1 receptor interactions with integrated molecular modeling approaches

    Science.gov (United States)

    Ahmed, Mostafa H.; Kellogg, Glen E.; Selley, Dana E.; Safo, Martin; Zhang, Yan

    2015-01-01

    Cannabinoid receptors are a family of G-protein coupled receptors that are involved in a wide variety of physiological processes and diseases. One of the key regulators that are unique to cannabinoid receptors is the cannabinoid receptor interacting proteins (CRIPs). Among them CRIP1a was found to decrease the constitutive activity of the cannabinoid type-1 receptor (CB1R). The aim of this study is to gain an understanding of the interaction between CRIP1a and CB1R through using different computational techniques. The generated model demonstrated several key putative interactions between CRIP1a and CB1R, including those involving Lys130 of CRIP1a. PMID:24461351

  4. Administrating Solr

    CERN Document Server

    Mohan, Surendra

    2013-01-01

    A fast-paced, example-based guide to learning how to administrate, monitor, and optimize Apache Solr.""Administrating Solr"" is for developers and Solr administrators who have a basic knowledge of Solr and who are looking for ways to keep their Solr server healthy and well maintained. A basic working knowledge of Apache Lucene is recommended, but this is not mandatory.

  5. 短期重复使用几种精神药物对小鼠自主活动和脑单胺递质的影响%Effect of short-term repeated administration of several psychoactive drugs on locomotor activity and cerebral monamine transmitters in mice

    Institute of Scientific and Technical Information of China (English)

    詹皓; 唐桂香; 辛益妹

    2001-01-01

    目的观察短期重复使用几种精神药物对小鼠自主活动和脑单胺递质的影响,以评价药物作用的耐受性和副作用。方法雄性小鼠作为实验对象。中枢兴奋药实验分3组(每组n=6):①对照组;②咖啡因(Caf)组30 mg/kg;③右旋苯丙胺(Dex)组10 mg/kg。催眠药实验分4组(每组n=6):①对照组;②三唑仑(TZ)组0.04 mg/kg;③速可眠(Sec)组60 mg/kg;④褪黑素(Mel)组120 mg/kg。小鼠灌胃给药,1次/d,共7 d。于第1天和第7天称重和测定自主活动。Dex和TZ连续用药7 d后,用高效液相色谱法测定小鼠大脑皮层单胺递质及其代谢产物的变化。结果①对照组和用药组的体重差异无显著性意义;②连续用药7 d,Caf和Dex对自主活动的兴奋作用较第1天明显增强(P<0.05);③连续用药7 d,虽然催眠药对小鼠自主活动仍有显著的抑制作用,但作用强度较之第1天明显降低(P<0.05);④Dex和TZ连续用药7 d,小鼠大脑皮层单胺递质水平无明显改变,但Dex组的双羟基苯乙酸(DOPAC)和5-羟基吲哚乙酸(5-HIAA)及TZ组的5-HIAA明显降低(P<0.05)。结论①连续应用催眠药1周,其作用有一定的耐受性;②重复使用Dex和TZ 1周对鼠脑单胺递质的代谢可能产生不良影响。%Objective To observe the effect of short-term repeated administration of several psychoactive drugs on locomotor activity and cerebral monamine transmitters in mice and evaluate tolerance of drug action and their side-effects. Methods Male mice were used as subjects. The experiment of central stimulants was divided into 3 groups (n=6 each): ①control;②caffeine(Caf) 30 mg/kg; ③dexamphetamine(Dex) 10 mg/kg. The experiment of hypnotics included 4 groups: ①control; ②triazolam (TZ) 0.04 mg/kg;③seconal (Sec) 60 mg/kg; ④melatonin (Mel) 120 mg/kg. These drugs were given orally to the mice once daily for 7 days. Body weight and locomotor activity were determined on first

  6. The Role of Cannabinoid Receptors in the Descending Modulation of Pain

    Directory of Open Access Journals (Sweden)

    Francesco Rossi

    2010-08-01

    Full Text Available The endogenous antinociceptive descending pathway represents a circuitry of the supraspinal central nervous system whose task is to counteract pain. It includes the periaqueductal grey (PAG-rostral ventromedial medulla (RVM-dorsal horn (DH axis, which is the best characterized pain modulation system through which pain is endogenously inhibited. Thus, an alternative rational strategy for silencing pain is the activation of this anatomical substrate. Evidence of the involvement of cannabinoid receptors (CB in the supraspinal modulation of pain can be found in several studies in which intra-cerebral microinjections of cannabinoid ligands or positive modulators have proved to be analgesic in different pain models, whereas cannabinoid receptor antagonists or antisense nucleotides towards CB1 receptors have facilitated pain. Like opioids, cannabinoids produce centrally-mediated analgesia by activating a descending pathway which includes PAG and its projection to downstream RVM neurons, which in turn send inhibitory projections to the dorsal horn of the spinal cord. Indeed, several studies underline a supraspinal regulation of cannabinoids on g-aminobutyric acid (GABA and glutamate release which inhibit and enhance the antinociceptive descending pathway, respectively. Cannabinoid receptor activation expressed on presynaptic GABAergic terminals reduces the probability of neurotransmitter release thus dis-inhibiting the PAG-RVM-dorsal horn antinociceptive pathway. Cannabinoids seem to increase glutamate release (maybe as consequence of GABA decrease and to require glutamate receptor activation to induce antinociception. The consequent outcome is behavioral analgesia, which is reproduced in several pain conditions, from acute to chronic pain models such as inflammatory and neuropathic pain. Taken together these findings would suggest that supraspinal cannabinoid receptors have broad applications, from pain control to closely related central nervous system

  7. BDNF Evokes Release of Endogenous Cannabinoids at Layer 2/3 Inhibitory Synapses in the Neocortex

    OpenAIRE

    2010-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a potent regulator of inhibitory synaptic transmission, although the locus of this effect and the underlying mechanisms are controversial. We explored a potential interaction between BDNF and endogenous cannabinoid (endocannabinoid) signaling because activation of type 1 cannabinoid (CB1) receptors potently regulates γ-aminobutyric acid (GABA) release and both trkB tyrosine kinase receptors and CB1 receptors are highly expressed at ...

  8. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo

    OpenAIRE

    Whyte, Lauren S.; Ryberg, Erik; Sims, Natalie A.; Ridge, Susan A.; Mackie, Ken; Greasley, Peter J.; Ross, Ruth A.; Rogers, Michael J

    2009-01-01

    GPR55 is a G protein-coupled receptor recently shown to be activated by certain cannabinoids and by lysophosphatidylinositol (LPI). However, the physiological role of GPR55 remains unknown. Given the recent finding that the cannabinoid receptors CB1 and CB2 affect bone metabolism, we examined the role of GPR55 in bone biology. GPR55 was expressed in human and mouse osteoclasts and osteoblasts; expression was higher in human osteoclasts than in macrophage progenitors. Although the GPR55 agonis...

  9. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain.

    Science.gov (United States)

    Marsicano, G; Lutz, B

    1999-12-01

    Cannabinoids can modulate motor behaviour, learning and memory, cognition and pain perception. These effects correlate with the expression of the cannabinoid receptor 1 (CB1) and with the presence of endogenous cannabinoids in the brain. In trying to obtain further insights into the mechanisms underlying the modulatory effects of cannabinoids, CB1-positive neurons were determined in the murine forebrain at a single cell resolution. We performed a double in situ hybridization study to detect mRNA of CB1 in combination with mRNA of glutamic acid decarboxylase 65k, neuropeptide cholecystokinin (CCK), parvalbumin, calretinin and calbindin D28k, respectively. Our results revealed that CB1-expressing cells can be divided into distinct neuronal subpopulations. There is a clear distinction between neurons containing CB1 mRNA either at high levels or low levels. The majority of high CB1-expressing cells are GABAergic (gamma-aminobutyric acid) neurons belonging mainly to the cholecystokinin-positive and parvalbumin-negative type of interneurons (basket cells) and, to a lower extent, to the calbindin D28k-positive mid-proximal dendritic inhibitory interneurons. Only a fraction of low CB1-expressing cells is GABAergic. In the hippocampus, amygdala and entorhinal cortex area, CB1 mRNA is present at low but significant levels in many non-GABAergic cells that can be considered as projecting principal neurons. Thus, a complex mechanism appears to underlie the modulatory effects of cannabinoids. They might act on principal glutamatergic circuits as well as modulate local GABAergic inhibitory circuits. CB1 is very highly coexpressed with CCK. It is known that cannabinoids and CCK often have opposite effects on behaviour and physiology. Therefore, we suggest that a putative cross-talk between cannabinoids and CCK might exist and will be relevant to better understanding of physiology and pharmacology of the cannabinoid system.

  10. Critical appraisal of the potential use of cannabinoids in cancer management

    Directory of Open Access Journals (Sweden)

    Cridge BJ

    2013-08-01

    Full Text Available Belinda J Cridge, Rhonda J Rosengren Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand Abstract: Cannabinoids have been attracting a great deal of interest as potential anticancer agents. Originally derived from the plant Cannabis sativa, there are now a number of endo-, phyto- and synthetic cannabinoids available. This review summarizes the key literature to date around the actions, antitumor activity, and mechanisms of action for this broad range of compounds. Cannabinoids are largely defined by an ability to activate the cannabinoid receptors – CB1 or CB2. The action of the cannabinoids is very dependent on the exact ligand tested, the dose, and the duration of exposure. Some cannabinoids, synthetic or plant-derived, show potential as therapeutic agents, and evidence across a range of cancers and evidence in vitro and in vivo is starting to be accumulated. Studies have now been conducted in a wide range of cell lines, including glioma, breast, prostate, endothelial, liver, and lung. This work is complemented by an increasing body of evidence from in vivo models. However, many of these results remain contradictory, an issue that is not currently able to be resolved through current knowledge of mechanisms of action. While there is a developing understanding of potential mechanisms of action, with the extracellular signal-regulated kinase pathway emerging as a critical signaling juncture in combination with an important role for ceramide and lipid signaling, the relative importance of each pathway is yet to be determined. The interplay between the intracellular pathways of autophagy versus apoptosis is a recent development that is discussed. Overall, there is still a great deal of conflicting evidence around the future utility of the cannabinoids, natural or synthetic, as therapeutic agents. Keywords: cancer, cannabinoid, endocannabinoid, tetrahydrocannabinol, JWH-133, WIN-55,212-2

  11. Fatal subacute liver failure after repeated administration of sevoflurane anaesthesia.

    Science.gov (United States)

    Zizek, David; Ribnikar, Marija; Zizek, Bogomir; Ferlan-Marolt, Vera

    2010-01-01

    Sevoflurane is a widely used halogenated inhalation anaesthetic. In comparison with other similar anaesthetics, it is not metabolized to potentially hepatotoxic trifluoroacetylated proteins. In this case report, we present a 66-year-old woman with breast carcinoma, who underwent sevoflurane general anaesthesia twice in 25 days. Soon after the second elective surgical procedure, jaundice and marked elevations in serum transaminases developed. The patient died 66 days thereafter. Autopsy results denied evidence of major cardiovascular abnormality, and histological examination confirmed massive liver cell necrosis with no feature of chronic liver injury. Sevoflurane anaesthesia was imputed as the cause after exclusion of other possible aetiological agents. Besides, coexistent malignant tumours found in the patient could have modulated the immunological response to the applied anaesthetic followed by fatal consequences.

  12. Administrative Circulars

    CERN Multimedia

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  13. Simultaneous analysis of synthetic cannabinoids in the materials seized during drug trafficking using GC-MS.

    Science.gov (United States)

    Choi, Hyeyoung; Heo, Sewoong; Choe, Sanggil; Yang, Wonkyung; Park, Yuran; Kim, Eunmi; Chung, Heesun; Lee, Jaesin

    2013-05-01

    A rapid and simple gas chromatography-mass spectrometry (GC-MS) method was developed and validated to identify and quantify synthetic cannabinoids in the materials seized during drug trafficking. Accuracy and reproducibility of the method were improved by using deuterated JWH-018 and JWH-073 as internal standards. Validation results of the GC-MS method showed that it was suitable for simultaneous qualitative and quantitative analyses of synthetic cannabinoids, and we analyzed synthetic cannabinoids in seized materials using the validated GC-MS method. As a result of the analysis, ten species of synthetic cannabinoids were identified in dried leaves (n = 40), bulk powders (n = 6), and tablets (n = 14) seized in Korea during 2009-2012, as a single ingredient or as a mixture with other active co-ingredients. JWH-018 and JWH-073 were the most frequently identified compounds in the seized materials. Synthetic cannabinoids in the dried leaves showed broad concentration ranges, which may cause unexpected toxicity to abusers. The bulk powders were considered as raw materials used to prepare legal highs, and they contained single ingredient of JWH-073, JWH-019, or JWH-250 with the purity over 70 %. In contrast, JWH-018 and JWH-073 contents in the tablets were 7.1-13.8 and 3.0-10.2 mg/g, respectively. Relatively low contents in the tablets suggest that the synthetic cannabinoids may have been added to the tablets as supplements to other active co-ingredients.

  14. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat.

    Science.gov (United States)

    Price, T J; Helesic, G; Parghi, D; Hargreaves, K M; Flores, C M

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions.

  15. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    Directory of Open Access Journals (Sweden)

    Kathleen L. McCoy

    2016-01-01

    Full Text Available Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them.

  16. Cannabinoids for treatment of chronic non-cancer pain; a systematic review of randomized trials.

    Science.gov (United States)

    Lynch, Mary E; Campbell, Fiona

    2011-11-01

    Effective therapeutic options for patients living with chronic pain are limited. The pain relieving effect of cannabinoids remains unclear. A systematic review of randomized controlled trials (RCTs) examining cannabinoids in the treatment of chronic non-cancer pain was conducted according to the PRISMA statement update on the QUORUM guidelines for reporting systematic reviews that evaluate health care interventions. Cannabinoids studied included smoked cannabis, oromucosal extracts of cannabis based medicine, nabilone, dronabinol and a novel THC analogue. Chronic non-cancer pain conditions included neuropathic pain, fibromyalgia, rheumatoid arthritis, and mixed chronic pain. Overall the quality of trials was excellent. Fifteen of the eighteen trials that met the inclusion criteria demonstrated a significant analgesic effect of cannabinoid as compared with placebo and several reported significant improvements in sleep. There were no serious adverse effects. Adverse effects most commonly reported were generally well tolerated, mild to moderate in severity and led to withdrawal from the studies in only a few cases. Overall there is evidence that cannabinoids are safe and modestly effective in neuropathic pain with preliminary evidence of efficacy in fibromyalgia and rheumatoid arthritis. The context of the need for additional treatments for chronic pain is reviewed. Further large studies of longer duration examining specific cannabinoids in homogeneous populations are required.

  17. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism

    OpenAIRE

    S. Sierra; Luquin, N. (Natasha); Rico, A.J. (Alberto J.); Gomez-Bautista, V. (V.); Roda, E.; Dopeso-Reyes, I. G.; Vazquez, A.; Martinez-Pinilla, E. (Eva); Labandeira-Garcia, J.L. (José L.); Franco, R; J.L. Lanciego

    2014-01-01

    Abstract Although type 1 cannabinoid receptors (CB1- Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas th...

  18. Differential membrane fluidization by active and inactive cannabinoid analogues.

    Science.gov (United States)

    Mavromoustakos, T; Papahatjis, D; Laggner, P

    2001-06-06

    The effects of the two cannabinomimetic drugs (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethyl-1-hydroxy-6H-dibenzo[b,d]pyranyl-2-(hexyl)-1,3-dithiolane (AMG-3) and its pharmacologically less active 1-methoxy analogue (AMG-18) on the thermotropic and structural properties of dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) liposomes have been studied by X-ray diffraction and differential scanning calorimetry (DSC). DSC data revealed that the incorporation of the drugs affect differently the thermotropic properties of DPPC. The presence of the more active drug distinctly broadened and attenuated both the pretransition and main phase transition of DPPC bilayers, while the inactive analogue had only minor effects. Small and wide angle X-ray diffraction data showed that the two cannabinoids have different effects on the lipid phase structures and on the hydrocarbon chain packing. The pharmacologically active analogue, AMG-3, was found to efficiently fluidize domains of the lipids in the L(beta)' gel phase, and to perturb the regular multibilayer lattice. In the liquid crystalline L(alpha) phase, AMG-3 was also found to cause irregularities in packing, suggesting that the drug induces local curvature. At the same concentration, the inactive AMG-18 had only minor structural effects on the lipids. At about 10-fold or higher concentrations, AMG-18 was found to produce similar but still less pronounced effects in comparison to those observed by AMG-3. The dose-dependent, different thermotropic and structural effects by the two cannabinoid analogues suggest that these may be related to their biological activity.

  19. Emerging drugs of abuse: current perspectives on synthetic cannabinoids

    Directory of Open Access Journals (Sweden)

    Debruyne D

    2015-10-01

    Full Text Available Danièle Debruyne,1,2 Reynald Le Boisselier1 1Centre for Evaluation and Information on Pharmacodependence - Addictovigilance (CEIP-A, 2Toxicology and Pharmacology Laboratory, Department of Pharmacology, University Hospital Centre Côte de Nacre, Caen, France Abstract: New psychoactive drugs that have appeared over the last decade are typically dominated by cathinones and synthetic cannabinoids (SCs. SCs have been emerging as recreational drugs because they mimic the euphoria effect of cannabis while still being legal. Sprayed on natural herb mixtures, SCs have been primarily sold as “herbal smoking blends” or “herbal incense” under brand names like “Spice” or “K2”. Currently, SCs pure compounds are available from websites for the combination with herbal materials or for the use in e-cigarettes. For the past 5 years, an ever increasing number of compounds, representative of different chemical classes, have been promoted and now represent a large assortment of new popular drugs of abuse, which are difficult to properly identify. Their legal status varies by country with many government institutions currently pushing for their control. The in vitro binding to CB1/CB2 receptors is usually well-known and considerable differences have been found in the CB1 versus CB2 selectivity and potency within the different SCs, with several structure-activity relations being evident. Desired effects by CB1 agonist users are relaxation/recreative, however, cardiovascular, gastrointestinal, or psychiatric/neurological side effects are commonly reported. At present there is no specific antidote existing if an overdose of designer drugs was to occur, and no curative treatment has been approved by health authorities. Management of acute toxic effects is mainly symptomatic and extrapolated from experience with cannabis. Keywords: synthetic cannabinoids, chemistry, analysis, pharmacology, toxicology, dependence, medical care

  20. Distribution of cannabinoid receptor 1 in the CNS of zebrafish.

    Science.gov (United States)

    Lam, C S; Rastegar, S; Strähle, U

    2006-01-01

    The cannabinoid receptor 1 (Cb1) mediates the psychoactive effect of marijuana. In mammals, there is abundant evidence advocating the importance of cannabinoid signaling; activation of Cb1 exerts diverse functions, chiefly by its ability to modulate neurotransmission. Thus, much attention has been devoted to understand its role in health and disease and to evaluate its therapeutic potential. Here, we have cloned zebrafish cb1 and investigated its expression in developing and adult zebrafish brain. Sequence analysis showed that there is a high degree of conservation, especially in residues demonstrated to be critical for function in mammals. In situ hybridization revealed that zebrafish cb1 appears first in the preoptic area at 24 hours post-fertilization. Subsequently, transcripts are detected in the dorsal telencephalon, hypothalamus, pretectum and torus longitudinalis. A similar pattern of expression is recapitulated in the adult brain. While cb1 is intensively stained in the medial zone of the dorsal telencephalon, expression elsewhere is weak by comparison. In particular, localization of cb1 in the telencephalic periventricular matrix is suggestive of the involvement of Cb1 in neurogenesis, bearing strong resemblance in terms of expression and function to the proliferative mammalian hippocampal formation. In addition, a gradient-like expression of cb1 is detected in the torus longitudinalis, a teleost specific neural tissue. In relation to dopaminergic neurons in the diencephalic posterior tuberculum (considered to be the teleostean homologue of the mammalian midbrain dopaminergic system), both cb1 and tyrosine hydroxylase-expressing cells occupy non-overlapping domains. However there is evidence that they are co-localized in the caudal zone of the hypothalamus, implying a direct modulation of dopamine release in this particular region. Collectively, our data indicate the propensity of zebrafish cb1 to participate in multiple neurological processes.

  1. Duct Leakage Repeatability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  2. Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice.

    Science.gov (United States)

    Steiner, M A; Wanisch, K; Monory, K; Marsicano, G; Borroni, E; Bächli, H; Holsboer, F; Lutz, B; Wotjak, C T

    2008-06-01

    Dysregulation of the endocannabinoid system is known to interfere with emotional processing of stressful events. Here, we studied the role of cannabinoid receptor type 1 (CB1) signaling in stress-coping behaviors using the forced swim test (FST) with repeated exposures. We compared effects of genetic inactivation with pharmacological blockade of CB1 receptors both in male and female mice. In addition, we investigated potential interactions of the endocannabinoid system with monoaminergic and neurotrophin systems of the brain. Naive CB1 receptor-deficient mice (CB1-/-) showed increased passive stress-coping behaviors as compared to wild-type littermates (CB1+/+) in the FST, independent of sex. These findings were partially reproduced in C57BL/6N animals and fully reproduced in female CB1+/+ mice by pharmacological blockade of CB1 receptors with the CB1 receptor antagonist SR141716. The specificity of SR141716 was confirmed in female CB1-/- mice, where it failed to affect behavioral performance. Sensitivity to the antidepressants desipramine and paroxetine was preserved, but slightly altered in female CB1-/- mice. There were no genotype differences between CB1+/+ and CB1-/- mice in monoamine oxidase A and B activities under basal conditions, nor in monoamine content of hippocampal tissue after FST exposure. mRNA expression of vesicular glutamate transporter type 1 was unaffected in CB1-/- mice, but mRNA expression of brain-derived neurotrophic factor (BDNF) was reduced in the hippocampus. Our results suggest that impaired CB1 receptor function promotes passive stress-coping behavior, which, at least in part, might relate to alterations in BDNF function.

  3. The Study of Destructive Effects of Exposure to WIN 55212-2, an Agonist of Cannabinoid Receptor, during Pregnancy on CNS Function of Rats’ Offspring

    Directory of Open Access Journals (Sweden)

    Mohammad Shabani

    2011-08-01

    Full Text Available Introduction: Cannabinoid consumption including hashish and WIN55212-2 during pregnancy has destructive affect on the development of fetus and the performance of CNS. Method: WIN treated group received daily 0.5 or 1mg/kg WIN suspended in 1% tween 80 saline (s.c. at a volume of 1 ml/kg from days 5 to 20 of pregnancy. Third, fifth and seventh weeks after birth, the effects of maternal WIN consumption on infants body weight, mortality, histological changes, motor performance and memory function were assessed. Results: Prenatal WIN consumption associated with atrophy of cerebellum cortex in granular and Purkinje cells layers. WIN treatment of pregnant rats produced a significant decrease in the rearing frequency of the offspring, but significantly increased the grooming frequency at 22, 36 and 50 days of age. During the acquisition trials, approach latencies were not significantly different between all groups of rats (50 days old.When the trial was repeated 24 hours and seven days later (retention trial, the avoidance latencies of the WIN-exposed group were significantly shorter than those of control and sham animals. The mortality percent was increased significantly and litter size was decreased significantly in WIN (1mg/kg treated rats compared to the control, sham and WIN (0/5 mg/kg treatment groups. Conclusion: These findings suggest that prenatal exposure to WIN, cannabinoid agonist, induces possibly a long-term alteration on histological, motor performance and learning and memory parameters.

  4. Administrative Reform

    DEFF Research Database (Denmark)

    Plum, Maja

    Through the example of a Danish reform of educational plans in early childhood education, the paper critically addresses administrative educational reforms promoting accountability, visibility and documentation. Drawing on Foucaultian perspectives, the relation between knowledge and governing...... of administrative technology, tracing how the humanistic values of education embed and are embedded within ‘the professional nursery teacher' as an object and subject of administrative practice. Rather than undermining the humanistic potential of education, it is argued that the technology of accounting...

  5. Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications.

    Science.gov (United States)

    Onaivi, Emmanuel S

    2009-01-01

    Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use. Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease. This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the

  6. Activity-Based Detection of Consumption of Synthetic Cannabinoids in Authentic Urine Samples Using a Stable Cannabinoid Reporter System.

    Science.gov (United States)

    Cannaert, Annelies; Franz, Florian; Auwärter, Volker; Stove, Christophe P

    2017-09-05

    Synthetic cannabinoids (SCs) continue to be the largest group of new psychoactive substances (NPS) monitored by the European Monitoring Center of Drugs and Drugs of Abuse (EMCDDA). The identification and subsequent prohibition of single SCs has driven clandestine chemists to produce analogues of increasing structural diversity, intended to evade legislation. That structural diversity, combined with the mostly unknown metabolic profiles of these new SCs, poses a big challenge for the conventional targeted analytical assays, as it is difficult to screen for "unknown" compounds. Therefore, an alternative screening method, not directly based on the structure but on the activity of the SC, may offer a solution for this problem. We generated stable CB1 and CB2 receptor activation assays based on functional complementation of a split NanoLuc luciferase and used these to test an expanded set of recent SCs (UR-144, XLR-11, and their thermal degradation products; AB-CHMINACA and ADB-CHMINACA) and their major phase I metabolites. By doing so, we demonstrate that several major metabolites of these SCs retain their activity at the cannabinoid receptors. These active metabolites may prolong the parent compound's psychotropic and physiological effects and may contribute to the toxicity profile. Utility of the generated stable cell systems as a first-line screening tool for SCs in urine was also demonstrated using a relatively large set of authentic urine samples. Our data indicate that the stable CB reporter assays detect CB receptor activation by extracts of urine in which SCs (or their metabolites) are present at low- or subnanomolar (ng/mL) level. Hence, the developed assays do not only allow activity profiling of SCs and their metabolites, it may also serve as a screening tool, complementing targeted and untargeted analytical assays and preceding analytical (mass spectrometry based) confirmation.

  7. Phase I metabolism of the highly potent synthetic cannabinoid MDMB-CHMICA and detection in human urine samples.

    Science.gov (United States)