WorldWideScience

Sample records for repeat-pass shuttle imaging

  1. Airborne Radar Interferometric Repeat-Pass Processing

    Science.gov (United States)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  2. Quantitative Assessment of a Novel Super-Resolution Restoration Technique Using HiRISE with Navcam Images: how much Resolution Enhancement is Possible from Repeat-Pass Observations

    Science.gov (United States)

    Tao, Y.; Muller, J.-P.

    2016-06-01

    Higher spatial resolution imaging data is always desirable to the international community of planetary scientists interested in improving understanding of surface formation processes. We have previously developed a novel Super-resolution restoration (SRR) technique (Tao & Muller, 2016) using Gotcha sub-pixel matching, orthorectification, and segmented 4th order PDE-TV, called GPT SRR, which is able to restore 5 cm-12.5 cm near rover scale images (equivalent to Navcam projected FoV at a range of ≥ 5 m) from multiple 25 cm resolution NASA MRO HiRISE images. The SRR technique has been successfully applied to the rover traverses for the MER and MSL missions within the EU FP-7 PRoViDE project. These SRR results have revealed new surface information including the imaging of individual rocks (diameter ≥ 25 cm) by comparison of the original HiRISE image and rover Navcam orthorectified image mosaics. In this work, we seek evidence from processing a very large number of stereo reconstruction results from all Navcam stereo images within PRoViDE, registration and comparison with the corresponding SRR image, in order to derive a quantitative assessment on key features including rocks (diameter < 150 cm) and rover track wheel spacing. We summarise statistics from SRR-Navcam measurements and demonstrate that our unique SRR datasets will greatly support the geological and morphological analysis and monitoring of Martian surface and can also be applied to landing site selection, in order to avoid unsuitable terrain, for any future lander/rover as well as help to define future rover paths.

  3. The flight test of Pi-SAR(L) for the repeat-pass interferometric SAR

    Science.gov (United States)

    Nohmi, Hitoshi; Shimada, Masanobu; Miyawaki, Masanori

    2006-09-01

    This paper describes the experiment of the repeat pass interferometric SAR using Pi-SAR(L). The air-borne repeat-pass interferometric SAR is expected as an effective method to detect landslide or predict a volcano eruption. To obtain a high-quality interferometric image, it is necessary to make two flights on the same flight pass. In addition, since the antenna of the Pi-SAR(L) is secured to the aircraft, it is necessary to fly at the same drift angle to keep the observation direction same. We built a flight control system using an auto pilot which has been installed in the airplane. This navigation system measures position and altitude precisely with using a differential GPS, and the PC Navigator outputs a difference from the desired course to the auto pilot. Since the air density is thinner and the speed is higher than the landing situation, the gain of the control system is required to be adjusted during the repeat pass flight. The observation direction could be controlled to some extent by adjusting a drift angle with using a flight speed control. The repeat-pass flight was conducted in Japan for three days in late November. The flight was stable and the deviation was within a few meters for both horizontal and vertical direction even in the gusty condition. The SAR data were processed in time domain based on range Doppler algorism to make the complete motion compensation. Thus, the interferometric image processed after precise phase compensation is shown.

  4. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    Science.gov (United States)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  5. Ionospheric effects on repeat-pass SAR interferometry

    Science.gov (United States)

    Feng, Jian; Zhen, Weimin; Wu, Zhensen

    2017-10-01

    InSAR measurements can be significantly affected by the atmosphere when the radar signal propagates through the atmosphere since it varies with space and time. Great efforts have been made in recent years to better understand the properties of the tropospheric effects and to develop methods for mitigating these effects. By using the basic principles of InSAR, the quantitative analysis of ionospheric delay effects on topography and surface deformation have been introduced for the first time. The measurement errors can be related to the vertical ionospheric total electron content (vTEC). By using the ionospheric observations, the effects of temporal ionospheric variations on InSAR have been analyzed. The results indicate that the ionospheric variations with time, season, solar cycle and geomagnetic activities can compromise the effectiveness of InSAR for both the measurement of topography and surface determination. The repeat-pass SAR interferometry errors induced by ionosphere should be corrected by actual measurements.

  6. Shuttle Imaging Radar Survey Mission C

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Abstract: Spaceborne Imaging Radar-C (SIR-C) was part of an imaging radar system that was flown on board two Space Shuttle flights (9 - 20 April, 1994 and 30...

  7. Shuttle Imaging Radar Survey Mission C

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Spaceborne Imaging Radar-C (SIR-C) was part of an imaging radar system that was flown on board two Space Shuttle flights (9 - 20 April, 1994 and 30 September - 11...

  8. Performance Analysis of Flat Surface Assumption and Residual Motion Errors on Airborne Repeat-pass InSAR

    Directory of Open Access Journals (Sweden)

    Lin Xue

    2013-09-01

    Full Text Available When applying to the airborne repeat-pass Interferometric Synthetic Aperture Radar (InSAR, which has long synthetic aperture and large azimuth-dependent errors, the surface assumption used to simply the time-domain algorithm model and the residual motion errors due to the precision of the navigation system will affect the imaging result and the interferometric measurement. This paper analyzes the altitude errors introduced by the surface assumption and the residual motion errors due to the precision of the navigation system. We deduce the range errors model during the single pass and analyze the effects of these errors on the plane location, interferometric phase and DEM precision. Then the accuracy of the theoretical deduction is verified by simulation and real data. The research provides theoretical bases for the system design and signal processing of airborne repeat-pass InSAR.

  9. Forest canopy height estimation using double-frequency repeat pass interferometry

    Science.gov (United States)

    Karamvasis, Kleanthis; Karathanassi, Vassilia

    2015-06-01

    In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.

  10. An L-band SAR for repeat pass deformation measurements on a UAV platform

    Science.gov (United States)

    Hensley, Scott; Lou, Yunling; Rosen, Paul; Wheeler, Kevin; Zebker, Howard; Madsen, Soren; Miller, Tim; Hoffman, Jim; Farra, Don

    2003-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeat-pass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV) or minimally piloted vehicle (MPV). Upon surveying the capabilities and availabilities of such aircraft, the Proteus aircraft and the ALTAIR UAV appear to meet our criteria in terms of payload capabilities, flying altitude, and endurance. To support the repeat pass deformation capability it is necessary to control flight track capability of the aircraft to be within a specified 10 m tube with a goal of 1 m. This requires real-time GPS control of the autopilot to achieve these objectives that has not been demonstrated on these aircraft. Based on the Proteus and ALTAIR's altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and a 16 km range swath. The radar will have an active electronic beam steering antenna to achieve a Doppler centroid stability that is necessary for repeat-pass interferometry. This paper presents some of the trade studies for the platform, instrument and the expected science.

  11. A novel method for surface exploration: Super-resolution restoration of Mars repeat-pass orbital imagery

    Science.gov (United States)

    Tao, Y.; Muller, J.-P.

    2016-02-01

    Higher resolution imaging data of planetary surfaces is considered desirable by the international community of planetary scientists interested in improving understanding of surface formation processes. However, given various physical constraints from the imaging instruments through to limited bandwidth of transmission one needs to trade-off spatial resolution against bandwidth. Even given optical communications, future imaging systems are unlikely to be able to resolve features smaller than 25 cm on most planetary bodies, such as Mars. In this paper, we propose a novel super-resolution restoration technique, called Gotcha-PDE-TV (GPT), taking advantage of the non-redundant sub-pixel information contained in multiple raw orbital images in order to restore higher resolution imagery. We demonstrate optimality of this technique in planetary image super-resolution restoration with example processing of 8 repeat-pass 25 cm HiRISE images covering the MER-A Spirit rover traverse in Gusev crater to resolve a 5 cm resolution of the area. We assess the "true" resolution of the 5 cm super-resolution restored images using contemporaneous rover Navcam imagery on the surface and an inter-comparison of landmarks in the two sets of imagery.

  12. Status of a UAV SAR Designed for Repeat Pass Interferometry for Deformation Measurements

    Science.gov (United States)

    Hensley, Scott; Wheeler, Kevin; Hoffman, Jim; Miller, Tim; Lou, Yunling; Muellerschoen, Ron; Zebker, Howard; Madsen, Soren; Rosen, Paul

    2004-01-01

    Under the NASA ESTO sponsored Instrument Incubator Program we have designed a lightweight, reconfigurable polarimetric L-band SAR designed for repeat pass deformation measurements of rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes. This radar will be installed on an unmanned airborne vehicle (UAV) or a lightweight, high-altitude, and long endurance platform such as the Proteus. After a study of suitable available platforms we selected the Proteus for initial development and testing of the system. We want to control the repeat track capability of the aircraft to be within a 10 m tube to support the repeat deformation capability. We conducted tests with the Proteus using real-time GPS with sub-meter accuracy to see if pilots could fly the aircraft within the desired tube. Our results show that pilots are unable to fly the aircraft with the desired accuracy and therefore an augmented autopilot will be required to meet these objectives. Based on the Proteus flying altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and 16 km range swath. This radar will have an active electronic beam steering antenna to achieve Doppler centroid stability that is necessary for repeat-pass interferometry (RPI). This paper will present are design criteria, current design and expected science applications.

  13. Error analysis in the digital elevation model of Kuwait desert derived from repeat pass synthetic aperture radar interferometry

    Science.gov (United States)

    Rao, Kota S.; Al Jassar, Hala K.

    2010-09-01

    The aim of this paper is to analyze the errors in the Digital Elevation Models (DEMs) derived through repeat pass SAR interferometry (InSAR). Out of 29 ASAR images available to us, 8 are selected for this study which has unique data set forming 7 InSAR pairs with single master image. The perpendicular component of baseline (B highmod) varies between 200 to 400 m to generate good quality DEMs. The Temporal baseline (T) varies from 35 days to 525 days to see the effect of temporal decorrelation. It is expected that all the DEMs be similar to each other spatially with in the noise limits. However, they differ very much with one another. The 7 DEMs are compared with the DEM of SRTM for the estimation of errors. The spatial and temporal distribution of errors in the DEM is analyzed by considering several case studies. Spatial and temporal variability of precipitable water vapour is analysed. Precipitable water vapour (PWV) corrections to the DEMs are implemented and found to have no significant effect. The reasons are explained. Temporal decorrelation of phases and soil moisture variations seem to have influence on the accuracy of the derived DEM. It is suggested that installing a number of corner reflectors (CRs) and the use of Permanent Scatter approach may improve the accuracy of the results in desert test sites.

  14. Repeat-pass InSAR processing for Vegetation Height Calculation: Theory and a validated example

    Science.gov (United States)

    Siqueira, P.; Lei, Y.

    2014-12-01

    Knowledge of the vegetation height for a forested region is often used as a proxy for stem volume, biomass, and for characterizing habitats of a variety of plant and animal species. For this reason, remote sensing measures available from stereography, lidar, and InSAR have been important tools for airborne and spaceborne platforms. Among these and other candidates for measuring vegetation heights, InSAR has the advantage of achieving wide coverage areas (on the order of 100 km in cross-track swath) over short time periods, thus making it practical for large-scale assessments of the global environment. The determination of forest stand height (FSH), which is an assessment made on the order of one to ten hectares of resolution, InSAR can provide measures that are proportional to FSH. These are: 1.) interferometric phase compared to a known DEM, preferably of the bald earth, 2.) interferometric correlation (polarimetric or otherwise), which is related to the volume scattering nature of the target, and 3.) interferometric correlation which is related to the temporal decorrelation of the target. Of these, while the volumetric aspect of interferometric correlation is of keen interest, because of the dominant error source of temporal decorrelation, it comes at the cost of the need to perform single-pass interferometry. While such satellite systems do exist (notably the TanDEM-X mission), for vegetation applications, lower frequency systems such as ALOS-1 and -2, and the future NASA radar mission at L-band, provides better signal returns from throughout the vegetation canopy. Hence, rather than relying on volumetric correlation to provide the desired FSH signature, repeat-pass observations of temporal decorrelation are coupled with a vegetation model for this decorrelation to determine the vegetation height. In order to demonstrate this technique, the University of Massachusetts has used 46-day repeat-pass ALOS data to estimate FSH over the US State of Maine, nearly a 10

  15. Doppler OCT imaging of cytoplasm shuttle flow in Physarum polycephalum.

    Science.gov (United States)

    Bykov, Alexander V; Priezzhev, Alexander V; Lauri, Janne; Myllylä, Risto

    2009-09-01

    The Doppler optical coherence tomography technique was applied to image the oscillatory dynamics of protoplasm in the strands of the plasmodium of slime mould Physarum polycephalum. Radial contractions of the gel-like walls of the strands and the velocity distributions in the sol-like endoplasm streaming along the plasmodial strands are imaged. The motility inhibitor effect of carbon dioxide on the cytoplasm shuttle flow and strand-wall contraction is shown. The optical attenuation coefficient of cytoplasm is estimated. 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  16. An Automatic Mosaicking Algorithm for the Generation of a Large-Scale Forest Height Map Using Spaceborne Repeat-Pass InSAR Correlation Magnitude

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2015-05-01

    Full Text Available This paper describes an automatic mosaicking algorithm for creating large-scale mosaic maps of forest height. In contrast to existing mosaicking approaches through using SAR backscatter power and/or InSAR phase, this paper utilizes the forest height estimates that are inverted from spaceborne repeat-pass cross-pol InSAR correlation magnitude. By using repeat-pass InSAR correlation measurements that are dominated by temporal decorrelation, it has been shown that a simplified inversion approach can be utilized to create a height-sensitive measure over the whole interferometric scene, where two scene-wide fitting parameters are able to characterize the mean behavior of the random motion and dielectric changes of the volume scatterers within the scene. In order to combine these single-scene results into a mosaic, a matrix formulation is used with nonlinear least squares and observations in adjacent-scene overlap areas to create a self-consistent estimate of forest height over the larger region. This automated mosaicking method has the benefit of suppressing the global fitting error and, thus, mitigating the “wallpapering” problem in the manual mosaicking process. The algorithm is validated over the U.S. state of Maine by using InSAR correlation magnitude data from ALOS/PALSAR and comparing the inverted forest height with Laser Vegetation Imaging Sensor (LVIS height and National Biomass and Carbon Dataset (NBCD basal area weighted (BAW height. This paper serves as a companion work to previously demonstrated results, the combination of which is meant to be an observational prototype for NASA’s DESDynI-R (now called NISAR and JAXA’s ALOS-2 satellite missions.

  17. Shuttle imaging radar A analysis of land use in Amazonia

    Science.gov (United States)

    Stone, Thomas A.; Woodwell, George M.

    1988-01-01

    Over large areas in the tropics, satellite imagery is the principal source of data on the area, current stature, and extent of disturbance of the forests. The information from imagery that covers large areas at low resolution is greatly enhanced when different types of imagery can be compared. The paper presents a comparison of data from Landsat MSS and from the Shuttle Imaging Radar (SIR-A) L band HH polarization data for sites in the Amazon Basin. Results indicate that SIR-A backscatter from the undisturbed forest was lower than that from some disturbed areas and from flooded forests and that SIR-A brightness, increases nonlinearly with the Landsat normalized difference vegetation index. It is hypothesized that the brightest radar returns in southern Amazonia are from newly cleared forests that are littered with standing and fallen tree boles that function as corner reflectors; and that backscatter will diminish from disturbed areas over time as fields are burned repeatedly.

  18. Extracting Tree Height from Repeat-Pass PolInSAR Data : Experiments with JPL and ESA Airborne Systems

    Science.gov (United States)

    Lavalle, Marco; Ahmed, Razi; Neumann, Maxim; Hensley, Scott

    2013-01-01

    In this paper we present our latest developments and experiments with the random-motion-over-ground (RMoG) model used to extract canopy height and other important forest parameters from repeat-pass polarimetricinterferometric SAR (Pol-InSAR) data. More specifically, we summarize the key features of the RMoG model in contrast with the random-volume-over-ground (RVoG) model, describe in detail a possible inversion scheme for the RMoG model and illustrate the results of the RMoG inversion using airborne data collected by the Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA).

  19. Extracting Tree Height from Repeat-Pass PolInSAR Data : Experiments with JPL and ESA Airborne Systems

    Science.gov (United States)

    Lavalle, Marco; Ahmed, Razi; Neumann, Maxim; Hensley, Scott

    2013-01-01

    In this paper we present our latest developments and experiments with the random-motion-over-ground (RMoG) model used to extract canopy height and other important forest parameters from repeat-pass polarimetricinterferometric SAR (Pol-InSAR) data. More specifically, we summarize the key features of the RMoG model in contrast with the random-volume-over-ground (RVoG) model, describe in detail a possible inversion scheme for the RMoG model and illustrate the results of the RMoG inversion using airborne data collected by the Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA).

  20. Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process

    Science.gov (United States)

    Dominquez, Jesus A.; Klinko, Steve J.

    2007-01-01

    Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.

  1. STANDWISE CHANGE DETECTION FOR GROWING STOCK USING REPEAT-PASS ALOS PALSAR / PALSAR-2 DATA

    Directory of Open Access Journals (Sweden)

    M. –G. Hong

    2016-06-01

    Full Text Available This study demonstrates the possibility of detecting the changes of growing stocks in mountainous forest stands derived from ALOS PALSAR and PALSAR-2 images. The ALOS PALSAR were obtained over the Kwangneung Experiment Forest (KEF, Korea during the period of nineteen and a half months from the April 26, 2009 to December 12, 2010, whereas the PALSAR-2 data were acquired on the April 7, 2015. The KEF test site comprises 58 stands, which cover approximately 1,000ha and have steep slope topography. Owing to topographic effects of SAR data in mountainous areas, the DEM-assisted topographic normalized backscattering coefficient γ0 was applied to the evaluation of the relationships between the ALOS PALSAR / PALSAR-2 HV backscatter and the field inventory–based stand stock volume. The results indicate that: 1 the γ0 values for the volume obtained from ALOS PALSAR data on December 12, 2010 show a gradual increase higher than those computed from the data on April 26, 2009, here the γ0 value increases in accordance with an increase in the volume: 2 the γ0 values determined from the PALSAR-2 data increase with the same inventory-based volume, when compared with those computed from both ALOS PALSAR data. They also increase substantially as the values of the volume rise, with the exception of the volume interval from 130 m3 ha−1 to 160 m3 ha−1. This is understandable because the volume of the aforementioned interval has been reduced through clearing. Consequently, the γ0–based relationship between PALSAR-2 HV backscatter and growing stock can lead to detecting the stand growth changes in the KEF of Korea.

  2. Hard x-ray imaging facility for space shuttle: A scientificq and conceptual engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, L.E.; Hudson, H.S.; Hurford, G.; Schneible, D.

    1976-11-01

    A shuttle-accommodated instrument for imaging hard X-rays in the study of nonthermal particles and high temperature particles in various solar and cosmic phenomena was defined and its feasibility demonstrated. The imaging system configuration is described as well as the electronics, aspect systems, mechanical and thermal properties and the ground support equipment.

  3. Remote Infrared Imaging of the Space Shuttle During Hypersonic Flight: HYTHIRM Mission Operations and Coordination

    Science.gov (United States)

    Schwartz, Richard J.; McCrea, Andrew C.; Gruber, Jennifer R.; Hensley, Doyle W.; Verstynen, Harry A.; Oram, Timothy D.; Berger, Karen T.; Splinter, Scott C.; Horvath, Thomas J.; Kerns, Robert V.

    2011-01-01

    The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission.

  4. The Shuttle Imaging Radar B (SIR-B) experiment report

    Science.gov (United States)

    Cimino, Jo Bea; Holt, Benjamin; Richardson, Annie

    1988-01-01

    The primary objective of the SIR-B experiment was to acquire multiple-incidence-angle radar imagery of a variety of Earth's surfaces to better understand the effects of imaging geometry on radar backscatter. A complementary objective was to map extensive regions of particular interest. Under these broad objectives, many specific scientific experiments were defined by the 43 SIR-B Science Team members, including studies in the area of geology, vegetation, radar penetration, oceanography, image analysis, and calibration technique development. Approximately 20 percent of the planned digital data were collected, meeting 40 percent of the scientific objectives. This report is an overview of the SIR-B experiment and includes the science investigations, hardware design, mission scenario, mission operations, events of the actual missions, astronaut participation, data products (including auxiliary data), calibrations, and a summary of the actual coverage. Also included are several image samples.

  5. Estimation of Forest Height Using Spaceborne Repeat-Pass L-Band InSAR Correlation Magnitude over the US State of Maine

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2014-10-01

    Full Text Available This paper describes a novel, simple and efficient approach to estimate forest height over a wide region utilizing spaceborne repeat-pass InSAR correlation magnitude data at L-band. We start from a semi-empirical modification of the RVoG model that characterizes repeat-pass InSAR correlation with large temporal baselines (e.g., 46 days for ALOS by taking account of the temporal change effect of dielectric fluctuation and random motion of scatterers. By assuming (1 the temporal change parameters and forest backscatter profile/extinction coefficient follow some mean behavior across each inteferogram; (2 there is minimal ground scattering contribution for HV-polarization; and (3 the vertical wavenumber is small, a simplified inversion approach is developed to link the observed HV-polarized InSAR correlation magnitude to forest height and validated using ALOS/PALSAR repeat-pass observations against LVIS lidar heights over the Howland Research Forest in central Maine, US (with RMSE < 4 m at a resolution of 32 hectares. The model parameters derived from this supervised regression are used as the basis for propagating the estimates of forest height to available interferometric pairs for the entire state of Maine, thus creating a state-mosaic map of forest height. The present approach described here serves as an alternative and complementary tool for other PolInSAR inversion techniques when full-polarization data may not be available. This work is also meant to be an observational prototype for NASA’s DESDynI-R (now called NISAR and JAXA’s ALOS-2 satellite missions.

  6. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    Science.gov (United States)

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  7. Military Hydrology. Report 16. Assessment of Shuttle Imaging Radar and Landsat Imagery for Ground-Water Exploration and Arid Environments

    Science.gov (United States)

    1989-06-01

    Representative. The work unit was conducted under the general supervision of Mr. Malcolm P. Keown , Chief, ECG; Dr. Victor E. LaGarde III, Chief, ESD; and Dr. John...MacDonald, H. C., Martin -Kaye, P., and Sabins, F. 1982. "Shuttle Imaging Radar Experiment," Science, Vol 218, pp 996-1003. Elachi, C., Roth, L. E

  8. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    Science.gov (United States)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  9. Sources of and Remedies for Removing Unwanted Reflections in Millimeter Wave Images of Complex SOFI-Covered Space Shuttle Structures

    Science.gov (United States)

    Kharkovsky, S.; Zoughi, R.; Hepburn, Frank L.

    2007-01-01

    In the recent years, continuous-wave near-field and lens-focused millimeter wave imaging systems have been effectively used to demonstrate their utility for producing high-resolution images of metallic structures covered with spay on foam insulation (SOFI) such as the Space Shuttle external fuel tank. However, for some specific structures a certain interference -pattern may be superimposed on the produced images. There are methods by which the influence of this unwanted interference can be reduced, such as the incorporation of an incidence .angle and the proper use of signal polarization. This paper presents the basics of this problem and describes the use of the methods for reducing this unwanted influence through specific examples.

  10. Oceanographic Analysis of Sun Glint Images Taken on Space Shuttle Mission STS 41-G.

    Science.gov (United States)

    1986-03-01

    AVHRR infrared images and to bathythermographs of the same area. Evidence of the Almeria Front, a persisatnt oceanographic feature east of the...pattern of 49 AXBTs in the vicinity of the Almeria Front and recorded subsurface temperature profiles which resulted in at least a partial characterization...NOAA-7 AVHRR INFRARED IMAGES Five NOAA-7 AVHIR infrared images were used in the study. The October 7 image clearly shows the Almeria front, position B

  11. Space Shuttle Main Engine Propellant Path Leak Detection Using Sequential Image Processing

    Science.gov (United States)

    Smith, L. Montgomery; Malone, Jo Anne; Crawford, Roger A.

    1995-01-01

    Initial research in this study using theoretical radiation transport models established that the occurrence of a leak is accompanies by a sudden but sustained change in intensity in a given region of an image. In this phase, temporal processing of video images on a frame-by-frame basis was used to detect leaks within a given field of view. The leak detection algorithm developed in this study consists of a digital highpass filter cascaded with a moving average filter. The absolute value of the resulting discrete sequence is then taken and compared to a threshold value to produce the binary leak/no leak decision at each point in the image. Alternatively, averaging over the full frame of the output image produces a single time-varying mean value estimate that is indicative of the intensity and extent of a leak. Laboratory experiments were conducted in which artificially created leaks on a simulated SSME background were produced and recorded from a visible wavelength video camera. This data was processed frame-by-frame over the time interval of interest using an image processor implementation of the leak detection algorithm. In addition, a 20 second video sequence of an actual SSME failure was analyzed using this technique. The resulting output image sequences and plots of the full frame mean value versus time verify the effectiveness of the system.

  12. Airborne Repeat Pass Interferometry for Deformation Measurements

    NARCIS (Netherlands)

    Groot, J.; Otten, M.; Halsema, E. van

    2000-01-01

    In ground engineering the need for deformation measurements is urgent. SAR interferometry can be used to measure small (sub-wavelength) deformations. An experiment to investigate this for dike deformations was set up, using the C-band SAR system PHARUS (PHased ARray Universal SAR). This paper descri

  13. Analysis of the Gran Desierto, Pinacte Region, Sonora, Mexico, via shuttle imaging radar

    Science.gov (United States)

    Greeley, R.; Christensen, P. R.; Mchone, J. F.; Asmerom, Y.; Zimbelman, J. R.

    1984-01-01

    The radar discriminability of geolian features and their geological setting as imaged by the SIR-A experiment is examined. The Gran Desierto and Pincate volcanio field of Sonora, Mexico was used to analyze the radar characteristics of the interplay of aeolian features and volcano terrain. The area in the Gran Desierto covers 4000 sq. km. and contains sand dunes of several forms. The Pincate volcanio field covers more than 2.000 sq. km. and consists primarily of basaltic lavas. Margins of the field, especially on the western and northern sides, include several maar and maar-like craters; thus obtaining information on their radar characteristics for comparison with impact craters.

  14. Analysis of forest and forest clearings in Amazonia with Landsat and Shuttle Imaging Radar-A data

    Science.gov (United States)

    Stone, Thomas A.; Woodwell, George M.

    1987-01-01

    Landsat and Shuttle Imaging Radar-A L band (23.5 cm wavelength) data from 1981 were used to analyze areas of intact tropical forest and areas recently cleared from forest for agriculture and pasture in Mato Grosso, Brazil. Portions of SIR-A Data Takes #24C and #31 film were digitized using a microdensitometer. Landsat MSS data of July 1981 were also examined. The digital values from SIR-A DT 31 were compared with the normalized difference vegetation index values (NDVI) from the Landsat data for the same sites. Contrary to expectations some cleared areas had brighter radar responses than surrounding forest. The explanation seems to be that a recently cleared forest (cut and burned during the dry season) is texturally very rough as the exposed standing and fallen boles and woody litter may function as effective corner or dihedral reflectors. Combining radar data with NDVI data may help to assess the relative age of forest clearings and determine differences in both woody and green leaf biomass of primary and secondary tropical forests.

  15. Shuttle requests

    CERN Multimedia

    2007-01-01

    Please note that starting from 1 March 2007, the shuttle requests: for official visits or bidders' conferences on the CERN site; towards/from the airport or central Geneva; for long distances, shall be made via Fm.Support@cern.ch or by calling 77777. The radio taxi will still be reachable at 76969. TS/FM Group

  16. CERN Shuttle

    CERN Multimedia

    General Infrastructure Services Department

    2011-01-01

    As of Monday 21 February, a new schedule will come into effect for the Airport Shuttle (circuit No. 4) at the end of the afternoon: Last departure at 7:00 pm from Main Buildig, (Bldg. 500) to Airport (instead of 5:10 p.m.); Last departure from Airport to CERN, Main Buildig, (Bldg. 500), at 7:30 p.m. (instead of 5:40 p.m.). Group GS-IS

  17. Shuttle requests

    CERN Multimedia

    2007-01-01

    Please note that, to improve the service we provide, a new telephone number - 72500 - has been set up for all shuttle requests concerning: journeys within the CERN site, i.e. official visits or bidders' conferences; journeys to or from the airport or city centre; long-distance journeys. However, it will still be possible to submit requests in writing to Fm.Support@cern. The radio taxi can also still be reached on 76969. The TS/FM group would also like to inform you that details of all light logistics services (transport of persons, distribution and collection of parcels up to 1 tonne, distribution and collection of mail) can be found on the group's website: http://ts-dep.web.cern.ch/ts-dep/groups/fm/fm.htm TS/FM Group 160239

  18. Shuttle and Transfer Orbit Thermal Analysis and Testing of the Chandra X-Ray Observatory Charge-Couple Device Imaging Spectrometer Radiator Shades

    Science.gov (United States)

    Sharp, John R.

    1999-01-01

    Thermal analyses of the Shuttle and Transfer Orbit of the Advanced X-Ray Astrophysics Facility Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS), one of two science instruments on the Chandra X-Ray Observatory, revealed a low-earth orbit (LEO) overheating problem on the goldized Kapton faces of two radiator shades. The shades were coated with the goldized Kapton to provide a low hemispherical emittance to minimize direct and backloaded heating from the sun and the observatory and high specularity to optimize the coupling to space on two passive radiators which cool the focal plane to -120 C +/- 1 C during on-orbit operations. Since the observatory has a highly elliptical final orbit of 10,000 kilometers by 140,000 kilometers and the ACIS radiators and shades are oriented anti-sun, the high solar absorptance to emittance ratio of the goldized Kapton was not an issue. However, during Shuttle bay-to-earth operations, the short duration solar heating occurring near the eclipse entry and exit resulted in shade temperatures in excess of the cure temperature of the adhesive used to bond the goldized Kapton and honeycomb face-sheets. The detailed thermal analysis demonstrating the LEO overheating as well as the redesign options and thermal testing of a redesigned development unit shade are presented.

  19. Shuttle and Transfer Orbit Thermal Analysis and Testing of the Chandra X-Ray Observatory CCD Imaging Spectrometer Radiator Shades

    Science.gov (United States)

    Sharp, John R.

    2001-01-01

    Contents include the following: (1) Introduction: Chandra X-ray observatory. Advanced CCD imaging spectrometer. (2) LEO and transfer orbit analyses: Geometric modeling in TSS w/specularity. Low earth orbital heating calculations. (3) Thermal testing and LMAC. (4) Problem solving. (5) VDA overcoat analyses. (6) VDA overcoat testing and MSFC. (7) Post-MSFC test evaluation.

  20. Shuttle Wastewater Solution Characterization

    Science.gov (United States)

    Adam, Niklas; Pham, Chau

    2011-01-01

    During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

  1. Space Shuttle-Illustration

    Science.gov (United States)

    2001-01-01

    The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  2. Space Shuttle Vehicle Illustration

    Science.gov (United States)

    1975-01-01

    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  3. MSFC shuttle lightning research

    Science.gov (United States)

    Vaughan, Otha H., Jr.

    1993-01-01

    The shuttle mesoscale lightning experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of lightning characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne lightning mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type lightning research instrument called mesoscale lightning observational sensors (MELOS), which are currently under development here at MSFC.

  4. Space Shuttle Abort Evolution

    Science.gov (United States)

    Henderson, Edward M.; Nguyen, Tri X.

    2011-01-01

    This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.

  5. Shuttle Inventory Management

    Science.gov (United States)

    1983-01-01

    Inventory Management System (SIMS) consists of series of integrated support programs providing supply support for both Shuttle program and Kennedy Space Center base opeations SIMS controls all supply activities and requirements from single point. Programs written in COBOL.

  6. Astronaut Franklin Chang-Diaz organizes shuttle mail message

    Science.gov (United States)

    1994-01-01

    On Discovery's aft flight deck, Astronaut Franklin R. Chang-Diaz begins to organize what was believed to be among the longest mail messages in Shuttle history. Though early Shuttle flights could brag of longer teleprinted messages, the Thermal Imaging Printing Systems's day four correspondence, most of which is out of frame here, is a record length for recent flights.

  7. Nanoparticle shuttle memory

    Science.gov (United States)

    Zettl, Alex Karlwalter [Kensington, CA

    2012-03-06

    A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

  8. Shuttle Case Study Collection Website Development

    Science.gov (United States)

    Ransom, Khadijah S.; Johnson, Grace K.

    2012-01-01

    As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathered into a single database to provide educators with an alternative means to teach real-world engineering processes. The goal is to provide additional engineering materials that enhance critical thinking, decision making, and problem solving skills. During this second phase of the project, the Shuttle Case Study Collection website was developed. Extensive HTML coding to link downloadable documents, videos, and images was required, as was training to learn NASA's Content Management System (CMS) for website design. As the final stage of the collection development, the website is designed to allow for distribution of information to the public as well as for case study report submissions from other educators online.

  9. Space Shuttle navigation validation

    Science.gov (United States)

    Ragsdale, A.

    The validation of the guidance, navigation, and control system of the Space Shuttle is explained. The functions of the ascent, on-board, and entry mission phases software of the navigation system are described. The common facility testing, which evaluates the simulations to be used in the navigation validation, is examined. The standard preflight analysis of the operational modes of the navigation software and the post-flight navigation analysis are explained. The conversion of the data into a useful reference frame and the use of orbit parameters in the analysis of the data are discussed. Upon entry the data received are converted to flags, ratios, and residuals in order to evaluate performance and detect errors. Various programs developed to support navigation validation are explained. A number of events that occurred with the Space Shuttle's navigation system are described.

  10. Shuttle entry guidance revisited

    Science.gov (United States)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1992-08-01

    The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.

  11. Shuttle entry guidance revisited

    Science.gov (United States)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1992-01-01

    The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.

  12. Electron shuttles in biotechnology.

    Science.gov (United States)

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  13. Shuttle Transportation System Case-Study Development

    Science.gov (United States)

    Ransom, Khadijah

    2012-01-01

    A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.

  14. Shuttle Lesson Learned - Toxicology

    Science.gov (United States)

    James, John T.

    2010-01-01

    This is a script for a video about toxicology and the space shuttle. The first segment is deals with dust in the space vehicle. The next segment will be about archival samples. Then we'll look at real time on-board analyzers that give us a lot of capability in terms of monitoring for combustion products and the ability to monitor volatile organics on the station. Finally we will look at other issues that are about setting limits and dealing with ground based lessons that pertain to toxicology.

  15. Space Shuttle Cockpit exhibit

    Science.gov (United States)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis Space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  16. Space Shuttle Cockpit

    Science.gov (United States)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. Stennisphere is open free of charge from 9 a.m. to 5 p.m. daily.

  17. Quantum Shuttle in Phase Space

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Jauho, Antti-Pekka

    2003-01-01

    Abstract: We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus...... extending the previously found classical results to the quantum domain. Further, a new dynamical regime is discovered, where the shuttling is driven exclusively by the quantum noise....

  18. History of Space Shuttle Rendezvous

    Science.gov (United States)

    Goodman, John L.

    2011-01-01

    This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.

  19. Space Shuttle development update

    Science.gov (United States)

    Brand, V.

    1984-01-01

    The development efforts, since the STS-4 flight, in the Space Shuttle (SS) program are presented. The SS improvements introduced in the last two years include lower-weight loads, communication through the Tracking and Data Relay Satellite, expanded extravehicular activity capability, a maneuvering backpack and the manipulator foot restraint, the improvements in thermal projection system, the 'optional terminal area management targeting' guidance software, a rendezvous system with radar and star tracker sensors, and improved on-orbit living conditions. The flight demonstrations include advanced launch techniques (e.g., night launch and direct insertion to orbit); the on-orbit demonstrations; and added entry and launching capabilities. The entry aerodynamic analysis and entry flight control fine tuning are described. Reusability, improved ascent performance, intact abort and landing flexibility, rollout control, and 'smart speedbrakes' are among the many improvements planned for the future.

  20. Shuttle entry guidance

    Science.gov (United States)

    Harpold, J. C.; Graves, C. A., Jr.

    1978-01-01

    This paper describes the design of the entry guidance for the Space Shuttle Orbiter. This guidance provides the steering commands for trajectory control from initial penetration of the earth's atmosphere until the terminal area guidance is activated at an earth-relative speed of 2500 fps. At this point, the Orbiter is at a distance of about 50 nmi from the runway threshold, and at an altitude of about 80,000 ft. The entry guidance design is based on an analytic solution of the equations of motion defining the drag acceleration profile that meets the terminal criteria of the entry flight while maintaining the flight within systems and operational constraints. Guidance commands, which are based on a control law that ensures damping of oscillatory type trajectory motion, are computed to steer the Orbiter to this drag acceleration profile.

  1. Space Shuttle Strategic Planning Status

    Science.gov (United States)

    Norbraten, Gordon L.; Henderson, Edward M.

    2007-01-01

    The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

  2. Space Shuttle Program Legacy Report

    Science.gov (United States)

    Johnson, Scott

    2012-01-01

    Share lessons learned on Space Shuttle Safety and Mission Assurance (S&MA) culture, processes, and products that can guide future enterprises to improve mission success and minimize the risk of catastrophic failures. Present the chronology of the Johnson Space Center (JSC) S&MA organization over the 40-year history of the Space Shuttle Program (SSP) and identify key factors and environments which contributed to positive and negative performance.

  3. Shuttle Atlantis Landing at Edwards

    Science.gov (United States)

    1985-01-01

    NASA's Space Shuttle Atlantis touched down on the lakebed runway at Edwards Air Force Base in California's Mojave Desert Tuesday, 3 December 1985 at 1:33:49 p.m. Pacific Standard Time, concluding the STS 61-B international mission. The eight-day mission successfully deployed three communications satellites including the Mexican Morelos B, the Australian Aussat 2 and an RCA Satcom K-2 satellite. In addition, two spacewalks were performed to experiment with construction of structures in space. Crew of the 61-B mission included Commander Brewster H. Shaw, Jr.; Pilot Bryan D. O'Connor; Mission Specialists Mary L. Cleave, Sherwood C. Spring and Jerry L. Ross; and Payload Specialists Rudolfo Neri Vela of Mexico and Charles Walker of McDonnell Douglas Astronautics Co. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories

  4. Shuttle Discovery Landing at Edwards

    Science.gov (United States)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout

  5. ]Space Shuttle Independent Assessment Team

    Science.gov (United States)

    2000-01-01

    The Shuttle program is one of the most complex engineering activities undertaken anywhere in the world at the present time. The Space Shuttle Independent Assessment Team (SIAT) was chartered in September 1999 by NASA to provide an independent review of the Space Shuttle sub-systems and maintenance practices. During the period from October through December 1999, the team led by Dr. McDonald and comprised of NASA, contractor, and DOD experts reviewed NASA practices, Space Shuffle anomalies, as well as civilian and military aerospace experience. In performing the review, much of a very positive nature was observed by the SIAT, not the least of which was the skill and dedication of the workforce. It is in the unfortunate nature of this type of review that the very positive elements are either not mentioned or dwelt upon. This very complex program has undergone a massive change in structure in the last few years with the transition to a slimmed down, contractor-run operation, the Shuttle Flight Operations Contract (SFOC). This has been accomplished with significant cost savings and without a major incident. This report has identified significant problems that must be addressed to maintain an effective program. These problems are described in each of the Issues, Findings or Observations summarized, and unless noted, appear to be systemic in nature and not confined to any one Shuttle sub-system or element. Specifics are given in the body of the report, along with recommendations to improve the present systems.

  6. Space shuttle and life sciences

    Science.gov (United States)

    Mason, J. A.

    1977-01-01

    During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.

  7. Space Shuttle flight control system

    Science.gov (United States)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  8. Changes to the shuttle circuits

    CERN Multimedia

    GS Department

    2011-01-01

    To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on http://cern.ch/ShuttleService (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section

  9. Shuttle Propulsion Overview to NATO

    Science.gov (United States)

    Lightfoot, Robert

    2006-01-01

    In the early morning on Saturday, February 1, 2003, the Space Shuttle Columbia broke up during entry. After extensive investigation of the accident and recommendations made by the Columbia Accident Investigation Board, President Bush gave the vision for space exploration for NASA, which include return the Space Shuttle to flight as soon as practical, complete assembly of the ISS by the end of the decade, initiate robotic missions to the moon no later than 2008, develop a new Crew Exploration Vehicle, conduct first robotic, then human missions to Mars and extend human exploration across the solar system.

  10. STAGTOPS: Enhancing the Azimuth Resolution of Sentinel1 TOPSAR Images

    Science.gov (United States)

    Giudici, D.; Piantanida, R.; Rocca, F.; Monti Guarnieri, A.; Recchia, A.

    2016-08-01

    The paper introduces a technique for the enhanced processing of TOPSAR data. It is based on repeated passes of the sensor over the same area and is aimed at obtaining "enhanced resolution" images of coherent scatterers in the scene by combining two "de- synchronized" acquisitions, useless for interferometric purposes. The paper introduces the STAGTOPS concept and provides a first demonstration exploiting a couple of 12 days apart Sentinel-1A TOPSAR IW images with a synchronization issue. The proposed technique could be further tested by exploiting the novel Sentinel-1B sensor (launch 25th April 2016), reducing the revisit time to 6 days.

  11. Earth scenes in polarized light observed from the Space Shuttle

    Science.gov (United States)

    Whitehead, Victor S.; Coulson, Kinsell L.

    1989-01-01

    By means of a pair of boresighted and synchronized cameras fitted with orthogonally oriented polarizing filters and carried aboard the Space Shuttle, a large number of polarized images of the earth's surface have been obtained from orbital altitude. Selected pairs of images, both in color and in black and white, have been digitized and computer-processed to yield analogous images in each of the three Stokes parameters necessary for characterizing the state of linear polarization of the emergent light. Many of the images show surface properties more distinctly in degree and plane of polarization than in simple intensity alone. It is believed that these are the first, and certainly the most extensive, set of polarized images of the earth ever obtained from space. Selected pairs of the images are presented here along with some early results of analysis.

  12. Space Shuttle and Hypersonic Entry

    Science.gov (United States)

    Campbell, Charles H.; Gerstenmaier, William H.

    2014-01-01

    Fifty years of human spaceflight have been characterized by the aerospace operations of the Soyuz, of the Space Shuttle and, more recently, of the Shenzhou. The lessons learned of this past half decade are important and very significant. Particularly interesting is the scenario that is downstream from the retiring of the Space Shuttle. A number of initiatives are, in fact, emerging from in the aftermath of the decision to terminate the Shuttle program. What is more and more evident is that a new era is approaching: the era of the commercial usage and of the commercial exploitation of space. It is probably fair to say, that this is the likely one of the new frontiers of expansion of the world economy. To make a comparison, in the last 30 years our economies have been characterized by the digital technologies, with examples ranging from computers, to cellular phones, to the satellites themselves. Similarly, the next 30 years are likely to be characterized by an exponential increase of usage of extra atmospheric resources, as a result of more economic and efficient way to access space, with aerospace transportation becoming accessible to commercial investments. We are witnessing the first steps of the transportation of future generation that will drastically decrease travel time on our Planet, and significantly enlarge travel envelope including at least the low Earth orbits. The Steve Jobs or the Bill Gates of the past few decades are being replaced by the aggressive and enthusiastic energy of new entrepreneurs. It is also interesting to note that we are now focusing on the aerospace band, that lies on top of the aeronautical shell, and below the low Earth orbits. It would be a mistake to consider this as a known envelope based on the evidences of the flights of Soyuz, Shuttle and Shenzhou. Actually, our comprehension of the possible hypersonic flight regimes is bounded within really limited envelopes. The achievement of a full understanding of the hypersonic flight

  13. Space Shuttle and Hypersonic Entry

    Science.gov (United States)

    Campbell, Charles H.; Gerstenmaier, William H.

    2014-01-01

    Fifty years of human spaceflight have been characterized by the aerospace operations of the Soyuz, of the Space Shuttle and, more recently, of the Shenzhou. The lessons learned of this past half decade are important and very significant. Particularly interesting is the scenario that is downstream from the retiring of the Space Shuttle. A number of initiatives are, in fact, emerging from in the aftermath of the decision to terminate the Shuttle program. What is more and more evident is that a new era is approaching: the era of the commercial usage and of the commercial exploitation of space. It is probably fair to say, that this is the likely one of the new frontiers of expansion of the world economy. To make a comparison, in the last 30 years our economies have been characterized by the digital technologies, with examples ranging from computers, to cellular phones, to the satellites themselves. Similarly, the next 30 years are likely to be characterized by an exponential increase of usage of extra atmospheric resources, as a result of more economic and efficient way to access space, with aerospace transportation becoming accessible to commercial investments. We are witnessing the first steps of the transportation of future generation that will drastically decrease travel time on our Planet, and significantly enlarge travel envelope including at least the low Earth orbits. The Steve Jobs or the Bill Gates of the past few decades are being replaced by the aggressive and enthusiastic energy of new entrepreneurs. It is also interesting to note that we are now focusing on the aerospace band, that lies on top of the aeronautical shell, and below the low Earth orbits. It would be a mistake to consider this as a known envelope based on the evidences of the flights of Soyuz, Shuttle and Shenzhou. Actually, our comprehension of the possible hypersonic flight regimes is bounded within really limited envelopes. The achievement of a full understanding of the hypersonic flight

  14. Space Shuttle Usage of z/OS

    Science.gov (United States)

    Green, Jan

    2009-01-01

    This viewgraph presentation gives a detailed description of the avionics associated with the Space Shuttle's data processing system and its usage of z/OS. The contents include: 1) Mission, Products, and Customers; 2) Facility Overview; 3) Shuttle Data Processing System; 4) Languages and Compilers; 5) Application Tools; 6) Shuttle Flight Software Simulator; 7) Software Development and Build Tools; and 8) Fun Facts and Acronyms.

  15. Space Shuttle Main Engine Public Test Firing

    Science.gov (United States)

    2000-01-01

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  16. Shot noise of a quantum shuttle

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Flindt, Christian

    2004-01-01

    even in the quantum limit, confirming that shuttling is universally a low noise phenomenon. In approaching the semiclassical limit, the Fano factor shows a giant enhancement (Fsimilar or equal to10(2)) at the shuttling threshold, consistent with predictions based on phase-space representations......We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the Fano factor F, is computed. F reaches very low values (Fsimilar or equal to10(-2)) in the shuttling regime...

  17. Current Noise Spectrum of a Quantum Shuttle

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, T.; Jauho, Antti-Pekka

    2005-01-01

    We present a method for calculating the full current noise spectrum S(omega) for the class of nano-electromechanical systems (NEMS) that can be described by a Markovian generalized master equation. As a specific example we apply the method to a quantum shuttle. The noise spectrum of the shuttle h...

  18. Shuttle onboard IMU alignment methods

    Science.gov (United States)

    Henderson, D. M.

    1976-01-01

    The current approach to the shuttle IMU alignment is based solely on the Apollo Deterministic Method. This method is simple, fast, reliable and provides an accurate estimate for the present cluster to mean of 1,950 transformation matrix. If four or more star sightings are available, the application of least squares analysis can be utilized. The least squares method offers the next level of sophistication to the IMU alignment solution. The least squares method studied shows that a more accurate estimate for the misalignment angles is computed, and the IMU drift rates are a free by-product of the analysis. Core storage requirements are considerably more; estimated 20 to 30 times the core required for the Apollo Deterministic Method. The least squares method offers an intermediate solution utilizing as much data that is available without a complete statistical analysis as in Kalman filtering.

  19. Reentry guidance for Space Shuttle

    Science.gov (United States)

    Causey, W.; Sohoni, V.

    1973-01-01

    An explicit guidance scheme is outlined which provides the appropriate energy management in order for the shuttle orbiter to reach any location within the required footprint. Considering the orbiter as entering the earth's atmosphere, expressions for the downrange, crossrange, and the time of the termination of the entry phase as functions of the control variables are developed. Performing an order-of-magnitude analysis of the terms in these expressions, only dominant terms are retained. Analytical expressions for the elements of the sensitivity matrix which represents the partial derivatives of the desired range with respect to control variables are formulated. Using the Gauss-Jordan inversion technique, the required change in guidance commands as a function of the deviations in the downrange and crossrange are explicitly computed.

  20. Reentry guidance for Space Shuttle

    Science.gov (United States)

    Causey, W.; Sohoni, V.

    1973-01-01

    An explicit guidance scheme is outlined which provides the appropriate energy management in order for the shuttle orbiter to reach any location within the required footprint. Considering the orbiter as entering the earth's atmosphere, expressions for the downrange, crossrange, and the time of the termination of the entry phase as functions of the control variables are developed. Performing an order-of-magnitude analysis of the terms in these expressions, only dominant terms are retained. Analytical expressions for the elements of the sensitivity matrix which represents the partial derivatives of the desired range with respect to control variables are formulated. Using the Gauss-Jordan inversion technique, the required change in guidance commands as a function of the deviations in the downrange and crossrange are explicitly computed.

  1. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  2. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...

  3. Space Shuttle RTOS Bayesian Network

    Science.gov (United States)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores

  4. Space Shuttle Orbiter-Illustration

    Science.gov (United States)

    2001-01-01

    This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.

  5. Status of a UAVSAR designed for repeat pass interferometry for deformation measurements

    Science.gov (United States)

    Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren; Paul, Rose

    2005-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also known as differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar wilI be designed to operate on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus buitt by Scaled Composites or on a NASA Gulfstream III. The radar design is a fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered along track to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. Other features supported by the antenna include an elevation monopulse option and a pulse-to-pulse resteering capability that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began out as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  6. An L-band SAR for repeat pass deformation measurements on a UAV platform

    Science.gov (United States)

    Wheeler, Kevin; Hensley, Scott; Lou, Yunling

    2004-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeatpass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV or minimally piloted vehicle (MPV).

  7. Integrated Data Processing Methodology for Airborne Repeat-pass Differential SAR Interferometry

    Science.gov (United States)

    Dou, C.; Guo, H.; Han, C.; Yue, X.; Zhao, Y.

    2014-11-01

    Short temporal baseline and multiple ground deformation information can be derived from the airborne differential synthetic aperture radar Interforemetry (D-InSAR). However, affected by the turbulence of the air, the aircraft would deviate from the designed flight path with high frequent vibrations and changes both in the flight trajectory and attitude. Restricted by the accuracy of the position and orientation system (POS), these high frequent deviations can not be accurately reported, which would pose great challenges in motion compensation and interferometric process. Thus, these challenges constrain its wider applications. The objective of this paper is to investigate the accurate estimation and compensation of the residual motion errors in the airborne SAR imagery and time-varying baseline errors between the diffirent data acquirations, furthermore, to explore the integration data processing theory for the airborne D-InSAR system, and thus help to accomplish the correct derivation of the ground deformation by using the airborne D-InSAR measurements.

  8. Chemical Shuttle Additives in Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher

  9. Animation graphic interface for the space shuttle onboard computer

    Science.gov (United States)

    Wike, Jeffrey; Griffith, Paul

    1989-01-01

    Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.

  10. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  11. Advantages of a round-body shuttle

    Science.gov (United States)

    Arrington, James P.; Wells, William L.; Lepsch, Roger A., Jr.; Huffman, Jarrett K.; Macconochie, Ian O.

    1989-01-01

    A cylindrical fuselage cross-section SSTOV representing the design generation beyond the current NASA Space Shuttle has been projected capable of reducing the cost of payload delivery to orbit while increasing mission scope. Due to its intrinsically greater wetted-area and structural weight efficiencies, this cylindrical vehicle would carry 40 percent greater payload than the Space Shuttle system despite a 20-percent lower gross liftoff weight. A LOX/hydrocarbon fuel combination would be employed during the early portion of flight, thereupon shifting to LOX/hydrogen. The cylindrical SSTOV would have eight times the volume of the Space Shuttle Orbiter.

  12. Shuttle Upgrade Program: Tile TPS

    Science.gov (United States)

    Leiser, Daniel B.; Stewart, David A.; DiFiore, Robert; Irby, Ed; Arnold, James (Technical Monitor)

    2001-01-01

    One of the areas where the thermal protection system on the Space Shuttle Orbiter could be improved is the RSI (Reusable Surface Insulation) tile. The improvement would be in damage resistance that would reduce the resultant maintenance and inspection required. It has performed very well in every other aspect. Improving the system's damage resistance has been the subject of much research over the past several years. One of the results of that research was a new system developed for damage prone areas on the orbiter (i.e., base heat shield). That system, designated as TUFI, Toughened Uni-Piece Fibrous Insulation, was successfully demonstrated as an experiment on the Orbiter and is now baselined for the base heat shield. This paper describes the results of a current research program to further improve the TUFI tile system, thus making it applicable to more areas on the orbiter. The way to remove the current limitations of the TUFI system (i.e., weight or thermal conductivity differences between it and the baseline tile (LI-900)) is to improve the characteristics of LI-900 or AETB-8. Specifically this paper describes the results of two efforts. The first shows performance data of an improved LI-900 system involving the application of TUFI and the second describes data that shows a reduced difference in thermal conductivity between the advanced TUFI substrate (AETB-8) now used on the orbiter and LI-900.

  13. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  14. Nucleocytoplasmic Shuttling of Influenza A Virus Proteins

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-05-01

    Full Text Available Influenza viruses transcribe and replicate their genomes in the nuclei of infected host cells. The viral ribonucleoprotein (vRNP complex of influenza virus is the essential genetic unit of the virus. The viral proteins play important roles in multiple processes, including virus structural maintenance, mediating nucleocytoplasmic shuttling of the vRNP complex, virus particle assembly, and budding. Nucleocytoplasmic shuttling of viral proteins occurs throughout the entire virus life cycle. This review mainly focuses on matrix protein (M1, nucleoprotein (NP, nonstructural protein (NS1, and nuclear export protein (NEP, summarizing the mechanisms of their nucleocytoplasmic shuttling and the regulation of virus replication through their phosphorylation to further understand the regulation of nucleocytoplasmic shuttling in host adaptation of the viruses.

  15. CERN Shuttles - Enlarged Regular Shuttle Services as from 8/02/2010

    CERN Multimedia

    2010-01-01

    As of Monday 8 February 2010, please note the enhancement of the regular shuttle services: - with now two shuttles dedicated to the transportation within and between both CERN sites, Meyrin and Prevessin with bus stop at more buildings - To and from the Geneva airport every hour (from building 500) to complement the TPG bus Y For timetable details, please click here: http://gs-dep.web.cern.ch/gs-dep/groups/sem/ls/RegularShuttleTimetable_Feb2010.htm GS-SEM

  16. Space Shuttle Program Tin Whisker Mitigation

    Science.gov (United States)

    Nishimi, Keith

    2007-01-01

    The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.

  17. Designing the Space Shuttle Propulsion System

    Science.gov (United States)

    Owen, James; Moore, Dennis; Wood, David; VanHooser, Kathrine; Wlzyn, Ken

    2011-01-01

    The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. Both the solid rocket motors and the space shuttle main engine throttle during early ascent flight to limit aerodynamic loads on the structure. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, and the SSME's continue operation to achieve orbital velocity approximately eight and a half minutes after liftoff. Design and performance challenges were numerous, beginning with development work in the 1970 s. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper discusses a number of the system level technical challenges including development and operations.

  18. STS-31 Space Shuttle mission report

    Science.gov (United States)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-31 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fifth flight of the Space Shuttle and the tenth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-34/LWT-27), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Booster (SRB) (designated as BI-037). The primary objective of the mission was to place the Hubble Space Telescope (HST) into a 330 nmi. circular orbit having an inclination of 28.45 degrees. The secondary objectives were to perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG), Investigations into Polymer Membrane Processing (IPMP), Radiation Monitoring Equipment (RME), Ascent Particle Monitor (APM), IMAX Cargo Bay Camera (ICBC), Air Force Maui Optical Site Calibration Test (AMOS), IMAX Crew Compartment Camera, and Ion Arc payloads. In addition, 12 development test objectives (DTO's) and 10 detailed supplementary objectives (DSO's) were assigned to the flight. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystems during the mission are summarized, and the official problem tracking list is presented. In addition, each of the Space Shuttle Orbiter problems is cited in the subsystem discussion.

  19. Shuttle Propulsion Overview - The Design Challenges

    Science.gov (United States)

    Owen, James W.

    2011-01-01

    The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates, about eight and a half minutes into the flight, after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, with only the SSME s continuing operation to achieve orbital velocity. Design and performance challenges were numerous, beginning with development work in the 1970's. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper describes the design challenges and key areas where the design evolved during the program.

  20. STS-62 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-05-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  1. An Analysis of Shuttle Crew Scheduling Violations

    Science.gov (United States)

    Bristol, Douglas

    2012-01-01

    From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.

  2. STS-129 shuttle crew visits Stennis

    Science.gov (United States)

    2010-01-01

    Members of the STS-129 space shuttle crew visited NASA's John C. Stennis Space Center on Jan. 19 to share details of their November visit to the International Space Station. During their 11-day mission aboard shuttle Atlantis, crew members delivered equipment, supplies and spare parts to the ISS. Following their mission report, astronauts visited with Stennis employees during a brief reception. Astronauts visiting Stennis were Pilot Barry Wilmore, Mission Specialist Randy Bresnik, Commander Charles Hobaugh and Mission Specialists Mike Foreman and Robert Satcher.

  3. Post-Shuttle EVA Operations on ISS

    Science.gov (United States)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  4. Toward Automated Feature Detection in UAVSAR Images

    Science.gov (United States)

    Parker, J. W.; Donnellan, A.; Glasscoe, M. T.

    2014-12-01

    Edge detection identifies seismic or aseismic fault motion, as demonstrated in repeat-pass inteferograms obtained by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) program. But this identification is not robust at present: it requires a flattened background image, interpolation into missing data (holes) and outliers, and background noise that is either sufficiently small or roughly white Gaussian. Identification and mitigation of nongaussian background image noise is essential to creating a robust, automated system to search for such features. Clearly a robust method is needed for machine scanning of the thousands of UAVSAR repeat-pass interferograms for evidence of fault slip, landslides, and other local features.Empirical examination of detrended noise based on 20 km east-west profiles through desert terrain with little tectonic deformation for a suite of flight interferograms shows nongaussian characteristics. Statistical measurement of curvature with varying length scale (Allan variance) shows nearly white behavior (Allan variance slope with spatial distance from roughly -1.76 to -2) from 25 to 400 meters, deviations from -2 suggesting short-range differences (such as used in detecting edges) are often freer of noise than longer-range differences. At distances longer than 400 m the Allan variance flattens out without consistency from one interferogram to another. We attribute this additional noise afflicting difference estimates at longer distances to atmospheric water vapor and uncompensated aircraft motion.Paradoxically, California interferograms made with increasing time intervals before and after the El Mayor Cucapah earthquake (2008, M7.2, Mexico) show visually stronger and more interesting edges, but edge detection methods developed for the first year do not produce reliable results over the first two years, because longer time spans suffer reduced coherence in the interferogram. The changes over time are reflecting fault slip and block

  5. STS-41 Space Shuttle mission report

    Science.gov (United States)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

  6. STS-52 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1992-12-01

    The STS-52 Space Shuttle Program Mission Report provides a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the fifty-first flight of the Space Shuttle Program, and the thirteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of the following: an ET (designated as ET-55/LWT-48); three SSME's, which were serial numbers 2030, 2015, and 2034 in positions 1, 2, and 3, respectively; and two SRB's, which were designated BI-054. The lightweight RSRM's that were installed in each SRB were designated 360L027A for the left SRB and 360Q027B for the right SRB. The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGEOS-2) and to perform operations of the United States Microgravity Payload-1 (USMP-1). The secondary objectives of this flight were to perform the operations of the Attitude Sensor Package (ASP), the Canadian Experiments-2 (CANEX-2), the Crystals by Vapor Transport Experiment (CVTE), the Heat Pipe Performance Experiment (HPP), the Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX), the Physiological System Experiment (PSE), the Commercial Protein Crystal Growth (CPCG-Block 2), the Shuttle Plume Impingement Experiment (SPIE), and the Tank Pressure Control Experiment (TPCE) payloads.

  7. Rockwell Fails in Response to Shuttle Disaster.

    Science.gov (United States)

    Kaufman, John A.

    1988-01-01

    Describes the contingent media relations policy employed by Rockwell International, the prime contractor for the United States space shuttle program, following the January 28, 1986, destruction of the Challenger. Analyzes Rockwell's response through a theoretical model of crisis perception and Rockwell's policy in relation to the mass media. (MS)

  8. Reliability of a Shuttle reaction timer

    Science.gov (United States)

    Hays, Russell D.; Mazzocca, Augustus D.; Rashid, Michael; Siconolfi, Steven F.

    1992-01-01

    Reaction, movement, and task times refer to the times needed to initially respond to a stimulus, make the specific movement, and complete the entire task. This study evaluated the reliability of a simple reaction timer designed to mimic a Space Shuttle task (turning on an overhead switch).

  9. AMS gets lift on space shuttle Discovery

    CERN Multimedia

    2009-01-01

    AMS-02, the CERN-recognized experiment that will seek dark matter, missing matter and antimatter in Space aboard the International Space Station (ISS), has recently got the green light to be part of the STS-134 NASA mission in 2010. Installation of AMS detectors in the Prévessin experiment hall.In a recent press release, NASA announced that the last or last-but-one mission of the Space Shuttle programme would be the one that will deliver AMS, the Alpha Magnetic Spectrometer, to the International Space Station. The Space Shuttle Discovery is due to lift off in July 2010 from Kennedy Space Center and its mission will include the installation of AMS to the exterior of the space station, using both the shuttle and station arms. "It wasn’t easy to get a lift on the Space Shuttle from the Bush administration," says professor Samuel Ting, spokesperson of the experiment, "since during his administration all the funds for space research w...

  10. Optimal Wafer Cutting in Shuttle Layout Problems

    DEFF Research Database (Denmark)

    Nisted, Lasse; Pisinger, David; Altman, Avri

    2011-01-01

    A major cost in semiconductor manufacturing is the generation of photo masks which are used to produce the dies. When producing smaller series of chips it can be advantageous to build a shuttle mask (or multi-project wafer) to share the startup costs by placing different dies on the same mask...

  11. Shuttle Repair Tools Automate Vehicle Maintenance

    Science.gov (United States)

    2013-01-01

    Successfully building, flying, and maintaining the space shuttles was an immensely complex job that required a high level of detailed, precise engineering. After each shuttle landed, it entered a maintenance, repair, and overhaul (MRO) phase. Each system was thoroughly checked and tested, and worn or damaged parts replaced, before the shuttle was rolled out for its next mission. During the MRO period, workers needed to record exactly what needed replacing and why, as well as follow precise guidelines and procedures in making their repairs. That meant traceability, and with it lots of paperwork. In 2007, the number of reports generated during electrical system repairs was getting out of hand-placing among the top three systems in terms of paperwork volume. Repair specialists at Kennedy Space Center were unhappy spending so much time at a desk and so little time actually working on the shuttle. "Engineers weren't spending their time doing technical work," says Joseph Schuh, an electrical engineer at Kennedy. "Instead, they were busy with repetitive, time-consuming processes that, while important in their own right, provided a low return on time invested." The strain of such inefficiency was bad enough that slow electrical repairs jeopardized rollout on several occasions. Knowing there had to be a way to streamline operations, Kennedy asked Martin Belson, a project manager with 30 years experience as an aerospace contractor, to co-lead a team in developing software that would reduce the effort required to document shuttle repairs. The result was System Maintenance Automated Repair Tasks (SMART) software. SMART is a tool for aggregating and applying information on every aspect of repairs, from procedures and instructions to a vehicle s troubleshooting history. Drawing on that data, SMART largely automates the processes of generating repair instructions and post-repair paperwork. In the case of the space shuttle, this meant that SMART had 30 years worth of operations

  12. Shuttle SBUV (SSBUV) Solar Spectral Irradiance V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shuttle Solar Backscatter Ultraviolet (SSBUV) level-2 irradiance data are available for eight space shuttle missions flown between 1989 and 1996. SSBUV, a...

  13. Macro Level Simulation Model Of Space Shuttle Processing

    Science.gov (United States)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  14. STS-61 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  15. Space shuttle observation of an unusual transient atmospheric emission

    Science.gov (United States)

    Yair, Yoav; Price, Colin; Ziv, Baruch; Israelevich, Peter L.; Sentman, Davis D.; São-Sabbas, Fernanda T.; Devir, Adam D.; Sato, Mitsuteru; Rodger, Craig J.; Moalem, Meir; Greenberg, Eran; Yaron, Ofer

    2005-01-01

    We report an observation of an unusual transient luminous event (TLE) detected in the near IR, south of Madagascar above the Indian Ocean. The event was imaged from the space shuttle Columbia during the MEIDEX sprite campaign [Yair et al., 2004]. It was delayed 0.23 seconds from a preceding visual lightning flash which was horizontally displaced >1000 km from the event. The calculated brightness in the 860 (+/-50) nm filter was ~310 +/- 30 kR, and the morphology of the emitting volume did not resemble any known class of TLE (i.e., sprites, ELVES or halos). This TIGER event (Transient Ionospheric Glow Emission in Red) may constitute a new class of TLE, not necessarily induced by a near-by thunderstorm. We discuss possible generation mechanisms, including the conjugate sprite hypothesis caused by lightning at the magnetic mirror point, lightning-induced electron precipitation and an extraterrestrial source, meteoric or cometary.

  16. Space shuttle digital flight control system

    Science.gov (United States)

    Minott, G. M.; Peller, J. B.; Cox, K. J.

    1976-01-01

    The space shuttle digital, fly by wire, flight control system presents an interesting challenge in avionics system design. In residence in each of four redundant general purpose computers at lift off are the guidance, navigation, and control algorithms for the entire flight. The mission is divided into several flight segments: first stage ascent, second stage ascent; abort to launch site, abort once around; on orbit operations, entry, terminal area energy management; and approach and landing. The FCS is complicated in that it must perform the functions to fly the shuttle as a boost vehicle, as a spacecraft, as a reentry vehicle, and as a conventional aircraft. The crew is provided with both manual and automatic modes of operations in all flight phases including touchdown and rollout.

  17. Optomechanical photon shuttling between photonic cavities

    CERN Document Server

    Li, Huan

    2014-01-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave-mixing between photons and phonons and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong nonlocal effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a novel multi-cavity optomechanical device: a "photon see-saw", in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of the see-saw, are modulated anti-symmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation which strongly modulates the inter-cavity coupling and shuttles photons to the other...

  18. Optomechanical photon shuttling between photonic cavities.

    Science.gov (United States)

    Li, Huan; Li, Mo

    2014-11-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave mixing between photons and phonons, and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong non-local effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a multicavity optomechanical device in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of this 'photon see-saw', are modulated antisymmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation, which strongly modulates the inter-cavity coupling and shuttles photons to the other empty cavity during every oscillation cycle in a well-regulated fashion.

  19. Space Shuttle security policies and programs

    Science.gov (United States)

    Keith, E. L.

    1985-01-01

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  20. Shuttle Kit Freezer Refrigeration Unit Conceptual Design

    Science.gov (United States)

    Copeland, R. J.

    1975-01-01

    The refrigerated food/medical sample storage compartment as a kit to the space shuttle orbiter is examined. To maintain the -10 F in the freezer kit, an active refrigeration unit is required, and an air cooled Stirling Cycle refrigerator was selected. The freezer kit contains two subsystems, the refrigeration unit, and the storage volume. The freezer must provide two basic capabilities in one unit. One requirement is to store 215 lbs of food which is consumed in a 30-day period by 7 people. The other requirement is to store 128.3 lbs of medical samples consisting of both urine and feces. The unit can be mounted on the lower deck of the shuttle cabin, and will occupy four standard payload module compartments on the forward bulkhead. The freezer contains four storage compartments.

  1. STS-74 Space Shuttle Mission Report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-74 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-third flight of the Space Shuttle Program, the forty-eighth flight since the return-to-flight, and the fifteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-74; three Phase 11 SSME's that were designated as serial numbers 2012, 2026, and 2032 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-076. The RSRM's, designated RSRM-51, were installed in each SRB and the individual RSRM's were designated as 360TO51 A for the left SRB, and 360TO51 B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform life sciences investigations. The Russian Docking Module (DM) was berthed onto the Orbiter Docking System (ODS) using the Remote Manipulator System (RMS), and the Orbiter docked to the Mir with the DM. When separating from the Mir, the Orbiter undocked, leaving the DM attached to the Mir. The two solar arrays, mounted on the DM, were delivered for future Russian installation to the Mir. The secondary objectives of the flight were to perform the operations necessary to fulfill the requirements of the GLO experiment (GLO-4)/Photogrammetric Appendage Structural Dynamics Experiment Payload (PASDE) (GPP), the IMAX Cargo Bay Camera (ICBC), and the Shuttle Amateur Radio Experiment-2 (SAREX-2). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT)) and mission elapsed time (MET).

  2. Shuttle Performance: Lessons Learned, part 1

    Science.gov (United States)

    Arrington, J. P. (Compiler); Jones, J. J. (Compiler)

    1983-01-01

    Beginning with the first orbital flight of the Space Shuttle, a great wealth of flight data became available to the aerospace community. These data were immediately subjected to analyses by several different groups with different viewpoints and motivations. The results were collected and presented in several papers in the subject areas of ascent and entry aerodynaics; guidance, navigation, and control; aerothermal environment prediction; thermal protection systems; and measurement techniques.

  3. Cryogenic Michelson Interferometer on the Space Shuttle

    OpenAIRE

    Wellard, Stan; Blakeley, Jeff; Brown, Steven; Bartschi, Brent

    1993-01-01

    A helium-cooled interferometer was flown aboard shuttle ifight STS-39. This interferometer, along with its sister radiometer, set new benchmarks for the quantity and quality of data collected. The interferometer generated approximately 150,000 interferograms during the course of the ifight. Data was collected at tangent heights from the earth's surface to celestial targets. The interferograms encoded spectral data from aurora, earth limb, and earth terminator scenes. The interfemmeter collect...

  4. A Simplified Shuttle Irradiation Facility for ATR

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Alma Joseph; Laflin, S. T.

    1999-09-01

    During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple “low cost” shuttle irradiation facility for ATR has been developed. Costs were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4 – 5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations. The irradiation position selected for this concept is a 1.5 inch “B” hole (B-11). This position provides neutron fluxes of approximately: 1.6 x 1014 (<0.5 eV) and 4.0 x 1013 (>0.8 MeV) n/cm2*sec.

  5. Space shuttle entry terminal area energy management

    Science.gov (United States)

    Moore, Thomas E.

    1991-01-01

    A historical account of the development for Shuttle's Terminal Area Energy Management (TAEM) is presented. A derivation and explanation of logic and equations are provided as a supplement to the well documented guidance computation requirements contained within the official Functional Subsystem Software Requirements (FSSR) published by Rockwell for NASA. The FSSR contains the full set of equations and logic, whereas this document addresses just certain areas for amplification.

  6. STS-68 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-68 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-fifth flight of the Space Shuttle Program and the seventh flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-65; three SSMEs that were designated as serial numbers 2028, 2033, and 2026 in positions 1, 2, and 3, respectively; and two SRBs that were designated BI-067. The RSRMs that were installed in each SRB were designated as 360W040A for the left SRB and 360W040B for the right SRB. The primary objective of this flight was to successfully perform the operations of the Space Radar Laboratory-2 (SRL-2). The secondary objectives of the flight were to perform the operations of the Chromosome and Plant Cell Division in Space (CHROMEX), the Commercial Protein Crystal Growth (CPCG), the Biological Research in Canisters (BRIC), the Cosmic Radiation Effects and Activation Monitor (CREAM), the Military Application of Ship Tracks (MAST), and five Get-Away Special (GAS) payloads.

  7. Microbiological Lessons Learned from the Space Shuttle

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.

    2011-01-01

    After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune

  8. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  9. Image Processing

    Science.gov (United States)

    1993-01-01

    Electronic Imagery, Inc.'s ImageScale Plus software, developed through a Small Business Innovation Research (SBIR) contract with Kennedy Space Flight Center for use on space shuttle Orbiter in 1991, enables astronauts to conduct image processing, prepare electronic still camera images in orbit, display them and downlink images to ground based scientists for evaluation. Electronic Imagery, Inc.'s ImageCount, a spin-off product of ImageScale Plus, is used to count trees in Florida orange groves. Other applications include x-ray and MRI imagery, textile designs and special effects for movies. As of 1/28/98, company could not be located, therefore contact/product information is no longer valid.

  10. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    Science.gov (United States)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  11. CERN Shuttles - NEW Regular Shuttle Services as from 11/01/2010

    CERN Multimedia

    GS Department

    2010-01-01

    As of Monday 11 January a new regular shuttle service (from Monday to Friday) will be available to facilitate transportation: Within and between both CERN sites, Meyrin and Prevessin; To and from the following LHC points: ATLAS, ALICE, CMS, LHCb. For further details, please consult the timetable for this service. We should also like to take this opportunity to encourage you to use the new regular TPG Y bus service rather than the special on-demand CERN transport service to and from Geneva Airport whenever possible. The TPG buses run from 06:00 to 00:30. For further details, please consult the TPG timetable. Please do not hesitate to give us your feedback on the shuttle services: e-mail to veronique.marchal@cern.ch. In case of problems with the shuttles, please contact 75411. GS-SEM Group Infrastructure and General Services Department

  12. Shuttle Ku-band bent-pipe implementation considerations. [for Space Shuttle digital communication systems

    Science.gov (United States)

    Batson, B. H.; Seyl, J. W.; Huth, G. K.

    1977-01-01

    This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.

  13. [Imaging].

    Science.gov (United States)

    Chevrot, A; Drapé, J L; Godefroy, D; Dupont, A M; Pessis, E; Sarazin, L; Minoui, A

    1997-01-01

    The panoply of imaging techniques useful in podology is essentially limited to X-rays. Standard "standing" and "lying" X-rays furnish most of the required information. Arthrography is sometimes performed, in particular for trauma or tumour of the ankle. CT scan and MRI make a decisive contribution in difficult cases, notably in fractures and in small fractures without displacement. The two latter techniques are useful in tendon, ligament and muscular disorders, where echography is also informative. Rigorous analysis of radiographies and a good knowledge of foot disorders make these imaging techniques efficacious.

  14. STS-46 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W.

    1992-10-01

    The STS-46 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle main engine (SSME) subsystem performance during the forty-ninth flight of the Space Shuttle Program, and the twelfth flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an ET, designated ET-48 (LWT-41); three SSME's, which were serial numbers 2032, 2033, and 2027 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-052. The lightweight/redesigned SRM's that were installed in each SRB were designated 360W025A for the left RSRM and 360L025B for the right RSRM. The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material 3/Thermal Energy Management Processes 2A-3 (EOIM-3/TEMP 2A-3). The secondary objectives of this flight were to perform the operations of the IMAX Cargo Bay Camera (ICBC), Consortium for Material Development in Space Complex Autonomous Payload-2 and 3 (CONCAP-2 and CONCAP-3), Limited Duration Space Environment Candidate Materials Exposure (LDCE), Pituitary Growth Hormone Cell Function (PHCF), and Ultraviolet Plume Instrumentation (UVPI). In addition to summarizing subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. Also included in the discussion is a reference to the assigned tracking number as published on the Problem Tracking List. All times are given in Greenwich mean time (G.m.t.) as well as mission elapsed time (MET).

  15. STS-54 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1993-03-01

    The STS-54 Space Shuttle Program Mission Report is a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and the Space Shuttle Main Engine (SSME) subsystems performance during this fifty-third flight of the Space Shuttle Program, and the third flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET, which was designated ET-51; three SSME's, which were serial numbers 2019, 2033, and 2018 in positions 1, 2, and 3, respectively; and two retrievable and reusable SRB's which were designated BI-056. The lightweight RSRM's that were installed in each SRB were designated 360L029A for the left SRB, and 360L029B for the right SRB. The primary objectives of this flight were to perform the operations to deploy the Tracking and Data Relay Satellite-F/Inertial Upper Stage payload and to fulfill the requirements of the Diffuse X-Ray Spectrometer (DXS) payload. The secondary objective was to fly the Chromosome and Plant Cell Division in Space (CHROMEX), Commercial Generic Bioprocessing Apparatus (CGBA), Physiological and Anatomical Rodent Experiment (PARE), and the Solid Surface Combustion Experiment (SSCE). In addition to presenting a summary of subsystem performance, this report also discusses each Orbiter, ET, SSME, SRB, and RSRM in-flight anomaly in the applicable section of the report. The official tracking number for each in-flight anomaly, assigned by the cognizant project, is also shown. All times are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).

  16. Shuttle Abort Flight Management (SAFM) - Application Overview

    Science.gov (United States)

    Hu, Howard; Straube, Tim; Madsen, Jennifer; Ricard, Mike

    2002-01-01

    One of the most demanding tasks that must be performed by the Space Shuttle flight crew is the process of determining whether, when and where to abort the vehicle should engine or system failures occur during ascent or entry. Current Shuttle abort procedures involve paging through complicated paper checklists to decide on the type of abort and where to abort. Additional checklists then lead the crew through a series of actions to execute the desired abort. This process is even more difficult and time consuming in the absence of ground communications since the ground flight controllers have the analysis tools and information that is currently not available in the Shuttle cockpit. Crew workload specifically abort procedures will be greatly simplified with the implementation of the Space Shuttle Cockpit Avionics Upgrade (CAU) project. The intent of CAU is to maximize crew situational awareness and reduce flight workload thru enhanced controls and displays, and onboard abort assessment and determination capability. SAFM was developed to help satisfy the CAU objectives by providing the crew with dynamic information about the capability of the vehicle to perform a variety of abort options during ascent and entry. This paper- presents an overview of the SAFM application. As shown in Figure 1, SAFM processes the vehicle navigation state and other guidance information to provide the CAU displays with evaluations of abort options, as well as landing site recommendations. This is accomplished by three main SAFM components: the Sequencer Executive, the Powered Flight Function, and the Glided Flight Function, The Sequencer Executive dispatches the Powered and Glided Flight Functions to evaluate the vehicle's capability to execute the current mission (or current abort), as well as more than IS hypothetical abort options or scenarios. Scenarios are sequenced and evaluated throughout powered and glided flight. Abort scenarios evaluated include Abort to Orbit (ATO), Transatlantic

  17. Space Shuttle Orbiter auxiliary power unit status

    Science.gov (United States)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  18. Langley's Space Shuttle Technology: A bibliography

    Science.gov (United States)

    Champine, G. R.

    1981-01-01

    This bibliography documents most of the major publications, research reports, journal articles, presentations, and contractor reports, which have been published since the inception of the Space Shuttle Technology Task Group at the NASA Langley Reseach Center on July 11, 1969. This research work was performed in house by the Center staff or under contract, monitored by the Center staff. The report is arranged according to method of publication: (1) NASA Formal Reports; (2) Contractor Reports; and (3) Articles and Conferences. Disciplines covered are in the areas of aerothermodynamics, structures, dynamics and aeroelasticity, environmental, and materials. The publications are listed without abstracts for quick reference and planning.

  19. Space shuttle main engine hardware simulation

    Science.gov (United States)

    Vick, H. G.; Hampton, P. W.

    1985-01-01

    The Huntsville Simulation Laboratory (HSL) provides a simulation facility to test and verify the space shuttle main engine (SSME) avionics and software system using a maximum complement of flight type hardware. The HSL permits evaluations and analyses of the SSME avionics hardware, software, control system, and mathematical models. The laboratory has performed a wide spectrum of tests and verified operational procedures to ensure system component compatibility under all operating conditions. It is a test bed for integration of hardware/software/hydraulics. The HSL is and has been an invaluable tool in the design and development of the SSME.

  20. Redox shuttles for lithium ion batteries

    Science.gov (United States)

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  1. NASA management of the Space Shuttle Program

    Science.gov (United States)

    Peters, F.

    1975-01-01

    The management system and management technology described have been developed to meet stringent cost and schedule constraints of the Space Shuttle Program. Management of resources available to this program requires control and motivation of a large number of efficient creative personnel trained in various technical specialties. This must be done while keeping track of numerous parallel, yet interdependent activities involving different functions, organizations, and products all moving together in accordance with intricate plans for budgets, schedules, performance, and interaction. Some techniques developed to identify problems at an early stage and seek immediate solutions are examined.

  2. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    Science.gov (United States)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  3. Space shuttle/payload interface analysis (study 2.4). Volume 2: Space shuttle traffic analysis

    Science.gov (United States)

    Plough, J. A.

    1973-01-01

    The transfer is reported of the capability to perform capture/cost analyses to MSFC. Space shuttle performance and direct costs, tug characteristics, reliability, and cost data were provided by NASA. The launch vehicle, mission models, payloads, and computer programs are discussed along with capture/cost analysis, and cost estimates. For Vol. 1, see N74-12493.

  4. Remote observations of reentering spacecraft including the space shuttle orbiter

    Science.gov (United States)

    Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, Jay H.; Gibson, David M.

    Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

  5. Final Results of Shuttle MMOD Impact Database

    Science.gov (United States)

    Hyde, J. L.; Christiansen, E. L.; Lear, D. M.

    2015-01-01

    The Shuttle Hypervelocity Impact Database documents damage features on each Orbiter thought to be from micrometeoroids (MM) or orbital debris (OD). Data is divided into tables for crew module windows, payload bay door radiators and thermal protection systems along with other miscellaneous regions. The combined number of records in the database is nearly 3000. Each database record provides impact feature dimensions, location on the vehicle and relevant mission information. Additional detail on the type and size of particle that produced the damage site is provided when sampling data and definitive spectroscopic analysis results are available. Guidelines are described which were used in determining whether impact damage is from micrometeoroid or orbital debris impact based on the findings from scanning electron microscopy chemical analysis. Relationships assumed when converting from observed feature sizes in different shuttle materials to particle sizes will be presented. A small number of significant impacts on the windows, radiators and wing leading edge will be highlighted and discussed in detail, including the hypervelocity impact testing performed to estimate particle sizes that produced the damage.

  6. Mission Possible: BioMedical Experiments on the Space Shuttle

    Science.gov (United States)

    Bopp, E.; Kreutzberg, K.

    2011-01-01

    Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical

  7. Legacy of Biomedical Research During the Space Shuttle Program

    Science.gov (United States)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  8. Shuttle to Space Station. Heart Assist Implant. Hubble Update. X-30 Mock-Up

    Science.gov (United States)

    1992-01-01

    Shuttle to Space Station, Heart Assist Implant, Hubble Update, and X-30 Mockup are the four parts that are discussed in this video. The first part, Shuttle to Space Station, is focussed on the construction and function of the Space Station Freedom. While part two, Heart Assist Implant, discusses a newly developed electromechanical device that helps to reduce heart attack by using electric shocks. Interviews with the co-inventor and patients are also included. Brief introduction to Hubble Telescope, problem behind its poor image quality (mirror aberration), and the plan to correct this problem are the three issues that are discussed in part three, Hubble Update. The last part, part four, reviews the X-30 Mockup designed by the staff and students of Mississippi State University.

  9. Time-resolved vibrational spectroscopy of a molecular shuttle

    NARCIS (Netherlands)

    Panman, M.R.; Bodis, P.; Shaw, D.J.; Bakker, B.H.; Newton, A.C.; Kay, E.R.; Leigh, D.A.; Buma, W.J.; Brouwer, A.M.; Woutersen, S.

    2012-01-01

    Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid

  10. Shuttle Orbiter Enterprise Off-Loaded at Redstone Arsenal Airfield

    Science.gov (United States)

    1978-01-01

    The Shuttle Orbiter Enterprise is off-loaded Redstone Arsenal Airfield for later Mated Vertical Ground Vibration tests (MVGVT) at Marshall Space Flight Center's Dynamic Test Stand. The tests marked the first time ever that the entire shuttle complement (including orbiter, external tank, and solid rocket boosters) were mated vertically.

  11. Shuttle Orbiter Enterprise Arrives at Redstone Arsenal Airfield

    Science.gov (United States)

    1978-01-01

    The Shuttle Orbiter Enterprise atop a 747 landing at Redstone Arsenal Airfield for later Mated Vertical Ground Vibration tests (MVGVT) at Marshall Space Flight Center's Dynamic Test Stand. The tests marked the first time ever that the entire shuttle complement (including orbiter, external tank, and solid rocket boosters) were mated vertically.

  12. Time management displays for shuttle countdown

    Science.gov (United States)

    Beller, Arthur E.; Hadaller, H. Greg; Ricci, Mark J.

    1992-01-01

    The Intelligent Launch Decision Support System project is developing a Time Management System (TMS) for the NASA Test Director (NTD) to use for time management during Shuttle terminal countdown. TMS is being developed in three phases: an information phase; a tool phase; and an advisor phase. The information phase is an integrated display (TMID) of firing room clocks, of graphic timelines with Ground Launch Sequencer events, and of constraints. The tool phase is a what-if spreadsheet (TMWI) for devising plans for resuming from unplanned hold situations. It is tied to information in TMID, propagates constraints forward and backward to complete unspecified values, and checks the plan against constraints. The advisor phase is a situation advisor (TMSA), which proactively suggests tactics. A concept prototype for TMSA is under development. The TMID is currently undergoing field testing. Displays for TMID and TMWI are described. Descriptions include organization, rationale for organization, implementation choices and constraints, and use by NTD.

  13. Optimal guidance for the space shuttle transition

    Science.gov (United States)

    Stengel, R. F.

    1974-01-01

    A guidance method for the space shuttle's transition from hypersonic entry to subsonic cruising flight is presented. The method evolves from a numerical trajectory optimization technique in which kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations. This allows the open end-time problem to be transformed to one of fixed terminal energy. In its ultimate form, E-Guidance obtains energy balance (including dynamic-pressure-rate damping) and path length control by angle-of-attack modulation and cross-range control by roll angle modulation. The guidance functions also form the basis for a pilot display of instantaneous maneuver limits and destination. Numerical results illustrate the E-Guidance concept and the optimal trajectories on which it is based.

  14. Energy management during the space shuttle transition

    Science.gov (United States)

    Stengel, R. F.

    1972-01-01

    An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.

  15. Radar error statistics for the space shuttle

    Science.gov (United States)

    Lear, W. M.

    1979-01-01

    Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.

  16. Dynamics of gradient formation by intracellular shuttling

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  17. Space shuttle crew training at CERN

    CERN Multimedia

    Paola Catapano

    From 13 to 16 October, the crew of NASA Space Shuttle mission STS-134 came to CERN for a special physics training programme. Invited here by Samuel Ting, they will deliver the Alpha Magnetic Spectrometer (AMS) detector to the International Space Station (ISS).   The STS134 crew in the Lodge at the Aiguille du Midi wearing CERN fleeces. From left to right: Captain Mark Kelly, US Navy; Pilot Gregory Johnson, USAF ret.; Mission Specialist Andrew Feustel; Mission Specialist Mike Fincke, USAF, Mission Specialist Gregory Chamitoff and Mission Specialist Roberto Vittori, ESA and Italian Air Force. Headed by Commander Mark Kelly, a US Navy captain, the crew included pilot Gregory Johnson, a US Air Force (USAF) colonel, and mission specialists Mike Fincke (also a USAF Colonel), Andrew Feustel, and Gregory Chamitoff of NASA, as well as Colonel Roberto Vittori of the European Space Agency (ESA). Two flight directors, Gary Horlache and Derek Hassmann of NASA, and the engineer responsible for the Ext...

  18. Dynamics of gradient formation by intracellular shuttling

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  19. Potential improvements to the Shuttle through evolution

    Science.gov (United States)

    Faget, Maxime A.; Smith, O. G.

    1993-01-01

    A possible series of evolutionary changes in the Space Shuttle are discussed that would increase both safety and performance while simultaneously decreasing the cost of operations. It is argued that major savings in operations costs can be achieved by employing electromechanical actuators in the hydraulic system and by making an architectural change to isolate the critical flight control processing system from other hardware. Minor modifications to existing Orbiters would enable the system to carry about 8000-10,000 more pounds to any given orbit. A more powerful, more reliable, and completely reusable booster should be developed, and reliability and safety improvements should be made. The SSMEs should be removed from the Orbiter and installed in a recoverable pod that would be attached to the rear of the ET.

  20. Notch sensitivity of space shuttle tile materials

    Science.gov (United States)

    Newman, J. C., Jr.

    1980-01-01

    Tests were conducted at room temperature to determine the notch sensitivity of the thermal protection tile for the space shuttle. Two types of RSI tile were studied: LI-900 and LI-2200. Three point bend specimens were cut from discarded tiles in the in-plane (ip) and through-the-thickness (ttt) directions. They were tested with or without a sharp notch. The LI-900 (ip and ttt) specimens were not very notch sensitive, but the LI-2200 (ip and ttt) specimens were. The LI-2200 material showed about a 35 percent reduction in strength due to the presence of the notch. This reduction in strength should be considered in the design of mechanically fastened tile concepts.

  1. The Legacy of Space Shuttle Flight Software

    Science.gov (United States)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  2. Use of Probabilistic Risk Assessment in Shuttle Decision Making Process

    Science.gov (United States)

    Boyer, Roger L.; Hamlin, Teri, L.

    2011-01-01

    This slide presentation reviews the use of Probabilistic Risk Assessment (PRA) to assist in the decision making for the shuttle design and operation. Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and disciplined approach to identifying and analyzing risk in complex systems and/or processes that seeks answers to three basic questions: (i.e., what can go wrong? what is the likelihood of these occurring? and what are the consequences that could result if these occur?) The purpose of the Shuttle PRA (SPRA) is to provide a useful risk management tool for the Space Shuttle Program (SSP) to identify strengths and possible weaknesses in the Shuttle design and operation. SPRA was initially developed to support upgrade decisions, but has evolved into a tool that supports Flight Readiness Reviews (FRR) and near real-time flight decisions. Examples of the use of PRA for the shuttle are reviewed.

  3. Shuttle Risk Progression: Use of the Shuttle Probabilistic Risk Assessment (PRA) to Show Reliability Growth

    Science.gov (United States)

    Hamlin, Teri L.

    2011-01-01

    It is important to the Space Shuttle Program (SSP), as well as future manned spaceflight programs, to understand the early mission risk and progression of risk as the program gains insights into the integrated vehicle through flight. The risk progression is important to the SSP as part of the documentation of lessons learned. The risk progression is important to future programs to understand reliability growth and the first flight risk. This analysis uses the knowledge gained from 30 years of operational flights and the current Shuttle PRA to calculate the risk of Loss of Crew and Vehicle (LOCV) at significant milestones beginning with the first flight. Key flights were evaluated based upon historical events and significant re-designs. The results indicated that the Shuttle risk tends to follow a step function as opposed to following a traditional reliability growth pattern where risk exponentially improves with each flight. In addition, it shows that risk can increase due to trading safety margin for increased performance or due to external events. Due to the risk drivers not being addressed, the risk did not improve appreciably during the first 25 flights. It was only after significant events occurred such as Challenger and Columbia, where the risk drivers were apparent, that risk was significantly improved. In addition, this paper will show that the SSP has reduced the risk of LOCV by almost an order of magnitude. It is easy to look back afte r 30 years and point to risks that are now obvious, however; the key is to use this knowledge to benefit other programs which are in their infancy stages. One lesson learned from the SSP is understanding risk drivers are essential in order to considerably reduce risk. This will enable the new program to focus time and resources on identifying and reducing the significant risks. A comprehensive PRA, similar to that of the Shuttle PRA, is an effective tool quantifying risk drivers if support from all of the stakeholders is

  4. Particulate environment around the shuttle as determined by the particle analysis cameras for shuttle (PACS) experiment

    Science.gov (United States)

    Green, B. David; Yates, G. Kenneth; Ahmadjian, Mark; Miranda, Henry

    1987-01-01

    The Particle Analysis Cameras for Shuttle (PACS) Experiment was flown on Mission STS61C (Columbia) in January 1986. This experiment involved a pair of cameras in a stereo viewing configuration and an associated strobe light flash to permit particle observation during the entire orbit. Although only one camera functioned properly, significant trends and particle counts were still obtained from the film data. We report here the preliminary analysis and conclusions from that mission.

  5. Signal and imaging sciences workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1997-11-01

    Papers are presented in the areas of: Medical Technologies; Non-Destructive Evaluation; Applications of Signal/Image Processing; Laser Guide Star and Adaptive Optics; Computational Electromagnetic, Acoustics and Optics; Micro-Impulse Radar Processing; Optical Applications; TANGO Space Shuttle.

  6. CERN Shuttles – TRAM arrival – Two additional shuttles as from 2 May 2011

    CERN Multimedia

    General Infrastructure Services Department

    2011-01-01

    With the TRAM’s arrival at CERN and to facilitate mobility inside CERN, the GS Department is reinforcing CERN's shuttle services and will provide users with two additional shuttles from/to Building 33 (CERN Reception) as from Monday 2 May: Circuit No. 5: serving the Meyrin site (approx. every 15 minutes) •\tfrom 7·30 to 9·15 •\tfrom 11·30 to 13·28 (serving restaurants Nos.1 and 2) •\tfrom 16·30 to 18·35   Circuit No. 6: serving the Prevessin site (approx. every 20 minutes) •\tfrom 7·30 to 9·10 •\tfrom 11·30 to 13·28 (serving restaurants Nos. 1, 2 and 3) •\tfrom 16·30 to 18·23 For further details, please consult the timetable for these circuits at the following url: http://gs-dep.web.cern.ch/gs-dep/groups/SEM/ls/ShuttleService/ Please do not hesitate to give us your feedback...

  7. Shuttle infrared telescope facility pointing and control system

    Science.gov (United States)

    Lorell, K. R.; Barrows, W. F.; Matsumoto, Y. T.

    1981-01-01

    The Shuttle Infrared Telescope Facility (SIRTF) is being designed as a 0.85 m cryogenically cooled telescope capable of a three order of magnitude improvement over currently available infrared instruments. The SIRTF requires that the image at the focal plane be stabilized to better than 0.25 arcsec with an absolute accuracy of 1.0 arcsec. Current pointing-mount performance simulations indicate that neither of these requirements can be met without additional stabilization. The SIRTF pointing and control system will utilize gyro outputs, star field position measurements from a focal plane fine guidance sensor, and a steerable secondary mirror to provide the necessary stabilization and pointing control. The charge coupled device fine guidance sensor tracks multiple stars simultaneously and, through the use of multistar processing algorithms in a high performance microcomputer, generates three-axis attitude errors and gyro-drift estimates to correct the pointing-mount gyros. A high-bandwidth feedforward loop, driven directly from the pointing-mount gyro package, controls the steering mirror in order to correct disturbances not compensated for by the pointing-mount control system. A prototype design for the SIRTF pointing and control system is described in detail. Performance analyses made using a digital simulation of the pointing and control system as well as experimental data obtained in laboratory and field test measurements are presented.

  8. Fundamental plant biology enabled by the space shuttle.

    Science.gov (United States)

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  9. Nucleocytoplasmic shuttling activity of ataxin-3.

    Directory of Open Access Journals (Sweden)

    Sandra Macedo-Ribeiro

    Full Text Available Spinocerebellar ataxia type-3, also known as Machado-Joseph Disease (MJD, is one of many inherited neurodegenerative disorders caused by polyglutamine-encoding CAG repeat expansions in otherwise unrelated genes. Disease protein misfolding and aggregation, often within the nucleus of affected neurons, characterize polyglutamine disorders. Several evidences have implicated the nucleus as the primary site of pathogenesis for MJD. However, the molecular determinants for the nucleocytoplasmic transport of human ataxin-3 (Atx3, the protein which is mutated in patients with MJD, are not characterized. In order to characterize the nuclear shuttling activity of Atx3, we performed yeast nuclear import assays and found that Atx3 is actively imported into the nucleus, by means of a classical nuclear localizing sequence formed by a cluster of lysine and arginine residues. On the other hand, when active nuclear export was inhibited using leptomycin B, a specific inhibitor of the nuclear export receptor CRM1, both endogenous Atx3 and transfected GFP-Atx3 accumulated inside the nucleus of a subpopulation of COS-7 cells, whereas both proteins are normally predominant in the cytoplasm. Additionally, using a Rev(1.4-GFP nuclear export assay, we performed an extensive analysis of six putative aliphatic nuclear export motifs identified in Atx3 amino acid sequence. Although none of the tested peptide sequences were found to drive nuclear export when isolated, we have successfully mapped the region of Atx3 responsible for its CRM1-independent nuclear export activity. Curiously, the N-terminal Josephin domain alone is exported into the cytoplasm, but the nuclear export activity of Atx3 is significantly enhanced in a longer construct that is truncated after the two ubiquitin interaction motifs, upstream from the polyQ tract. Our data show that Atx3 is actively imported to and exported from the cell nucleus, and that its nuclear export activity is dependent on a motif

  10. Application of Hilbert-Huang Transform for Improved Defect Detection in Terahertz NDE of Shuttle Tiles

    Science.gov (United States)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Terahertz NDE is being examined as a method to inspect the adhesive bond-line of Space Shuttle tiles for defects. Terahertz signals are generated and detected, using optical excitation of biased semiconductors with femtosecond laser pulses. Shuttle tile samples were manufactured with defects that included repair regions unbond regions, and other conditions that occur in Shuttle structures. These samples were inspected with a commercial terahertz NDE system that scanned a tile and generated a data set of RF signals. The signals were post processed to generate C-scan type images that are typically seen in ultrasonic NDE. To improve defect visualization the Hilbert-Huang Transform, a transform that decomposes a signal into oscillating components called intrinsic mode functions, was applied to test signals identified as being in and out of the defect regions and then on a complete data set. As expected with this transform, the results showed that the decomposed low-order modes correspond to signal noise while the high-order modes correspond to low frequency oscillations in the signal and mid-order modes correspond to local signal oscillations. The local oscillations compare well with various reflection interfaces and the defect locations in the original signal.

  11. Development of a prototype specialist shuttle vehicle for chipped woodfuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This report gives details of a project to develop and test a specialist chip shuttle vehicle for conveying woodchips out of the forest with the aim of reducing the cost of woodfuel production. The design objectives are described and include the need to allow easy transfer of the chips from the chipper to the shuttle and on into haulage units, good performance and manoeuvrability on and off roads, and high-tip capacity. Estimates of the improved production and reduced woodfuel production costs are discussed along with the anticipated satisfactory operation of the chipper-shuttle combination in a forestry site.

  12. NASA Shuttle Logistics Depot (NSLD) - The application of ATE

    Science.gov (United States)

    Simpkins, Lorenz G.; Jenkins, Henry C.; Mauceri, A. Jack

    1990-01-01

    The concept of the NASA Shuttle Logistics Depot (NSLD) developed for the Space Shuttle Orbiter Program is described. The function of the NSLD at Cape Canaveral is to perform the acceptance and diagnostic testing of the Shuttle's space-rated line-replaceable units and shop-replaceable units (SRUs). The NSLD includes a comprehensive electronic automatic test station, program development stations, and assorted manufacturing support equipment (including thermal and vibration test equipment, special test equipment, and a card SRU test system). The depot activities also include the establishment of the functions for manufacturing of mechanical parts, soldering, welding, painting, clean room operation, procurement, and subcontract management.

  13. Shuttle Planning for Link Closures in Urban Public Transport Networks

    DEFF Research Database (Denmark)

    van der Hurk, Evelien; Koutsopoulos, Haris N.; Wilson, Nigel

    2016-01-01

    Urban public transport systems must periodically close certain links for maintenance, which can have significant effects on the service provided to passengers. In practice, the effects of closures are mitigated by replacing the closed links with a simple shuttle service. However, alternative...... cost, which includes transfers and frequency-dependent waiting time costs. This model is applied to a shuttle design problem based on a real-world case study of the Massachusetts Bay Transportation Authority network of Boston, Massachusetts. The results show that additional shuttle routes can reduce...

  14. Effect of periodic inflow on speed-controlled shuttle bus

    Science.gov (United States)

    Nagatani, Takashi

    2017-03-01

    We investigate the dynamic behavior of a shuttle bus controlled the speed when passengers come periodically at the origin. We propose the nonlinear-map model for the dynamics of the speed-controlled bus with the periodic inflow. The bus schedule is closely connected to the motion. The motion of the speed-controlled bus is affected by the periodic inflow. The motion of the shuttle bus depends highly on both speed control and periodic inflow. The shuttle bus displays the periodic, quasi-periodic, and chaotic motions by varying both periodic inflow and speed control. We clarify the dependence of the bus motion on both speed control and periodic inflow.

  15. Shuttle Planning for Link Closures in Urban Public Transport Networks

    DEFF Research Database (Denmark)

    van der Hurk, Evelien; Koutsopoulos, Haris N.; Wilson, Nigel

    2016-01-01

    Urban public transport systems must periodically close certain links for maintenance, which can have significant effects on the service provided to passengers. In practice, the effects of closures are mitigated by replacing the closed links with a simple shuttle service. However, alternative...... cost, which includes transfers and frequency-dependent waiting time costs. This model is applied to a shuttle design problem based on a real-world case study of the Massachusetts Bay Transportation Authority network of Boston, Massachusetts. The results show that additional shuttle routes can reduce...

  16. Shuttle operations simulation model programmers'/users' manual

    Science.gov (United States)

    Porter, D. G.

    1972-01-01

    The prospective user of the shuttle operations simulation (SOS) model is given sufficient information to enable him to perform simulation studies of the space shuttle launch-to-launch operations cycle. The procedures used for modifying the SOS model to meet user requirements are described. The various control card sequences required to execute the SOS model are given. The report is written for users with varying computer simulation experience. A description of the components of the SOS model is included that presents both an explanation of the logic involved in the simulation of the shuttle operations cycle and a description of the routines used to support the actual simulation.

  17. A survey of load methodologies for shuttle orbiter payloads

    Science.gov (United States)

    Chen, J. C.; Garba, J. A.; Salama, M.; Trubert, M.

    1981-01-01

    Loads methods currently being used to design planetary spacecraft to be launched on the shuttle orbiter are summarized. Experiences gained from expendable launch vehicle payloads are used to develop methodologies for the space shuttle orbiter payloads. The objectives for the development of a new methodology for the shuttle payloads are to reduce the cost and schedule for the payload load analysis by decoupling the payload analysis from the launch vehicle to the maximum extent possible. Methods are described for payload member load estimation or obtaining upper bounds for dynamic loads, as well as load prediction or calculating actual transient member load time histories.

  18. Longitudinal dynamic stability of a shuttle vehicle.

    Science.gov (United States)

    Vinh, N. X.; Laitone, E. V.

    1972-01-01

    Analytical study of the longitudinal dynamic stability of a nonrolling, lifting vehicle gliding at hypersonic speeds. The analysis applies to shuttle vehicles designed for operating up to the rim of a planetary atmosphere. A general nondimensional time transformation is introduced to derive a unified second-order linear differential equation for the angle of attack, valid for all types of reentry of a general type of vehicle. The stability of motion is discussed for two fundamental regimes of flight that are based on widely different assumptions. For near ballistic entry along a straight line trajectory, the equation reduces to a confluent hypergeometric equation, the solution of which can be expressed in terms of Whittaker's function. Using a theorem in the theory of stability of differential equations, criteria for damped oscillations are derived. It is shown that the aerodynamic criteria for stability are the same as for the case of ballistic entry. In addition, for each vehicle configuration, and specified planetary atmosphere, there exists an altitude range where the angle of attack frequency is nearly equal to the orbital frequency causing instability in pitch. This resonance instability is due to the ellipticity of the orbit. Criteria for eccentricity instability are derived.

  19. H2O2 space shuttle APU

    Science.gov (United States)

    1975-01-01

    A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

  20. Presenting the Shuttle Main Engine Software

    Science.gov (United States)

    Schreur, Barbara

    1998-01-01

    Originally, this project was to produce an animated Powerpoint presentation of the 'Shuttle Engine and its Software' and to produce a web page with animation including the same materials but with greater detail in the description of the software. The principal emphasis was to be on the web page. Midway through the first year of the project, we were advised by the technical coordinator of this work at MSFC to concentrate on the web page alone. Also, the project was expanded to include a web presentation of the MRECS (Modular Rocket Control System). For the SSME project, the web page presentation has been completed. The integration of the animation into the web page is complete although we have been asked to speed up the animation. Also, the addition of greater detail to the description of the SSME controller software has been added. Much of the work on this program was done by students as their task for their senior project course, the capstone course of their program of study. The students gained a great deal from this project. They have learned to use VISIO, POWERPOINT, PHOTOSHOP, and several web page software packages. The starting point for this project was a PowerPoint presentation by the PI while on a Summer Faculty Fellowship at MSFC. For this project, about half of the drawings of the SSME were improved and about half were completely redrawn. The original still drawings have been animated to illustrate the fuel flow through the SSME system.

  1. Space shuttle SRM field joint: Review paper

    Directory of Open Access Journals (Sweden)

    S. Mohammad Gharouni

    2014-09-01

    Full Text Available Due to Challenger space shuttle accident in 1986, significant research has been done concerning structural behavior of field joints in solid rocket boosters (SRB. The structural deformations between the clevis inner leg and the tang (male-to-female parts of joint, the sealing of the O-ring to prevent the hot gas in joints, has been neglected causing the failure of the vehicle. Redesigning the field joint in SRB engine by accurate analysis of dynamic and thermal loads and by design of insulator and good O-ring, the leakiness of combustion hot gases was eliminated. Some parts of field joint such as capture feature (CF and its third O-ring, J-leg insulator and shim were added to redesigned field joint. Also, some adjustments in sealing system and pins were done to promote the efficiency of the field joint. Due to different experimental analysis on assembled field joints with default imperfections, redesigned joints operated well. These redesigned field joints are commonly used in aerospace and mechanical structures. This paper investigates the original and the redesigned field joints with additional explanations of different parts of the redesigned joints.

  2. IMPORTANT NOTICE: Cancellation of shuttle Circuit 3

    CERN Multimedia

    2013-01-01

    Circuit 3 of the CERN Shuttle Service (Point 5), which has served CMS since the start of LS1, will be cancelled with effect from Tuesday 16 April. This decision has been taken in consultation with CMS, as the circuit was seldom used.   In response to increasing demand for Circuit 1 - Meyrin and feedback from passengers, the two Circuit 3 journeys will be switched to Circuit 1 – Meyrin (see new timetable below): Mornings: Four journeys instead of three. Circuit 1 now starts at 8:10 (instead of 8:19 a.m.) and runs until 9:27 a.m. (instead of 9:16 a.m.). Lunchtimes: Five journeys in place between 12:10 p.m. and 1:47 p.m. Evenings: Circuit starts at 5:23 p.m. (instead of 5:03 p.m.) and ends at 6:20 p.m. at Building 33. Please note that the circuit will depart from Building 13 instead of Building 33.  

  3. Learning Resources on Ultraviolet Astronomy: The Shuttle-Borne Spacelab/Astro Missions

    Science.gov (United States)

    Waller, W. H.; Stecher, T. P.

    1994-12-01

    Beyond the blue, beyond the violet, and into the ultraviolet part of the electromagnetic spectrum, the radiant universe appears strangely altered. At these shorter wavelengths and higher photon energies, the hottest stars shine brightly, while the cooler more common stars like the Sun virtually disappear from view. Clusters and associations of young stars are dominated by just a few massive ultraviolet-bright stars, while ancient globular clusters are reduced to their hottest, most rapidly evolving members. Spiral galaxies that look like graceful pinwheels in visible-light images are transformed into knotty webs --- each knot containing thousands of young hot stars. And the space between the stars, clusters, and galaxies appears profoundly black --- up to 100 times darker than the nighttime sky as seen at visible wavelengths. Until the last decade, our view of the ultraviolet universe was impeded by the stratospheric ozone layer that protects life on Earth from the Sun's harmful UV radiation. Subsequent balloon, sounding rocket, and satellite flights have yielded fascinating glimpses of the ultraviolet universe. In 1990, the Space Shuttle Columbia flew the Spacelab/Astro-1 mission. Astro is the first and only true astronomical observatory to operate onboard the Space Shuttle. It consists of 3 ultraviolet telescopes which are attached to a single pointing system in the Shuttle bay. During the Astro-1 mission, these instruments obtained UV images and spectra of hundreds of astronomical objects. Learning resources relating to this mission include a new slide set and booklet, ``Beyond the Blue: Greatest Hits of the Ultraviolet Imaging Telescope,'' which is being distributed by the ASP through its mail-order catalogue. There is also a teacher's guide with activities, ``Astro-1: Seeing in a New Light'' which is available from the NASA Teacher Resource Laboratories. Sources of information on the upcoming flight of Spacelab/Astro-2 aboard the Endeavour (currently scheduled

  4. Shuttle program. MCC level C formulation requirements: Shuttle TAEM guidance and flight control

    Science.gov (United States)

    Carman, G. L.

    1980-01-01

    The Level C requirements for the shuttle orbiter terminal area energy management (TAEM) guidance and flight control functions to be incorporated into the Mission Control Center entry profile planning processor are defined. This processor will be used for preentry evaluation of the entry through landing maneuvers, and will include a simplified three degree-of-freedom model of the body rotational dynamics that is necessary to account for the effects of attitude response on the trajectory dynamics. This simulation terminates at TAEM-autoland interface.

  5. Shuttle Electrical Power Analysis Program (SEPAP) distribution circuit analysis report

    Science.gov (United States)

    Torina, E. M.

    1975-01-01

    An analysis and evaluation was made of the operating parameters of the shuttle electrical power distribution circuit under load conditions encountered during a normal Sortie 2 Mission with emphasis on main periods of liftoff and landing.

  6. Time-resolved vibrational spectroscopy of a molecular shuttle.

    Science.gov (United States)

    Panman, Matthijs R; Bodis, Pavol; Shaw, Danny J; Bakker, Bert H; Newton, Arthur C; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Woutersen, Sander

    2012-02-14

    Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid-IR spectrum. Using ab initio calculations on specific parts of the rotaxane, and by comparing the transient spectra of the normal rotaxane with that of the N-deuterated version, we can assign the observed vibrational modes of each species occurring during the shuttling cycle in an unambiguous way. The complete time- and frequency-dependent data set is analyzed using singular value decomposition (SVD). Using a kinetic model to describe the time-dependent concentrations of the transient species, we derive the absorption spectra associated with each stage in the operation cycle of the molecular shuttle, including the recombination of the charged species.

  7. Shuttle entry guidance revisited using nonlinear geometric methods

    Science.gov (United States)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1994-11-01

    The entry guidance law for the space shuttle orbiter is revisited using nonlinear geometric methods. The shuttle guidance concept is to track a reference drag trajectory that has been designed to lead a specified range and velocity. It is shown that the approach taken in the original derivation of the shuttle entry guidance has much in common with the more recently developed feedback linearization method of differential geometric control. Using the feedback linearization method, however, an alternative, potentially superior, guidance law was formulated. Comparing the two guidance laws based performance domains in state space, taking into account the nonlinear dynamics, the alternative guidance law achieves the desired performance over larger domains in state space; the stability domain of the laws are similar. With larger operating domain for the shuttle or some other entry vehicle, the alternative guidance law should be considered.

  8. Space Shuttle processing - A case study in artificial intelligence

    Science.gov (United States)

    Mollikarimi, Cindy; Gargan, Robert; Zweben, Monte

    1991-01-01

    A scheduling system incorporating AI is described and applied to the automated processing of the Space Shuttle. The unique problem of addressing the temporal, resource, and orbiter-configuration requirements of shuttle processing is described with comparisons to traditional project management for manufacturing processes. The present scheduling system is developed to handle the late inputs and complex programs that characterize shuttle processing by incorporating fixed preemptive scheduling, constraint-based simulated annealing, and the characteristics of an 'anytime' algorithm. The Space-Shuttle processing environment is modeled with 500 activities broken down into 4000 subtasks and with 1600 temporal constraints, 8000 resource constraints, and 3900 state requirements. The algorithm is shown to scale to very large problems and maintain anytime characteristics suggesting that an automated scheduling process is achievable and potentially cost-effective.

  9. Space Shuttle Main Propulsion System Anomaly Detection: A Case Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The space shuttle main engine (SSME) is part of the Main Propnlsion System (MPS) which is an extremely complex system containing several sub-systems and components,...

  10. Space shuttle recommendations based on aircraft maintenance experience

    Science.gov (United States)

    Spears, J. M.; Fox, C. L.

    1972-01-01

    Space shuttle design recommendations based on aircraft maintenance experience are developed. The recommendations are specifically applied to the landing gear system, nondestructive inspection techniques, hydraulic system design, materials and processes, and program support.

  11. Astronaut Judith Resnik in the Shuttle mission simulator

    Science.gov (United States)

    1984-01-01

    Astronaut Judith A. Resnik, 41-D mission specialist, prepares to climb some steps leading to the flight deck portion of JSC's Shuttle mission simulator (SMS) in preparation for training for her 41-D mission.

  12. Shuttle sonic boom - Technology and predictions. [environmental impact

    Science.gov (United States)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  13. Gas Pressure Measurements on Space Shuttle Mission-39.

    Science.gov (United States)

    2007-11-02

    there have been numerous in-situ experiments designed to measure the gaseous contamination near the Shuttle [Green et al., 1985; Erlers et al., 1984...engines [ Erlers , 1984; Machuzak et al., 1993; Hunton, 19941. Engine-related pressure spikes were investigated by Narcisi et al. [19831, Wulf and von Zahn...Government Printing Office, Washington D.C., 1976. Erlers , H.K.F., S. Jacobs, L. Leger, and E. Miller (1984) Space Shuttle contamination measurements from

  14. Exodus - Distributed artificial intelligence for Shuttle firing rooms

    Science.gov (United States)

    Heard, Astrid E.

    1990-01-01

    This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.

  15. Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch

    CERN Document Server

    Metzger, Philip T; Carilli, Robert A; Long, Jason M; Shawn, Kathy L

    2009-01-01

    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the o...

  16. Smart drugs: green shuttle or real drug?

    Science.gov (United States)

    Cornara, L; Borghesi, B; Canali, C; Andrenacci, M; Basso, M; Federici, S; Labra, M

    2013-11-01

    We have combined morphological, molecular, and chemical techniques in order to identify the plant and chemical composition of some last-generation smart drugs, present on the market under the following names: Jungle Mistic Incense, B-52, Blendz, and Kratom 10x. Micromorphological analyses of botanical fragments allowed identification of epidermal cells, stomata, trichomes, starch, crystals, and pollen. DNA barcoding was carried out by the plastidial gene rbcL and the spacer trnH-psbA as universal markers. The combination of morphological and molecular data revealed a mixture of plants from different families, including aromatic species, viz., Lamiaceae and Turneraceae. GC-MS and LC-MS analyses on ethanol or methanol extracts showed the presence of synthetic cannabinoids, including JWH-250 in Jungle, JWH-122 in B-52, and JWH-073 and JWH-018 in Blendz. In Kratom 10x, only the indole alkaloid mitragynine was detected. All the identified synthetic cannabinoids, apart from mitragynine, are under the restriction of law in Italy (TU 309/90). Synthetic cannabinoid crystals were also identified by scanning electron microscopy and energy dispersive X-ray spectroscopy, which also detected other foreign organic chemicals, probably preservatives or antimycotics. In Kratom only leaf fragments from Mitragyna speciosa, containing the alkaloid mitragynine, were found. In the remaining products, aromatic plant species have mainly the role of hiding synthetic cannabinoids, thus acting as a "green shuttle" rather than as real drugs. Such a multidisciplinary approach is proposed as a method for the identification of herbal blends of uncertain composition, which are widely marketed in "headshops" and on the Internet, and represent a serious hazard to public health.

  17. Latent Virus Reactivation in Space Shuttle Astronauts

    Science.gov (United States)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  18. Replication of Space-Shuttle Computers in FPGAs and ASICs

    Science.gov (United States)

    Ferguson, Roscoe C.

    2008-01-01

    A document discusses the replication of the functionality of the onboard space-shuttle general-purpose computers (GPCs) in field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs). The purpose of the replication effort is to enable utilization of proven space-shuttle flight software and software-development facilities to the extent possible during development of software for flight computers for a new generation of launch vehicles derived from the space shuttles. The replication involves specifying the instruction set of the central processing unit and the input/output processor (IOP) of the space-shuttle GPC in a hardware description language (HDL). The HDL is synthesized to form a "core" processor in an FPGA or, less preferably, in an ASIC. The core processor can be used to create a flight-control card to be inserted into a new avionics computer. The IOP of the GPC as implemented in the core processor could be designed to support data-bus protocols other than that of a multiplexer interface adapter (MIA) used in the space shuttle. Hence, a computer containing the core processor could be tailored to communicate via the space-shuttle GPC bus and/or one or more other buses.

  19. Brand-new signage for the CERN shuttles

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    If, after reading the title of this article, you're striving to remember what the signs for the CERN shuttles look like, then you just hit the nail on the head: we bet that only a few people can actually do so. In order to make it easier for CERN users to move around the CERN sites, a graphic restyling of the shuttle signage has been implemented. You will start to see the new timetables in the coming days.   Larisa Kuchina, a graphic designer in the Communication Group, restyled the shuttle signage to make it more visible and intelligible. “I was inspired by the very clear and user friendly interface of the Geneva Public Transport system (TPG)”, explains Larisa. “Each timetable will also include the corresponding shuttle route. We will soon introduce new road signs for shuttle stops to make sure they are visible from a distance”. There are currently four shuttle lines, serving 28,000 passengers since February 2010: two of them operate between Meyrin and Pr...

  20. Space Shuttle GN and C Development History and Evolution

    Science.gov (United States)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  1. Lightning to the upper atmosphere: A vertical light pulse from the top of a thunderstorm as seen by a payload bay TV camera of the space shuttle

    Science.gov (United States)

    Boeck, William L.; Vaughan, Otha H., Jr.; Blakeslee, Richard; Vonnegut, Bernard; Brook, Marx; Mckune, John

    1991-01-01

    An examination and preliminary analysis of video images of thunderstorms as seen by a payload bay TV camera of the Space Shuttle provided examples of lightning in the stratosphere above thunderstorms. These images were obtained on several recent Shuttle flights while conducting the Mesoscale Lightning Experiment (MLE). MLE was an experiment to obtain night time images from space of large storm complexes with lightning. These images are used to provide data for the design of specialized instrumentation which will provide quantitative measurements of global lightning. Eight video sequences were selected because they illustrate near vertical discharges in the stratosphere above thunderstorms. Although there are previous reports in the literature, these are the first images from the viewpoint of an orbiting spacecraft. The written material is primarily a companion to a video presentation.

  2. Neutron dosimetric measurements in shuttle and MIR.

    Science.gov (United States)

    Reitz, G

    2001-06-01

    Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with

  3. Advanced Health Management System for the Space Shuttle Main Engine

    Science.gov (United States)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  4. Orthostatic Intolerance After ISS and Space Shuttle Missions.

    Science.gov (United States)

    Lee, Stuart M C; Feiveson, Alan H; Stein, Sydney; Stenger, Michael B; Platts, Steven H

    2015-12-01

    Cardiovascular deconditioning apparently progresses with flight duration, resulting in a greater incidence of orthostatic intolerance following long-duration missions. Therefore, we anticipated that the proportion of astronauts who could not complete an orthostatic tilt test (OTT) would be higher on landing day and the number of days to recover greater after International Space Station (ISS) than after Space Shuttle missions. There were 20 ISS and 65 Shuttle astronauts who participated in 10-min 80° head-up tilt tests 10 d before launch, on landing day (R+0), and 3 d after landing (R+3). Fisher's Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the OTT. Cox regression was used to identify cardiovascular parameters associated with OTT completion and mixed model analysis was used to compare the change and recovery rates between groups. The proportion of astronauts who completed the OTT on R+0 (2 of 6) was less in ISS than in Shuttle astronauts (52 of 65). On R+3, 13 of 15 and 19 of 19 of the ISS and Shuttle astronauts, respectively, completed the OTT. An index comprised of stroke volume and diastolic blood pressure provided a good prediction of OTT completion and was altered by spaceflight similarly for both astronaut groups, but recovery was slower in ISS than in Shuttle astronauts. The proportion of ISS astronauts who could not complete the OTT on R+0 was greater and the recovery rate slower after ISS compared to Shuttle missions. Thus, mission planners and crew surgeons should anticipate the need to tailor scheduled activities and level of medical support to accommodate protracted recovery after long-duration microgravity exposures.

  5. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    Science.gov (United States)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  6. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    Science.gov (United States)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  7. Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images

    Science.gov (United States)

    Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe

    2016-11-01

    For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.

  8. Calibration of the Shuttle Ozone Limb Sounding Experiment (SOLSE) and the Limb Ozone Retrieval Experiment (LORE)

    Science.gov (United States)

    Janz, S. J.; Hilsenrath, E.; McPeters, R.; Heath, D. F.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The calibration and characterization of two new instruments designed to retrieve ozone profiles into the lower stratosphere will be presented. These instruments will fly as a single payload on the Space Shuttle Columbia currently scheduled to lift off July 11, 2002. The purpose of SOLSE (Shuttle Ozone Limb Sounding Experiment) and LORE (Limb Ozone Retrieval Experiment) is to provide a thorough test of the limb ozone retrieval technique, which is being employed on several satellite instruments currently deployed or planned for deployment in the near future. OSIRIS (Optical Spectrograph and Infrared Imager System) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) are already in orbit, while OMPS (the Ozone Mapping and Profiler Suite) is planned as the primary US ozone monitoring instrument in the next decade.. SOLSE is a Czerny-Turner spectrograph utilizing a 1k x 1k cooled CCD at the focal plane and covering the spectral range of 310-380 nm in the ultraviolet and 535-865 nm in the visible to near infrared. LORE is a 5 channel filter radiometer with center band wavelengths of 322, 350, 603, 675, and 1000 nm. The focus of this paper will be on measurements of the SOLSE spectrograph performance in the limb-viewing configuration including stray light rejection, spatial and spectral resolution and absolute radiometric response.

  9. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on

  10. 3D OBJECT COORDINATES EXTRACTION BY RADARGRAMMETRY AND MULTI STEP IMAGE MATCHING

    Directory of Open Access Journals (Sweden)

    A. Eftekhari

    2013-09-01

    Full Text Available Nowadays by high resolution SAR imaging systems as Radarsat-2, TerraSAR-X and COSMO-skyMed, three-dimensional terrain data extraction using SAR images is growing. InSAR and Radargrammetry are two most common approaches for removing 3D object coordinate from SAR images. Research has shown that extraction of terrain elevation data using satellite repeat pass interferometry SAR technique due to atmospheric factors and the lack of coherence between the images in areas with dense vegetation cover is a problematic. So the use of Radargrammetry technique can be effective. Generally height derived method by Radargrammetry consists of two stages: Images matching and space intersection. In this paper we propose a multi-stage algorithm founded on the combination of feature based and area based image matching. Then the RPCs that calculate for each images use for extracting 3D coordinate in matched points. At the end, the coordinates calculating that compare with coordinates extracted from 1 meters DEM. The results show root mean square errors for 360 points are 3.09 meters. We use a pair of spotlight TerraSAR-X images from JAM (IRAN in this article.

  11. Advanced Microbial Check Valve development. [for Space Shuttle

    Science.gov (United States)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.; Sauer, R. L.

    1981-01-01

    The Microbial Check Valve (MCV) is a flight qualified assembly that provides bacteriologically safe drinking water for the Space Shuttle. The 1-lb unit is basically a canister packed with an iodinated ion-exchange resin. The device is used to destroy organisms in a water stream as the water passes through it. It is equally effective for fluid flow in either direction and its primary method of disinfection is killing rather than filtering. The MCV was developed to disinfect the fuel cell water and to prevent back contamination of stored potable water on the Space Shuttle. This paper reports its potential for space applications beyond the basic Shuttle mission. Data are presented that indicate the MCV is suitable for use in advanced systems that NASA has under development for the reclamation of humidity condensate, wash water and human urine.

  12. Effect of speedup delay on shuttle bus schedule

    Science.gov (United States)

    Nagatani, Takashi

    2016-10-01

    We study the bus schedule in the shuttle bus transportation system controlled by speedup. The bus schedule is closely related to the dynamic motion of the bus. The motion of a shuttle bus depends on the inflow rate of passengers and the delayed speedup control. The delayed speedup control has an important effect on the dynamic motion of the bus. We present the delayed map model for the dynamics of the shuttle bus with the delayed speedup control. The bus motion changes from a stable state, through a periodic state, to a quasi-periodic state by the delayed speedup control. The return map of the tour time displays a smooth closed curve and the bus motion is quasi-periodic. The dynamic transition to the quasi-periodic motion changes greatly with the delay time. We clarify the effect of the delayed speedup control on the bus schedule.

  13. Maintaining space shuttle safety within an environment of change

    Science.gov (United States)

    Greenfield, Michael A.

    1999-09-01

    In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle Flight Operations Contractor (SFOC) has been chosen to operate the Shuttle. The Government role will change from direct "oversight" to "insight" gained through understanding and measuring the contractor's processes. This paper describes the program management changes underway and the NASA Safety and Mission Assurance (S&MA) organization's philosophy, role, and methodology for pursuing this new approach. It describes how audit and surveillance will replace direct oversight and how meaningful performance metrics will be implemented.

  14. Dynamic characterization and analysis of space shuttle SRM solid propellant

    Science.gov (United States)

    Hufferd, W. L.

    1979-01-01

    The dynamic response properties of the space shuttle solid rocket moter (TP-H1148) propellant were characterized and the expected limits of propellant variability were established. Dynamic shear modulus tests conducted on six production batches of TP-H1148 at various static and dynamic strain levels over the temperature range from 40 F to 90 F. A heat conduction analysis and dynamic response analysis of the space shuttle solid rocket motor (SRM) were also conducted. The dynamic test results show significant dependence on static and dynamic strain levels and considerable batch-to-batch and within-batch variability. However, the results of the SRM dynamic response analyses clearly demonstrate that the stiffness of the propellant has no consequential on the overall SRM dynamic response. Only the mass of the propellant needs to be considered in the dynamic analysis of the space shuttle SRM.

  15. Redox shuttles for overcharge protection of lithium batteries

    Science.gov (United States)

    Amine, Khalil; Chen, Zonghai; Wang, Qingzheng

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  16. Origin and development of ablator for Space Shuttle external tank

    Science.gov (United States)

    Ronquillo, L.

    1985-01-01

    The Space Shuttle External Tank (ET) represents the largest element of the Space Shuttle transportation system. The ET is the fuel tank which contains cryogenic propellants, including liquid oxygen and liquid hydrogen. The task of providing a suitable Thermal Protection System (TPS) which is mass producible for the ET represented a challenge for the aerospace industry. The difficulties were compounded by stringent insulation and ablation requirements for the materials to maintain their integrity over a wide range of operating temperatures during prelaunch and ascent. Attention is given to the configuration of the Space Shuttle system, the configuration of the external tank, the initial ET TPS concept, TPS materials and processes concepts, design rationale, TPS materials structural considerations, material and processes development, development tests, material/process verification, and flight results.

  17. Reusable, flyback liquid rocket booster for the Space Shuttle

    Science.gov (United States)

    Benton, Mark G.

    1989-08-01

    This paper outlines a preliminary design for an unmanned, reusable, flyback liquid rocket booster (LRB) as an evolutionary follow-on to the Shuttle solid rocket booster (SRB). Previous Shuttle liquid-propellant booster concepts are reviewed in order to gain insight into these designs. The operating costs, environmental impacts, and abort options of the SRB are discussed. The LRB flight profile and advantages of LRB use are discussed. The preliminary design for the LRB is outlined in detail using calculations and drawings. This design maximizes the use of existing hardware and proven technology to minimize cost and development time. The LRB design is presented as a more capable, more environmentally acceptable, and safer Shuttle booster.

  18. Managing Toxicological Risks: The Legacy of Shuttle Operations

    Science.gov (United States)

    James, John T.

    2011-01-01

    Space toxicology greatly matured as a result of research and operations associated with the Shuttle. Materials offgassing had been a manageable concern since the Apollo days, but we learned to pay careful attention to compounds that could escape containment, to combustion events, to toxic propellants, to overuse of utility compounds, and to microbial and human metabolites. We also learned that flying real-time hardware to monitor air pollutants was a pathway with unanticipated speed bumps. Each new orbiter was tested for any excess offgassing products that could pollute the air during flight. In the late 1990s toxicologists and safety experts developed a 5-level toxicity rating system to guide containment of toxic compounds. This system is now in use aboard the International Space Station (ISS). Several combustion events during Shuttle Mir and also during Shuttle free-flight impelled toxicologists to identify hardware capable of monitoring toxic products; however, rapid adaptation of the hardware for the unique conditions of spaceflight caused unexpected missteps. Current and planned combustion analyzers would be useful to commercial partners that wish to manage the risk of health effects from thermal events. Propellants received special attention during the Shuttle program because of the possibility of bringing them into the habitable volume on extravehicular activity suits. Monitors for the airlocks were developed to mitigate this risk. Utility materials, such as lubricants, posed limited toxicological problems because water was not recovered. One clearly documented case of microbial metabolites polluting the Shuttle atmosphere was noted, and this has implications for commercial flights and control of microbes. Finally, carbon dioxide, the major human metabolite, episodically presented air quality problems aboard Shuttle, especially when nominal air flows were obstructed. Commercial vehicles must maintain robust air circulation given the anticipated high density

  19. Descent guidance and mission planning for space shuttle

    Science.gov (United States)

    Joosten, B. K.

    1985-01-01

    The Space Shuttle descent mission planning, mission design, deorbit targeting, and entry guidance have necessarily become interrelated because of the nature of the Orbiter's design and mission requirements. The desired descent trajectory has been formulated in a drag acceleration/relative velocity state space since nearly all of the vehicle's highly constraining flight limitations can be uniquely represented in this plane. Constraints and flight requirements that affect the descent are described. The guidance logic which allows the Orbiter to follow the designed trajectory, the impacts of contingency aborts and flightcrew interaction are discussed. The mission planning and guidance techniques remain essentially unchanged through the Shuttle flight test program and subsequent operational flights.

  20. Space Shuttle Damper System for Ground Wind Load Tests

    Science.gov (United States)

    Robinson, G. D.; Holt, J. R.; Chang, C. S.

    1973-01-01

    An active damper system which was originally developed for a 5.5% Saturn IB/Skylab Ground Winds Model was modified and used for similar purposes in a Space Shuttle model. A second damper system which was originally used in a 3% Saturn V/Dry Workshop model was also modified and made compatible with the Space Shuttle model to serve as a back-up system. Included in this final report are descriptions of the modified damper systems and the associated control and instrumentation.

  1. New timetable for a Regular morning and evening shuttle

    CERN Multimedia

    TS Department

    2008-01-01

    Starting from 31 March 2008, for one month, a new timetable for a regular morning and evening shuttle serving LHC Points 2 and 5 will be put in place. You can find all the corresponding details on the FM group WEB page: http://ts-dep.web.cern.ch/ts-dep/groups/fm/logistique/shuttle_timetable.htm Please note that during April, all other requests for transport from Meyrin and Prévessin to the LHC Points via tel. 76969 during the day (between 8:30 and 17:30) will not be met. TS/FM group Tel. 160239

  2. New timetable for a morning and evening regular shuttle

    CERN Multimedia

    TS Department

    2008-01-01

    Starting from the 31st of March 2008 and for one month, a new timetable for a morning and evening regular shuttle serving LHC Points 2 and 5, will be put in place. You can find all the corresponding details in the FM group WEB page http://ts-dep.web.cern.ch/ts-dep/groups/fm/logistique/shuttle_timetable.htm Please note that during April, every other request of transfer from Meyrin and Prevessin towards LHC Points reaching the 76969 during the day (between 8:30 and 17:30) will not be satisfied. TS/FM group 160239

  3. A fast pneumatic sample-shuttle with attenuated shocks

    CERN Document Server

    Biancalana, Valerio; Stiaccini, Leonardo

    2014-01-01

    We describe a home-built pneumatic shuttle suitable for the fast displacement of samples in the vicinity of a highly sensitive atomic magnetometer. The samples are magnetized at 1 T using a Halbach assembly of magnets. The device enables the remote detection of free induction decay in ultra-low-field and zero-field NMR experiments, in relaxometric measurements and in other applications involving the displacement of magnetized samples within time intervals as short as a few tens of milliseconds. Other possible applications of fast sample shuttling exist in radiological studies, where samples have to be irradiated and then analyzed in a 'cold' environment.

  4. Atmospheric environment for Space Shuttle (STS-4) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1982-01-01

    Selected atmospheric conditions observed near space shuttle STS-4 launch time on June 27, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area. Final meteorological tapes, which consist of wind descent were constructed. The STS-4 ascent meteorological data tape was constructed by Marshall Space Flight Center in response to shuttle task agreement No. 989-13-22-368 with Johnson Space Center.

  5. Atmospheric environment for Space Shuttle (STS-9) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1984-01-01

    This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-9 launch time on November 28, 1983, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final meteorological tape, which consists of wind and thermodynamic parameters versus altitude, for STS-9 vehicle ascent has been constructed. The STS-9 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 561-81-22-368 with Johnson Space Center.

  6. Atmospheric environment for space shuttle (STS-13) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.

    1984-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-13 launch time on April 6, 1984, at Kennedy Space Center Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given. The final meteorological tape, which consists of wind and thermodynamic parameters versus altitude, for STS-13 vehicle ascent was constructed by Marshall Space Flight Center in response to shuttle task agreement No. 561-81-22-368 with Johnson Space Center.

  7. Replacement Capability Options for the United States Space Shuttle

    Science.gov (United States)

    2013-09-01

    first designed for reuse ” (NASA, 2000). 1. United States Space Shuttle Program (1981–2011) The first operational Space Shuttle was Columbia (OV-102...Week article on China’s future plans for their Long March Launch vehicles, “China is developing three basic rocket modules, with diameters of 2.25... wastewater , which will burn up with the spacecraft when it re-enters the Earth’s atmosphere. The Cargo Module can hold 1,000 to 1,700 kilograms (2,205

  8. Electrostatic Noise in the Plasma Environment Around the Shuttle

    Science.gov (United States)

    Vayner, Boris V.; Ferguson, Dale C.

    1995-01-01

    The Langmuir probe flown as part of the Solar Array Module Plasma Interactions Experiment (SAMPIE) package aboard the space shuttle flight STS-62 was used to determine plasma potential fluctuations in the vicinity of the shuttle. The broadband noise was observed at frequencies 250 - 20,000 Hz. Measurements were performed in ram conditions; thus, it seems reasonable to believe that the influence of spacecraft operations on plasma parameters was absolutely negligible. The average spectrum of fluctuations is in agreement with theoretical predictions. The influence on the observed spectra of arcing generated by high negative bias voltages applied to solar cell samples is briefly discussed.

  9. Condition monitoring helps make the Space Shuttle Main Engine reusable

    Science.gov (United States)

    Lacroix, W. P.

    1973-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high-performance liquid-propellant rocket engine being developed for the Space Shuttle Orbiter Vehicle. The SSME has been designed for long life, rapid postflight maintenance, and a fast vehicle turnaround cycle of 160 hours. To meet the unique reusability requirements, the SSME considers maintainability and condition monitoring much as airlines do today. The condition monitoring capabilities designed into this engine are discussed with major emphasis on internal inspection and techniques which ensure the reusability of the SSME.

  10. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    Science.gov (United States)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  11. Shuttle performance enhancement using an uprated OMS engine

    Science.gov (United States)

    Mallini, Charles J.; Boyd, William C.

    1988-01-01

    The NASA Space Shuttle's Orbital Maneuvering Engine (OME) has been investigated as the basis for an enhancement of Shuttle operational flexibility. The Johnson Space Center has given attention to an upgrading of the OME through the use of a gas generator-driven turbopump to raise engine specific impulse. Hardware tests have demonstrated the projected performance gains, which will yield an enhanced, intact ascent-abort capability, as well an an improved on-orbit payload and altitude capability. Attention is given to the application of these capabilities to the Hubble Space Telescope's deployment.

  12. Shuttle tanker and offloading operations at FPSO/FSU`s

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    During 1997, the Offshore Safety Division (OSD) of the UK Health and Safety Executive (HSE) initiated a study into the marine risks associated with the operation of shuttle tankers at offshore export facilities and in the vicinity of offshore installations. The study was aimed at obtaining substantive information on the nature and scope of the marine risks, and the conclusions in report form (Ref.1 - `Close Proximity Study`) were made widely available to the Offshore Industry through UKOOA or IMCA. The specific objective of the `Close Proximity Study` was to assess the risks of collision during close proximity operations involving shuttle tankers at offshore locations. The secondary objective was to identify suitable standards of control and mitigation so that the risks of collision are reduced to as low as reasonably practicable (ALARP). The concerns arising out of the `Close Proximity Study` combined with a number of contact incidents occurring during 1997 involving shuttle tankers and FPSO/FSU`s during offloading operations prompted the OSD to draw their concerns to the attention of the Offshore Operators of FPSO/FSU`s and particularly the UKOOA FPSO Workgroup. The information and advice contained in this report was aimed at assisting the UKOOA FPSO Work Group in assessing the risks associated with activities connected with shuttle tanker and offloading operations at FPSO/FSU`s. (author)

  13. Shuttle Program Information Management System (SPIMS) data base

    Science.gov (United States)

    1983-01-01

    The Shuttle Program Information Management System (SPIMS) is a computerized data base operations system. The central computer is the CDC 170-730 located at Johnson Space Center (JSC), Houston, Texas. There are several applications which have been developed and supported by SPIMS. A brief description is given.

  14. Applying reliability models to the maintenance of Space Shuttle software

    Science.gov (United States)

    Schneidewind, Norman F.

    1992-01-01

    Software reliability models provide the software manager with a powerful tool for predicting, controlling, and assessing the reliability of software during maintenance. We show how a reliability model can be effectively employed for reliability prediction and the development of maintenance strategies using the Space Shuttle Primary Avionics Software Subsystem as an example.

  15. Behavioral Health and Performance Operations During the Space Shuttle Program

    Science.gov (United States)

    Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.

    2011-01-01

    Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions

  16. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    Science.gov (United States)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  17. Remote control circuit breaker evaluation testing. [for space shuttles

    Science.gov (United States)

    Bemko, L. M.

    1974-01-01

    Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.

  18. The physiological consequences of acceleration during shuttle running.

    Science.gov (United States)

    Akenhead, R; French, D; Thompson, K G; Hayes, P R

    2015-04-01

    This study examined the acceleration demands associated with changing direction and the subsequent physiological consequences of acceleration during running at 3 submaximal speeds. 10 male professional footballers completed four 600 m running bouts at 3 speeds (2.50, 3.25 & 4.00 m·s(-1)). Each bout was in the format of either: i) 3 laps of a 200 m track (CON), ii) ten 60 m shuttles (S60), iii) twenty 30 m shuttles (S30), or iv) thirty 20 m shuttles (S20). Peak heart rate (HRPEAK), blood lactate concentration (BLa) and RPE (Borg CR-10) were recorded for each bout. A single change of direction required 1.2, 1.5 and 2.0 s of acceleration at running speeds of 2.50, 3.25 and 4.00 m s(-1) respectively. An increase in time spent accelerating produced a linear increase in BLa (r=0.43-0.74) and RPE (r=0.81-0.93) at all speeds. Acceleration increases linearly with change of direction frequency during submaximal shuttle running. Increased time spent accelerating elicits proportional increases in perceived exertion, BLa and HRPEAK. The current study further underlines the need to consider acceleration when quantifying training load during activities involving numerous changes of direction. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Remote control circuit breaker evaluation testing. [for space shuttles

    Science.gov (United States)

    Bemko, L. M.

    1974-01-01

    Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.

  20. New timetable for the CERN Shuttle service 2015

    CERN Multimedia

    2014-01-01

    Due to the reduction of operational budgets, please note that as from 5 January 2015: Circuit 1 (Meyrin) will not run during lunch; Circuit 2 (Prévessin) will run two more times each day; Circuit 6 will no longer run.   For more information: http://cern.ch/ShuttleService.   Departmental Administrative Office

  1. The Flight of the Space Shuttle "Discovery" (STS-119)

    Science.gov (United States)

    Stinner, Arthur; Metz, Don

    2010-01-01

    This article is intended to model the ascent of the space shuttle for high school teachers and students. It provides a background for a sufficiently comprehensive description of the physics (kinematics and dynamics) of the March 16, 2009, "Discovery" launch. Our data are based on a comprehensive spreadsheet kindly sent to us by Bill Harwood, the…

  2. Shuttle measured contaminant environment and modeling for payloads. Preliminary assessment of the space telescope environment in the shuttle bay

    Science.gov (United States)

    Scialdone, J. J.

    1983-01-01

    A baseline gaseous and particulate environment of the Shuttle bay was developed based on the various measurements which were made during the first four flights of the Shuttle. The environment is described by the time dependent pressure, density, scattered molecular fluxes, the column densities and including the transient effects of water dumps, engine firings and opening and closing of the bay doors. The particulate conditions in the ambient and on surfaces were predicted as a function of the mission time based on the available data. This basic Shuttle environment when combined with the outgassing and the particulate contributions of the payloads, can provide a description of the environment of a payload in the Shuttle bay. As an example of this application, the environment of the Space Telescope in the bay, which may be representative of the environment of several payloads, was derived. Among the many findings obtained in the process of modeling the environment, one is that the payloads environment in the bay is not substantially different or more objectionable than the self-generated environment of a large payload or spacecraft. It is, however, more severe during ground facilities operations, the first 15 to 20 hours of the flight, during and for a short period after ater was dumped overboard, and the reaction control engines are being fired.

  3. STS 133 Return Samples: Air Quality Aboard Shuttle (STS-133) and International Space Station (ULFS)

    Science.gov (United States)

    James, John T.

    2011-01-01

    The toxicological assessments of 2 canisters (mini-GSC or GSCs) from the Shuttle are reported. Analytical methods have not changed from earlier reports. The percent recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the 2 Shuttle GSCs averaged 86, 100, and 87, respectively. Based on the end-of-mission sample, the Shuttle atmosphere was acceptable for human respiration.

  4. Onboard Data Processor for Change-Detection Radar Imaging

    Science.gov (United States)

    Lou, Yunling; Muellerschoen, Ronald J.; Chien, Steve A.; Saatchi, Sasan S.; Clark, Duane

    2008-01-01

    A computer system denoted a change-detection onboard processor (CDOP) is being developed as a means of processing the digitized output of a synthetic-aperture radar (SAR) apparatus aboard an aircraft or spacecraft to generate images showing changes that have occurred in the terrain below between repeat passes of the aircraft or spacecraft over the terrain. When fully developed, the CDOP is intended to be capable of generating SAR images and/or SAR differential interferograms in nearly real time. The CDOP is expected to be especially useful for understanding some large-scale natural phenomena and/or mitigating natural hazards: For example, it could be used for near-real-time observation of surface changes caused by floods, landslides, forest fires, volcanic eruptions, earthquakes, glaciers, and sea ice movements. It could also be used to observe such longer-term surface changes as those associated with growth of vegetation (relevant to estimation of wildfire fuel loads). The CDOP is, essentially, an interferometric SAR processor designed to operate aboard a radar platform.

  5. Death of the TonB Shuttle Hypothesis.

    Science.gov (United States)

    Gresock, Michael G; Savenkova, Marina I; Larsen, Ray A; Ollis, Anne A; Postle, Kathleen

    2011-01-01

    A complex of ExbB, ExbD, and TonB couples cytoplasmic membrane (CM) proton motive force (pmf) to the active transport of large, scarce, or important nutrients across the outer membrane (OM). TonB interacts with OM transporters to enable ligand transport. Several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous studies suggested that TonB did not shuttle based on the activity of a GFP-TonB fusion that was anchored in the CM by the GFP moiety. When we recreated the GFP-TonB fusion to extend those studies, in our hands it was proteolytically unstable, giving rise to potentially shuttleable degradation products. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide conclusive evidence that TonB does not shuttle during energy transduction. We had previously concluded that TonB shuttles based on the use of an Oregon Green(®) 488 maleimide probe to assess periplasmic accessibility of N-terminal TonB. Here we show that the probe was permeant to the CM, thus permitting the labeling of the TonB N-terminus. These former results are reinterpreted in the context that TonB does not shuttle, and suggest the existence of a signal transduction pathway from OM to cytoplasm.

  6. Gene transfer by retrovirus-derived shuttle vectors in the generation of murine bispecific monoclonal antibodies.

    Science.gov (United States)

    DeMonte, L B; Nistico, P; Tecce, R; Dellabona, P; Momo, M; Anichini, A; Mariani, M; Natali, P G; Malavasi, F

    1990-01-01

    The present study reports on the use of gene transfer by retrovirus-derived shuttle vectors in the generation of hybrid hybridomas secreting bispecific monoclonal antibodies. neo- and dhfr- genes were infected into distinct murine hybridomas, thus conferring a dominant resistance trait to geneticin (G418) and to methotrexate. The vectors employed were replication-deficient and dependent on complementation by a helper virus provided by the irradiated packaging lines. After cocultivation with the relevant packaging cell lines, stable hybridoma lines expressing the selectable markers were easily obtained and were then suitable for conventional somatic fusion. This high-efficiency method was used to generate two bispecific monoclonal antibodies simultaneously targeting molecules expressed on cytotoxic cells (i.e., T lymphocytes and natural killer cells) against a human melanoma-associated antigen. Images PMID:2326256

  7. Space Shuttle Orbiter entry guidance and control system sensitivity analysis

    Science.gov (United States)

    Stone, H. W.; Powell, R. W.

    1976-01-01

    An approach has been developed to determine the guidance and control system sensitivity to off-nominal aerodynamics for the Space Shuttle Orbiter during entry. This approach, which uses a nonlinear six-degree-of-freedom interactive, digital simulation, has been applied to both the longitudinal and lateral-directional axes for a portion of the orbiter entry. Boundary values for each of the aerodynamic parameters have been identified, the key parameters have been determined, and system modifications that will increase system tolerance to off-nominal aerodynamics have been recommended. The simulations were judged by specified criteria and the performance was evaluated by use of key dependent variables. The analysis is now being expanded to include the latest shuttle guidance and control systems throughout the entry speed range.

  8. Development of high viscosity coatings for advanced Space Shuttle applications

    Science.gov (United States)

    Garofalini, S. H.; Banas, R.; Creedon, J.

    1979-01-01

    Laboratory studies for increasing the thermal resistance of high viscosity coatings for silica reusable surface insulation are presented. The coatings are intended for the reentry temperature associated with advanced Space Shuttle applications which will involve aerodynamic shear forces during entry from earth orbits. Coating viscosity was increased by (1) reduction in the concentration of the low viscosity additive B2O3; (2) reduction in the particle size of the constituent powders in coatings; and (3) addition of a high viscosity glass former (GeO2). A coating system was produced by combining the three methods which showed apparent higher viscosity than the current coating, while satisfying all the current Shuttle Orbiter coating requirements.

  9. New works in space. [Space Shuttle based manufacturing and services

    Science.gov (United States)

    Kingsbury, J. E.

    1978-01-01

    Goods and services that may be furnished by the Space Shuttle are described. A single multibeam antenna array capable of supplying satellite communication for 256 U.S. cities, a disaster warning network, and a TV link to remote areas is discussed. Attention is also given to such materials processing programs as crystal growth (for example, production of mercuric iodide crystals for gamma-ray detectors), eutectic growth of solid-solution crystals such as mercury-cadmium-telluride, manufacture of uniform latex spheres for medical applications, and development of small glass spheres for fusion power applications. In addition to the Space Telescope, a meter-class telescope on the Shuttle and a wide-field survey instrument are under study.

  10. Internet Based Simulations of Debris Dispersion of Shuttle Launch

    Science.gov (United States)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.

  11. EFFECT OF ELECTROSTATIC RESISTANCE ON THE SHUTTLE OF MICRORESONATOR

    Institute of Scientific and Technical Information of China (English)

    SHEN Xuejin; HOU Licheng

    2008-01-01

    To improve the performance and reliability of microelectromechanical system's devices, it is necessary to understand the effect of friction which exists in the majority of microelectromechanical systems (MEMS) with a large ratio of surface area to their volume. The model of electrostatic tangential force of the shuttle in laterally driven comb microresonator is established based on the rule of energy conservation. The effects of microscale, surface roughness, applied voltage, and micro asperities or dents or holes formed in fabrication are investigated, and the electrostatic resistance between two charged moving plates is analyzed. The analytic results are coincident well with those of ANSYS simulation. It is found that the electrostatic resistance becomes high as the increase of the ratio of the shuttle width to the gap between moving plates and the relative surface roughness or the increment of the applied voltage.

  12. Atmospheric environment for Space Shuttle (STS-5) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1983-01-01

    This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-5 launch time on November 11, 1982, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in he SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-5 vehicle ascent and SRB descent have been constructed. The STS-5 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.

  13. Atmospheric environment for Space Shuttle (STS-7) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1983-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-7 launch time on June 18, 1983, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-7 vehicle ascent and Acoustic/SRB descent have been constructed. The STS-7 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.

  14. Atmospheric environment for Space Shuttle (STS-6) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1983-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-6 launch time on April 4, 1983, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-6 veicle ascent and SRB descent were constructed. The STS-6 ascent meteorological data tape was constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.

  15. Error protection capability of space shuttle data bus designs

    Science.gov (United States)

    Proch, G. E.

    1974-01-01

    Error protection assurance in the reliability of digital data communications is discussed. The need for error protection on the space shuttle data bus system has been recognized and specified as a hardware requirement. The error protection techniques of particular concern are those designed into the Shuttle Main Engine Interface (MEI) and the Orbiter Multiplex Interface Adapter (MIA). The techniques and circuit design details proposed for these hardware are analyzed in this report to determine their error protection capability. The capability is calculated in terms of the probability of an undetected word error. Calculated results are reported for a noise environment that ranges from the nominal noise level stated in the hardware specifications to burst levels which may occur in extreme or anomalous conditions.

  16. The case for a centralized repair depot for Space Shuttle

    Science.gov (United States)

    Enlow, R. D.

    1985-01-01

    The first priority of the NSTS program is to make the Space Shuttle system fully operational and cost effective in providing routine access to space. In support of this priority an integrated logistics support system was planned, structured and is being implemented to support a launch-on-time goal of 95 percent. In achieving a 95 percent spares 'fill rate' in an environment of small fleet size, highly unique and high cost assets, significant spares cost can be incurred. A major portion of these costs are for the additional spares required when repair or acquisition times are lengthy. This paper provides a fundamental analysis of the costs and other factors involved in the spare and repair process and provides an optimized cost and process solution for the Space Shuttle program - a centralized repair depot located at KSC.

  17. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  18. MCC level C formulation requirements. Shuttle TAEM targeting

    Science.gov (United States)

    Carman, G. L.; Montez, M. N.

    1980-01-01

    The level C requirements for the shuttle orbiter terminal area energy management (TAEM) guidance and flight control functions to be incorporated into the Mission Control Center entry profile planning processor are described. This processor is used for preentry evaluation of the entry through landing maneuvers, and includes a simplified three degree-of-freedom model of the body rotational dynamics that is necessary to account for the effects of attitude response on the trajectory dynamics. This simulation terminates at TAEM-autoland interface.

  19. Aileron roll hysteresis effects on entry of space shuttle orbiter

    Science.gov (United States)

    Powell, R. W.

    1977-01-01

    Six-degree-of-freedom simulations of the space shuttle orbiter entry with control hysteresis were conducted on the NASA Langley Research Center interactive simulator known as the automatic reentry flight dynamics simulator. These simulations revealed that the vehicle can tolerate control hysteresis producing a + or - 50 percent change in the nominal aileron roll characteristics and an offset in the nominal characteristics equivalent to a + or - 5 deg aileron deflection with little increase in the reaction control system's fuel consumption.

  20. Bubble Behavior in Nucleate Boiling Experiment Aboard the Space Shuttle

    OpenAIRE

    Koeln, Justin P.; Boulware, Jeffrey C.; Ban, Heng

    2009-01-01

    Boiling dynamics in microgravity need to be better understood before heat transfer systems based on boiling mechanism can be developed for space applications. This paper presents the results of a nucleate boiling experiment aboard Space Shuttle Endeavor (STS- 108). The experiment utilized nickel-chromium resistance wire to boil water in microgravity, and the data was recorded with a CCD camera and six thermistors. This data was analyzed to determine the behavior of bubble formation, detachmen...

  1. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    Science.gov (United States)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  2. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    Science.gov (United States)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  3. Space shuttle contamination due to backflow from control motor exhaust

    Science.gov (United States)

    Robertson, S. J.; Chan, S. T. K.; Lee, A. L.

    1976-01-01

    Spacecraft contamination of the space shuttle orbiter and accompanying Spacelab payloads is studied. The scattering of molecules from the vernier engines and flash evaporator nozzle after impingement on the orbiter wing surfaces, and the backflow of molecules out of the flash evaporator nozzle plume flow field due to intermolecular collisions in the plume are the problems discussed. A method was formulated for dealing with these problems, and detailed results are given.

  4. RF environment survey of Space Shuttle related EEE frequency bands

    Science.gov (United States)

    Simpson, J.; Prigel, B.; Postelle, J.

    1977-01-01

    Radio frequency assignments within the continental United States in frequency bands between 121 MHz abd 65 GHz were surveyed and analyzed in order to determine current utilization of anticipated frequency bands for the shuttle borne electromagnetic environment experiment. Data from both government and nongovernment files were used. Results are presented in both narrative form and in histograms which show the total number of unclassified assignments versus frequency and total assigned power versus frequency.

  5. NASA's management concept for the Space Shuttle Program.

    Science.gov (United States)

    Myers, D. D.

    1972-01-01

    An overview of the Shuttle Program organization and management concepts suggests the necessity of careful measurements of contractor schedules, cost and technical performance, and program modification control to keep both the development and operating cost of the Program at the lowest possible level. Maximum use of the contractors' own management systems and the utilization of new technologies, procedures and materials during space operations are also envisaged as contributors to the reduction of costs per flight to acceptable limits.

  6. Continuous Time Quantum Monte Carlo simulation of Kondo shuttling

    Science.gov (United States)

    Zhang, Peng; Assaad, Fakher; Jarrell, Mark

    2010-03-01

    The Kondo shuttling problem is investigated by using the Continuous Time Quantum Monte Carlo method in both the anti-adiabatic limit φTK and the intermediate regime φ˜TK, where φ is the phonon modulation frequency and TK is the Kondo temperature. We investigate the potential emergence of Kondo effect or Kondo breakdown as a function of the phonon modulation frequency and electron-phonon coupling. This research is supported by grant OISE-0952300.

  7. PEMBELAJARAN LARI CEPAT DENGAN MENGGUNAKAN MODIFIKASI SHUTTLE RUN

    Directory of Open Access Journals (Sweden)

    Suharjo

    2015-09-01

    Full Text Available The purpose of this study was to determine "Is Modified Shuttle Run can improve learning outcomes Elementary School fifth grade students Cenggini 02 Subdistrict Balapulang Tegal 2014". This research method is a class action research by using two cycles, each cycle consisting of four stages, namely planning, tindakkan, observation and action planning refleksi..Pada second cycle associated with the results achieved in the first cycle acts as an improvement efforts of the cycle. The subjects of this study were fifth grade students of elementary Negri Cenggini 02. Research conducted includes three domains, namely affective, cognitive and psychomotor addition to the observations made during the process of the learning process takes place. The results showed the affective, cognitive and psychomotor well categorized shows that the learning outcomes quick run using a modified shuttle run a positive impact as seen on mastery learning outcomes of students who exceed the predetermined KKM 75 In the first cycle the average value of students 75 , 71 in the second cycle the average value of 78.60 students, mastery learning in the first cycle reaches 64.29%, while in the second cycle reaches 92.86% mastery learning .mean mastery learning students has increased by 28.57%. It is concluded that learning to run faster by using a modified shuttle run has a positive effect, which can increase student interest and motivation to learn.

  8. Hubble Servicing Challenges Drive Innovation of Shuttle Rendezvous Techniques

    Science.gov (United States)

    Goodman, John L.; Walker, Stephen R.

    2009-01-01

    Hubble Space Telescope (HST) servicing, performed by Space Shuttle crews, has contributed to what is arguably one of the most successful astronomy missions ever flown. Both nominal and contingency proximity operations techniques were developed to enable successful servicing, while lowering the risk of damage to HST systems, and improve crew safety. Influencing the development of these techniques were the challenges presented by plume impingement and HST performance anomalies. The design of both the HST and the Space Shuttle was completed before the potential of HST contamination and structural damage by shuttle RCS jet plume impingement was fully understood. Relative navigation during proximity operations has been challenging, as HST was not equipped with relative navigation aids. Since HST reached orbit in 1990, proximity operations design for servicing missions has evolved as insight into plume contamination and dynamic pressure has improved and new relative navigation tools have become available. Servicing missions have provided NASA with opportunities to gain insight into servicing mission design and development of nominal and contingency procedures. The HST servicing experiences and lessons learned are applicable to other programs that perform on-orbit servicing and rendezvous, both human and robotic.

  9. A New Shuttle Plasmid That Stably Replicates in Clostridium acetobutylicum.

    Science.gov (United States)

    Lee, Sang-Hyun; Kwon, Min-A; Choi, Sunwha; Kim, Sooah; Kim, Jungyeon; Shin, Yong-An; Kim, Kyoung Heon

    2015-10-01

    We have developed a new shuttle plasmid, designated as pLK1-MCS that can replicate in both Clostridium acetobutylicum and Escherichia coli, by combining the pUB110 and pUC19 plasmids. Plasmid pLK1-MCS replicated more stably than previously reported plasmids containing either the pIM13 or the pAMβ1 replicon in the absence of antibiotic selective pressure. The transfer frequency of pLK1-MCS into C. acetobutylicum was similar to the transfer frequency of other shuttle plasmids. We complemented C. acetobutylicum ML1 (that does not produce solvents such as acetone, butanol, and ethanol owing to loss of the megaplasmid pSOL1 harboring the adhE1-ctfAB-adc operon) by introducing pLK1-MCS carrying the adhE1-ctfAB-adc operon into C. acetobutylicum ML1. The transformed cells were able to resume anaerobic solvent production, indicating that the new shuttle plasmid has the potential for practical use in microbial biotechnology.

  10. Enhanced Software for Scheduling Space-Shuttle Processing

    Science.gov (United States)

    Barretta, Joseph A.; Johnson, Earl P.; Bierman, Rocky R.; Blanco, Juan; Boaz, Kathleen; Stotz, Lisa A.; Clark, Michael; Lebovitz, George; Lotti, Kenneth J.; Moody, James M.; Nguyen, Tony K.; Peterson, Kenneth A.; Sargent, Susan; Shaw, Karma; Stoner, Mack D.; Stowell, Deborah S.; Young, Daniel A.; Tulley, James H., Jr.

    2004-01-01

    The Ground Processing Scheduling System (GPSS) computer program is used to develop streamlined schedules for the inspection, repair, and refurbishment of space shuttles at Kennedy Space Center. A scheduling computer program is needed because space-shuttle processing is complex and it is frequently necessary to modify schedules to accommodate unanticipated events, unavailability of specialized personnel, unexpected delays, and the need to repair newly discovered defects. GPSS implements constraint-based scheduling algorithms and provides an interactive scheduling software environment. In response to inputs, GPSS can respond with schedules that are optimized in the sense that they contain minimal violations of constraints while supporting the most effective and efficient utilization of space-shuttle ground processing resources. The present version of GPSS is a product of re-engineering of a prototype version. While the prototype version proved to be valuable and versatile as a scheduling software tool during the first five years, it was characterized by design and algorithmic deficiencies that affected schedule revisions, query capability, task movement, report capability, and overall interface complexity. In addition, the lack of documentation gave rise to difficulties in maintenance and limited both enhanceability and portability. The goal of the GPSS re-engineering project was to upgrade the prototype into a flexible system that supports multiple- flow, multiple-site scheduling and that retains the strengths of the prototype while incorporating improvements in maintainability, enhanceability, and portability.

  11. Status of thermal NDT of space shuttle materials at NASA

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.

    2006-04-01

    Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow in situ inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

  12. An assessment of space shuttle flight software development processes

    Science.gov (United States)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  13. Space Shuttle Meteoroid and Orbital Debris Threat Assessment Procedure

    Science.gov (United States)

    Hyde, J.; Christiansen, E.

    Prior to each shuttle mission, Meteoroid and orbital Debris (M/OD) threat assessments are performed to determine the critical penetration risk for the orbiter vehicle, the radiator tube leak risk &the window replacement risk. Mission parameters, such as vehicle attitude, exposure time and altitude are used as inputs for the assessment. The assessments are performed using the BUMPER computer code at the NASA/JSC Hypervelocity Impact Technology Facility (HITF). An M/OD risk analysis is typically performed in support of orbiter Cargo Integration Reviews (CIR) and Flight Readiness Reviews (FRR). Three types of M/OD risk are assessed. The most important involves the calculation of "critical" penetration risk, defined as penetrations that may result in the catastrophic loss of vehicle and crew. Critical failure criteria have been established though detailed engineering evaluations by NASA and Boeing. The radiator assessment is concerned with premature end-of- mission due to loss of a coolant loop. The window assessment is a postflight maintenance and logistics issue. The result s are provided to the Space Shuttle Vehicle Engineering Office (MV) the Space and Life Science Directorate (SA) at JSC. This paper will document the inputs used in the critical penetration analysis for CIR, FRR, and post-flight assessments, it will also serve as a reference for the Space Shuttle Orbiter finite element model (FEM) surface property definitions that are used in M/OD threat assessments.

  14. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    Science.gov (United States)

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  15. Death of the TonB shuttle hypothesis

    Directory of Open Access Journals (Sweden)

    Michael George Gresock

    2011-10-01

    Full Text Available A complex of ExbB, ExbD, and TonB transduces cytoplasmic membrane (CM proton motive force (pmf to outer membrane (OM transporters so that large, scarce, and important nutrients can be released into the periplasmic space for subsequent transport across the CM. TonB is the component that interacts with the OM transporters and enables ligand transport, and several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous efforts to test the shuttle model by anchoring TonB to the CM by fusion to a large globular cytoplasmic protein have been hampered by the proteolytic susceptibility of the fusion constructs. Here we confirm that GFP-TonB, tested in a previous study by another laboratory, again gave rise to full-length TonB and slightly larger potentially shuttleable fragments that prevented unambiguous interpretation of the data. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide the first conclusive evidence that TonB does not shuttle during energy transduction. The interpretations of our previous study, which concluded that TonB shuttled in vivo, were complicated by the fact that the probe used in those studies, Oregon Green® 488 maleimide, was permeant to the CM and could label proteins, including a TonB ∆TMD derivative, confined exclusively to the

  16. IMAGES, IMAGES, IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, A.

    1980-07-01

    The role of images of information (charts, diagrams, maps, and symbols) for effective presentation of facts and concepts is expanding dramatically because of advances in computer graphics technology, increasingly hetero-lingual, hetero-cultural world target populations of information providers, the urgent need to convey more efficiently vast amounts of information, the broadening population of (non-expert) computer users, the decrease of available time for reading texts and for decision making, and the general level of literacy. A coalition of visual performance experts, human engineering specialists, computer scientists, and graphic designers/artists is required to resolve human factors aspects of images of information. The need for, nature of, and benefits of interdisciplinary effort are discussed. The results of an interdisciplinary collaboration are demonstrated in a product for visualizing complex information about global energy interdependence. An invited panel will respond to the presentation.

  17. The discriminative power of the Interval Shuttle Run Test and the Maximal Multistage Shuttle Run Test for playing level of soccer

    NARCIS (Netherlands)

    Lemmink, K.A.P.M.; Verheijen, R.; Visscher, C.

    2004-01-01

    AIM: The purpose of this study was to examine the discriminative power of the recently developed Interval Shuttle Run Test (ISRT) and the widely used Maximal Multistage 20 m Shuttle Run Test (MMSRT) for soccer players at different levels of competition. The main difference between the tests is that

  18. NASA/MOD Operations Impacts from Shuttle Program

    Science.gov (United States)

    Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly

    2011-01-01

    Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.

  19. Definition of air quality measurements for monitoring space shuttle launches

    Science.gov (United States)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  20. An improved APU for the Space Shuttle Orbiter

    Science.gov (United States)

    Mckenna, R.; Hagemann, D.; Loken, G.; Jonakin, J.; Baughman, J.

    1985-01-01

    The Space Shuttle Orbiter Auxiliary Power Unit has operated successfully on all four orbiter vehicles and all missions. The current Auxiliary Power Unit (APU) operational life is limited to 12 missions, and the APU turnaround time between flights is longer than originally anticipated. The objective of the Improved APU program is to increase life to 50 missions, reduce installed vehicle weight by 134 lb., and reduce turnaround time. This paper describes the design changes incorporated into the improved APU and the associated development testing.

  1. Shuttle cloning vectors for the cyanobacterium Anacystis nidulans.

    OpenAIRE

    Gendel, S; Straus, N; Pulleyblank, D; Williams, J

    1983-01-01

    Hybrid plasmids capable of acting as shuttle cloning vectors in Escherichia coli and the cyanobacterium Anacystis nidulans R2 were constructed by in vitro ligation. DNA from the small endogenous plasmid of A. nidulans was combined with two E. coli vectors, pBR325 and pDPL13, to create vectors containing either two selectable antibiotic resistance markers or a single marker linked to a flexible multisite polylinker. Nonessential DNA was deleted from the polylinker containing plasmid pPLAN B2 t...

  2. Food and waste management biotechnology for the space shuttle

    Science.gov (United States)

    Murray, R. W.; Schelkopf, J. D.; Hunt, S. R.; Sauer, R. L.

    1979-01-01

    Space-crew facilities for preparation, eating, personal hygiene and waste management are contained in one small area of the Shuttle Orbiter Mid-Deck, all the functional systems being interconnected. The paper discusses three major systems: (1) the Galley, which includes the personal hygiene station and food packages; (2) the Waste Collector, which includes provisions for male and female users, urine, feces and emesis collection in both a normal and contigency mode of operation; and (3) Biowaste Monitoring, which includes mass measurement and sampling. The technology improvement continues by assuring that the Orbiter systems have sufficient design flexibility to permit later improvements in operation and in function.

  3. Random Vibration of Space Shuttle Weather Protection Systems

    Directory of Open Access Journals (Sweden)

    Isaac Elishakoff

    1995-01-01

    Full Text Available The article deals with random vibrations of the space shuttle weather protection systems. The excitation model represents a fit to the measured experimental data. The cross-spectral density is given as a convex combination of three exponential functions. It is shown that for the type of loading considered, the Bernoulli-Euler theory cannot be used as a simplified approach, and the structure will be more properly modeled as a Timoshenko beam. Use of the simple Bernoulli-Euler theory may result in an error of about 50% in determining the mean-square value of the bending moment in the weather protection system.

  4. Atmospheric environment for space shuttle (STS-26) launch

    Science.gov (United States)

    Jasper, G. L.; Johnson, D. L.; Batts, G. W.

    1989-01-01

    A summary of selected atmospheric conditions observed near Space Shuttle STS-26 launch time on September 29, 1988, at Kennedy Space Center, Florida is given. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-26 vehicle ascent has been constructed. The STS-26 ascent atmospheric data tape has been constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in post-flight performance assessments.

  5. Atmospheric environment for space shuttle (STS-8) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Turner, R. E.; Batts, G. W.

    1983-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-8 launch time on August 30, 1983, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given. Also presented are wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-8 vehicle ascent and SRB descent/impact were constructed. The STS-8 ascent meteorological data tape was constructed.

  6. Atmospheric environment for Space Shuttle (STS-51A) launch

    Science.gov (United States)

    Johnson, D. L.; Jasper, G.; Hill, C. K.; Batts, G. W.

    1984-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-51A launch time on November 8, 1984, are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is reported. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51A vehicle ascent was constructed. The STS-51A ascent atmospheric data tape is constructed to provide an internally consistent data set for use in postflight performance assessments.

  7. Atmospheric environment for Space Shuttle (STS-11) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1984-01-01

    Atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are reported. Wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area are presented. Meteorological tapes, which consist of wind and thermodynamic parameters vesus altitude, for STS-11 vehicle ascent and SRB descent/impact were constructed.

  8. Atmospheric environment for space shuttle (STS-1) launch

    Science.gov (United States)

    Johnson, D. L.; Jasper, G.; Brown, S. C.

    1981-01-01

    Atmospheric conditions near space shuttle STS-1 launch time on April, 12, 1981, at Kennedy Space Center, Florida, are reported. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is presented. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area. Final meteorological data tapes for STS-1 vehicle ascent, and SRB descent have been constructed which consist of wind and thermodynamic parameters versus altitude.

  9. Atmospheric environment for Space Shuttle (STS-51D)

    Science.gov (United States)

    Jasper, G. L.; Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1985-01-01

    A summary of selected atmospheric conditions observed near the space shuttle STS-51D launch time on April 12, 1985, at Kennedy Space Center Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51D vehicle ascent is constructed. The STS-51D ascent atmospheric data tape is compiled by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post-flight performance assessments.

  10. Atmospheric environment for space shuttle (STS-51L) launch

    Science.gov (United States)

    Jasper, G. L.; Johnson, D. L.; Alexander, M.; Fichtl, G. H.; Batts, G. W.

    1986-01-01

    A summary is given of selected atmospheric conditions observed near Space Shuttle STS-51L launch time on January 28, 1986, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51L vehicle ascent has been constructed. The STS-51L ascent atmospheric data tape has been constructed by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments.

  11. Atmospheric environment for space shuttle (STS-51C) launch

    Science.gov (United States)

    Jasper, G.; Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1985-01-01

    Selected atmospheric conditions observed near space shuttle STS-51C launch time on January 24, 1985, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are presented. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51C vehicle ascent was constructed. The STS-51C ascent atmospheric data tape was constructed to provide an internally consistent data set for use in postflight performance assessments.

  12. Atmospheric environment for space shuttle (STS-51B) launch

    Science.gov (United States)

    Jasper, G. L.; Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1985-01-01

    A summary of selected atmospheric conditions observed near space shuttle STS-51B launch time on April 29, 1985, at Kennedy Space Center Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51B vehicle ascent was constructed. The STS-51B ascent atmospheric data tape was constructed by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments.

  13. Atmospheric environment for Space Shuttle (STS-3) launch

    Science.gov (United States)

    Johnson, D. L.; Brown, S. C.; Batts, G. W.

    1982-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed.

  14. Atmospheric environment for Space Shuttle (STS-2) launch

    Science.gov (United States)

    Johnson, D. L.; Brown, S. C.

    1981-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-2 launch time on November 12, 1981, or Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are also presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-2 vehicle ascent and SRB descent have been constructed. The STS-2 ascent meteorological data tape was constructed.

  15. Space Shuttle Orbiter leading edge structural subsystem thermal performance

    Science.gov (United States)

    Curry, D. M.; Cunningham, J. A.; Frahm, J. R.

    1982-01-01

    An extensive qualification test program and the STS-1 flight of the Space Shuttle Orbiter have provided the data necessary to verify the performance of the Orbiter thermal protection system. The reinforced carbon-carbon leading edge structural subsystem is used on areas of the orbiter where temperatures exceed 2300 F. The subsystem consists of the ROC nose cap and wing leading edge panels, metallic attachments, internal insulation, and interface tiles. Thermal response data from the qualification tests and the STS-1 flight, postflight inspection, and analytical predictions support the conclusion that the thermal performance of the subsystem verified the design.

  16. Space Shuttle propulsion performance reconstruction from flight data

    Science.gov (United States)

    Rogers, Robert M.

    1989-01-01

    The aplication of extended Kalman filtering to estimating Space Shuttle Solid Rocket Booster (SRB) performance, specific impulse, from flight data in a post-flight processing computer program. The flight data used includes inertial platform acceleration, SRB head pressure, and ground based radar tracking data. The key feature in this application is the model used for the SRBs, which represents a reference quasi-static internal ballistics model normalized to the propellant burn depth. Dynamic states of mass overboard and propellant burn depth are included in the filter model to account for real-time deviations from the reference model used. Aerodynamic, plume, wind and main engine uncertainties are included.

  17. Space Shuttle orbiter trimmed center-of-gravity extension study

    Science.gov (United States)

    Scallion, W. I.; Phillips, W. P.

    1985-01-01

    Aerodynamic, heat transfer, and system design studies to determine removable modifications for the Space Shuttle orbiter that would extend its forward center-of-gravity triom capability are summarized. Wind-tunnel tests were conducted at Mach numbers ranging from 0.25 to 20.3 to determine the most effective aerodynamic modifications. Heat transfer and system design studies determined the impact of the modifications on the thermal protection system and structural weight of the vehicle. The most effective modifications were in-fillet canards or a forward extension of the existing forward wing fillet.

  18. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  19. Food and waste management biotechnology for the space shuttle

    Science.gov (United States)

    Murray, R. W.; Schelkopf, J. D.; Hunt, S. R.; Sauer, R. L.

    1979-01-01

    Space-crew facilities for preparation, eating, personal hygiene and waste management are contained in one small area of the Shuttle Orbiter Mid-Deck, all the functional systems being interconnected. The paper discusses three major systems: (1) the Galley, which includes the personal hygiene station and food packages; (2) the Waste Collector, which includes provisions for male and female users, urine, feces and emesis collection in both a normal and contigency mode of operation; and (3) Biowaste Monitoring, which includes mass measurement and sampling. The technology improvement continues by assuring that the Orbiter systems have sufficient design flexibility to permit later improvements in operation and in function.

  20. Deployable radiators for waste heat dissipation from Shuttle payloads

    Science.gov (United States)

    Cox, R. L.; Dietz, J. B.; Leach, J. W.

    1976-01-01

    Prototypes of two types of modularized, deployable radiator systems with a high degree of configuration and component commonality to minimize design, development and fabrication costs are currently under development for Shuttle payloads with high waste heat: a rigid radiator system which utilizes aluminum honeycomb panels that are deployed by a scissors mechanism; and two 'flexible' radiator systems which use panels constructed from flexible metal/dielectric composite materials that are deployed by 'unrolling' or 'extending' in orbit. Detail descriptions of these deployable radiator systems along with design and performance features are presented.

  1. Artificial intelligence techniques for scheduling Space Shuttle missions

    Science.gov (United States)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  2. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    Science.gov (United States)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  3. Lubrication of Space Shuttle Main Engine Turbopump Bearings

    Science.gov (United States)

    Gibson, Howard; Munafo, Paul (Technical Monitor)

    2001-01-01

    The Space Shuttle has three main engines that are used for propulsion into orbit. These engines are fed propellants by four turbopumps on each engine. A main element in the turbopump is the bearings supporting the rotor that spins the turbine blades and the pump impeller. These bearings are required to spin at very high speeds, support radial and thrust loads, and have high wear resistance without the benefit of lubrication. The liquid hydrogen and oxygen propellants flow through the bearings to cool the surfaces. The volatile nature of the propellants excludes any conventional means of lubrication. Lubrication for these bearings is provided by the ball separator inside the bearing. The separator is a composite material that supplies a transfer film of lubrication to the rings and balls. New separator materials and lubrication schemes have been investigated at Marshall Space Flight Center in a bearing test rig with promising results. Hybrid bearings with silicon nitride balls have also been evaluated. The use of hybrid, silicon nitride ball bearings in conjunction -with better separator materials has shown excellent results. The work that Marshall has done is being utilized in turbopumps flying on the space shuttle fleet and will be utilized in future space travel. This result of this work is valuable for all aerospace and commercial applications where high-speed bearings are used.

  4. TMZ-BioShuttle – a reformulated Temozolomide

    Directory of Open Access Journals (Sweden)

    Waldemar Waldeck, Manfred Wiessler, Volker Ehemann, Ruediger Pipkorn, Herbert Spring, Juergen Debus, Bernd Didinger, Gabriele Mueller, Joerg Langowski, Klaus Braun

    2008-01-01

    Full Text Available There is a large number of effective cytotoxic drugs whose side effect profile, efficacy, and long-term use in man are well understood and documented over decades of use in clinical routine e.g. in the treatment of recurrent glioblastoma multiforme (GBM and the hormone-refractory prostate cancer (HRPC. Both cancers are insensitive against most chemotherapeutic interventions; they have low response rates and poor prognoses. Some cytotoxic agents can be significantly improved by using modern technology of drug delivery or formulation. We succeeded to enhance the pharmacologic potency with simultaneous reduction of unwanted adverse reactions of the highly efficient chemotherapeutic temozolomide (TMZ as an example. The TMZ connection to transporter molecules (TMZ-BioShuttle resulted in a much higher pharmacological effect in glioma cell lines while using reduced doses. This permits the conclusion that a suitable chemistry could realize the ligation of pharmacologically active, but sensitive and highly unstable pharmaceutical ingredients without functional deprivation. The re-formulation of TMZ to TMZ-BioShuttle achieved a nearly 10-fold potential of the established pharmaceutic TMZ far beyond the treatment of brain tumors cells and results in an attractive reformulated drug with enhanced therapeutic index.

  5. Determination of shuttle orbiter center of gravity from flight measurements

    Science.gov (United States)

    Hinson, E. W.; Nicholson, J. Y.; Blanchard, R. C.

    1991-01-01

    Flight measurements of pitch, yaw, and roll rates and the resultant rotationally induced linear accelerations during three orbital maneuvers on Shuttle mission space transportation system (STS) 61-C were used to calculate the actual orbiter center-of-gravity location. The calculation technique reduces error due to lack of absolute calibration of the accelerometer measurements and compensates for accelerometer temperature bias and for the effects of gravity gradient. Accuracy of the technique was found to be limited by the nonrandom and asymmetrical distribution of orbiter structural vibration at the accelerometer mounting location. Fourier analysis of the vibration was performed to obtain the power spectral density profiles which show magnitudes in excess of 10(exp 4) ug (sup 2)/Hz for the actual vibration and over 500 ug (sup 2)/Hz for the filtered accelerometer measurements. The data from this analysis provide a characterization of the Shuttle acceleration environment which may be useful in future studies related to accelerometer system application and zero-g investigations or processes.

  6. Space Shuttle vernier thruster long-life chamber development

    Science.gov (United States)

    Krohn, Douglas D.

    1990-01-01

    The Space Shuttle Reaction Control Subsystem (RCS) vernier thruster is a pressure fed engine that utilizes storable propellants to provide precise attitude control for the Orbiter. The current vernier thruster is life limited due to its chamber material. By developing an iridium-lined rhenium chamber for the vernier, substantial gains could be achieved in the operational life of the chamber. The present RCS vernier, its requirements, operating characteristics, and life limitations are described. The current technology status of iridium-lined rhenium is presented along with a description of the operational life capabilities to be gained from implementing this material into the design of a long life vernier chamber. Discussion of the proposed demonstration program to be performed by the NASA Lyndon B. Johnson Space Center to attain additional insight into the application of this technology to the RCS vernier, includes the technical objectives, approach, and program schedule. The plans for further development and integration with the Orbiter and the Shuttle system are also presented.

  7. Electromagnetic Radiation in the Plasma Environment Around the Shuttle

    Science.gov (United States)

    Vayner, Boris V.; Ferguson, Dale C.

    1995-01-01

    As part of the SAMPIE (The Solar Array Module Plasma Interaction Experiment) program, the Langmuir probe (LP) was employed to measure plasma characteristics during the flight STS-62. The whole set of data could be divided into two parts: (1) low frequency sweeps to determine voltage-current characteristics and to find electron temperature and number density; (2) high frequency turbulence (HFT dwells) data caused by electromagnetic noise around the shuttle. The broadband noise was observed at frequencies 250-20,000 Hz. Measurements were performed in ram conditions; thus, it seems reasonable to believe that the influence of spacecraft operations on plasma parameters was minimized. The average spectrum of fluctuations is in agreement with theoretical predictions. According to purposes of SAMPIE, the samples of solar cells were placed in the cargo bay of the shuttle, and high negative bias voltages were applied to them to initiate arcing between these cells and surrounding plasma. The arcing onset was registered by special counters, and data were obtained that included the amplitudes of current, duration of each arc, and the number of arcs per one experiment. The LP data were analyzed for two different situations: with arcing and without arcing. Electrostatic noise spectra for both situations and theoretical explanation of the observed features are presented in this report.

  8. ISS and Space Shuttle Radiation Measurements at Solar Minimum

    Science.gov (United States)

    Gaza, Ramona; Welton, Andrew; Dunegan, Audrey; Lee, Kerry

    2011-01-01

    A summary of 2008-2011 ISS and Space Shuttle radiation dosimetry results for inside vehicle radiation monitoring in low-Earth orbit will be presented. Results include new data from ISS Expedition 22-25/20A radiation area monitors (RAM) and Shuttle Missions STS127-STS133 passive radiation dosimeters (PRD). ISS 20A radiation measurement locations included three Node 2 crew quarters locations at NOD2S5_CQ, NOD2P5_CQ and CQ-3 (Deck), as well as ESA Columbus, and JAXA Kibo locations. ISS 20A and STS127-STS133 missions were flown at 51.6 inclination with an altitude range of 330-350 km. The passive radiation results will be presented in terms of measured daily dose obtained using luminescence detectors (i.e., Al2O3:C, LiF:Mg,Ti and CaF2:Tm). In addition, preliminary results from the DOSIS 2 Project, in collaboration with the German Space Agency (DLR) will be presented. SRAG s participation to the DOSIS 2 exposure on ISS (11/16/2009-05/26/2010) involved passive radiation measurements at 10 different shielding locations inside the ESA Columbus Module.

  9. Development of shuttle vectors for transformation of diverse Rickettsia species.

    Directory of Open Access Journals (Sweden)

    Nicole Y Burkhardt

    Full Text Available Plasmids have been identified in most species of Rickettsia examined, with some species maintaining multiple different plasmids. Three distinct plasmids were demonstrated in Rickettsia amblyommii AaR/SC by Southern analysis using plasmid specific probes. Copy numbers of pRAM18, pRAM23 and pRAM32 per chromosome in AaR/SC were estimated by real-time PCR to be 2.0, 1.9 and 1.3 respectively. Cloning and sequencing of R. amblyommii AaR/SC plasmids provided an opportunity to develop shuttle vectors for transformation of rickettsiae. A selection cassette encoding rifampin resistance and a fluorescent marker was inserted into pRAM18 yielding a 27.6 kbp recombinant plasmid, pRAM18/Rif/GFPuv. Electroporation of Rickettsia parkeri and Rickettsia bellii with pRAM18/Rif/GFPuv yielded GFPuv-expressing rickettsiae within 2 weeks. Smaller vectors, pRAM18dRG, pRAM18dRGA and pRAM32dRGA each bearing the same selection cassette, were made by moving the parA and dnaA-like genes from pRAM18 or pRAM32 into a vector backbone. R. bellii maintained the highest numbers of pRAM18dRGA (13.3 - 28.1 copies, and R. parkeri, Rickettsia monacensis and Rickettsia montanensis contained 9.9, 5.5 and 7.5 copies respectively. The same species transformed with pRAM32dRGA maintained 2.6, 2.5, 3.2 and 3.6 copies. pRM, the plasmid native to R. monacensis, was still present in shuttle vector transformed R. monacensis at a level similar to that found in wild type R. monacensis after 15 subcultures. Stable transformation of diverse rickettsiae was achieved with a shuttle vector system based on R. amblyommii plasmids pRAM18 and pRAM32, providing a new research tool that will greatly facilitate genetic and biological studies of rickettsiae.

  10. Launch-Off-Need Shuttle Hubble Rescue Mission: Medical Issues

    Science.gov (United States)

    Hamilton, Douglas; Gillis, David; Ilcus, Linda; Perchonok, Michele; Polk, James; Brandt, Keith; Powers, Edward; Stepaniak, Phillip

    2008-01-01

    The Space Shuttle Hubble repair mission (STS-125) is unique in that a rescue mission (STS-400) has to be ready to launch before STS-125 life support runs out should the vehicle become stranded. The shuttle uses electrical power derived from fuel cells that use cryogenic oxygen and hydrogen (CRYO) to run all subsystems including the Environmental Control System. If the STS-125 crew cannot return to Earth due to failure of a critical subsystem, they must power down all nonessential systems and wait to be rescued by STS-400. This power down will cause the cabin temperature to be 60 F or less and freeze the rest of the vehicle, preventing it from attempting a reentry. After an emergency has been declared, STS-125 must wait at least 7 days to power down since that is the earliest that STS-400 can be launched. Problem The delayed power down of STS-125 causes CYRO to be consumed at high rates and limits the survival time after STS-400 launches to 10 days or less. CRYO will run out sooner every day that the STS-400 launch is delayed (weather at launch, technical issues etc.). To preserve CRYO and lithium hydroxide (LiOH - carbon dioxide removal) the crew will perform no exercise to reduce their metabolic rates, yet each deconditioned STS-125 crewmember must perform an EVA to rescue himself. The cabin may be cold for 10 days, which may cause shivering, increasing the metabolic rate of the STS-125 crew. Solution To preserve LiOH, the STS-125 manifest includes nutrition bars with low carbohydrate content to maintain crew respiratory quotient (RQ) below 0.85 as opposed to the usual shuttle galley food which is rich in carbohydrates and keeps the RQ at approximately 0.95. To keep the crew more comfortable in the cold vehicle warm clothing also has been included. However, with no exercise and limited diet, the deconditioned STS-125 crew returning on STS-400 may not be able to egress the vehicle autonomously requiring a supplemented crash-and-rescue capability.

  11. A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California

    Science.gov (United States)

    2001-01-01

    A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California, on May 1, 2001. NASA's Dryden Flight Research Center at Edwards would subsequently service the shuttle and mount it on a 747 for the ferry flight to the Kennedy Space Center in Florida.

  12. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  13. STS-26 MS Hilmers on fixed based (FB) shuttle mission simulator (SMS) middeck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers prepares to ascend a ladder representing the interdeck access hatch from the shuttle middeck to the flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  14. First-ever evening public engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  15. In-line task 57: Component evaluation. [of circuit breakers, panel switches, etc. for space shuttle

    Science.gov (United States)

    Boykin, J. C.

    1974-01-01

    Design analysis tests were performed on selected power switching components to determine the possible applicability of off-the-shelf hardware to space shuttles. Various characteristics were also evaluated in those devices to determine the most desirable properties for the space shuttle.

  16. STS-26 Commander Hauck poses on shuttle mockup aft flight deck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck poses on shuttle mockup aft flight deck in the Shuttle Mockup and Integration Laboratory Bldg 9A. Hauck's right hand is propped on Onorbit Station control panel A2 remote manipulator system (RMS) translation hand control. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  17. Effects of limited peripheral vision on shuttle sprint performance of soccer players

    NARCIS (Netherlands)

    Lemmink, KAPM; Dijkstra, B; Visscher, C

    2005-01-01

    This study examined the effect of limited peripheral vision oil the shuttle sprint performance of soccer players. Participants were 14 male soccer players of a student soccer club (M age = 22.1 yr., SD = 1.3 yr.). They performed a repeated shuttle sprint with full and limited peripheral vision. Mean

  18. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    Directory of Open Access Journals (Sweden)

    Harmen M. van Rossum

    2016-05-01

    Full Text Available In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1, nuclear-mitochondrial communication (RTG2, and encoding a carnitine acetyltransferase (YAT2. Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle.

  19. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  20. Alternate space shuttle concepts study: Design requirements and phased programs evaluation

    Science.gov (United States)

    1971-01-01

    A study to determine program and technical alternatives to the design of the space shuttle orbiter is described. The alternatives include a phased approach, involving orbiter development and operation with an expendable booster for an interim period, as well as design variations to the basic vehicle. The space shuttle orbiter configurations and predicted performance parameters are presented.

  1. Christa McAuliffe and Dick Scobee in Shuttle mission simulator

    Science.gov (United States)

    1985-01-01

    Astronaut Francis R. (Dick) Scobee, STS 51-L commander, briefs Payload specialist Sharon Christa McAuliffe about some of the flight systems of the Space Shuttle during a training session in JSC's Shuttle mission simulator. They are on the flight deck with McAuliffe seated at the pilot's station and Scobee at the commander's station.

  2. Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

  3. Verification of the Space Shuttle entry GN&C system

    Science.gov (United States)

    Van Hoften, J. D. A.; Moyles, J. A.

    1981-01-01

    The certification procedures for the initial Shuttle flight are discussed. Particular attention is paid to the entry guidance, navigation, and control (GNC) verification, comprising tests, analysis, demonstration, inspection, and simulation. Flow diagrams for the verification and operational flight sequences are provided, along with a block diagram of the GNC circuitry interfaces. The development of the test matrix software for the GNC is outlined, noting the constant interplay between software verification and spacecraft reconfiguration to meet simulated performance requirements. Comparison of GNC performance predictions with actual entry flight data showed a good match in all performance areas except for sideslip excursions, bank overshoots, an area of transonic buffet, and an increased lift/drag ratio in the preflare to landing flight phase.

  4. Alternative Suspension System for Space Shuttle Avionics Shelf

    Science.gov (United States)

    Biele, Frank H., III

    2010-01-01

    Engineers working in the Aerospace field under deadlines and strict budgets often miss the opportunity to design something that is considered new or innovative, favoring instead to use the tried-and-true design over those that may, in fact, be more efficient. This thesis examines an electronic equipment stowage shelf suspended from a frame in the cargo bay (mid fuselage) of the United States Space Transportation System (STS), the Space Shuttle, and 3 alternative designs. Four different designs are examined and evaluated. The first design is a conventional truss, representing the tried and true approach. The second is a cable dome type structure consisting of struts and pre-stressed wiring. The third and fourth are double layer tensegrity systems consisting of contiguous struts of the order k=1 and k=2 respectively.

  5. Photochemical water splitting mediated by a C1 shuttle

    KAUST Repository

    Alderman, N. P.

    2016-10-31

    The possibility of performing photochemical water splitting in a two-stage system, separately releasing the H and O components, has been probed with two separate catalysts and in combination with a formaldehyde/formate shuttling redox couple. In the first stage, formaldehyde releases hydrogen vigorously in the presence of an Na[Fe(CN)]·10HO catalyst, selectively affording the formate anion. In the second stage, the formate anion is hydro-genated back to formaldehyde by water and in the presence of a BiWO photocatalyst whilst releasing oxygen. Both stages operate at room temperature and under visible light irradiation. The two separate photocatalysts are compatible since water splitting can also be obtained in one-pot experiments with simultaneous H/O evolution.

  6. Shuttle Orbiter Environmental Control and Life Support System - Flight experience

    Science.gov (United States)

    Winkler, H. E.

    1992-01-01

    This paper describes the overall design of the Shuttle Orbiter Environmental Control and Life Support System (ECLSS). The Orbiter ECLSS consists of six major subsystems which accomplish the functions of providing a habitable pressurized cabin atmosphere and removing gaseous contaminants, controlling the temperature of the cabin and vehicle components within acceptable ranges, providing fire detection and suppression capability, maintaining a supply of potable water, collecting and removing metabolic waste materials, and providing utilities and access for extravehicular activity. The operational experience is summarized for the 45 space flights accomplished to date during which the Orbiter ECLSS has been demonstrated to perform reliably, and has proved to have the flexibility to meet a variety of mission needs. Significant flight problems are described, along with the design or procedure changes which were implemented to resolve the problems.

  7. Flexible Plug Repair for Shuttle Wing Leading Edge

    Science.gov (United States)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; hide

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  8. Preflight and postflight microbiological results from 25 space shuttle crews

    Science.gov (United States)

    Pierson, Duane L.; Bassinger, Virginia J.; Molina, Thomas C.; Gunter, Emelie G.; Groves, Theron O.; Cioletti, Louis J.; Mishra, S. K.

    1993-01-01

    Clinical-microbiological investigations are an important aspect of the crew health stabilization program. To ensure that space crews have neither active nor latent infections, clinical specimens, including throat and nasal swabs and urine samples, are collected at 10 days (L-10) and 2days (L-2) before launch, and immediately after landing (L+0). All samples are examined for the presence of bacteria and fungi. In addition, fecal samples are collected at L-10 and examined for bacteria, fungi and parasites. This paper describes clinical-microbiological findings from 144 astronauts participating in 25 Space Shuttle missions spanning Space Transportation System (STS)-26 to STS-50. The spectrum of microbiological findings from the specimens included 25 bacterial and 11 fungal species. Among the bacteria isolated most frequently were Staphylococcus aureus, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Proteus mirabilis and Streptococcus agalactiae. Candida albicans was the most frequently isolated fungal pathogen.

  9. Atmospheric Environment for Space Shuttle (STS-28) Launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1990-01-01

    A summary is presented of selected atmospheric conditions observed near Space Shuttle STS-28 launch time on August 8, 1989. STS-28 carried a Department of Defense payload and the flight azimuth is denoted by a reference flight azimuth, since the actual flight azimuth is not known. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-28 vehicle ascent was constructed and represents the best estimate of the launch environment to 400,000 ft altitude that was traversed by the STS-28 vehicle. The STS-28 ascent atmospheric data tape was constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in post-flight performance assessments.

  10. Atmospheric environment for space shuttle (STS-35) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1991-01-01

    A summary is given of selected atmospheric conditions observed near space shuttle STS-35 launch time on December 2, 1990, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-35 vehicle ascent has been constructed. The STS-35 ascent atmospheric data tape has been constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-35 vehicle.

  11. Atmospheric environment for Space Shuttle (STS-41D) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.

    1984-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.

  12. Atmospheric environment for space shuttle (STS-30) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1989-01-01

    This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-30 launch time on May 4, 1989, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-30 vehicle ascent has been constructed. The STS-30 ascent atmospheric data tape has been constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in post-flight performance assessments.

  13. Atmospheric environment for Space Shuttle (STS-37) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1991-01-01

    A summary of selected atmospheric conditions observed near Space Shuttle STS-37 launch time on 5 Apr. 1991 at KSC is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (clouds), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-37 vehicle ascent was constructed. The STS-37 ascent atmospheric data tape was constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000 ft. altitude that was traversed by the STS-37 vehicle.

  14. Atmospheric environment for space shuttle (STS-36) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1990-01-01

    A summary of selected atmospheric conditions observed near space shuttle STS-36 launch time on February 28, 1990, at Kennedy Space Center, Florida was presented. STS-36 carried a Department of Defense payload and the flight azimuth is not known. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-36 vehicle ascent was constructed. The STS-36 ascent atmospheric data tape was constructed to provide an internally consistent data set for use in postflight performance assessments and represent the best estimate of the launch environment to the 400,000 feet altitude that was traversed by the STS-36 vehicle.

  15. Atmospheric environment for space shuttle (STS-33) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1990-01-01

    A summary is presented of selected atmospheric conditions observed near space shuttle STS-33 at launch time. STS-33 carried a DOD payload and the flight azimuth is denoted by a reference flight azimuth, since the actual flight azimuth is not known. Values of ambient pressure, temperature, moisture, ground winds, visual observations (clouds), and winds aloft are included. The sequence of pre-launch Jimsphere measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-33 vehicle ascent, was constructed. The STS-33 ascent atmospheric data tape was constructed by NASA-Marshall to provide an internally consistent data set for use in postflight performance assessments and represents the best estimates of the launch environment to the 400,000 ft altitude that was traversed by the STS-33 vehicle.

  16. Atmospheric environment for space shuttle (STS-34) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1989-01-01

    A summary of selected atmospheric conditions observed near space shuttle STS-34 launch time on October 18, 1989, at Kennedy Space Center, Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (clouds), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters vs. altitude, for STS-34 vehicle ascent was constructed to provide an internally consistent data set for use in post-flight performance assessments. It represents the best estimates of the launch environment to the 400,000 feet altitude that was traversed by the STS-34 vehicle.

  17. Atmospheric environment for Space Shuttle (STS-32) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1990-01-01

    A summary of selected atmospheric conditions observed near space shuttle STS-32 launch time on January 9, 1990, at Kennedy Space Center, Florida, are presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (clouds), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is also presented. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-32 vehicle ascent was constructed. The STS-32 ascent atmospheric data tape was constructed to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment that was traversed by the STS-32 vehicle.

  18. Atmospheric environment for Space Shuttle Atlantis (STS-43) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1992-01-01

    A summary of selected atmospheric conditions observed near Space Shuttle Atlantis (STS-43) launch time on August 2, 1991, at Kennedy Space Center, Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given. The final atmospheric profile, which consists of wind and thermodynamic parameters versus altitude, for STS-43 vehicle ascent was constructed. The STS-43 ascent atmospheric data profile was constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consisted data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-43 vehicle.

  19. Atmospheric environment for Space Shuttle Atlantis (STS-39) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1992-01-01

    A summary is presented of selected atmospheric conditions observed near space shuttle Atlantis STS-39 launch time on 28 April 1991, at Kennedy Space Center, FL. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-39 vehicle ascent was constructed. The STS-39 ascent atmospheric data tape was constructed by NASA-Marshall to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000 ft altitude that was traversed by the STS-39 vehicle.

  20. Atmospheric environment for Space Shuttle (STS-41G) launch

    Science.gov (United States)

    Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.

    1984-01-01

    Selected atmospheric conditions that were observed near Space Shuttle STS-41G launch time on October 5, 1984 at Kennedy Space Center in Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual obsrvations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given. The final atmospheric tape consisting of wind and thermodynamic parameters versus altitude for STS-41G vehicle ascent was constructed. The STS-41G ascent atmospheric data tape was constructed. The STS-41G ascent atmospheric data tape was constructed by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments.

  1. Atmospheric environment for space shuttle (STS-41) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1990-01-01

    A summary of selected atmospheric conditions observed near space shuttle STS-41 launch time on October 6, 1990, at Kennedy Space Center, Florida are presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (clouds), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-41 vehicle ascent was constructed. The STS-41 ascent atmospheric data tape was constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000 ft altitude that was traversed by the STS-41 vehicle.

  2. Atmospheric environment for space shuttle (STS-38) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1991-01-01

    A summary of selected atmospheric conditions observed near space shuttle STS-38 launch time on November 15, 1990, at Kennedy Space Center is presented. STS-38 carried a Department of Defense payload and the flight azimuth in this report will be denoted by a reference flight azimuth, since the actual flight azimuth is not known. Values of ambient pressure, temperature, moisture, ground winds, visual observation (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is presented. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-38 vehicle ascent was constructed. The STS-38 ascent atmospheric data tape was constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-38 vehicle.

  3. Atmospheric environment for space shuttle (STS-29) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1989-01-01

    This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-29 launch time on March 13, 1989, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-29 vehicle ascent has been constructed. The STS-29 ascent atmospheric data tape has been constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in post-flight performance assessments.

  4. Atmospheric environment for Space Shuttle (STS-27) launch

    Science.gov (United States)

    Jasper, G. L.; Johnson, D. L.; Batts, G. W.

    1989-01-01

    Selected articles on atmospheric conditions observed near Space Shuttle STS-27 launch time on December 2, 1988, at Kennedy Space Center, Florida are summarized. STS-27 carried a Department of Defense payload and the flight azimuth in this report will be denoted by reference flight azimuth, since the actual flight azimuth is not known. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-27 vehicle ascent was constructed. The STS-27 ascent atmospheric data tape was constructed by Marshall Space Flight Center's Earth Science and Applications Division to provide an internally consistent data set for use in post-flight performance assessments.

  5. Atmospheric environment for Space Shuttle Columbia (STS-40) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1992-01-01

    A summary of selected atmospheric conditions observed near the Space Shuttle Columbia (STS-40) launch time on 5 Jun. 1991, at KSC is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observation (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere-measured vertical wind profiles is given. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-40 vehicle ascent was constructed. The STS-40 ascent atmospheric data tape was constructed by MSFC's Earth Science and Applications Division to provide an internally consistent data set for use in postflight performance assessments and represents the best estimate of the launch environment to the 400,000-ft altitude that was traversed by the STS-40 vehicle.

  6. Atmospheric environment for Space Shuttle (STS-31) launch

    Science.gov (United States)

    Jasper, G. L.; Batts, G. W.

    1990-01-01

    A summary of selected atmospheric conditions observed near space shuttle STS-31 launch time on April 24, 1990, at Kennedy Space Center, Florida, are presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (clouds), and winds aloft are included. The sequence of pre-launch Jimsphere-measured vertical wind profiles is also presented. The final atmospheric tape, which consists if wind and thermodynamic parameters versus altitude, for STS-31 vehicle ascent was constructed. The STS-31 ascent atmospheric data tape was constructed to provide an internally consistent data set for use in postflight performance assessments and represent the best estimated of the launch environment to the 400,000 feet altitude that was traversed by the STS-31 vehicle.

  7. Plasma density fluctuations observed during Space Shuttle Orbiter water releases

    Science.gov (United States)

    Pickett, J. S.; D'Angelo, N.; Kurth, W. S.

    1989-01-01

    Observations by the Langmuir probe on the Plasma Diagnostics Package flown as part of the Spacelab 2 mission in the summer of 1985 show a strong increase in the level of turbulence near the Shuttle Orbiter during operations in which liquid water is released. The spectrum of the plasma density fluctuations peaks at the lowest frequencies measured (a few Hz) and extends up to a few kHz, near the lower hybrid frequency. Two potential mechanisms for generating the plasma turbulence are suggested which are both based on the production of water ions as a result of charge exchange with the ambient oxygen ions in the ionosphere. The first mechanism proposed is the ion-plasma instability which arises from the drift of the contaminant with respect to the ambient oxygen ions. The other mechanism proposed is the Ott-Farley instability, which is a result of the ring distribution formed by the 'pick-up' water ions.

  8. Shuttle-promoted nano-mechanical current switch

    Energy Technology Data Exchange (ETDEWEB)

    Song, Taegeun, E-mail: tsong@ictp.it; Kiselev, Mikhail N. [Condensed Matter and Statistical Physics Section, The Abdus Salam International Center for Theoretical Physics, I-34151 Trieste (Italy); Gorelik, Leonid Y. [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Shekhter, Robert I. [Department of Physics, University of Gothenburg, SE-412 96 Göteborg (Sweden); Kikoin, Konstantin [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2015-09-21

    We investigate electron shuttling in three-terminal nanoelectromechanical device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two limit cycles, and (iv) single limit cycle. In the presence of perpendicular magnetic field, the Lorentz force makes possible switching from one electromechanical state to another. The mechanism of tunable transitions between various stable regimes based on the interplay between voltage controlled electromechanical instability and magnetically controlled switching is suggested. The switching phenomenon is implemented for achieving both a reliable active current switch and sensoring of small variations of magnetic field.

  9. Freight Shuttle System: Cross-Border Movement of Goods

    Energy Technology Data Exchange (ETDEWEB)

    Levien, Mary

    2011-05-31

    The Freight Shuttle System (FSS) is designed to provide freight transportation services between those short and intermediate distance locations (within 600 miles) that are currently handling large volumes of freight traffic. Much like trucks, the FSS's transporters are autonomous: each transporter has its own propulsion and travels independently of other transporters. Inspired by railroads, each FSS transporter has steel wheels operating on a steel running surface and can carry either a standardsize freight container or an over-the-road truck trailer. However, unlike either rail or trucks, the FSS runs on an elevated, dedicated guideway to avoid the interference of other transportation systems. The objective of this report is to examine the potential viability for an alternative transportation system for trailers and containers in a multi-national, cross-border setting. The El Paso-Ciudad Juarez region serves as the environment of this analysis.

  10. Strain System for the Motion Base Shuttle Mission Simulator

    Science.gov (United States)

    Huber, David C.; Van Vossen, Karl G.; Kunkel, Glenn W.; Wells, Larry W.

    2010-01-01

    The Motion Base Shuttle Mission Simulator (MBSMS) Strain System is an innovative engineering tool used to monitor the stresses applied to the MBSMS motion platform tilt pivot frames during motion simulations in real time. The Strain System comprises hardware and software produced by several different companies. The system utilizes a series of strain gages, accelerometers, orientation sensor, rotational meter, scanners, computer, and software packages working in unison. By monitoring and recording the inputs applied to the simulator, data can be analyzed if weld cracks or other problems are found during routine simulator inspections. This will help engineers diagnose problems as well as aid in repair solutions for both current as well as potential problems.

  11. NASDA next generation aquatic habitat for space shuttle and ISS

    Science.gov (United States)

    Masukawa, M.; Ochiai, T.; Kamigaichi, S.; Ishioka, N.; Uchida, S.; Kono, Y.; Sakimura, T.

    2003-10-01

    The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. We are now studying the next-generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and International Space Station use. A prototype breeding system was designed and tested. Medaka adult fish were able to mate and spawn in this closed circulatory breeding system, and the larvae grewto adult fish and spawned on the 45th day after hatching. The water quality-control system using nitrifying bacteria worked well throughout the medaka breeding test. For amphibians, we also conducted the African clawed toad ( Xenopus laevis) breeding test with the same specimen chambers, although a part of circulation loop was opened to air. Xenopus larvae grew and completed metamorphosis successfully in the small specimen chamber. The first metamorphic climax started on the 30th day and was completed on the 38th day.

  12. Review of delta wing space shuttle vehicle dynamics

    Science.gov (United States)

    Reding, J. P.; Ericsson, L. E.

    1972-01-01

    The unsteady aerodynamics of the delta planform, high cross range, shuttle orbiter were investigated. It has been found that these vehicles are subject to five unsteady flow phenomena that could compromise the flight dynamics. They are: (1) leeside shock induced separation, (2) sudden leading edge stall, (3) vortex burst, (4) bow shock-flap shock interaction, (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding the detrimental effects of the stall phenomena. However, stall must be fixed or controlled when traversing the stall region. The other phenomena may be controlled by carefully programmed control deflections and some configuration modification. Ways to alter the occurrence of the various flow conditions are explored.

  13. Thermal design of the Space Shuttle External Tank

    Science.gov (United States)

    Warmbrod, J. D.; Vaniman, J. L.; Elam, B. F.

    1981-01-01

    The history of the engineering and manufacturing requirements leading to the final Thermal Protection System (TPS) for the External Tank (ET) is presented. The thermal design for the ET must be optimized, based on considerations of cost, weight, and application of the TPS. The significant thermal requirements include the structural and component temperature limits, the propellant quality, the minimization of ice and frost, no air liquefaction, and no film boiling. The TPS materials selected to meet the requirements are a low density closed cell foam (CPR-488) and two light-weight ablators (SLA-56 and MA-25s). The first four flights of the Space Shuttle (1981) will measure and evaluate external environmental, structural, propulsion, electrical, and engine performance data. The ET will be instrumented to measure acoustics, pressures, heat transfer, vibration, temperatures, and structural strains. TPS weight reductions are planned for future ETs through the use of a comprehensive thermal instrumentation system.

  14. Cathodic Protection Deployment on Space Shuttle Solid Rocket Boosters

    Science.gov (United States)

    Zook, Lee M.

    1998-01-01

    Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection(anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composites(motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack due primarily to the galvanic couple to the carbon/carbon nozzle at coating damage locations. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper will highlight the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information will be included regarding the evaluation and deployment of inorganic zinc rich primers as anode area on the aluminum structures.

  15. Multivariable control of the Space Shuttle Remote Manipulator System

    Science.gov (United States)

    Adams, Neil J.; Appleby, Brent D.; Prakash, OM, II

    1991-01-01

    Linear controllers are designed to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in position hold mode. Design techniques used include H2 and H-infinity optimization. The nonlinear SRMS is linearized by modeling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability using both the small gain theorem with an H-infinity norm and the less conservative mu-analysis test. Regulator designs offer significant improvement over the current system for the nominal plant. Unfortunately, the SRMS model suffers from lightly damped poles with real parametric uncertainty. Under such conditions, the mu-analysis test, which allows for complex perturbations, cannot guarantee robust stability.

  16. STS-26 crew in JSC Shuttle Mockup and Integration Laboratory

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers have donned their new (navy blue) partial pressure suits (launch and entry suits (LESs)) for a training exercise in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Commander Frederick H. Hauck is in the center foreground. Hauck is flanked by fellow crewmembers (left to right) Mission Specialist (MS) John M. Lounge, MS George D. Nelson, Pilot Richard O. Covey, and MS David C. Hilmers. Astronaut Steven R. Nagel, not assigned as crewmember but assisting in training, is at far right. During Crew Station Review (CSR) #3, the crew is scheduled to check out the new partial pressure suits and crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  17. Performance of uncoated AFRSI blankets during multiple Space Shuttle flights

    Science.gov (United States)

    Sawko, Paul M.; Goldstein, Howard E.

    1992-01-01

    Uncoated Advanced Flexible Reusable Surface Insulation (AFRSI) blankets were successfully flown on seven consecutive flights of the Space Shuttle Orbiter OV-099 (Challenger). In six of the eight locations monitored (forward windshield, forward canopy, mid-fuselage, upper wing, rudder/speed brake, and vertical tail) the AFRSI blankets performed well during the ascent and reentry exposure to the thermal and aeroacoustic environments. Several of the uncoated AFRSI blankets that sustained minor damage, such as fraying or broken threads, could be repaired by sewing or by patching with a surface coating called C-9. The chief reasons for replacing or completely coating a blanket were fabric embrittlement and fabric abrasion caused by wind erosion. This occurred in the orbiter maneuvering system (OMS) pod sidewall and the forward mid-fuselage locations.

  18. Atmospheric science experiments applicable to Space Shuttle Spacelab missions

    Science.gov (United States)

    Wilson, G. S.; Christian, H. J., Jr.; Fichtl, G. H.; Vaughan, W. W.; Goodman, S. J.; Robertson, F. R.

    1984-01-01

    The present lack of a lower atmosphere research satellite program for the 1980s has prompted consideration of the Space Shuttle/Spacelab system as a means of flying sensor complements geared toward specific research problems, as well as continued instrument development. Three specific examples of possible science questions related to precipitation are discussed: (1) spatial structure of mesoscale cloud and precipitation systems, (2) lightning and storm development, and (3) cyclone intensification over oceanic regions. Examples of space sensors availab le to provide measurements needed in addressing these questions are also presented. Distinctive aspects of low-earth orbit experiments would be high resolution, multispectral sensing of atmospheric phenomena by complements of instruments, and more efficient sensor development through reflights of specific hardware packages.

  19. Space shuttle OMS helium regulator design and development

    Science.gov (United States)

    Wichmann, H.; Kelly, T. L.; Lynch, R.

    1974-01-01

    Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.

  20. Space Shuttle telemetry analysis by a real time expert system

    Science.gov (United States)

    Muratore, John F.

    1987-01-01

    During early manned spacecraft operations, the primary role of ground telemetry systems was data display to flight controllers. As manned spaceflights have increased in complexity, greater demands have been placed on flight controllers to simultaneously monitor systems and replan systems operations. This has led to interest in automated telemetry monitoring systems to decrease the workload on flight controllers. The Mission Operations Directorate at the Lyndon B. Johnson Space Center has developed a five layer model to integrate various monitoring and analysis technologies such as digital filtering, fault detection algorithms, and expert systems. The paper describes the five layer model and explains how it has been used to guide prototyping efforts at Mission Control. Results from some initial expert systems are presented. The paper also describes the integrated prototype currently under development which implements a real time expert system to assist flight controllers in the Mission Control Center in monitoring Space Shuttle communications systems.

  1. Atmospheric science experiments applicable to Space Shuttle Spacelab missions

    Science.gov (United States)

    Wilson, G. S.; Christian, H. J., Jr.; Fichtl, G. H.; Vaughan, W. W.; Goodman, S. J.; Robertson, F. R.

    1984-01-01

    The present lack of a lower atmosphere research satellite program for the 1980s has prompted consideration of the Space Shuttle/Spacelab system as a means of flying sensor complements geared toward specific research problems, as well as continued instrument development. Three specific examples of possible science questions related to precipitation are discussed: (1) spatial structure of mesoscale cloud and precipitation systems, (2) lightning and storm development, and (3) cyclone intensification over oceanic regions. Examples of space sensors availab le to provide measurements needed in addressing these questions are also presented. Distinctive aspects of low-earth orbit experiments would be high resolution, multispectral sensing of atmospheric phenomena by complements of instruments, and more efficient sensor development through reflights of specific hardware packages.

  2. Shuttle Redesigned Solid Rocket Motor aluminum oxide investigations

    Science.gov (United States)

    Blomshield, Fred S.; Kraeutle, Karl J.; Stalnaker, Richard A.

    1994-10-01

    During the launch of STS-54, a 15 psi pressure blip was observed in the ballistic pressure trace of one of the two Space Shuttle Redesigned Solid Rocket Motors (RSRM). One possible scenario for the observed pressure increase deals with aluminum oxide slag formation in the RSRM. The purpose of this investigation was to examine changes which may have occurred in the aluminum oxide formation in shuttle solid propellant due to changes in the ammonium perchlorate. Aluminum oxide formation from three propellants, all having the same formulation, but containing ammonium perchlorate from different manufacturers, will be compared. Three methods have been used to look for possible differences among the propellants. The first method was to examine window bomb movies of the propellants burning at 100, 300 and 600 psia. The motor operating pressure during the pressure blip was around 600 psia. The second method used small samples of propellant which were fired in a combustion bomb which quenched the burning aluminum particles soon after they left the propellant surface. The bomb was fired in both argon and Nitrogen atmospheres at various pressures. Products from this device were examined by optical microscopy. The third method used larger propellant samples fired into a particle collection device which allowed the aluminum to react and combust more completely. This device was pressurized with Nitrogen to motor operating pressures. The collected products were subdivided into size fractions by screening and sedimentation and analyzed optically with an optical microscope. the results from all three methods indicate very small changes in the size distribution of combustion products.

  3. The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle

    Science.gov (United States)

    Heppenheimer, T. A.

    1999-01-01

    This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.

  4. The design and development of two-failure tolerant mechanisms for the Spaceborne Imaging Radar (SIR-B) antenna

    Science.gov (United States)

    Presas, S. J.

    1984-01-01

    The performance requirements, design constraints, and design qualification status of the mechanisms necessary to restrain, deploy, and stow the Spaceborne Imaging Radar (SIR) B antenna experiment on the Shuttle Orbiters are described.

  5. Shuttle Radar Topography Mission 1 Arc-Second Digital Terrain Elevation Data - Global - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Shuttle Radar Topography Mission (SRTM) was a partnership between NASA and the National Geospatial-Intelligence Agency (NGA). Flown aboard the NASA Space Shuttle...

  6. Shuttle Radar Topography Mission 1 Arc-Second Digital Terrain Elevation Data - Global - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Shuttle Radar Topography Mission (SRTM) was a partnership between NASA and the National Geospatial-Intelligence Agency (NGA). Flown aboard the NASA Space Shuttle...

  7. Shuttle Radar Topography Mission 1 Arc and 3 Arc Second Digital Terrain Elevation Data - National Geospatial Data Asset (NGDA)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Shuttle Radar Topography Mission (SRTM) was a partnership between NASA and the National Geospatial-Intelligence Agency (NGA). Flown aboard the NASA Space Shuttle...

  8. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains.

    Science.gov (United States)

    Rausin, Glwadys; Tillemans, Vinciane; Stankovic, Nancy; Hanikenne, Marc; Motte, Patrick

    2010-05-01

    Serine/arginine-rich (SR) proteins are essential nuclear-localized splicing factors. We have investigated the dynamic subcellular distribution of the Arabidopsis (Arabidopsis thaliana) RSZp22 protein, a homolog of the human 9G8 SR factor. Little is known about the determinants underlying the control of plant SR protein dynamics, and so far most studies relied on ectopic transient overexpression. Here, we provide a detailed analysis of the RSZp22 expression profile and describe its nucleocytoplasmic shuttling properties in specific cell types. Comparison of transient ectopic- and stable tissue-specific expression highlights the advantages of both approaches for nuclear protein dynamic studies. By site-directed mutagenesis of RSZp22 RNA-binding sequences, we show that functional RNA recognition motif RNP1 and zinc-knuckle are dispensable for the exclusive protein nuclear localization and speckle-like distribution. Fluorescence resonance energy transfer imaging also revealed that these motifs are implicated in RSZp22 molecular interactions. Furthermore, the RNA-binding motif mutants are defective for their export through the CRM1/XPO1/Exportin-1 receptor pathway but retain nucleocytoplasmic mobility. Moreover, our data suggest that CRM1 is a putative export receptor for mRNPs in plants.

  9. Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    Science.gov (United States)

    Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.

    2010-01-01

    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.

  10. Mentoring Undergraduate Students through the Space Shuttle Hitchhiker GoldHELOX Project

    Science.gov (United States)

    Moody, J. Ward; Barnes, Jonathan; Roming, Peter; Durfee, Dallin; Campbell, Branton; Turley, Steve; Eastman, Paul

    2015-01-01

    In the late 1980s a team of four BYU undergraduate students designed a space-based telescope to image the sun in soft x-rays from 171-181 Angstroms to gain information on microflares and their relation to the corona-chromosphere transition region. The telescope used a near-normal incidence multi-layered mirror imaging onto film through a micro-channel plate. The system was capable of 1.0 sec time resolution and 2.5 arcsec spatial resolution. Aided by a NASA grant in 1991, a system was built and successfully tested in 1998 at Marshall Space Flight Center. Originally designed to be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle, the good results of this test elevated GoldHelox to greater-priority Hitchhiker status. Even so technical and procedural difficulties delayed a launch until after 2003. Unfortunately after the Columbia re-entry break-up in February 2003, the Hitchhiker program was cancelled and the GoldHelox project ended.Well over 200 undergraduate students worked on GoldHelox. Many of these have since earned advanced degrees in a variety of technical fields. Several have gone on to work in the space industry, becoming NASA scientists and engineers with one becoming a PI on the Swift satellite. The broad range of talent on the team has included students majoring in physics, astronomy, mechanical engineering, electrical engineering, manufacturing engineering, design engineering, business and even English majors who have written technical and public relations documents. We report on lessons learned and the pitfalls and successes of this unique mentoring experience.

  11. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells.

    Science.gov (United States)

    Sankaranarayanan, Sandhya; de la Llera-Moya, Margarita; Drazul-Schrader, Denise; Phillips, Michael C; Kellner-Weibel, Ginny; Rothblat, George H

    2013-03-01

    An important mechanism contributing to cell cholesterol efflux is aqueous transfer in which cholesterol diffuses from cells into the aqueous phase and becomes incorporated into an acceptor particle. Some compounds can enhance diffusion by acting as shuttles transferring cholesterol to cholesterol acceptors, which act as cholesterol sinks. We have examined whether particles in serum can enhance cholesterol efflux by acting as shuttles. This task was accomplished by incubating radiolabeled J774 cells with increasing concentrations of lipoprotein-depleted sera (LPDS) or components present in serum as shuttles and a constant amount of LDL, small unilamellar vesicles, or red blood cells (RBC) as sinks. Synergistic efflux was measured as the difference in fractional efflux in excess of that predicted by the addition of the individual efflux values of sink and shuttle alone. Synergistic efflux was obtained when LPDS was incubated with cells and LDL. When different components of LPDS were used as shuttles, albumin produced synergistic efflux, while apoA-I did not. A synergistic effect was also obtained when RBC was used as the sink and albumin as shuttle. The previously observed negative association of albumin with coronary artery disease might be linked to reduced cholesterol shuttling that would occur when serum albumin levels are low.

  12. A self-discharge model of Lithium-Sulfur batteries based on direct shuttle current measurement

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    . A simple but comprehensive mathematical model of the Li-S battery cell self-discharge based on the shuttle current was developed and is presented. The shuttle current values for the model parameterization were obtained from the direct shuttle current measurements. Furthermore, the battery cell depth......-of-discharge values were recomputed in order to account for the influence of the self-discharge and provide a higher accuracy of the model. Finally, the derived model was successfully validated against laboratory experiments at various conditions....

  13. A comparison of shuttle vernier engine plume contamination with CONTAM 3.4 code predictions

    Science.gov (United States)

    Maag, Carl R.; Jones, Thomas M.; Rao, Shankar M.; Linder, W. Kelly

    1992-01-01

    In 1985, using the CONTAM 3.2 code, it was predicted that the shuttle Primary Reaction Control System (PRCS) and Vernier Reaction Control System (VRCS) engines could be potential contamination sources to sensitive surfaces located within the shuttle payload bay. Spaceflight test data on these engines is quite limited. Shuttle mission STS-32, the Long Duration Exposure Facility retrieval mission, was instrumented with an experiment that provided the design engineer with evidence that contaminant species from the VRCS engines can enter the payload bay. More recently, the most recent version of the analysis code, CONTAM 3.4, has re-examined the contamination potential of these engines.

  14. An overview of United States manned space flight from Mercury to the Shuttle

    Science.gov (United States)

    Faget, M. A.

    1981-01-01

    Technical considerations in the design, development and operation of United States manned spacecraft from Project Mercury to the Space Shuttle are reviewed. The design and mission philosophies, launch vehicle and spacecraft characteristics, mode of operation, flight results and influence on later programs are discussed for Project Mercury, and Gemini Apollo and Skylab programs, the Apollo-Soyuz Test Project and the Space Shuttle program. The Space Shuttle is shown to represent a major departure from the trend established in previous programs, requiring major advancements in the fields of flight control, thermal protection, and liquid-propellant rocket technology.

  15. Shuttling of the autoantigen La between nucleus and cell surface after uv irradiation of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, M.; Chang, S.; Slor, H.; Kukulies, J.; Mueller, W.E. (Universitaet, Mainz (Germany, F.R.))

    1990-12-01

    During the past years we have established that the nuclear autoantigen La shuttles between the nucleus and the cytoplasm in tumor cells after inhibition of transcription or virus infection. We reinvestigated this shuttling using primary human keratinocytes from both healthy donors and patients with xeroderma pigmentosum. Ultraviolet irradiation resulted in both an inhibition of transcription and a translocation of La protein from the nucleus to the cytoplasm. After a prolonged inhibition of transcription La protein relocated into the nucleus and assembled with nuclear storage regions. The uv-induced shuttling included a translocation to the cell surface, where La protein colocalized with epidermal growth factor receptors.

  16. Framework for a space shuttle main engine health monitoring system

    Science.gov (United States)

    Hawman, Michael W.; Galinaitis, William S.; Tulpule, Sharayu; Mattedi, Anita K.; Kamenetz, Jeffrey

    1990-01-01

    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available.

  17. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment.

    Science.gov (United States)

    Jacobs, William R

    2014-04-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids-chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages-was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research.

  18. Psychosocial issues in space: results from Shuttle/Mir

    Science.gov (United States)

    Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Bostrom, A.; Kozerenko, O.; Sled, A.; Marmar, C. R.

    2001-01-01

    Important psychosocial issues involving tension, cohesion, leader support, and displacement of negative emotions were evaluated in a 4 1/2-year study involving five U.S. and four Russian Shuttle/Mir space missions. Weekly mood and group climate questionnaires were completed by five U.S. astronauts, eight Russian cosmonauts, and 42 U.S. and 16 Russian mission control subjects. There were few findings that supported our hypothesized changes in tension, cohesion, and leader support in crew and ground subjects using various time models, although crewmembers reported decreasing leader support in the 2nd half of the missions, and astronauts showed some evidence of a novelty effect in the first few weeks. There was no evidence suggesting a 3rd quarter effect among crewmembers on any of the 21 subscales evaluated. In contrast, there was strong evidence to support the hypothesized displacement of tension and negative emotions from crewmembers to mission control personnel and from mission control personnel to management. There were several significant differences in response between Americans vs. Russians, crewmembers vs. mission control personnel, and subjects in this study vs. people in comparable groups on Earth. Subject responses before, during, and after the missions were similar, and we did not find evidence for asthenia in space. Critical incidents that were reported generally dealt with events on-board the Mir and interpersonal conflicts, although most of the responses were from a relatively small number of subjects. Our findings have implications for future training and lead to a number of countermeasures.

  19. NDE of Space Shuttle Solid Rocket Motor field joint

    Science.gov (United States)

    Johnston, Patrick H.

    One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.

  20. Animal life support transporters for Shuttle/Spacelab

    Science.gov (United States)

    Berry, W. E.; Hunt, S. R.

    1978-01-01

    Two transporter devices have been developed by the NASA Ames Research Center, primarily for the purpose of stowing small vertebrates and primates in the mid-deck avionics bay of the Shuttle during launch and re-entry. These animals will be used in Life Science Spacelab experiments. Stowage in the mid-deck area will reduce animal exposure to the high noise levels existing in Spacelab during launch; further, the possible exposure of the animals to high temperatures in Spacelab during re-entry and post-landing will be eliminated. The transporters will provide experimenters more timely access to their animals during experiment-critical, pre-launch, and post-landing periods. Rechargeable batteries in the transporters will provide life support system functions for the animals during periods of transfer and during mission phases in which power is temporarily unavailable. The transporters have been successfully designed, fabricated, and tested. Integrated testing of the transporters was performed in the Space Mission Development III (SMD III) Simulation at the NASA Johnson Space Center.

  1. ISS and Shuttle Payload Research Development and Processing

    Science.gov (United States)

    Calhoun, Kyle A.

    2010-01-01

    NASA's ISS and Spacecraft Processing Directorate (UB) is charged with the performance of payload development for research originating through NASA, ISS international partners, and the National Laboratory. The Payload Development sector of the Directorate takes biological research approved for on orbit experimentation from its infancy stage and finds a way to integrate and implement that research into a payload on either a Shuttle sortie or Space Station increment. From solicitation and selection, to definition, to verification, to integration and finally to operations and analysis, Payload Development is there every step of the way. My specific work as an intern this summer has consisted of investigating data received by separate flight and ground control Advanced Biological Research Systems (ABRS) units for Advanced Plant Experiments (APEX) and Cambium research. By correlation and analysis of this data and specific logbook information I have been working to explain changes in environmental conditions on both the flight and ground control unit. I have then, compiled all of that information into a form that can be presentable to the Principal Investigator (PI). This compilation allows that PI scientist to support their findings and add merit to their research. It also allows us, as the Payload Developers, to further inspect the ABRS unit and its performance

  2. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    Science.gov (United States)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  3. Techniques and Tools of NASA's Space Shuttle Columbia Accident Investigation

    Science.gov (United States)

    McDanels, Steve J.

    2005-01-01

    The Space Shuttle Columbia accident investigation was a fusion of many disciplines into a single effort. From the recovery and reconstruction of the debris, Figure 1, to the analysis, both destructive and nondestructive, of chemical and metallurgical samples, Figure 2, a multitude of analytical techniques and tools were employed. Destructive and non-destructive testing were utilized in tandem to determine if a breach in the left wing of the Orbiter had occurred, and if so, the path of the resultant high temperature plasma flow. Nondestructive analysis included topometric scanning, laser mapping, and real-time radiography. These techniques were useful in constructing a three dimensional virtual representation of the reconstruction project, specifically the left wing leading edge reinforced carbon/carbon heat protectant panels. Similarly, they were beneficial in determining where sampling should be performed on the debris. Analytic testing included such techniques as Energy Dispersive Electron Microprobe Analysis (EMPA), Electron Spectroscopy Chemical Analysis (ESCA), and X-Ray dot mapping; these techniques related the characteristics of intermetallics deposited on the leading edge of the left wing adjacent to the location of a suspected plasma breach during reentry. The methods and results of the various analyses, along with their implications into the accident, are discussed, along with the findings and recommendations of the Columbia Accident Investigation Board. Likewise, NASA's Return To Flight efforts are highlighted.

  4. Lessons learned from Shuttle/Mir: psychosocial countermeasures

    Science.gov (United States)

    Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Gushin, Vadim; Weiss, Daniel S.; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.

    2002-01-01

    BACKGROUND: During future long-duration space missions, countermeasures need to be developed to deal with psychosocial issues that might impact negatively on crewmember performance and well-being. METHODS: In our recently completed NASA-funded study of 5 U.S. astronauts, 8 Russian cosmonauts, and 42 U.S. and 16 Russian mission control personnel who participated in the Shuttle/Mir program, we evaluated a number of important psychosocial issues such as group tension, cohesion, leadership role, and the displacement of negative emotions from crewmembers to people in mission control and from mission control personnel to management. RESULTS: Based on our findings, which are reviewed, a number of psychosocial countermeasures are suggested to help ameliorate the negative impact of potential psychosocial problems during future manned space missions. CONCLUSIONS: Crewmembers should be selected not only to rule out psychopathology but also to select-in for group compatibility and facility in a common language. Training should include briefings and team building related to a number of psychosocial issues and should involve both crewmembers and mission control personnel. During the mission, both experts on the ground and the crewmembers themselves should be alert to potential interpersonal problems, including the displacement of negative emotions from the crew to the ground. Supportive activities should consist of both individual and interpersonal strategies, including an awareness of changing leisure time needs. Finally, attention should be given to postmission readjustment and to supporting the families on Earth.

  5. Psychosocial issues in space: results from Shuttle/Mir

    Science.gov (United States)

    Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Bostrom, A.; Kozerenko, O.; Sled, A.; Marmar, C. R.

    2001-01-01

    Important psychosocial issues involving tension, cohesion, leader support, and displacement of negative emotions were evaluated in a 4 1/2-year study involving five U.S. and four Russian Shuttle/Mir space missions. Weekly mood and group climate questionnaires were completed by five U.S. astronauts, eight Russian cosmonauts, and 42 U.S. and 16 Russian mission control subjects. There were few findings that supported our hypothesized changes in tension, cohesion, and leader support in crew and ground subjects using various time models, although crewmembers reported decreasing leader support in the 2nd half of the missions, and astronauts showed some evidence of a novelty effect in the first few weeks. There was no evidence suggesting a 3rd quarter effect among crewmembers on any of the 21 subscales evaluated. In contrast, there was strong evidence to support the hypothesized displacement of tension and negative emotions from crewmembers to mission control personnel and from mission control personnel to management. There were several significant differences in response between Americans vs. Russians, crewmembers vs. mission control personnel, and subjects in this study vs. people in comparable groups on Earth. Subject responses before, during, and after the missions were similar, and we did not find evidence for asthenia in space. Critical incidents that were reported generally dealt with events on-board the Mir and interpersonal conflicts, although most of the responses were from a relatively small number of subjects. Our findings have implications for future training and lead to a number of countermeasures.

  6. Project Interface Requirements Process Including Shuttle Lessons Learned

    Science.gov (United States)

    Bauch, Garland T.

    2010-01-01

    Most failures occur at interfaces between organizations and hardware. Processing interface requirements at the start of a project life cycle will reduce the likelihood of costly interface changes/failures later. This can be done by adding Interface Control Documents (ICDs) to the Project top level drawing tree, providing technical direction to the Projects for interface requirements, and by funding the interface requirements function directly from the Project Manager's office. The interface requirements function within the Project Systems Engineering and Integration (SE&I) Office would work in-line with the project element design engineers early in the life cycle to enhance communications and negotiate technical issues between the elements. This function would work as the technical arm of the Project Manager to help ensure that the Project cost, schedule, and risk objectives can be met during the Life Cycle. Some ICD Lessons Learned during the Space Shuttle Program (SSP) Life Cycle will include the use of hardware interface photos in the ICD, progressive life cycle design certification by analysis, test, & operations experience, assigning interface design engineers to Element Interface (EI) and Project technical panels, and linking interface design drawings with project build drawings

  7. Environmental impact statement Space Shuttle advanced solid rocket motor program

    Science.gov (United States)

    1989-01-01

    The proposed action is design, development, testing, and evaluation of Advanced Solid Rocket Motors (ASRM) to replace the motors currently used to launch the Space Shuttle. The proposed action includes design, construction, and operation of new government-owned, contractor-operated facilities for manufacturing and testing the ASRM's. The proposed action also includes transport of propellant-filled rocket motor segments from the manufacturing facility to the testing and launch sites and the return of used and/or refurbished segments to the manufacturing site. Sites being considered for the new facilities include John C. Stennis Space Center, Hancock County, Mississippi; the Yellow Creek site in Tishomingo County, Mississippi, which is currently in the custody and control of the Tennessee Valley Authority; and John F. Kennedy Space Center, Brevard County, Florida. TVA proposes to transfer its site to the custody and control of NASA if it is the selected site. All facilities need not be located at the same site. Existing facilities which may provide support for the program include Michoud Assembly Facility, New Orleans Parish, Louisiana; and Slidell Computer Center, St. Tammany Parish, Louisiana. NASA's preferred production location is the Yellow Creek site, and the preferred test location is the Stennis Space Center.

  8. Space Shuttle Main Engine real time stability analysis

    Science.gov (United States)

    Kuo, F. Y.

    1993-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  9. Hybrid organic-inorganic rotaxanes and molecular shuttles.

    Science.gov (United States)

    Lee, Chin-Fa; Leigh, David A; Pritchard, Robin G; Schultz, David; Teat, Simon J; Timco, Grigore A; Winpenny, Richard E P

    2009-03-19

    The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks, dense and extended organic-inorganic frameworks and coordination polymers. Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes and catenanes, and structures in which many inorganic clusters encircle polymer chains have been described. Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle': the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems. The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers-can influence, and potentially be influenced by, the organic portion of the molecule.

  10. Digital flight control software design requirements. [for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    The objective of the integrated digital flight control system is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effects by using an executive routine/function subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN and C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described. The specific estimation and control algorithms used in the various mission phases are shown. Attitude maneuver routines that interface with the DFCS are also described.

  11. Nonlinear rotordynamics analysis. [Space Shuttle Main Engine turbopumps

    Science.gov (United States)

    Noah, Sherif T.

    1991-01-01

    Effective analysis tools were developed for predicting the nonlinear rotordynamic behavior of the Space Shuttle Main Engine (SSME) turbopumps under steady and transient operating conditions. Using these methods, preliminary parametric studies were conducted on both generic and actual HPOTP (high pressure oxygen turbopump) models. In particular, a novel modified harmonic balance/alternating Fourier transform (HB/AFT) method was developed and used to conduct a preliminary study of the effects of fluid, bearing and seal forces on the unbalanced response of a multi-disk rotor in the presence of bearing clearances. The method makes it possible to determine periodic, sub-, super-synchronous and chaotic responses of a rotor system. The method also yields information about the stability of the obtained response, thus allowing bifurcation analyses. This provides a more effective capability for predicting the response under transient conditions by searching in proximity of resonance peaks. Preliminary results were also obtained for the nonlinear transient response of an actual HPOTP model using an efficient, newly developed numerical method based on convolution integration. Currently, the HB/AFT is being extended for determining the aperiodic response of nonlinear systems. Initial results show the method to be promising.

  12. To orbit and back again how the space shuttle flew in space

    CERN Document Server

    Sivolella, Davide

    2014-01-01

    The question may be simple, but the answer is not as easy to give. This book describes the structures and systems used each time the Shuttle was launched, and then follows an imaginary mission, explaining how those structures and systems were used in orbital operations and the return to Earth. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. Highly illustrated with many diagrams, photographs and technical drawings, To Orbit and Back Again • focuses on the engineering aspects of the Shuttle • describes the systems and subsystems in clear, non-technical terms • brings to the fore the design work behind the Space Shuttle and the mission itself.    .

  13. Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future

    Science.gov (United States)

    Cates, Grant R.

    2014-01-01

    The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.

  14. Space Shuttle Operations and Infrastructure: A Systems Analysis of Design Root Causes and Effects

    Science.gov (United States)

    McCleskey, Carey M.

    2005-01-01

    This NASA Technical Publication explores and documents the nature of Space Shuttle operations and its supporting infrastructure and addresses fundamental questions often asked of the Space Shuttle program why does it take so long to turnaround the Space Shuttle for flight and why does it cost so much? Further, the report provides an overview of the cause-and effect relationships between generic flight and ground system design characteristics and resulting operations by using actual cumulative maintenance task times as a relative measure of direct work content. In addition, this NASA TP provides an overview of how the Space Shuttle program's operational infrastructure extends and accumulates from these design characteristics. Finally, and most important, the report derives a set of generic needs from which designers can revolutionize space travel from the inside out by developing and maturing more operable and supportable systems.

  15. Observation of the exhaust plume from the space shuttle main engine using the Microwave Limb Sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2010-08-01

    Full Text Available A space shuttle launch deposits 700 t of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  16. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2011-01-01

    Full Text Available A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50%–65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  17. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  18. Assembling and supplying the ISS the space shuttle fulfills its mission

    CERN Document Server

    Shayler, David J

    2017-01-01

    The creation and utilization of the International Space Station (ISS) is a milestone in space exploration. But without the Space Shuttle, it would have remained an impossible dream. Assembling and Supplying the ISS is the story of how, between 1998 and 2011, the Shuttle became the platform which enabled the construction and continued operation of the primary scientific research facility in Earth orbit. Fulfilling an objective it had been designed to complete decades before, 37 Shuttle missions carried the majority of the hardware needed to build the ISS and then acted as a ferry and supply train for early resident crews to the station. Building upon the decades of development and experience described in the companion volume Linking the Space Shuttle and Space Stations: Early Docking Technologies from Concept to Implementation, this book explores • a purpose-built hardware processing facility • challenging spacewalking objectives • extensive robotic operations • undocking a unmanned orbiter The experie...

  19. Space Acquired Photo = Gemini, Skylab, Shuttle Large Format Camera: 1965 - 1984

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Space Acquired Photography includes imagery from the Shuttle Large Format Camera, Skylab, and Gemini missions. The Space Acquired archive contains...

  20. Analysis of gap heating due to stepped tiles in the shuttle thermal protection system

    Science.gov (United States)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Carlson, A. B.

    1983-01-01

    Analytical methods used to investigate entry gap heating in the Shuttle orbiter thermal protection system are described. Analytical results are given for a fuselage lower-surface location and a wing lower-surface location. These are locations where excessive gap heating occurred on the first flight of the Shuttle. The results of a study to determine the effectiveness of a half-height ceramic fiber gap filler in preventing hot-gas flow in the tile gaps are also given.

  1. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments

    OpenAIRE

    Nihed Draoui; Olivier Feron

    2011-01-01

    Hypoxia and oncogene expression both stimulate glycolytic metabolism in tumors, thereby leading to lactate production. However, lactate is more than merely a by-product of glycolysis: it can be used as a metabolic fuel by oxidative cancer cells. This phenomenon resembles processes that have been described for skeletal muscle and brain that involve what are known as cell-cell and intracellular lactate shuttles. Two control points regulate lactate shuttles: the lactate dehydrogenase (LDH)-depen...

  2. Integrated source and channel encoded digital communication system design study. [for space shuttles

    Science.gov (United States)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  3. Space shuttle orbiter trimmed center-of-gravity extension study. Volume 6: System design studies

    Science.gov (United States)

    Macconochie, I. O.

    1978-01-01

    System studies were made to determine the required changes in shuttle orbiter mass for various changes in aerodynamic shape. These changes are designed to extend the current shuttle orbiter trimmed c.g. envelope to accommodate a greater range of payloads. One of the apparently most viable changes for the amount of c.g. extension obtained involves the removal of the present wing/body fillet and the replacement of this structural element with a forward located fixed canard.

  4. STS-26 crew poses for group portrait on shuttle mockup middeck in Bldg 9A

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers pose on shuttle mockup middeck (port side) in the Shuttle Mockup and Integration Laboratory Bldg 9A. Clockwise from left foreground are Commander Frederick H. Hauck, Mission Specialist (MS) George D. Nelson, Pilot Richard O. Covey, MS John M. Lounge, and MS David C. Hilmers. Crewmembers are wearing flight coveralls (jump suits). Nelson stands on middeck ladder and Lounge sits in open side hatch. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  5. STS-26 Commander Hauck looks out window W8 on shuttle mockup aft flight deck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck looks up at overhead window W8 while on shuttle mockup aft flight deck in the Shuttle Mockup and Integration Laboratory Bldg 9A. Hauck rests his right arm between Onorbit Station control panel A7U and aft viewing window W10. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  6. STS-26 Pilot Covey looks up at window W7 on shuttle mockup aft flight deck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, leaning on Onorbit Station control panel, looks up at overhead window W7 on shuttle mockup aft flight deck in the Shuttle Mockup and Integration Laboratory Bldg 9A. Covey's left hand is positioned on Onorbit Station control panel A7U remote manipulator system (RMS) rotation hand control (RHC). Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  7. Introduction to the adhesive bonding session. [foam system for attaching thermal insulation on space shuttle

    Science.gov (United States)

    Mccarty, J. E.

    1972-01-01

    Space shuttle unique requirements call for the development of a specific adhesive system to reliable attach reusable surface insulation. A low density foam system has been developed that provides strain isolation from the support structure and remains structurally stable in space shuttle thermal environment. Surface preparation and its stabilization by an adhesive primer system are the most important factors in preventing corrosion from reducing the reliability and durability of the adhesive bonding component.

  8. Space Shuttle Main Engine control system. [hydraulic actuator with digital control

    Science.gov (United States)

    Seitz, P. F.; Searle, R. F.

    1973-01-01

    The Space Shuttle Main Engine is a reusable, high-performance rocket engine being developed by the Rocketdyne Div. of Rockwell International to satisfy the operational requirements of the Space Shuttle Orbiter Vehicle. The design incorporates a hydraulically actuated, closed-loop servosystem controlled and monitored by a programmable electronic digital controller. The controller accepts vehicle commands for the various engine operational phases, positions the appropriate valves, monitors the engine for the required performance precisions and conditions, and provides redundancy management.

  9. The Reconstruction and Failure Analysis of The Space Shuttle Columbia

    Science.gov (United States)

    Russell, Richard W.

    2010-01-01

    This viewgraph presentation describes a very detailed reconstruction plan and failure analysis of The Space Shuttle Columbia accident. The contents include: 1) STS-107 Timeline; 2) Foam Impact; 3) Recovery; 4) Reconstruction; 5) Reconstruction Plan; 6) Reconstruction Hanger; 7) Pathfinders; 8) Aluminum Pathfinder; 9) Early Analysis - Left MLG Door Area; 10) Emphasis Switched to Left Hand Wing Leading Edge; 11) Wing Leading Edge Subsystem (LESS); 12) 3D Reconstruction of Left WLE; 13) Left Wing Tile Table; 14) LESS Observations; 15) Left Hand Wing Debris Points to RCC 8/9 - Slumped Tile; 16) Reconstructed View of LC/P 9 tile with I/B Tile; 17) Reconstructed View of Lower C/P 9 Tile; 18) Carrier Panel 8 - Upper; 19) Left Hand Wing Debris Points to RCC 8/9 - Erosion and RCC with attach hole intact; 20) Erosion on Panel 8 Upper Outboard Rib; 21) RCC Panels 8 & 9 Erosion Features; 22) Slumping Source for Carrier Panel 9 Tile was Revealed; 23) Debris Indicated Highest Probability Initiation Site; 24) Left Hand Wing Debris Points to RCC 8/9- Metallic Deposits; 25) Relative Metallic Deposition on L/H Wing Materials; 26) Metallic Deposit Example, LH RCC 8; 27) High Level Questions; 28) Analysis Plan Challenges; 29) Analysis Techniques; 30) Analysis Approach; 31) RCC Panel 8 Erosion Features; 32) Radiographic Features; 33) Radiography WLE LH Panel 8; 34) LH RCC 8 Upper Apex; 35) LH RCC 8 - Deposit Feature: Thick Tear Shaped; 36) LH RCC 8 - Deposit Feature: Thick Globules; 37) LH RCC 8 - Deposit Feature: Spheroids; 38) LH RCC 8 - Deposit Feature: Uniform Deposit; 39) Significant Findings - Sampling All Other panels; 40) Proposed Breach Location and Plasma Flow; 41) Corroborating Information - RCC Panel Debris Locations; 42) Corroborating Information - LH OMS Pod Analysis; 43) Corroborating Information - Impact Testing; and 44) Overall Forensic Conclusions.

  10. Human interactions during Shuttle/Mir space missions

    Science.gov (United States)

    Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Weiss, Daniel S.; Gushin, Vadim; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.

    2001-03-01

    To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2 nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.

  11. Multiple latent viruses reactivate in astronauts during Space Shuttle missions.

    Science.gov (United States)

    Mehta, S K; Laudenslager, M L; Stowe, R P; Crucian, B E; Sams, C F; Pierson, D L

    2014-10-01

    Latent virus reactivation and diurnal salivary cortisol and dehydroepiandrosterone were measured prospectively in 17 astronauts (16 male and 1 female) before, during, and after short-duration (12-16 days) Space Shuttle missions. Blood, urine, and saliva samples were collected during each of these phases. Antiviral antibodies and viral load (DNA) were measured for Epstein-Barr virus (EBV), varicella-zoster virus (VZV), and cytomegalovirus (CMV). Three astronauts did not shed any virus in any of their samples collected before, during, or after flight. EBV was shed in the saliva in all of the remaining 14 astronauts during all 3 phases of flight. Seven of the 14 EBV-shedding subjects also shed VZV during and after the flight in their saliva samples, and 8 of 14 EBV-shedders also shed CMV in their urine samples before, during, and after flight. In 6 of 14 crewmembers, all 3 target viruses were shed during one or more flight phases. Both EBV and VZV DNA copies were elevated during the flight phase relative to preflight or post-flight levels. EBV DNA in peripheral blood was increased preflight relative to post-flight. Eighteen healthy controls were also included in the study. Approximately 2-5% of controls shed EBV while none shed VZV or CMV. Salivary cortisol measured preflight and during flight were elevated relative to post-flight. In contrast DHEA decreased during the flight phase relative to both preflight and post-flight. As a consequence, the molar ratio of the area under the diurnal curve of cortisol to DHEA with respect to ground (AUCg) increased significantly during flight. This ratio was unrelated to viral shedding. In summary, three herpes viruses can reactivate individually or in combination during spaceflight.

  12. Renal-Stone Risk Assessment During Space Shuttle Flights

    Science.gov (United States)

    Whitson, Peggy A.; Pietrzyk, Robert A.; Pak, Charles Y. C.

    1996-01-01

    The metabolic and environmental factors influencing renal stone formation before, during, and after Space Shuttle flights were assessed. We established the contributing roles of dietary factors in relationship to the urinary risk factors associated with renal stone formation. 24-hr urine samples were collected prior to, during space flight, and following landing. Urinary factors associated with renal stone formation were analyzed and the relative urinary supersaturation ratios of calcium oxalate, calcium phosphate (brushite), sodium urate, struvite and uric acid were calculated. Food and fluid consumption was recorded for a 48-hr period ending with the urine collection. Urinary composition changed during flight to favor the crystallization of stone-forming salts. Factors that contributed to increased potential for stone formation during space flight were significant reductions in urinary pH and increases in urinary calcium. Urinary output and citrate, a potent inhibitor of calcium-containing stones, were slightly reduced during space flight. Dietary intakes were significantly reduced for a number of variables, including fluid, energy, protein, potassium, phosphorus and magnesium. This is the first in-flight characterization of the renal stone forming potential in astronauts. With the examination of urinary components and nutritional factors, it was possible to determine the factors that contributed to increased risk or protected from risk. In spite of the protective components, the negative contributions to renal stone risk predominated and resulted in a urinary environment that favored the supersaturation of stone-forming salts. The importance of the hypercalciuria was noted since renal excretion was high relative to the intake.

  13. An Investigation on the Shuttle Trade Dynamics of a Small-Open-Economy

    Directory of Open Access Journals (Sweden)

    Cemal Atakan

    2008-12-01

    Full Text Available In this article we have tried to assess the possible relationships between shuttle trade and the expletory variables, export (f.o.b., import (c.i.f. and CPI based real effective US dollar exchange rate. We employed monthly data of Turkey covering the years from 1996:01 to 2006:12 and forecasted the parameters by Ordinary Least Square (OLS estimation method. In order to find out whether there is a linear relationship among these series; we have checked each series whether are integrated at the same order or not. According to the ADF unit root test results, we have found that all the variables are integrated of order one, I(1, but shuttle trade. Besides we detected a case of multicollinearity among some of the expletory variables. Therefore we used first order autoregression model of shuttle trade. We have derived that, previous month’s shuttle trade have positive impacts on the current level shuttle trade. We also used the same specification to indicate that the shuttle trade value increases in the months of fall and decreases in months of summer.

  14. Flight results of attitude matching between Space Shuttle and Inertial Upper Stage (IUS) navigation systems

    Science.gov (United States)

    Treder, Alfred J.; Meldahl, Keith L.

    The recorded histories of Shuttle/Orbiter attitude and Inertial Upper Stage (IUS) attitude have been analyzed for all joint flights of the IUS in the Orbiter. This database was studied to determine the behavior of relative alignment between the IUS and Shuttle navigation systems. It is found that the overall accuracy of physical alignment has a Shuttle Orbiter bias component less than 5 arcmin/axis and a short-term stability upper bound of 0.5 arcmin/axis, both at 1 sigma. Summaries of the experienced physical and inertial alginment offsets are shown in this paper, together with alignment variation data, illustrated with some flight histories. Also included is a table of candidate values for some error source groups in an Orbiter/IUS attitude errror model. Experience indicates that the Shuttle is much more accurate and stable as an orbiting launch platform than has so far been advertised. This information will be valuable for future Shuttle payloads, especially those (such as the Aeroassisted Flight Experiment) which carry their own inertial navigation systems, and which could update or initialize their attitude determination systems using the Shuttle as the reference.

  15. Kinetic simulation of malate-aspartate and citrate-pyruvate shuttles in association with Krebs cycle.

    Science.gov (United States)

    Korla, Kalyani; Vadlakonda, Lakshmipathi; Mitra, Chanchal K

    2015-01-01

    In the present work, we have kinetically simulated two mitochondrial shuttles, malate-aspartate shuttle (used for transferring reducing equivalents) and citrate-pyruvate shuttle (used for transferring carbon skeletons). However, the functions of these shuttles are not limited to the points mentioned above, and they can be used in different arrangements to meet different cellular requirements. Both the shuttles are intricately associated with Krebs cycle through the metabolites involved. The study of this system of shuttles and Krebs cycle explores the response of the system in different metabolic environments. Here, we have simulated these subsets individually and then combined them to study the interactions among them and to bring out the dynamics of these pathways in focus. Four antiports and a pyruvate pump were modelled along with the metabolic reactions on both sides of the inner mitochondrial membrane. Michaelis-Menten approach was extended for deriving rate equations of every component of the system. Kinetic simulation was carried out using ordinary differential equation solver in GNU Octave. It was observed that all the components attained steady state, sooner or later, depending on the system conditions. Progress curves and phase plots were plotted to understand the steady state behaviour of the metabolites involved. A comparative analysis between experimental and simulated data show fair agreement thus validating the usefulness and applicability of the model.

  16. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    Science.gov (United States)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be

  17. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    Science.gov (United States)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they

  18. Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of Shuttle and Shuttle derived vehicles) engineering manual

    Science.gov (United States)

    Lyons, J. T.

    1993-01-01

    The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing

  19. Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of Shuttle and Shuttle derived vehicles) engineering manual

    Science.gov (United States)

    Lyons, J. T.

    1993-04-01

    The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing

  20. A procedure and program to calculate shuttle mask advantage

    Science.gov (United States)

    Balasinski, A.; Cetin, J.; Kahng, A.; Xu, X.

    2006-10-01

    A well-known recipe for reducing mask cost component in product development is to place non-redundant elements of layout databases related to multiple products on one reticle plate [1,2]. Such reticles are known as multi-product, multi-layer, or, in general, multi-IP masks. The composition of the mask set should minimize not only the layout placement cost, but also the cost of the manufacturing process, design flow setup, and product design and introduction to market. An important factor is the quality check which should be expeditious and enable thorough visual verification to avoid costly modifications once the data is transferred to the mask shop. In this work, in order to enable the layer placement and quality check procedure, we proposed an algorithm where mask layers are first lined up according to the price and field tone [3]. Then, depending on the product die size, expected fab throughput, and scribeline requirements, the subsequent product layers are placed on the masks with different grades. The actual reduction of this concept to practice allowed us to understand the tradeoffs between the automation of layer placement and setup related constraints. For example, the limited options of the numbers of layer per plate dictated by the die size and other design feedback, made us consider layer pairing based not only on the final price of the mask set, but also on the cost of mask design and fab-friendliness. We showed that it may be advantageous to introduce manual layer pairing to ensure that, e.g., all interconnect layers would be placed on the same plate, allowing for easy and simultaneous design fixes. Another enhancement was to allow some flexibility in mixing and matching of the layers such that non-critical ones requiring low mask grade would be placed in a less restrictive way, to reduce the count of orphan layers. In summary, we created a program to automatically propose and visualize shuttle mask architecture for design verification, with

  1. FTIR instrumentation to monitor vapors from Shuttle tile waterproofing materials

    Science.gov (United States)

    Mattson, C. B.; Schwindt, C. J.

    1995-11-01

    The Space Shuttle Thermal Protection System (TPS) tiles and blankets are waterproofed using DimethylEthoxySilane (DMEX) in the Orbiter Processing Facilities (OPF). DMES has a Threshold Limit Value (TLV) for exposure of personnel to vapor concentration in air of 0.5 ppm. The OPF high bay cannot be opened for normal work after a waterproofing operation until the DMES concentration is verified by measurement to be below the TLV. On several occasions the high bay has been kept closed for up to 8 hours following waterproofing operations due to high DMES measurements. In addition, the Miran 203 and Miran 1 BX infrared analyzers calibrated at different wavelengths gave different readings under the same conditions. There was reason to believe that some of the high DMES concentration readings were caused by interference form water and ethanol vapors. The Toxic Vapor Detection Laboratory (TVDL) was asked to test the existing DMES instruments and identify the best qualified instrument. In addition the TVDL was requested to develop instrumentation to ensure the OPF high bay could be opened safely as soon as possible after a waterproofing operation. A Fourier Transform Infrared (FTIR) spectrophotometer instrument developed for an earlier project was reprogrammed to measure DMES vapor along with ethanol, water, and several common solvent vapors. The FTIR was then used to perform a series of laboratory and field tests to evaluate the performance of the single wavelength IR instruments in use. The results demonstrated that the single wavelength IR instruments did respond to ethanol and water vapors, more or less depending on the analytical IR wavelength selected. The FTIR was able to separate the responses to DMES, water and ethanol, and give consistent readings for the DMES vapor concentration. The FTIR was then deployed to the OPF to monitor real waterproofing operations. The FTIR was also used to measure the time for DMES to evaporate from TPS tile under a range of humidity

  2. Treatment of glioblastoma multiforme cells with temozolomide-BioShuttle ligated by the inverse Diels-Alder ligation chemistry

    Directory of Open Access Journals (Sweden)

    Klaus Braun

    2009-01-01

    Full Text Available Klaus Braun1, Manfred Wiessler1, Volker Ehemann2, Ruediger Pipkorn3, Herbert Spring4, Juergen Debus5, Bernd Didinger5, Mario Koch3, Gabriele Muller6, Waldemar Waldeck61German Cancer Research Center, Dept of Imaging and Radiooncology, Heidelberg, Germany; 2University of Heidelberg, Institute of Pathology, Heidelberg, Germany; 3German Cancer Research Center, Central Peptide Synthesis Unit, Heidelberg, Germany; 4German Cancer Research Center, Dept of Structural Analysis of Gene Structure and Function, Heidelberg, Germany; 5University of Heidelberg, Dept of Radiation Oncology, Heidelberg, Germany; 6German Cancer Research Center,Division of Biophysics of Macromolecules, Heidelberg, GermanyAbstract: Recurrent glioblastoma multiforme (GBM, insensitive against most therapeutic interventions, has low response and survival rates. Temozolomide (TMZ was approved for second-line therapy of recurrent anaplastic astrocytoma. However, TMZ therapy in GBM patients reveals properties such as reduced tolerability and inauspicious hemogram. The solution addressed here concerning GBM therapy consolidates and uses the potential of organic and peptide chemistry with molecular medicine. We enhanced the pharmacologic potency with simultaneous reduction of unwanted adverse reactions of the highly efficient chemotherapeutic TMZ. The TMZ connection to transporter molecules (TMZ-BioShuttle was investigated, resulting in a much higher pharmacological effect in glioma cell lines and also with reduced dose rate. From this result we can conclude that a suitable chemistry could realize the ligation of pharmacologically active, but sensitive and highly unstable pharmaceutical ingredients without functional deprivation. The TMZ-BioShuttle dramatically enhanced the potential of TMZ for the treatment of brain tumors and is an attractive drug for combination chemotherapy.Keywords: drug delivery, carrier molecules, facilitated transport, glioblastoma multiforme, temozolomide

  3. Applying 3D-FRAP microscopy to analyse gap junction-dependent shuttling of small antisense RNAs between cardiomyocytes.

    Science.gov (United States)

    Lemcke, Heiko; Peukert, Janine; Voronina, Natalia; Skorska, Anna; Steinhoff, Gustav; David, Robert

    2016-09-01

    Small antisense RNAs like miRNA and siRNA are of crucial importance in cardiac physiology, pathology and, moreover, can be applied as therapeutic agents for the treatment of cardiovascular diseases. Identification of novel strategies for miRNA/siRNA therapy requires a comprehensive understanding of the underlying mechanisms. Emerging data suggest that small RNAs are transferred between cells via gap junctions and provoke gene regulatory effects in the recipient cell. To elucidate the role of miRNA/siRNA as signalling molecules, suitable tools are required that will allow the analysis of these small RNAs at the cellular level. In the present study, we applied 3 dimensional fluorescence recovery after photo bleaching microscopy (3D-FRAP) to visualise and quantify the gap junctional exchange of small RNAs between neonatal cardiomyocytes in real time. Cardiomyocytes were transfected with labelled miRNA and subjected to FRAP microscopy. Interestingly, we observed recovery rates of 21% already after 13min, indicating strong intercellular shuttling of miRNA, which was significantly reduced when connexin43 was knocked down. Flow cytometry analysis confirmed our FRAP results. Furthermore, using an EGFP/siRNA reporter construct we demonstrated that the intercellular transfer does not affect proper functioning of small RNAs, leading to marker gene silencing in the recipient cell. Our results show that 3D-FRAP microscopy is a straightforward, non-invasive live cell imaging technique to evaluate the GJ-dependent shuttling of small RNAs with high spatio-temporal resolution. Moreover, the data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation where small RNAs act as signalling molecules within the intercellular network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    Science.gov (United States)

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

  5. Space Shuttle Rudder Speed Brake Actuator-A Case Study Probabilistic Fatigue Life and Reliability Analysis

    Science.gov (United States)

    Oswald, Fred B.; Savage, Michael; Zaretsky, Erwin V.

    2015-01-01

    The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch. In order to minimize risk of losing another Space Shuttle, a probabilistic life and reliability analysis was conducted for the Space Shuttle rudder/speed brake actuators to determine the number of flights the actuators could sustain. A life and reliability assessment of the actuator gears was performed in two stages: a contact stress fatigue model and a gear tooth bending fatigue model. For the contact stress analysis, the Lundberg-Palmgren bearing life theory was expanded to include gear-surface pitting for the actuator as a system. The mission spectrum of the Space Shuttle rudder/speed brake actuator was combined into equivalent effective hinge moment loads including an actuator input preload for the contact stress fatigue and tooth bending fatigue models. Gear system reliabilities are reported for both models and their combination. Reliability of the actuator bearings was analyzed separately, based on data provided by the actuator manufacturer. As a result of the analysis, the reliability of one half of a single actuator was calculated to be 98.6 percent for 12 flights. Accordingly, each actuator was subsequently limited to 12 flights before removal from service in the Space Shuttle.

  6. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    Energy Technology Data Exchange (ETDEWEB)

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed

  7. STS 131 Return Samples: Assessment of Air Quality Aboard the Shuttle (STS-131) and International Space Station (19A)

    Science.gov (United States)

    James, John T.

    2010-01-01

    The toxicological assessments of 1 grab sample canister (GSC) from the Shuttle are reported in Table 1. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the Shuttle GSC were 100%, 93%, and 101%, respectively. Based on the historical experience using end-of-mission samples, the Shuttle atmosphere was acceptable for human respiration.

  8. STS 130 Return Samples: Assessment of Air Quality Aboard the Shuttle (STS-130) and International Space Station (20A)

    Science.gov (United States)

    James, John T.

    2010-01-01

    The toxicological assessments of 3 grab sample canisters (GSCs) from the Shuttle are reported in Table 1. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates ( 13C-acetone, fluorobenzene, and chlorobenzene) from the 3 Shuttle GSCs averaged 96, 90, and 85 %, respectively. Based on the end-of-mission sample, the Shuttle atmosphere was acceptable for human respiration.

  9. Griffin Lifts Off at NASA With Calls for Speeding Shuttle Replacement, Reopening Hubble Decision

    Science.gov (United States)

    Morring, Frank, Jr.

    2005-01-01

    Michael D. Griffin launched his tenure as NASA's 11th administrator on a fast track, using his "emergency" confiimation by the U.S. Senate to plug himself into space shuttle return-to-flight decision-making and urging faster development of the shuttle replacement. He also deftly sidestepped the treacherous issue of letting the aging Hubble Space Telescope die that was left behind by former Administrator Sean O'Keefe. Griffin told the Senate Commerce, Science and Transportation Committee that he would take another look at a shuttle mission to service the telescope, but not until the redesigned shuttle system makes a couple of test flights. Griffin made clear at his confirmation hearing Apr. 12 that he has long supported the ideas embodied in President Bush s push to move human exploration out of low Earth orbit, while finishing the International Space Station and retiring the space shuttle as soon as possible. And he showed right out of the blocks that his technical training and management background should serve him well in implementing Bush's directives.

  10. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  11. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work

    Directory of Open Access Journals (Sweden)

    Daniel A Kane

    2014-11-01

    Full Text Available Lactate, the conjugate base of lactic acid occurring in aqueous biological fluids, has been derided as a dead-end waste product of anaerobic metabolism. Catalyzed by the near-equilibrium enzyme lactate dehydrogenase (LDH, the reduction of pyruvate to lactate is thought to serve to regenerate the NAD+ necessary for continued glycolytic flux. Reaction kinetics for LDH imply that lactate oxidation is rarely favored in the tissues of its own production. However, a substantial body of research directly contradicts any notion that LDH invariably operates unidirectionally in vivo. In the current Perspective, a model is forwarded in which the continuous formation and oxidation of lactate serves as a mitochondrial electron shuttle, whereby lactate generated in the cytosol of the cell is oxidized at the mitochondria of the same cell. From this perspective, an intracellular lactate shuttle operates much like the malate-aspartate shuttle; it is also proposed that the two shuttles are necessarily interconnected. Among the requisite features of such a model, significant compartmentalization of LDH, much like the creatine kinase of the PCr shuttle, would facilitate net cellular lactate oxidation under a variety of conditions.

  12. Accumulated oxygen deficit and shuttle run performance in physically active men and women.

    Science.gov (United States)

    Ramsbottom, R; Nevill, M E; Nevill, A M; Hazeldine, R

    1997-04-01

    The aim of this study was to establish the validity of using shuttle run performance over 20 m to predict accumulated oxygen deficit. A new high-intensity shuttle run test (HIST) was devised, during which subjects ran to exhaustion at a speed equivalent to 120% of their performance attained during a progressive shuttle run test. The reliability of the new test was examined and found to be acceptable for 18 subjects who performed the test twice on separate days (r = 0.84, P sprint- and eight endurance-trained athletes at 120% of their respective progressive shuttle run performances (615 +/- 111 vs 273 +/- 84 m, P < 0.01, study II). The strongest predictor of accumulated oxygen deficit for 27 subjects was found to be the geometric mean of the performances on the new test and on the progressive shuttle run test (r = 0.74, study III). The regression equation for this relationship was then used to estimate the accumulated oxygen deficit for a second group of 16 subjects (study IV). The correlation between the estimated and measured accumulated oxygen deficits was significant (r = 0.79, P < 0.01). The results from studies III and IV were therefore combined with the data from six new subjects to give a regression equation for predictive purposes based on 49 subjects.

  13. Steering errors and movement time while driving an underground coal mine shuttle car in virtual reality

    Energy Technology Data Exchange (ETDEWEB)

    Zupanc, C.; Burgress-Limerick, R.; Wallis, G. [University of Queensland, Qld. (Australia)

    2005-07-01

    A known incompatible control-response relationship exists when driving an underground coal mine shuttle car. When the shuttle car is travelling to the conveyor belt boot end the steering arrangement is compatible, however, when it is driven towards the face the control-response relationship is incompatible. Increased error rates and increased learning time are associated with such incompatibilities in general technical systems. A virtual reality simulation of a situation analogous to an underground coal mine shuttle car was used to investigate performance characteristics under three different conditions; always compatible; always incompatible; and an alternating conditions corresponding to current shuttle car design. The primary task was to drive down the middle of a straight 'underground mine road' and avoid a simulated 'miner'. Participants in the alternating and incompatible conditions made more steering direction errors than those in the compatible conditions. Participants in the incompatible condition improved their performance over the 16 trials, while those in the alternating condition did not. Participants in the alternating condition made fewer errors in compatible trials than in incompatible trails, and took longer to steer in the correct direction around the miner in the incompatible trials. The results demonstrate that the control-response incompatibility inherent in current shuttle car designs has potential to increase injury risk. Further research is required to determine the magnitude of the increased risk for experienced drivers. 12 refs., 4 figs., 1 photo.

  14. 20 plus Years of Computational Fluid Dynamics for the Space Shuttle

    Science.gov (United States)

    Gomez, Reynaldo J., III

    2011-01-01

    This slide presentation reviews the use of computational fluid dynamics in performing analysis of the space shuttle with particular reference to the return to flight analysis and other shuttle problems. Slides show a comparison of pressure coefficient with the shuttle ascent configuration between the wind tunnel test and the computed values. the evolution of the grid system for the space shuttle launch vehicle (SSLv) from the early 80's to one in 2004, the grid configuration of the bipod ramp redesign from the original design to the current configuration, charts with the computations showing solid rocket booster surface pressures from wind tunnel data, calculated over two grid systems (i.e., the original 14 grid system, and the enhanced 113 grid system), and the computed flight orbiter wing loads are compared with strain gage data on STS-50 during flight. The loss of STS-107 initiated an unprecedented review of all external environments. The current SSLV grid system of 600+ grids, 1.8 Million surface points and 95+ million volume points is shown. The inflight entry analyses is shown, and the use of Overset CFD as a key part to many external tank redesign and debris assessments is discussed. The work that still remains to be accomplished for future shuttle flights is discussed.

  15. Health monitoring of rocket engines using image processing

    Science.gov (United States)

    Disimile, Peter J.; Shoe, Bridget; Toy, Norman

    1991-07-01

    Analysis of spectral and video data for anomalous events occurring in the exhaust plume of the Space Shuttle Main Engine (SSME) has shown that the improved time resolution of video tape increases the detection rate of anomalies in the visual region. Preliminary developments and applications of image processing techniques are used to extract information from video data of the SSME exhaust plume. Images have been enhanced to show the exhaust plume shock structure and for the isolation of an anomalous event.

  16. Doppler radiation sensing of Shuttle angle of attack and TAS during entry

    Science.gov (United States)

    Foale, C. M.

    Space Shuttle true airspeed, angle of attack, and sideslip angle are currently derived from inertial guidance information. A new method is proposed which offers a potential improvement in Shuttle safety during entry. Angle of attack, sideslip angle and true airspeed could be measured directly at heights from 120 km down to 20 km by Doppler sensing three independent true airspeeds along the Shuttle body axes. Two types of Doppler measurement sensors, employing either passive detection of atmospheric radiation or coherent detection of scattered laser light are discussed. The proposed technique is essentially solid-state and robust, and is well suited for use in future small hypersonic vehicles that require flight control in the Upper Atmosphere of the earth or in probes destined for the other planets.

  17. Legacy of the Space Shuttle from an Aerodynamic and Aerothermodynamic Perspective

    Science.gov (United States)

    Martin, Fred W.

    2011-01-01

    The development of the Space Shuttle Orbiter thermal protection system heating environment is described from a design stand point that began in the early 1970s. The desire for a light weight, reusable heat shield required the development of new technology, relative to previous manned spacecraft, and a systems approach to the design of the vehicle, entry guidance, and thermal protection system. Several unanticipated issues had to be resolved in both the entry and ascent phases of flight, which are discussed at a high level. During the life of the Program, significant improvements in computing power and numerical methods have been applied to Space Shuttle aerodynamic and aerothermodynamic issues, with the Shuttle Program often being the motivation, and or sponsor of the analysis development.

  18. Twin shuttle boom type ship loader; Twin shattle bumushiki ship roda

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    This ship loader was delivered to Housing Supply Corp. of Yamaguchi prefecture for loading 2,000m{sup 3} class barges with soil (less than 300mm in grain size) generated in Atagoyama regional development project to supply such soil to the off- shore transfer project of Iwakuni military base. Main specifications: (1) Conveyance capacity: 3,650t/h maximum, (2) Shuttle conveyer belt width: 1,600mm, (3) Belt speed: 160m/min, (4) Horizontal shuttle conveyer unit length: 25.5m, (5) Belt conveyer unit: 2 units, (6) Traveling distance: 50m. Features: (1) High shipment efficiency through continuous shipment of conveyed soil to right and left barges by 2 shuttle conveyer units, (2) Efficient labor-saving management work through the accumulation and tabulation of shipped soil based on automatic measurement of shipped soil with an electro-optical soil inspection system. (translated by NEDO)

  19. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    Science.gov (United States)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  20. Repair work begins on the external tank of Space Shuttle Discovery after damage from hail

    Science.gov (United States)

    1999-01-01

    United Space Alliance technician Don Pataky repairs one of the hail-created divots in the foam insulation on the external tank of Space Shuttle Discovery. The Shuttle was rolled back from Pad 39B to the Vehicle Assemby Building for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  1. Repair work continues on the external tank of Space Shuttle Discovery after damage from hail

    Science.gov (United States)

    1999-01-01

    In the Vehicle Assembly Building (VAB), United Space Alliance technician Robert Williams sands the repaired areas near the top of Space Shuttle Discovery's external tank. Repairs were required for damage caused by hail during recent storms. Because access to all of the damaged areas was not possible at the pad, the Shuttle was rolled back from Pad 39B to the VAB. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  2. Analysis of In-Route Wireless Charging for the Shuttle System at Zion National Park

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Prohaska, Robert; Konan, Arnaud; Ragatz, Adam; Markel, Tony; Kelly, Ken

    2016-12-08

    System right-sizing is critical to implementation of wireless power transfer (WPT) for electric vehicles. This study will analyze potential WPT scenarios for the electrification of shuttle buses at Zion National Park utilizing a modelling tool developed by the National Renewable Energy Laboratory called WPTSim. This tool uses second-by-second speed, location, and road grade data from the conventional shuttles in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of charging locations. The outcome of this work is an analysis of the design tradeoffs for the electrification of the shuttle fleet with wireless charging versus conventional overnight charging.

  3. Analysis of In-Route Wireless Charging for the Shuttle System at Zion National Park

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Prohaska, Robert; Konan, Arnaud; Ragatz, Adam; Markel, Tony; Kelly, Ken

    2016-10-05

    System right-sizing is critical to implementation of wireless power transfer (WPT) for electric vehicles (EVs). This study will analyze potential WPT scenarios for the electrification of shuttle buses at Zion National Park utilizing a modelling tool developed by NREL called WPTSim. This tool uses second-by-second speed, location, and road grade data from the conventional shuttles in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of charging locations. The outcome of this work is an analysis of the design tradeoffs for the electrification of the shuttle fleet with wireless charging versus conventional overnight charging.

  4. Repair work begins on the external tank of Space Shuttle Discovery after damage from hail

    Science.gov (United States)

    1999-01-01

    Standing inside a protective tent around the external tank of Space Shuttle Discovery in the Vehicle Assembly Building (VAB), United Space Alliance technician Don Pataky repairs divots caused by hail storms. The Shuttle was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS- 96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- shared experiment.

  5. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    Science.gov (United States)

    Richardson, Thomas J.; Ross, Philip N.

    1999-01-01

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85.degree. C. or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1.times.10.sup.-8 cm.sup.2 /second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  6. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  7. A document describing shuttle considerations for the design of large space structures

    Science.gov (United States)

    Roebuck, J. A., Jr.

    1981-01-01

    A Shuttle user guide document to aid designers and analysis associated with large space structures projects is described. The format and contents are a compromise designed to satisfy the needs of several levels of users. Special features include checklists and references to source documents as a convenience to very knowledgeable readers. In addition, general, introductory and explanatory text, and art work are included for the reader less familiar with shuttle systems. Also, there are a subject index, glossary, list of acronyms, and many cross references. Throughout the document, there are suggested implications or references to the importance of the included orbiter interfaces material as it pertains to designing and planning large space structures projects. The content of the document is outlined. Shuttle payload accommodations and constraints, connections for orbiter construction fixtures, packaging, and construction space eometry are addressed.

  8. Comparison of predicted and experimental real-gas pressure distributions on space shuttle orbiter nose for shuttle entry air data system

    Science.gov (United States)

    Shinn, J. L.

    1980-01-01

    An experimental investigation of inviscid real-gas effects on the pressure distribution along the Space Shuttle Orbiter nose center line up to an angle of attack of 32 deg was performed in support of the Shuttle Entry Air Data System (SEADS). Free-stream velocities from 4.8 to 6.6 kn/s were generated at hypersonic conditions with helium, air, and CO2, resulting in normal-shock density ratios from 3.7 to 18.4. The experimental results for pressure distribution agreed closely with numerical results. Modified Newtonian theory deviates from both experiment and the numerical results as angle of attack increases or shock density ratio decreases. An evaluation of the use of modified Newtonian theory for predicting SEADS pressure distributions in actual flight conditions was made through comparison with numerical predictions.

  9. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    Science.gov (United States)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  10. Space Shuttle Avionics: a Redundant IMU On-Board Checkout and Redundancy Management System

    Science.gov (United States)

    Mckern, R. A.; Brown, D. G.; Dove, D. W.; Gilmore, J. P.; Landey, M. E.; Musoff, H.; Amand, J. S.; Vincent, K. T., Jr.

    1972-01-01

    A failure detection and isolation philosophy applicable to multiple off-the-shelf gimbaled IMUs are discussed. The equations developed are implemented and evaluated with actual shuttle trajectory simulations. The results of these simulations are presented for both powered and unpowered flight phases and at operational levels of four, three, and two IMUs. A multiple system checkout philosophy is developed and simulation results presented. The final task develops a laboratory test plan and defines the hardware and software requirements to implement an actual multiple system and evaluate the interim study results for space shuttle application.

  11. Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Doubleday, Kate; Markel, Tony

    2016-06-29

    System right-sizing is critical to the implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study evaluates potential system designs for an on-demand employee shuttle by determining the required battery size based on the rated power at a variable number of charging locations. Vehicle power and state of charge are simulated over the drive cycle, based on position and velocity data at every second from the existing shuttle. Adding just one WPT location can halve the battery size. Many configurations are capable of self-sustaining with WPT, while others benefit from supplemental stationary charging.

  12. Some results from 1/8-scale Shuttle model vibration studies

    Science.gov (United States)

    Pinson, L. D.; Leadbetter, S. A.

    1978-01-01

    Highlights of experimental and analytical vibration studies of a 1/8-scale structural dynamic model of the Space Shuttle are presented. The Space Shuttle is a launch vehicle with elements assembled in an asymmetric manner. Responses of the assembled vehicle are characterized by directional coupling and high modal density at low frequencies. Effects of distortion of structure near element interfaces are shown to be significant and predictable with highly detailed mathematical models. Acquisition of modal data by single-point random excitation is shown to be viable for these complex structures. Element studies reveal large liquid-structure interactions and a wide range of structural damping.

  13. Observations of the Earth in polarized light from the US Space Shuttle

    Science.gov (United States)

    Roger, Jean-Claude; Santer, Richard; Herman, M.; Deuze, J.-L.; Whitehead, V. C.

    1991-01-01

    During the four American Space Shuttle missions of year 1985, the crewmembers took pictures of the Earth in polarized light. Different problems were encountered in the quantitative use of the data: induced polarization by the shuttle window, lack of calibration correction of the window polarization and enveloped in flight calibration methods. The analysis of the selected data first confirmed the previous observation over snow and sand. A low polarization on these surfaces was observed. On the other hand, the measurements show the potentiability of the polarization for agricultural inventory. Contamination of the atmosphere is well characterized.

  14. EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement

    Science.gov (United States)

    Chullen, Cinda; West, William W.

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than

  15. Design of the software development and verification system (SWDVS) for shuttle NASA study task 35

    Science.gov (United States)

    Drane, L. W.; Mccoy, B. J.; Silver, L. W.

    1973-01-01

    An overview of the Software Development and Verification System (SWDVS) for the space shuttle is presented. The design considerations, goals, assumptions, and major features of the design are examined. A scenario that shows three persons involved in flight software development using the SWDVS in response to a program change request is developed. The SWDVS is described from the standpoint of different groups of people with different responsibilities in the shuttle program to show the functional requirements that influenced the SWDVS design. The software elements of the SWDVS that satisfy the requirements of the different groups are identified.

  16. Folic acid content in thermostabilized and freeze-dried space shuttle foods

    Science.gov (United States)

    Lane, H. W.; Nillen, J. L.; Kloeris, V. L.

    1995-01-01

    This study was designed to determine whether freeze-dried and thermostabilized foods on a space shuttle contain adequate folate and to investigate any effects of freeze-drying on folacin. Frozen vegetables were analyzed after three states of processing: thawed; cooked; and rehydrated. Thermostabilized items were analyzed as supplied with no further processing. Measurable folate decreased in some freeze-dried vegetables and increased in others. Folacin content of thermostabilized food items was comparable with published values. We concluded that although the folacin content of some freeze-dried foods was low, adequate folate is available from the shuttle menu to meet RDA guidelines.

  17. Proceedings of the Shuttle-based Cometary Science Workshop: a Forum for the Presentation and Discussion of Possible Shuttle-based Experiments and Observations of Comets and Cometary-like Materials

    Science.gov (United States)

    Gary, G. A. (Editor); Clifton, K. S. (Editor)

    1976-01-01

    The prospects of cometary research from the space shuttle are examined. Topics include: the shuttle as research environment; on-board experiments at zero-gravity and release of gas and dust to simulate cometary phenomena; and cometary observations from space.

  18. Terahertz Tools Advance Imaging for Security, Industry

    Science.gov (United States)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  19. NASA's space shuttle Atlantis and its 747 carrier taxied on the Edwards Air Force Base flightline as

    Science.gov (United States)

    2001-01-01

    NASA's space shuttle Atlantis and its 747 carrier taxied on the Edwards Air Force Base flightline as the unusual combination left for Kennedy Space Center, Florida, on March 1, 2001. Atlantis and the shuttle Columbia were both airborne on the same day as they migrated from California to Florida. Columbia underwent refurbishing at nearby Palmdale, California.

  20. 41 CFR 301-10.420 - When may I use a taxi, shuttle service or other courtesy transportation?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false When may I use a taxi... Courtesy Transportation § 301-10.420 When may I use a taxi, shuttle service or other courtesy... of official travel are reimbursable for the usual fare plus tip for use of a taxi, shuttle service or...

  1. STS 119 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-119) and International Space Station (15A)

    Science.gov (United States)

    James, John T.

    2009-01-01

    The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the 2 GSCs averaged 106, 106, and 101 %,respectively. Based on the end-of-mission sample, the Shuttle atmosphere was acceptable for human respiration.

  2. STS 120 Return Samples: Assessment of Air Quality Aboard the Shuttle (STS-120) and International Space Station (10A)

    Science.gov (United States)

    James, John T.

    2008-01-01

    The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. Formaldehyde badges were not used. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the 2 GSCs averaged 111, 82, and 78%, respectively. The Shuttle atmosphere was acceptable for human respiration.

  3. Evaluation of infrasound signals from the shuttle Atlantis using a large seismic network.

    Science.gov (United States)

    de Groot-Hedlin, Catherine D; Hedlin, Michael A H; Walker, Kristoffer T; Drob, Douglas P; Zumberge, Mark A

    2008-09-01

    Inclement weather in Florida forced the space shuttle "Atlantis" to land at Edwards Air Force Base in southern California on June 22, 2007, passing near three infrasound stations and several hundred seismic stations in northern Mexico, southern California, and Nevada. The high signal-to-noise ratio, broad receiver coverage, and Atlantis' positional information allow for the testing of infrasound propagation modeling capabilities through the atmosphere to regional distances. Shadow zones and arrival times are predicted by tracing rays that are launched at right angles to the conical shock front surrounding the shuttle through a standard climatological model as well as a global ground to space model. The predictions and observations compare favorably over much of the study area for both atmospheric specifications. To the east of the shuttle trajectory, there were no detections beyond the primary acoustic carpet. Infrasound energy was detected hundreds of kilometers to the west and northwest (NW) of the shuttle trajectory, consistent with the predictions of ducting due to the westward summer-time stratospheric jet. Both atmospheric models predict alternating regions of high and low ensonifications to the NW. However, infrasound energy was detected tens of kilometers beyond the predicted zones of ensonification, possibly due to uncertainties in stratospheric wind speeds.

  4. Space Shuttle Endeavour flares for landing at Edwards Air Force Base, California to conclude STS-100

    Science.gov (United States)

    2001-01-01

    At the conclusion of Space Shuttle Mission STS-100, Endeavour landed at Edwards Air Force Base, California, May 1, 2001. There the Orbiter would be readied by technicians at NASA's Dryden Flight Research Center for return to Kennedy Space Center, Florida, atop a 747 carrier aircraft.

  5. Landing of STS-59 Shuttle Endeavour at Edwards Air Force Base

    Science.gov (United States)

    1994-01-01

    The main landing gear of the Space Shuttle Endeavour touches down at Edwards Air Force Base to complete the 11 day STS-59/SRL-1 mission. Landing occured at 9:54 a.m., April 20, 1994. Mission duration was 11 days, 5 hours, 49 minutes.

  6. Quantum theory of shuttling instability in a movable quantum dot array

    DEFF Research Database (Denmark)

    Donarini, Andrea; Novotny, Tomas; Jauho, Antti-Pekka

    2004-01-01

    We study the shuttling instability in an array of three quantum dots the central one of which is movable. We extend the results by Armour and MacKinnon on this problem to a broader parameter regime. The results obtained by an efficient numerical method are interpreted directly using the Wigner...

  7. Multiple payload Shuttle flights from WTR - Some operational and orbital mechanics considerations

    Science.gov (United States)

    Edgecombe, D. S.; Fischer, N. H.; Rea, F. G.

    1981-01-01

    It is pointed out that if the difference between the nodal crossing time of the Shuttle parking orbit and the final orbit of a spacecraft is more than about half an hour, current design spacecraft may have to carry a prohibitively large propulsion system to meet its requirements. Various solutions to this problem are discussed.

  8. Effects of modifications to the space shuttle entry guidance and control systems

    Science.gov (United States)

    Powell, R. W.; Stone, H. W.; Rowell, L. F.

    1976-01-01

    A nonlinear six degree of freedom entry simulation study was conducted to identify space shuttle guidance and control system software modifications which reduce the control system sensitivity to the guidance system sampling frequency. Several modifications which eliminated the control system sensitivity and associated control limit cycling were examined. The result of the modifications was a reduction in required reaction control system fuel.

  9. Design of H2-O2 space shuttle APU. Volume 1: APU design

    Science.gov (United States)

    Harris, E.

    1974-01-01

    The H2-O2 space shuttle auxiliary power unit (APU) program is a NASA-Lewis effort aimed at hardware demonstration of the technology required for potential use on the space shuttle. It has been shown that a hydrogen-oxygen power unit (APU) system is an attractive alternate to the space shuttle baseline hydrazine APU system for minimum weight. It has the capability for meeting many of the heat sink requirements for the space shuttle vehicle, thereby reducing the amount of expendable evaporants required for cooling in the baseline APU. Volume 1 of this report covers preliminary design and analysis of the current reference system and detail design of the test version of this reference system. Combustor test results are also included. Volume 2 contains the results of the analysis of an initial version of the reference system and the computer printouts of system performance. The APU consists of subsystems for propellant feed and conditioning, turbopower, and control. Propellant feed and conditioning contains all heat exchangers, valves, and the combustor. The turbopower subsystem contains a two-stage partial-admission pressure-modulated, 400-hp, 63,000-rpm turbine, a 0-to 4-g lubrication system, and a gearbox with output pads for two hydraulic pumps and an alternator (alternator not included on test unit). The electronic control functions include regulation of speed and system temperatures; and start-and-stop sequences, overspeed (rpm) and temperature limits, failsafe provisions, and automatic shutdown provisions.

  10. A summary of meteorological requirements for water vapor data and possible space shuttle applications

    Science.gov (United States)

    1976-01-01

    The accuracy of water vapor measurement required by modelers and forecasters at a number of scales of motion is discussed. Direct and indirect methods for operational use in obtaining atmospheric water vapor data are reviewed along with meteorological applications of water vapor data obtained by a space shuttle laboratory lidar system.

  11. TNT equivalency study for space shuttle (EOS). Volume 1: Management summary report

    Science.gov (United States)

    Wolfe, R. R.

    1971-01-01

    The existing TNT equivalency criterion for LO2/LH2 propellant is reevaluated. It addresses the static, on-pad phase of the space shuttle launch operations and was performed to determine whether the use of a TNT equivalency criterion lower than that presently used (60%) could be substantiated. The large quantity of propellant on-board the space shuttle, 4 million pounds, was considered of prime importance to the study. A qualitative failure analysis of the space shuttle (EOS) on the launch pad was made because it was concluded that available test data on the explosive yield of LO2/LH2 propellant was insufficient to support a reduction in the present TNT equivalency value, considering the large quantity of propellant used in the space shuttle. The failure analysis had two objectives. The first was to determine whether a failure resulting in the total release of propellant could occur. The second was to determine whether, if such a failure did occur, ignition could be delayed long enough to allow the degree of propellant mixing required to produce an explosion of 60% TNT equivalency since the explosive yield of this propellant is directly related to the quantities of LH2 and LO2 mixed at the time of the explosion.

  12. Improving repeated sprint ability in young elite soccer players: repeated shuttle sprints vs. explosive strength training.

    Science.gov (United States)

    Buchheit, Martin; Mendez-Villanueva, Alberto; Delhomel, Gregory; Brughelli, Matt; Ahmaidi, Said

    2010-10-01

    To compare the effects of explosive strength (ExpS) vs. repeated shuttle sprint (RS) training on repeated sprint ability (RSA) in young elite soccer players, 15 elite male adolescents (14.5 ± 0.5 years) performed, in addition to their soccer training program, RS (n = 7) or ExpS (n = 8) training once a week for a total of 10 weeks. RS training consisted of 2-3 sets of 5-6 × 15- to 20-m repeated shuttle sprints interspersed with 14 seconds of passive or 23 seconds of active recovery (≈2 m·s⁻¹); ExpS training consisted of 4-6 series of 4-6 exercises (e.g., maximal unilateral countermovement jumps (CMJs), calf and squat plyometric jumps, and short sprints). Before and after training, performance was assessed by 10 and 30 m (10 and 30 m) sprint times, best (RSAbest) and mean (RSAmean) times on a repeated shuttle sprint ability test, a CMJ, and a hopping (Hop) test. After training, except for 10 m (p = 0.22), all performances were significantly improved in both groups (all p's repeated shuttle sprint test were only observed after RS training, whereas CMJ height was only increased after ExpS. Because RS and ExpS were equally efficient at enhancing maximal sprinting speed, RS training-induced improvements in RSA were likely more related to progresses in the ability to change direction.

  13. Construction and shuttling of novel bifunctional vectors for Streptomyces spp. and Escherichia coli.

    OpenAIRE

    Neesen, K; Volckaert, G.

    1989-01-01

    Shuttle vectors for gene transfer between Streptomyces spp. and Escherichia coli have been constructed by fusion of an artificial multicopy E. coli replicon and DNA fragments of pIJ702. Stable transfer to Streptomyces lividans was obtained. Marked differences in transformation efficiency were observed when plasmid DNA isolated from E. coli GM119 was used instead of that from strain HB101.

  14. Shuttle vectors for cloning recombinant DNA in Escherichia coli and Streptomyces griseofuscus C581.

    OpenAIRE

    Larson, J L; Hershberger, C L

    1984-01-01

    The replicon of the Streptomyces plasmid SCP2 was located on a 5.9-kilobase EcoRI-SalI restriction fragment. The SCP2 replicon was combined with Escherichia coli plasmid pBR322 and genes specifying neomycin resistance and thiostrepton resistance in streptomycetes to construct shuttle vectors that are useful for cloning in E. coli and streptomycetes.

  15. One electron changes everything: a multispecies copper redox shuttle for dye-sensitized solar cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffeditz, William L.; Katz, Michael J.; Deria, Pravas; Cutsail, George E.; Pellin, Michael J.; Farha, Omar K.; Hupp, Joseph T.

    2016-02-25

    Dye-sensitized solar cells (DSCs) are an established alternative photovoltaic technology that offers numerous potential advantages in solar energy applications. However, this technology has been limited by the availability of molecular redox couples that are both noncorrosive/nontoxic and do not diminish the performance of the device. In an effort to overcome these shortcomings, a copper-containing redox shuttle derived from 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (PDTO) ligand and the common DSC additive 4-tert-butylpyridine (TBP) was investigated. Electrochemical measurements, single-crystal X-ray diffraction, and absorption and electron paramagnetic resonance spectroscopies reveal that, upon removal of one metal-centered electron, PDTO-enshrouded copper ions completely shed the tetradentate PDTO ligand and replace it with four or more TBP ligands. Thus, the Cu(I) and Cu(II) forms of the electron shuttle have completely different coordination spheres and are characterized by widely differing Cu(II/I) formal potentials and reactivities for forward versus reverse electron transfer. Notably, the coordination-sphere replacement process is fully reversed upon converting Cu(II) back to Cu(I). In cells featuring an adsorbed organic dye and a nano- and mesoparticulate, TiO2-based, photoelectrode, the dual species redox shuttle system engenders performance superior to that obtained with shuttles based on the (II/I) forms of either of the coordination complexes in isolation.

  16. The Long Duration Exposure Facility - A shuttle transported low cost technology experiment carrier

    Science.gov (United States)

    Dibattista, J. D.

    1975-01-01

    The Long Duration Exposure Facility (LDEF) is a passive spacecraft capable of remaining in space for extended periods. Its primary role is to accommodate advanced spacecraft technology experiments. The LDEF is space-shuttle delivered and retrieved. With retrieval, it offers unique opportunities to study, in ground-based laboratories, results from a wide variety of experiments after exposure in space.

  17. Compiling the space shuttle wind tunnel data base: An exercise in technical and managerial innovators

    Science.gov (United States)

    Kemp, N. D.

    1983-01-01

    Engineers evaluating Space Shuttle flight data and performance results are using a massive data base of wind tunnel test data. A wind tunnel test data base of the magnitude attained is a major accomplishment. The Apollo program spawned an automated wind tunnel data analysis system called SADSAC developed by the Chrysler Space Division. An improved version of this system renamed DATAMAN was used by Chrysler to document analyzed wind tunnel data and data bank the test data in standardized formats. These analysis documents, associated computer graphics and standard formatted data were disseminated nationwide to the Shuttle technical community. These outputs became the basis for substantiating and certifying the flight worthiness of the Space Shuttle and for improving future designs. As an aid to future programs this paper documents the lessons learned in compiling the massive wind tunnel test data base for developing the Space Shuttle. In particular, innovative managerial and technical concepts evolved in the course of conceiving and developing this successful DATAMAN system and the methods and organization for applying the system are presented.

  18. Safety, reliability, maintainability and quality provisions for the Space Shuttle program

    Science.gov (United States)

    1990-01-01

    This publication establishes common safety, reliability, maintainability and quality provisions for the Space Shuttle Program. NASA Centers shall use this publication both as the basis for negotiating safety, reliability, maintainability and quality requirements with Shuttle Program contractors and as the guideline for conduct of program safety, reliability, maintainability and quality activities at the Centers. Centers shall assure that applicable provisions of the publication are imposed in lower tier contracts. Centers shall give due regard to other Space Shuttle Program planning in order to provide an integrated total Space Shuttle Program activity. In the implementation of safety, reliability, maintainability and quality activities, consideration shall be given to hardware complexity, supplier experience, state of hardware development, unit cost, and hardware use. The approach and methods for contractor implementation shall be described in the contractors safety, reliability, maintainability and quality plans. This publication incorporates provisions of NASA documents: NHB 1700.1 'NASA Safety Manual, Vol. 1'; NHB 5300.4(IA), 'Reliability Program Provisions for Aeronautical and Space System Contractors'; and NHB 5300.4(1B), 'Quality Program Provisions for Aeronautical and Space System Contractors'. It has been tailored from the above documents based on experience in other programs. It is intended that this publication be reviewed and revised, as appropriate, to reflect new experience and to assure continuing viability.

  19. STS-26 MS Lounge in fixed based (FB) shuttle mission simulator (SMS)

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing comunications kit assembly headset and crouched on the aft flight deck, performs checklist inspection during training session. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  20. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  1. The Space Shuttle: An Attempt at Low-Cost, Routine Access to Space

    Science.gov (United States)

    1990-09-01

    fbr particular national security missions -- that drove Shuttle design during 1970 - 1971 and led NASA to resist sug- gestions that a smaller manned...The Endeavor will incorporate improvements such as: * A drag chute that will allow for contingency abort landings on relatively short rur-’ays, also

  2. Fast Low-Spin Cobalt Complex Redox Shuttles for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Xie, Yuling; Hamann, Thomas W

    2013-01-17

    A low-spin cobalt(II) complex, cobalt bis(trithiacyclononane), [Co(ttcn)2](3+/2+), was investigated for use as a redox shuttle in dye-sensitized solar cells, DSSCs. This unique cobalt complex redox shuttle is stable, transparent, and easy to synthesize from commercial ligands and has attractive energetic and kinetic features for use in DSSCs. Initial results indicate that the overall performance is limited by recombination. Variation of the sensitizer and deposition of an ultrathin coating of alumina on nanoparticle-based TiO2 DSSC photoanodes reduced recombination, which resulted in significantly improved quantum yields. The photovoltaic behavior was compared to the current record efficiency cobalt tris-bipyridine, [Co(bpy)3](3+/2+), redox shuttle and produced similar results. Further use of high extinction organic sensitizers with only ∼200 mV of driving force for regeneration was examined, which produced efficiencies of over 2%; importantly, regeneration is not rate-limiting in this system, thus demonstrating the promise of using such fast redox shuttles.

  3. Modeling, Analysis, and Design Insights for Shuttle-based Compact Storage Systems

    NARCIS (Netherlands)

    E. Tappia (Elena); D. Roy (Debjit); M.B.M. de Koster (René); M. Melacini (Marco)

    2015-01-01

    textabstractShuttle-based compact systems are new automated multi-deep unit-load storage systems with lifts that promise both low operational cost and large volume flexibility. In this paper, we develop novel queuing network models to estimate the performance of both single-tier and multi-tier shutt

  4. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review.

    Science.gov (United States)

    Van der Zee, Frank P; Cervantes, Francisco J

    2009-01-01

    During the last two decades, extensive research has explored the catalytic effects of different organic molecules with redox mediating properties on the anaerobic (bio)transformation of a wide variety of organic and inorganic compounds. The accumulated evidence points at a major role of electron shuttles in the redox conversion of several distinct contaminants, both by chemical and biological mechanisms. Many microorganisms are capable of reducing redox mediators linked to the anaerobic oxidation of organic and inorganic substrates. Electron shuttles can also be chemically reduced by electron donors commonly found in anaerobic environments (e.g. sulfide and ferrous iron). Reduced electron shuttles can transfer electrons to several distinct electron-withdrawing compounds, such as azo dyes, polyhalogenated compounds, nitroaromatics and oxidized metalloids, among others. Moreover, reduced molecules with redox properties can support the microbial reduction of electron acceptors, such as nitrate, arsenate and perchlorate. The aim of this review paper is to summarize the results of reductive (bio)transformation processes catalyzed by electron shuttles and to indicate which aspects should be further investigated to enhance the applicability of redox mediators on the (bio)transformation of contaminants.

  5. Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer - Shuttle Pallet Satellite (ORFEUS-SPAS)

    Science.gov (United States)

    1993-01-01

    The objective of the ORFEUS mission is to launch a deployable/retrievable astronomical platform and obtain ultraviolet spectra for both astrophysically interesting sources and the intervening interstellar medium. Also, the IMAX cameras will obtain footage of both the Shuttle and the ORFEUS-SPAS satellite during the deployment/retrieval operations phase of the ORFEUS-SPAS mission.

  6. The Long Duration Exposure Facility - A shuttle transported low cost technology experiment carrier

    Science.gov (United States)

    Dibattista, J. D.

    1975-01-01

    The Long Duration Exposure Facility (LDEF) is a passive spacecraft capable of remaining in space for extended periods. Its primary role is to accommodate advanced spacecraft technology experiments. The LDEF is space-shuttle delivered and retrieved. With retrieval, it offers unique opportunities to study, in ground-based laboratories, results from a wide variety of experiments after exposure in space.

  7. The interval shuttle run test for intermittent sport players : evaluation of reliability

    NARCIS (Netherlands)

    Lemmink, K.A.P.M.; Visscher, C.; Lambert, M.I.; Lamberts, R.P.

    2004-01-01

    The reliability of the interval shuttle run test (ISRT) as a submaximal and maximal field test to measure intermittent endurance capacity was examined. During the ISRT, participants alternately run for 30 seconds and walk for 15 seconds. The running speed is increased from 10 km.h(-1) every 90 secon

  8. The design of flight hardware: Organizational and technical ideas from the MITRE/WPI Shuttle Program

    Science.gov (United States)

    Looft, F. J.

    1986-01-01

    The Mitre Corporation of Bedford Mass. and the Worcester Polytechnic Institute are developing several experiments for a future Shuttle flight. Several design practices for the development of the electrical equipment for the flight hardware have been standardized. Some of the ideas are presented, not as hard and fast rules but rather in the interest of stimulating discussions for sharing such ideas.

  9. Toward quantifying uncertainty in travel time tomography using the null-space shuttle

    NARCIS (Netherlands)

    Wit, R.W.L. de; Trampert, J.; van der Hilst, R.D.

    2012-01-01

    The solution of large linear tomographic inverse problems is fundamentally non-unique. We suggest to explore the non-uniqueness explicitly by examining the null-space of the forward operator. We show that with the null-space shuttle it is possible to assess robustness in tomographic models, and we i

  10. Modal Test Technology as Non-Destructive Evaluation of Space Shuttle Structures

    Science.gov (United States)

    Grygler, Micheal S.

    1994-01-01

    Modal test and analysis Is being used for nondestructive evaluation of Space Shuttle structures. The purpose of modal testing is to measure the dynamic characteristics of a structure to extract its resonance frequencies, damping, and mode shapes. These characteristics are later compared to subsequently acquired characteristics. Changes in the modal characteristics indicate damage in the structure. Use of modal test technology as a damage detection tool was developed at JSC during the Shuttle acoustic certification program and subsequent test programs. The Shuttle Modal Inspection System was created in order to inspect areas that are impossible or impractical to inspect with conventional methods. Areas on which this technique has been applied include control surfaces, which are covered with thermal protection tiles, and the Forward Reaction Control Module, which is a frame structure that supports various tanks, thrusters, and fluid lines, which requires major disassembly to inspect. This paper traces the development of the technology, gives a status of its implementation on the Shuttle, explains challenges involved in implementing this type of inspection program, and suggests future improvements in data analysis and interpretation. Dual-use applications of the technology include inspections of bridges, oil-platforms, and aircraft.

  11. Infrared emission associated with chemical reactions on Shuttle and SIRTF surfaces

    Science.gov (United States)

    Hollenbach, D. J.; Tielens, Alexander G. G. M.

    1984-01-01

    The infrared intensities which would be observed by the Shuttle Infrared Telescope Facility (SIRTF), and which are produced by surface chemistry following atmospheric impact on SIRTF and the shuttle are estimated. Three possible sources of reactants are analyzed: (1) direct atmospheric and scattered contaminant fluxes onto the shuttle's surface; (2) direct atmospheric and scattered contaminant fluxes onto the SIRTF sunshade; and (3) scattered fluxes onto the cold SIRTF mirror. The chemical reactions are primarily initiated by the dominent flux of reactive atomic oxygen on the surfaces. Using observations of the optical glow to constrain theoretical parameters, it is estimated for source (1) that the infrared glow on the SIRTF mirror will be comparable to the zodiacal background between 1 and 10 micron wavelengths. It is speculated that oxygen reacts with the atoms and the radicals bound in the organic molecules that reside on the shuttle and the Explorer surfaces. It is concluded that for source (2) that with suitable construction, a warm sunshade will produce insignificant infrared glow. It is noted that the atomic oxygen flux on the cold SIRTF mirror (3) is insufficient to produce significant infrared glow. Infrared absorption by the ice buildup on the mirror is also small.

  12. Space shuttle program information control and retrieval system feasibility study report

    Science.gov (United States)

    Lingle, C. P.

    1973-01-01

    The feasibility of having a common information management network for space shuttle data, is studied. Identified are the information types required, sources and users of the information, and existing techniques for acquiring, storing and retrieving the data. The study concluded that a decentralized system is feasible, and described a recommended development plan for it.

  13. Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning

    Science.gov (United States)

    1972-01-01

    The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.

  14. Study of space shuttle orbiter system management computer function. Volume 2: Automated performance verification concepts

    Science.gov (United States)

    1975-01-01

    The findings are presented of investigations on concepts and techniques in automated performance verification. The investigations were conducted to provide additional insight into the design methodology and to develop a consolidated technology base from which to analyze performance verification design approaches. Other topics discussed include data smoothing, function selection, flow diagrams, data storage, and shuttle hydraulic systems.

  15. Space Shuttle Guidance, Navigation, and Rendezvous Knowledge Capture Reports. Revision 1

    Science.gov (United States)

    Goodman, John L.

    2011-01-01

    This document is a catalog and readers guide to lessons learned, experience, and technical history reports, as well as compilation volumes prepared by United Space Alliance personnel for the NASA/Johnson Space Center (JSC) Flight Dynamics Division.1 It is intended to make it easier for future generations of engineers to locate knowledge capture documentation from the Shuttle Program. The first chapter covers observations on documentation quality and research challenges encountered during the Space Shuttle and Orion programs. The second chapter covers the knowledge capture approach used to create many of the reports covered in this document. These chapters are intended to provide future flight programs with insight that could be used to formulate knowledge capture and management strategies. The following chapters contain descriptions of each knowledge capture report. The majority of the reports concern the Space Shuttle. Three are included that were written in support of the Orion Program. Most of the reports were written from the years 2001 to 2011. Lessons learned reports concern primarily the shuttle Global Positioning System (GPS) upgrade and the knowledge capture process. Experience reports on navigation and rendezvous provide examples of how challenges were overcome and how best practices were identified and applied. Some reports are of a more technical history nature covering navigation and rendezvous. They provide an overview of mission activities and the evolution of operations concepts and trajectory design. The lessons learned, experience, and history reports would be considered secondary sources by historians and archivists.

  16. Artificial intelligence in process control: Knowledge base for the shuttle ECS model

    Science.gov (United States)

    Stiffler, A. Kent

    1989-01-01

    The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model.

  17. Safety, reliability, maintainability and quality provisions for the Space Shuttle program

    Science.gov (United States)

    1990-01-01

    This publication establishes common safety, reliability, maintainability and quality provisions for the Space Shuttle Program. NASA Centers shall use this publication both as the basis for negotiating safety, reliability, maintainability and quality requirements with Shuttle Program contractors and as the guideline for conduct of program safety, reliability, maintainability and quality activities at the Centers. Centers shall assure that applicable provisions of the publication are imposed in lower tier contracts. Centers shall give due regard to other Space Shuttle Program planning in order to provide an integrated total Space Shuttle Program activity. In the implementation of safety, reliability, maintainability and quality activities, consideration shall be given to hardware complexity, supplier experience, state of hardware development, unit cost, and hardware use. The approach and methods for contractor implementation shall be described in the contractors safety, reliability, maintainability and quality plans. This publication incorporates provisions of NASA documents: NHB 1700.1 'NASA Safety Manual, Vol. 1'; NHB 5300.4(IA), 'Reliability Program Provisions for Aeronautical and Space System Contractors'; and NHB 5300.4(1B), 'Quality Program Provisions for Aeronautical and Space System Contractors'. It has been tailored from the above documents based on experience in other programs. It is intended that this publication be reviewed and revised, as appropriate, to reflect new experience and to assure continuing viability.

  18. Harold Goldstein (R) and Dan Leiser (L) discuss bone implant development in the the Shuttle Tile

    Science.gov (United States)

    1993-01-01

    Harold Goldstein (R) and Dan Leiser (L) discuss bone implant development in the the Shuttle Tile Laboratory N-242. A spin-off of Ames research on both bone density in microgravity and on thermal protection foams is the bone-growth implant shown in 1993.

  19. Control Optimization for a Dual-Mode Single-State Nuclear Shuttle,

    Science.gov (United States)

    1980-01-01

    velocity. Thus a comparison between mixed-mode propulsion and straight hydrogen propulsion is warranted here. Using the same input parameters as in...only slightly improves the performance of a shuttle above pure hydrogen propulsion . This slight improvement would hardly justify the additional cost and

  20. Cyclic Dipeptide Shuttles as a Novel Skin Penetration Enhancement Approach: Preliminary Evaluation with Diclofenac

    Science.gov (United States)

    Namjoshi, Sarika; Giralt, Ernest; Benson, Heather

    2016-01-01

    This study demonstrates the effectiveness of a peptide shuttle in delivering diclofenac into and through human epidermis. Diclofenac was conjugated to a novel phenylalanyl-N-methyl-naphthalenylalanine-derived diketopiperazine (DKP) shuttle and to TAT (a classical cell penetrating peptide), and topically applied to human epidermis in vitro. DKP and TAT effectively permeated into and through human epidermis. When conjugated to diclofenac, both DKP and TAT enhanced delivery into and through human epidermis, though DKP was significantly more effective. Penetration of diclofenac through human epidermis (to receptor) was increased by conjugation to the peptide shuttle and cell penetrating peptide with enhancement of 6x by DKP-diclofenac and 3x by TAT-diclofenac. In addition, the amount of diclofenac retained within the epidermis was significantly increased by peptide conjugation. COX-2 inhibition activity of diclofenac was retained when conjugated to DKP. Our study suggests that the peptide shuttle approach may offer a new strategy for targeted delivery of small therapeutic and diagnostic molecules to the skin. PMID:27548780