WorldWideScience

Sample records for repeat-pass interferometric sar

  1. The flight test of Pi-SAR(L) for the repeat-pass interferometric SAR

    Science.gov (United States)

    Nohmi, Hitoshi; Shimada, Masanobu; Miyawaki, Masanori

    2006-09-01

    This paper describes the experiment of the repeat pass interferometric SAR using Pi-SAR(L). The air-borne repeat-pass interferometric SAR is expected as an effective method to detect landslide or predict a volcano eruption. To obtain a high-quality interferometric image, it is necessary to make two flights on the same flight pass. In addition, since the antenna of the Pi-SAR(L) is secured to the aircraft, it is necessary to fly at the same drift angle to keep the observation direction same. We built a flight control system using an auto pilot which has been installed in the airplane. This navigation system measures position and altitude precisely with using a differential GPS, and the PC Navigator outputs a difference from the desired course to the auto pilot. Since the air density is thinner and the speed is higher than the landing situation, the gain of the control system is required to be adjusted during the repeat pass flight. The observation direction could be controlled to some extent by adjusting a drift angle with using a flight speed control. The repeat-pass flight was conducted in Japan for three days in late November. The flight was stable and the deviation was within a few meters for both horizontal and vertical direction even in the gusty condition. The SAR data were processed in time domain based on range Doppler algorism to make the complete motion compensation. Thus, the interferometric image processed after precise phase compensation is shown.

  2. Airborne Radar Interferometric Repeat-Pass Processing

    Science.gov (United States)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  3. Ionospheric effects on repeat-pass SAR interferometry

    Science.gov (United States)

    Feng, Jian; Zhen, Weimin; Wu, Zhensen

    2017-10-01

    InSAR measurements can be significantly affected by the atmosphere when the radar signal propagates through the atmosphere since it varies with space and time. Great efforts have been made in recent years to better understand the properties of the tropospheric effects and to develop methods for mitigating these effects. By using the basic principles of InSAR, the quantitative analysis of ionospheric delay effects on topography and surface deformation have been introduced for the first time. The measurement errors can be related to the vertical ionospheric total electron content (vTEC). By using the ionospheric observations, the effects of temporal ionospheric variations on InSAR have been analyzed. The results indicate that the ionospheric variations with time, season, solar cycle and geomagnetic activities can compromise the effectiveness of InSAR for both the measurement of topography and surface determination. The repeat-pass SAR interferometry errors induced by ionosphere should be corrected by actual measurements.

  4. Performance Analysis of Flat Surface Assumption and Residual Motion Errors on Airborne Repeat-pass InSAR

    Directory of Open Access Journals (Sweden)

    Lin Xue

    2013-09-01

    Full Text Available When applying to the airborne repeat-pass Interferometric Synthetic Aperture Radar (InSAR, which has long synthetic aperture and large azimuth-dependent errors, the surface assumption used to simply the time-domain algorithm model and the residual motion errors due to the precision of the navigation system will affect the imaging result and the interferometric measurement. This paper analyzes the altitude errors introduced by the surface assumption and the residual motion errors due to the precision of the navigation system. We deduce the range errors model during the single pass and analyze the effects of these errors on the plane location, interferometric phase and DEM precision. Then the accuracy of the theoretical deduction is verified by simulation and real data. The research provides theoretical bases for the system design and signal processing of airborne repeat-pass InSAR.

  5. An L-band SAR for repeat pass deformation measurements on a UAV platform

    Science.gov (United States)

    Hensley, Scott; Lou, Yunling; Rosen, Paul; Wheeler, Kevin; Zebker, Howard; Madsen, Soren; Miller, Tim; Hoffman, Jim; Farra, Don

    2003-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeat-pass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV) or minimally piloted vehicle (MPV). Upon surveying the capabilities and availabilities of such aircraft, the Proteus aircraft and the ALTAIR UAV appear to meet our criteria in terms of payload capabilities, flying altitude, and endurance. To support the repeat pass deformation capability it is necessary to control flight track capability of the aircraft to be within a specified 10 m tube with a goal of 1 m. This requires real-time GPS control of the autopilot to achieve these objectives that has not been demonstrated on these aircraft. Based on the Proteus and ALTAIR's altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and a 16 km range swath. The radar will have an active electronic beam steering antenna to achieve a Doppler centroid stability that is necessary for repeat-pass interferometry. This paper presents some of the trade studies for the platform, instrument and the expected science.

  6. Repeat-pass InSAR processing for Vegetation Height Calculation: Theory and a validated example

    Science.gov (United States)

    Siqueira, P.; Lei, Y.

    2014-12-01

    Knowledge of the vegetation height for a forested region is often used as a proxy for stem volume, biomass, and for characterizing habitats of a variety of plant and animal species. For this reason, remote sensing measures available from stereography, lidar, and InSAR have been important tools for airborne and spaceborne platforms. Among these and other candidates for measuring vegetation heights, InSAR has the advantage of achieving wide coverage areas (on the order of 100 km in cross-track swath) over short time periods, thus making it practical for large-scale assessments of the global environment. The determination of forest stand height (FSH), which is an assessment made on the order of one to ten hectares of resolution, InSAR can provide measures that are proportional to FSH. These are: 1.) interferometric phase compared to a known DEM, preferably of the bald earth, 2.) interferometric correlation (polarimetric or otherwise), which is related to the volume scattering nature of the target, and 3.) interferometric correlation which is related to the temporal decorrelation of the target. Of these, while the volumetric aspect of interferometric correlation is of keen interest, because of the dominant error source of temporal decorrelation, it comes at the cost of the need to perform single-pass interferometry. While such satellite systems do exist (notably the TanDEM-X mission), for vegetation applications, lower frequency systems such as ALOS-1 and -2, and the future NASA radar mission at L-band, provides better signal returns from throughout the vegetation canopy. Hence, rather than relying on volumetric correlation to provide the desired FSH signature, repeat-pass observations of temporal decorrelation are coupled with a vegetation model for this decorrelation to determine the vegetation height. In order to demonstrate this technique, the University of Massachusetts has used 46-day repeat-pass ALOS data to estimate FSH over the US State of Maine, nearly a 10

  7. An L-band SAR for repeat pass deformation measurements on a UAV platform

    Science.gov (United States)

    Wheeler, Kevin; Hensley, Scott; Lou, Yunling

    2004-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeatpass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV or minimally piloted vehicle (MPV).

  8. Status of a UAV SAR Designed for Repeat Pass Interferometry for Deformation Measurements

    Science.gov (United States)

    Hensley, Scott; Wheeler, Kevin; Hoffman, Jim; Miller, Tim; Lou, Yunling; Muellerschoen, Ron; Zebker, Howard; Madsen, Soren; Rosen, Paul

    2004-01-01

    Under the NASA ESTO sponsored Instrument Incubator Program we have designed a lightweight, reconfigurable polarimetric L-band SAR designed for repeat pass deformation measurements of rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes. This radar will be installed on an unmanned airborne vehicle (UAV) or a lightweight, high-altitude, and long endurance platform such as the Proteus. After a study of suitable available platforms we selected the Proteus for initial development and testing of the system. We want to control the repeat track capability of the aircraft to be within a 10 m tube to support the repeat deformation capability. We conducted tests with the Proteus using real-time GPS with sub-meter accuracy to see if pilots could fly the aircraft within the desired tube. Our results show that pilots are unable to fly the aircraft with the desired accuracy and therefore an augmented autopilot will be required to meet these objectives. Based on the Proteus flying altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and 16 km range swath. This radar will have an active electronic beam steering antenna to achieve Doppler centroid stability that is necessary for repeat-pass interferometry (RPI). This paper will present are design criteria, current design and expected science applications.

  9. Integrated Data Processing Methodology for Airborne Repeat-pass Differential SAR Interferometry

    Science.gov (United States)

    Dou, C.; Guo, H.; Han, C.; Yue, X.; Zhao, Y.

    2014-11-01

    Short temporal baseline and multiple ground deformation information can be derived from the airborne differential synthetic aperture radar Interforemetry (D-InSAR). However, affected by the turbulence of the air, the aircraft would deviate from the designed flight path with high frequent vibrations and changes both in the flight trajectory and attitude. Restricted by the accuracy of the position and orientation system (POS), these high frequent deviations can not be accurately reported, which would pose great challenges in motion compensation and interferometric process. Thus, these challenges constrain its wider applications. The objective of this paper is to investigate the accurate estimation and compensation of the residual motion errors in the airborne SAR imagery and time-varying baseline errors between the diffirent data acquirations, furthermore, to explore the integration data processing theory for the airborne D-InSAR system, and thus help to accomplish the correct derivation of the ground deformation by using the airborne D-InSAR measurements.

  10. Estimation of Forest Height Using Spaceborne Repeat-Pass L-Band InSAR Correlation Magnitude over the US State of Maine

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2014-10-01

    Full Text Available This paper describes a novel, simple and efficient approach to estimate forest height over a wide region utilizing spaceborne repeat-pass InSAR correlation magnitude data at L-band. We start from a semi-empirical modification of the RVoG model that characterizes repeat-pass InSAR correlation with large temporal baselines (e.g., 46 days for ALOS by taking account of the temporal change effect of dielectric fluctuation and random motion of scatterers. By assuming (1 the temporal change parameters and forest backscatter profile/extinction coefficient follow some mean behavior across each inteferogram; (2 there is minimal ground scattering contribution for HV-polarization; and (3 the vertical wavenumber is small, a simplified inversion approach is developed to link the observed HV-polarized InSAR correlation magnitude to forest height and validated using ALOS/PALSAR repeat-pass observations against LVIS lidar heights over the Howland Research Forest in central Maine, US (with RMSE < 4 m at a resolution of 32 hectares. The model parameters derived from this supervised regression are used as the basis for propagating the estimates of forest height to available interferometric pairs for the entire state of Maine, thus creating a state-mosaic map of forest height. The present approach described here serves as an alternative and complementary tool for other PolInSAR inversion techniques when full-polarization data may not be available. This work is also meant to be an observational prototype for NASA’s DESDynI-R (now called NISAR and JAXA’s ALOS-2 satellite missions.

  11. An Automatic Mosaicking Algorithm for the Generation of a Large-Scale Forest Height Map Using Spaceborne Repeat-Pass InSAR Correlation Magnitude

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2015-05-01

    Full Text Available This paper describes an automatic mosaicking algorithm for creating large-scale mosaic maps of forest height. In contrast to existing mosaicking approaches through using SAR backscatter power and/or InSAR phase, this paper utilizes the forest height estimates that are inverted from spaceborne repeat-pass cross-pol InSAR correlation magnitude. By using repeat-pass InSAR correlation measurements that are dominated by temporal decorrelation, it has been shown that a simplified inversion approach can be utilized to create a height-sensitive measure over the whole interferometric scene, where two scene-wide fitting parameters are able to characterize the mean behavior of the random motion and dielectric changes of the volume scatterers within the scene. In order to combine these single-scene results into a mosaic, a matrix formulation is used with nonlinear least squares and observations in adjacent-scene overlap areas to create a self-consistent estimate of forest height over the larger region. This automated mosaicking method has the benefit of suppressing the global fitting error and, thus, mitigating the “wallpapering” problem in the manual mosaicking process. The algorithm is validated over the U.S. state of Maine by using InSAR correlation magnitude data from ALOS/PALSAR and comparing the inverted forest height with Laser Vegetation Imaging Sensor (LVIS height and National Biomass and Carbon Dataset (NBCD basal area weighted (BAW height. This paper serves as a companion work to previously demonstrated results, the combination of which is meant to be an observational prototype for NASA’s DESDynI-R (now called NISAR and JAXA’s ALOS-2 satellite missions.

  12. Extracting Tree Height from Repeat-Pass PolInSAR Data : Experiments with JPL and ESA Airborne Systems

    Science.gov (United States)

    Lavalle, Marco; Ahmed, Razi; Neumann, Maxim; Hensley, Scott

    2013-01-01

    In this paper we present our latest developments and experiments with the random-motion-over-ground (RMoG) model used to extract canopy height and other important forest parameters from repeat-pass polarimetricinterferometric SAR (Pol-InSAR) data. More specifically, we summarize the key features of the RMoG model in contrast with the random-volume-over-ground (RVoG) model, describe in detail a possible inversion scheme for the RMoG model and illustrate the results of the RMoG inversion using airborne data collected by the Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA).

  13. Extracting Tree Height from Repeat-Pass PolInSAR Data : Experiments with JPL and ESA Airborne Systems

    Science.gov (United States)

    Lavalle, Marco; Ahmed, Razi; Neumann, Maxim; Hensley, Scott

    2013-01-01

    In this paper we present our latest developments and experiments with the random-motion-over-ground (RMoG) model used to extract canopy height and other important forest parameters from repeat-pass polarimetricinterferometric SAR (Pol-InSAR) data. More specifically, we summarize the key features of the RMoG model in contrast with the random-volume-over-ground (RVoG) model, describe in detail a possible inversion scheme for the RMoG model and illustrate the results of the RMoG inversion using airborne data collected by the Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA).

  14. Canopy reconstruction from interferometric SAR

    NARCIS (Netherlands)

    Varekamp, C.

    2001-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is investigated as a method for 3D tree mapping. When operational, the method may be important for monitoring forests with a persistent cloud cover such as tropical rain forests. The problem of crown displacement due to lay-over in a vegetation with a

  15. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully...

  16. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    Science.gov (United States)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  17. Forest canopy height estimation using double-frequency repeat pass interferometry

    Science.gov (United States)

    Karamvasis, Kleanthis; Karathanassi, Vassilia

    2015-06-01

    In recent years, many efforts have been made in order to assess forest stand parameters from remote sensing data, as a mean to estimate the above-ground carbon stock of forests in the context of the Kyoto protocol. Synthetic aperture radar interferometry (InSAR) techniques have gained traction in last decade as a viable technology for vegetation parameter estimation. Many works have shown that forest canopy height, which is a critical parameter for quantifying the terrestrial carbon cycle, can be estimated with InSAR. However, research is still needed to understand further the interaction of SAR signals with forest canopy and to develop an operational method for forestry applications. This work discusses the use of repeat pass interferometry with ALOS PALSAR (L band) HH polarized and COSMO Skymed (X band) HH polarized acquisitions over the Taxiarchis forest (Chalkidiki, Greece), in order to produce accurate digital elevation models (DEMs) and estimate canopy height with interferometric processing. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to forest canopy height mapping using dual-wavelength SAR interferometry at X- and L-band. The method is based on scattering phase center separation at different wavelengths. It involves the generation of a terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data as well as the generation of a canopy surface elevation model from repeat pass X-band InSAR data. The terrain model is then used to remove the terrain component from the repeat pass interferometric X-band elevation model, so as to enable the forest canopy height estimation. The canopy height results were compared to a field survey with 6.9 m root mean square error (RMSE). The effects of vegetation characteristics, SAR incidence angle and view geometry, and terrain slope on the accuracy of the results have also been studied in this work.

  18. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully......, but not necessarily from map to map. It is based on natural distributed targets for which no a priori knowledge is needed. In particular, no DEM is required as in calibration techniques based on dedicated calibration scenes. To achieve absolute calibration, i.e. elimination of a constant elevation offset, a single...

  19. Applications of interferometrically derived terrain slopes: Normalization of SAR backscatter and the interferometric correlation coefficient

    Science.gov (United States)

    Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.

    1994-01-01

    Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.

  20. Interferometric SAR imaging by transmitting stepped frequency chaotic noise signals

    Science.gov (United States)

    Zhang, Yunhua; Gu, Xiang; Zhai, Wenshuai; Dong, Xiao; Shi, Xiaojin; Kang, Xueyan

    2015-10-01

    Noise radar has been applied in many fields since it was proposed more than 50 years ago. However, it has not been applied to interferometric SAR imaging yet as far as we know. This paper introduces our recent work on interferometric noise radar. An interferometric SAR system was developed which can transmit both chirp signal and chaotic noise signal (CNS) at multiple carrier frequencies. An airborne experiment with this system by transmitting both signals was carried out, and the data were processed to show the capability of interferometric SAR imaging with CNS. The results shows that although the interferometric phase quality of CNS is degraded due to the signal to noise ratio (SNR) is lower compared with that of chirp signal, we still can get satisfied DEM after multi-looking processing. Another work of this paper is to apply compressed sensing (CS) theory to the interferometric SAR imaging with CNS. The CS theory states that if a signal is sparse, then it can be accurately reconstructed with much less sampled data than that regularly required according to Nyquist Sampling Theory. To form a structured random matrix, if the transmitted signal is of fixed waveform, then random subsampling is needed. However, if the transmitted signal is of random waveform, then only uniform subsampling is needed. This is another advantage of noise signal. Both the interferometric phase images and the DEMs by regular method and by CS method are processed with results compared. It is shown that the degradation of interferometric phases due to subsampling is larger than that of amplitude image.

  1. Potential of sinkhole precursor detection through interferometric SAR

    CSIR Research Space (South Africa)

    Theron, Andre

    2016-08-01

    Full Text Available detection through interferometric SAR Theron, A.1, 2, Engelbrecht, J.1 and Kemp, J.2 1 Remote Sensing Research Unit, CSIR Meraka Institute, ATheron1@csir.co.za 2 Department of Geography and Environmental Sciences, Stellenbosch University...]. However, the location and timing of sinkholes is typically unpredictable. The in situ monitoring of large areas for small scale subsidence is therefore not feasible. Satellite remote sensing, specifically Synthetic aperture radar (SAR), is a unique...

  2. Interferometric SAR Persistent Scatterer Analysis of Mayon volcano, Albay, Philippines

    Science.gov (United States)

    Bato, M. P.; Lagmay, A. A.; Paguican, E. R.

    2011-12-01

    Persistent Scatterer Interferometry (PSInSAR) is a new method of interferometric processing that overcomes the limitations of conventional Synthetic Aperture Radar differential interferometry (DInSAR) and is capable of detecting millimeter scale ground displacements. PSInSAR eliminate anomalies due to atmospheric delays and temporal and geometric decorrelation eminent in tropical regions by exploiting the temporal and spatial characteristics of radar interferometric signatures derived from time-coherent point-wise targets. In this study, PSInSAR conducted in Mayon Volcano, Albay Province, Bicol, Philippines, reveal tectonic deformation passing underneath the volcano. Using 47 combined ERS and ENVISAT ascending and descending imageries, differential movement between the northern horst and graben on which Mayon volcano lies, is as much as 2.5 cm/year in terms of the line-of-sight (LOS) change in the radar signal. The northern horst moves in the northwest direction whereas the graben moves mostly downward. PSInSAR results when coupled with morphological interpretation suggest left-lateral oblique-slip movement of the northern bounding fault of the Oas graben. The PSInSAR results are validated with dGPS measurements. This work presents the functionality of PSInSAR in a humid tropical environment and highlights the probable landslide hazards associated with an oversteepened volcano that may have been further deformed by tectonic activity.

  3. Regional landslide forecasting model using interferometric SAR images

    Institute of Scientific and Technical Information of China (English)

    董育烦; 张发明; 高正夏; 蒯志要

    2008-01-01

    Method of obtaining landslide evaluating information by using Interferometric Synthetic Aperture Radar (InSAR) technique was discussed. More precision landslide surface deformation data extracted from InSAR image need take suitable SAR interferometric data selecting, path tracking, phase unwrapping processes. Then, the DEM model of scope and surface shape of the landslide was built. Combining with geological property of landslide and sliding displacements obtained from InSAR/D-InSAR images, a new landslide forecasting model called equal central angle slice method for those not obviously deformed landslides was put forward. This model breaks the limits of traditional research methods of geology. In this model, the landslide safety factor was calculated by equal central angle slice method, then considering the persistence ratio of the sliding surface based on plastic theory, the minimum safety factor was the phase when plastic area were complete persistence. This new model makes the application of InSAR/D-InSAR technology become more practical in geology hazard research.

  4. EQUIVALENT BASELINE AND INTERFEROMETRIC PHASE OF CLUSTER SATELLITE SAR

    Institute of Scientific and Technical Information of China (English)

    Gong Min; Zhang Chuanwu; Huang Shunji

    2005-01-01

    The change of the equivalent baseline and interferometric phase of cluster SAR satellites is analyzed when the constellation circles around the Earth and the satellites rotate around the center at the same time. The letter provides assessment of baseline error and phase error which influence the precision of height measurement in the across-track interferometric mode. The mathematical model of cluster satellite movement is built, simulation analyses and the curve of height error are presented. The simulation results show that height measurement error can be compensated by the formulae derived in this letter, therefore, the Digital Elevation Models (DEM's) are recovered accurately.

  5. SAR Interferometric Analysis Of Ground Deformation At Santorini Volcano (Greece)

    Science.gov (United States)

    Papageorgiou, Elena; Foumelis, Michael; Parcharidis, Issaak

    2012-01-01

    The core of the present study builds on ground deformation monitoring by SAR Interferometry at Santorini Volcanic Complex (Greece). Dataset used for this case study, include the entire archive of ERS SAR and ENVISAT ASAR data for both ascending and descending orbits covering almost two decades of observations (1992-2010). Deformation signals of millimeter-level accuracy were retrieved from both SAR and ASAR datasets, by way of the Interferometric Stacking technique. The linear rate of differential phases and the corresponding errors were estimated by averaging the unwrapped differential interferograms. Subsequently, vertical deformation rates were calculated by the combination of LOS measurements in ascending and descending acquisition geometries. The observed ground deformation shows mainly subsidence in the central part of Santorini Caldera, at Nea Kammeni Island, equal to -5.1 ±0.7 mm/yr, and -6.3 ±1.2 mm/yr for the periods 1992-2000 and 2003-2010 respectively, while both signs of movements (uplift and subsidence) of lower scale magnitude were recognized elsewhere on the volcano. In fact, higher deformation rates for the period after 2003 (ranging between -4.6 mm/yr and 5.6 mm/yr), compared to the lower values of the period 1992-2000 (from -1.7 mm/yr to 2.7 mm/yr), indicate increase in the undergoing deformation of the volcanic complex. Finally, this work presents an attempt to obtain integrated interferometric results of ground deformation from both ERS and ENVISAT sensors in order to allow future investigations on the deformation sources of the volcanic complex, which could be further exploited in the volcanic hazard and risk assessment.

  6. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics

    NARCIS (Netherlands)

    Zhou, Y.; Stein, A.; Molenaar, M.

    2003-01-01

    Differential Synthetic Aperture Radar (SAR) interferometric (D-InSAR) data of ground surface deformation are affected by several error sources associated with image acquisitions and data processing. In this paper, we study the use of D-InSAR for quantifying land subsidence due to groundwater extract

  7. An estimation method for InSAR interferometric phase combined with image auto-coregistration

    Institute of Scientific and Technical Information of China (English)

    LI Hai; LI Zhenfang; LIAO Guisheng; BAO Zheng

    2006-01-01

    In this paper we propose a method to estimate the InSAR interferometric phase of the steep terrain based on the terrain model of local plane by using the joint subspace projection technique proposed in our previous paper. The method takes advantage of the coherence information of neighboring pixel pairs to auto-coregister the SAR images and employs the projection of the joint signal subspace onto the corresponding joint noise subspace to estimate the terrain interferometric phase. The method can auto-coregister the SAR images and reduce the interferometric phase noise simultaneously. Theoretical analysis and computer simulation results show that the method can provide accurate estimate of the interferometric phase (interferogram) of very steep terrain even if the coregistration error reaches one pixel. The effectiveness of the method is verified via simulated data and real data.

  8. Effects of residual motion compensation errors on the performance of airborne along-track interferometric SAR

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Jun HONG; Xiao-lan QIU; Ji-chuan LI; Fang-fang LI; Feng MING

    2016-01-01

    Two approximations, center-beam approximation and reference digital elevation model (DEM) approximation, are used in synthetic aperture radar (SAR) motion compensation procedures. They usually introduce residual motion compensation errors for airborne single-antenna SAR imaging and SAR interferometry. In this paper, we investigate the effects of residual uncompensated motion errors, which are caused by the above two approximations, on the performance of airborne along-track interferometric SAR (ATI-SAR). The residual uncompensated errors caused by center-beam approximation in the absence and in the presence of elevation errors are derived, respectively. Airborne simulation parameters are used to verify the correctness of the analysis and to show the impacts of residual uncompensated errors on the interferometric phase errors for ATI-SAR. It is shown that the interferometric phase errors caused by the center-beam approximation with an accurate DEM could be neglected, while the interferometric phase errors caused by the center-beam approximation with an inaccurate DEM cannot be neglected when the elevation errors exceed a threshold. This research provides theoretical bases for the error source analysis and signal processing of airborne ATI-SAR.

  9. Dual-Frequency Interferometric SAR Observations of a Tropical Rain-Forest

    Science.gov (United States)

    Rigot, E.

    1996-01-01

    Repeat-pass, interferometric, radar observations of tropical rain-forest collected by the Shuttle Imaging Radar C (SIR-C) in the state of Rondonia, Brazil, reveal signal coherence is destroyed at C-band (5.6-cm) in the forest, whereas L-band (24-cm) radar signals remain strongly coherent over the entire landscape. At L-band, the rms difference in inferred topographic height between the forest and adjacent clearings is 5 m, equivalent to the height noise. Atmospheric delays are large, however, forming kilometer-sized anomalies with a 1.2-cm rms one way. Radar interferometric studies of the humid tropics must therefore be conducted at long radar wavelengths, with kilometric base-lines or with two antennas operating simultaneously.

  10. Interferometric synthetic aperture radar (InSAR) and its applications to study volcanoes, part 1: Principles of InSAR

    Science.gov (United States)

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong

    2006-01-01

    Interferometric synthetic aperture radar is an ability to measure the surface deformation of remote sensing technology, in a huge area, its deformation measurement with sub-centimeter accuracy, and spatial resolution in the tens of meters or less. In this paper, the basic theory of InSAR technology is reviewed, its working principle is clarified, and the related problems of surface deformation measurement using InSAR technology are discussed.

  11. Airborne Repeat Pass Interferometry for Deformation Measurements

    NARCIS (Netherlands)

    Groot, J.; Otten, M.; Halsema, E. van

    2000-01-01

    In ground engineering the need for deformation measurements is urgent. SAR interferometry can be used to measure small (sub-wavelength) deformations. An experiment to investigate this for dike deformations was set up, using the C-band SAR system PHARUS (PHased ARray Universal SAR). This paper descri

  12. Development and Evaluation of Science and Technology Education Program Using Interferometric SAR

    Science.gov (United States)

    Ito, Y.; Ikemitsu, H.; Nango, K.

    2016-06-01

    This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.

  13. Validation of Forested Inundation Extent Revealed by L-Band Polarimetric and Interferometric SAR Data

    Science.gov (United States)

    Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle

    2013-01-01

    UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.

  14. Ground Displacement Measurement of the 2013 Balochistan Earthquake with interferometric TerraSAR-X ScanSAR data

    Science.gov (United States)

    Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.

    2014-12-01

    This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A

  15. Joint Three-dimensional Location Algorithm for Airborne Interferometric SAR System

    Directory of Open Access Journals (Sweden)

    Mao Yong-fei

    2013-03-01

    Full Text Available Joint three-dimensional location algorithm aims to get the north, east and height coordinates of each pixel in several adjacent Interferometric Synthetic Aperture Radar (InSAR scenes simultaneously. Joint calibration is a key procedure to achieve an accurate three-dimensional location. It can ensure the continuity of three-dimensional location among adjacent scenes, and achieve the location of large areas with few Ground Control Points (GCPs by using Tie Points (TPs. In this paper, a new joint calibration algorithm for airborne interferometric SAR is proposed. It calibrates north, east and height coordinates simultaneously. It employs weighted optimization method to carry out calibration, and introduces weights to calibration to discriminate GCPs and TPs with different coherences and locations. The experimental results on airborne InSAR data show that the three-dimensional location accuracy by using the proposed calibration algorithm is better than that by the traditional method.

  16. An error prediction framework for interferometric SAR data

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Merryman Boncori, John Peter

    2008-01-01

    Three of the major error sources in interferometric synthetic aperture radar measurements of terrain elevation and displacement are baseline errors, atmospheric path length errors, and phase unwrapping errors. In many processing schemes, these errors are calibrated out by using ground control poi...

  17. Study on interferometric combination for multi-temporal InSAR optimization

    Science.gov (United States)

    Wang, Xu; Wang, Yanbing; Li, Xiaojuan; Chen, Yahui; Chen, Xin; Hong, Wei

    2014-11-01

    Differential synthetic aperture radar interferometry (InSAR) has already proven its potential for ground subsidence monitoring. In recent years Multi-Temporal InSAR technology has been rapid development. Coherence of interferogram is an important indicator to measure the interferometric phase in the Multi-Temporal InSAR system. This paper study the effect of the Spatial-Temporal baseline on coherence for SAR images in Multi-Temporal InSAR processing base on the aspect of statistics. on the basis of a large amount of data, a formula for calculating coherence for SAR images was deduced which it correspond to the relationship between Spatial-Temporal baseline and the coherence of interferogram. This formula can optimize the selection of interference image pairs during processing Multi-Temporal InSAR. To determine whether this formula is useful, two methods of interference image pairs selection was used, one is the formula to optimize the selection, another is the traditional fixed threshold method. The author compared the coherence of Interferogram to judge the merits of the two methods. The results indicate that the formula not only select more interferogram from interferogram stack, but also increase the number of highly coherent points. And use SBAS-InSAR technique to obtain the 2010-2013 Beijing urban land subsidence information, verification monitoring accuracy by comparing level monitoring result.

  18. Ocean Environment Sensing using Polarimetric and Interferometric SAR

    Science.gov (United States)

    2003-09-01

    A wave system with an estimated dominant wavelength of 156m is propagating through the site with a wind/wave direction of 320o (NDBC Buoy, Bodega ...mean square slope < 2 > of these perturbed waves was calculated as 1.72 o. II . RECENT SAR/AT-INSAR INVESTIGATIONS A. AIRSAR Study of Coastal Eddies

  19. SAR Interferogram Filtering of Shearlet Domain Based on Interferometric Phase Statistics

    Directory of Open Access Journals (Sweden)

    Yonghong He

    2017-02-01

    Full Text Available This paper presents a new filtering approach for Synthetic Aperture Radar (SAR interferometric phase noise reduction in the shearlet domain, depending on the coherent statistical characteristics. Shearlets provide a multidirectional and multiscale decomposition that have advantages over wavelet filtering methods when dealing with noisy phase fringes. Phase noise in SAR interferograms is directly related to the interferometric coherence and the look number of the interferogram. Therefore, an optimal interferogram filter should incorporate information from both of them. The proposed method combines the phase noise standard deviation with the shearlet transform. Experimental results show that the proposed method can reduce the interferogram noise while maintaining the spatial resolution, especially in areas with low coherence.

  20. Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data

    Science.gov (United States)

    Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.

    2011-01-01

    The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.

  1. Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data

    Science.gov (United States)

    Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.

    2011-01-01

    The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.

  2. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    Science.gov (United States)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  3. Interferometric SAR for observation of glacier motion and firn penetration

    Science.gov (United States)

    Winebrenner, Dale P.; Joughlin, Ian R.; Fahnestock, Mark A.

    1997-01-01

    A digital elevation model (DEM) for a swath in west Greenland above Jakobshavn Isbrae derived from a number ERS-1 interferograms combined so as to reduce phase errors and other problems is presented. The DEM shows a wealth of kilometer-scale, dynamically supported topography, which arises from ice sheet flow over the rough bed. A correlation is shown between topography and interferometric phase due solely to ice sheet motion, which clearly shows the translations of scatterers in the surface up and downslope in the topography. Finally, the low correlation in interferograms of ice sheet dry snow zones motivates investigation on the depth-locus of backscattering. A scattering model is presented, including realistic firn grain size distributions and layering, which shows that layering helps to localize backscattering from dry firn to shallower depths than would otherwise be expected.

  4. Advanced SAR simulator with multi-beam interferometric capabilities

    Science.gov (United States)

    Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio

    2014-10-01

    State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.

  5. Observing Deformation at Mt. Raung East Java Based on PALSAR-2 Imagery by Using Interferometric SAR

    Science.gov (United States)

    Arbad, Arliandy P.; Ardy, Achmad; Ashari, Ridwan A.

    2016-11-01

    In August 2015, Indonesia Center of Volcanology and Geological Hazard Mitigation (CVGHM) recorded of tectonic activities at Mt. Raung with maximum amplitude 2-32 mm and continuing the tremor quakes until the beginning of the 2016 eruption period. Mt. Raung is located at East Java Province, one of most active stratovolcano in Indonesia, typically erupt with explosive eruptions and another deadly hazards such as pyroclastic flow, lahar and volcanic gases. Radar imagery consequently proposes of value device for mapping and assessing of volcano oppurtunities. By this study, we propose InSAR method to observe deformation in Mt. Raung. Interferometric SAR derives the phase difference based on two images of PALSAR-2 observations taken in January 2015 and January 2016. According to the processing of interferometric SAR, those images must be coregistered into a stack, and we selected 2015 imagery as master and the other imagery as slave. We estimate the interferogram result to know the line-of-sight then be flattened by removing the topographic phase an inflating volcano (or any other landform) produces a pattern of concentric fringes in a radar interferogram from which the ffects of viewing geometry and topography have been removed. Finally, we expect the result ofInSAR processing technique to investigate ground deformation of Mt. Raung. It would be a capable and cost-effective way of enhancing the techniques normally used in geodetic monitoring to assess the next eruptive events.

  6. Monitoring water level using Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) images

    Science.gov (United States)

    Stavroulaki, Eleni; Alexakis, Dimitrios D.; Tsanis, Ioannis K.

    2017-04-01

    Interferometric Synthetic Aperture Radar (SAR) methodology can successfully detect phase variations related to water level changes and produce corresponding water level maps. Two lakes located in Western Crete, Greece, namely Lake Kournas and Lake Agia were used as case studies to study water level change with means of SAR interferometry. The change of the water surface in the lake is examined over a period of two years, 2015-2016 using Sentinel 1 IW mode images and in situ water level data. Initially, all the SAR images were preprocessed in terms of atmospheric and radiometric corrections. Various interferograms were developed to study the multi-temporal regime of water level in both lakes. Optical satellite sensor data (Landsat 8) were used to study the vegetation regime and how this affect the interferogram processing. The results denoted the fact that the combination of SAR backscattering intensity and unwrapped phase water level data can provide additional insight into hydrological state. It is also shown that integrated analysis of the backscattering mechanism and interferometric characteristics can considerably enhance the reliability of the water-level retrieval scheme and optimize the capture of hydrological patterns spatial distribution. Keywords: Sentinel-1, interferogram, water level, Backscattering

  7. Polarimetric and Interferometric Synthetic Aperture Radar (Pol-InSAR); a new way to quantify three-dimensional structure of Earth and planetary surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will employ a three phased approach: SAR image formation and calibration. DBSAR polarimetric and interferometric data analysis. PolInSAR algorithm...

  8. Interferometric SAR monitoring of the Vallcebre landslide (Spain using corner reflectors

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2013-04-01

    Full Text Available This paper describes the deformation monitoring of the Vallcebre landslide (Eastern Pyrenees, Spain using the Differential Interferometric Synthetic Aperture Radar (DInSAR technique and corner reflectors (CRs. The fundamental aspects of this satellite-based deformation monitoring technique are described to provide the key elements needed to fully understand and correctly interpret its results. Several technical and logistic aspects related to the use of CRs are addressed including an analysis of the suitability of DInSAR data to monitor a specific landslide, a discussion on the choice of the type of CRs, suggestions for the installation of CRs and a description of the design of a CR network. This is followed by the description of the DInSAR data analysis procedure required to derive deformation estimates starting from the main observables of the procedure, i.e., the interferometric phases. The main observation equation is analysed, discussing the role of each phase component. A detailed discussion is devoted to the phase unwrapping problem, which has a direct impact on the deformation monitoring capability. Finally, the performance of CRs for monitoring ground displacements has been tested in the Vallcebre landslide (Eastern Pyrenees, Spain. Two different periods, which provide interesting results to monitor over time the kinematics of different parts of the considered landslide unit, are analysed and described.

  9. Using Open-Source Components to Process Interferometric TerraSAR-X Spotlight Data

    Directory of Open Access Journals (Sweden)

    Michael Jendryke

    2013-01-01

    Full Text Available We address the processing of interferometric TerraSAR-X and TanDEM-X spotlight data. Processing steps necessary to derive interferograms at high spatial resolution from bi- and monostatic satellite images will be explained. The spotlight image mode is a beam steering technique focusing the antenna on a specific ground area. This results in a linear Doppler shift frequency in azimuth direction, which has to be matched to the master image. While shifting the interpolation kernel in azimuth during resampling, the frequency spectrum of the slave image is aligned to the master image. We show how to process bistatic TanDEM-X images and propose an integrated processing option for monostatic TerraSAR-X data in the Delft Object-oriented Radar Interferometric Software (DORIS. The paper focuses on the implementation of this algorithm for high-resolution spotlight InSAR in a public domain tool; hence, it becomes available to a larger research community. The results are presented for three test areas: Uluru in Australia, Las Vegas in the USA, and Lüneburg in Germany.

  10. Interferometric SAR monitoring of the Vallcebre landslide (Spain) using corner reflectors

    Science.gov (United States)

    Crosetto, M.; Gili, J. A.; Monserrat, O.; Cuevas-González, M.; Corominas, J.; Serral, D.

    2013-04-01

    This paper describes the deformation monitoring of the Vallcebre landslide (Eastern Pyrenees, Spain) using the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique and corner reflectors (CRs). The fundamental aspects of this satellite-based deformation monitoring technique are described to provide the key elements needed to fully understand and correctly interpret its results. Several technical and logistic aspects related to the use of CRs are addressed including an analysis of the suitability of DInSAR data to monitor a specific landslide, a discussion on the choice of the type of CRs, suggestions for the installation of CRs and a description of the design of a CR network. This is followed by the description of the DInSAR data analysis procedure required to derive deformation estimates starting from the main observables of the procedure, i.e., the interferometric phases. The main observation equation is analysed, discussing the role of each phase component. A detailed discussion is devoted to the phase unwrapping problem, which has a direct impact on the deformation monitoring capability. Finally, the performance of CRs for monitoring ground displacements has been tested in the Vallcebre landslide (Eastern Pyrenees, Spain). Two different periods, which provide interesting results to monitor over time the kinematics of different parts of the considered landslide unit, are analysed and described.

  11. Multichannel Along-Track Interferometric SAR Systems: Moving Targets Detection and Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Alessandra Budillon

    2008-01-01

    Full Text Available Along-track interferometric synthetic aperture radar (AT-InSAR systems are used to estimate the radial velocity of targets moving on the ground, starting from the interferometric phases, obtained by the combinations of two complex SAR images acquired by two antennas spatially separated along the platform moving direction. Since the radial velocity estimation obtained from a single-phase interferogram (single-channel suffers from ambiguities, multichannel AT-InSAR systems using more than one interferogram can be used. In this paper, we first analyze the moving target detection problem, evaluating the systems performance in terms of probability of detection and probability of false alarm obtained with different values of target radial velocity, signal-to-clutter ratio, and clutter-to-thermal noise ratio. Then, we analyze the radial velocity estimation accuracy in terms of Cramer-Rao lower bounds and of mean square error values, obtained by using a maximum likelihood estimation technique. We consider the cases of single-baseline and dual-baseline satellite systems, and we evaluate the detection and estimation performance improvement obtained in the dual-baseline case with respect to the single-baseline one. Sensitivity of the presented method with respect to the involved target and system parameters is also discussed.

  12. Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data

    Directory of Open Access Journals (Sweden)

    Aire Olesk

    2016-08-01

    Full Text Available In this study, four models describing the interferometric coherence of the forest vegetation layer are proposed and compared with the TanDEM-X data. Our focus is on developing tools for hemiboreal forest height estimation from single-pol interferometric SAR measurements, suitable for wide area forest mapping with limited a priori information. The multi-temporal set of 19 TanDEM-X interferometric pairs and the 90th percentile forest height maps are derived from Airborne LiDAR Scanning (ALS, covering an area of 2211 ha of forests over Estonia. Three semi-empirical models along with the Random Volume over Ground (RVoG model are examined for applicable parameter ranges and model performance under various conditions for over 3000 forest stands. This study shows that all four models performed well in describing the relationship between forest height and interferometric coherence. Use of an advanced model with multiple parameters is not always justified when modeling the volume decorrelation in the boreal and hemiboreal forests. The proposed set of semi-empirical models, show higher robustness compared to a more advanced RVoG model under a range of seasonal and environmental conditions during data acquisition. We also examine the dynamic range of parameters that different models can take and propose optimal conditions for forest stand height inversion for operationally-feasible scenarios.

  13. Three-dimensional Reconstruction Method Study Based on Interferometric Circular SAR

    Directory of Open Access Journals (Sweden)

    Hou Liying

    2016-10-01

    Full Text Available Circular Synthetic Aperture Radar (CSAR can acquire targets’ scattering information in all directions by a 360° observation, but a single-track CSAR cannot efficiently obtain height scattering information for a strong directive scatter. In this study, we examine the typical target of the three-dimensional circular SAR interferometry theoryand validate the theory in a darkroom experiment. We present a 3D reconstruction of the actual tank metal model of interferometric CSAR for the first time, verify the validity of the method, and demonstrate the important potential applications of combining 3D reconstruction with omnidirectional observation.

  14. Monitoring delta subsidence with Interferometric Synthetic Aperture Radar (InSAR)

    Science.gov (United States)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2014-12-01

    Can subsidence in river deltas be monitored in near real-time at the spatial and temporal resolution needed for informing critical management decisions? Interferometric Synthetic Radar Aperture (InSAR) is a satellite-based technique that can map ground deformation with millimeter-scale vertical resolution over thousands of square kilometers. InSAR has enormous potential to shed light on the dynamics of actively subsiding deltas, but the technique is not commonly applied outside of major cities due to the difficulty of performing InSAR in wet, vegetated settings. Given these limitations, how can InSAR best serve the global effort to monitor sinking deltas? Here, an overview of InSAR processing is provided that addresses delta-specific challenges, including frequent cloud-cover in tropical areas; noisy signals in wetlands and flooded fields; dense forests that interact unpredictably with different radar wavelengths; flat landscapes that hinder image stacking algorithms; rapid urban development that can render Digital Elevation Models (DEMs) inaccurate; and a lack of in situ GPS (Global Positioning System) receivers for InSAR calibration. InSAR has unique value for monitoring subsidence in deltas, and some natural and anthropogenic drivers of subsidence can be resolved by InSAR. High-resolution InSAR measurements from the Ganges-Brahmaputra Delta (GBD) are then presented and validated against GPS data. Surface motion is shown to reflect subsurface stratigraphy, and sediment compaction is shown to be the most important factor in this delta on short (non-tectonic) timescales. Average compaction rates throughout the eastern delta range from 0 to > 18 mm/y, varying by more than an order of magnitude depending on the ages and grain sizes of surface and subsurface sediment layers. Fastest subsidence is observed in Holocene organic-rich mud, and slowest subsidence is observed along the Meghna River and in areas with surface or subsurface sand deposits. Although groundwater

  15. Wavemill Product Assessment- Defining Products and Evaluating Potential Performance from a Novel Spaceborne Interferometric SAR

    Science.gov (United States)

    Cotton, P. D.; Gommenginger, C.; Martin, A.; Marquez, J.; Burbidge, G.; Quilfen, Y.; Chapron, B.; Reppucci, A.; Buck, C.

    2016-08-01

    Ocean Surface Currents are one of the most important ocean properties for oceanographers and operators in the maritime domain. Improved monitoring of ocean currents is systematically the number one requirement that emerges from any science or end user requirement surveys.Wavemill is a novel hybrid interferometric SAR system first proposed by ESA/ESTEC [Buck, 2005]. It offers the possibility of generating two-dimensional wide swath, high resolution, high precision maps of surface current vectors and ocean topography [Buck et al., 2009]. Based on a single spacecraft, it avoids the difficulties of synchronisation and baseline estimation associated with other interferometric SAR systems based on two or more satellites (e.g. the "cartwheel" or "helix" concept).The Wavemill concept has developed steadily since its first inception in 2005. A number of Wavemill studies in recent years have gradually put together facts and figures to support the case for Wavemill as a possible space-borne mission.The Wavemill Product Assessment study (WaPA) aimed to define the scientific capabilities and limitations of a spaceborne Wavemill instrument in preparation for a possible submission of the Wavemill concept as a candidate Earth Explorer Core mission. The WaPA project team brought together expert scientists and engineers in the field of SAR imaging of ocean currents, and included the National Oceanography Centre (UK), Starlab (Spain), IFREMER (France) and Airbus Defence and Space (UK). Overall project management was provided by Satellite Oceanographic Consultants (UK). The approach taken included:- A review of SAR imaging of ocean currents in along-track interferometric mode to learn from previous experiments and modelling what key phenomena need to be accounted for to determine the true performance of a spaceborne Wavemill system- Validation of proposed Wavemill primary products based on Wavemill airborne proof-of-concept data and numerical simulations to determine the capabilities

  16. Integrated Analysis of Interferometric SAR, Satellite Altimetry and Hydraulic Modeling to Quantify Louisiana Wetland Dynamics

    Science.gov (United States)

    Lee, Hyongki; Kim, Jin-woo; Lu, Zhong; Jung, Hahn Chul; Shum, C. K.; Alsdorf, Doug

    2012-01-01

    Wetland loss in Louisiana has been accelerating due primarily to anthropogenic and nature processes, and is being advocated as a problem with national importance. Accurate measurement or modeling of wetland-wide water level changes, its varying extent, its storage and discharge changes resulting in part from sediment loads, erosion and subsidence are fundamental to assessment of hurricane-induced flood hazards and wetland ecology. Here, we use innovative method to integrate interferometric SAR (InSAR) and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identi:fy double-bonnce backscattering areas in the wetland. Envisat radar altimeter-measured 18- Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (approx.40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-l C-band InSAR are then integrated with Envisat radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. Furthermore, we compare our water elevation changes with 2D flood modeling from LISFLOOD hydrodynamic model. Our study demonstrates that this new technique allows retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  17. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  18. Filtering of Interferometric SAR Phase Images as a Fuzzy Matching-Pursuit Blind Estimation

    Directory of Open Access Journals (Sweden)

    Bianchini Massimo

    2005-01-01

    Full Text Available We present an original application of fuzzy logic to restoration of phase images from interferometric synthetic aperture radar (InSAR, which are affected by zero-mean uncorrelated noise, whose variance depends on the underlying coherence, thereby yielding a nonstationary random noise process. Spatial filtering of the phase noise is recommended, either before phase unwrapping is accomplished, or simultaneously with it. In fact, phase unwrapping basically relies on a smoothness constraint of the phase field, which is severely hampered by the noise. Space-varying linear MMSE estimation is stated as a problem of matching pursuit, in which the estimator is obtained as an expansion in series of a finite number of prototype estimators, fitting the spatial features of the different statistical classes encountered, for example, fringes and steep slope areas. Such estimators are calculated in a fuzzy fashion through an automatic training procedure. The space-varying coefficients of the expansion are stated as degrees of fuzzy membership of a pixel to each of the estimators. Neither a priori knowledge on the noise variance is required nor particular signal and noise models are assumed. Filtering performances on simulated phase images show a steady SNR improvement over conventional box filtering. Applications of the proposed filter to interferometric phase images demonstrate a superior ability of restoring fringes yet preserving their discontinuities, together with an effective noise smoothing performance, irrespective of locally varying coherence characteristics.

  19. The ZpiM algorithm: a method for interferometric image reconstruction in SAR/SAS.

    Science.gov (United States)

    Dias, José M B; Leitao, José M N

    2002-01-01

    This paper presents an effective algorithm for absolute phase (not simply modulo-2-pi) estimation from incomplete, noisy and modulo-2pi observations in interferometric aperture radar and sonar (InSAR/InSAS). The adopted framework is also representative of other applications such as optical interferometry, magnetic resonance imaging and diffraction tomography. The Bayesian viewpoint is adopted; the observation density is 2-pi-periodic and accounts for the interferometric pair decorrelation and system noise; the a priori probability of the absolute phase is modeled by a compound Gauss-Markov random field (CGMRF) tailored to piecewise smooth absolute phase images. We propose an iterative scheme for the computation of the maximum a posteriori probability (MAP) absolute phase estimate. Each iteration embodies a discrete optimization step (Z-step), implemented by network programming techniques and an iterative conditional modes (ICM) step (pi-step). Accordingly, the algorithm is termed ZpiM, where the letter M stands for maximization. An important contribution of the paper is the simultaneous implementation of phase unwrapping (inference of the 2pi-multiples) and smoothing (denoising of the observations). This improves considerably the accuracy of the absolute phase estimates compared to methods in which the data is low-pass filtered prior to unwrapping. A set of experimental results, comparing the proposed algorithm with alternative methods, illustrates the effectiveness of our approach.

  20. Surface Deformation of Los Humeros Caldera, Mexico, Estimated by Interferometric Synthetic Aperture Radar (InSAR).

    Science.gov (United States)

    Santos Basurto, R.; Lopez Quiroz, P.; Carrasco Nuñez, G.; Doin, M. P.

    2014-12-01

    Los Humeros caldera is located in the eastern part of the Trans-Mexican Volcanic Belt, to the north of the state of Puebla and bordering the west side of the state of Veracruz. The study of the caldera, is of great interest because there is a geothermal field currently working inside of it. In fact, Los Humeros, is the third more important geothermal field in Mexico. In this work, we used InSAR to estimate the surface deformation on the caldera, aiming to contribute to its modeling and to help preventing subsidence related hazards on the geothermal field and surroundings. On this study, we calculated 34 interferograms from 21 SAR images of the ENVISAT European Space Agency Mission. The analysis of the interferograms, allow us to detect, decorrelation of the interferometric signal increased, when time spans were greater than 70 days. Also, for those with good signal correlation, the atmospheric signal dominated the interferogram, masking completely the deformation. Moreover, residual orbital ramps were detected, in some of the calculated interferograms. An algorithm capable to remove all the interferogram signal contributions but the deformation related, has been implemented. Resulting deformation and its correlation with several variables like the geology, the hydrogeology and the seismic records, were analysed through its integration in a Geographic Information System.

  1. Study of a passive companion microsatellite to the SAOCOM-1B satellite of Argentina, for bistatic and interferometric SAR applications

    Science.gov (United States)

    Barbier, Christian; Derauw, Dominique; Orban, Anne; Davidson, Malcolm W. J.

    2014-10-01

    We report the results of a preparatory study aimed at exploring candidate applications that could benefit from a passive micro-satellite accompanying the L-band SAOCOM-1B satellite of Argentina, and to carry out a limited demonstration, based on data acquired during ESA airborne campaigns, of selected applications. In a first step of the study, the potential applications were identified and prioritized based on the mission context and strategic applications, scientific need, and feasibility. The next step of the study was to carry out some demonstrations using data sets acquired during the BioSAR 2007-2009, TropiSAR 2009 and IceSAR 2007 campaigns. A P-band InSAR digital elevation model was generated from BioSAR 2007 data. Time-series of interferometric coherence maps were obtained as a tool for change detection and monitoring. PolInSAR processing was carried out on BioSAR 2007 and IceSAR data.

  2. Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits.The method is realized in three steps:(1) measuring surface displacements along the LOS directions of both ascending and descending orbits based on interferometric phases;(2) measuring surface displacements along the azimuth directions of both the ascending and descending orbits based on the SAR amplitude data;and(3) estimating the three-dimensional(3D) surface displacement field by combining the above four independent one-dimensional displacements using the method of least squares and Helmert variance component estimation.We apply the method to infer the 3D surface displacement field caused by the 2003 Bam,Iran,earthquake.The results reveal that in the northern part of Bam the ground surface experienced both subsidence and southwestward horizontal movement,while in the southern part uplift and southeastward horizontal movement occurred.The displacement field thus determined matches the location of the fault very well with the maximal displacements reaching 22,40,and 30 cm,respectively in the up,northing and easting directions.Finally,we compare the 3D displacement field with that simulated from the Okada model.The results demonstrate that the method presented here can be used to generate reliable and highly accurate 3D surface displacement fields.

  3. Demonstration of Interferometric SAR Onboard Processing for Planetary Mapping Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This task will enable future planetary mapping missions through a technique called interferometric synthetic aperture radar, using microwave and triangulation to...

  4. Tropical-Forest Profiles and Biomass from TanDEM-X, Single-Baseline Interferometric SAR: InSAR Performance at Higher Frequencies and Bandwidths

    Science.gov (United States)

    Treuhaft, R. N.; Goncalves, F. G.; Neumann, M.; Keller, M. M.; Santos, J. R.

    2015-12-01

    The principal method for remotely sensing forest biomass, particularly high-biomass tropical forests, is to measure vertical structural properties of the forest and relate them to biomass. Interferometric SAR (InSAR) and lidar are the two principal technologies applied to this task. InSAR profile information is constrained in the traditional, look-averaged analysis, because it measures the vertical Fourier transform of the radar power at one and only one vertical frequency specified by the baseline. Lidar produces a full profile, including all Fourier frequencies—all vertical scales of fluctuation. In TanDEM-X data over tropical forests at the Tapajos National Forest, Brazil, we show the results of potentially improving InSAR's Fourier coverage. This is done by estimating many Fourier frequencies with a single baseline, based on the assumption that sampling of the phase height of small (~1.5 m x 2.5 m) looks of TanDEM-X is equivalent to sampling the vertical structure of the forest; a spatial ergodicity. We show a similarity between the distribution of InSAR look-phase-heights (LPH) and lidar and field profiles over 0.25-ha areas. Using Fourier transforms of the histogram of LPH over 0.25 ha areas, biomass estimation improved by about 17% over using InSAR coherence and mean forest height, making it competitive with some lidar results. The RMS of biomasses estimated about field biomass was 48 Mg/ha, with biomasses as high as 430 Mg/ha, and an average of 174 Mg/ha. Perhaps LPH distributions bear a similarity to lidar and field profiles because shorter wavelengths (~3 cm) can penetrate holes in the canopy to scatter off a sample of the vegetation with each look. This "hole mechanism" favors higher frequencies, which are able to penetrate smaller holes. Because they increase the number of look samples, higher bandwidths are also preferred.

  5. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    Science.gov (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  6. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    Science.gov (United States)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  7. Ground Subsidence over Beijing-Tianjin-Hebei Region during Three Periods of 1992 to 2014 Monitored by Interferometric SAR

    Directory of Open Access Journals (Sweden)

    ZHANG Yonghong

    2016-09-01

    Full Text Available The Beijing-Tianjin-Hebei region suffers the most serious ground subsidence in China, which has caused huge economic losses every year. Therefore, ground subsidence was listed as an important mission in the project of geographic conditions monitoring over Beijing-Tianjin-Hebei launched by the National Administration of Surveying, Mapping and Geoinformation in 2013. In this paper, we propose a methodology of ground subsidence monitoring over wide area, which is entitled "multiple master-image coherent target small-baseline interferometric SAR (MCTSB-InSAR". MCTSB-InSAR is an improved time series InSAR technique with some unique features. SAR datasets used for ground subsidence monitoring over the Beijing-Tianjin-Hebei region include ERS-1/2 SAR images acquired between 1992 to 2000, ENVISAT ASAR images acquired between 2003 to 2010 and RADARSAT-2 images acquired between 2012 to 2014. This research represents a first ever effort on mapping ground subsidence over Beijing-Tianjin-Hebei region and over such as a long time span in China. In comparison with more than 120 leveling measurements collected in Beijing and Tianjin, the derived subsidence velocity has the accuracy of 8.7mm/year (1992—2000, 4.7mm/year (2003—2010, and 5.4mm/year (2012—2014 respectively. The spatial-temporal characteristics of the development of ground subsidence in Beijing and Tianjin are analyzed. In general, ground subsidence in Beijing kept continuously expanding in the period of 1992 to 2014. While, ground subsidence in Tianjin had already been serious in 1990s, had dramatically expanded during 2000s, and started to alleviate in recent years. The monitoring result is of high significance for prevention and mitigation of ground subsidence disaster, for making development plan, for efficient and effective utilization of water resource, and for adjustment of economic framework of this region. The result also indicates the effectiveness and reliability of the MCTSB-InSAR

  8. Satellite SAR interferometric observations of displacements associated with urban subsidence in Suzhou, Eastern China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    SAR interferometry (InSAR) has a high potential for surface displacement mapping in the range from millimeter to meter. In this paper the potential of ERS-1/2 SAR interferometry for mapping subtle land subsidence has been investigated. A time series of ERS-1/2 SAR data from February 1993 to February 2000 is collected from measurements taken in Suzhou city, Jiangsu Province, China, eight ERS-1/2 SAR images are used to create seven interferograms, and three differential interferograms are produced using the three-pass method, which clearly show the spatial extent of land subsidence. The deformation maps are validated by leveling surveys, the correlation coefficient and standard deviation between them are 0.943 and 0.1706 respectively. Based on seven benchmarks, the subsidence rates are estimated, the overall trends are in close agreement with InSAR results. The results of study show that for the mapping of land subsidence in urban environments InSAR has a strong potential due to its cost-saving, high resolution and accuracy.

  9. Interseismic Deformation of the Altyn Tagh Fault Determined by Interferometric Synthetic Aperture Radar (InSAR Measurements

    Directory of Open Access Journals (Sweden)

    Sen Zhu

    2016-03-01

    Full Text Available The Altyn Tagh Fault (ATF is one of the major left-lateral strike-slip faults in the northeastern area of the Tibetan Plateau. In this study, the interseismic deformation across the ATF at 85°E was measured using 216 interferograms from 33 ENVISAT advanced synthetic aperture radar images on a descending track acquired from 2003 to 2010, and 66 interferograms from 15 advanced synthetic aperture radar images on an ascending track acquired from 2005 to 2010. To retrieve the pattern of interseismic strain accumulation, a global atmospheric model (ERA-Interim provided by the European Center for Medium Range Weather Forecast and a global network orbital correction approach were applied to remove atmospheric effects and the long-wavelength orbital errors in the interferograms. Then, the interferometric synthetic aperture radar (InSAR time series with atmospheric estimation model was used to obtain a deformation rate map for the ATF. Based on the InSAR velocity map, the regional strain rates field was calculated for the first time using the multi-scale wavelet method. The strain accumulation is strongly focused on the ATF with the maximum strain rate of 12.4 × 10−8/year. We also show that high-resolution 2-D strain rates field can be calculated from InSAR alone, even without GPS data. Using a simple half-space elastic screw dislocation model, the slip-rate and locking depth were estimated with both ascending and descending surface velocity measurements. The joint inversion results are consistent with a left-lateral slip rate of 8.0 ± 0.7 mm/year on the ATF and a locking depth of 14.5 ± 3 km, which is in agreement with previous results from GPS surveys and ERS InSAR results. Our results support the dynamic models of Asian deformation requiring low fault slip rate.

  10. Forest parameter estimation using polarimetric SAR interferometry techniques at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kuk

    2013-05-01

    Polarimetric Synthetic Aperture Radar Interferometry (Pol-InSAR) is an active radar remote sensing technique based on the coherent combination of both polarimetric and interferometric observables. The Pol-InSAR technique provided a step forward in quantitative forest parameter estimation. In the last decade, airborne SAR experiments evaluated the potential of Pol-InSAR techniques to estimate forest parameters (e.g., the forest height and biomass) with high accuracy over various local forest test sites. This dissertation addresses the actual status, potentials and limitations of Pol-InSAR inversion techniques for 3-D forest parameter estimations on a global scale using lower frequencies such as L- and P-band. The multi-baseline Pol-InSAR inversion technique is applied to optimize the performance with respect to the actual level of the vertical wave number and to mitigate the impact of temporal decorrelation on the Pol-InSAR forest parameter inversion. Temporal decorrelation is a critical issue for successful Pol-InSAR inversion in the case of repeat-pass Pol-InSAR data, as provided by conventional satellites or airborne SAR systems. Despite the limiting impact of temporal decorrelation in Pol-InSAR inversion, it remains a poorly understood factor in forest height inversion. Therefore, the main goal of this dissertation is to provide a quantitative estimation of the temporal decorrelation effects by using multi-baseline Pol-InSAR data. A new approach to quantify the different temporal decorrelation components is proposed and discussed. Temporal decorrelation coefficients are estimated for temporal baselines ranging from 10 minutes to 54 days and are converted to height inversion errors. In addition, the potential of Pol-InSAR forest parameter estimation techniques is addressed and projected onto future spaceborne system configurations and mission scenarios (Tandem-L and BIOMASS satellite missions at L- and P-band). The impact of the system parameters (e.g., bandwidth

  11. Coastal sea level from inland CryoSat-2 interferometric SAR altimetry

    DEFF Research Database (Denmark)

    Abulaitijiang, Adili; Andersen, Ole Baltazar; Stenseng, Lars

    2015-01-01

    The European Space Agency's CryoSat-2 satellite can operate in a novel synthetic aperture radar interferometric (SARIn) mode where its nominal footprint (swath) is observed by two antennas and the phase difference between the signals is used to determination the exact location of the scatterer th...

  12. Status of a UAVSAR designed for repeat pass interferometry for deformation measurements

    Science.gov (United States)

    Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren; Paul, Rose

    2005-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also known as differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar wilI be designed to operate on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus buitt by Scaled Composites or on a NASA Gulfstream III. The radar design is a fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered along track to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. Other features supported by the antenna include an elevation monopulse option and a pulse-to-pulse resteering capability that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began out as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  13. "Phase-Enhanced" 3D Snapshot ISAR Imaging and Interferometric SAR

    Science.gov (United States)

    2009-12-28

    contained in the two nearly identical in amplitude data sets. References [5-7] provide a good discussion of the basic principles and associated radar ... Interferometrie SAR J.T. Mayhan Group 32 Technical Report ] 135 28 December 2()(W Approved for public release; distribution is unlimited. Lexington...inverse synthetie aperture radar (ISAR) images based on recent developments in high resolution spectral estimation theory. Because this technique requires

  14. Error analysis in the digital elevation model of Kuwait desert derived from repeat pass synthetic aperture radar interferometry

    Science.gov (United States)

    Rao, Kota S.; Al Jassar, Hala K.

    2010-09-01

    The aim of this paper is to analyze the errors in the Digital Elevation Models (DEMs) derived through repeat pass SAR interferometry (InSAR). Out of 29 ASAR images available to us, 8 are selected for this study which has unique data set forming 7 InSAR pairs with single master image. The perpendicular component of baseline (B highmod) varies between 200 to 400 m to generate good quality DEMs. The Temporal baseline (T) varies from 35 days to 525 days to see the effect of temporal decorrelation. It is expected that all the DEMs be similar to each other spatially with in the noise limits. However, they differ very much with one another. The 7 DEMs are compared with the DEM of SRTM for the estimation of errors. The spatial and temporal distribution of errors in the DEM is analyzed by considering several case studies. Spatial and temporal variability of precipitable water vapour is analysed. Precipitable water vapour (PWV) corrections to the DEMs are implemented and found to have no significant effect. The reasons are explained. Temporal decorrelation of phases and soil moisture variations seem to have influence on the accuracy of the derived DEM. It is suggested that installing a number of corner reflectors (CRs) and the use of Permanent Scatter approach may improve the accuracy of the results in desert test sites.

  15. Coastal Sea-Level in Norway from Cryosat-2 Interferometric SAR Altimetry

    Science.gov (United States)

    Idzanovic, Martina; Ophaug, Vegard; Andersen, Ole B.

    2016-08-01

    Conventional altimeters determine the sea surface height with an accuracy of a few centimeters over the open ocean. Although satellite altimetry is a mature discipline, altimeter observations collected over coastal regions suffer from numerous effects which degrade their quality. The Norwegian coast adds further complications, due to many islands, mountains, and deep, narrow fjords. The European Space Agency (ESA) CryoSat-2 satellite carries a Synthetic aperture Interferometric Radar ALtimeter (SIRAL). Due to the SIRAL instrument, CryoSat-2 is able to observe closer to the coast than conventional altimeters. This motivates the current paper, in which we investigate the potential of CryoSat-2 data to provide improved observations in the Norwegian coastal zone. We make use of CryoSat-2 SARIn mode observations and determine sea surface heights at 23 tide gauges along the coast, and compare these with independent sea-level observations. Using standard CryoSat-2 geophysical (tide + IB) corrections gives a standard deviation of differences of ˜15 cm with respect to tide-gauge observations. Replacing standard corrections with refined corrections using tide-gauge information suggests an improvement of ˜5 cm. A special case study at the Stavanger tide-gauge shows an improvement of ˜3 cm comparing CryoSat-2 sites and conventional altimeter sites with respect to the tide-gauge. These results highlight a great development of satellite altimetry in coastal zones and raises expectations for future missions such as Sentinel-3.

  16. Non-interferometric GB-SAR measurement: application to the Vallcebre landslide (eastern Pyrenees, Spain

    Directory of Open Access Journals (Sweden)

    O. Monserrat

    2013-07-01

    Full Text Available In the last decade, ground-based interferometry has proven to be a powerful technique for continuous deformation monitoring of landslides, glaciers, volcanoes, or manmade structures, among others. However, several limitations need to be addressed in order to improve the performances of the technique, especially for long-term monitoring. These limitations include the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component. In this paper, a new procedure to process the amplitude component of ground-based synthetic aperture radar (GB-SAR data acquired in discontinuous mode is compared and validated. The use of geometric features of the amplitude images combined with a matching technique will allow the estimation of the displacements over specific targets. Experimental results obtained during 19 months, in eight different campaigns carried out in the active landslide of Vallcebre (eastern Pyrenees, Spain, were analysed. During the observed period, from February 2010 to September 2011, displacements up to 80 cm were measured. The comparison with other surveying technique shows that the precision of the method is below 1 cm.

  17. Comparison of Small Baseline Interferometric SAR Processors for Estimating Ground Deformation

    Directory of Open Access Journals (Sweden)

    Wenyu Gong

    2016-04-01

    Full Text Available The small Baseline Synthetic Aperture Radar (SAR Interferometry (SBI technique has been widely and successfully applied in various ground deformation monitoring applications. Over the last decade, a variety of SBI algorithms have been developed based on the same fundamental concepts. Recently developed SBI toolboxes provide an open environment for researchers to apply different SBI methods for various purposes. However, there has been no thorough discussion that compares the particular characteristics of different SBI methods and their corresponding performance in ground deformation reconstruction. Thus, two SBI toolboxes that implement a total of four SBI algorithms were selected for comparison. This study discusses and summarizes the main differences, pros and cons of these four SBI implementations, which could help users to choose a suitable SBI method for their specific application. The study focuses on exploring the suitability of each SBI module under various data set conditions, including small/large number of interferograms, the presence or absence of larger time gaps, urban/vegetation ground coverage, and temporally regular/irregular ground displacement with multiple spatial scales. Within this paper we discuss the corresponding theoretical background of each SBI method. We present a performance analysis of these SBI modules based on two real data sets characterized by different environmental and surface deformation conditions. The study shows that all four SBI processors are capable of generating similar ground deformation results when the data set has sufficient temporal sampling and a stable ground backscatter mechanism like urban area. Strengths and limitations of different SBI processors were analyzed based on data set configuration and environmental conditions and are summarized in this paper to guide future users of SBI techniques.

  18. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    Science.gov (United States)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  19. Detecting and Measuring Land Subsidence in Houston-Galveston, Texas using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System Data, 2012-2016

    Science.gov (United States)

    Reed, A.; Baker, S.

    2016-12-01

    Several cities in the Houston-Galveston (HG) region in Texas have subsided up to 13 feet over several decades due to natural and anthropogenic processes [Yu et al. 2014]. Land subsidence, a gradual sinking of the Earth's surface, is an often human-induced hazard and a major environmental problem expedited by activities such as mining, oil and gas extraction, urbanization and excessive groundwater pumping. We are able to detect and measure subsidence in HG using interferometric synthetic aperture radar (InSAR) and global positioning systems (GPS). Qu et al. [2015] used ERS, Envisat, and ALOS-1 to characterize subsidence in HG from 1995 to 2011, but a five-year gap in InSAR measurements exists due to a lack of freely available SAR data. We build upon the previous study by comparing subsidence patterns detected by Sentinel-1 data starting in July 2015. We used GMT5SAR to generate a stack of interferograms with perpendicular baselines less than 100 meters and temporal baselines less than 100 days to minimize temporal and spatial decorrelation. We applied the short baseline subset (SBAS) time series processing using GIAnT and compared our results with GPS measurements. The implications of this work will strengthen land subsidence monitoring systems in HG and broadly aid in the development of effective water resource management policies and strategies.

  20. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs

    Science.gov (United States)

    Zhang, Xiaojie; Zeng, Qiming; Jiao, Jian; Zhang, Jingfa

    2016-01-01

    Repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is a technique that can be used to generate DEMs. But the accuracy of InSAR is greatly limited by geometrical distortions, atmospheric effect, and decorrelations, particularly in mountainous areas, such as western China where no high quality DEM has so far been accomplished. Since each of InSAR DEMs generated using data of different frequencies and baselines has their own advantages and disadvantages, it is therefore very potential to overcome some of the limitations of InSAR by fusing Multi-baseline and Multi-frequency Interferometric Results (MMIRs). This paper proposed a fusion method based on Extended Kalman Filter (EKF), which takes the InSAR-derived DEMs as states in prediction step and the flattened interferograms as observations in control step to generate the final fused DEM. Before the fusion, detection of layover and shadow regions, low-coherence regions and regions with large height error is carried out because MMIRs in these regions are believed to be unreliable and thereafter are excluded. The whole processing flow is tested with TerraSAR-X and Envisat ASAR datasets. Finally, the fused DEM is validated with ASTER GDEM and national standard DEM of China. The results demonstrate that the proposed method is effective even in low coherence areas.

  1. Using InSAR Coherence to Map Stand Age in a Boreal Forest

    Directory of Open Access Journals (Sweden)

    Naiara Pinto

    2012-12-01

    Full Text Available The interferometric coherence parameter γ estimates the degree of correlation between two Synthetic Aperture Radar (SAR images and can be influenced by vegetation structure. Here, we investigate the use of repeat-pass interferometric coherence γ to map stand age, an important parameter for the study of carbon stocks and forest regeneration. In August 2009 NASA’s L-band airborne sensor UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar acquired zero-baseline data over Quebec with temporal separation ranging between 45 min and 9 days. Our analysis focuses on a 66 km2 managed boreal forest and addresses three questions: (i Can coherence from L-band systems be used to model forest age? (ii Are models sensitive to weather events and temporal baseline? and (iii How is model accuracy impacted by the spatial scale of analysis? Linear regression models with 2-day baseline showed the best results and indicated an inverse relationship between γ and stand age. Model accuracy improved at 5 ha scale (R2 = 0.75, RMSE = 5.3 as compared to 1 ha (R2 = 0.67, RMSE = 5.8. Our results indicate that coherence measurements from L-band repeat-pass systems can estimate forest age accurately and with no saturation. However, empirical model relationships and their accuracy are sensitive to weather events, temporal baseline, and spatial scale of analysis.

  2. A Methodology to Validate the InSAR Derived Displacement Field of the September 7th, 1999 Athens Earthquake Using Terrestrial Surveying. Improvement of the Assessed Deformation Field by Interferometric Stacking

    Science.gov (United States)

    Kotsis, Ioannis; Kontoes, Charalabos; Paradissis, Dimitrios; Karamitsos, Spyros; Elias, Panagiotis; Papoutsis, Ioannis

    2008-01-01

    The primary objective of this paper is the evaluation of the InSAR derived displacement field caused by the 07/09/1999 Athens earthquake, using as reference an external data source provided by terrestrial surveying along the Mornos river open aqueduct. To accomplish this, a processing chain to render comparable the leveling measurements and the interferometric derived measurements has been developed. The distinct steps proposed include a solution for reducing the orbital and atmospheric interferometric fringes and an innovative method to compute the actual InSAR estimated vertical ground subsidence, for direct comparison with the leveling data. Results indicate that the modeled deformation derived from a series of stacked interferograms, falls entirely within the confidence interval assessed for the terrestrial surveying data. PMID:27879926

  3. A Methodology to Validate the InSAR Derived Displacement Field of the September 7th, 1999 Athens Earthquake Using Terrestrial Surveying. Improvement of the Assessed Deformation Field by Interferometric Stacking

    Directory of Open Access Journals (Sweden)

    Ioannis Papoutsis

    2008-06-01

    Full Text Available The primary objective of this paper is the evaluation of the InSAR derived displacement field caused by the 07/09/1999 Athens earthquake, using as reference an external data source provided by terrestrial surveying along the Mornos river open aqueduct. To accomplish this, a processing chain to render comparable the leveling measurements and the interferometric derived measurements has been developed. The distinct steps proposed include a solution for reducing the orbital and atmospheric interferometric fringes and an innovative method to compute the actual InSAR estimated vertical ground subsidence, for direct comparison with the leveling data. Results indicate that the modeled deformation derived from a series of stacked interferograms, falls entirely within the confidence interval assessed for the terrestrial surveying data.

  4. Constraints on deformation of Hekla volcano, Iceland, 2011-2014, from time-series interferometric analysis of COSMO-SkyMed SAR data and Singular Spectrum Analysis (SSA)

    Science.gov (United States)

    Dumont, Stéphanie; Sigmundsson, Freysteinn; Parks, Michelle; Ófeigsson, Benedikt; Bagnardi, Marco; Hooper, Andy; Einarsson, Páll; Wittmann, Werner

    2015-04-01

    Hekla volcano is one of the most active volcanoes in Iceland with 18 summit eruptions during the last 1100 years. Since 1970, the volcano has erupted approximatively every 10 years: in 1980-1981, 1991 and 2000. A special feature of Hekla volcano is its aseismic behavior except within 2 hours before these eruptions. However, in 2013 and 2014, some seismic swarms were detected within a 5km radius centered on the volcano, which is unusual for any time period between eruptions. No change in the ground deformation (continuous borehole strainmeter and ground-based GPS), was observed during these events. This year, will be the fifteenth year without an eruption at Hekla, the extended period (since the last eruption) raises the following question: Has the magma plumbing system or the rate of melt supply changed since the last eruption? What is the state of the volcano? What does it imply for its eruptive cycle? To address these questions, we study ground deformation around Hekla volcano using time-series analysis. We analyzed COSMO-SkyMed SAR data acquired between 2011 and 2014 using the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) approach for both ascending and descending configurations. As highlighted by previous studies of ground deformation around Hekla, the small deformation rate distributed over a large area increases the importance of the noise reduction process. Once the signal to noise ratio is improved, both time-series display a dominant subsidence signal. The subsiding areas correlate with lava flows extruded during the 2000 eruption. A small inflation signal is more difficult to substantiate from the SAR data alone. For this reason further investigation of source characteristics using a Singular Spectrum Analysis (SSA) is required. SSA is an empirical based decomposition of the signal. This decomposition is applied on a trajectory matrix, called a Hankel matrix (similar to a cross-lag correlation matrix). This method enables the

  5. A Methodology to Validate the InSAR Derived Displacement Field of the September 7th, 1999 Athens Earthquake Using Terrestrial Surveying. Improvement of the Assessed Deformation Field by Interferometric Stacking

    OpenAIRE

    Ioannis Papoutsis; Panagiotis Elias; Spyros Karamitsos; Dimitrios Paradissis; Charalabos Kontoes; Ioannis Kotsis

    2008-01-01

    The primary objective of this paper is the evaluation of the InSAR derived displacement field caused by the 07/09/1999 Athens earthquake, using as reference an external data source provided by terrestrial surveying along the Mornos river open aqueduct. To accomplish this, a processing chain to render comparable the leveling measurements and the interferometric derived measurements has been developed. The distinct steps proposed include a solution for reducing the orbital and atmospheric inter...

  6. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR)

    Indian Academy of Sciences (India)

    Nishant Gupta; Tajdarul H Syed; Ashiihrii Athiphro

    2013-10-01

    Coal fires in the Jharia coalfield pose a serious threat to India’s vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10–27.8 mm), low (0–10 mm) and upliftment (−10–0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.

  7. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR)

    Science.gov (United States)

    Gupta, Nishant; Syed, Tajdarul H.; Athiphro, Ashiihrii

    2013-10-01

    Coal fires in the Jharia coalfield pose a serious threat to India's vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10-27.8 mm), low (0-10 mm) and upliftment (-10-0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.

  8. Forest Height and Ground Topography at L-Band from an Experimental Single-Pass Airborne Pol-InSAR System

    Science.gov (United States)

    Mercer, B.; Zhang, Q.; Schwaebisch, M.; Denbina, M.; Cloude, S.

    2009-04-01

    Many applications require bare-earth Digital Terrain Models (DTMs) in the presence of forest canopy. L-Band is an attractive candidate, but the derived interferometric phase represents a combination of ground and volume scattering contributions from the canopy above. The use of PolInSAR techniques, and the Random Volume Over Ground (RVOG) Model has had considerable success in model inversion studies where the objective has been to extract tree height. A major problem for the robust application of this technique is the presence of temporal decorrelation, caused by the use of repeat-pass interferometry. In this paper we will present the current results of canopy height and DTM estimation in forested areas using an experimental airborne, single-pass, L-Band PolInSAR system for which temporal decorrelation is not an issue.

  9. High Resolution Processing with an Active Phased Array SAR

    NARCIS (Netherlands)

    Nijenboer, F.J.; Otten, M.P.G.

    1999-01-01

    The Dutch PHARUS system is a polarimetric active phased array SAR capable of performing advanced SAR modes. Advanced SAR modes that are being investigated are: spotlight SAR, sliding spotlight SAR, stepped frequency SAR and interferometric SAR. The flight experiments and automatic beam steering

  10. InSAR Geodesy: The Next Phase

    Science.gov (United States)

    Simons, M.

    2016-12-01

    Published in 1993, the first prominent geophysical applications of repeat pass Interferometric Synthetic Aperture Radar (InSAR) demonstrated spatially continuous imaging of the velocity of a remote ice stream in Antarctica and the ground displacement from a large earthquake in California. These studies heralded comprehensive assessments of rapid changes in the ice sheets and novel perspectives on earthquake source physics, all enabled by a new era in geodetic imaging with sub-centimeter sensitivity, meter-scale spatial resolution and expansive coverage. Since 1993, the promise of InSAR has been to provide deformation measurements "everywhere and all the time". Indeed, the new generation of satellites are already providing shorter revisit times and the gradual move to constellations of nearly identical satellites allows sub-weekly revisits at selected radar frequencies for many regions of interest. This increase in temporal sampling has prompted the geodetic community to develop a variety of InSAR time series methods and corrections techniques to mitigate the impact of path delays accrued in the atmosphere, all while inferring one or more components of the 3D time-dependent motions of Earth's solid surface. We illustrate these capabilities with recent studies that include detection of shallow aseismic slip transients on a major strike slip fault, dynamics of a subglacial eruption, the signature of aquifer management, mapping of rapid aseismic fault slip following a major earthquake and the long-distance response of ice stream motion to ocean tides. The increased sampling rate of observations allows us to improve our sensitivity to small amplitude deformation processes, separate overlapping physical processes by their different spatio-temporal signatures, and increase the general utility of imaging geodesy for rapid disaster response. At the same time, we need to rethink how data is managed for users with different capabilities - a critical challenge as we aim for a

  11. Speckle filtering in satellite SAR change detection imagery

    NARCIS (Netherlands)

    Dekker, R.J.

    1998-01-01

    Repeat-pass Synthetic Aperture Radar (SAR) imagery is useful for change detection. A disadvantage of SAR is the system-inherent speckle noise. This can be reduced by filtering. Various filter types and methods are described in the literature, but not one fits the speckle noise in change detection

  12. Three-dimensional surface reconstruction from multistatic SAR images.

    Science.gov (United States)

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.

  13. STANDWISE CHANGE DETECTION FOR GROWING STOCK USING REPEAT-PASS ALOS PALSAR / PALSAR-2 DATA

    Directory of Open Access Journals (Sweden)

    M. –G. Hong

    2016-06-01

    Full Text Available This study demonstrates the possibility of detecting the changes of growing stocks in mountainous forest stands derived from ALOS PALSAR and PALSAR-2 images. The ALOS PALSAR were obtained over the Kwangneung Experiment Forest (KEF, Korea during the period of nineteen and a half months from the April 26, 2009 to December 12, 2010, whereas the PALSAR-2 data were acquired on the April 7, 2015. The KEF test site comprises 58 stands, which cover approximately 1,000ha and have steep slope topography. Owing to topographic effects of SAR data in mountainous areas, the DEM-assisted topographic normalized backscattering coefficient γ0 was applied to the evaluation of the relationships between the ALOS PALSAR / PALSAR-2 HV backscatter and the field inventory–based stand stock volume. The results indicate that: 1 the γ0 values for the volume obtained from ALOS PALSAR data on December 12, 2010 show a gradual increase higher than those computed from the data on April 26, 2009, here the γ0 value increases in accordance with an increase in the volume: 2 the γ0 values determined from the PALSAR-2 data increase with the same inventory-based volume, when compared with those computed from both ALOS PALSAR data. They also increase substantially as the values of the volume rise, with the exception of the volume interval from 130 m3 ha−1 to 160 m3 ha−1. This is understandable because the volume of the aforementioned interval has been reduced through clearing. Consequently, the γ0–based relationship between PALSAR-2 HV backscatter and growing stock can lead to detecting the stand growth changes in the KEF of Korea.

  14. Pol(In)SAR Soil Moisture Study by using Pi-SAR 2L and GB-SAR Data in Preparation of the upcoming ALOS-2/PALSAR-2 Mission

    Science.gov (United States)

    Koyama, C.; Sato, M.

    2013-12-01

    Recently Earth Observation by means of active microwave is advancing rapidly. The evolution started from first-generation classical single-channel systems like JERS (JAXA), ERS (ESA) or Radarsat-1 (CSA). With the launch of ALOS-1 (JAXA), the first fully polarimetric SAR measurements became available followed by Radarsat-2 (CSA) and TerraSAR-X (DLR), making polarimetric L-, C-, and X-band data available. In Japanese fiscal year 2013, the third generation of SAR satellites will begin with the launch of ALOS-2. The JAXA cutting-edge follow-on mission to the highly acclaimed ALOS-1 will carry the state-of-the-art PALSAR-2 sensor aboard. Due to its much better orbital revisit cycle of only 14 days and its very high spatial resolution (3 m) the system will be highly suitable for interferometric analysis of polarimetric data obtained from repeat-pass acquisitions. The combination of polarimetry and interferometry is probably the most promising approach for a better estimation of geophysical parameters from SAR data acquired over natural terrain and thus will greatly improve the capabilities to estimate soil moisture under all kinds of vegetation with high accuracy and with high temporal and spatial resolutions. In advent of the 3rd generation of Japanese SAR EO satellites, our group conducts a variety of fundamental research on low-frequency SAR surface scattering/interactions. Here, we present first results from soil moisture experiments based on fully polarimetric GB-SAR (Tohoku University) and Pi-SAR 2L (JAXA) measurements. These experiments comprise investigations of the effective soil moisture measuring depth of L-band SAR. The experimental set-up consists of an array of receiving di-pole antennas installed in different depths to quantify the penetration (and reflection) capabilities of the incoming EM waves. We use a fully polarimetric GB-SAR system based on a high-end VNA capable of coherent measurement of the [S2] scattering matrix. It uses 2 large horn antennas

  15. Detecting, mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling techniques

    Indian Academy of Sciences (India)

    R S Chatterjee; Shailaja Thapa; K B Singh; G Varunakumar; E V R Raju

    2015-08-01

    The study aims at detection, mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne DInSAR, GPS and precision levelling techniques. Using multi-frequency C- and L-band DInSAR, both slowly and rapidly subsiding areas were identified and DInSAR-based subsidence maps were prepared. C-band DInSAR was found useful for detection of slowly subsiding areas whereas L-band DInSAR for rapidly subsiding and/or adverse land cover areas. Due to dynamic nature of mining and adverse land cover, temporal decorrelation poses a serious problem particularly in C-band DInSAR. Specially designed InSAR coherence guided adaptive filtering was found useful to highlight the deformation fringes. Collateral GPS and levelling observations were conducted in three test sites to validate DInSAR measurements and to determine the net displacement vectors. We observed an appreciable horizontal displacement component of land subsidence in all the test sites. For comparison of results, we calculated InSAR coherence weighted LOS displacement rates from the unwrapped differential interferograms of smaller spatial subsets and LOS projected ground-based displacement rates in three test sites. We found good agreement between DInSAR and ground-based measurements except for C-band observation in Dobari test site primarily due to large difference in observation periods and temporally inconsistent land subsidence. Collateral spaceborne and ground-based observations were also found useful for characterization of subsidence phenomena to determine net displacement vector and horizontal displacement component. In coal mining areas with spatially scattered and temporally irregular land subsidence phenomena, the adopted methodology can be used successfully for detection, mapping and monitoring of the subsiding areas vulnerable to future collapse. This will facilitate efficient planning and designing of surface infrastructures and other developmental structures in the mining

  16. 干涉合成孔径雷达及其在火山研究中的应用(第一部分:InSAR原理)%Interferometric synthetic aperture radar (InSAR) and its applications to study volcanoes(part 1: Principles of InSAR)

    Institute of Scientific and Technical Information of China (English)

    路中; 张继贤

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) is a remote sensing technique capable of measuring ground surface deformation with sub-centimeter precision and spatial resolution in tens-of-meters over a large region. This paper reviews the basics of InSAR technique, illustrates how InSAR works, and discusses issues related to InSAR deformation mapping.%干涉合成孔径雷达是一项能够对地表变形进行测量的遥感技术,在一个巨大区域内,它的变形测量精度可达亚厘米级,而其空间分辨率则在数十米以内.本文回顾了InSAR技术的基本理论,阐明了它的工作原理,并对应用InSAR技术进行地表变形测量的相关问题进行了讨论.

  17. InSAR Scientific Computing Environment

    Science.gov (United States)

    Rosen, Paul A.; Sacco, Gian Franco; Gurrola, Eric M.; Zabker, Howard A.

    2011-01-01

    This computing environment is the next generation of geodetic image processing technology for repeat-pass Interferometric Synthetic Aperture (InSAR) sensors, identified by the community as a needed capability to provide flexibility and extensibility in reducing measurements from radar satellites and aircraft to new geophysical products. This software allows users of interferometric radar data the flexibility to process from Level 0 to Level 4 products using a variety of algorithms and for a range of available sensors. There are many radar satellites in orbit today delivering to the science community data of unprecedented quantity and quality, making possible large-scale studies in climate research, natural hazards, and the Earth's ecosystem. The proposed DESDynI mission, now under consideration by NASA for launch later in this decade, would provide time series and multiimage measurements that permit 4D models of Earth surface processes so that, for example, climate-induced changes over time would become apparent and quantifiable. This advanced data processing technology, applied to a global data set such as from the proposed DESDynI mission, enables a new class of analyses at time and spatial scales unavailable using current approaches. This software implements an accurate, extensible, and modular processing system designed to realize the full potential of InSAR data from future missions such as the proposed DESDynI, existing radar satellite data, as well as data from the NASA UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar), and other airborne platforms. The processing approach has been re-thought in order to enable multi-scene analysis by adding new algorithms and data interfaces, to permit user-reconfigurable operation and extensibility, and to capitalize on codes already developed by NASA and the science community. The framework incorporates modern programming methods based on recent research, including object-oriented scripts controlling legacy and

  18. A novel method for surface exploration: Super-resolution restoration of Mars repeat-pass orbital imagery

    Science.gov (United States)

    Tao, Y.; Muller, J.-P.

    2016-02-01

    Higher resolution imaging data of planetary surfaces is considered desirable by the international community of planetary scientists interested in improving understanding of surface formation processes. However, given various physical constraints from the imaging instruments through to limited bandwidth of transmission one needs to trade-off spatial resolution against bandwidth. Even given optical communications, future imaging systems are unlikely to be able to resolve features smaller than 25 cm on most planetary bodies, such as Mars. In this paper, we propose a novel super-resolution restoration technique, called Gotcha-PDE-TV (GPT), taking advantage of the non-redundant sub-pixel information contained in multiple raw orbital images in order to restore higher resolution imagery. We demonstrate optimality of this technique in planetary image super-resolution restoration with example processing of 8 repeat-pass 25 cm HiRISE images covering the MER-A Spirit rover traverse in Gusev crater to resolve a 5 cm resolution of the area. We assess the "true" resolution of the 5 cm super-resolution restored images using contemporaneous rover Navcam imagery on the surface and an inter-comparison of landmarks in the two sets of imagery.

  19. Integrated analysis of differential interferometric synthetic aperture radar (DInSAR) and geological data for measuring deformation movement of Kaligarang fault, Semarang-Indonesia

    Science.gov (United States)

    Prasetyo, Y.; Fakhrudin, Warasambi, S. M.

    2016-05-01

    Semarang is one of the densely populated city in Central Java which is has Kaligarang's fault. It is lie in Kaligarang River and across several dense urban settlement. The position of Kaligarang's river itself divides in the direction nearly north-south city of Semarang. The impact of the fault can be seen in severals indication such as a land subsidence phenomenon in Tinjomoyo village area which is make impact to house and road destruction. In this research, we have used combination methods between InSAR, DinSAR and geomorphology (geology data) where is this techniques used to identity the fault area and estimate Kaligarang's fault movement velocity. In fault movement velocity observation, we only compute the movement in vertical with neglect horizontal movement. The data used in this study of one pair ALOS PALSAR level 1.0 which was acquired on June 8, 2007and 10 of September 2009. Besides that third ALOS PALSAR earlier, also used data of SRTM DEM 4th version, is used for the correction of the topography. The use of the three methods already mentioned earlier have different functions. For the lnSAR method used for the establishment of a digital model in Semarang. After getting high models digital city of Semarang, the identification process can be done layout, length, width and area of the Kaligarang fault using geomorphology. Results of such identification can be calculated using the rate of deformation and fault movement. From the result generated DinSAR method of land subsidence rate between 3 em to II em. To know the truth measurement that used DinSAR method, is performed with the decline of validation that measured using GPS. After validating obtained standard deviation of 3,073 em. To estimate the Kaligarang's fault pattern and direction is using the geomorphology method. The results that Kaligarang's is an active fault that has fault strike slip as fault pattern. It makes this research is useful because could be used as an inquick assessment in fault

  20. Monitoring and modeling land subsidence at the Cerro Prieto Geothermal Field, Baja California, Mexico, using SAR interferometry

    Science.gov (United States)

    Carnec, Claudie; Fabriol, Hubert

    Images derived from repeat-pass spaceborne interferometric synthetic aperture radar (InSAR) systems offer the possibility of mapping surface deformation of small spatial extent and monitoring its spatio-temporal evolution. A slow local subsidence has been detected at the Cerro Prieto geothermal field from images acquired by the European Space Agency remote sensing satellites ERS-1/2 between 1993 and 1997. Although agricultural activity in the area limited the investigation, interferometric monitoring revealed that the ground deformation is associated with the withdrawal of geothermal fluid and agreed with the leveling data. Modeling of the subsidence was carried out assuming elastic deformation in a half-space from simple point sources, of which five were necessary to reproduce the fringe patterns observed on the interferograms. The depths and locations of three of the sources are compatible with the location of the known reservoir. The study improves prior knowledge of the displacement field and of the mecanisms involved in the subsidence phenomenon.

  1. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model

    KAUST Repository

    Li, Z. W.

    2012-05-01

    The propagation delay when radar signals travel from the troposphere has been one of the major limitations for the applications of high precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR). In this paper, we first present an elevation-dependent atmospheric correction model for Advanced Synthetic Aperture Radar (ASAR—the instrument aboard the ENVISAT satellite) interferograms with Medium Resolution Imaging Spectrometer (MERIS) integrated water vapour (IWV) data. Then, using four ASAR interferometric pairs over Southern California as examples, we conduct the atmospheric correction experiments with cloud-free MERIS IWV data. The results show that after the correction the rms differences between InSAR and GPS have reduced by 69.6 per cent, 29 per cent, 31.8 per cent and 23.3 per cent, respectively for the four selected interferograms, with an average improvement of 38.4 per cent. Most importantly, after the correction, six distinct deformation areas have been identified, that is, Long Beach–Santa Ana Basin, Pomona–Ontario, San Bernardino and Elsinore basin, with the deformation velocities along the radar line-of-sight (LOS) direction ranging from −20 mm yr−1 to −30 mm yr−1 and on average around −25 mm yr−1, and Santa Fe Springs and Wilmington, with a slightly low deformation rate of about −10 mm yr−1 along LOS. Finally, through the method of stacking, we generate a mean deformation velocity map of Los Angeles over a period of 5 yr. The deformation is quite consistent with the historical deformation of the area. Thus, using the cloud-free MERIS IWV data correcting synchronized ASAR interferograms can significantly reduce the atmospheric effects in the interferograms and further better capture the ground deformation and other geophysical signals.

  2. SARS Basics

    Science.gov (United States)

    ... and Resources Related Links Clinician Registry Travelers' Health SARS Basics Fact Sheet Language: English Español (Spanish) Format: ... 3 pages] SARS [3 pages] SARS [3 pages] SARS? Severe acute respiratory syndrome (SARS) is a viral ...

  3. 极化干涉 SAR 森林树高提取算法的对比分析%Comparative Analysis of Forest Height Inversion Based on Polarimetric SAR Interferometric

    Institute of Scientific and Technical Information of China (English)

    李帆; 尚玉双; 杨兆臣

    2016-01-01

    在对极化干涉SAR森林树高反演的DEM差值算法、相干相位-幅度综合反演算法进行分析的基础上,对基于极化干涉相干优化方法的改进算法进行了探讨。利用黑龙江大兴安岭地区的一对ALOS全极化干涉SAR数据进行实验,并对比分析各算法的反演结果。结果表明,在使用改进的算法进行森林树高反演时可以获取精度较高的反演结果,并且在一定程度上提高了森林树高反演的稳定性,为森林树高反演工作的业务化运行提供一定的依据。%Discussed the DEM differencing and the fusion algorithm combined with coherence amplitude algorithm, then analyses the improved algorithm based on polarization interference coherent optimization.Used a pair of ALOS full polarization interference SAR data of Daxing’ anling Prefecture in Heilongjiang province to compare and analyze the results of the discussed inversion algorithms. Results show that high stability and more precision and results of forest tree height inversion can be obtained when using the improved algorithm.Thus, provided certain basis for forest height inversion.

  4. Validation of burst overlapping for ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry

    Science.gov (United States)

    Natsuaki, Ryo; Motohka, Takeshi; Ohki, Masato; Watanabe, Manabu; Suzuki, Shinichi

    2016-10-01

    The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite- 2 (ALOS-2, "DAICHI-2") is the latest L-band spaceborne synthetic aperture radar (SAR). PALSAR-2 observes the world mainly with 10 m resolution / 70 km swath Stripmap mode and 25 m resolution / 350 km swath ScanSAR mode. The 3-m resolution Stripmap mode is mainly used upon Japan. 350 km ScanSAR observation could detect large scale deformation e.g., the Mw 7.8 Gorkha, Nepal earthquake and its aftershocks in 2015. ALOS-2 ScanSAR is the first one that supports ScanSAR-ScanSAR interferometry in L-band spaceborne SAR. However, because of the parameter setting error for the orbit estimation, ALOS-2 PALSAR-2 ScanSAR could achieve little number of interferometric pair until the software modification on February 8, 2015. That is, the burst overlap timing required for the interferometric analysis was insufficient and it depends on the observation date. In this paper, we report the investigation results of this case and discuss the current status of the ALOS-2 ScanSAR InSAR. Some archives achieved before February 8, 2015 can be used for interferometric analysis with after Feb. 8. However, most of them have no interferometric pair. We also report that the archives acquired after February 8, have enough burst overlapping.

  5. Applications of Polarimetric and Interferometric SAR to Environmental Remote Sensing and its Activities: Recent Advances in Extrawideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing and its Applications

    Science.gov (United States)

    2007-02-01

    ii ) mitigating against common “Radio Frequency Interference (RFI)” and intentional “Directive Jamming of Airborne & Space borne POL-IN-SAR Imaging...modal SAR Imaging platforms that support both systems – such as the NASA-JPL AIR/TOP-SAR [106, 121, 122], the DLR E-SAR [223], the ONERA RAMSES SAR...about 35 dB) with calibration sensitivity of 0.1 dB in amplitude and 1º in polarimetric phase; must possess a very high dynamic range; ( ii ) they must

  6. Hydrodynamics of the groundwater-fed Sian Ka'an Wetlands, Mexico, From InSAR and SAR Data

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Hong, S.; Wdowinski, S.

    2008-01-01

    to understand, quantify and predict the wetland dynamics. Remotely sensed Interferometric Synthetic Aperture Radar (InSAR) and Synthetic Aperture Radar (SAR) data offer new opportunities to get hydrodynamic information, which is useful for wetland management. InSAR data produces temporal phase......-changes of the backscattered radar signal, which can be related to the water level changes in vegetated wetlands. SAR data reveals information of surface properties such as the degree of flooding through the amplitude of the backscattered signal. We used RADARSAT-1 InSAR and SAR data to form 36 interferograms and 13 flooding...

  7. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Directory of Open Access Journals (Sweden)

    Cloude Shane R

    2005-01-01

    Full Text Available We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR. Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1 a quantitative assessment of the Pol-InSAR performance, (2 a comparison between different sensor configurations, and (3 an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

  8. General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation.

    Science.gov (United States)

    Vasile, Gabriel; Trouvé, Emmanuel; Ciuc, Mihai; Buzuloiu, Vasile

    2004-08-01

    A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.

  9. Updated progress in theories and applications of spaceborne SAR interferometry

    Science.gov (United States)

    Chen, Yan-Ling; Huang, Cheng; Ding, Xiao-Li; Li, Zhi-Wei

    2006-12-01

    InSAR (Interferometric Synthetic Aperture Radar) and D-InSAR (Differential InSAR) are rapidly developed new technologies of space geodesy during the late 20th century, and now obviously become hot research topics in the field of microwave remote sensing. Compared with the other sensors, InSAR possesses many incomparable advantages such as the capability to work at all-time and under all weather, very high spatial resolution and strong penetrability through the ground surface. This paper introduces general status of SAR, InSAR, D-InSAR technology, and the principles of InSAR and D-InSAR. New theories and the potential problems of (D-)InSAR technology are largely discussed, including multi-baseline interferometry, Pol-InSAR technique, the correction of atmospheric effects, permanent Scatterers method, the synthesization technique between InSAR and GPS, LIDAR etc., and the InSAR parallel algorithm. Then the new applications of InSAR and D-InSAR are described in detail including 3D topographic mapping, deformation monitoring (including surface subsidence, landside monitoring and ITRF's foundation and maintenance, etc.), thematic mapping (including agriculture and forestry, oceanic surveying and flood monitoring, etc.) and meteorology etc.. Finally, the prospect and future trends in InSAR development are summarized.

  10. Activation of the SIGRIS monitoring system for ground deformation mapping during the Emilia 2012 seismic sequence, using COSMO-SkyMed InSAR data

    Directory of Open Access Journals (Sweden)

    Stefano Salvi

    2012-10-01

    Full Text Available On May 20, 2012, at 02:03 UTC, a moderate earthquake of local magnitude, Ml 5.9 started a seismic sequence in the central Po Plain of northern Italy The mainshock occurred in an area where seismicity of comparable magnitude has neither been recorded nor reported in the historical record over the last 1,000 years. The aftershock sequence evolved rapidly near the epicenter, with diminishing magnitudes until May 29, 2012, when at 07:00 UTC a large earthquake of Ml 5.8 occurred 12 km WSW of the mainshock, starting a new seismic sequence in the western area; a total of seven earthquakes with Ml >5 occurred in the area between May 20 and June 3, 2012. Immediately after the mainshock, the Italian Department of Civil Protection requested the Italian Space Agency to activate the Constellation of Small Satellites for Mediterranean Basin Observation (COSMO-SkyMed to provide Interferometric Synthetic Aperture Radar (InSAR coverage of the area. COSMO-SkyMed consists of four satellites in a 16-day repeat-pass cycle, with each carrying the same SAR payload. In the current orbital configuration, within each 16-day cycle, image pairs with temporal baselines of 1, 3, 4 and 8 days can be formed from the images acquired by the four different sensors. Combined with the availability of a wide range of electronically steered antenna beams with incidence angles ranging from about 16˚ to 50˚ at near-range, this capability allows trade-offs between temporal and spatial coverage to be exploited during acquisition planning. A joint team involving the Istituto Nazionale di Geofisica e Vulcanologia (INGV and the Istituto per il Rilevamento Elettromagnetico dell'Ambiente (IREA-CNR was activated to generate InSAR-based scientific products to support the emergency management. In this framework, the ASI and DPC requested that INGV activated the Space-based Monitoring System for Seismic Risk Management (SIGRIS. SIGRIS consists of a hardware/software infrastructure that is

  11. Interferometric Calibration with Natural Distributed Targets

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    Cross-calibration is a fully automated algorithm for calibration of interferometric synthetic aperture radar (IFSAR) data. It has been developed for single-pass interferometry, but the principles may be applicable to multi-pass interferometry, too. The algorithm is based on natural distributed...... targets and it excels by neither requiring surveyed ground control points nor dedicated calibration scenes. However, the parameters to be calibrated must be stable during mapping. The algorithm has been applied to data from the Danish airborne SAR, EMISAR, and the performance has been assessed...

  12. Interferometric synthetic aperture radar imagery of the Gulf Stream

    Science.gov (United States)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  13. Interferometric star tracker Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to develop a high accuracy version of its interferometric star tracker capable of meeting the milli-arcsecond-level pointing...

  14. Interferometric phase reconstruction using simplified coherence network

    Science.gov (United States)

    Zhang, Kui; Song, Ruiqing; Wang, Hui; Wu, Di; Wang, Hua

    2016-09-01

    Interferometric time-series analysis techniques, which extend the traditional differential radar interferometry, have demonstrated a strong capability for monitoring ground surface displacement. Such techniques are able to obtain the temporal evolution of ground deformation within millimeter accuracy by using a stack of synthetic aperture radar (SAR) images. In order to minimize decorrelation between stacked SAR images, the phase reconstruction technique has been developed recently. The main idea of this technique is to reform phase observations along a SAR stack by taking advantage of a maximum likelihood estimator which is defined on the coherence matrix estimated from each target. However, the phase value of a coherence matrix element might be considerably biased when its corresponding coherence is low. In this case, it will turn to an outlying sample affecting the corresponding phase reconstruction process. In order to avoid this problem, a new approach is developed in this paper. This approach considers a coherence matrix element to be an arc in a network. A so-called simplified coherence network (SCN) is constructed to decrease the negative impact of outlying samples. Moreover, a pointed iterative strategy is designed to resolve the transformed phase reconstruction problem defined on a SCN. For validation purposes, the proposed method is applied to 29 real SAR images. The results demonstrate that the proposed method has an excellent computational efficiency and could obtain more reliable phase reconstruction solutions compared to the traditional method using phase triangulation algorithm.

  15. INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR TECHNOLOGY AND GEOMORPHOLOGY INTERPRETATION

    Directory of Open Access Journals (Sweden)

    M. Maghsoudi

    2013-09-01

    Full Text Available Geomorphology is briefly the study of landforms and their formative processes on the surface of the planet earth as human habitat. The landforms evolution and the formative processes can best be studied by technologies with main application in study of elevation. Interferometric Synthetic Aperture Radar (InSAR is the appropriate technology for this application. With phase differences calculations in radar waves, the results of this technology can extensively be interpreted for geomorphologic researches. The purpose of the study is to review the geomorphologic studies using InSAR and also the technical studies about InSAR with geomorphologic interpretations. This study states that the InSAR technology can be recommended to be employed as a fundamental for geomorphology researches.

  16. Interferometric shoreline mapping

    NARCIS (Netherlands)

    Koppen, C.G. van; Groot, J.S.; Vogelzang, J.; Dierikx-Platschorre, Y.

    2000-01-01

    Information on the location and evolution of shorelines is valuable. This information can be obtained from satellite Synthetic Aperture Radar (SAR) imagery. Direct, unsupervised classifications methods give poor results because of the high noise level in SAR images and the scattering properties of (

  17. 2002/2003 IfSAR data for Southern California: Digital Elevation Model (NAVD88)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the collection and processing of topographic elevation point data derived from Interferometric Synthetic Aperture Radar (IfSAR)...

  18. 2002/2003 IfSAR data for Southern California: Radar Reflectance Image

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the collection and processing of topographic elevation point data derived from Interferometric Synthetic Aperture Radar (IfSAR)...

  19. Effect of Medium Symmetries on Limiting the Number of Parameters Estimated with Polarimetric SAR Interferometry

    Science.gov (United States)

    Moghaddam, M.

    1999-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric synthetic aperture radar (SAR) data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of parameters.

  20. Effect of Medium Symmetries on Limiting the Number of Parameters Estimated with Polarimetric SAR Interferometry

    Science.gov (United States)

    Moghaddam, M.

    1999-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric synthetic aperture radar (SAR) data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of parameters.

  1. Landslide Inventory and Monitoring Using Sentinel-1 SAR Imagery

    Science.gov (United States)

    Monserrat, Oriol; Crosetto, Michele; Devanthery, Nuria; Cuevas-Gonzalez, Maria; Barra, Anna; Crippa, Bruno

    2016-08-01

    An important application of differential SAR interferometry (DInSAR) and Persistent Scatterer Interferometry is landslide detection and monitoring. Several studies have been published, which make use of the entire spectrum of SAR data types available in the last 25 years. This paper describes a procedure to update landslide inventory maps using Sentinel-1 data. The paper briefly discusses the main advantages of the Sentinel-1 SAR data. Then it describes the data analysis procedure used to update landslide inventory maps using interferometric data and a number of additional information layers. The effectiveness of the procedure is illustrated by the results of a study area located in the Molise region, in Southern Italy.

  2. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  3. Applications and development of new algorithms for displacement analysis using InSAR time series

    Science.gov (United States)

    Osmanoglu, Batuhan

    -dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform

  4. Analysis of the Effect of Radio Frequency Interference on Repeat Track Airborne InSAR System

    Directory of Open Access Journals (Sweden)

    Ding Bin

    2012-03-01

    Full Text Available The SAR system operating at low frequency is susceptible to Radio Frequency Interference (RFI from television station, radio station, and some other civil electronic facilities. The presence of RFI degrades the SAR image quality, and obscures the targets in the scene. Furthermore, RFI can cause interferometric phase error in repeat track InSAR system. In order to analyze the effect of RFI on interferometric phase of InSAR, real measured RFI signal are added on cone simulated SAR echoes. The imaging and interferometric processing results of both the RFI-contaminated and raw data are given. The effect of real measured RFI signal on repeat track InSAR system is analyzed. Finally, the imaging and interferometric processing results of both with and without RFI suppressed of the P band airborne repeat track InSAR real data are presented, which demonstrates the efficiency of the RFI suppression method in terms of decreasing the interferometric phase errors caused by RFI.

  5. Calibration of a High Resolution Airborne 3-D SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Grinder-Pedersen, Jan; Madsen, S.N.

    1997-01-01

    (EMI). In order to achieve a high geodetic fidelity when using such systems operationally, calibration procedures must be applied. Inaccurate navigation data and system parameters as well as system imperfections must be accounted for. This paper presents theoretical models describing the impact of key......The potential of across-track interferometric (XTI) synthetic aperture radar (SAR) for producing high resolution 3D imagery has been demonstrated by several airborne systems including EMISAR, the dual frequency, polarimetric, and interferometric SAR developed at the Dept. of Electromagnetic Systems...

  6. Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar

    OpenAIRE

    Samsonov, Sergey V.; Lantz, Trevor C.; Kokelj, Steven V; Zhang, Yu

    2016-01-01

    Advancements in radar technology are increasing our ability to detect Earth surface deformation in permafrost environments. In this paper we use satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) to describe the growth of a large, relatively young pingo in the Tuktoyaktuk Coastlands. High-resolution RADARSAT-2 imagery (2011–2014) analyzed with the Multidimensional Small Baseline Subset (MSBAS) DInSAR revealed a maximum 2.7 cm yr−1 of domed uplift locate...

  7. A Case Study of Using External DEM in InSAR DEM Generation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chunxia; GE Linlin; E Dongchen; CHANG Hsingchung

    2005-01-01

    Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation to reduce the errors in data processing. The DEMs generated from repeat-pass InSAR are compared. For steep slopes and severe changes in topography, phase unwrapping quality can be improved by subtracting the phase calculated from an external DEM. It is affirmative that the absolute height accuracy of the InSAR DEM is improved by using external DEM. The data processing was undertaken without the use of ground control points and other manual operation.

  8. Polarimetric SAR Interferometry Evaluation in Mangroves

    Science.gov (United States)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  9. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    Directory of Open Access Journals (Sweden)

    Stephen A. Boppart

    2008-06-01

    Full Text Available Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT, utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR. In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  10. Delta-K Wideband SAR Interferometry for DEM Generation and Persistent Scatterers Using TeraSAR-X

    Science.gov (United States)

    Brcic, Ramon; Eineder, Michael; Bamler, Richard; Steinbrecher, Ulrich; Schulze, Daniel; Metzig, Robert; Papathanassiou, Konstantinos; Nagler, Thomas; Mueller, Florian; Suess, Martin

    2010-03-01

    Wideband SAR systems such as TerraSAR-X allow estimation of the absolute interferometric phase without resorting to error prone phase unwrapping. This is achieved through the delta-k technique that exploits frequency diversity within the range bandwidth to simulate a SAR system with a much longer carrier wavelength. This benefits all interferometric applications including DEM generation and land surface motion determination. Here we present the results of an ESA study (21318/07/NL/HE) into using delta-k absolute phase estimation for DEM generation and PSI (Persistent Scatterer Interferometry). Using TerraSAR- X data, examples from a delta-k DEM generation system are shown which avoid the errors induced by conventional phase unwrapping. For PSI, the possibilities of absolute phase estimation for a single PS are explored in theory and examples where wideband estimation is compared to conventional PSI processing for a stack of acquisitions over Paris.

  11. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry....... The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry....... Thermal control and several calibration loops have been built into the system to ensure system stability and absolute calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key...

  12. Temporal decorrelation model for the bistatic SAR interferometry

    Institute of Scientific and Technical Information of China (English)

    Qilei Zhang; Wenge Chang

    2015-01-01

    This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar (BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar (SAR) interferometry. The study of temporal decorrelation is chal enging, especial y for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry con-figuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model. The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.

  13. First Bistatic Spaceborne SAR Experiments with TanDEM-X

    OpenAIRE

    Rodriguez-Cassola, Marc; Prats, Pau; Schulze, Daniel; Tous-Ramon, Nuria; Steinbrecher, Ulrich; Marotti, Luca; Nanninni, Matteo; Younis, Marwan; Lopez-Dekker, Paco; Zink, Manfred; Reigber, Andreas; Krieger, Gerhard; Moreira, Alberto

    2011-01-01

    TanDEM-X is a high-resolution interferometric mission with the main goal of providing a global and unprecedentedly accurate digital elevation model (DEM) of the Earth surface by means of single-pass X-band SAR interferometry. Despite its usual quasi-monostatic configuration, TanDEM-X is the first genuinely bistatic SAR system in space. During its monostatic commissioning phase, the system has been mainly operated in pursuit monostatic mode. However, some pioneering bistat...

  14. PolinSAR coherence optimisation for deformation measurement in an agricultural region

    CSIR Research Space (South Africa)

    Engelbrecht, Jeanine

    2015-10-01

    Full Text Available aims to address the known limitations of traditional dInSAR in the presence of disturbances to reflected signals due to agricultural activities by testing the polarimetric interferometry (polInSAR) technique for its ability to increase interferometric...

  15. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series

    Directory of Open Access Journals (Sweden)

    Sofia Antonova

    2016-11-01

    Full Text Available Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX imagery with high temporal (11 days and spatial (10 m resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.

  16. On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements

    Science.gov (United States)

    Catani, Filippo; Farina, Paolo; Moretti, Sandro; Nico, Giovanni; Strozzi, Tazio

    2005-03-01

    This paper presents two examples of application of Synthetic Aperture Radar (SAR) interferometry (InSAR) to typical geomorphological problems. The principles of InSAR are introduced, taking care to clarify the limits and the potential of this technique for geomorphological studies. The application of InSAR to the quantification of landform attributes such as the slope and to the estimation of landform variations is investigated. Two case studies are presented. A first case study focuses on the problem of measuring landform attributes by interferometric SAR data. The interferometric result is compared with the corresponding one obtained by a Digital Elevation Model (DEM). In the second case study, the use of InSAR for the estimation of landform variations caused by a landslide is detailed.

  17. Bistatic SAR tomography: processing and experimental results

    OpenAIRE

    Duque Biarge, Sergio; López Dekker, Francisco J.; Merlano Duncan, Juan Carlos; Mallorquí Franquet, Jordi Joan

    2010-01-01

    This paper presents across-track tomography applied to a bistatic geometry with fixed receivers. This kind of geometry can overcome some of the classical monostatic tomography limitations such as temporal decorrelation and irregular baseline distribution. The Remote Sensing Laboratory (RSLab)of the Universitat Politècnica de Catalunya (UPC) has implemented a SAR Bistatic Receiver for INterferometric Applications,SABRINA, with 4-channels. SABRINA has been used to carry out a bistatic tomogr...

  18. SAR Product Improvements and Enhancements - SARprises

    Science.gov (United States)

    2013-09-30

    paper on current fields at Orkney, Scotland, was accepted for publication in IEEE - TGARS and is currently in press (available on IEEE Xplore as Early...Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration, IEEE TGARS, 43, 2494- 2502, 2005. [2] Chapron, B., F...Bight by airborne along-track interferometric SAR, Proc. IGARSS 2002, 1822-1824, IEEE , 2002. [4] Bjerklie, D.M., S.L. Dingman, C.J. Vorosmarty, C.H

  19. VERITAS (Venus Emissivity, Radio Science, InSAR, Topo-graphy And Spectroscopy): A Proposed Discovery Mission

    Science.gov (United States)

    Smrekar, Suzanne; Dyar, Melinda; Hensley, Scott; Helbert, Joern; VERITAS Science Team

    2016-10-01

    VERITAS addresses one of the most fundamental questions in planetary evolution: How Earth-like is Venus? These twin planets diverged down different evolutionary paths, yet Venus may hold lessons for past and future Earth, as well as for Earth-sized exoplanets. VERITAS will search for the mineralogical fingerprints of past water, follow up on the discoveries of recent volcanism and the possible young surface age, and reveal the conditions that have prevented plate tectonics from developing. Collectively these questions address how Venus ended up a sulfurous inferno while Earth became habitable.VERITAS carries the Venus Interferometric Synthetic Aperture Radar (VISAR) and the Venus Emissivity Mapper (VEM), plus a gravity science investigation.The VISAR X-band radar produces: 1) a global digital elevation model (DEM) with 250 m postings, 5 m height accuracy, 2) Synthetic aperture radar (SAR) global imaging with 30 m pixels, 3) SAR imaging at 15 m for targeted areas, and 4) surface deformation from repeat pass interferometry (RPI) at 2 mm height precision for targeted, potentially active areas. VEM [see Helbert abstract] will measure surface emissivity, look for active volcanic flows and outgassing of water over ~78% of the surface using 6 NIR surface bands within 5 atmospheric windows and 8 bands for calibration of clouds, stray light, and water vapor.VERITAS uses Ka-band uplink and downlink to create a global gravity field with 3 mgal accuracy and 145 km resolution (130 spherical harmonic degree and order or d&o) and providing a significantly higher resolution field with much more uniform resolution than that available from Magellan.VERITAS will create a rich data set of high resolution topography, imaging, spectroscopy, and gravity. These co-registered data sets will be on par with those acquired for Mercury, Mars and the Moon that have revolutionized our understanding of these bodies. VERITAS would be a valuable asset for future lander or probe missions, collecting

  20. GB-SAR Experiment On Deformation Extraction And System Error Analysis

    Science.gov (United States)

    Qu, Shibo; Wang, Yanping; Tan, Weixian; Hong, Wen

    2010-10-01

    Ground Based Synthetic Aperture Radar (GB-SAR) provides a new method to monitoring deformation in relative small region. In this paper, we present the GB-SAR imaging geometry and analyze the interferometric phase for the purpose of deformation monitoring. Deformation monitoring error sources are also analyzed through sensitivity equations, including frequency instability and its influence on interferometric phase and deformation extraction, incident angle and monitoring distance. At last, a deformation monitoring experiment is carry out using ASTRO (Advanced Scannable Two-dimensional Rail Observation system), a GB-SAR system constructed by Institute of Electronics Chinese Academy of Sciences (IECAS). The deformation monitoring results show good consistent with metal objects' movement.

  1. TomoSAR Platform: The New Irstea Service as Demand for SAR, Interferometry, Polarimetry and Tomography

    Science.gov (United States)

    Ho Tong Minh, Dinh; Ngo, Yen-Nhi; Baghdadi, Nicolas; Maurel, Pierre

    2016-08-01

    Developing and improving methods to monitor both natural and non-natural environments such as forest and urban in space and time is a timely challenge. To overcome this challenge, we created a software platform - TomoSAR. The kernel of this platform supports the entire processing from SAR, Interferometry, Polarimetry, to Tomography (so called TomoSAR). The objective of this paper is to introduce this platform about its design architecture and its capacity. We showed four examples to highlight the TomoSAR platform capacities. First, the useful of the interferometric coherence of TOPS Sentinel-1 for land cover classification was highlighted. Second, a TOPS Sentinel-1 differential interferogram in a complex scenario volcano was successfully produced. Third, a TOPS Persistent Scatterers Interferometry analysis for estimating subsidence in Ho Chi Minh City area was demonstrated. Finally, the capability of processing and modelling of 3D P-band tomography in volume forest scattering were reported.

  2. Sentinel-1 Sar Imagery for Finnish Agricultural Subsidy Control

    Science.gov (United States)

    Torma, Markus; Munck, Anders; Mattila, Olli-Pekka; Harma, Pekka; Arslan, Nadir

    2016-08-01

    Agricultural parcels were classified to six general plant groups (winter cereals, spring cereals, peas, potato, rapeseed and grasses) using Sentinel-1 Interferometric Wide swath SAR imagery. The results were encouraging; the best overall accuracy was about 95%. The division of parcels to ploughed or non-ploughed parcels was possible if images were available after snow melt and before greening.

  3. Self Calibrating Interferometric Sensor

    DEFF Research Database (Denmark)

    Sørensen, Henrik Schiøtt

    This thesis deals with the development of an optical sensor based on micro interferometric backscatter detection (MIBD). A price effective, highly sensitive and ready for mass production platform is the goal of this project. The thesis covers three areas. The first part of the thesis deals...... mask. The fabricated micro structures have been electroplated for later injection molding, showing the potential of the MIBD sensor to be mass produced with high reproducibility and sensitivity. In part three MIBD experiments on vital biological systems are described. Label–free binding studies of bio...

  4. A Global Optimal Coherence Method for Multi-baseline InSAR Elevation Inversion

    Directory of Open Access Journals (Sweden)

    HUA Fenfen

    2015-11-01

    Full Text Available A global optimal coherence method for elevation inversion from multi-baseline polarimetric InSAR data is proposed. The multi-baseline polarimetric InSAR data used in experiments were obtained by Chinese X-SAR system and Germany's E-SAR system. Through combining several full polarimetric InSAR images, the proposed method constructs the multi-baseline polarimetric InSAR coherency matrix, and solves the optimal interferograms under global optimal coherence criterion. The optimal interferograms generated by global optimal coherence method were used to calculate the elevation of target with multi-baseline InSAR elevation inversion method. The proposed method reduces the influence of different scattering centers effectively using multi-baseline InSAR, which improves the accuracy and reliability of the interferometric phase and eventually improves the accuracy of DEM. The results verify the validity of the proposed method.

  5. Tight formation flying for an along-track SAR interferometer

    Science.gov (United States)

    Gill, Eberhard; Runge, Hartmut

    2004-08-01

    While space-borne synthetic aperture radar (SAR) has evolved into a mature technology over the past two decades, there is a growing interest in interferometric SAR applications. Especially along-track interferometry with its capability to resolve the velocity of on-ground objects and ocean currents is of high interest for scientific applications. The accuracy of the resolved velocity on ground scales directly with the along-track separation between adjacent SAR antennas. Since space vehicles are quite limited in size, a formation flying approach with two SAR instruments distributed onto two spacecraft thus appears to be an innovative approach to along-track SAR interferometry. In the framework of an ESA study, this paper discusses the potential benefits, drawbacks and problems associated with a close formation flight for an along-track interferometry SAR mission. To this end, the absolute and relative orbit reconstruction requirements for the SAR processing chain are derived from basic interferometric principles as well as appropriate baselines of the satellite formation in L-Band and X-Band. A discussion of potential space-borne navigation sensors is presented along with the accuracy of state-of-the-art relative orbit reconstruction. Finally, appropriate thrusters for formation acquisition and control are discussed together with approaches to formation flying guidance and control as well as fuel consumption.

  6. Geocoding of AIRSAR/TOPSAR SAR Data

    Science.gov (United States)

    Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to

  7. Joint use of multi-orbit high-resolution SAR interferometry for DEM generation in mountainous area

    KAUST Repository

    Zhang, Lu

    2014-07-01

    SAR interferometry has long been regarded as an effective tool for wide-area topographic mapping in hilly and mountainous areas. However, quality of InSAR DEM product is usually affected by atmospheric disturbances and decorrelation-induced voids, especially for data acquired in repeat-pass mode. In this paper, we proposed an approach for improved topographic mapping by optimal fusion of multi-orbit InSAR DEMs with correction of atmospheric phase screen (APS). An experimental study with highresolution TerraSAR-X and COSMO-SkyMed datasets covering a mountainous area was carried out to demonstrate the effectiveness of the proposed approach. Validation with a reference DEM of scale 1:50,000 indicated that vertical accuracy of the fused DEM can be better than 5 m.

  8. Interferometric Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Hae Young Choi

    2012-02-01

    Full Text Available Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  9. Interferometric fiber optic sensors.

    Science.gov (United States)

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  10. The fresnel interferometric imager

    Science.gov (United States)

    Koechlin, Laurent; Serre, Denis; Deba, Paul; Pelló, Roser; Peillon, Christelle; Duchon, Paul; Gomez de Castro, Ana Ines; Karovska, Margarita; Désert, Jean-Michel; Ehrenreich, David; Hebrard, Guillaume; Lecavelier Des Etangs, Alain; Ferlet, Roger; Sing, David; Vidal-Madjar, Alfred

    2009-03-01

    The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 - 6. We have also validated numerical simulation algorithms for larger Fresnel

  11. Bistatic SAR coherence over non-planar topographies

    Science.gov (United States)

    Andre, Daniel B.; Morrison, Keith

    2012-05-01

    Monostatic Synthetic Aperture Radar (SAR) Coherent Change Detection (CCD) has been found to be of great utility in detecting changes that occur on the ground. Detectable changes of interest include vehicle tracks and water flow. The CCD procedure involves performing repeat pass radar collections, to form a coherence product, where ground disturbances can induce detectable incoherence. However there is usually a difference in the radar collection geometry which can lead to incoherent energy noise entering the CCD, which reduces the detectability of tracks. When sensing flat terrain, the incoherence due to collection geometry difference can be removed through a conventional Fourier image support trimming process. However, it has been found that when the terrain contains non-flat topography, the optimal trimming process is substantially more involved, so much so that a new per-pixel SAR back-projection imaging algorithm has been developed. This algorithm trims off incoherent energy on a per-pixel basis according to the local topography. In order to validate the bistatic SAR generalization to the monostatic per-pixel formalism and algorithm, bistatic change detection measurements were conducted with the GB-SAR system, and these are reported here.

  12. Recovering Seasat SAR Data

    Science.gov (United States)

    Logan, T. A.; Arko, S. A.; Rosen, P. A.

    2013-12-01

    supposedly 'steadily' changing millisecond (MSEC) timing values. The elevated BER made even a basic linear fit difficult. In addition, the MSEC field often shows a 'stair step' function, assumed to be a spacecraft clock malfunction. To fix these issues, three separate levels of time filtering were applied. After the initial three-pass time filter, a fourth procedure located and removed discontinuities - missing data sections that occurred randomly throughout the data takes - by inserting random valued lines into the effected data file and repeated value lines into the corresponding header file. Finally, a fifth pass through the metadata was required to fix remaining start time anomalies. After the data were filtered, all times were linearly increasing, and all discontinuities filled, images could finally be formed. ASF DAAC utilized a custom version of ROI, the Repeat Orbit Interferometric SAR processor, to focus the data. Special focusing tasks for Seasat included dealing with Doppler ambiguity issues and filtering out 'spikes' in the power spectra. Once these obstacles were overcome via additional pre-processing software developed in house, well-focused SAR imagery was obtained from approximately 80% the ASF DAAC archives. These focused products, packaged in either HDF5 or geotiff formats with XML metadata, are downloadable from ASF DAAC free of charge.

  13. Quantum Interferometric Sensors

    CERN Document Server

    Kapale, K T; Lee, H; Kok, P; Dowling, J P; Kapale, Kishore T.; Didomenico, Leo D.; Lee, Hwang; Kok, Pieter; Dowling, Jonathan P.

    2005-01-01

    Quantum entanglement has the potential to revolutionize the entire field of interferometric sensing by providing many orders of magnitude improvement in interferometer sensitivity. The quantum-entangled particle interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like $1/\\sqrt{N}$, where $N$ is the number of particles passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of $\\sqrt{N}$ to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. This effect can translate into a tremendous s...

  14. Error Analysis for Interferometric SAR Measurements of Ice Sheet Flow

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1999-01-01

    and slope errors in conjunction with a surface parallel flow assumption. The most surprising result is that assuming a stationary flow the east component of the three-dimensional flow derived from ascending and descending orbit data is independent of slope errors and of the vertical flow....

  15. EMISAR: C- and L-band polarimetric and interferometric SAR

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Dall, Jørgen; Skou, Niels;

    1996-01-01

    EMISAR is a C- and L-band fully polarimetric (i.e. 4 complex channel per frequency) synthetic aperture radar designed for remote sensing with high demands for resolution (2 m), polarization discrimination, and absolute radiometric and polarimetric calibration. The present installation has one 3...

  16. Extraction of lakes from an IfSAR DSM and a GIS-based analysis of drainage potential, Western Arctic Coastal Plain of northern Alaska. Study area footprint

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — A total of 312 IfSAR-derived digital surface model (DSM) tiles were merged to create a seamless mosaic for the 46,000 km2 study area. The airborne interferometric...

  17. Extraction of lakes from an IfSAR DSM and a GIS-based analysis of drainage potential, Western Arctic Coastal Plain of northern Alaska

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — More than 35,000 lakes larger than 0.01 sq. km. were extracted from an airborne interferometric synthetic aperture radar (IfSAR) derived digital surface model...

  18. Numerical simulation and validation of ocean waves measured by an Along-Track Interferometric Synthetic Aperture Radar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Biao; HE Yijun; Paris W.VACHON

    2008-01-01

    A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR )image spectra is described.ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform.The numerical simulations show that the slant range to velocity ratio(R/V),significant wave height to ocean wavelength ratio(Hs/λ),the baseline (2B) and incident angle(θ)affect ATI-SAR imaging.The ATI-SAR imaging theory is validated by means of Two X-band,HH-polarized ATI-SAR phase images of ocean waves and eight C-band,HH-polarized ATI-SAR phase image spectra of ocean waves.It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave soectra collected simultaneously with available ATI-SAR observations.ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and ale not sensitive to the degree of nonlinearity.However,the ATI-SAR phase image spectral turns towards the range direction.even if the real ocean wave direction is 30°.It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity,especially for high values of R/V and Hs/λ.

  19. Interferometric SAR and land deformation. Analysis using the dislocation model; Interferometric SAR to chikaku hendo. Dislocation model wo mochiita kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J.; Otaki, T.; Tanaka, A.; Miyazaki, Y. [Geological Survey of Japan, Tsukuba (Japan)

    1996-05-01

    The diastrophism by the earthquake-induced dislocation is investigated by interferometry (INSAR) which represents the diastrophism by the interference fringes of equiphase difference lines. A joint research group at Geographical Survey Institute and National Space Development Agency showed the diastrophism in the vicinity of the ground surfaces before and after the Hyogoken Nanbu Earthquake by the INSAR interference images in 1995. This paper discusses the effects of observation in the vision line direction from the satellite and dislocation parameters on the interference images. The dislocation model uses a slanted rectangular model in a semi-infinite medium, to calculate static displacements and strain distributions at the ground surface, when dislocation changes. It is found that the INSAR interference images, detecting displacements in the vision line direction from the satellite, significantly change as the vision line direction changes, and that the actual displacement cannot be given by the images alone. This paper also shows sensitivity of the interference images to the dislocation parameters. 3 refs., 9 figs., 1 tab.

  20. Terahertz interferometric imaging of RDX

    Science.gov (United States)

    Sinyukov, Alexander M.; Barat, Robert B.; Gary, Dale E.; Michalopoulou, Zoi-Heleni; Zorych, Ivan; Zimdars, David; Federici, John F.

    2007-04-01

    Experimental results of homodyne terahertz interferometric 2-D imaging of RDX are presented. Continuous waves at 0.25-0.6 THz are used to obtain images of a C-4 sample at several THz frequencies. The performance of an N element detector array is imitated by only one detector placed at N positions. The distance between the C-4 sample and the detector array is ~30 cm. By taking interferometric images at several THz frequencies RDX can be recognized by the spectral peak at 0.82 THz. Simulations of interferometric images of two point sources of spherical waves are presented. The terahertz interferometric imaging method can be used in defense and security applications to detect concealed weapons, explosives as well as chemical and biological agents.

  1. Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation

    Science.gov (United States)

    Ardaens, J. S.; D'Amico, S.; Kazeminejad, B.; Montenbruck, O.; Gill, E.

    2007-01-01

    TerraSAR-X (TSX) and TanDEM-X (TDX) are two advanced synthetic aperture radar (SAR) satellites flying in formation. SAR interferometry allows a high resolution imaging of the Earth by processing SAR images obtained from two slightly different orbits. TSX operates as a repeat-pass interferometer in the first phase of its lifetime and will be supplemented after two years by TDX in order to produce digital elevation models (DEM) with unprecedented accuracy. Such a flying formation makes indeed possible a simultaneous interferometric data acquisition characterized by highly flexible baselines with range of variations between a few hundreds meters and several kilometers [1]. TSX has been successfully launched on the 15th of June, 2007. TDX is expected to be launched on the 31st of May, 2009. A safe and robust maintenance of the formation is based on the concept of relative eccentricity/inclination (e/i) vector separation whose efficiency has already been demonstrated during the Gravity Recovery and Climate Experiment (GRACE) [2]. Here, the satellite relative motion is parameterized by mean of relative orbit elements and the key idea is to align the relative eccentricity and inclination vectors to minimize the hazard of a collision. Previous studies have already shown the pertinence of this concept and have described the way of controlling the formation using an impulsive deterministic control law [3]. Despite the completely different relative orbit control requirements, the same approach can be applied to the TSX/TDX formation. The task of TDX is to maintain the close formation configuration by actively controlling its relative motion with respect to TSX, the leader of the formation. TDX must replicate the absolute orbit keeping maneuvers executed by TSX and also compensate the natural deviation of the relative e/i vectors. In fact the relative orbital elements of the formation tend to drift because of the secular non-keplerian perturbations acting on both satellites

  2. Extracting DEM from airborne X-band data based on PolInSAR

    Science.gov (United States)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  3. Interferometric Phase Improvement Based on Polarimetric Data Fusion

    Directory of Open Access Journals (Sweden)

    Tao Xiong

    2008-11-01

    Full Text Available In this paper, a method is proposed to improve the interferometric phase quality, based on fusing data from different polarimetric channels. Since lower amplitude implies less reliable phase in general, the phase quality of polarimetric interferometric data can be improved by seeking optimal fusion of data from different polarizations to maximize the resulting amplitude. In the proposed approach, for each pixel, two coherent polarimetric scattering vectors are synchronously projected onto a same optimum direction, maximizing the lower amplitude of the two projections. In the single-look case, the fused phase is equivalent to the weighted average of phases in all polarimetric channels. It provides a good physical explanation of the proposed approach. Without any filtering, the phase noise and the number of residue points are significantly reduced, and the interferometric phase quality is greatly improved. It is a useful tool to preprocess the phase ahead of phase unwrapping. The Cloude’s coherence optimization method is used for a comparison. Using the data collected by SIR-C/X-SAR, the authors demonstrate the effectiveness and the robustness of the proposed approach.

  4. InSAR Scientific Computing Environment

    Science.gov (United States)

    Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.

    2010-12-01

    The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with

  5. Terrain Measurement with SAR/InSAR

    Science.gov (United States)

    Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang

    2016-08-01

    Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.

  6. Mining Land Subsidence Monitoring Using SENTINEL-1 SAR Data

    Science.gov (United States)

    Yuan, W.; Wang, Q.; Fan, J.; Li, H.

    2017-09-01

    In this paper, DInSAR technique was used to monitor land subsidence in mining area. The study area was selected in the coal mine area located in Yuanbaoshan District, Chifeng City, and Sentinel-1 data were used to carry out DInSAR techniqu. We analyzed the interferometric results by Sentinel-1 data from December 2015 to May 2016. Through the comparison of the results of DInSAR technique and the location of the mine on the optical images, it is shown that DInSAR technique can be used to effectively monitor the land subsidence caused by underground mining, and it is an effective tool for law enforcement of over-mining.

  7. Analysis of factors influencing the accuracy of CRDInSAR

    Science.gov (United States)

    Fu, Wenxue; Guo, Huadong; Tian, Qingjiu; Guo, Xiaofang

    2010-11-01

    In recent years, the method of Corner Reflectors Differential Interferometric Synthetic Aperture Radar (CRDInSAR) was proposed for overcoming the limitations of decorrelations of the conventional differential interferometric synthetic aperture radar (DInSAR) technique. In general, the corner reflector has very high RCS (Radar Cross Section) for a small size, and the maximum RCS occurs when it points directly along the boresight of the SAR antenna. The beam width of a trihedral corner reflector is rather broad (having a 3dB beam width of 40° in both elevation and azimuth), so it is fairly tolerant to installation errors. It can be made available as artificial PS (Permanent Scatterers) points by installing them on a study area due to the stable amplitude and phase performance. However, some errors of CRDInSAR system will still affect the results of measurement. In this paper, the factors influence the accuracy of CRDInSAR are discussed, which include the errors of baseline and its angle, look angle and height of corner reflector respectively.

  8. MEMS Gyroscope with Interferometric Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a novel MEMS gyroscope that uses micro-interferometric detection to measure the motion of the proof mass. Using an interferometric...

  9. A Network Inversion Filter combining GNSS and InSAR for tectonic slip modeling

    OpenAIRE

    Bekaert, D.; P. Segall; Wright, TJ; Hooper, A.

    2016-01-01

    Studies of the earthquake cycle benefit from long-term time-dependent slip modeling, as it can be a powerful means to improve our understanding on the interaction of earthquake cycle processes such as interseismic, coseismic, postseismic, and aseismic slip. Observations from Interferometric Synthetic Aperture Radar (InSAR) allow us to model slip at depth with a higher spatial resolution than when using GNSS alone. While the temporal resolution of InSAR has typically been limited, the recent f...

  10. Two-Wavelength Interferometric Keratometer

    Science.gov (United States)

    Hochberg, Eric; Page, Norman

    1991-01-01

    Proposed interferometric keratometer measures shapes of corneas without touching them. Used to test strongly aspherical optics. Resembling present commercial lens-testing interferometers, generates interferograms representative of deviation of surfaces under test from sphericity. Such interferograms used to generate contour maps of surfaces. Measures corneal topography to diameters as large as 12 mm.

  11. Continuous monitoring of biophysical Eucalyptus sp. parameters using interferometric synthetic aperture radar data in P and X bands

    Science.gov (United States)

    Gama, Fábio Furlan; dos Santos, João Roberto; Mura, José Claudio

    2016-04-01

    This work aims to verify the applicability of models obtained using interferometric synthetic aperture radar (SAR) data for estimation of biophysical Eucalyptus saligna parameters [diameter of breast height (DBH), total height and volume], as a method of continuous forest inventory. In order to obtain different digital elevation models, and the interferometric height (Hint) to retrieve the tree heights, SAR surveying was carried out by an airborne interferometric SAR in two frequencies X and P bands. The study area, located in the Brazilian southeast region (S 22°53‧22″/W 45°26‧16″ and S 22°53‧22″/W 45°26‧16″), comprises 128.64 hectares of Eucalyptus saligna stands. The methodological procedures encompassed: forest inventory, topographic surveying, radar mapping, radar processing, and multivariable regression techniques to build Eucalyptus volume, DBH, and height models. The statistical regression pointed out Hint and interferometric coherence as the most important variables for the total height and DBH estimation; for the volume model, however, only the Hint variable was selected. The performance of the biophysical models from the second campaign, two years later (2006), were consistent and its results are very promising for updating annual inventories needed for managing Eucalyptus plantations.

  12. Contextual filtering method applied to sub-bands of interferometric image decomposition

    Science.gov (United States)

    Belhadj-Aissa, S.; Hocine, F.; Boughacha, M. S.; Belhadj-Aissa, M.

    2016-10-01

    The precision and accuracy of Digital elevation model and deformation measurement, from SAR interferometry (InSAR/DInSAR) depend mainly on the quality of the interferogram. However, the phase noise, which is mainly due to decorrelation between the images and the speckle, makes the step of phase unwrapping most delicate. In this paper, we propose a filtering method that combines the techniques of decomposition into sub-bands and nonlinear local weights. The Spectral / Contextual filter that we propose, inspired from to Goldstein filter is applied to the sub-bands from the wavelet decomposition. To validate the results, we applied to interferometric products tandem pair ERS1/ERS2 taken in the region of Algiers Algeria.

  13. Geodetic network design for InSAR: Application to ground deformation monitoring

    NARCIS (Netherlands)

    Mahapatra, P.S.

    2015-01-01

    For the past two decades, interferometric synthetic aperture radar (InSAR) has been used to monitor ground deformation with subcentimetric precision from space. But the applicability of this technique is limited in regions with a low density of naturally-occurring phase-coherent radar targets, e.g.

  14. InSAR data for monitoring land subsidence: time to think big

    Science.gov (United States)

    Ferretti, A.; Colombo, D.; Fumagalli, A.; Novali, F.; Rucci, A.

    2015-11-01

    Satellite interferometric synthetic aperture radar (InSAR) data have proven effective and valuable in the analysis of urban subsidence phenomena based on multi-temporal radar images. Results obtained by processing data acquired by different radar sensors, have shown the potential of InSAR and highlighted the key points for an operational use of this technology, namely: (1) regular acquisition over large areas of interferometric data stacks; (2) use of advanced processing algorithms, capable of estimating and removing atmospheric disturbances; (3) access to significant processing power for a regular update of the information over large areas. In this paper, we show how the operational potential of InSAR has been realized thanks to the recent advances in InSAR processing algorithms, the advent of cloud computing and the launch of new satellite platforms, specifically designed for InSAR analyses (e.g. Sentinel-1a operated by the ESA and ALOS2 operated by JAXA). The processing of thousands of SAR scenes to cover an entire nation has been performed successfully in Italy in a project financed by the Italian Ministry of the Environment. The challenge for the future is to pass from the historical analysis of SAR scenes already acquired in digital archives to a near real-time monitoring program where up to date deformation data are routinely provided to final users and decision makers.

  15. IRAN: interferometric remapped array nulling

    Science.gov (United States)

    Aristidi, Eric; Vakili, Farrokh; Abe, Lyu; Belu, Adrian; Lopez, Bruno; Lanteri, Henri; Schutz, A.; Menut, Jean-Luc

    2004-10-01

    This paper describes a method of beam-combination in the so-called hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. The method we propose is an alternative to the Michelson pupil reconfiguration that suffers from the loss of the classical object-image convolution relation. From elementary theory of Fourier optics we demonstrate that this problem can be solved by observing in a combined pupil plane instead of an image plane. The point-source intensity distribution (PSID) of this interferometric "image" tends towards a psuedo Airy disc (similar to that of a giant monolithic telescope) for a sufficiently large number of telescopes. Our method is applicable to snap-shot imaging of extended sources with a field comparable to the Airy pattern of single telescopes operated in a co-phased multi-aperture interferometric array. It thus allows to apply conveniently pupil plane coronagraphy. Our technique called Interferometric Remapped Array Nulling (IRAN) is particularly suitable for high dynamic imaging of extra-solar planetary companions, circumstellar nebulosities or extra-galactic objects where long baseline interferometry would closely probe the central regions of AGNs for instance.

  16. DInSAR Coseismic Deformations Measurements of the 11 May 2011 Lorca Earthquake; Medidas de deformaciones cosismicas con DInSAR para el terremoto de Lorca del 11 de mayo de 2011

    Energy Technology Data Exchange (ETDEWEB)

    Frontera Genovard, T.; Blanco Sanchez, P.; Concha Dimas, A.; Goula Surinach, X.; Perez Aragues, F.; Marturia Alavedra, J.

    2012-07-01

    The coseismic superficial deformation at the region of Lorca (Murcia, south-eastern Spain) due to the Mw 5.1 earthquake, on 11 May 2011, was characterized by a multidisciplinary team, integrating information from DInSAR (Synthetic Aperture Radar Differential Interferometry) and numerical modelling techniques. Despite the moderate magnitude of the event, quantitative information was obtained from the interferometric study of a pair of TerraSAR-X images. The DInSAR results defined the trace of the fault plane and evidenced uplift of some centimetres of the hanging wall block in agreement with the estimated deformation obtained through an elastic rupture dislocation numerical model. Meanwhile, for the footwall block, interferometric results showed that tectonic deformation is masked by an important subsidence related to groundwater extraction previously identified at the area of study. Keywords: Coseismic deformation, DInSAR, Numerical dislocation model. (Author) 29 refs.

  17. Canonical framework for multi-channel SAR-GMTI

    Institute of Scientific and Technical Information of China (English)

    Liu Congfeng; Liao Guisheng

    2008-01-01

    Synthetic aperture radar (SAR) systems have become an important tool for fine-resolution mapping and other remote sensing operations.The multi-channel SAR ground moving-target indication (GMTI) must process its data to produce not only the image of surveillance area but also the information of the ground moving-targets.The topic of moving-target detection in clutter has been extensively studied,and there are many methods that are used to detect moving targets,such as displaced phase center antenna (DPCA) method,along-track interfero-metric (ATI) phase,space-time adaptive processing (STAP),or some other metrics.A canonical framework is proposed that encompasses all the multi-channel SAR-GMT methods,namely,DPCA and ATI.The statistical test metric for multi-channel SAR-GMTI is established in a simple form,via the definition of the complex central Wishart distribution,to deduce the statistics of the test metric,and the probability distribution of the test metric for multichannel SAR-GMTI has the complex central Wishart distribution of 1×1 case,namely the x2 distribution.The theory foundation offers the possibility to construct the united multi-channel SAR-GMTI detector,and derives the constant false alarm rate (CFAR) detector tests for separating moving targets from clutter.

  18. Urban Modelling Performance of Next Generation SAR Missions

    Science.gov (United States)

    Sefercik, U. G.; Yastikli, N.; Atalay, C.

    2017-09-01

    In synthetic aperture radar (SAR) technology, urban mapping and modelling have become possible with revolutionary missions TerraSAR-X (TSX) and Cosmo-SkyMed (CSK) since 2007. These satellites offer 1m spatial resolution in high-resolution spotlight imaging mode and capable for high quality digital surface model (DSM) acquisition for urban areas utilizing interferometric SAR (InSAR) technology. With the advantage of independent generation from seasonal weather conditions, TSX and CSK DSMs are much in demand by scientific users. The performance of SAR DSMs is influenced by the distortions such as layover, foreshortening, shadow and double-bounce depend up on imaging geometry. In this study, the potential of DSMs derived from convenient 1m high-resolution spotlight (HS) InSAR pairs of CSK and TSX is validated by model-to-model absolute and relative accuracy estimations in an urban area. For the verification, an airborne laser scanning (ALS) DSM of the study area was used as the reference model. Results demonstrated that TSX and CSK urban DSMs are compatible in open, built-up and forest land forms with the absolute accuracy of 8-10 m. The relative accuracies based on the coherence of neighbouring pixels are superior to absolute accuracies both for CSK and TSX.

  19. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng

    2014-03-14

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  20. DInSAR fringes simulation of sandbox models

    Science.gov (United States)

    Derron, Marc-Henri; Carrea, Dario; Michoud, Clément; Jaboyedoff, Michel

    2015-04-01

    Interpreting satellite DInSAR patterns of slope movements can be difficult because of unwrapping problems, loss of coherence or radar imaging geometry limitations (layover, shadowing …). We investigate the potential of simulating interferometric fringes as a tool to help understanding real DInSAR images. Various types of gravitational slope deformations (sliding, toppling …) have been produced in a sandbox in the lab. These experiments were monitored with a micro-lidar Minolta-Konika Vivid 9i to get successive Digital Elevation Models of the surface. A pair of DEM is then used to simulate DInSAR fringes patterns, with the possibility to vary the wavelength, the angle between the line of sight and the ground displacement, the look angle, the baseline, etc. DInSAR fringes simulated here are idealized. They are not affected by any noise, decoherence, layover or shadow effects; radar image deformations are computed in ancillary files. However it appears that even these ideal wrapped fringes patterns get rapidly very complex when deformation is strong. Then this kind of tool is of interest to better constrain ground surface deformations from resulting InSAR fringes (from lab models or real landslides data). It makes also possible to test how the acquisition geometry impacts the InSAR result depending on the type of slope movement considered.

  1. Ka-band InSAR Imaging and Analysis Based on IMU Data

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2014-02-01

    Full Text Available Compared with other bands, the millimeter wave Interferometric Synthetic Aperture Radar (InSAR has high accuracy and small size, which is a hot topic in InSAR research. On the other hand, shorter wavelength causes difficulties in 2D imaging and interferometric phase extraction. In this study, the imaging and phase performance of the streaming Back Projection (BP method combined with IMU data are analyzed and discussed on the basis of actual Ka-band InSAR data. It is found that because the wavelength of the Ka-band is short, it is more sensitive to the antenna phase-center history. To ensure the phase-preserving capacity, the IMU data must be used with accurate motion error compensation. Furthermore, during data processing, we verify the flat-earth-removing capacity of the BP algorithm that calculates and compensates the master and slave antenna phase centers individually.

  2. Methods of InSAR atmosphere correction for volcano activity monitoring

    Science.gov (United States)

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  3. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    Science.gov (United States)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  4. Potentials of TanDEM-X Interferometric Data for Global Forest/Non-Forest Classification

    Science.gov (United States)

    Martone, Michele; Rizzoli, Paola; Brautigam, Benjamin; Krieger, Gerhard

    2016-08-01

    This paper presents a method to generate forest/non- forest maps from TanDEM-X interferometric SAR data. Among the several contributions which may affect the quality of interferometric products, the coherence loss caused by volume scattering represents the contribution which is predominantly affected by the presence of vegetation, and is therefore here exploited as main indicator for forest classification. Due to the strong dependency of the considered InSAR quantity on the geometric acquisition configuration, namely the incidence angle and the interferometric baseline, a multi-fuzzy clustering classification approach is used. Some examples are provided which show the potential of the proposed method. Further, additional features such as urban settlements, water, and critical areas affected by geometrical distortions (e.g. shadow and layover) need to be extracted, and possible approaches are presented as well. Very promising results are shown, which demonstrate the potentials of TanDEM-X bistatic data not only for forest identification, but, more in general, for the generation of a global land classification map as a next step.

  5. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR

    OpenAIRE

    Garthwaite, Matthew C.

    2017-01-01

    Trihedral corner reflectors are being increasingly used as point targets in deformation monitoring studies using interferometric synthetic aperture radar (InSAR) techniques. The frequency and size dependence of the corner reflector Radar Cross Section (RCS) means that no single design can perform equally in all the possible imaging modes and radar frequencies available on the currently orbiting Synthetic Aperture Radar (SAR) satellites. Therefore, either a corner reflector design tailored to ...

  6. A dense medium electromagnetic scattering model for the InSAR correlation of snow

    Science.gov (United States)

    Lei, Yang; Siqueira, Paul; Treuhaft, Robert

    2016-05-01

    Snow characteristics, such as snow water equivalent (SWE) and snow grain size, are important characteristics for the monitoring of the global hydrological cycle and as indicators of climate change. This paper derives an interferometric synthetic aperture radar (InSAR) scattering model for dense media, such as snow, which takes into account multiple scattering effects through the Quasi-Crystalline Approximation. The result of this derivation is a simplified version of the InSAR correlation model derived for relating the InSAR correlation measurements to the snowpack characteristics of grain size, volume fraction, and layer depth as well as those aspects of the volume-ground interaction that affects the interferometric observation (i.e., the surface topography and the ratio of ground-to-volume scattering). Based on the model, the sensitivity of the InSAR correlation measurements to the snow characteristics is explored by simulation. Through this process, it is shown that Ka-band InSAR phase has a good sensitivity to snow grain size and volume fraction, while for lower frequency signals (Ku-band to L-band), the InSAR correlation magnitude and phase have a sensitivity to snow depth. Since the formulation depends, in part, on the pair distribution function, three functional forms of the pair distribution function are implemented and their effects on InSAR phase measurements compared. The InSAR scattering model described in this paper is intended to be an observational prototype for future Ka-band and L-band InSAR missions, such as NASA's Surface Water and Ocean Topography and NASA-ISRO Synthetic Aperture Radar missions, planned for launch in the 2020-2021 time frame. This formulation also enables further investigation of the InSAR-based snow retrieval approaches.

  7. Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images

    Science.gov (United States)

    Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe

    2016-11-01

    For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.

  8. Model Order Selection in Multi-baseline Interferometric Radar Systems

    Directory of Open Access Journals (Sweden)

    Fulvio Gini

    2005-12-01

    Full Text Available Synthetic aperture radar interferometry (InSAR is a powerful technique to derive three-dimensional terrain images. Interest is growing in exploiting the advanced multi-baseline mode of InSAR to solve layover effects from complex orography, which generate reception of unexpected multicomponent signals that degrade imagery of both terrain radar reflectivity and height. This work addresses a few problems related to the implementation into interferometric processing of nonlinear algorithms for estimating the number of signal components, including a system trade-off analysis. Performance of various eigenvalues-based information-theoretic criteria (ITC algorithms is numerically investigated under some realistic conditions. In particular, speckle effects from surface and volume scattering are taken into account as multiplicative noise in the signal model. Robustness to leakage of signal power into the noise eigenvalues and operation with a small number of looks are investigated. The issue of baseline optimization for detection is also addressed. The use of diagonally loaded ITC methods is then proposed as a tool for robust operation in the presence of speckle decorrelation. Finally, case studies of a nonuniform array are studied and recommendations for a proper combination of ITC methods and system configuration are given.

  9. Interferometric Measurement Of Residual Stress

    Science.gov (United States)

    Danyluk, Steven; Andonian, A. T.

    1990-01-01

    Stress averaged through thickness of plate measured nondestructively. Theory of elasticity combined with laser interferometric technique into technique for measurement of residual stresses in solid objects - usually in thin, nominally-flat plates. Measurements particularly useful in inspection of wafers of single-crystal silicon for making solar cells or integrated circuits, because stresses remaining after crystal-growing process cause buckling or fracture. Used to predict deflections of plates caused by known applied loads under specified boundary condition, or to infer applied loads that cause known deflections. Also used to relate known deflections to residual stresses equivalent to stresses produced by fictitious applied loads.

  10. Impacts of Temporal-Spatial Variant Background Ionosphere on Repeat-Track GEO D-InSAR System

    Directory of Open Access Journals (Sweden)

    Cheng Hu

    2016-11-01

    Full Text Available An L band geosynchronous synthetic aperture radar (GEO SAR differential interferometry system (D-InSAR will be obviously impacted by the background ionosphere, which will give rise to relative image shifts and decorrelations of the SAR interferometry (InSAR pair, and induce the interferometric phase screen errors in interferograms. However, the background ionosphere varies within the long integration time (hundreds to thousands of seconds and the extensive imaging scene (1000 km levels of GEO SAR. As a result, the conventional temporal-spatial invariant background ionosphere model (i.e., frozen model used in Low Earth Orbit (LEO SAR is no longer valid. To address the issue, we firstly construct a temporal-spatial background ionosphere variation model, and then theoretically analyze its impacts, including relative image shifts and the decorrelation of the GEO InSAR pair, and the interferometric phase screen errors, on the repeat-track GEO D-InSAR processing. The related impacts highly depend on the background ionosphere parameters (constant total electron content (TEC component, and the temporal first-order and the temporal second-order derivatives of TEC with respect to the azimuth time, signal bandwidth, and integration time. Finally, the background ionosphere data at Isla Guadalupe Island (29.02°N, 118.27°W on 7–8 October 2013 is employed for validating the aforementioned analysis. Under the selected background ionosphere dataset, the temporal-spatial background ionosphere variation can give rise to a relative azimuth shift of dozens of meters at most, and even the complete decorrelation in the InSAR pair. Moreover, the produced interferometric phase screen error corresponds to a deformation measurement error of more than 0.2 m at most, even in a not severely impacted area.

  11. Current Measurements in Rivers by Spaceborne Along-Track Interferometric Synthetic Aperture Radar

    Science.gov (United States)

    Romeiser, R.; Gruenler, S.; Stammer, D.

    2007-12-01

    The along-track interferometric synthetic aperture radar (along-track InSAR) technique permits a high-resolution imaging of ocean surface current fields all over the world from satellites. Results of the Shuttle Radar Topography Mission (SRTM) in early 2000 and theoretical findings indicate that spaceborne along-track InSARs are also suitable for current retrievals in rivers if the water surface is at least 200-300 m wide and sufficiently rough for microwave backscattering at slanting incidence. Accordingly, the technique is quite attractive for global river runoff monitoring, where it can complement water level and surface slope measurements by advanced radar altimeters and other efforts. The German satellite TerraSAR-X, which was launched in June 2007, will permit along-track interferometry in an experimental mode of operation. This will be the first opportunity for repeated current measurements from space at selected test sites during a period of several years. In this presentation we give an overview of basic principles and theoretical limits of current measurements by along-track InSAR, example results from SRTM, and predicted along-track InSAR capabilities of TerraSAR-X. An SRTM-derived surface current field in the lower Elbe river (Germany) agrees well with numerical hydrodynamic model results; characteristic lateral current variations around a pronounced main flow channel in the 1500 m wide river are resolved. Despite clearly suboptimal instrument parameters, TerraSAR-X simulations indicate an even better data quality. Depending on width, surface roughness, and relative flow direction of a river, current estimates with an accuracy better than 0.1 m/s will be possible with an effective spatial resolution of a few hundred meters to kilometers.

  12. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhiming; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach - temporarily coherent point (TCP) InSAR (TCPInSAR) - to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6. mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms. ?? 2011.

  13. Detecting and monitoring UCG subsidence with InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  14. Integration of InSAR and GPS for hydraulic engineering

    Institute of Scientific and Technical Information of China (English)

    HE; XiuFeng; LUO; HaiBin; HUANG; QiHuan; HE; Min

    2007-01-01

    Interferometric synthetic aperture radar (InSAR) is a potential earth observation approach,and it has been demonstrated to have a variety of applications in measuring ground movement,urban subsidence and landslides.Currently InSAR provides the ability to map accurate DEM and measure ground deformation to sub-centimeter accuracy.However,many factors affect InSAR to measure ground movement since dam constructions are built in a large scale area with a complicated climate and unstable geology.This paper discusses potential applications of integrated InSAR and GPS to monitor a large-scale ground movement due to hydropower developments.The integration of InSAR and GPS can provide a cost-effective means for monitoring deformation of hydropower developments.Moreover,two novel methods,both the improved spatial interpolating method and estimation of 3D surface motion velocities method,are proposed and the experimental results and analysis are given in this paper.

  15. Analysis on coherence changes of dam surface in TerraSAR Strip mode interferograms

    Science.gov (United States)

    Li, Tao; Gong, Chunlong; Xia, Min; Jin, Zonghuang

    2011-10-01

    The high resolution images of TerraSAR has made it able to reflect the detail characters of large-scale manmade structures, so monitoring local deformation of large-sized buildings comes to be available. Former research had shown that InSAR phase of the dam surface was stable and consecutive. This paper aimed to make a further proof of the viability of monitoring dam's deformation using 3-meter-resolution strip mode images of TerraSAR. So we made a time series analysis of dam surface's coherence for the next step. Our dataset had eleven images covering three medium size basins of Shenzhen. Coherence of different features in the basin area including dams was extracted to make a comparative analysis. Two different combination methods were designed to create interferometric pairs to find the influence of time baseline and perpendicular baseline to coherence of different cultures. In our research, it was find out that coherence of dam surface was mainly influenced by time baseline. In short time baseline pairs (eleven days), coherence of dam surface was about 0.2 higher than vegetation slope in average. DInSAR process was suitable for short time baseline interferometric pairs, other methods such as PS will be needed for long time baseline interferometric pairs.

  16. Topography and Penetration of the Greenland Ice Sheet Measured with Airborne SAR Interferometry

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Keller, K.

    2001-01-01

    A digital elevation model (DEM) of the Geikie ice sap in East Greenland has been generated from interferometric C-band synthetic aperture radar (SAR) data acquired with the airborne EMISAR system. GPS surveyed radar reflectors and an airborne laser altimeter supplemented the experiment. The accur......A digital elevation model (DEM) of the Geikie ice sap in East Greenland has been generated from interferometric C-band synthetic aperture radar (SAR) data acquired with the airborne EMISAR system. GPS surveyed radar reflectors and an airborne laser altimeter supplemented the experiment....... The accuracy of the SAR DEM is about 1.5 m. The mean difference between the laser heights and the SAR heights changes from 0 m in the soaked zone to a maximum of 13 m in the percolation zone. This is explained by the fact that the snow in the soaked zone contains liquid water which attenuates the radar signals......, while the transparency of the firn in the percolation zone makes volume scattering dominate at the higher elevations. For the first time, the effective penetration has been measured directly as the difference between the interferometric heights and reference heights obtained with GPS and laser altimetry....

  17. Interferometric Combination for Persistent Scatterer Interferometry Considering Interferometric Phase Noise and Its Application to Subsidence Monitoring%考虑干涉相位噪声的PSI组合及其沉降监测应用

    Institute of Scientific and Technical Information of China (English)

    聂运菊; 刘国祥; 石金峰; 于冰; 程朋根; 张瑞; 李涛

    2013-01-01

    为了提高PSI沉降监测的精度,在常用干涉组合方式的基础上,同时考虑空间基线和时间基线阈值以及各干涉对的干涉相位噪声限制,提出一种新的干涉组合方式.选取上海市局部区域作为实验区,以16幅TerraSAR-X(TSX)影像为数据源,采用考虑干涉相位噪声的PSI干涉组合方式进行地表沉降监测.研究结果表明,与已有的干涉组合方式相比,本文提出的干涉组合方式获取的干涉对数量最少(92对),PS个数最多(27 026个),与水准测量数据进行比较,年沉降速率中误差为±3.89 mm/a,比已有的干涉组合方式的精度平均提高1.86~3.00倍,证实了该干涉组合方式的有效性和可靠性.%In order to improve the accuracy of persistent scatterer interferometric (PSI) synthetic aperture radar for monitoring ground deformation,an improved interferometric combination mode was proposed by considering the thresholds of both spatial and temporal baselines,and taking into account the noise level in interferometric phases of all interferometric pairs.Experiments of subsidence monitoring using the proposed interferometric mode were performed using 16 high resolution SAR images collected by the X-band radar sensor onboard the German satellite TerraSAR-X over Shanghai.The results show that the minimum interferometric pairs (92) and the maximum persistent scatterer (PS) points (27 026) can be obtained by the proposed method.Compared with the ground-based measurements,the subsidence rate derived by the PSI technique has an error of + 3.89 mm/a,with a precision being 1.86-3.00 times higher than that of other available modes.This demonstrates the effectiveness and reliability of the proposed interferometric mode.

  18. Michelsonův interferometr

    OpenAIRE

    Rýc, Jan

    2011-01-01

    Diplomová práce se zabývá bezkontaktními optickými metodami měření vzdálenosti a rychlosti (vibrací). Je zde uveden základní přehled a teoretická rešerže těchto metod. Podrobně je zde rozebrána zejména problematika interferometrických metod pro měření vibrací. Obsahuje rozdělení interferometrů, popis principu jejich funkce a rovněž obsahuje kapitoly zabývající se prvky, které se v interferometrech používají, jako lasery, fotodetektory a prvky v optické trase paprsku (polarizátory, retardéry a...

  19. Health Communication during SARS

    Science.gov (United States)

    Navin, Ava W.; Steele, Stefanie F.; Weld, Leisa H.; Kozarsky, Phyllis E.

    2004-01-01

    During the severe acute respiratory syndrome (SARS) outbreak, electronic media made it possible to disseminate prevention messages rapidly. The Centers for Disease Control and Prevention’s Travelers’ Health Web site was frequently visited in the first half of 2003; more than 2.6 million visits were made to travel alerts, advisories, and other SARS-related documents. PMID:15030717

  20. SARS Pathogenesis: Host Factors

    NARCIS (Netherlands)

    A. de Lang (Anna)

    2012-01-01

    textabstractWhile it is hypothesized that Sever Acute Respiratory Syndrome (SARS) in humans is caused by a disproportional immune response illustrated by inappropriate induction of inflammatory cytokines, the exact nature of the host response to SARS coronavirus (CoV) infection causing severe

  1. The potential of more accurate InSAR covariance matrix estimation for land cover mapping

    Science.gov (United States)

    Jiang, Mi; Yong, Bin; Tian, Xin; Malhotra, Rakesh; Hu, Rui; Li, Zhiwei; Yu, Zhongbo; Zhang, Xinxin

    2017-04-01

    Synthetic aperture radar (SAR) and Interferometric SAR (InSAR) provide both structural and electromagnetic information for the ground surface and therefore have been widely used for land cover classification. However, relatively few studies have developed analyses that investigate SAR datasets over richly textured areas where heterogeneous land covers exist and intermingle over short distances. One of main difficulties is that the shapes of the structures in a SAR image cannot be represented in detail as mixed pixels are likely to occur when conventional InSAR parameter estimation methods are used. To solve this problem and further extend previous research into remote monitoring of urban environments, we address the use of accurate InSAR covariance matrix estimation to improve the accuracy of land cover mapping. The standard and updated methods were tested using the HH-polarization TerraSAR-X dataset and compared with each other using the random forest classifier. A detailed accuracy assessment complied for six types of surfaces shows that the updated method outperforms the standard approach by around 9%, with an overall accuracy of 82.46% over areas with rich texture in Zhuhai, China. This paper demonstrates that the accuracy of land cover mapping can benefit from the 3 enhancement of the quality of the observations in addition to classifiers selection and multi-source data ingratiation reported in previous studies.

  2. On the use of SAR interferometry to aid navigation of UAV

    Science.gov (United States)

    Nitti, Davide O.; Bovenga, Fabio; Morea, Alberto; Rana, Fabio M.; Guerriero, Luciano; Greco, Mario; Pinelli, Gianpaolo

    2012-09-01

    This study is aimed at exploring the potentials of SAR Interferometry (InSAR) to aid Unmanned Aerial Vehicles (UAV) navigation. The basic idea is to infer both position and attitude of an aerial platform by inspecting the InSAR phase derived by a real time SAR interferometer mounted onboard the platform. Thanks to the expected favorable conditions in terms of geometrical sensitivity as well as signal coherence, the InSAR phase field can be used to derive the terrain elevation. By using both approximated position and attitude values of the platform as well as a reference Digital Terrain Model (DTM) from a mission database available onboard, it is possible to generate a synthetic InSAR phase model to be compared w.r.t. that derived by SAR observations. The geometrical transformation needed to match these two terrain models depends on the difference between position and attitude values derived by the instruments available on board and their actual values. Hence, this matching provides a feedback to be used for adjusting position and attitude. In order to assess the reliability of the proposed approach, we evaluated the interferometric sensitivity to changes in position and attitude. This analysis defines the limits of applicability of the InSAR-based approach and provides indications and requirements on geometric and radiometric parameters.

  3. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara

    2015-10-15

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR\\'s ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  4. InSAR elevation bias caused by penetration into uniform volumes

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2007-01-01

    SAR) biased downward. For infinitely deep uniform volumes, the elevation bias is often equated with the penetration depth, but this paper, it is shown that the two quantities generally differ. The interferometric bias is approximately equal to the two-way power-penetration depth if the latter is small......Natural media like cold-land ice, vegetation, and dry sand are subject to a substantial penetration at microwave frequencies. For such media, the synthetic aperture radar (SAR) ase center is located below the surface, and consequently, the surface elevation determined with SAR interferometry (In...... compared to the ambiguity height, but for increasing penetration depth, the bias approaches one quarter of the ambiguity height. Consequently, phase wrapping results even if the penetration depth exceeds ambiguity height. The ratio of the InSAR elevation bias to ambiguity height depends only on the ratio...

  5. InSAR datum connection using GNSS-augmented radar transponders

    Science.gov (United States)

    Mahapatra, Pooja; der Marel, Hans van; van Leijen, Freek; Samiei-Esfahany, Sami; Klees, Roland; Hanssen, Ramon

    2017-06-01

    Deformation estimates from Interferometric Synthetic Aperture Radar (InSAR) are relative: they form a `free' network referred to an arbitrary datum, e.g. by assuming a reference point in the image to be stable. However, some applications require `absolute' InSAR estimates, i.e. expressed in a well-defined terrestrial reference frame, e.g. to compare InSAR results with those of other techniques. We propose a methodology based on collocated InSAR and Global Navigation Satellite System (GNSS) measurements, achieved by rigidly attaching phase-stable millimetre-precision compact active radar transponders to GNSS antennas. We demonstrate this concept through a simulated example and practical case studies in the Netherlands.

  6. Helmand river hydrologic studies using ALOS PALSAR InSAR and ENVISAT altimetry

    Science.gov (United States)

    Lu, Zhiming; Kim, J.-W.; Lee, H.; Shum, C.K.; Duan, J.; Ibaraki, M.; Akyilmaz, O.; Read, C.-H.

    2009-01-01

    The Helmand River wetland represents the only fresh-water resource in southern Afghanistan and one of the least mapped water basins in the world. The relatively narrow wetland consists of mostly marshes surrounded by dry lands. In this study, we demonstrate the use of the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) Interferometric SAR (InSAR) to detect the changes of the Helmand River wetland water level. InSAR images are combined with the geocentric water level measurements from the retracked high-rate (18-Hz) Environmental Satellite (Envisat) radar altimetry to construct absolute water level changes over the marshes. It is demonstrated that the integration of the altimeter and InSAR can provide spatio-temporal measurements of water level variation over the Helmand River marshes where in situ measurements are absent. ?? Taylor & Francis Group, LLC.

  7. Comparing the results of PSInSAR and GNSS on slow motion landslides, Koyulhisar, Turkey

    Directory of Open Access Journals (Sweden)

    Kemal Ozgur Hastaoglu

    2016-03-01

    Full Text Available There are numerous methods used nowadays to monitor landslide movements. Of these methods, Global Navigation Satellite System (GNSS and Interferometric Synthetic Aperture Radar (InSAR are the ones that are most commonly used. In this study, the amounts of movements acquired via these two methods were compared and relations between them were analysed. The Koyulhisar landslide region was selected as the field of study. In this study, 10 Envisat images of the region taken between 2006 and 2008 were evaluated using Persistent Scatterers Interferometric Synthetic Aperture Radar (PSInSAR technique and annual velocity values at the direction of line of slight at PS points were obtained for the region of interest. The velocity values were then obtained from PSInSAR results and compared with those obtained from six periods of GNSS measurements that were performed between April 2007 and November 2008 on Koyulhisar Landslide area after which the relationship between the two was analysed. Two different movement models from GNSS and PSInSAR results were fit to the landslide region. The velocity values estimated from these movement models for the region were compared and correlation between them was determined. As a conclusion, a high correlation of r = 0.84 was determined between the models obtained from nine GNSS points, except one point at the city centre, and PSInSAR.

  8. Numerical weather prediction models and SAR interferometry: synergic use for meteorological and INSAR applications

    Science.gov (United States)

    Pierdicca, Nazzareno; Rocca, Fabio; Perissin, Daniele; Ferretti, Rossella; Pichelli, Emanuela; Rommen, Bjorn; Cimini, Nico

    2011-11-01

    Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is a well established technique useful in many land applications, such as landslide monitoring and digital elevation model extraction. One of its major limitation is the atmospheric effect, and in particular the high water vapour spatial and temporal variability which introduces an unknown delay in the signal propagation. However, the sensitivity of SAR interferometric phase to atmospheric conditions could in principle be exploited and InSAR could become in certain conditions a tool to monitor the atmosphere, as it happens with GPS receiver networks. This paper describes a novel attempt to assimilate InSAR derived information on the atmosphere, based on the Permanent Scatterer multipass technique, into a numerical weather forecast model. The methodology is summarised and the very preliminary results regarding the forecast of a precipitation event in Central Italy are analysed. The work was done in the framework of an ESA funded project devoted to the mapping of the water vapour with the aim to mitigate its effect for InSAR applications.

  9. ONERA airborne SAR facilities

    Energy Technology Data Exchange (ETDEWEB)

    Boutry, J.M. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Chatillon (France)

    1996-11-01

    ONERA has developed and operates the RAMSES experimental SAR on board a TRANSALL C160 aircraft. This system has been designed in order to analyze the effect of various parameters, such as frequency, polarization, incidence, resolution,... in the field of air-to-ground radar applications. These applications include SAR imaging for ground radar applications. These applications include SAR imaging for various purposes such as map-matching for navigation update, battlefield surveillance, reconnaissance, treaty applications... It consists of several radar sections operating over a wide range of frequency bands (L, S, C, X, Ku, Ka, W). 7 figs., 3 tabs.

  10. INTERFEROMETRIC VIEWS ON THE CEPHEIDS

    Directory of Open Access Journals (Sweden)

    A. Mérand

    2010-01-01

    Full Text Available El método de paralaje de pulsación, o método de Baade-Wesselink (BW, es una poderosa manera de medir distancias a Cefeidas en una manera pseudo-geométrica. En la búsqueda para obtener la más precisa distancia usando interferometría de gran línea de base (alcanzamos 1.5%, nosotros obtuvimos dos resultados quizás no tan insospechados. En primer lugar, nuestros estudios demuestran que alcanzamos un punto donde la suposición que la fotósfera que pulsa se puede aproximar usando modelos estáticos no es válida en el contexto del método BW. En segundo lugar, revelamos la presencia sistemática de envolturas circunestelares (CSE en escala de algunos diámetros estelares, como un leve exceso del infrarrojo cercano, que podría ser una indicación de que está ocurriendo una pérdida de masa. No sólo estos dos resultados representan un sesgo al método BW, y merece ser estudiado observacionalmente, sino también vierten nuevas luces a nuestro conocimiento de las cefeidas y requieren un extenso modelamiento.

  11. Multi-temporal SAR Interferometry for Monitoring of Man-Made Sfructures.

    OpenAIRE

    Patrício, Glória; Guimarães, Pedro; Sousa, Joaquim S.; Ruiz, António M.; Bastos, Luísa

    2016-01-01

    Multi-temporal InSAR (MTI) methods are effective tools for monitoring and investigating surface displacement on Earth based on conventional radar interferometry. These techniques allow us to measure deformation with uncertainties up to one millimeter per year, interpreting time series of interferometric phases at coherent/stable point scatterers. Considering the regular revisit time and wide-area coverage of satellite radar sensors, and that stable points usually correspond to buildings and o...

  12. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations

    Science.gov (United States)

    Chen, Jingyi; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.

    2016-05-01

    Interferometric Synthetic Aperture Radar (InSAR), a remote sensing technique for measuring centimeter-level surface deformation, is used to estimate hydraulic head in the confined aquifer of the San Luis Valley (SLV), Colorado. Reconstructing head measurements from InSAR in agricultural regions can be difficult, as InSAR phase data are often decorrelated due to vegetation growth. Analysis of 17 L-band ALOS PALSAR scenes, acquired between January 2007 and March 2011, demonstrates that comprehensive InSAR deformation measurements can be recovered over the vegetated groundwater basin with an improved processing strategy. Local skeletal storage coefficients and time delays between the head change and deformation are estimated through a joint InSAR-well data analysis. InSAR subsidence estimates are transformed to head changes with finer temporal and spatial resolution than is possible using existing well records alone. Both InSAR and well data suggest that little long-term water-storage loss occurred in the SLV over the study period and that inelastic compaction was negligible. The seasonal head variations derived from InSAR are consistent with the existing well data at most locations where confined aquifer pumping activity dominates. Our results demonstrate the advantages of InSAR measurements for basin-wide characterization of aquifer storage properties and groundwater levels over agricultural regions.

  13. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    Directory of Open Access Journals (Sweden)

    Xiaoli Ding

    2009-02-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram.

  14. The Performance Analysis Based on SAR Sample Covariance Matrix

    Directory of Open Access Journals (Sweden)

    Esra Erten

    2012-03-01

    Full Text Available Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given.

  15. SAR-GMTI investigation in hybrid along-and cross-track baseline InSAR

    Institute of Scientific and Technical Information of China (English)

    SUO ZhiYong; LI ZhenFang; BAO Zheng; WU JianXin

    2009-01-01

    A joint-pixel clutter suppression method based on slope compensation is proposed in this paper. In order to eliminate the effect of the terrain interferometric phase caused by the cross-track baseline in hybrid baseline InSAR, the local independent identical distribution of the clutter is satisfied by using the slope compensation technique, and thus the clutter can be suppressed successfully by using the orthogonality of the clutter subspace and the noise subspace. This approach utilizes the information contained in the current pixel as well as in its neighbors, showing robustness to the image coregistration errors. Both the simulated data and the real airborne data are used in proving the validity of the presented approach.

  16. New Ground Truth Capability from InSAR Time Series Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, S; Vincent, P; Yang, D

    2005-07-13

    We demonstrate that next-generation interferometric synthetic aperture radar (InSAR) processing techniques applied to existing data provide rich InSAR ground truth content for exploitation in seismic source identification. InSAR time series analyses utilize tens of interferograms and can be implemented in different ways. In one such approach, conventional InSAR displacement maps are inverted in a final post-processing step. Alternatively, computationally intensive data reduction can be performed with specialized InSAR processing algorithms. The typical final result of these approaches is a synthesized set of cumulative displacement maps. Examples from our recent work demonstrate that these InSAR processing techniques can provide appealing new ground truth capabilities. We construct movies showing the areal and temporal evolution of deformation associated with previous nuclear tests. In other analyses, we extract time histories of centimeter-scale surface displacement associated with tunneling. The potential exists to identify millimeter per year surface movements when sufficient data exists for InSAR techniques to isolate and remove phase signatures associated with digital elevation model errors and the atmosphere.

  17. Experiments of Tomography-Based SAR Techniques with P-Band Polarimetric Data

    Science.gov (United States)

    Lombardini, F.; Pardini, M.

    2009-04-01

    New opportunities are arising in the synthetic aperture radar (SAR) observation of forest scenarios, especially with decimetric and metric radio wavelengths, which possess the capability of penetrating into volumes. Given its capabilities in the three-dimensional imaging of the scattering properties of the observed scene, SAR Tomography (Tomo-SAR) constitutes a good candidate for the analysis of the vertical structure of the forest. In this work, the results are presented of the application of tomography-based SAR techniques to P-band airborne data over a boreal forest from the ESA BioSAR-1 project. Results of an adaptive tomographic analysis are presented, also with a low resolution dataset, which emulates a satellite acquisition. In order to mitigate the geometric perspective effects due to the poor range resolution, the principle is introduced of the application of a common band pre-filtering to tomography. Then, a coherent layer canceller is derived to possibly apply interferometric techniques conceived for single layer scenarios to two layer scenarios. Finally, a stabilized adaptive polarimetric Tomo-SAR (PolTomo-SAR) method is proposed for estimating the 3D polarimetric scattering mechanism of the scene with low distorsions.

  18. Evidence of rock slope breathing using ground-based InSAR

    Science.gov (United States)

    Rouyet, Line; Kristensen, Lene; Derron, Marc-Henri; Michoud, Clément; Blikra, Lars Harald; Jaboyedoff, Michel; Lauknes, Tom Rune

    2017-07-01

    Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) campaigns were performed in summer 2011 and 2012 in the Romsdalen valley (Møre & Romsdal county, western Norway) in order to assess displacements on Mannen/Børa rock slope. Located 1 km northwest, a second GB-InSAR system continuously monitors the large Mannen rockslide. The availability of two GB-InSAR positions creates a wide coverage of the rock slope, including a slight dataset overlap valuable for validation. A phenomenon of rock slope breathing is detected in a remote and hard-to-access area in mid-slope. Millimetric upward displacements are recorded in August 2011. Analysis of 2012 GB-InSAR campaign, combined with the large dataset from the continuous station, shows that the slope is affected by inflation/deflation phenomenon between 5 and 10 mm along the line-of-sight. The pattern is not homogenous in time and inversions of movement have a seasonal recurrence. These seasonal changes are confirmed by satellite InSAR observations and can possibly be caused by hydrogeological variations. In addition, combination of GB-InSAR results, in situ measurements and satellite InSAR analyses contributes to a better overview of movement distribution over the whole area.

  19. Six years of land subsidence in shanghai revealed by JERS-1 SAR data

    Science.gov (United States)

    Damoah-Afari, P.; Ding, X.-L.; Li, Z.; Lu, Zhiming; Omura, M.

    2008-01-01

    Differential interferometric synthetic aperture radar (SAR) (DInSAR) has proven to be very useful in mapping and monitoring land subsidence in many regions of the world. Shanghai, China's largest city, is one of such areas suffering from land subsidence as a result of severe withdrawal of groundwater for different usages. DInSAR application in Shanghai with the C-band European Remote Sensing 1 & 2 (ERS-1/2) SAR data has been difficult mainly due to the problem of decorrelation of InSAR pairs with temporal baselines larger than 10 months. To overcome the coherence loss of C-band InSAR data, we used eight L-band Japanese Earth Resource Satellite (JERS-1) SAR data acquired during 2 October 1992 to 15 July 1998 to study land subsidence phenomenon in Shanghai. Three of the images were used to produce two separate digital elevation models (DEMs) of the study area to remove topographic fringes from the interferograms used for subsidence mapping. Six interferograms were used to generate 2 different time series of deformation maps over Shanghai. The cumulative subsidence map generated from each of the time series is in agreement with the land subsidence measurements of Shanghai city from 1990-1998, produced from other survey methods. ?? 2007 IEEE.

  20. First Image Products from EcoSAR - Osa Peninsula, Costa Rica

    Science.gov (United States)

    Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon

    2016-01-01

    Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.

  1. Local residue coupling strategies by neural network for InSAR phase unwrapping

    Science.gov (United States)

    Refice, Alberto; Satalino, Giuseppe; Chiaradia, Maria T.

    1997-12-01

    Phase unwrapping is one of the toughest problems in interferometric SAR processing. The main difficulties arise from the presence of point-like error sources, called residues, which occur mainly in close couples due to phase noise. We present an assessment of a local approach to the resolution of these problems by means of a neural network. Using a multi-layer perceptron, trained with the back- propagation scheme on a series of simulated phase images, fashion the best pairing strategies for close residue couples. Results show that god efficiencies and accuracies can have been obtained, provided a sufficient number of training examples are supplied. Results show that good efficiencies and accuracies can be obtained, provided a sufficient number of training examples are supplied. The technique is tested also on real SAR ERS-1/2 tandem interferometric images of the Matera test site, showing a good reduction of the residue density. The better results obtained by use of the neural network as far as local criteria are adopted appear justified given the probabilistic nature of the noise process on SAR interferometric phase fields and allows to outline a specifically tailored implementation of the neural network approach as a very fast pre-processing step intended to decrease the residue density and give sufficiently clean images to be processed further by more conventional techniques.

  2. A Network Inversion Filter combining GNSS and InSAR for tectonic slip modeling

    Science.gov (United States)

    Bekaert, D. P.; Segall, P.; Wright, T. J.; Hooper, A. J.

    2016-12-01

    Time-dependent slip modeling can be a powerful tool to improve our understanding of the interaction of earthquake cycle processes such as interseismic, coseismic, postseismic, and aseismic slip. Interferometric Synthetic Aperture Radar (InSAR) observations allow us to model slip at depth with a higher spatial resolution than when using GNSS alone. Typically the temporal resolution of InSAR has been limited. However, the recent generation of SAR satellites including Sentinel-1, COSMO-SkyMED, and RADARSAT-2 permits the use of InSAR for time-dependent slip modeling, at intervals of a few days when combined. The increasing amount of SAR data makes a simultaneous data inversion of all epochs challenging. Here, we expanded the original Network Inversion Filter (Segall and Matthews, 1997) to include InSAR observations of surface displacements in addition to GNSS. In the NIF framework, geodetic observations are limited to those of a given epoch, where a physical model describes the slip evolution over time. The combination of the Kalman forward filtering and backward smoothing allows all geodetic observations to constrain the complete observation period. Combining GNSS and InSAR allows us to model time-dependent slip at an unprecedented spatial resolution. We validate the approach with a simulation of the 2006 Guerrero slow slip event. In our study, we emphasize the importance of including the InSAR covariance information, and demonstrate that InSAR provides an additional constraint on the spatial extent of the slow slip. References: Segall, P., and M. Matthews (1997), Time dependent inversion of geodetic data, J. Geophys. Res., 102 (B10), 22,391 - 22,409, doi:10.1029/97JB01795. Bekaert, D., P. Segall, T.J. Wright, and A. Hooper (2016), A Network Inversion Filter combining GNSS and InSAR for tectonic slip modeling, JGR, doi:10.1002/2015JB012638 (open access).

  3. Broadband circular interferometric millimetre-wave ISAR for threat detection

    Directory of Open Access Journals (Sweden)

    S. Bertl

    2007-06-01

    Full Text Available To detect threats on a person's body surface the application of millimetre-waves is possible. In order to get a view of the person from all sides either the person has to be rotated standing on a turntable (Inverse Synthetic Aperture Radar, ISAR or a sensor is moved on a circular path around the person (Synthetic Aperture Radar, SAR. The goal of the reconstruction is to obtain information about the shape of the threats and their positions in all three dimensions. At first the reconstruction is done along range and azimuth, which span the principal surface given by the sensor configuration. This paper reports on two methods to obtain the third spatial dimension. Due to the circular shape and its 3D focussing ability of the aperture this information can be obtained by the evaluation of the image focus. Secondly, if two coherent receiving channels are used, a possibility to achieve 3D spatial resolution is the processing of the interferometric phase. A comparison between these two will be presented.

  4. Large Scale Assessment of Radio Frequency Interference Signatures in L-band SAR Data

    Science.gov (United States)

    Meyer, F. J.; Nicoll, J.

    2011-12-01

    Imagery of L-band Synthetic Aperture Radar (SAR) systems such as the PALSAR sensor on board the Advanced Land Observing Satellite (ALOS) has proven to be a valuable tool for observing environmental changes around the globe. Besides offering 24/7 operability, the L-band frequency provides improved interferometric coherence, and L-band polarimetric data has shown great potential for vegetation monitoring, sea ice classification, and the observation of glaciers and ice sheets. To maximize the benefit of missions such as ALOS PALSAR for environmental monitoring, data consistency and calibration are vital. Unfortunately, radio frequency interference (RFI) signatures from ground-based radar systems regularly impair L-band SAR data quality and consistency. With this study we present a large-scale analysis of typical RFI signatures that are regularly observed in L-band SAR data over the Americas. Through a study of the vast archive of L-band SAR data in the US Government Research Consortium (USGRC) data pool at the Alaska Satellite Facility (ASF) we were able to address the following research goals: 1. Assessment of RFI Signatures in L-band SAR data and their Effects on SAR Data Quality: An analysis of time-frequency properties of RFI signatures in L-band SAR data of the USGRC data pool is presented. It is shown that RFI-filtering algorithms implemented in the operational ALOS PALSAR processor are not sufficient to remove all RFI-related artifacts. In examples, the deleterious effects of RFI on SAR image quality, polarimetric signature, SAR phase, and interferometric coherence are presented. 2. Large-Scale Assessment of Severity, Spatial Distribution, and Temporal Variation of RFI Signatures in L-band SAR data: L-band SAR data in the USGRC data pool were screened for RFI using a custom algorithm. Per SAR frame, the algorithm creates geocoded frame bounding boxes that are color-coded according to RFI intensity and converted to KML files for analysis in Google Earth. From

  5. Localized landslide risk assessment with multi pass L band DInSAR analysis

    Science.gov (United States)

    Yun, HyeWon; Rack Kim, Jung; Lin, Shih-Yuan; Choi, YunSoo

    2014-05-01

    In terms of data availability and error correction, landslide forecasting by Differential Interferometric SAR (DInSAR) analysis is not easy task. Especially, the landslides by the anthropogenic construction activities frequently occurred in the localized cutting side of mountainous area. In such circumstances, it is difficult to attain sufficient enough accuracy because of the external factors inducing the error component in electromagnetic wave propagation. For instance, the local climate characteristics such as orographic effect and the proximity to water source can produce the significant anomalies in the water vapor distribution and consequently result in the error components of InSAR phase angle measurements. Moreover the high altitude parts of target area cause the stratified tropospheric delay error in DInSAR measurement. The other obstacle in DInSAR observation over the potential landside site is the vegetation canopy which causes the decorrelation of InSAR phase. Thus rather than C band sensor such as ENVISAT, ERS and RADARSAT, DInSAR analysis with L band ALOS PLASAR is more recommendable. Together with the introduction of L band DInSAR analysis, the improved DInSAR technique to cope all above obstacles is necessary. Thus we employed two approaches i.e. StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR, Hopper et al., 2007) which was newly developed for extracting the reliable deformation values through time series analysis and two pass DInSAR with the error term compensation based on the external weather information in this study. Since the water vapor observation from spaceborne radiometer is not feasible by the temporal gap in this case, the quantities from weather Research Forecasting (WRF) with 1 km spatial resolution was used to address the atmospheric phase error in two pass DInSAR analysis. Also it was observed that base DEM offset with time dependent perpendicular baselines of InSAR time series produce a significant error

  6. Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests

    Science.gov (United States)

    Peduzzi, Alicia; Wynne, Randolph Hamilton; Thomas, Valerie A.; Nelson, Ross F.; Reis, James J.; Sanford, Mark

    2012-01-01

    The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests.

  7. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR

    Science.gov (United States)

    L. Liu; C.I. Millar; R.D. Westfall; H.A. Zebker

    2013-01-01

    Despite the abundance of rock glaciers in the Sierra Nevada of California, USA, few efforts have been made to measure their surface flow. Here we use the interferometric synthetic aperture radar (InSAR) technique to compile a~benchmark inventory describing the kinematic state of 59 active rock glaciers in this region. Statistically, these rock glaciers moved at...

  8. Radio Interferometric Calibration Using a Riemannian Manifold

    CERN Document Server

    Yatawatta, Sarod

    2013-01-01

    In order to cope with the increased data volumes generated by modern radio interferometers such as LOFAR (Low Frequency Array) or SKA (Square Kilometre Array), fast and efficient calibration algorithms are essential. Traditional radio interferometric calibration is performed using nonlinear optimization techniques such as the Levenberg-Marquardt algorithm in Euclidean space. In this paper, we reformulate radio interferometric calibration as a nonlinear optimization problem on a Riemannian manifold. The reformulated calibration problem is solved using the Riemannian trust-region method. We show that calibration on a Riemannian manifold has faster convergence with reduced computational cost compared to conventional calibration in Euclidean space.

  9. Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data

    Directory of Open Access Journals (Sweden)

    Linda Moser

    2016-04-01

    Full Text Available Wetlands in semi-arid Africa are vital as water resource for local inhabitants and for biodiversity, but they are prone to strong seasonal fluctuations. Lac Bam is the largest natural freshwater lake in Burkina Faso, its water is mixed with patches of floating or flooded vegetation, and very turbid and sediment-rich. These characteristics as well as the usual cloud cover during the rainy season can limit the suitability of optical remote sensing data for monitoring purposes. This study demonstrates the applicability of weather-independent dual-polarimetric Synthetic Aperture Radar (SAR data for the analysis of spatio-temporal wetland dynamics. A TerraSAR-X repeat-pass time series of dual-co-polarized HH-VV StripMap data—with intervals of 11 days, covering two years (2013–2015 from the rainy to the dry season—was processed to normalized Kennaugh elements and classified mono-temporally and multi-temporally. Land cover time series and seasonal duration maps were generated for the following four classes: open water, flooded/floating vegetation, irrigated cultivation, and land (non-wetland. The added value of dual-polarimetric SAR data is demonstrated by significantly higher multitemporal classification accuracies, where the overall accuracy (88.5% exceeds the classification accuracy using single-polarimetric SAR intensity data (82.2%. For relevant change classes involving flooded vegetation and irrigated fields dual-polarimetric data (accuracies: 75%–97% are favored to single-polarimetric data (42%–87%. This study contributes to a better understanding of the dynamics of semi-arid African wetlands in terms of water areas including water with flooded vegetation, and the location and timing of irrigated cultivations.

  10. Modeling magnitude statistics of multilook SAR interferograms by generalizing G distributions

    Science.gov (United States)

    Gao, Gui; Shi, Gongtao

    2015-06-01

    Statistical analysis of multilook interferograms is a foundational issue in sensor signal processing of multiple-channel synthetic aperture radar (SAR), such as slow ground moving target indication (GMTI) in along-track interferometric (ATI) SAR. By an approximate derivation of the product of two modified Bessel functions, we propose in this paper a distribution (denoted simply as ΓIn) to model the interferometric magnitude of homogeneous clutter and analyze the capability of approximation using ΓIn according to numerical calculations. Following this, under the frame of the product model and by utilizing ΓIn, we analytically provide two distributions, KIn and Gn0, corresponding to heterogeneous and extremely heterogeneous terrain clutter, respectively. We show that the proposed ΓIn,KIn and G In0 are the multi-channel generalizations of the well-known Γ, K and G0, respectively, which belong to the special cases of G distribution for single-channel SAR images. Finally, the estimators of the proposed models are obtained by applying the Method of Log Cumulants (MoLC), which can accurately calculate the contained parameters. Experiments performed on the National Aeronautics and Space Administration Jet Propulsion Laboratory's (NASA/JPL) AirSAR images that used the Kullback-Leibler (KL) divergence as a similarity measurement verified the performance of the proposed models and estimators.

  11. Crop Classification by Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Svendsen, Morten Thougaard; Nielsen, Flemming;

    1999-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric L- and C-band SAR (EMISAR) during a number of missions at the Danish agricultural test site Foulum during 1995. The data are used to study the classification potential of polarimetric SAR data using...

  12. Water Vapor Products from Differential-InSAR with Auxiliary Calibration Data: Accuracy and Statistics

    Science.gov (United States)

    Gong, W.; Meyer, F. J.; Webley, P.

    2014-12-01

    Although water vapor disturbance has been long term recognized as the major error source in differential Interferometric Synthetic Aperture Radar (d-InSAR) techniques for the ground deformation monitoring and topography reconstruction, it provides opportunities to extract the atmospheric water-vapor information from satellite SAR imageries that can be further used to support studies on earth energy budget, climate, the hydrological cycle, and meteorological forecasting, etc. The water vapor contribution in interferometric phases is normally referred as the atmospheric delay dominated by water vapor rather than condensed water (e.g. cloud). D-InSAR can produce maps of the column water vapor amounts (equivalent to integrated water vapor (IWV) or Precipitable Water Vapor (PWV) in other literatures) that are important parameters quantitatively describe the total amount of water vapor overlying a point on the earth surface. Similar products have been operationally produced in multi-spectrum remote sensing, e.g. Moderate-resolution Imaging Spectroradiometer (MODIS) with a spatial resolution in 500 m to 1km; Whereas, the PWV products derived by d-InSAR have remarkably high spatial resolution that can capture fine scale of water vapor variations in space as small as tens of meters or even less. In recent years, some efforts have been made to derive the water vapor products from interferogram and analyze the corresponding products quality, such as studies comparing integrated water vapor derived from interferometric phases to other measurements (e.g. MERIS, MODIS, GNSS), studies on deriving absolute water vapor products from d-InSAR, and studies on integrating d-InSAR water vapor products in meteorological numerical forecast. In this study, considering these limitation factors and based on previous studies, we discuss the accuracy and statistics of the water vapor products from satellite SAR, including (1) Accuracy of the differential water vapor products; (2) Sources of

  13. InSAR Scientific Computing Environment - The Home Stretch

    Science.gov (United States)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.

    2011-12-01

    The Interferometric Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) is a software development effort in its third and final year within the NASA Advanced Information Systems and Technology program. The ISCE is a new computing environment for geodetic image processing for InSAR sensors enabling scientists to reduce measurements directly from radar satellites to new geophysical products with relative ease. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. Upcoming international SAR missions will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment has the functionality to become a key element in processing data from NASA's proposed DESDynI mission into higher level data products, supporting a new class of analyses that take advantage of the long time and large spatial scales of these new data. At the core of ISCE is a new set of efficient and accurate InSAR algorithms. These algorithms are placed into an object-oriented, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. ISCE supports data from nearly all of the available satellite platforms, including ERS, EnviSAT, Radarsat-1, Radarsat-2, ALOS, TerraSAR-X, and Cosmo-SkyMed. The code applies a number of parallelization techniques and sensible approximations for speed. It is configured to work on modern linux-based computers with gcc compilers and python

  14. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations

    Directory of Open Access Journals (Sweden)

    Mahdi Motagh

    2013-07-01

    Full Text Available The detection and monitoring of mass movement of susceptible slopes plays a key role in mitigating hazards and potential damage associated with creeping slopes and landslides. In this paper, we use observations from both Interferometric Synthetic Aperture Radar (InSAR and Global Positioning System (GPS to assess the slope stability of the Sarcheshmeh ancient landslide in the North Khorasan province of northeast Iran. InSAR observations were obtained by the time-series analysis of Envisat SAR images covering 2004–2006, whereas repeated GPS observations were conducted by campaign measurements during 2010–2012. Surface displacement maps of the Sarcheshmeh landslide obtained from InSAR and GPS are both indicative of slope stability. Hydrogeological analysis suggests that the multi-year drought and lower than average precipitation levels over the last decade might have contributed to the current dormancy of the Sarcheshmeh landslide.

  15. Constraining ice mass loss from Jakobshavn Isbræ (Greenland) using InSAR-measured crustal uplift

    DEFF Research Database (Denmark)

    Liu, Lin; Wahr, John; Howat, Ian

    2012-01-01

    Jakobshavn Isbræ in west Greenland has been undergoing dramatic thinning since 1997. Applying the interferometric synthetic aperture radar (InSAR) technique to Radarsat-1 SAR data, we measure crustal uplift near Jakobshavn Isbræ caused by recent ice mass loss. The crustal uplift is predominantly....... Overall, our results suggest that despite the inherent difficulties of working with a signal that has significant large-scale components, InSAR-measured crustal deformation can be used to study the ice mass loss of a rapidly thinning glacier and its surrounding catchment, providing both a constraint...... on any existing model of ice mass loss and a data source that can be used to invert for ice mass loss. These new applications of InSAR can help to better understand a glacier’s rapid response to a warming climate....

  16. Deriving Dynamic Subsidence of Coal Mining Areas Using InSAR and Logistic Model

    Directory of Open Access Journals (Sweden)

    Zefa Yang

    2017-02-01

    Full Text Available The seasonal variation of land cover and the large deformation gradients in coal mining areas often give rise to severe temporal and geometrical decorrelation in interferometric synthetic aperture radar (InSAR interferograms. Consequently, it is common that the available InSAR pairs do not cover the entire time period of SAR acquisitions, i.e., temporal gaps exist in the multi-temporal InSAR observations. In this case, it is very difficult to accurately estimate mining-induced dynamic subsidence using the traditional time-series InSAR techniques. In this investigation, we employ a logistic model which has been widely applied to describe mining-related dynamic subsidence, to bridge the temporal gaps in multi-temporal InSAR observations. More specifically, we first construct a functional relationship between the InSAR observations and the logistic model, and we then develop a method to estimate the model parameters of the logistic model from the InSAR observations with temporal gaps. Having obtained these model parameters, the dynamic subsidence can be estimated with the logistic model. Simulated and real data experiments in the Datong coal mining area, China, were carried out in this study, in order to test the proposed method. The results show that the maximum subsidence in the Datong coal mining area reached about 1.26 m between 1 July 2007 and 28 February 2009, and the accuracy of the estimated dynamic subsidence is about 0.017 m. Compared with the linear and cubic polynomial models of the traditional time-series InSAR techniques, the accuracy of dynamic subsidence derived by the logistic model is increased by about 50.0% and 45.2%, respectively.

  17. A Network Inversion Filter combining GNSS and InSAR for tectonic slip modeling

    Science.gov (United States)

    Bekaert, D. P. S.; Segall, P.; Wright, T. J.; Hooper, A. J.

    2016-03-01

    Studies of the earthquake cycle benefit from long-term time-dependent slip modeling, as it can be a powerful means to improve our understanding on the interaction of earthquake cycle processes such as interseismic, coseismic, post seismic, and aseismic slip. Observations from Interferometric Synthetic Aperture Radar (InSAR) allow us to model slip at depth with a higher spatial resolution than when using Global Navigation Satellite Systems (GNSS) alone. While the temporal resolution of InSAR has typically been limited, the recent fleet of SAR satellites including Sentinel-1, COSMO-SkyMED, and RADARSAT-2 permits the use of InSAR for time-dependent slip modeling at intervals of a few days when combined. With the vast amount of SAR data available, simultaneous data inversion of all epochs becomes challenging. Here we expanded the original network inversion filter to include InSAR observations of surface displacements in addition to GNSS. In the Network Inversion Filter (NIF) framework, geodetic observations are limited to those of a given epoch, with a stochastic model describing slip evolution over time. The combination of the Kalman forward filtering and backward smoothing allows all geodetic observations to constrain the complete observation period. Combining GNSS and InSAR allows modeling of time-dependent slip at unprecedented spatial resolution. We validate the approach with a simulation of the 2006 Guerrero slow slip event. We highlight the importance of including InSAR covariance information and demonstrate that InSAR provides an additional constraint on the spatial extent of the slow slip.

  18. High-speed railway bridge dynamic measurement based on GB-InSAR technology

    Science.gov (United States)

    Liu, Miao; Ding, Ke-liang; Liu, Xianglei; Song, Zichao

    2015-12-01

    It is an important task to evaluate the safety during the life of bridges using the corresponding vibration parameters. With the advantages of non-contact and high accuracy, the new remote measurement technology of GB-InSAR is suitable to make dynamic measurement for bridges to acquire the vibration parameters. Three key technologies, including stepped frequency-continuous wave technique, synthetic aperture radar and interferometric measurement technique, are introduced in this paper. The GB-InSAR is applied for a high-speed railway bridge to measure of dynamic characteristics with the train passing which can be used to analyze the safety of the monitored bridge. The test results shown that it is an reliable non-contact technique for GB-InSAR to acquire the dynamic vibration parameter for the high-speed railway bridges.

  19. From Ecuador to Patagonia: Andean deformation from InSAR 1992-2007

    Science.gov (United States)

    Pritchard, M. E.; Finnegan, N. J.

    2007-12-01

    We use Interferometric Synthetic Aperture Radar (InSAR) observations from 6 satellites (ERS-1, ERS-2, ENVISAT, RADARSAT, ALOS, and JERS-1) along with published GPS displacements to constrain the myriad deformational processes in the central and southern Andes between 1992-2007. In this contribution, we review the types of deformation that are occurring (volcanoes, earthquakes, post-seismic and inter-seismic deformation, glaciers, groundwater, and anthropogenic processes) and present new observations and models of these processes. In the central Andes, InSAR observations have been possible in all seasons and have documented numerous sources of deformation: at least 7 volcanic areas, more than a dozen earthquakes (5 oil production in the San Jorge basin, as well as motion of glaciers at the Northern and Southern Patagonian Icefields. Preliminary L-band InSAR data from ALOS indicates great potential for further illuminating deformational processes in the southern Andes.

  20. A Sparsity-Based InSAR Phase Denoising Algorithm Using Nonlocal Wavelet Shrinkage

    Directory of Open Access Journals (Sweden)

    Dongsheng Fang

    2016-10-01

    Full Text Available An interferometric synthetic aperture radar (InSAR phase denoising algorithm using the local sparsity of wavelet coefficients and nonlocal similarity of grouped blocks was developed. From the Bayesian perspective, the double- l 1 norm regularization model that enforces the local and nonlocal sparsity constraints was used. Taking advantages of coefficients of the nonlocal similarity between group blocks for the wavelet shrinkage, the proposed algorithm effectively filtered the phase noise. Applying the method to simulated and acquired InSAR data, we obtained satisfactory results. In comparison, the algorithm outperformed several widely-used InSAR phase denoising approaches in terms of the number of residues, root-mean-square errors and other edge preservation indexes.

  1. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  2. InSAR-Detected Tidal Flow in Louisiana's Coastal Wetlands

    Science.gov (United States)

    Oliver-Cabrera, T.; Wdowinski, S.

    2014-12-01

    The Louisiana coast is among the most productive coastal area in the US and home to the largest coastal wetland area in the nation. However, Louisiana coastal wetlands have been threatened by natural (sea-level rise) and human (infrastructure development) stresses; they constitute the major part of the wetland loss of the country. Monitoring Louisiana's coastal wetlands represent a large challenge for local and federal authorities due to the large amount of area and hostile environment. Insofar, optical remote sensing observations have been used to classify the wetlands, monitor land cover changes, and assess the wetland loss over time. However, optical data is insensitive to surface flow and, hence, unable to detect the width of the tidal zone and changes in this area over time. SAR interferometry can provide useful information and ease the monitoring task. Wetland InSAR is the only application of the InSAR technology that provides information of aquatic surface. It provides useful information on surface water level changes in both inland and coastal wetlands. In this study, we use InSAR and tide gauge observations to detect and compare surface water level changes in response to ocean tide propagation through the Louisiana coastal wetlands. Our data consist of ALOS PALSAR, Radarsat-1 and tide gauge information over the coast of Louisiana. In order to detect water level changes, we used mainly high coherence interferferograms with short temporal baselines (46-92 days for ALOS data and 24-48 days for Radarsat-1). Interferometric processing of the data provides details maps of water level changes in the coastal zone. Preliminary results indicate tidal changes of up 30 cm and that tidal flow is limited to 8-10 km from the open water. Our results also show that the tidal flow is disrupted by various man-made structures as, canals and roads. The high spatial resolution wetland InSAR observations can provide useful constraints for detailed coastal wetland flow models.

  3. Note: Near infrared interferometric silicon wafer metrology.

    Science.gov (United States)

    Choi, M S; Park, H M; Joo, K N

    2016-04-01

    In this investigation, two near infrared (NIR) interferometric techniques for silicon wafer metrology are described and verified with experimental results. Based on the transparent characteristic of NIR light to a silicon wafer, the fiber based spectrally resolved interferometry can measure the optical thickness of the wafer and stitching low coherence scanning interferometry can reconstruct entire surfaces of the wafer.

  4. InSAR detection of permafrost landform dynamics at Kapp Linné central Svalbard

    Science.gov (United States)

    Rune Lauknes, Tom; Christiansen, Hanne; Eckerstorfer, Markus; Larsen, Yngvar

    2013-04-01

    Permafrost is one of six cryospheric indicators of global climate change. As permafrost contains various forms of ground ice, thawing, degradation and speed up of particularly ice-rich periglacial landforms can lead to substantial landscape change and development. This has geomorphological, biological and socio-economical impacts, with changes in the water balance, increase in greenhouse gas emissivity, changes in flora and fauna and impacts on infrastructure. The present scientific challenge is to combine detailed site/point scale geomorphological field process observations with remote sensing data covering at landscape scale. We apply a multi-temporal satellite radar interferometric (InSAR) method to data obtained using the TerraSAR-X satellite. TerraSAR-X has a high spatial resolution and with 11 days repeat cycle, it is well suited to detect seasonal permafrost deformation. To test the usability of X-band InSAR data, we compare hourly field measurements between 2008-2011 of solifluction ground deformation at Kapp Linné, central Svalbard, with InSAR deformation time-series. We show that InSAR is able to pick up the seasonal deformation patterns of frost heave, ground settlement and associated solifluction as well as the interannual downslope movement. These results are a promising first step towards successful upscaling periglacial field point measurements to landscape scale, enabling observations of periglacial processes in larger parts of the permafrost landscapes.

  5. Stochastic modeling for time series InSAR: with emphasis on atmospheric effects

    Science.gov (United States)

    Cao, Yunmeng; Li, Zhiwei; Wei, Jianchao; Hu, Jun; Duan, Meng; Feng, Guangcai

    2017-08-01

    Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance-covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance-covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.

  6. Surface Ruptures and Building Damage of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation

    Science.gov (United States)

    Fielding, Eric J.; Talebian, M.; Rosen, P. A.; Nazari, H.; Jackson, J. A.; Ghorashi, M.; Walker, R.

    2005-01-01

    We use the interferometric correlation from Envisat synthetic aperture radar (SAR) images to map the details of the surface ruptures related to the 26 December 2003 earthquake that devastated Bam, Iran. The main strike-slip fault rupture south of the city of Bam has a series of four segments with left steps shown by a narrow line of low correlation in the coseismic interferogram. This also has a clear expression in the field because of the net extension across the fault. Just south of the city limits, the surface strain becomes distributed over a width of about 500 m, probably because of a thicker layer of soft sedimentary material.

  7. SARS: just another viral acronym?

    Science.gov (United States)

    Broxmeyer, L

    2003-08-01

    Recent observations and experimental evidence have purported that a virus causes SARS, but such viruses have been isolated in only less than half of SARS patients in some studies and virologist Vincent Plummer of Winnipeg's National Microbiology Laboratory found that indeed 1 in 5 perfectly healthy Canadians with a history of recent travel to Asia had the virus. Therefore SARS microbiologic origins remain unclear. Outbreaks of multi-drug resistant (MDR) tuberculosis and the atypical mycobacteria simulate SARS on clinical, radiologic, epidemiologic, and diagnostic laboratory grounds and it is only logical then to include them in the differential to find a definitive cause and cure for SARS.

  8. Stochastic geometrical model and Monte Carlo optimization methods for building reconstruction from InSAR data

    Science.gov (United States)

    Zhang, Yue; Sun, Xian; Thiele, Antje; Hinz, Stefan

    2015-10-01

    Synthetic aperture radar (SAR) systems, such as TanDEM-X, TerraSAR-X and Cosmo-SkyMed, acquire imagery with high spatial resolution (HR), making it possible to observe objects in urban areas with high detail. In this paper, we propose a new top-down framework for three-dimensional (3D) building reconstruction from HR interferometric SAR (InSAR) data. Unlike most methods proposed before, we adopt a generative model and utilize the reconstruction process by maximizing a posteriori estimation (MAP) through Monte Carlo methods. The reason for this strategy refers to the fact that the noisiness of SAR images calls for a thorough prior model to better cope with the inherent amplitude and phase fluctuations. In the reconstruction process, according to the radar configuration and the building geometry, a 3D building hypothesis is mapped to the SAR image plane and decomposed to feature regions such as layover, corner line, and shadow. Then, the statistical properties of intensity, interferometric phase and coherence of each region are explored respectively, and are included as region terms. Roofs are not directly considered as they are mixed with wall into layover area in most cases. When estimating the similarity between the building hypothesis and the real data, the prior, the region term, together with the edge term related to the contours of layover and corner line, are taken into consideration. In the optimization step, in order to achieve convergent reconstruction outputs and get rid of local extrema, special transition kernels are designed. The proposed framework is evaluated on the TanDEM-X dataset and performs well for buildings reconstruction.

  9. Landslide monitoring by combining of CR-InSAR and GPS techniques

    Science.gov (United States)

    Zhu, Wu; Zhang, Qin; Ding, XiaoLi; Zhao, Chaoying; Yang, Chengsheng; Qu, Feifei; Qu, Wei

    2014-02-01

    Considering the limitations related to the landslide monitoring by Interferometric Synthetic Aperture Radar (InSAR) technique, the method of integration of Globe Positioning System (GPS) with Corner Reflector Interferometric SAR (CR-InSAR) techniques is proposed in this paper. Firstly, deformation in radar line-of-slight (LOS) direction is optimized by introducing the GPS-measured height and atmospheric delay products into the CR-InSAR model. Then, GPS-measured horizontal deformation and CR-InSAR measured LOS deformation are combined to produce the more accurate vertical deformation. Finally, high precision three-dimensional deformation (N, E, U) is projected to the along-slope direction to monitor the actual movement of landslide. In order to test this method, four X-band stripmap-mode TerraSAR images, eight Trihedral Corner Reflectors (TCR) data and eight GPS observed data are collected to monitor the deformation of three potential landslide fields located at the north of Shaanxi province, China. The detailed analysis demonstrates that the estimated precision of along-slope direction is about two times better for proposed method (±1.1 mm) versus GPS (±2.1 mm) in this case. Meanwhile, our result indicates that almost all of the monitoring points present the trends of sliding down along the slope at the different levels from April 9 2011 to August 30 2011, showing the certain instability. Further investigation of the relationship between the magnitudes of displacement at CR points and the implementation of early control reflects the rationality of our result. Our proposed method could provide of the strong support in the high precision landslide deformation monitoring.

  10. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    2006-11-08

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.  Created: 11/8/2006 by Emerging Infectious Diseases.   Date Released: 11/17/2006.

  11. Multichannel FMCW SAR

    NARCIS (Netherlands)

    Rossum, W.L. van; Otten, M.P.G.; Dorp, Ph. van

    2012-01-01

    A light weight SAR, suitable for use on short range tactical UAV, has been designed and built. The system consists of a fully digital receive array, and a very compact active transmit antenna. The approximate weight of the complete system is 6 kg, with power consumption below 75 W, depending on the

  12. Bistatic SAR: Proof of Concept.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  13. Understanding SARS with Wolfram Approach

    Institute of Scientific and Technical Information of China (English)

    Da-WeiLI; Yu-XiPAN; YunDUAN; Zhen-DeHUNG; Ming-QingXU; LinHE

    2004-01-01

    Stepping acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) as another type of disease has been threatening mankind since late last year. Many scientists worldwide are making great efforts to study the etiology of this disease with different approaches. 13 species of SARS virus have been sequenced. However, most people still largely rely on the traditional methods with some disadvantages. In this work, we used Wolfram approach to study the relationship among SARS viruses and between SARS viruses and other types of viruses, the effect of variations on the whole genome and the advantages in the analysis of SARS based on this novel approach. As a result, the similarities between SARS viruses and other coronaviruses are not really higher than those between SARS viruses and non-coronaviruses.

  14. Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2014-05-01

    Full Text Available Fast crisis response after natural disasters, such as earthquakes and tropical storms, is necessary to support, for instance, rescue, humanitarian, and reconstruction operations in the crisis area. Therefore, rapid damage mapping after a disaster is crucial, i.e., to detect the affected area, including grade and type of damage. Thereby, satellite remote sensing plays a key role due to its fast response, wide field of view, and low cost. With the increasing availability of remote sensing data, numerous methods have been developed for damage assessment. This article gives a comprehensive review of these techniques focusing on multi-temporal SAR procedures for rapid damage assessment: interferometric coherence and intensity correlation. The review is divided into six parts: First, methods based on coherence; second, the ones using intensity correlation; and third, techniques using both methodologies combined to increase the accuracy of the damage assessment are reviewed. Next, studies using additional data (e.g., GIS and optical imagery to support the damage assessment and increase its accuracy are reported. Moreover, selected studies on post-event SAR damage assessment techniques and examples of other applications of the interferometric coherence are presented. Then, the preconditions for a successful worldwide application of multi-temporal SAR methods for damage assessment and the limitations of current SAR satellite missions are reported. Finally, an outlook to the Sentinel-1 SAR mission shows possible solutions of these limitations, enabling a worldwide applicability of the presented damage assessment methods.

  15. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?

    Science.gov (United States)

    Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence

    2017-09-01

    Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

  16. Short-Term Surface Deformation on the Northern Hayward Fault, CA, and Nearby Landslides Using Polarimetric SAR Interferometry (PolInSAR)

    Science.gov (United States)

    Alipour, Samira; Tiampo, Kristy F.; Samsonov, Sergey V.; González, Pablo J.

    2015-08-01

    In this study, we analyze 25 RADARSAT-2 images from ascending and descending geometries to study the creep rate on the Hayward fault and landslide motions near Berkeley, CA. We applied a coherence optimization technique from polarimetric synthetic aperture radar interferometry (PolInSAR) to increase the accuracy of the measurements. We resolve 3-5 mm/year of motion along the Hayward fault, in agreement with earlier creep estimates. We identify a potential motion on secondary fault, northeast and parallel to the Hayward fault, which is creeping at a lower rate of ~1.5 mm/year. In addition, we identify a number of landslides along the hills east of the fault that agree with earlier results from advanced interferometric synthetic aperture radar (SAR) analysis and field investigations. We investigate four particular slope instabilities, one of which was marked as moderately active, and three as highly active, by earlier field investigations. The resolved along-hill slope displacement is estimated at ~23 mm/year. Our results demonstrate that PolInSAR is an effective method to increase the interferometric coherence and provide improved resolution of deformation features associated with natural hazards.

  17. Cascades of InSAR in the Cascades - outlook for the use of InSAR and space-based imaging catalogues in a Subduction Zone Observatory

    Science.gov (United States)

    Lohman, R. B.

    2015-12-01

    Interferometric synthetic aperture radar (InSAR) has long demonstrated its utility to studies of subduction zone earthquakes, crustal events and volcanic processes, particularly in regions with very good temporal data coverage (e.g., Japan), or arid regions where the timescale of surface change is long compared to the repeat time of the available SAR imagery (e.g., portions of South America). Recently launched and future SAR missions with open data access will increase the temporal sampling rates further over many areas of the globe, resulting in a new ability to lower the detection threshold for earthquakes and, potentially, interseismic motion and transients associated with subduction zone settings. Here we describe some of the anticipated detection abilities for events ranging from earthquakes and slow slip along the subduction zone interface up to landslides, and examine the variations in land use around the circum-Pacific and how that and its changes over time will affect the use of InSAR. We will show the results of an effort to combine Landsat and other optical imagery with SAR data catalogues in the Pacific Northwest to improve the characterization of ground deformation signals, including the identification of "spurious" signals that are not related to true ground deformation. We also describe prospects for working with other communities that are interested in variations in soil moisture and vegetation structure over the same terrain.

  18. Land subsidence monitoring by D-InSAR technique

    Institute of Scientific and Technical Information of China (English)

    Fan Hongdong; Deng Kazhong; Ju Chengyu; Zhu Chuanguang; Xue Jiqun

    2011-01-01

    Nowadays,the researches of using Differential Interferometric Synthetic Aperture Radar (D-InSAR) technique to monitor the land subsidence are mainly on how to qualitatively analyze the subsidence areas and values,but the analysis of subsidence process and mechanism are insufficient.In order to resolve these problems,6 scenes of ERS1/2 images captured during 1995 and 2000 in a certain place of Jiangsu province were selected to obtain the subsidence and velocities in three time segments by “two-pass” DInSAR method.Then the relationships among distributions of pumping wells,exploitation quantity of groundwater,and confined water levels were studied and the subsidence mechanism was systematically analyzed.The results show that using D-InSAR technique to monitor the deformation of large area can obtain high accuracies,the disadvantages of classical observation methods can be remedied and there is a linear relationship among the velocities of land subsidence,the water level and the exploitation quantity.

  19. Land Cover Mapping Using SENTINEL-1 SAR Data

    Science.gov (United States)

    Abdikan, S.; Sanli, F. B.; Ustuner, M.; Calò, F.

    2016-06-01

    In this paper, the potential of using free-of-charge Sentinel-1 Synthetic Aperture Radar (SAR) imagery for land cover mapping in urban areas is investigated. To this aim, we use dual-pol (VV+VH) Interferometric Wide swath mode (IW) data collected on September 16th 2015 along descending orbit over Istanbul megacity, Turkey. Data have been calibrated, terrain corrected, and filtered by a 5x5 kernel using gamma map approach. During terrain correction by using a 25m resolution SRTM DEM, SAR data has been resampled resulting into a pixel spacing of 20m. Support Vector Machines (SVM) method has been implemented as a supervised pixel based image classification to classify the dataset. During the classification, different scenarios have been applied to find out the performance of Sentinel-1 data. The training and test data have been collected from high resolution image of Google Earth. Different combinations of VV and VH polarizations have been analysed and the resulting classified images have been assessed using overall classification accuracy and Kappa coefficient. Results demonstrate that, combining opportunely dual polarization data, the overall accuracy increases up to 93.28% against 73.85% and 70.74% of using individual polarization VV and VH, respectively. Our preliminary analysis points out that dual polarimetric Sentinel-1SAR data can be effectively exploited for producing accurate land cover maps, with relevant advantages for urban planning and management of large cities.

  20. Polarimetric differential SAR interferometry in an arid natural environment

    Science.gov (United States)

    Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred; Perissin, Daniele

    2017-07-01

    Ground deformation measurements have contributed to a better understanding of the processes and mechanisms involved in natural hazards. Those include landslides, subsidence, earthquakes and volcanic eruptions. Spaceborne Differential Interferometric Synthetic Aperture RADAR (DInSAR) is a well studied technique for measuring ground deformation. Quality of deformation measurements, however, is often degraded by decorrelation. With the advent of fully polarimetric SAR satellite sensors, polarimetric optimization techniques exploiting polarimetric diversity improve the phase quality of interferograms. In this paper, we analyzed three polarimetric optimization methods to determine the optimal one for application in an arid natural environment. We considered coherence decomposition in single and double phase center scenarios. Coherence estimation bias associated with each optimization method has been analyzed. We compared the derived displacement values with terrestrial GPS measurements. The study shows that polarimetric optimization increases the number of coherent pixels by upto 6.89% as compared with a single polarization channel. The study concludes that polarimetric optimization coupled with DInSAR analysis yields more reliable deformation results in a low coherence region.

  1. Physics-Based Predictions for Coherent Change Detection Using X-Band Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Mark Preiss

    2005-12-01

    Full Text Available A theoretical model is developed to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The model is derived using a dyadic form for surface reflectivity in the Kirchhoff approximation. This permits the combination of Kirchhoff theory and spotlight synthetic aperture radar (SAR image formation theory. The resulting model is used to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The theoretical model is applied to SAR images formed before and after surface changes observed by a repeat-pass SAR system. The change in surface associated with a tyre track following vehicle passage is modelled and SAR coherency estimates are obtained. Predicted coherency distributions for both the change and no-change scenarios are used to estimate receiver operator curves for the detection of the changes using a high-resolution, X-band SAR system.

  2. Interferometric synthetic aperture radar-GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone

    Science.gov (United States)

    Gourmelen, Noel; Amelung, Falk; Lanari, Riccardo

    2010-09-01

    The principal limitations of interferometric synthetic aperture radar (InSAR) to measure subtle, long-wavelength deformation are uncertainties associated with the satellite orbits. We propose a method to remove orbital phase errors from the InSAR data by integrating InSAR and continuous GPS time series. We model the along-track variation of the baseline errors as second-order polynomials and estimate the coefficients using the continuous GPS measurements. We apply this method to a 600 km long region encompassing the Basin and Range and the eastern California shear zone. Comparison of the corrected InSAR velocities with independent GPS data shows that this method removes the long-wavelength InSAR errors. The InSAR data reveal a region of sharp variation in the line-of-sight velocity across the Hunter Mountain fault. We model the deformation as interseismic elastic strain accumulation across a strike-slip fault. The modeling suggests a fault slip rate of 4.9 ± 0.8 mm/yr and a locking depth of 2 ± 0.4 km. The shallow locking depth suggests that the Hunter Mountain fault is a transfer fault between low angle normal faults in the area.

  3. Bistatic sAR data processing algorithms

    CERN Document Server

    Qiu, Xiaolan; Hu, Donghui

    2013-01-01

    Synthetic Aperture Radar (SAR) is critical for remote sensing. It works day and night, in good weather or bad. Bistatic SAR is a new kind of SAR system, where the transmitter and receiver are placed on two separate platforms. Bistatic SAR is one of the most important trends in SAR development, as the technology renders SAR more flexible and safer when used in military environments. Imaging is one of the most difficult and important aspects of bistatic SAR data processing. Although traditional SAR signal processing is fully developed, bistatic SAR has a more complex system structure, so sign

  4. SAR++: A Multi-Channel Scalable and Reconfigurable SAR System

    DEFF Research Database (Denmark)

    Høeg, Flemming; Christensen, Erik Lintz

    2002-01-01

    SAR++ is a technology program aiming at developing know-how and technology needed to design the next generation civilian SAR systems. Technology has reached a state, which allows major parts of the digital subsystem to be built using custom-off-the-shelf (COTS) components. A design goal is to des......SAR++ is a technology program aiming at developing know-how and technology needed to design the next generation civilian SAR systems. Technology has reached a state, which allows major parts of the digital subsystem to be built using custom-off-the-shelf (COTS) components. A design goal...... is to design a modular, scalable and reconfigurable SAR system using such components, in order to ensure maximum flexibility for the users of the actual system and for future system updates. Having these aspects in mind the SAR++ system is presented with focus on the digital subsystem architecture...... and the analog to digital interface....

  5. First Results of the Performance of the Global Forest/Non-Forest Map derived from TanDEM-X Interferometric Data

    Science.gov (United States)

    Gonzalez, Carolina; Rizzoli, Paola; Martone, Michele; Wecklich, Christopher; Bueso Bello, Jose Luis; Krieger, Gerhard; Zink, Manfred

    2017-04-01

    The globally acquired interferometric synthetic aperture radar (SAR) data set, used for the recently completed primary goal of the TanDEM-X mission, enables a big opportunity for scientific geo-applications. Of great importance for land characterization, classification, and monitoring is that the data set is globally acquired without gaps and includes multiple acquisitions of every region, with comparable parameters. One of the most valuable maps that can be derived from interferometric SAR data for land classification describes the presence/absence of vegetation. In particular, here we report about the deployment of the Global Forest/Non-Forest Map, derived from TanDEM-X interferometric SAR quick-look data, at a ground resolution of 50 m by 50 m. Presence of structures and in particular vegetation produces multiple scattering known as volume decorrelation. Its contribution can be directly estimated from the assessment of coherence loss in the interferometric bistatic pair, by compensating for all other decorrelation sources, such as poor signal-to-noise ratio or quantization noise. Three different forest types have been characterized based on the estimated volume decorrelation: tropical, temperate, and boreal forest. This characterization was then used in a fuzzy clustering approach for the discrimination of vegetated areas on a global scale. Water and cities are filtered out from the generated maps in order to distinguish volume decorrelation from other decorrelation sources. The validation and performance comparison of the delivered product is also presented, and represents a fundamental tool for optimizing the whole algorithm at all different stages. Furtheremore, as the time interval of the acquisitions is almost 4 years, change detection can be performed as well and examples of deforestation are also going to be included in the final paper.

  6. Long-range ground deformation monitoring by InSAR analysis

    Directory of Open Access Journals (Sweden)

    S. Rokugawa

    2015-11-01

    Full Text Available InSAR (Interferometric Synthetic Aperture Radar analysis is an effective technique to map 3-dimensional surface deformation with high spatial resolution. The aim of this study was to evaluate the capability of InSAR analysis when applied to ground monitoring of an environmental disaster. We performed a time series InSAR analysis using ENVISAT/ASAR and ALOS/PALSAR data and commercial software to investigate subsidence around the Kanto District of Japan. We also investigated techniques for efficient early detection of landslides in Kyushu using time series analysis that incorporated synthetic aperture radar (SAR images. ENVISAT/ASAR data acquired from 2003–2010 and ALOS/PALSAR data acquired from 2006–2011 were used to detect poorly expressed geomorphological deformation by conducting time series analyses of periodically acquired SAR data. In addition, to remove noise caused by geographical feature stripes or phase retardation, we applied median filtering, histogram extraction processing, and clarification of the displacement with a Laplacian filter. The main functions of the InSAR time series analysis are the calculation of phase differences between two images and the inversion with smoothness constraint for the estimation of deformation along the line of sight. The results enabled us to establish criteria for the selection of suitable InSAR data pairs, and provided the final error estimation of the derived surface deformation. The results of the analysis in the Kanto District suggested that localized areas of uplift and subsidence have occurred at irregular intervals in this area. Furthermore, the method offers the possibility of early warning of environmental disasters such as landslide and abrupt subsidence. Our results confirm the effectiveness of InSAR analysis for the monitoring of ground deformation over wide areas via the detection of localized subsidence and landslides.

  7. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices

    Science.gov (United States)

    Raspini, Federico; Bardi, Federica; Bianchini, Silvia; Ciampalini, Andrea; Del Ventisette, Chiara; Farina, Paolo; Ferrigno, Federica; Solari, Lorenzo; Casagli, Nicola

    2017-04-01

    Landslides are common phenomena that occur worldwide and are a main cause of loss of life and damage to property. The hazards associated with landslides are a challenging concern in many countries, including Italy. With 13% of the territory prone to landslides, Italy is one of the European countries with the highest landslide hazard, and on a worldwide scale, it is second only to Japan among the technologically advanced countries. Over the last 15 years, an increasing number of applications have aimed to demonstrate the applicability of images captured by space-borne Synthetic Aperture Radar (SAR) sensors in slope instability investigations. InSAR (SAR Interferometry) is currently one of the most exploited techniques for the assessment of ground displacements, and it is becoming a consolidated tool for Civil Protection institutions in addressing landslide risk. We present a subset of the results obtained in Italy within the framework of SAR-based programmes and applications intended to test the potential application of C- and X-band satellite interferometry during different Civil Protection activities (namely, prevention, prevision, emergency response and post-emergency phases) performed to manage landslide risk. In all phases, different benefits can be derived from the use of SAR-based measurements, which were demonstrated to be effective in the field of landslide analysis. Analysis of satellite-SAR data is demonstrated to play a major role in the investigation of landslide-related events at different stages, including detection, mapping, monitoring, characterization and prediction. Interferometric approaches are widely consolidated for analysis of slow-moving slope deformations in a variety of environments, and exploitation of the amplitude data in SAR images is a somewhat natural complement for rapid-moving landslides. In addition, we discuss the limitations that still exist and must be overcome in the coming years to manage the transition of satellite SAR

  8. Calibration of mixed-polarization interferometric observations

    CERN Document Server

    Marti-Vidal, Ivan; Conway, John; Zensus, Anton J

    2016-01-01

    Heterodyne receivers register the sky signal on either a circular polarization basis (where it is split into left-hand and right-hand circular polarization) or a linear polarization basis (where it is split into horizontal and vertical linear polarization). We study the problem of interferometric observations performed with telescopes that observe on different polarization bases, hence producing visibilities that we call "mixed basis" (i.e., linear in one telescope and circular in the other). We present novel algorithms for the proper calibration and treatment of such interferometric observations and test our algorithms with both simulations and real data. The use of our algorithms will be important for the optimum calibration of forthcoming observations with the Atacama Large mm/submm Array (ALMA) in very-long-baseline interferometry (VLBI) mode. Our algorithms will also allow us to optimally calibrate future VLBI observations at very high data rates (i.e., wide bandwidths), where linear-polarization feeds w...

  9. Multi-temporal SAR data analysis for landcover, water-level changes, and subsidence studies in Southeastern Louisiana

    Science.gov (United States)

    Kwoun, O.; Lu, Z.

    2006-12-01

    We used multi-temporal European Remote Sensing Satellites 1 and 2 (ERS-1/2), Environment Satellite (ENVISAT), and Canadian RADARSAT-1 Synthetic Aperture Radar (SAR) images for ecological, hydrological, and geological studies of the Southeastern Louisiana coastal flood zone. First, we present a distinctive correlation among the seasonal changes in SAR backscatter, interferometric coherence, and land cover types with the associated normalized difference vegetation indices. Second, we demonstrate the use of C-band SAR images to measure changes in the water-level beneath moderately dense swamp forests, at a vertical accuracy and spatial resolution that is not possible with the current gauge-based measurements. Finally, we apply the conventional SAR interferometry (InSAR) and the Permanent Scatterer InSAR techniques to map land surface subsidence in New Orleans and the surrounding area; the comparison of measured subsidence patterns shows certain discrepancies that are probably due to atmospheric delays in this humid area. Our study demonstrates the importance of SAR data for understanding this coastal flood zone and the associated ecological, hydrological, and geological processes.

  10. Analysis of the interferometric Ronchi test.

    Science.gov (United States)

    Malacara, D

    1990-09-01

    It is well known that the Ronchi test has two equivalent interpretations, Physical, as an interferometer, or geometrical, as if the fringes were just shadows from the fringes on the ruling. The second interpretation is nearly always used in practice because it is simpler. However, the disadvantage is that the irradiance profile of the fringes cannot be calculated with this theory. Here, the interferometric interpretation of the test will be used to obtain the irradiance profile and the sharpness of the fringes.

  11. Digital Detection of Exosomes by Interferometric Imaging

    OpenAIRE

    2016-01-01

    Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30–100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and ...

  12. Monitoring of Land Subsidence in Coal Mining Area Based on D-InSAR Technology%基于 D-InSAR 技术的煤矿区地面沉降监测研究

    Institute of Scientific and Technical Information of China (English)

    宋继德; 邸志众

    2014-01-01

    概要叙述了差分合成孔径雷达(D-InSAR)的技术原理和数据处理方法,介绍了 D-InSAR 在地表形变监测中的应用技术和方法,针对研究区域的地表沉降特点选择常规 D-InSAR 和永久性散射体干涉测量(PSI)作为 InSAR 差分处理方式,分析并选取适合本项目研究的 InSAR 雷达数据,对兖州-济宁区域因煤矿开采产生的地表缓慢沉降和快速沉降进行数据分析并得出结论,达到了研究的目的。%This paper briefly described the principle and data processing methods of the Differential Interferometric SAR(D-InSAR)technology,and introduced the application techniques and methods of D-InSAR on monitoring of the ground surface deformation.According to the characteristics of the ground surface subsidence in study area,we choosed conventional D-InSAR and Permanent Scatterer Interferometry(PSI)as the InSAR differential treatment,and analyzed and selected the InSAR radar data that is suitable for the study.Finally,we have drawn some conclusions by analyzing data of both the slow and rapid ground surface subsidence caused by the coal mining in Yanzhou-Jining area,and have achieved the purpose of the research.

  13. Monitoring of surface deformation in open pit mine using DInSAR time-series: a case study in the N5W iron mine (Carajás, Brazil) using TerraSAR-X data

    Science.gov (United States)

    Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Santos, Athos R.; Galo, Mauricio; Camargo, Paulo O.; Silva, Arnaldo Q.; Silva, Guilherme G.

    2014-10-01

    We present an investigation of surface deformation using Differential SAR Interferometry (DInSAR) time-series carried out in an active open pit iron mine, the N5W, located in the Carajás Mineral Province (Brazilian Amazon region), using 33 TerraSAR-X (TSX-1) scenes. This mine has presented a historical of instability and surface monitoring measurements over sectors of the mine (pit walls) have been done based on ground based radar. Two complementary approaches were used: the standard DInSAR configuration, as an early warning of the slope instability conditions, and the DInSAR timeseries analysis. In order to decrease the topographic phase error a high resolution DEM was generated based on a stereo GeoEye-1 pair. Despite the fact that a DinSAR contains atmospheric and topographic phase artifacts and noise, it was possible to detect deformation in some interferometric pairs, covering pit benches, road ramps and waste piles. The timeseries analysis was performed using the 31 interferometric pairs, which were selected based on the highest mean coherence of a stack of 107 interferograms, presenting less phase unwrapping errors. The time-series deformation was retrieved by the Least-Squares (LS) solution using an extension of the Singular Value Decomposition (SVD), with a set of additional weighted constrain on the acceleration deformation. The atmospheric phase artifacts were filtered in the space-time domain and the DEM height errors were estimated based on the normal baseline diversity. The DInSAR time-series investigation showed good results for monitoring surface displacement in the N5W mine located in a tropical rainforest environment, providing very useful information about the ground movement for alarm, planning and risk assessment.

  14. GIAnT - Generic InSAR Analysis Toolbox

    Science.gov (United States)

    Agram, P.; Jolivet, R.; Riel, B. V.; Simons, M.; Doin, M.; Lasserre, C.; Hetland, E. A.

    2012-12-01

    We present a computing framework for studying the spatio-temporal evolution of ground deformation from interferometric synthetic aperture radar (InSAR) data. Several open-source tools including Repeat Orbit Interferometry PACkage (ROI-PAC) and InSAR Scientific Computing Environment (ISCE) from NASA-JPL, and Delft Object-oriented Repeat Interferometric Software (DORIS), have enabled scientists to generate individual interferograms from raw radar data with relative ease. Numerous computational techniques and algorithms that reduce phase information from multiple interferograms to a deformation time-series have been developed and verified over the past decade. However, the sharing and direct comparison of products from multiple processing approaches has been hindered by - 1) absence of simple standards for sharing of estimated time-series products, 2) use of proprietary software tools with license restrictions and 3) the closed source nature of the exact implementation of many of these algorithms. We have developed this computing framework to address all of the above issues. We attempt to take the first steps towards creating a community software repository for InSAR time-series analysis. To date, we have implemented the short baseline subset algorithm (SBAS), NSBAS and multi-scale interferometric time-series (MInTS) in this framework and the associated source code is included in the GIAnT distribution. A number of the associated routines have been optimized for performance and scalability with large data sets. Some of the new features in our processing framework are - 1) the use of daily solutions from continuous GPS stations to correct for orbit errors, 2) the use of meteorological data sets to estimate the tropospheric delay screen and 3) a data-driven bootstrapping approach to estimate the uncertainties associated with estimated time-series products. We are currently working on incorporating tidal load corrections for individual interferograms and propagation of

  15. Precision estimation and geomorphological analysis based on the DEM generated by InSAR: Taking Damxung-Yangbajain area as an example

    Institute of Scientific and Technical Information of China (English)

    Yaqiong Dai; Jinwei Ren; Xuhui Shen; Jingfa Zhang; Shunying Hong

    2009-01-01

    Digital elevation model (DEM) can be generated by interferometric synthetic aperture radar (InSAR). In this paper, the interferometric processing and analyses are carried out for Damxung-Yangbajain area in Tibet, using a pair of Europe remote-sensing satellite (ERS)-l/2 tandem SAR images acquired on 6 and 7 April 1996. A portion of the In-SAR-derived DEM is selected and compared with the 1:50 000 DEM to determine the precision of the InSAR-derived DEM. The comparison indicates that the root mean squared errors (RMSE), which are used to evaluate error, are about 35, 60, 10, and 15 m in the studied area, mountainous area, basin area and near-fault area, respectively, suggesting that obvious errors are mainly in mountainous area. Besides, the limitation of InSAR technology to generate DEM is analyzed. Our investigation shows that InSAR is an effective tool in geodesy and an important complement to field surveying in some dangerous areas.

  16. Planned Data Products and Science Processing Paradigm for the Proposed NASA-ISRO SAR Mission

    Science.gov (United States)

    Rosen, P. A.

    2014-12-01

    The proposed NASA-ISRO Synthetic Aperture Radar (SAR), or NISAR, Mission will make global integrated measurements of the causes and consequences of land surface changes. NISAR would provide a means of disentangling highly spatial and temporally complex processes ranging from ecosystem disturbances, to ice sheet collapse and natural hazards including earthquakes, tsunamis, volcanoes, and landslides. The mission would capable of performing repeat-pass interferometry and collecting polarimetric data. The core of the payload would consist of an L-band SAR to meet all of the NASA science requirements. A secondary S-band SAR would be contributed by ISRO, the Indian Space Research Organisation. The instrument would comprise a large diameter deployable reflector and a dual frequency antenna feed and associated electronics to implement the fine-resolution, polarimetric, 240-km swath imaging system. Combined with an ambitious data acquisition plan that supports continuous mapping of Earth's land and ice-covered surfaces at every opportunity over the life of the mission, the mission would generate over 1 Petabyte of raw data each year, which expands to greater data volumes for higher level products. Since many of the science requirements propose time-series analysis, which often involve combinatorial manipulation of images acquired over time, it would be impractical and inadvisable to create global time-series science products. As a result, the processing plan for the mission would be for the project to create a complete set of products through Level 2, and only selected Level 3 products over extended areas of calibration and validation. These sites would be chosen to be scientifically interesting, so that the mission products would include significant scientific results. In addition, the project will develop higher-level processing software to the community that will allow scientists to apply the mission data from Level 0 to 2 to their science problems.

  17. Tide-corrected strain rate and crevasses of Campbell Glacier Tongue in East Antarctica measured by SAR interferometry

    Science.gov (United States)

    Han, H.; Lee, H.

    2016-12-01

    Measurement of flow velocity strain rate of a floating glacier is critical to the investigation of detailed flow regime and crevassing mechanism. We measured the surface deformation of Campbell Glacier Tongue (CGT) in East Antarctica from the 14 COSMO-SkyMed one-day tandem differential interferometric SAR (DInSAR) image pairs obtained in 2011. By removing the vertical tidal deflection obtained from the double-differential InSAR (DDInSAR) signals, we derived the tide-corrected ice-flow velocity and strain rate of CGT. The vertical tidal deflection of CGT was estimated by multiplying the tidal variations corresponding to the DInSAR images by the DDInSAR-derived tide deflection ratio, which was removed from the DInSAR signals to extract ice velocity only. The orientation of crevasses in CGT was nearly perpendicular to the direction of the most tensile strain rate calculated from the tide-corrected ice velocity. This demonstrates that the crevasses form by ice flow in respect of the DInSAR accuracy, not by tidal deflection. The tide correction of DInSAR signals over floating glaciers by using the DDInSAR-derived tide deflection ratio is useful for estimating accurate ice velocity and strain rate for analyzing crevasses. The tide-corrected ice velocity and strain rate will thus be of great value in a better understating of ice dynamics of floating glaciers. This research was funded by National Research Foundation of Korea (NRF-2016R1D1A1A09916630).

  18. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  19. Wetland InSAR

    Science.gov (United States)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  20. InSAR observations of the 2009 Racha earthquake, Georgia

    Science.gov (United States)

    Nikolaeva, Elena; Walter, Thomas R.

    2016-09-01

    Central Georgia is an area strongly affected by earthquake and landslide hazards. On 29 April 1991 a major earthquake (Mw  =  7.0) struck the Racha region in Georgia, followed by aftershocks and significant afterslip. The same region was hit by another major event (Mw  =  6.0) on 7 September 2009. The aim of the study reported here was to utilize interferometric synthetic aperture radar (InSAR) data to improve knowledge about the spatial pattern of deformation due to the 2009 earthquake. There were no actual earthquake observations by InSAR in Georgia. We considered all available SAR data images from different space agencies. However, due to the long wavelength and the frequent acquisitions, only the multi-temporal ALOS L-band SAR data allowed us to produce interferograms spanning the 2009 earthquake. We detected a local uplift around 10 cm (along the line-of-sight propagation) in the interferogram near the earthquake's epicenter, whereas evidence of surface ruptures could not be found in the field along the active thrust fault. We simulated a deformation signal which could be created by the 2009 Racha earthquake on the basis of local seismic records and by using an elastic dislocation model. We compared our modeled fault surface of the September 2009 with the April 1991 Racha earthquake fault surfaces and identify the same fault or a sub-parallel fault of the same system as the origin. The patch that was active in 2009 is just adjacent to the 1991 patch, indicating a possible mainly westward propagation direction, with important implications for future earthquake hazards.

  1. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  2. Improving terrain height estimates from RADARSAT interferometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, P.A.; Eichel, P.H.; Calloway, T.M.

    1998-03-01

    The authors describe two methods of combining two-pass RADAR-SAT interferometric phase maps with existing DTED (digital terrain elevation data) to produce improved terrain height estimates. The first is a least-squares estimation procedure that fits the unwrapped phase data to a phase map computed from the DTED. The second is a filtering technique that combines the interferometric height map with the DTED map based on spatial frequency content. Both methods preserve the high fidelity of the interferometric data.

  3. Terrain topographic inversion using single-pass polarimetric SAR image data

    Institute of Scientific and Technical Information of China (English)

    JIN Yaqiu; LUO Lin

    2004-01-01

    The shift of polarization orientation angle ψat the maximum of co-polarized or cross-polarized back-scattering signature can be used to estimate the surface slopes. It has been utilized to generate the digital elevation mapping (DEM) and terrain topography using two-pass fully polarimetric SAR or interferometric SAR (INSAR) image data. This paper presents an approach to DEM inversion by using a single pass of polarimetric SAR data. The ψ shift is derived, by using the Mueller matrix solution, as a function of three Stokes parameters, /vs, Ihs, Us, which are measured by the SAR polarimetry. Using the Euler angles transformation, the orientation angle ψ is related to both the range and azimuth angles of the tilted surface and radar viewing geometry, as has been discussed by many authors. When only a single-pass SAR data is available, the adaptive thresholding method and image morphological thinning algorithm for linear textures are proposed to first determine the azimuth angle. Then, making use of full multi-grid algorithm, both the range and azimuth angles are utilized to solve the Poisson equation of DEM to produce the terrain topography.

  4. Antiparallel Aspects of Airborne Dual-antenna InSAR Data Processing and Analysis

    Directory of Open Access Journals (Sweden)

    Li Fang-fang

    2015-02-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR is a powerful technique for precise topographic mapping. However, owing to the side-looking SAR imaging geometry, geometry distortions appear in mountainous scenarios. Because of phase discontinuities or the absence of a valid phase, it is difficult to recover accurate DEM in such areas with single-aspect InSAR data. Fusion of two or more different aspects of InSAR data can deal with this problem in practice. Experiments using two antiparallel aspects of airborne InSAR data are carried out based on this idea. To decrease the processing error in single-aspect data and fuse them seamlessly, a MOtion COmpensation (MOCO method using iterative DEM is used to reduce the MOCO error. Besides, phase-unwrapping methods based on terrain characteristics are proposed to avoid phase-unwrapping error owing to phase discontinuities in areas of shadow and layover. Experimental results verify the effectiveness of the processing methods.

  5. Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth

    Directory of Open Access Journals (Sweden)

    Charalabos Kontoes

    2009-01-01

    Full Text Available The Permanent Scatterers Interferometric SAR technique (PSInSAR is a method that accurately estimates the near vertical terrain deformation rates, of the order of ~1 mm year-1, overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations for Permanent Scatterer Candidates (PSCs and Permanent Scatterers (PSs selection. The processing chain, called PerSePHONE, was applied and validated in the geophysically active area of the Gulf of Corinth. The analysis indicated a clear subsidence trend in the north-eastern part of the gulf, with the maximum deformation of ~2.5 mm year-1 occurring in the region north of the Gulf of Alkyonides. The validity of the results was assessed against geophysical/geological and geodetic studies conducted in the area, which include continuous seismic profiling data and GPS height measurements. All these observations converge to the same deformation pattern as the one derived by the PSInSAR technique.

  6. Canadian SAR remote sensing for the Terrestrial Wetland Global Change Research Network (TWGCRN)

    Science.gov (United States)

    Kaya, Shannon; Brisco, Brian; Cull, Andrew; Gallant, Alisa L.; Sadinski, Walter J.; Thompson, Dean

    2010-01-01

    The Canada Centre for Remote Sensing (CCRS) has more than 30 years of experience investigating the use of SAR remote sensing for many applications related to terrestrial water resources. Recently, CCRS scientists began contributing to the Terrestrial Wetland Global Change Research Network (TWGCRN), a bi-national research network dedicated to assessing impacts of global change on interconnected wetland-upland landscapes across a vital portion of North America. CCRS scientists are applying SAR remote sensing to characterize wetland components of these landscapes in three ways. First, they are using a comprehensive set of RADARSAT-2 SAR data collected during April to September 2009 to extract multi-temporal surface water information for key TWGCRN study landscapes in North America. Second, they are analyzing polarimetric RADARSAT-2 data to determine areas where double-bounce represents the primary scattering mechanism and is indicative of flooded vegetation in these landscapes. Third, they are testing advanced interferometric SAR techniques to estimate water levels with RADARSAT-2 Fine Quad polarimetric image pairs. The combined information from these three SAR analysis activities will provide TWGCRN scientists with an integrated view and monitoring capability for these dynamic wetland-upland landscapes. These data are being used in conjunction with other remote sensing and field data to study interactions between landscape and animal (birds and amphibians) responses to climate/global change.

  7. Geodetic imaging of tectonic deformation with InSAR

    Science.gov (United States)

    Fattahi, Heresh

    Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and

  8. InSAR Scientific Computing Environment on the Cloud

    Science.gov (United States)

    Rosen, P. A.; Shams, K. S.; Gurrola, E. M.; George, B. A.; Knight, D. S.

    2012-12-01

    In response to the needs of the international scientific and operational Earth observation communities, spaceborne Synthetic Aperture Radar (SAR) systems are being tasked to produce enormous volumes of raw data daily, with availability to scientists to increase substantially as more satellites come online and data becomes more accessible through more open data policies. The availability of these unprecedentedly dense and rich datasets has led to the development of sophisticated algorithms that can take advantage of them. In particular, interferometric time series analysis of SAR data provides insights into the changing earth and requires substantial computational power to process data across large regions and over large time periods. This poses challenges for existing infrastructure, software, and techniques required to process, store, and deliver the results to the global community of scientists. The current state-of-the-art solutions employ traditional data storage and processing applications that require download of data to the local repositories before processing. This approach is becoming untenable in light of the enormous volume of data that must be processed in an iterative and collaborative manner. We have analyzed and tested new cloud computing and virtualization approaches to address these challenges within the context of InSAR in the earth science community. Cloud computing is democratizing computational and storage capabilities for science users across the world. The NASA Jet Propulsion Laboratory has been an early adopter of this technology, successfully integrating cloud computing in a variety of production applications ranging from mission operations to downlink data processing. We have ported a new InSAR processing suite called ISCE (InSAR Scientific Computing Environment) to a scalable distributed system running in the Amazon GovCloud to demonstrate the efficacy of cloud computing for this application. We have integrated ISCE with Polyphony to

  9. Analytical SAR-GMTI principles

    Science.gov (United States)

    Soumekh, Mehrdad; Majumder, Uttam K.; Barnes, Christopher; Sobota, David; Minardi, Michael

    2016-05-01

    This paper provides analytical principles to relate the signature of a moving target to parameters in a SAR system. Our objective is to establish analytical tools that could predict the shift and smearing of a moving target in a subaperture SAR image. Hence, a user could identify the system parameters such as the coherent processing interval for a subaperture that is suitable to localize the signature of a moving target for detection, tracking and geolocating the moving target. The paper begins by outlining two well-known SAR data collection methods to detect moving targets. One uses a scanning beam in the azimuth domain with a relatively high PRF to separate the moving targets and the stationary background (clutter); this is also known as Doppler Beam Sharpening. The other scheme uses two receivers along the track to null the clutter and, thus, provide GMTI. We also present results on implementing our SAR-GMTI analytical principles for the anticipated shift and smearing of a moving target in a simulated code. The code would provide a tool for the user to change the SAR system and moving target parameters, and predict the properties of a moving target signature in a subaperture SAR image for a scene that is composed of both stationary and moving targets. Hence, the SAR simulation and imaging code could be used to demonstrate the validity and accuracy of the above analytical principles to predict the properties of a moving target signature in a subaperture SAR image.

  10. Rapid raw data simulation for fixed-receiver bistatic interferometric synthetic aperture radar

    Science.gov (United States)

    Yan, Feifei; Chang, Wenge; Li, Xiangyang

    2016-07-01

    Raw data simulation of synthetic aperture radar (SAR) is useful for system designing, mission planning, and testing of imaging algorithms. According to the two-dimensional (2-D) frequency spectrum of the fixed-receiver bistatic SAR system, a rapid raw data simulation approach is proposed. With the combination of 2-D inverse Stolt transform in the 2-D frequency domain and phase compensation in the range-Doppler frequency domain, our approach can significantly reduce the simulation time. Therefore, simulations of extended scenes can be performed much more easily. Moreover, the proposed algorithm offers high accuracy of phase distribution, therefore, it can be used for single-pass fixed-receiver bistatic interferometric usage. The proposal is verified by extensive simulations of point targets and extended scene, in which the results indicate the feasibility as well as the effectiveness of our approach. In the end, the accuracy of phase distribution of the proposed algorithm is further examined with simulations of synthetic aperture radar interferometry.

  11. Ice flow dynamics and mass balance of Vatnajökull outlet glaciers observed by X-band SAR Data

    Science.gov (United States)

    Nagler, T.; Rott, H.; Magnússon, E.; Floricioiu, D.; Mueller, F.; Scharrer, K.

    2012-04-01

    Several outlet glaciers of the major ice caps in Iceland are affected by sub-glacial outburst floods, so-called jökulhlaups. Sources of these outbreaks are water accumulations beneath the glacier due to geothermal or volcanic activity. One component of the project NorthHydrology, carried out within the ESA STSE (Support to Science Element) programme, addresses techniques and applications of satellite data for studying drainage mechanisms and water outbreaks of sub-glacial lakes in Iceland. Such events are usually related to surface deformation and changes in ice velocities, sometimes occurring already well ahead of the peak of the flood wave. High resolution repeat pass SAR data are able to deliver spatially detailed information on surface motion and displacement, which are highly relevant for advancing the understanding of glacier hydraulics and jökulhlaup processes. A template matching technique is applied to data stacks of TerraSAR-X and Cosmo-SkyMed amplitude images acquired between summer 2008 to summer 2010 in order to study the ice dynamics and mass balance of outlet glaciers of Vatnajökull in Iceland. This technique requires distinct and stable surface features, as usually available on ice surfaces of glaciers. Main outlet glaciers, investigated in the project, are Breidamerkurjökull and Skeiderarjökull, with the fronts terminating close to the coast. The lower terminus of these glaciers exhibits significant melting during summer, and sometimes even during winter. At these glaciers in-situ data on ice velocity and surface elevation changes have been recorded at in situ GPS stations, operated by University of Iceland. The ice motion field was derived using ascending and descending repeat pass SAR images. In order to retrieve the 3D ice motion vector, effects of surface melt are taken into account by modelling the ablation. Combining maps of displacement shifts from ascending and descending passes and compensating for surface lowering due to melt, maps

  12. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  13. Reovirus, isolated from SARS patients

    Institute of Scientific and Technical Information of China (English)

    DUAN Qing; SONG Lihua; GAN Yonghua; TAN Hua; JIN Baofeng; LI Huiyan; ZUO Tingting; CHEN Dehui; ZHANG Xuemin; ZHU Hong; YANG Yi; LI Weihua; ZHOU Yusen; HE Jun; HE Kun; ZHANG Haojie; ZHOU Tao

    2003-01-01

    Beijing has been severely affected by SARS, and SARS-associated coronavirus has been confirmed as its cause. However, clinical and experimental evidence implicates the possibility of co-infection. In this report, reovirus was isolated from throat swabs of SARS patients, including the first case in Beijing andher mother. Identification with the electron microscopy revealed the characteristic features of reovirus. 24 of 38 samples from other SARS cases were found to have serologic responses to the reovirus. Primers designed for reovirus have amplified several fragments of DNA, one of which was sequenced (S2 gene fragment), which indicates it as a unique reovirus (orthoreovirus). Preliminary animal experiment showed that inoculation of the reovirus in mice caused death with atypical pneumonia. Nevertheless, the association of reovirus with SARS outbreak requires to be further investigated.

  14. SAR Altimetry Applications over Water

    CERN Document Server

    Martin-Puig, C; Ruffini, G; Raney, R K; Benveniste, J

    2008-01-01

    The application of Synthetic Aperture Radar (SAR) techniques to classical radar altimetry offers the potential for greatly improved Earth surface mapping. This paper provides an overview of the progress of SAMOSA, Development of SAR Altimetry Studies and Applications over Ocean, Coastal zones and Inland waters, an on-going ESA-funded project. The main objective of SAMOSA is to better quantify the improvement of SAR altimetry over conventional altimetry on water surfaces. More specifically, one of the tasks focuses on the reduction of SAR mode data to pulse-limited altimeter data, and a theoretical modelling to characterize the expected gain between high Pulse Repetition Frequency (PRF) reduced SAR mode data and low PRF classical Low-Resolution Mode (LRM) data. To this end, theoretical modelling using the Cramer-Rao bound (CRB) will be used and the results will be compared to previous theoretical estimates [7], using an analysis akin to that in [8].

  15. Speckle interferometric observations of close binary stars

    CERN Document Server

    Saha, S K; Yeswanth, L; Anbazhagan, P

    2002-01-01

    Speckle interferometric technique is employed to record a series of hundreds of short-exposure images of several close binary stars with sub-arcsecond separation through a narrow band filter at the Cassegrain focus of the 2.34 meter (m) Vainu Bappu telescope (VBT), situated at Vainu Bappu Observatory (VBO), Kavalur, India. The data are recorded sequentially by a Peltier-cooled intensified CCD camera with 10 ms exposure. The auto-correlation method is applied to determine the angular separations and position angles of these binary systems.

  16. The response of interferometric gravitational wave detectors

    CERN Document Server

    Finn, Lee Samuel

    2008-01-01

    The standard derivation of the response of interferometric gravitational wave detectors makes a series of erroneous approximations regarding the coordinate trajectory of the light and the parameterization of the null geodesic it travels along. These errors appear to have remained unrecognized for at least thirty five years. We provide, in full detail, a correct derivation of the response of a single-bounce Michelson interferometer to gravitational waves, compare it to the "standard", but incorrect, derivation, and show where the earlier mistakes were made. By a fortuitous set of circumstances, not generally so, the final result is the same.

  17. Light-pulse atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  18. Subsidence Detected by Multi-Pass Differential SAR Interferometry in the Cassino Plain (Central Italy: Joint Effect of Geological and Anthropogenic Factors?

    Directory of Open Access Journals (Sweden)

    Marco Polcari

    2014-10-01

    Full Text Available In the present work, the Differential SAR Interferometry (DInSAR technique has been applied to study the surface movements affecting the sedimentary basin of Cassino municipality. Two datasets of SAR images, provided by ERS 1-2 and Envisat missions, have been acquired from 1992 to 2010. Such datasets have been processed independently each other and with different techniques nevertheless providing compatible results. DInSAR data show a subsidence rate mostly located in the northeast side of the city, with a subsidence rate decreasing from about 5–6 mm/yr in the period 1992–2000 to about 1–2 mm/yr between 2004 and 2010, highlighting a progressive reduction of the phenomenon. Based on interferometric results and geological/geotechnical observations, the explanation of the detected movements allows to confirm the anthropogenic (surface effect due to building construction and geological causes (thickness and characteristics of the compressible stratum.

  19. Application of small baseline subsets D-InSAR technique to estimate time series land deformation of Jinan area, China

    Science.gov (United States)

    Liu, Xiangtong; Cao, Qiuxiang; Xiong, Zhuguo; Yin, Haitao; Xiao, Genru

    2016-04-01

    Jinan, located in the South of the North China Plain, is an area where underground water has been exploited excessively. However, land deformation surveys only focus on the small district obtained by GPS and Leveling. Here, we use interferometric synthetic aperture radar (InSAR) time-series of ASAR data to resolve land subsidence in the entire Jinan region. In our research, we get 20 interferograms with a temporal threshold of 700 days and spatial-baseline threshold of 300 m from 14 ASAR satellite images on a descending orbit, and then get the surface displacement using Small Baseline InSAR (SBAS D-InSAR) retrained with a periodic model. Meanwhile, the accuracy of our work is proved by the results of GPS measurements. Finally, several settlement funnels are observed with extreme values of -20 cm, and their generation is related to massive groundwater extraction.

  20. Study of the 6 August 2007 Crandall Canyon mine (Utah, USA) collapse from ALOS PALSAR InSAR

    Science.gov (United States)

    Lu, Z.; Wicks, C.

    2008-12-01

    We use Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) interferometric synthetic aperture radar (InSAR) images to study land surface deformation over the Crandall Canyon mine in Utah, which collapsed on 6 August 2007 and killed 6 miners and 3 rescuers. The collapse was coincident to a local magnitude 3.9 earthquake. An InSAR image that spans the collapse shows subsidence of 20-25 cm over the Crandall Canyon mine. InSAR observation of the ground surface deformation over the Crandall Canyon mine has determined the location of the collapsed mine, suggested the mislocation for the 6 August 2007 earthquake from the standard epicenter relocation method, and estimated the extent of the collapsed area. These results complement the seismic investigation of the 6 August 2007 earthquake. Furthermore, modeling the ground surface deformation requires a significant amount of fault slip in addition to the volumetric compression.

  1. Two Decades of Multi-Sensor Subsidence Monitoring over Ebro Delta Using Coherence-Based DInSAR Techniques

    Science.gov (United States)

    Pipia, Luca; Perez, Fernando; Marturia, Jordi; Corbera, Jordi; Jornet, Lluis; Rovira, Albert

    2016-08-01

    This work presents the historical study of the subsidence phenomenon over the Ebro Delta plain carried out as WPB6 in the frame of Ebro-ADMICLIM LIFE project, using coherence-based differential interferometric SAR techniques (DInSAR). To this end, the whole SAR archive available at ESA over the area of interest (AOI) at C-Band and L-Band has been analyzed. The results provided by each stack term of absolute deformation and deformation-rate maps are first shown. Then, a space-time filtering method to take advantage of the redundant information provided by ERS and ENVISAT data is put forward. C-band and L-band retrievals are then compared, and future monitoring activity based on Sentinel-1 imaging is discussed.

  2. Seasonal effects on the estimation of height of boreal and deciduous forests from interferometric TanDEM-X coherence data

    Science.gov (United States)

    Olesk, Aire; Voormansik, Kaupo; Tamm, Tanel; Noorma, Mart; Praks, Jaan

    2015-10-01

    The aim of this study is to assess the performance of single-pass X-band bistatic SAR interferometric forest height estimation of boreal and temperate deciduous forests under variable seasonal conditions. For this, twelve acquisitions of single- and dual-polarized TanDEM-X coherence images over 118 forest stands were analyzed and compared against LiDAR forest height maps. Strong correlations were found between interferometric coherence magnitude and LiDAR derived forest stand height for pine forests (r2=0.94) and spruce forest (r2=0.87) as well as for deciduous trees (r2=0.94) during leaf-off conditions with temperatures below 0°C. It was found that coherence magnitude based forest height estimation is influenced by leaf-on and leaf-off conditions as well as daily temperature fluctuations, height of ambiguity and effective baseline. These factors alter the correlation and should be taken into account for accurate coherence-based height retrieval. Despite the influence of the mentioned factors, generally a strong relationship in regression analysis between X-band SAR coherence and LiDAR derived forest stand height can be found. Moreover, a simple semi empirical model, derived from Random Volume over Ground model, is presented. The model takes into account all imaging geometry dependent parameters and allows to derive tree height estimate without a priori knowledge. Our results show that X-band SAR interferometry can be used to estimate forest canopy height for boreal and deciduous forests in both summer and winter, but the conditions should be stable.

  3. Investigations with the Sentinel-1 Interferometric Wide Swath mode: first results and comparison with in-situ geodetic data

    Science.gov (United States)

    Borgstrom, Sven; Del Gaudio, Carlo; De Martino, Prospero; Ricciardi, Giovanni P.; Ricco, Ciro; Siniscalchi, Valeria; Prats-Iraola, Pau; Nannini, Matteo; Costantini, Mario; Minati, Federico; Walter, Thomas

    2015-04-01

    The contribution focuses on the current status of the ESA study entitled "INSARAP: Sentinel-1 InSAR Performance study with TOPS Data". The study investigates the performance of the interferometric wide swath (IW) mode of Sentinel-1, which is implemented using the terrain observation by progressive scans (TOPS) mode. In this regard, first analyses with Sentinel-1 time series will be shown, with a comparison with in-situ geodetic measurements on different test sites identified in the framework of the study, namely, Campi Flegrei/Vesuvius area in Italy, Istanbul city in Turkey, and Mexico City. The evaluation of the results will be performed by exploiting mainly continuous GPS stations located on the different sites, besides leveling measurements when also available. Also in a recent past, the comparison between InSAR and continuous GPS data, the latter projected into the radar LOS, has proven to be very effective for a cross comparison, besides InSAR Cal/Val activities, as it was for instance in the case of the recent inflation events occurred in Campi Flegrei area, marked by the well know bradyseismic phenomenon. Although continuous GPS networks are characterized by a poor space coverage in comparison with InSAR results, continuous GPS data recording allows to complement the geodetic information from InSAR sensors, limited by their revisiting time. The issue to be faced in this study is the possibility to deal with very low deformation rates in comparison with the Sentinel-1 C-band data, although the Sentinel-1 time series we expect to get from October 2014 to date should allow the identification of ground deformation in the areas of interest.

  4. A Hierarchical Multi-Temporal InSAR Method for Increasing the Spatial Density of Deformation Measurements

    Directory of Open Access Journals (Sweden)

    Tao Li

    2014-04-01

    Full Text Available Point-like targets are useful in providing surface deformation with the time series of synthetic aperture radar (SAR images using the multi-temporal interferometric synthetic aperture radar (MTInSAR methodology. However, the spatial density of point-like targets is low, especially in non-urban areas. In this paper, a hierarchical MTInSAR method is proposed to increase the spatial density of deformation measurements by tracking both the point-like targets and the distributed targets with the temporal steadiness of radar backscattering. To efficiently reduce error propagation, the deformation rates on point-like targets with lower amplitude dispersion index values are first estimated using a least squared estimator and a region growing method. Afterwards, the distributed targets are identified using the amplitude dispersion index and a Pearson correlation coefficient through a multi-level processing strategy. Meanwhile, the deformation rates on distributed targets are estimated during the multi-level processing. The proposed MTInSAR method has been tested for subsidence detection over a suburban area located in Tianjin, China using 40 high-resolution TerraSAR-X images acquired between 2009 and 2010, and validated using the ground-based leveling measurements. The experiment results indicate that the spatial density of deformation measurements can be increased by about 250% and that subsidence accuracy can reach to the millimeter level by using the hierarchical MTInSAR method.

  5. Inversion Algorithms and PS Detection in SAR Tomography, Case Study of Bucharest City

    Directory of Open Access Journals (Sweden)

    C. Dănişor

    2016-06-01

    Full Text Available Synthetic Aperture Radar (SAR tomography can reconstruct the elevation profile of each pixel based on a set of co-registered complex images of a scene. Its main advantage over classical interferometric methods consists in the capability to improve the detection of single persistent scatterers as well as to enable the detection of multiple scatterers interfering within the same pixel. In this paper, three tomographic algorithms are compared and applied to a dataset of 32 images to generate the elevation map of dominant scatterers from a scene. Targets which present stable proprieties over time - Persistent Scatterers (PS are then detected based on reflectivity functions reconstructed with Capon filtering.

  6. Interferometric interpolation of sparse marine data

    KAUST Repository

    Hanafy, Sherif M.

    2013-10-11

    We present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green\\'s function and a model-based Green\\'s function for a water-layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up- and downgoing separation of both recorded and model-based Green\\'s functions can help in minimizing artefacts in a virtual shot gather. If the up- and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non-stationary 1D multi-channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f-k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method. © 2013 European Association of Geoscientists & Engineers.

  7. Digital Detection of Exosomes by Interferometric Imaging

    Science.gov (United States)

    Daaboul, George G.; Gagni, Paola; Benussi, Luisa; Bettotti, Paolo; Ciani, Miriam; Cretich, Marina; Freedman, David S.; Ghidoni, Roberta; Ozkumur, Ayca Yalcin; Piotto, Chiara; Prosperi, Davide; Santini, Benedetta; Ünlü, M. Selim; Chiari, Marcella

    2016-01-01

    Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30–100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and digital counting of various populations of individual exosomes (>50 nm) captured on a microarray-based solid phase chip. We demonstrate these characterization concepts using purified exosomes from a HEK 293 cell culture. As a demonstration of clinical utility, we characterize exosomes directly from human cerebrospinal fluid (hCSF). Our interferometric imaging method could capture, from a very small hCSF volume (20 uL), nanoparticles that have a size compatible with exosomes, using antibodies directed against tetraspanins. With this unprecedented capability, we foresee revolutionary implications in the clinical field with improvements in diagnosis and stratification of patients affected by different disorders. PMID:27853258

  8. Anatomy of a SAR impulse response.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2007-08-01

    A principal measure of Synthetic Aperture Radar (SAR) image quality is the manifestation in the SAR image of a spatial impulse, that is, the SAR's Impulse Response (IPR). IPR requirements direct certain design decisions in a SAR. Anomalies in the IPR can point to specific anomalous behavior in the radar's hardware and/or software.

  9. State-of-art of Geosynchronous SAR

    Institute of Scientific and Technical Information of China (English)

    MAO Er-ke; LONG Teng; ZENG Tao; HU Cheng; TIAN Ye

    2012-01-01

    Geosynchronous Earth Orbit Synthetic Aperture Radar (GEO SAR) runs in the height of 360000Km geosynchronous earth orbit,compared with traditional Low Earth Orbit (LEO) SAR (orbit height under 1000Km),GEO SAR has advantages of shorter repeat period,wider swath and so on.Firstly,the basic principle and state-of-art of GEO SAR in domestic and overseas are introduced.Secondly,coverage characteristic of GEO SAR is analyzed.Thirdly,the key problems of yaw steering and imaging on curved trajectory in GEO SAR are discussed in detail,and the corresponding primary solutions are presented in order to promote future research on GEO SAR.

  10. Source mechanism analysis of strong mining induced seismic event and its influence on ground deformation observed by InSAR technique.

    Science.gov (United States)

    Rudzinski, Lukasz; Mirek, Katarzyna; Mirek, Janusz

    2016-04-01

    On April 17th, 2015 a strong shallow seismic event M4.0 struck a mining panel in the Wujek-Slask coal mine, southern Poland. The event was widely felt, followed with rockburst and caused a strong damages inside mining corridors. Unfortunately two miners are trapped by tunnels collapse. Full Moment Tensor (MT) estimated with regional broad-band signals shows that the event was characterized with very high isotropic (implosive) part. Mining inspections verified the occurrence of a rockfall and floor uplift. Very shallow foci depth (less than 1000m) and collapse - like MT solution suggest that event could be responsible for surface deformation in the vicinity of epicenter. To verified this issue we used the Interferometric Synthetic Aperture Radar technique (InSAR). The InSAR relies on measuring phase differences between two SAR images (radarograms). The measured differences may be computed into a single interferometric image. i.e. an interferogram. Interferogram computed from two radarograms of the same terrain taken at different time allows detecting changes in elevation of the terrain. Two SAR scenes acquired by Sentinel-1 satellite (European Space Agency) were processed to obtain the interferogram covered study area (12.04.2015 and 24.04.2015). 12 days interval differential interferogram shows distinctive concentric feature which indicate subsidence trough. Subsidence pattern shows 1 cycle of deformation corresponding with about 2.5 cm subsidence. The InSAR solution support the reliability of very strong implosive MT part.

  11. Determination of Glacier Surface Area Using Spaceborne SAR Imagery

    Science.gov (United States)

    Fang, L.; Maksymiuk, O.; Schmitt, M.; Stilla, U.

    2013-04-01

    Glaciers are very important climate indicators. Although visible remote sensing techniques can be used to extract glacier variations effectively and accurately, the necessary data are depending on good weather conditions. In this paper, a method for determination of glacier surface area using multi-temporal and multi-angle high resolution TerraSAR-X data sets is presented. We reduce the "data holes" in the SAR scenes affected by radar shadowing and specular backscattering of smooth ice surfaces by combining the two complementary different imaging geometries (from ascending and descending satellite tracks). Then, a set of suitable features is derived from the intensity image, the texture information generated based on the gray level co-occurrence matrix (GLCM), glacier velocity estimated by speckle tracking, and the interferometric coherence map. Furthermore, the features are selected by 10-foldcross- validation based on the feature relevance importance on classification accuracy using a Random Forests (RF) classifier. With these most relevant features, the glacier surface is discriminated from the background by RF classification in order to calculate the corresponding surface area.

  12. SAR image regularization with fast approximate discrete minimization.

    Science.gov (United States)

    Denis, Loïc; Tupin, Florence; Darbon, Jérôme; Sigelle, Marc

    2009-07-01

    Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.

  13. EMISAR: An Absolutely Calibrated Polarimetric L- and C-band SAR

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Skou, Niels; Dall, Jørgen

    1998-01-01

    and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry. Thermal control and several calibration loops have been built into the system to ensure system stability and absolute......EMISAR is a high-resolution (2×2 m), fully polarimetric, dual-frequency (L- and C-band) synthetic aperture radar (SAR) system designed for remote-sensing applications. The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes...... calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key to most of the current applications. Recent interferometric enhancements are important for many scientific applications...

  14. Long term monitoring of urban subsidence by Permanent Scatterer DInSAR

    Institute of Scientific and Technical Information of China (English)

    TANG Yixian; ZHANG Hong; WANG Chao

    2007-01-01

    When using differential SAR interferometry (DInSAR) to monitor the surface deformation over a long time scale, it is often strongly affected by the spatial and temporal decorrelations and atmospheric dishomogeneities. The recently developed Permanent Scatterers (PS) technique proposed by Fertti et al. can overcome these difficulties by interpreting time-series of interferometric phase only at coherent point scatterers. In this study, we apply this PS technique using 25 ERS-1/2 scenes from 1992 to 2000 to monitor the subsidence in Suzhou. By using the linear deformation model, the deformation map in Suzhou urban area over the eight years is obtained. And the calculated results are in good agreement with the measurements of leveling.

  15. Análisis de técnicas incoherentes para la detección de movimientos del terreno con imágenes SAR

    OpenAIRE

    Pastó Bota, Anna Rosa

    2012-01-01

    Resultados optimizados mediante pre-filtrado reductor de ruido speckle para su utilización en las técnicas incoherentes como alternativa a la interferometría SAR. [ANGLÈS] The SAR (Synthetic Aperture Radar) system delivers high resolution images of Earth's surface. This project aim is to detect and measure ground motions from two incoherent techniques, i.e. those techniques developed through the amplitude and not through its phase. The main motivation of the project is to provide a technol...

  16. Using temporarily coherent point interferometric synthetic aperture radar for land subsidence monitoring in a mining region of western China

    Science.gov (United States)

    Fan, Hongdong; Xu, Qiang; Hu, Zhongbo; Du, Sen

    2017-04-01

    Yuyang mine is located in the semiarid western region of China where, due to serious land subsidence caused by underground coal exploitation, the local ecological environment has become more fragile. An advanced interferometric synthetic aperture radar (InSAR) technique, temporarily coherent point InSAR, is applied to measure surface movements caused by different mining conditions. Fifteen high-resolution TerraSAR-X images acquired between October 2, 2012, and March 27, 2013, were processed to generate time-series data for ground deformation. The results show that the maximum accumulated values of subsidence and velocity were 86 mm and 162 mm/year, respectively; these measurements were taken above the fully mechanized longwall caving faces. Based on the dynamic land subsidence caused by the exploitation of one working face, the land subsidence range was deduced to have increased 38 m in the mining direction with 11 days' coal extraction. Although some mining faces were ceased in 2009, they could also have contributed to a small residual deformation of overlying strata. Surface subsidence of the backfill mining region was quite small, the maximum only 21 mm, so backfill exploitation is an effective method for reducing the land subsidence while coal is mined.

  17. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    Science.gov (United States)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  18. DEM FROM SAR:PRINCIPLE AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Li Deren; Yang Jie

    2003-01-01

    The paper gives an overview of the principle and application of generating DEM from SAR, including the principle and processing flow of generating DEM from single SAR and SAR interferometry. Afterwards, the application fields of InSAR for terrain surveying, volcanic terrain surveying and D-InSAR for monitoring ground subsiding are listed and described as well.The problem and prospect of application are also pointed out in the last part of this paper.

  19. ESTIMATION OF ATMOSPHERIC EFFECTS OF RADARSAT-2 D-InSAR PRODUCT USING GROUNDBASEDAND SPACEBORNE METEROLOGICAL DATA

    Directory of Open Access Journals (Sweden)

    S. Thapa

    2015-03-01

    Full Text Available Differential Interferometric synthetic aperture RADAR (D-InSAR has emerged as one of the influential tools for the measurement of Earth’s topography deformation. The temporal variability of atmosphere plays a contaminative role in degrading the accuracy of Interferometric measurements as it causes the path delay in the propagating RADAR signal. The Ionosphere and Troposphere are the two atmospheric layers which are responsible for the path delay error in the Interferometric measurement. In this study ground based meteorological data integrated with spaceborne meteorological data was used to mitigate the path delay induced by the atmosphere on the Radarsat-2 data. In this study Jharia Coal Fields, Jharkhand, was selected where active mining has taken place since 1894. The D-InSAR was generated from Radarsat-2 data. In Troposephric path delay calculation ground based data like water vapor, temperature and humidity acquired during the time of the pass as well as spaceborne meteorological data were used as input. The TEC from IRI-2007 model was used as input to calculate the ionospheric path delay. These Ionospheric as well as Tropospehric delay was subtracted from a Differential Interferrogram to obtain atmospheric artifacts free differential interferrogram. The corrected Diffrential Interferrogram was used to delineate subsidence areas. We observed that D-InSAR and levelling results shows good agreement with each other. The Diffrential Interferomteric pairs with low coherence causes phase unwrapping problem. Therefore, only those pairs with good coherence were considered for the study. The used technique provides an opportunity to understand the contribution of Ionospehric and Tropospehric path delay effects on the D-InSAR results.

  20. Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests

    Directory of Open Access Journals (Sweden)

    Ross F. Nelson

    2012-06-01

    Full Text Available The objective of this study was to determine whether leaf area index (LAI in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric, five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors, when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests.

  1. sar Ades

    Directory of Open Access Journals (Sweden)

    Aparecida Angélica Zoqui Paulovic Sabadini

    Full Text Available Este artigo é uma homenagem ao ilustre professor César Ades (1943-2012. Etólogo, Especialista em comportamento animal, Ades foi professor titular do Instituto de Psicologia da Universidade de São Paulo (IPUSP, atuando como docente do Departamento de Psicologia Experimental. O artigo descreve parte de sua rica vida acadêmica e profissional e apresenta, de forma resumida, sua trajetória na Universidade de São Paulo, como aluno, professor, pesquisador e orientador e sua atuação como administrador no Instituto de Psicologia e no Instituto de Estudos Avançados, além de sua atuação na Academia Paulista de Psicologia e em sociedades científicas. São destacados a importância de suas contribuições para a área de Psicologia e seu respeito pela vida, pelas pessoas e pelos animais.

  2. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil

    Science.gov (United States)

    Liesenberg, Veraldo; Gloaguen, Richard

    2013-04-01

    Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat' near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.

  3. Research on interferometric photonic crystal fiber hydrophone

    Science.gov (United States)

    Luo, Hong; Zhang, Zhen-hui; Wang, Fu-yin; Xiong, Shui-dong

    2013-08-01

    Current research on photonic crystal fiber (PCF) for acoustic sensing was focused on the PCF's pressure sensitivity enhancement. However, whether the enhancement of the PCF's pressure sensitivity can be actually realized is still controversial. Practical hydrophone, utilizing PCFs, to manifest its superior sensitivity to normal single mode fibers (SMFs) for acoustic sensing, should be made. Account to this point of view, actual hydrophone was fabricated. Index guiding PCF was used, the fiber core is solid silicon dioxide (SiO2), and the cladding is SiO2 filled with lots of periodical transverse circular air hollows. The PCF, mounted on an air-backed mandrel for structural sensitivity enhancement, was used as a sensing arm of the fiber Michelson interferometer. The other arm, so called reference arm, was made of SMF. Faraday rotator mirrors (FRM) were spliced in the end of each interferometric arm account for polarization induced phase fading, which is a common scheme in fiber interferometric sensing systems. A similar hydrophone, with all the same structure except that the PCF was exchanged into SMF, was also fabrication to make the contrast. The narrowlinewidth and frequency-tunable optical fiber laser was used to achieve high accuracy optical interferometric measurement. Meanwhile, the phase generated carrier (PGC) modulation-demodulation scheme was adopted to interrogate the measurand signal. Experiment was done by using acoustic standing-wave test apparatus. Linearity characteristics of the two hydrophones were measured at frequency 100Hz, 500Hz, and 1000Hz, experimental results showed that the maximum error of the linearity was 10%, a little larger than the theoretical results. Pressure sensitivities of the PCF hydrophone and the SMF hydrophone were measured using a reference standard PZT hydrophone in the frequency range from 20 Hz to 1600 Hz, the measurement data showed that the sensitivity of the PCF hydrophone was about -162.8 dB re. rad/μPa, with a

  4. Landslide monitoring by Terrestrial SAR Interferometry: critical analysis of different data processing approaches

    Science.gov (United States)

    Brunetti, Alessandro; Crosetto, Michele; Mazzanti, Paolo; Monserrat, Oriol

    2015-04-01

    In last years, Terrestrial Synthetic Aperture Radar Interferometry (TInSAR) became a key technology in the field of landslide and structures/infrastructures displacement monitoring. Thanks to undoubted advantages such as i) widespread information, ii) fully remote applicability over long ranges and iii) high accuracy, this technique promises to be a very effective solution for a lot of geological and engineering issues. Even if this technique was born for interferometric analyses (basing on the phase differences between SAR images collected at different time intervals), recent studies demonstrated its reliability also with non-interferometric processing approaches, based on the amplitude tracking of high-reflectivity objects (i.e. corner reflectors). Furthermore, both approaches can be used for both continuous and discontinuous monitoring, thus opening to a wide spectrum of applications for different purposes. The aim of this work is to provide information about the reliability and the accuracy of TInSAR technique in its different kind of applications. In the frame of this work, two case studies of landslides monitored with a continuous acquisition mode (about 5 minutes sampling rate) have been investigated. The first case study consists of superficial instability problems mainly related to huge rainfalls and works, leading to non-linear displacements up to 10 mm/day. In order to assess the impact of discontinuous acquisition mode, data subsampling of one data/day for an overall monitoring period of about 3 months has been performed. The comparison between discontinuous and continuous interferometric processing approach allowed the identification of some aliasing and ambiguity problems in the discontinuous approach, especially in periods when high displacement rates were affecting the slope. Nevertheless, in most of such cases, it was still possible to provide qualitative information about criticalities, even if a precise estimation of displacement entities was

  5. Forward-looking three dimensional imaging technique for InSAR mounted on ground vehicles%车载 InSAR 前视三维成像技术

    Institute of Scientific and Technical Information of China (English)

    王建; 李杨寰; 张汉华; 陆必应; 宋千; 周智敏

    2014-01-01

    It is a difficult task for an unmanned ground vehicle (UGV)to sense obstacles in out fields or unstructured environments.Because the height information is a vital feature to boost the performance of obstacle discrimination,the three-dimensional imaging technique for sensing obstacles ahead UGV of interferometric synthetic aperture radar (InSAR)was presented.The basic signal process flow of InSAR was reviewed. Special factors of the UGV platform that impact the digital elevation model (DEM)measurement precision were analyzed,such as the baseline length,platform motion errors.The DEMof a partial sight-blocked obstacle scene was obtained by processing the three-dimensional InSAR image, which proved the feasibility of applying InSAR to obstacle sensing of UGV.%野外和非结构化环境下的障碍探测是无人驾驶车(UGV)环境感知的难题之一。基于高度识别障碍是一种有效的解决途径,提出了干涉合成孔径雷达(InSAR)的三维障碍物成像策略,研究了 InSAR 信息处理流程,分析了干涉基线和运动误差对车载 InSAR 高程测量精度的影响,仿真了无人车前场景存在遮挡时的 InSAR 高程测量,证明了 InSAR 用于 UGV 前方环境感知的可行性。

  6. Severe acute respiratory syndrome (SARS)

    Science.gov (United States)

    ... include: Arterial blood tests Blood clotting tests Blood chemistry tests Chest x-ray or chest CT scan ... The death rate from SARS was 9 to 12% of those diagnosed. In people over age 65, the death ...

  7. TerraSAR-X mission

    Science.gov (United States)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  8. Amplitude and Phase Statistics of Multi-look SAR Complex Interferogram

    Directory of Open Access Journals (Sweden)

    Yu Anxi

    2014-11-01

    Full Text Available Amplitude and phase statistics of SAR complex interferogram are significant in the study of interferometry and polarimetry. To reduce statistical variations, multi-look processing is adopted by averaging spatially the complex interferogram. In this study, we derive and validate three kinds of probability density functions (PDFs of multi-look interferogram for different surface feature scenes. For simple homogeneous areas with the gamma distribution intensity, a concise product-form interferometry phase PDF is derived, which is equivalent to a conventional Gauss hypergeometric PDF. For complicated areas with the K and G0 distributions intensity, two new interferometry amplitude PDFs named as Gamma-K and Gamma-G are proposed, and their phase PDFs are approximately preserved. Finally three typical areas including grass, mountain, and city are picked out from a pair of RADARSAT-2 SAR images and studied. Experimental results indicate good agreement between the computed histograms and the theoretical distributions. The results obtained can be applied to the feature classification of polarisation SAR data and the estimation of decorrelation effect of interferometric SAR.Science Journal, Vol. 64, No. 6, November 2014, pp.564-570, DOI:http://dx.doi.org/10.14429/dsj.64.4747

  9. IMAGING AND MTI PROCESSING BASED ON DUAL-FREQUENCIES DUAL-APERTURES SPACEBORNE SAR

    Institute of Scientific and Technical Information of China (English)

    Yin Jianfeng; Li Daojing; Wu Yirong

    2009-01-01

    Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper. SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode I, and MTI is completed by the Mode II. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.

  10. ARBRES: Light-Weight CW/FM SAR Sensors for Small UAVs

    Directory of Open Access Journals (Sweden)

    Xavier Fabregas

    2013-03-01

    Full Text Available This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller. Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory.

  11. Monitoring Crustal Deformation by GPS and InSAR in the Three Gorge Area

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The on-going Three Gorges Project (TGP) aims to build one of the largest hydropower stations in the world. Previous investigations have concluded that the reservoir is likely to induce medium-to-intense earthquakes. 23 GPS stations have been established to maintain a geodetic and seismological monitoring network around the reservoir to monitor seismicity and crustal deformation, and to facilitate mitigation activities in case an intense earthquake occurs. The velocity of GPS site was derived from 3 repeated GPS surveys. Meanwhile, another effort has been made to investigate the feasibility of application of satellite interferometric synthetic aperture radar (InSAR) techniques in detecting crustal deformation possibly caused by impoundment of the Three Gorges Reservoir. It has been made to derive digital elevation models (DEM) using European Remote Sensing (ERS) synthetic aperture radar (SAR) imagery. Pairs of ERS SAR images in raw format are processed to generate digital elevation models. This effort will help us evaluate the accuracy of the InSAR techniques for further derivation of background deformation patterns and future detection of reservoir-induced crustal deformation in the area.

  12. Interferometric Plasmonic Lensing with Nanohole Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-18

    Nonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films maps propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interferences between PSPs launched from the individual nanoholes which comprise the array. By exploiting the wave nature of PSPs, we demonstrate how varying the array geometry (hole diameter, pitch, and number of rows/columns) ultimately yields intense localized photoemission. Through a combination of PEEM and finite-difference time-domain simulations, we identify the optimal array geometry for efficient light coupling and interferometric plasmonic lensing. We show a preliminary application of inteferometric plasmonic lensing by enhancing the photoemission from the vertex of a gold triangle using nanohole array.

  13. The case for optical interferometric polarimetry

    CERN Document Server

    Elias, Nicholas M; Schmitt, Henrique R; Jorgensen, Anders M; Ireland, Michael J; Perraut, Karine

    2008-01-01

    Within the last 10 years, long-baseline optical interferometry (LBOI) has benefited significantly from increased sensitivity, spatial resolution, and spectral resolution, e.g., measuring the diameters and asymmetries of single stars, imaging/fitting the orbits of multiple stars, modeling Be star disks, and modeling AGN nuclei. Similarly, polarimetry has also yielded excellent astrophysical results, e.g., characterizing the atmospheres and shells of red giants/supergiants, modeling the envelopes of AGB stars, studying the morphology of Be stars, and monitoring the short- and long- term behavior of AGNs. The next logical evolutionary step in instrumentation is to combine LBOI with polarimetry, which is called optical interferometric polarimetry (OIP). In other words, measurements of spatial coherence are performed simultaneously with measurements of coherence between orthogonal polarization states.

  14. The 2010 Interferometric Imaging Beauty Contest

    CERN Document Server

    Malbet, Fabien; Duvert, Gilles; Lawson, Peter; Chiavassa, Andrea; Young, John; Baron, Fabien; Buscher, David; Rengaswamy, Sridharan; Kloppenborg, Brian; Vannier, Martin; Mugnier, Laurent

    2010-01-01

    We present the results of the fourth Optical/IR Interferometry Imaging Beauty Contest. The contest consists of blind imaging of test data sets derived from model sources and distributed in the OI-FITS format. The test data consists of spectral data sets on an object "observed" in the infrared with spectral resolution. There were 4 different algorithms competing this time: BSMEM the Bispectrum Maximum Entropy Method by Young, Baron & Buscher; RPR the Recursive Phase Reconstruction by Rengaswamy; SQUEEZE a Markov Chain Monte Carlo algorithm by Baron, Monnier & Kloppenborg; and, WISARD the Weak-phase Interferometric Sample Alternating Reconstruction Device by Vannier & Mugnier. The contest model image, the data delivered to the contestants and the rules are described as well as the results of the image reconstruction obtained by each method. These results are discussed as well as the strengths and limitations of each algorithm.

  15. uvmcmcfit: Parametric models to interferometric data fitter

    Science.gov (United States)

    Bussmann, Shane; Leung, Tsz Kuk (Daisy); Conley, Alexander

    2016-06-01

    Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).

  16. An interferometric view of hot star disks

    CERN Document Server

    Faes, Daniel Moser

    2015-01-01

    Optical long baseline interferometry was recently established as a technique capable of resolving stars and their circumstellar environments at the milliarcsecond (mas) resolution level. This high-resolution opens an entire new window to the study of astrophysical systems, providing information inaccessible by other techniques. Astrophysical disks are observed in a wide variety of systems, from galaxies up to planetary rings, commonly sharing similar physical processes. Two particular disk like systems are studied in the thesis: (i) B He-rich stars that exhibits magnetic fields in order of kG and that trap their winds in structures called magnetospheres; and (ii) Be stars, fast rotating stars that create circumstellar viscous disks. This study uses the interferometric technique to investigate both the photosphere proper and the circumstellar environment of these stars. The objective is to combine interferometry with other observational techniques (such as spectroscopy and polarimetry) to perform a complete an...

  17. The 2012 interferometric imaging beauty contest

    Science.gov (United States)

    Baron, Fabien; Cotton, William D.; Lawson, Peter R.; Ridgway, Steve T.; Aarnio, Alicia; Monnier, John D.; Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd; Thiébaut, Eric; Soulez, Férréol; Mary, David; Millour, Florentin; Vannier, Martin; Young, John; Elias, Nicholas M.; Schmitt, Henrique R.; Rengaswamy, Sridharan

    2012-07-01

    We present the results of the fifth Interferometric Imaging Beauty Contest. The contest consists in blind imaging of test data sets derived from model sources and distributed in the OIFITS format. Two scenarios of imaging with CHARA/MIRC-6T were offered for reconstruction: imaging a T Tauri disc and imaging a spotted red supergiant. There were eight different teams competing this time: Monnier with the software package MACIM; Hofmann, Schertl and Weigelt with IRS; Thiebaut and Soulez with MiRA ; Young with BSMEM; Mary and Vannier with MIROIRS; Millour and Vannier with independent BSMEM and MiRA entries; Rengaswamy with an original method; and Elias with the radio-astronomy package CASA. The contest model images, the data delivered to the contestants and the rules are described as well as the results of the image reconstruction obtained by each method. These results are discussed as well as the strengths and limitations of each algorithm.

  18. The 2012 Interferometric Imaging Beauty Contest

    CERN Document Server

    Baron, Fabien; Lawson, Peter R; Ridgway, Steve T; Aarnio, Alicia; Monnier, John D; Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd; Thiébaut, Eric; Soulez, Férréol; Mary, David; Millour, Florentin; Vannier, Martin; Young, John; Elias, Nicholas M; Schmitt, Henrique R; Rengaswamy, Sridharan

    2012-01-01

    We present the results of the fifth Interferometric Imaging Beauty Contest. The contest consists in blind imaging of test data sets derived from model sources and distributed in the OIFITS format. Two scenarios of imaging with CHARA/MIRC-6T were offered for reconstruction: imaging a T Tauri disc and imaging a spotted red supergiant. There were eight different teams competing this time: Monnier with the software package MACIM; Hofmann, Schertl and Weigelt with IRS; Thi\\'ebaut and Soulez with MiRA ; Young with BSMEM; Mary and Vannier with MIROIRS; Millour and Vannier with independent BSMEM and MiRA entries; Rengaswamy with an original method; and Elias with the radio-astronomy package CASA. The contest model images, the data delivered to the contestants and the rules are described as well as the results of the image reconstruction obtained by each method. These results are discussed as well as the strengths and limitations of each algorithm.

  19. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  20. Compression of interferometric radio-astronomical data

    CERN Document Server

    Offringa, A R

    2016-01-01

    The volume of radio-astronomical data is a considerable burden in the processing and storing of radio observations with high time and frequency resolutions and large bandwidths. Lossy compression of interferometric radio-astronomical data is considered to reduce the volume of visibility data and to speed up processing. A new compression technique named "Dysco" is introduced that consists of two steps: a normalization step, in which grouped visibilities are normalized to have a similar distribution; and a quantization and encoding step, which rounds values to a given quantization scheme using a dithering scheme. Several non-linear quantization schemes are tested and combined with different methods for normalizing the data. Four data sets with observations from the LOFAR and MWA telescopes are processed with different processing strategies and different combinations of normalization and quantization. The effects of compression are measured in image plane. The noise added by the lossy compression technique acts ...

  1. Interferometric Approach to Probing Fast Scrambling

    CERN Document Server

    Yao, Norman Y; Swingle, Brian; Lukin, Mikhail D; Stamper-Kurn, Dan M; Moore, Joel E; Demler, Eugene A

    2016-01-01

    Out-of-time-order correlation functions provide a proxy for diagnosing chaos in quantum systems. We propose and analyze an interferometric scheme for their measurement, using only local quantum control and no reverse time evolution. Our approach utilizes a combination of Ramsey interferometry and the recently demonstrated ability to directly measure Renyi entropies. To implement our scheme, we present a pair of cold-atom-based experimental blueprints; moreover, we demonstrate that within these systems, one can naturally realize the transverse-field Sherrington-Kirkpatrick (TFSK) model, which exhibits certain similarities with fast scrambling black holes. We perform a detailed numerical study of scrambling in the TFSK model, observing an interesting interplay between the fast scrambling bound and the onset of spin-glass order.

  2. Matched filtering with interferometric 21 cm experiments

    Science.gov (United States)

    White, Martin; Padmanabhan, Nikhil

    2017-10-01

    A new generation of interferometric instruments is emerging, which aims to use intensity mapping of redshifted 21 cm radiation to measure the large-scale structure of the Universe at z ≃ 1-2 over wide areas of the sky. While these instruments typically have limited angular resolution, they cover huge volumes and thus can be used to provide large samples of rare objects. In this paper we study how well such instruments could find spatially extended large-scale structures, such as cosmic voids, using a matched filter formalism. Such a formalism allows us to work in Fourier space, the natural space for interferometers, and to study the impact of finite u - v coverage, noise and foregrounds on our ability to recover voids. We find that in the absence of foregrounds, such instruments would provide enormous catalogs of voids, with high completeness, but that control of foregrounds is key to realizing this goal.

  3. The Space Infrared Interferometric Telescope (SPIRIT)

    Science.gov (United States)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  4. Focusing of bistatic SAR data

    Science.gov (United States)

    Bia, Pietro; Ricci, Nicola; Zonno, Mariantonietta; Nico, Giovanni; Catalao, Joao; Tesauro, Manlio

    2014-10-01

    The problems of simulation of bistatic SAR raw data and focusing are studied. A discrete target simulator is described. The simulator introduces the scene topography and compute the integration time of general bistatic configurations providing a means to derived maps of the range and azimuth spatial resolutions. The problem of focusing of bistatic SAR data acquired in a translational-invariant bistatic configuration is studied by deriving the bistatic Point Target Reference spectrum and presenting an analytical solution for its stationary points.

  5. Fast terrain modelling for hydrogeological risk mapping and emergency management: the contribution of high-resolution satellite SAR imagery

    Directory of Open Access Journals (Sweden)

    A. Nascetti

    2015-07-01

    Full Text Available Geomatic tools fast terrain modelling play a relevant role in hydrogeological risk mapping and emergency management. Given their complete independence from logistic constraints on the ground (as for airborne data collection, illumination (daylight, and weather (clouds conditions, synthetic aperture radar (SAR satellite systems may provide important contributions in terms of digital surface models (DSMs and digital elevation models (DEMs. For this work we focused on the potential of high-resolution SAR satellite imagery for DSM generation using an interferometric (InSAR technique and using a revitalized radargrammetric stereomapping approach. The goal of this work was just methodological. Our goal was to illustrate both the fundamental advantages and drawbacks of the radargrammetric approach with respect to the InSAR technique for DSM generation, and to outline their possible joint role in hydrogeological risk mapping and emergency management. Here, it is worth mentioning that radargrammetry procedures are independent of image coherence (unlike the interferometric approach and phase unwrapping, as well as of parsimony (only a few images are necessary. Therefore, a short time is required for image collection (from tens of minutes to a few hours, thanks to the independence from illumination and weather. The most relevant obstacles of the technique are speckle and the lack of texture impact on image matching, as well as the well-known deformations of SAR imagery (layover and foreshortening, which may produce remarkable difficulties with complex morphologies and that must be accounted for during acquisition planning. Here, we discuss results obtained with InSAR and radargrammetry applied to a COSMO-SkyMed SpotLight triplet (two stereopairs suited for radargrammetry and InSAR, sharing one common image acquired over suburbs of San Francisco (United States, which are characterized by mixed morphology and land cover. We mainly focused on urban areas and

  6. Monitoring subsidence rates along road network by persistent scatterer SAR interferometry with high-resolution TerraSAR-X imagery

    Institute of Scientific and Technical Information of China (English)

    Bing Yu; Guoxiang Liu; Rui Zhang; Hongguo Jia; Tao Li; Xiaowen Wang; Keren Dai; Deying Ma

    2013-01-01

    Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) approach that uses high-resolution TerraSAR-X (TSX) imagery to extract the regional scale subsidence rates (i.e., average annual sub-sidence in mm/year) along road networks. The primary procedures involve interferometric pair selection, interfer-ogram generation, persistent scatterer (PS) detection, PS networking, phase parameterization, and subsidence rate estimation. The Xiqing District in southwest Tianjin (China) is selected as the study area. This district contains one railway line and several highway lines. A total of 15 TSX images covering this area between April 2009 and June 2010 are utilized to obtain the subsidence rates by using the PS-InSAR (PSI) approach. The subsidence rates derived from PSI range from -68.7 to -1.3 mm/year. These findings show a significantly uneven subsidence pattern along the road network. Comparison between the PSI-derived subsidence rates and the leveling data obtained along the highways shows that the mean and standard deviation (SD) of the discrepancies between the two types of subsidence rates are 0.1 and ±3.2 mm/year, respec-tively. The results indicate that the high-resolution TSX PSI is capable of providing comprehensive and detailed subsidence information regarding road networks with millimeter-level accuracy. Further inspections under geo-logical conditions and land-use categories in the study area indicate that the observed subsidence is highly related to aquifer compression due to groundwater pumping. There-fore, measures should be taken to mitigate groundwater extraction for the study area.

  7. Tropical Forest Biomass Estimation from Vertical Fourier Transforms of Lidar and InSAR Profiles

    Science.gov (United States)

    Treuhaft, R. N.; Goncalves, F.; Drake, J.; Hensley, S.; Chapman, B. D.; Michel, T.; Dos Santos, J. R.; Dutra, L.; Graca, P. A.

    2010-12-01

    Structural forest biomass estimation from lidar or interferometric SAR (InSAR) has demonstrated better performance than radar-power-based approaches for the higher biomasses (>150 Mg/ha) found in tropical forests. Structural biomass estimation frequently regresses field biomass to some function of forest height. With airborne, 25-m footprint lidar data and fixed-baseline C-band InSAR data over tropical wet forests of La Selva Biological Station, Costa Rica, we compare the use of Fourier transforms of vertical profiles at a few frequencies to the intrinsically low-frequency “average height”. RMS scatters of Fourier-estimated biomass about field-measured biomass improved by 40% and 20% over estimates base on average height from lidar and fixed-baseline InSAR, respectively. Vertical wavelengths between 14 and 100 m were found to best estimate biomass. The same airborne data acquisition over La Selva was used to generate many 10’s of repeat-track L-band InSAR baselines with time delays of 1-72 hours, and vertical wavelengths of 5-100 m. We will estimate biomass from the Fourier transforms of L-band radar power profiles (InSAR complex coherence). The effects of temporal decorrelation will be modeled in the Fourier domain to try to model and reduce their impact. Using L-band polarimetric interferometry, average heights will be estimated as well and biomass regression performance compared to the Fourier transform approach. The more traditional approach of using L-band radar polarimetry will also be compared to structural biomass estimation.

  8. Detecting Subsidence Along a High Speed Railway by Ultrashort Baseline TCP-InSAR with High Resolution Images

    Science.gov (United States)

    Dai, K. R.; Liu, G. X.; Yu, B.; Jia, H. G.; Ma, D. Y.; Wang, X. W.

    2013-10-01

    A High Speed Railway goes across Wuqing district of Tianjin, China. Historical studies showed that the land subsidence of this area was very serious, which would give rise to huge security risk to the high speed railway. For detecting the detailed subsidence related to the high speed railway, we use the multi-temporal InSAR (MT-InSAR) technique to extract regional scale subsidence of Wuqing district. Take it into consideration that Wuqing district is a suburban region with large area of low coherence farmland, we select the temporarily coherent point InSAR (TCP-InSAR) approach for MT-InSAR analysis. The TCP-InSAR is a potential approach for detecting land subsidence in low coherence areas as it can identify and analysis coherent points between just two images and can acquire a reliable solution without conventional phase unwrapping. This paper extended the TCP-InSAR with use of ultrashort spatial baseline (USB) interferograms. As thetopographic effects are negligible in the USB interferograms, an external digital elevation model (DEM) is no longer needed in interferometric processing, and the parameters needed to be estimated were simplified at the same time. With use of 17 TerraSAR-X (TSX) images acquired from 2009 to 2010 over Wuqing district, the annual subsidence rates along the high speed railway were derived by the USB-TCPInSAR approach. Two subsidence funnels were found at ShuangJie town and around Wuqing Station with subsidence rate of -17 ∼ -27 mm/year and -7 ∼ -17 mm/year, respectively. The subsidence rates derived by USB-TCPInSAR were compared with those derived by the conventional TCP-InSAR that uses an external DEM for differential interferometry. The mean and the standard deviation of the differences between two types of results at 370697 TCPs are -4.43 × 10-6 mm/year and ±1.4673 mm/year, respectively. Further comparison with the subsidence results mentioned in several other studies were made, which shows good consistencies. The results verify

  9. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  10. Land subsidence in the Yangtze River Delta, China revealed from multi-frequency SAR Interferometry

    Science.gov (United States)

    Li, Zhenhong; Motagh, Mahdi; Yu, Jun; Gong, Xulong; Wu, Jianqiang; Zhu, Yefei; Chen, Huogen; Zhang, Dengming; Xu, Yulin

    2014-05-01

    Land subsidence is a major worldwide hazard, and its principal causes are subsurface fluid withdrawal, drainage of organic soils, sinkholes, underground mining, hydrocompaction, thawing permafrost, and natural consolidation. Land subsidence causes many problems including: damage to public facilities such as bridges, roads, railroads, electric power lines, underground pipes; damage to private and public buildings; and in some cases of low-lying land, can increase the risk of coastal flooding from storm surges and rising sea-levels. In China, approximately 48600 km2 of land, an area roughly 30 times of the size of the Greater London, has subsided (nearly 50 cities across 16 provinces), and the annual direct economic loss is estimated to be more than RMB 100 million (~12 million). It is believed that the Suzhou-Wuxi-Changzhou region within the Yangtze River Delta is the most severely affected area for subsidence hazards in China. With its global coverage and all-weather imaging capability, Interferometric SAR (InSAR) is revolutionizing our ability to image the Earth's surface and the evolution of its shape over time. In this paper, an advanced InSAR time series technique, InSAR TS + AEM, has been employed to analysed ERS (C-band), Envisat (C-band) and TerraSAR-X (X-band) data collected over the Suzhou-Wuxi-Changzhou region during the period from 1992 to 2013. Validation with precise levelling and GPS data suggest: (1) the accuracy of the InSAR-derived mean velocity measurements is 1-3 mm/yr; (2) InSAR-derived displacements agreed with precise levelling with root mean square errors around 5 mm. It is evident that InSAR TS + AEM can be used to image the evolution of deformation patterns in the Suzhou-Wuxi-Changzhou region over time: the maximum mean velocity decreased from ~12 cm/yr during the period of 1992-1993 to ~2 cm/yr in 2003-2013. This is believed to be a result of the prohibition of groundwater use carried out by Jiangsu provincial government. The combination

  11. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    Science.gov (United States)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  12. UAV-Based L-Band SAR with Precision Flight Path Control

    Science.gov (United States)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul

    2004-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  13. Sensitivity of earthquake source inversions to atmospheric noise and corrections of InSAR data

    Science.gov (United States)

    Scott, Chelsea Phipps; Lohman, Rowena Benfer

    2016-05-01

    Tropospheric phase delays pose a major challenge to InSAR (interferometric synthetic aperture radar)-based studies of tectonic deformation. One approach to the mitigation of effects from tropospheric noise is the application of elevation-dependent corrections based on empirical fits between elevation and interferometric phase. We quantify the effects of corrections with a range of complexity on inferred earthquake source parameters using synthetic interferograms with known atmospheric characteristics. We infer statistical properties of the stratified component of the atmosphere using pressure, temperature, and water vapor data from the North America Regional Reanalysis model over our region of interest in the Basin and Range province of the western United States. The statistics of the simulated atmospheric turbulence are estimated from InSAR and Global Positioning System data. We demonstrate potentially significant improvements in the precision of earthquake magnitude, depth, and dip estimates for several synthetic earthquake focal mechanisms following a correction for spatially variable atmospheric characteristics, relative to cases where the correction is based on a uniform delay versus elevation relationship or where no correction is applied. We apply our approach to the 1992 M5.6 Little Skull Mountain, Nevada, earthquake and demonstrate that the earthquake source parameter error bounds decrease in size after applying the atmospheric corrections. Our approach for evaluating the impact of atmospheric noise on inferred fault parameters is easily adaptable to other regions and source mechanisms.

  14. Identification of active release planes using ground-based differential InSAR at the Randa rock slope instability, Switzerland

    Directory of Open Access Journals (Sweden)

    V. Gischig

    2009-12-01

    Full Text Available Five ground-based differential interferometric synthetic aperture radar (GB-DInSAR surveys were conducted between 2005 and 2007 at the rock slope instability at Randa, Switzerland. Resultant displacement maps revealed, for the first time, the presence of an active basal rupture zone and a lateral release surface daylighting on the exposed 1991 failure scarp. Structures correlated with the boundaries of interferometric displacement domains were confirmed using a helicopter-based LiDAR DTM and oblique aerial photography. Former investigations at the site failed to conclusively detect these active release surfaces essential for kinematic and hazard analysis of the instability, although their existence had been hypothesized. The determination of the basal and lateral release planes also allowed a more accurate estimate of the currently unstable volume of 5.7±1.5 million m3. The displacement patterns reveal that two different kinematic behaviors dominate the instability, i.e. toppling above 2200 m and translational failure below. In the toppling part of the instability the areas with the highest GB-DInSAR displacements correspond to areas of enhanced micro-seismic activity. The observation of only few strongly active discontinuities daylighting on the 1991 failure surface points to a rather uniform movement in the lower portion of the instability, while most of the slip occurs along the basal rupture plane. Comparison of GB-DInSAR displacements with mapped discontinuities revealed correlations between displacement patterns and active structures, although spatial offsets occur as a result of the effective resolution of GB-DInSAR. Similarly, comparisons with measurements from total station surveys generally showed good agreement. Discrepancies arose in several cases due to local movement of blocks, the size of which could not be resolved using GB-DInSAR.

  15. Weighted-elastic-wave interferometric imaging of microseismic source location

    Science.gov (United States)

    Li, Lei; Chen, Hao; Wang, Xiu-Ming

    2015-06-01

    Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted-elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with low-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.

  16. Benefits and limitations of imaging multiples: Interferometric and resonant migration

    KAUST Repository

    Guo, Bowen

    2015-07-01

    The benefits and limitations of imaging multiples are reviewed for interferometric migration and resonant migration. Synthetic and field data examples are used to characterize the effectiveness of the methods.

  17. Spectroscopic and Interferometric Measurements of Nine K Giant Stars

    CERN Document Server

    Baines, Ellyn K; Guenther, Eike W; Hatzes, Artie P; Hrudkovu, Marie; van Belle, Gerard T

    2016-01-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here we determine each star's limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  18. DInSAR Coseismic Deformation of the May 2011 Mw 5.1 Lorca Earthquake (southeastern Spain

    Directory of Open Access Journals (Sweden)

    F. Pérez

    2012-04-01

    Full Text Available The coseismic superficial deformation at the region of Lorca (Murcia, southeastern Spain due to the Mw 5.1 earthquake on 11 May 2011 was characterized by a multidisciplinary team, integrating information from DInSAR, GPS and numerical modelling techniques. Despite the moderate magnitude of the event, quantitative information was obtained from the interferometric study of a pair of TerraSAR-X images. The DinSAR results defined the trace of the fault plane and evidenced uplift of the hanging wall block in agreement with the estimated deformation obtained through an elastic rupture dislocation numerical model. Meanwhile for the footwall block, interferometric results showed that tectonic deformation is masked by an important subsidence related to groundwater extraction previously identified at the area of study. Horizontal crustal deformation rates and velocity vectors, obtained from GPS stations existent at the area, were also coherent with the tectonic setting of the southern margin of the Iberian Peninsula and with the focal mechanism calculated for the Lorca event. The analysis of a continuous GPS site in Lorca showed good agreement with the horizontal N–S direction component relative to the numerical model and tectonics of the region. This is the first time at this seismic active area that a multi-technique analysis has been performed immediately after the occurrence of a seismic event, comparing the existing deformation data with a theoretical numerical model based on estimated seismic rupture dislocation.

  19. Governance from space: Satellite InSAR observations to support decision-making and to avoid calamities

    Science.gov (United States)

    Lambert, John; De Lange, Ger; Maccabiani, Jos

    2014-05-01

    Satellites are revolving around the earth already for over five decades, nowadays allowing us to have images of every location on our planet, using different techniques. These images are used for many different purposes, but the number of applications is still growing fast. In this paper, some practical applications of InSAR (Interferometric Synthetic Aperture Radar) data are described. The detection of trends in the movements of the earth surface and those of buildings and infrastructure is one of the applications for this infrastructure. InSAR data from the North-East Groningen gas field region show how large scale subsidence patterns can be detected and can support spatial planning strategies. Another case, in Diemen, shows how InSAR data support the municipal government in their management strategies. Another case shows how InSAR observations, taken from the entrance to the Vlaketunnel, could have warned in advance for the collapse of one of these entries. Finally, it will be shown that InSAR data can be helpful to monitor the effects of (underground) civil engineering activities, such as the construction of the North-Southline in Amsterdam.

  20. A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry

    Directory of Open Access Journals (Sweden)

    Geir Moholdt

    2012-05-01

    Full Text Available We present a new digital elevation model (DEM of the Austfonna ice cap in the Svalbard Archipelago, Norwegian Arctic. Previous DEMs derived from synthetic aperture radar (SAR and optical shape-from-shading have been tied to airborne radio echo-sounding surface profiles from 1983 which contain an elevation-dependent bias of up to several tens of metres compared with recent elevation data. The new and freely available DEM is constructed purely from spaceborne remote sensing data using differential SAR interferometry (DInSAR in combination with ICESat laser altimetry. Interferograms were generated from pairs of SAR scenes from the one-day repeat tandem phase of the European Remote Sensing Satellites 1/2 (ERS-1/2 in 1996. ICESat elevations from winter 2006–08 were used as ground control points to refine the interferometric baseline. The resulting DEM is validated against the same ground control points and independent surface elevation profiles from Global Navigation Satellite Systems (GNSS and airborne laser altimetry, yielding root mean square (RMS errors of about 10 m in all cases. This quality is sufficient for most glaciological applications, and the new DEM will be a baseline data set for ongoing and future research at Austfonna. The technique of combining satellite DInSAR with high-resolution satellite altimetry for DEM generation might also be a good solution in other glacier regions with similar characteristics, especially when data from TanDEM-X and CryoSat-2 become available.

  1. Laser frequency stabilization based on Sagnac interferometric spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Hui Yan; Guoqing Yang; Jin Wang; Mingsheng Zhan

    2008-01-01

    @@ A simple method based on Sagnac interferometric spectroscopy (SIS) is applied for frequency stabilization of diode lasers. Sagnac interferometric spectra of rubidium vapor are investigated both theoretically and experimentally. The interference signal at the output of the Sagnac interferometer displays a sharp dispersion feature near the atomic resonance. This dispersion curve is used as the feedback error signal to stabilize the laser frequency. Linewidth of a diode laser is stabilized down to 1 MHz by this modulation-free method.

  2. Severe acute respiratory syndrome: 'SARS' or 'not SARS'.

    Science.gov (United States)

    Li, A M; Hon, K L E; Cheng, W T; Ng, P C; Chan, F Y; Li, C K; Leung, T F; Fok, T F

    2004-01-01

    Accurate clinical diagnosis of severe acute respiratory syndrome (SARS) based on the current World Health Organization definition is difficult and at times impossible at the early stage of the disease. Both false positive and false negative cases are commonly encountered and this could have far-reaching detrimental effects on the patients, their family and the clinicians alike. Contact history is particularly important in diagnosing SARS in children as their presenting features are often non-specific. The difficulty in making a correct diagnosis is further compounded by the lack of a sensitive rapid diagnostic test. Serology is not particularly helpful in the initial triaging of patients as it takes at least 3 weeks to become positive. Co-infection and other treatable conditions should not be missed and conventional antibiotics should remain as part of the first-line treatment regimen. We report five cases to illustrate the difficulties and dilemmas faced by clinicians in diagnosing SARS in children.

  3. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of pressure field estimates, eleven in all, allow us to construct a measure of diffusive travel time throughout the reservoir. The dense distribution of travel time values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to Interferometric Synthetic Aperture Radar (InSAR) data gathered over a CO{sub 2} injection in Algeria reveals pressure propagation along two northwest trending corridors. An inversion of the travel times indicates the existence of two northwest-trending high permeability zones. The high permeability features trend in the same direction as the regional fault and fracture zones. Model parameter resolution estimates indicate that the features are well resolved.

  4. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    Science.gov (United States)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  5. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel sub- scenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  6. SAR Image Enhancement using Particle Filters

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, we propose a novel approach to reduce the noise in Synthetic Aperture Radar (SAR) images using particle filters. Interpretation of SAR images is a...

  7. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  8. SARS Patients and Their Close Contacts

    Science.gov (United States)

    ... Links Clinician Registry Travelers' Health Fact Sheet for SARS Patients and Their Close Contacts Format: Select one ... of the World Health Organization (WHO) . Symptoms of SARS The illness usually begins with a fever (measured ...

  9. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel subscenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  10. Accelerated Scientific InSAR Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Neva Ridge Technologies proposes to develop a suite of software tools for the analysis of SAR and InSAR data, focused on having a robust and adopted capability well...

  11. Improved Oceanographic Measurements with CryoSat SAR Altimetry

    Science.gov (United States)

    Cotton, David; Benveniste, Jérôme; Cipollini, Paolo; Andersen, Ole; Cancet, Mathilde; Ambrózio, Américo; Restano, Marco; Nilo Garcia, Pablo; Martin, Francisco

    2016-07-01

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar "SAR" (or delay-Doppler) and interferometric SAR (SARin) modes. Studies on CryoSat data have analysed and confirmed the improved ocean measuring capability offered by SAR mode altimetry, through increased resolution and precision in sea surface height and wave height measurements, and have also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. We present work in four themes, building on work initiated in the CryoSat Plus for Oceans project (CP4O), each investigating different aspects of the opportunities offered by this new technology. The first two studies address the coastal zone, a critical region for providing a link between open-ocean and shelf sea measurements with those from coastal in-situ measurements, in particular tide gauges. Although much has been achieved in recent years through the Coastal Altimetry community, (http://www.coastalt.eu/community) there is a limit to the capabilities of pulse-limited altimetry, which often leaves an un-measured "white strip" right at the coastline. Firstly, a thorough analysis was made of the performance of "SAR" altimeter data (delay-Doppler processed) in the coastal zone. This quantified the performance, confirming the significant improvement over "conventional" pulse-limited altimetry. In the second study a processing scheme was developed with CryoSat SARin mode data to enable the retrieval of valid oceanographic measurements in coastal areas with complex topography. Thanks to further development of the algorithms, a new approach was achieved that can also be applied to SAR and conventional altimetry data (e.g., Sentinel-3, Jason series, Envisat). The third part of the project developed and evaluated improvements to the SAMOSA altimeter re-tracker that is implemented in the Sentinel-3 processing chain. The modifications to the

  12. Understanding magnetic structures in permanent magnets via in situ Lorentz microscopy, interferometric and non-interferometric phase-reconstructions.

    Science.gov (United States)

    Zhu, Y; Volkov, V V; De Graef, M

    2001-01-01

    We present our observations of field- and orientation-dependence of magnetic domains and their reversal nucleation at grain boundaries in polycrystalline Nd2Fe14B, using Fresnel- and Foucault-Lorentz microscopy. The local magnetization associated with the domain and domain-wall in Nd2Fe14B and in precipitated Fe particles was mapped using an interferometric holography as well as a novel non-interferometric method based on the 'transport of intensity' equation.

  13. Differential Interferometric Applications in Alpine Regions

    Science.gov (United States)

    Strozzi, T.; Wegmueller, U.; Wiesmann, A.; Kääb, A.; Frauenfelder, R.; Werner, C.; Graf, K.; Rätzo, H.; Lateltin, O.

    2004-06-01

    The high-mountain mass-transport systems are the results of steady mass shifts and catastrophic mass-movement events. The equilibrium of these systems is markedly influenced by ice occurrence, which makes high mountains especially sensitive to climate impacts [1]. The creeping and thawing of frozen debris, often found as permafrost, is a significant factor for the disposition of periglacial debris flows and related slope instabilities [2]. Not only instabilities of debris slopes but also instabilities of rock slopes can be connected to glacial and permafrost processes [3]. Glacier retreats, for instance, affect the stability of valley flanks, or varying ice content affects the rock hydrology. Such system interactions clearly show the urgent need of integral hazard assessments accounting for a variety of relevant processes in high mountains, also considering that a variety of natural hazards in high mountain regions are affecting human activities. Taking into account the wide-area coverage, remote-sensing techniques represent suitable tools for an integral hazard mapping and monitoring in high mountains, regions that are typically difficult to assess [4]. The focus of this contribution is on the potential and limitations of differential SAR interferometry [5,6] for the detection and monitoring of unstable high-mountain slopes [7-11]. SAR data of the ERS and JERS satellites for the Swiss Alps have been analyzed with short baseline interferometry and point target interferometry [12.13]. Significant results for permafrost creeping are presented. The work presented here is part of the ongoing SLAM (Services for Landslide Monitoring) project supported by the European Space Agency [14].

  14. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    Science.gov (United States)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest

  15. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...... for the application of SAR data in the difficult process of map revision and updating....

  16. Acoustic vs Interferometric Measurements of Lightning

    Science.gov (United States)

    Arechiga, R. O.; Erives, H.; Sonnenfeld, R. G.; Stanley, M. A.; Rison, W.; Thomas, R. J.; Edens, H. E.; Lapierre, J. L.; Stock, M.; Jensen, D.; Morris, K.

    2015-12-01

    During the summer of 2015 we acquired acoustic and RF data on severalflashes from thunderstorms over Fort Morgan CO. and Langmuir Laboratoryin the Magdalena mountains of central New Mexico. The acoustic arrayswere located at a distance of roughly 150 m from the interferometers.Lightning mapping array and slow antenna data were also obtained. Theacoustic arrays consist of arrays of five audio-range and six infrasoundmicrophones operating at 50 KHz and 1 KHz respectively. The lightninginterferometer at Fort Morgan CO. consists of three flat-plate, 13" diameterantennas at the vertices of an equilateral 50 m per side triangle. Theinterferometer at Langmuir Laboratory consists of three 13" dishes separatedby about 15 m. Both interferometers, operating at 180 Megasamples persecond, use the analysis software and digitizer hardware pioneered byStanley, Stock et al. The high data rate allows for excellent spatialresolution of high speed (and typically high current) processes such asK-changes, return strokes and dart-leaders. In previous studies, we haveshown the usefulness of acoustic recordings to locate thunder sources aswell as infrasound pulses from lightning. This work will present acomparison of Acoustic and Interferometric measurements from lightning,using some interesting flashes, including a positive cloud to ground,that occurred in these campaigns.

  17. The 2016 interferometric imaging beauty contest

    Science.gov (United States)

    Sanchez-Bermudez, J.; Thiébaut, E.; Hofmann, K.-H.; Heininger, M.; Schertl, D.; Weigelt, G.; Millour, F.; Schutz, A.; Ferrari, A.; Vannier, M.; Mary, D.; Young, J.

    2016-08-01

    Image reconstruction in optical interferometry has gained considerable importance for astrophysical studies during the last decade. This has been mainly due to improvements in the imaging capabilities of existing interferometers and the expectation of new facilities in the coming years. However, despite the advances made so far, image synthesis in optical interferometry is still an open field of research. Since 2004, the community has organized a biennial contest to formally test the different methods and algorithms for image reconstruction. In 2016, we celebrated the 7th edition of the "Interferometric Imaging Beauty Contest". This initiative represented an open call to participate in the reconstruction of a selected set of simulated targets with a wavelength-dependent morphology as they could be observed by the 2nd generation of VLTI instruments. This contest represents a unique opportunity to benchmark, in a systematic way, the current advances and limitations in the field, as well as to discuss possible future approaches. In this contribution, we summarize: (a) the rules of the 2016 contest; (b) the different data sets used and the selection procedure; (c) the methods and results obtained by each one of the participants; and (d) the metric used to select the best reconstructed images. Finally, we named Karl-Heinz Hofmann and the group of the Max-Planck-Institut f ur Radioastronomie as winners of this edition of the contest.

  18. An interferometric view of binary stars

    CERN Document Server

    Boffin, Henri M J

    2016-01-01

    The study of binary stars is critical to apprehend many of the most interesting classes of stars. Moreover, quite often, the study of stars in binary systems is our only mean to constrain stellar properties, such as masses and radii. Unfortunately, a great fraction of the most interesting binaries are so compact that they can only be apprehended by high-resolution techniques, mostly by interferometry. I present some results highlighting the use of interferometry in the study of binary stars, from finding companions and deriving orbits, determining the mass and radius of stars, to studying mass transfer in symbiotic stars, and tackling luminous blue variables. In particular, I show how interferometric studies using the PIONIER instrument have allowed us to confirm a dichotomy within symbiotic stars, obtain masses of stars with a precision better than 1%, and help us find a new Eta Carinae-like system. I will also illustrate the benefits for the study of binary stars one would get from upgrading the VLT Interfe...

  19. Calibration Errors in Interferometric Radio Polarimetry

    Science.gov (United States)

    Hales, Christopher A.

    2017-08-01

    Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.

  20. Wideband Interferometric Sensing and Imaging Polarimetry

    Science.gov (United States)

    Verdi, James Salvatore; Kessler, Otto; Boerner, Wolfgang-Martin

    1996-01-01

    Wideband Interferometric Sensing and Imaging Polarimetry (WISIP) has become an important, indispensible tool in wide area military surveillance and global environmental monitoring of the terrestrial and planetary covers. It enables dynamic, real time optimal feature extraction of significant characteristics of desirable targets and/or target sections with simultaneous suppression of undesirable background clutter and propagation path speckle at hitherto unknown clarity and never before achieved quality. WISIP may be adopted to the detection, recognition, and identification (DRI) of any stationary, moving or vibrating targets or distributed scatterer segments versus arbitrary stationary, dynamical changing and/or moving geo-physical/ecological environments, provided the instantaneous 2x2 phasor and 4x4 power density matrices for forward propagation/backward scattering, respectively, can be measured with sufficient accuracy. For example, the DRI of stealthy, dynamically moving inhomogeneous volumetric scatter environments such as precipitation scatter, the ocean/sea/lake surface boundary layers, the littoral coastal surf zones, pack ice and snow or vegetative canopies, dry sands and soils, etc. can now be successfully realized. A comprehensive overview is presented on how these modern high resolution/precision, complete polarimetric co-registered signature sensing and imaging techniques, complemented by full integration of novel navigational electronic tools, such as DGPS, will advance electromagnetic vector wave sensing and imaging towards the limits of physical realization. Various examples utilizing the most recent image data take sets of airborne, space shuttle, and satellite imaging systems demonstrate the utility of WISIP.

  1. SARS Vaccine: Progress and Challenge

    Institute of Scientific and Technical Information of China (English)

    Yan Zhi; James M. Wilson; Hao Shen

    2005-01-01

    Severe acute respiratory syndrome (SARS) emerged in 2002 as a severe and highly contagious infectious disease that rapidly spread to a number of different countries. The collaborative efforts of the global scientific community have provided, within a short period of time, substantial insights into the molecular biology and immunology of SARS-CoV. Although the outbreak has been contained, there is continuous concern that the virus may resurface into the human population through seasonal changes, animal reservoirs or laboratory accidents. The severe morbidity and mortality associated with SARS make it imperative that an effective vaccine be developed to prevent reemergence and epidemics in the future. Cellular & Molecular Immunology. 2005;2(2):101-105.

  2. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking

    Science.gov (United States)

    Lyons, Suzanne; Sandwell, David

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  3. PSP SAR interferometry monitoring of ground and structure deformations applied to archaeological sites

    Science.gov (United States)

    Costantini, Mario; Francioni, Elena; Trillo, Francesco; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla

    2017-04-01

    Archaeological sites and cultural heritage are considered as critical assets for the society, representing not only the history of region or a culture, but also contributing to create a common identity of people living in a certain region. In this view, it is becoming more and more urgent to preserve them from climate changes effect and in general from their degradation. These structures are usually just as precious as fragile: remote sensing technology can be useful to monitor these treasures. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on the methodology adopted and implemented in order to use the results operatively for conservation policies in a Italian archaeological site. The analysis is based on the processing of COSMO-SkyMed Himage data by the e-GEOS proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry technology characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artefacts (which are one of the main problems of SAR interferometry). Validations analyses [Costantini et al. 2015] settled that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. Considering the limitations of all the interferometric techniques, in particular the fact that the measurement are along the line of sight (LOS) and the geometric distortions, in order to obtain the maximum information from interferometric analysis, both ascending and descending geometry have been used. The ascending analysis allows selecting measurements points over the top and, approximately, South-West part of the structures, while the descending one over the top and the South-East part of the structures. The interferometric techniques needs

  4. Application and Evaluation of ALOS PALSAR Data for Monitoring of Mining Induced Surface Deformations Using Interferometric Techniques

    Science.gov (United States)

    Walter, Diana; Wegmuller, Urs; Spreckels, Volker; Busch, Wolfgang

    2008-11-01

    The main objective of the projects "Determination of ground motions in mining areas by interferometric analyses of ALOS data" (ALOS ADEN 3576, ESA) and "Monitoring of mining induced surface deformation" (ALOS-RA-094, JAXA) is to evaluate PALSAR data for surface deformation monitoring, using interferometric techniques. We present monitoring results of surface movements for an active hard coal colliery of the German hard coal mining company RAG Deutsche Steinkohle (RAG). Underground mining activities lead to ground movements at the surface with maximum subsidence rates of about 10cm per month for the test site. In these projects the L-band sensor clearly demonstrates the good potential for deformation monitoring in active mining areas, especially in rural areas. In comparison to C-band sensors we clearly observe advantages in resolving the high deformation gradients that are present in this area and we achieve a more complete spatial coverage than with C-band. Extensive validation data based on levelling data and GPS measurements are available within RAǴs GIS based database "GeoMon" and thus enable an adequate analysis of the quality of the interferometric results. Previous analyses confirm the good accuracy of PALSAR data for deformation monitoring in mining areas. Furthermore, we present results of special investigations like precision geocoding of PALSAR data and corner reflector analysis. At present only DInSAR results are obtained due to the currently available number of PALSAR scenes. For the future we plan to also apply Persistent Scatterer Interferometry (PSI) using longer series of PALSAR data.

  5. SIMULATION STUDY ON AIRBORNE SAR ECHO SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Bao Houbing; Liu Zhao

    2004-01-01

    Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.

  6. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  7. SAR Systems and Related Signal Processing

    NARCIS (Netherlands)

    Hoogeboom, P.; Dekker, R.J.; Otten, M.P.G.

    1996-01-01

    Synthetic Aperture Radar (SAR) is today a valuable source of remote sensing information. SAR is a side-looking imaging radar and operates from airborne and spacebome platforms. Coverage, resolution and image quality are strongly influenced by the platform. SAR processing can be performed on standard

  8. SAR Systems and Related Signal Processing

    NARCIS (Netherlands)

    Hoogeboom, P.; Dekker, R.J.; Otten, M.P.G.

    1996-01-01

    Synthetic Aperture Radar (SAR) is today a valuable source of remote sensing information. SAR is a side-looking imaging radar and operates from airborne and spacebome platforms. Coverage, resolution and image quality are strongly influenced by the platform. SAR processing can be performed on standard

  9. The aetiology of SARS: Koch's postulates fulfilled

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); T. Kuiken (Thijs)

    2004-01-01

    textabstractProof that a newly identified coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV) is the primary cause of severe acute respiratory syndrome (SARS) came from a series of studies on experimentally infected cynomolgus macaques (Macaca, fascicularis). SARS-CoV-infected

  10. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise

    KAUST Repository

    Knospe, Steffen H G

    2010-04-01

    We study anisotropic spatial autocorrelation in differential synthetic aperture radar interferometric (dInSAR) measurements and its impact on geophysical parameter estimations. The dInSAR phase acquired by the satellite sensor is a superposition of different contributions, and when studying geophysical processes, we are usually only interested in the surface deformation part of the signal. Therefore, to obtain high-quality results, we would like to characterize and/or remove other phase components. A stochastic model has been found to be appropriate to describe atmospheric phase delay in dInSAR images. However, these phase delays are usually modeled as being isotropic, which is a simplification, because InSAR images often show directional atmospheric anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based on the theory of random functions (RFs), we then fit anisotropic variogram models in the spatial domain, employing Matérn-and Bessel-family correlation functions in nested models to represent complex dInSAR covariance structures. The presented covariance function types, in the statistical framework of stationary RFs, are consistent with tropospheric delay models. We find that by using anisotropic data covariance information to weight dInSAR measurements, we can significantly improve both the precision and accuracy of geophysical parameter estimations. Furthermore, the improvement is dependent on how similar the deformation pattern is to the dominant structure of the anisotropic atmospheric signals. © 2009 IEEE.

  11. Polarization Filtering of SAR Data

    Science.gov (United States)

    Dubois, Pascale C.; Van Zyl, Jakob J.

    1991-01-01

    Theoretical analysis of polarization filtering of synthetic-aperture-radar (SAR) returns provide hybrid method applied to either (1) maximize signal-to-noise ratio of return from given target or (2) enhance contrast between targets of two different types (that have different polarization properties). Method valid for both point and extended targets and for both monostatic and bistatic radars as well as SAR. Polarization information in return signals provides more complete description of radar-scattering properties of targets and used to obtain additional information about targets for use in classifying them, discriminating between them, or enhancing features of radar images.

  12. InSAR Tropospheric Correction Methods: A Statistical Comparison over Different Regions

    Science.gov (United States)

    Bekaert, D. P.; Walters, R. J.; Wright, T. J.; Hooper, A. J.; Parker, D. J.

    2015-12-01

    Observing small magnitude surface displacements through InSAR is highly challenging, and requires advanced correction techniques to reduce noise. In fact, one of the largest obstacles facing the InSAR community is related to tropospheric noise correction. Spatial and temporal variations in temperature, pressure, and relative humidity result in a spatially-variable InSAR tropospheric signal, which masks smaller surface displacements due to tectonic or volcanic deformation. Correction methods applied today include those relying on weather model data, GNSS and/or spectrometer data. Unfortunately, these methods are often limited by the spatial and temporal resolution of the auxiliary data. Alternatively a correction can be estimated from the high-resolution interferometric phase by assuming a linear or a power-law relationship between the phase and topography. For these methods, the challenge lies in separating deformation from tropospheric signals. We will present results of a statistical comparison of the state-of-the-art tropospheric corrections estimated from spectrometer products (MERIS and MODIS), a low and high spatial-resolution weather model (ERA-I and WRF), and both the conventional linear and power-law empirical methods. We evaluate the correction capability over Southern Mexico, Italy, and El Hierro, and investigate the impact of increasing cloud cover on the accuracy of the tropospheric delay estimation. We find that each method has its strengths and weaknesses, and suggest that further developments should aim to combine different correction methods. All the presented methods are included into our new open source software package called TRAIN - Toolbox for Reducing Atmospheric InSAR Noise (Bekaert et al., in review), which is available to the community Bekaert, D., R. Walters, T. Wright, A. Hooper, and D. Parker (in review), Statistical comparison of InSAR tropospheric correction techniques, Remote Sensing of Environment

  13. Advanced corrections for InSAR using GPS and numerical weather models

    Science.gov (United States)

    Foster, J. H.; Cossu, F.; Amelung, F.; Businger, S.; Cherubini, T.

    2016-12-01

    The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting Interferometric Synthetic Aperture Radar's (InSAR) potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We present preliminary results from an investigation into the application of GPS and numerical weather models for generating tropospheric correction fields. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric model covering the Big Island of Hawaii and an even higher, 300 m resolution grid over Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate information on atmospheric heterogeneity from the GPS data into the models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive

  14. Answering the right question - integration of InSAR with other datasets

    Science.gov (United States)

    Holley, Rachel; McCormack, Harry; Burren, Richard

    2014-05-01

    The capabilities of satellite Interferometric Synthetic Aperture Radar (InSAR) are well known, and utilized across a wide range of academic and commercial applications. However there is a tendency, particularly in commercial applications, for users to ask 'What can we study with InSAR?'. When establishing a new technique this approach is important, but InSAR has been possible for 20 years now and, even accounting for new and innovative algorithms, this ground has been thoroughly explored. Too many studies conclude 'We show the ground is moving here, by this much', and mention the wider context as an afterthought. The focus needs to shift towards first asking the right questions - in fields as diverse as hazard awareness, resource optimization, financial considerations and pure scientific enquiry - and then working out how to achieve the best possible answers. Depending on the question, InSAR (and ground deformation more generally) may provide a large or small contribution to the overall solution, and there are usually benefits to integrating a number of techniques to capitalize on the complementary capabilities and provide the most useful measurements. However, there is still a gap between measurements and answers, and unlocking the value of the data relies heavily on appropriate visualization, integrated analysis, communication between technique and application experts, and appropriate use of modelling. We present a number of application examples, and demonstrate how their usefulness can be transformed by moving from a focus on data to answers - integrating complementary geodetic, geophysical and geological datasets and geophysical modeling with appropriate visualization, to enable comprehensive solution-focused interpretation. It will also discuss how forthcoming developments are likely to further advance realisation of the full potential satellite InSAR holds.

  15. Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution

    Science.gov (United States)

    Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.

    2015-12-01

    Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.

  16. Complex Deformation Monitoring over the Linfen–Yuncheng Basin (China with Time Series InSAR Technology

    Directory of Open Access Journals (Sweden)

    Cheng-sheng Yang

    2016-03-01

    Full Text Available The Linfen–Yuncheng basin is an area prone to geological disasters, such as surface subsidence, ground fissuring, fault activity, and earthquakes. For the purpose of disaster prevention and mitigation, Interferometric Synthetic Aperture Radar (InSAR was used to map ground deformation in this area. After the ground deformation characteristics over the Linfen–Yuncheng basin were obtained, the cross-correlations among regional ground subsidence, fault activity, and underground water level were analyzed in detail. Additionally, an area of abnormal deformation was found and examined. Through time series deformation monitoring and mechanism inversion, we found that the abnormal deformation was related mainly to excessive groundwater exploitation.

  17. Characterization of Maritime Pine Forests with Combination of Simulated P-Band SAR Data and Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    C. Albinet

    2012-01-01

    Full Text Available This paper describes a sensitivity study performed on simulated radar and optical remote sensing forest data. It presents how the dual model has been built up. The first step is a forest growth model fed with biophysical parameters. The geometrical description is then the input of an optical hyperspectral model, giving reflectance spectra, and a Synthetic Aperture Radar (SAR model, giving the polarimetric and interferometric observables. As an illustration, the first results obtained by both models outputs are presented, and fusions of these outputs are performed.

  18. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  19. Signal processing for FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2007-01-01

    The combination of frequency-modulated continuous-wave (FMCW) technology and synthetic aperture radar (SAR) techniques leads to lightweight cost-effective imaging sensors of high resolution. One limiting factor to the use of FMCW sensors is the well-known presence of nonlinearities in the

  20. Stalking SARS: CDC at Work

    Centers for Disease Control (CDC) Podcasts

    2014-05-22

    In this podcast for kids, the Kidtastics talk about the SARS outbreak and how CDC worked to solve the mystery.  Created: 5/22/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 5/22/2014.

  1. Light weight digital array SAR

    NARCIS (Netherlands)

    Otten, M.; Maas, N.; Bolt, R.; Anitori, L.

    2010-01-01

    A light weight SAR has been designed, suitable for short range tactical UAVs, consisting of a fully digital receive array, and a very compact active transmit antenna. The weight of the complete RF front is expected to be below 3 kg, with a power consumption below 30 W. This X-band system can provide

  2. Bird flu: lessons from SARS.

    Science.gov (United States)

    Wong, Gary W K; Leung, Ting F

    2007-06-01

    Severe acute respiratory syndrome (SARS) and avian influenza are two important newly emerged infections with pandemic potential. Both infections have crossed the species barrier to infect humans. SARS originated from southern China and spread to many countries in early 2003. The close collaboration of scientists around the world resulted in a rapid identification of the causative agent, and the early isolation of infected cases and meticulous infection control measures were the key to successfully controlling the outbreak of SARS. The first outbreak of human cases of avian influenza was reported in 1997 in Hong Kong. Since 2003, there have been many small outbreaks of human cases around the world, and the reported mortality is greater than 50%. Current evidence suggests that the human-to-human transmission of avian influenza is rather inefficient, but mutation might occur in the future resulting in improved transmission and possibly a pandemic in humans. As with the outbreak of SARS, the development of sensitive and accurate early diagnostic tests is extremely important for successful control of the outbreak at source. The availability of isolation facilities, the stockpiling of antiviral agents and effective and safe vaccination will be extremely important in minimising the damage of a new influenza pandemic.

  3. Computerized ionospheric tomography based on geosynchronous SAR

    Science.gov (United States)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  4. Remotely Sensed Active Layer Thickness (ReSALT at Barrow, Alaska Using Interferometric Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Kevin Schaefer

    2015-03-01

    Full Text Available Active layer thickness (ALT is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ temperature sensors, or other ground-based observations. Here we evaluated the Remotely Sensed Active Layer Thickness (ReSALT product that uses the Interferometric Synthetic Aperture Radar technique to measure seasonal surface subsidence and infer ALT around Barrow, Alaska. We compared ReSALT with ground-based ALT obtained using probing and calibrated, 500 MHz Ground Penetrating Radar at multiple sites around Barrow. ReSALT accurately reproduced observed ALT within uncertainty of the GPR and probing data in ~76% of the study area. However, ReSALT was less than observed ALT in ~22% of the study area with well-drained soils and in ~1% of the area where soils contained gravel. ReSALT was greater than observed ALT in some drained thermokarst lake basins representing ~1% of the area. These results indicate remote sensing techniques based on InSAR could be an effective way to measure and monitor ALT over large areas on the Arctic coastal plain.

  5. [Medical history from SARS to pneumonia].

    Science.gov (United States)

    Zhen, Cheng

    2003-05-31

    SARS is a new kind of pneumonia. From the end of 2002 to the beginning of 2003, SARS broke in Guangdong province, Hong Kong and Beijing, and then gradually spread to the world. SARS is extremely contagious. The symptoms of SARS progress very quickly. SARS smashes the people's tranquil life and many people live in horror, worry and anxiety. But if we review the medical history of pneumonia, we would have a better understanding of SARS. This article focuses the history of people's understanding of pneumonia on the historical documents, diagnosis, etiology and treatment. Through the epidemic of SARS, the author hopes to express that contagion will live with us for a long time, but it is not a deadly disease. It is preventable and good care is essential for contagious patients. As Chinese people, we should have the best use of TCM in our combat with contagion.

  6. Examination of InSAR tropospheric delay correction with JRA-55 reanalysis data

    Science.gov (United States)

    Kinoshita, Y.; Furuya, M.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) phase signal contains not only surface deformations but also propagation delays due to Earth's atmosphere, which is the principal limiting factor for InSAR application of small deformation with amplitude of a few centimeters or less. Bevis et al. (1992) showed that the tropospheric delay consists of the hydrostatic delay due to dry gases and the wet delay due to water vapor. Previous studies proposed correction methods which used GNSS delay data or numerical weather model outputs. However, it is still insignificant for detecting small surface deformation. Jolivet et al. (2014) showed that reanalysis data like ECMWF Interim Re-Analysis (ERA-Interim) data is useful to mitigate topography-correlated tropospheric delay from InSAR data. However, previous studies used only one of the model data as a case study and didn't apply the correction to other areas. In this study we examined an effect of the tropospheric delay correction with Japanese 55-year reanalysis (JRA-55) data (Kobayashi et al., 2015). The horizontal resolution of JRA-55 is TL319 (approximately 60 km) and has 60 vertical layers. In addition, we estimated the tropospheric delay with ERA-Interim data for comparison. SAR data used were derived from ALOS/PALSAR around Nagoya prefecture (Path-Frame: 411-690). To avoid the spatial decorrelation, interferometric pairs with the perpendicular baseline of less 3000 m were generated. As a result, 309 interferograms were generated from 28 SAR single-look complex images. In consequence of the tropospheric delay correction with JRA-55 and ERA-Interim data, the averaged standard deviation of all interferograms slightly reduced from 1.26716 cm to 1.25231 cm by JRA-55 and slightly increased to 1.26797 cm by ERA-Interim. We further examined the correction effect when dividing the estimated delay into the hydrostatic component and the wet component. These results showed that JRA-55 corrected these delays rather than ERA

  7. Simplex GPS and InSAR Inversion Software

    Science.gov (United States)

    Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Pierce, Marlon E.

    2012-01-01

    Changes in the shape of the Earth's surface can be routinely measured with precisions better than centimeters. Processes below the surface often drive these changes and as a result, investigators require models with inversion methods to characterize the sources. Simplex inverts any combination of GPS (global positioning system), UAVSAR (uninhabited aerial vehicle synthetic aperture radar), and InSAR (interferometric synthetic aperture radar) data simultaneously for elastic response from fault and fluid motions. It can be used to solve for multiple faults and parameters, all of which can be specified or allowed to vary. The software can be used to study long-term tectonic motions and the faults responsible for those motions, or can be used to invert for co-seismic slip from earthquakes. Solutions involving estimation of fault motion and changes in fluid reservoirs such as magma or water are possible. Any arbitrary number of faults or parameters can be considered. Simplex specifically solves for any of location, geometry, fault slip, and expansion/contraction of a single or multiple faults. It inverts GPS and InSAR data for elastic dislocations in a half-space. Slip parameters include strike slip, dip slip, and tensile dislocations. It includes a map interface for both setting up the models and viewing the results. Results, including faults, and observed, computed, and residual displacements, are output in text format, a map interface, and can be exported to KML. The software interfaces with the QuakeTables database allowing a user to select existing fault parameters or data. Simplex can be accessed through the QuakeSim portal graphical user interface or run from a UNIX command line.

  8. Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR

    Directory of Open Access Journals (Sweden)

    Thomas Nagler

    2016-04-01

    Full Text Available The Sentinel satellite constellation series, developed and operated by the European Space Agency, represents the dedicated space component of the European Copernicus program, committed to long-term operational services in environment, climate and security. We developed, tested and evaluated an algorithm for generating maps of snowmelt area from C-band synthetic aperture radar (SAR data of the Sentinel-1 mission. For snowmelt classification, a change detection method is applied, using multitemporal dual-polarized SAR data acquired in Interferometric Wide swath (IW mode, the basic operation mode over land surfaces. Of particular benefit for wet snow retrievals are the high instrument stability, the high spatial resolution across the 250 km wide swath, and the short revisit time. In order to study the impact of polarization, we generated maps of melting snow using data of the VV-polarized channel, the VH-polarized channel and a combined VV- and VH-based channel using a weighting function that accounts for effects of the local incidence angle. Comparisons are performed with snow maps derived from Landsat images over study areas in the Alps and in Iceland. The pixel-by-pixel comparisons show good agreement between the snow products of the two sensors, with the best performance for retrievals based on the combined (VV and VH channel and a minor decline for the VH-based product. The VV-based snowmelt extent product shows a drop-off in quality over areas with steep terrain because of the decreasing backscatter contrast of snow-covered versus snow-free surfaces on fore-slopes. The investigations demonstrate the excellent capability of the Sentinel-1 mission for operational monitoring of snowmelt areas.

  9. Atmospheric corrections in interferometric synthetic aperture radar surface deformation - a case study of the city of Mendoza, Argentina

    Science.gov (United States)

    Balbarani, S.; Euillades, P. A.; Euillades, L. D.; Casu, F.; Riveros, N. C.

    2013-09-01

    Differential interferometry is a remote sensing technique that allows studying crustal deformation produced by several phenomena like earthquakes, landslides, land subsidence and volcanic eruptions. Advanced techniques, like small baseline subsets (SBAS), exploit series of images acquired by synthetic aperture radar (SAR) sensors during a given time span. Phase propagation delay in the atmosphere is the main systematic error of interferometric SAR measurements. It affects differently images acquired at different days or even at different hours of the same day. So, datasets acquired during the same time span from different sensors (or sensor configuration) often give diverging results. Here we processed two datasets acquired from June 2010 to December 2011 by COSMO-SkyMed satellites. One of them is HH-polarized, and the other one is VV-polarized and acquired on different days. As expected, time series computed from these datasets show differences. We attributed them to non-compensated atmospheric artifacts and tried to correct them by using ERA-Interim global atmospheric model (GAM) data. With this method, we were able to correct less than 50% of the scenes, considering an area where no phase unwrapping errors were detected. We conclude that GAM-based corrections are not enough for explaining differences in computed time series, at least in the processed area of interest. We remark that no direct meteorological data for the GAM-based corrections were employed. Further research is needed in order to understand under what conditions this kind of data can be used.

  10. The performance and potentials of the CryoSat-2 SAR and SARIn modes for lake level estimation

    DEFF Research Database (Denmark)

    Nielsen, Karina; Stenseng, Lars; Andersen, Ole Baltazar

    2017-01-01

    Over the last few decades, satellite altimetry has proven to be valuable for monitoring lake levels. With the new generation of altimetry missions, CryoSat-2 and Sentinel-3, which operate in Synthetic Aperture Radar (SAR) and SAR Interferometric (SARIn) modes, the footprint size is reduced...... to approximately 300 m in the along-track direction. Here, the performance of these new modes is investigated in terms of uncertainty of the estimated water level from CryoSat-2 data and the agreement with in situ data. The data quality is compared to conventional low resolution mode (LRM) altimetry products from...... of that of the Envisat results. Generally, the CryoSat-2 lake levels also show a better agreement with the in situ data. The lower uncertainty of the CryoSat-2 results entails a more detailed description of water level variations....

  11. DInSAR coseismic deformation of the May 2011 Mw 5.1 Lorca earthquake, (Southern Spain

    Directory of Open Access Journals (Sweden)

    F. Pérez

    2011-11-01

    Full Text Available The coseismic superficial deformation at the region of Lorca (Murcia, southeastern Spain due to the Mw 5.1 earthquake occurred on 11 May 2011 was studied by a multidisciplinary team, integrating information from DInSAR, GPS and numerical modeling techniques. Despite the moderate magnitude of the event, quantitative information was obtained from the interferometric study of a pair of SAR images. Coseismic vertical deformation was differentiated from subsidence related to groundwater extraction at the footwall block through a numerical modeling deformation estimation based on elastic rupture dislocations. On the other hand, horizontal crustal deformation rates obtained from the analysis of a GPS network existent in the area are also coherent with the mechanism calculated for the earthquake.

  12. Statistical modeling of a joint metric of SAR interferogram's magnitude and phase using Fisher distribution for texture

    Science.gov (United States)

    Qin, Xianxiang; Zhou, Shilin; Zou, Huanxin; Gao, Gui

    2014-03-01

    In this paper, aiming at the precise description of a recently proposed joint metric of SAR interferogram's magnitude and phase (IMP), especially for high resolution interferometric SAR images, a novel distribution denoted as S1 distribution is proposed. At first, under the framework of product model, the Fisher distribution is introduced for modeling the textural component and the closed-form PDF of the novel distribution is presented. The proposed distribution generalizes the existing S0 distribution which models the textural component by the inverse gamma distribution. Then, based on the Mellin transform, a parameter estimator of the proposed model is derived. Finally, the experimental results on real data have validated the efficiency of the proposed distribution and the parameter estimation.

  13. Spatial and Temporal Analysis of Mexico City Subsidence by Means of Interferometric Techniques

    Science.gov (United States)

    Lopez-Quiroz, P.; Tupin, F.; Briole, P.; Doin, M.; Nicolas, J.

    2007-05-01

    In Mexico city, water over-consumption leads to subsidence. Before the Spanish conquest, the southern part of the Mexico Valley, an endoreic basin surrounded by mountains, was filled by a large lake. Flooding problems oblige conquerors to dry the lakes, which by now have almost completely disappeared and have been replaced by buildings. The simplified hydrogeologic structure of Mexico Valley includes a superficial 50 to 300 m thick lacustrine aquitard overlying a thicker aquifer made of alluvial deposits. The aquitard layer plays a crucial role in the subsidence process due to the very high compressibility of its clay deposits separated by a less compressible sand layer where the biggest buildings are anchored. The aquifer over-exploitation leads to a depression of its piezometric level, inducing water downwards flow in the clays, yielding compaction and subsidence (Rivera, 1990). In order to quantitatively link subsidence to water pumping, the Mexico city subsidence needs to be mapped and analyzed through space and time. It will help identify possible variations related with seasonal recharge, anchored and non anchored buildings, old and new pumping areas with varying clay compressibility through time due to consolidation (Rivera, 1990, Ortega-Guerrero et al., 1999). Radar interferometry (InSAR, Interferometric Synthetic Aperture Radar) has been successfully applied to map subsidence caused by water pumping (e. g., Amelung et al., 2000). It uses two repeated SAR acquisitions to obtain distance measurements. After geometrical corrections, the interferometric phase contains deformation information as well as residual orbital and topographic errors and atmospheric delays. A previous work using levelling, interferometry and GPS techniques over Mexico city showed that the location of the maximum subsidence rates (about 400 mm/yr) has changed and moved from the downtown area to the east of the city over a 50 years interval (Cabral-Cano et al., 2006). In this previous

  14. A Constellation of CubeSat InSAR Sensors for Rapid-Revisit Surface Deformation Studies

    Science.gov (United States)

    Wye, L.; Lee, S.; Yun, S. H.; Zebker, H. A.; Stock, J. D.; Wicks, C. W., Jr.; Doe, R.

    2016-12-01

    The 2007 NRC Decadal Survey for Earth Sciences highlights three major Earth surface deformation themes: 1) solid-earth hazards and dynamics; 2) human health and security; and 3) land-use change, ecosystem dynamics and biodiversity. Space-based interferometric synthetic aperture radar (InSAR) is a key change detection tool for addressing these themes. Here, we describe the mission and radar payload design for a constellation of S-band InSAR sensors specifically designed to provide the global, high temporal resolution, sub-cm level deformation accuracy needed to address some of the major Earth system goals. InSAR observations with high temporal resolution are needed to properly monitor certain nonlinearly time-varying features (e.g., unstable volcanoes, active fault lines, and heavily-used groundwater or hydrocarbon reservoirs). Good temporal coverage is also needed to reduce atmospheric artifacts by allowing multiple acquisitions to be averaged together, since each individual SAR measurement is corrupted by up to several cm of atmospheric noise. A single InSAR platform is limited in how often it can observe a given scene without sacrificing global spatial coverage. Multiple InSAR platforms provide the spatial-temporal flexibility required to maximize the science return. However, building and launching multiple InSAR platforms is cost-prohibitive for traditional satellites. SRI International (SRI) and our collaborators are working to exploit developments in nanosatellite technology, in particular the emergence of the CubeSat standard, to provide high-cadence InSAR capabilities in an affordable package. The CubeSat Imaging Radar for Earth Science (CIRES) subsystem, a prototype SAR elec­tronics package developed by SRI with support from a 2014 NASA ESTO ACT award, is specifically scaled to be a drop-in radar solution for resource-limited delivery systems like CubeSats and small airborne vehicles. Here, we present our mission concept and flow-down requirements for a

  15. A Feasible Approach for Improving Accuracy of Ground Deformation Measured by D-InSAR

    Institute of Scientific and Technical Information of China (English)

    CHANG Zhan-qiang; GONG Hui-li; ZHANG Jing-fa; GONG Li-xia

    2007-01-01

    D-InSAR is currently one of the most popular research tools in the field of Microwave Remote Sensing. It is unrivaled in its aspect of measuring ground deformation due to its advantages such as high resolution, continuous spatial-coverage and dynamics. However, there are still a few major problems to be solved urgently as a result of the intrinsic complexity of this technique. One of the problems deals with improving the accuracy of measured ground deformation. In this paper, various factors affecting the accuracy of ground deformation measured by D-InSAR are systematically analyzed and investigated by means of the law of measurement error propagation. At the same time, we prove that the ground deformation error not only depends on the errors of perpendicular baselines as well as the errors of the interferometric phase for topographic pair and differential pair, but also on the combination of the relationship of perpendicular baselines for topographic pairs and differential pairs. Furthermore, a feasible approach for improving the accuracy of measured ground deformation is proposed, which is of positive significance in the practical application of D-InSAR.

  16. Retrieving three-dimensional displacement fields of mining areas from a single InSAR pair

    Science.gov (United States)

    Li, Zhi Wei; Yang, Ze Fa; Zhu, Jian Jun; Hu, Jun; Wang, Yun Jia; Li, Pei Xian; Chen, Guo Liang

    2015-01-01

    This paper presents a novel method for retrieving three-dimensional (3-D) displacement fields of mining areas from a single interferometric synthetic aperture radar (InSAR) pair. This method fully exploits the mechanism of mining subsidence, specifically the proportional relationship between the horizontal displacement and horizontal gradient of vertical displacements caused by underground mining. This method overcomes the limitations of conventional InSAR techniques that can only measure one-dimensional (1-D) deformation of mining area along the radar line-of-sight direction. The proposed method is first validated with simulated 3-D displacement fields, which are obtained by the FLAC software. The root mean square errors of the 3-D displacements retrieved by the proposed method are 13.7, 27.6 and 3.6 mm for the West-East, North-South, and Up-Down components, respectively. We then apply the proposed method to estimate the 3-D displacements of the Qianyingzi and the Xuzhou coal mines in China, respectively, each along with two Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar images. Results show that the estimated 3-D displacement is highly consistent with that of the field surveying. This demonstrates that the proposed method is an effective approach for retrieving 3-D mining displacement fields and will play an important role in mining-related hazard prevention and environment assessment under limited InSAR acquisitions.

  17. Monitoring and characterizing natural hazards with satellite InSAR imagery

    Science.gov (United States)

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel

    2010-01-01

    Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.

  18. Block adjustment of airborne InSAR based on interferogram phase and POS data

    Science.gov (United States)

    Yue, Xijuan; Zhao, Yinghui; Han, Chunming; Dou, Changyong

    2015-12-01

    High-precision surface elevation information in large scale can be obtained efficiently by airborne Interferomatric Synthetic Aperture Radar (InSAR) system, which is recently becoming an important tool to acquire remote sensing data and perform mapping applications in the area where surveying and mapping is difficult to be accomplished by spaceborne satellite or field working. . Based on the study of the three-dimensional (3D) positioning model using interferogram phase and Position and Orientation System (POS) data and block adjustment error model, a block adjustment method to produce seamless wide-area mosaic product generated from airborne InSAR data is proposed in this paper. The effect of 6 parameters, including trajectory and attitude of the aircraft, baseline length and incline angle, slant range, and interferometric phase, on the 3D positioning accuracy is quantitatively analyzed. Using the data acquired in the field campaign conducted in Mianyang county Sichuan province, China in June 2011, a mosaic seamless Digital Elevation Model (DEM) product was generated from 76 images in 4 flight strips by the proposed block adjustment model. The residuals of ground control points (GCPs), the absolute positioning accuracy of check points (CPs) and the relative positioning accuracy of tie points (TPs) both in same and adjacent strips were assessed. The experimental results suggest that the DEM and Digital Orthophoto Map (DOM) product generated by the airborne InSAR data with sparse GCPs can meet mapping accuracy requirement at scale of 1:10 000.

  19. Nyamulagira’s magma plumbing system inferred from 15 years of InSAR

    Science.gov (United States)

    Wauthier, Christelle; Cayol, Valerie; Poland, Michael; Kervyn, François; D'Oreye, Nicolas; Hooper, Andrew; Samsonov, Sergei; Tiampo, Kristy; Smets, Benoit; Pyle, D. M.; Mather, T.A.; Biggs, J.

    2013-01-01

    Nyamulagira, located in the east of the Democratic Republic of Congo on the western branch of the East African rift, is Africa’s most active volcano, with an average of one eruption every 3 years since 1938. Owing to the socio-economical context of that region, the volcano lacks ground-based geodetic measurements but has been monitored by interferometric synthetic aperture radar (InSAR) since 1996. A combination of 3D Mixed Boundary Element Method and inverse modelling, taking into account topography and source interactions, is used to interpret InSAR ground displacements associated with eruptive activity in 1996, 2002, 2004, 2006 and 2010. These eruptions can be fitted by models incorporating dyke intrusions, and some (namely the 2006 and 2010 eruptions) require a magma reservoir beneath the summit caldera. We investigate inter-eruptive deformation with a multi-temporal InSAR approach. We propose the following magma plumbing system at Nyamulagira by integrating numerical deformation models with other available data: a deep reservoir (c. 25 km depth) feeds a shallower reservoir (c. 4 km depth); proximal eruptions are fed from the shallow reservoir through dykes while distal eruptions can be fed directly from the deep reservoir. A dyke-like conduit is also present beneath the upper southeastern flank of Nyamulagira.

  20. Basin Scale Assessment of Landslides Geomorphological Setting by Advanced InSAR Analysis

    Directory of Open Access Journals (Sweden)

    Francesca Bozzano

    2017-03-01

    Full Text Available An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010 have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space.

  1. Bryan Mound InSAR Analysis U.S. Strategic petroleum Reserve.

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Anna C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    The U.S. Strategic Petroleum Reserve (SPR) is a stockpile of emergency crude oil to be tapped into if a disruption in the nation's oil supply occurs. The SPR is comprised of four salt dome sites. Subsidence surveys have been conducted either annually or biennially at all four sites over the life of the program. Monitoring of surface behavior is a first line defense to detecting possible subsurface cavern integrity issues. Over the life of the Bryan Mound site, subsidence rates over abandoned Cavern 3 have continuously been the highest at the site. In an effort to try and understand the subsurface dynamics, specifically over Bryan Mound Cavern 3, historic interferometric synthetic aperture radar (InSAR) data was acquired and processed by TRE Altamira. InSAR involves the processing of multiple satellite synthetic aperture radar scenes acquired across the same location of the Earth's surface at different times to map surface deformation. The analysis of the data has the ability to detect millimeters of motion spanning days, months, year and decades, across specific sites. The intent in regards to the Bryan Mound site was (1) to confirm the higher subsidence rates recorded over abandoned Cavern 3 indicated by land survey and (2) understand the regional surface behavior. This report describes the InSAR analysis results, how those results compare to the historical collection of land survey data, and what additional information the data has provided towards understanding the response recorded at the surface.

  2. Error Modeling and Analysis for InSAR Spatial Baseline Determination of Satellite Formation Flying

    Directory of Open Access Journals (Sweden)

    Jia Tu

    2012-01-01

    Full Text Available Spatial baseline determination is a key technology for interferometric synthetic aperture radar (InSAR missions. Based on the intersatellite baseline measurement using dual-frequency GPS, errors induced by InSAR spatial baseline measurement are studied in detail. The classifications and characters of errors are analyzed, and models for errors are set up. The simulations of single factor and total error sources are selected to evaluate the impacts of errors on spatial baseline measurement. Single factor simulations are used to analyze the impact of the error of a single type, while total error sources simulations are used to analyze the impacts of error sources induced by GPS measurement, baseline transformation, and the entire spatial baseline measurement, respectively. Simulation results show that errors related to GPS measurement are the main error sources for the spatial baseline determination, and carrier phase noise of GPS observation and fixing error of GPS receiver antenna are main factors of errors related to GPS measurement. In addition, according to the error values listed in this paper, 1 mm level InSAR spatial baseline determination should be realized.

  3. Atom-interferometric measurement of Stark level splittings

    CERN Document Server

    Wang, Limei; Zhang, Linjie; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2015-01-01

    Multiple adiabatic/diabatic passages through avoided crossings in the Stark map of cesium Rydberg atoms are employed as beam splitters and recombiners in an atom-interferometric measurement of energy-level splittings. We subject cold cesium atoms to laser-excitation, electric-field and detection sequences that constitute an (internal-state) atom interferometer. For the read-out of the interferometer we utilize state-dependent collisions, which selectively remove atoms of one kind from the detected signal. We investigate the dependence of the interferometric signal on timing and field parameters, and find good agreement with time-dependent quantum simulations of the interferometer. Fourier analysis of the interferometric signals yield coherence frequencies that agree with corresponding energy-level differences in calculated Stark maps. The method enables spectroscopy of states that are inaccessible to direct laser-spectroscopic observation, due to selection rules, and has applications in field metrology.

  4. The minimization of ac phase noise in interferometric systems

    DEFF Research Database (Denmark)

    Filinski, Ignacy; Gordon, R A

    1994-01-01

    A simple step-by-step procedure, including several novel techniques discussed in the Appendices, is given for minimizing ac phase noise in typical interferometric systems such as two-beam interferometers, holographic setups, four-wave mixers, etc. Special attention is given to index of refraction...... fluctuations, direct mechanical coupling, and acoustic coupling, whose importance in determining ac phase noise in interferometric systems has not been adequately treated. The minimization procedure must be carried out while continuously monitoring the phase noise which can be done very simply by using...... with the optical table will also have to be carefully carried out regardless of the type of interferometric system employed.It is recommended that this be followed by a simple, inexpensive change to a novel type of interferometer discussed in Appendix A which is inherently less sensitive to mechanical vibration...

  5. Refractive Index Compensation in Over-Determined Interferometric Systems

    Directory of Open Access Journals (Sweden)

    Zdeněk Buchta

    2012-10-01

    Full Text Available We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.

  6. UVMULTIFIT: A versatile tool for fitting astronomical radio interferometric data

    CERN Document Server

    Marti-Vidal, I; Muller, S; Casey, S

    2014-01-01

    The analysis of astronomical interferometric data is often performed on the images obtained after deconvolution of the interferometer's point spread function (PSF). This strategy can be understood (especially for cases of sparse arrays) as fitting models to models, since the deconvolved images are already non-unique model representations of the actual data (i.e., the visibilities). Indeed, the interferometric images may be affected by visibility gridding, weighting schemes (e.g., natural vs. uniform), and the particulars of the (non-linear) deconvolution algorithms. Fitting models to the direct interferometric observables (i.e., the visibilities) is preferable in the cases of simple (analytical) sky intensity distributions. In this paper, we present UVMULTIFIT, a versatile library for fitting visibility data, implemented in a Python-based framework. Our software is currently based on the CASA package, but can be easily adapted to other analysis packages, provided they have a Python API. We have tested the sof...

  7. Interferometric detection of single gold nanoparticles calibrated against TEM size distributions

    DEFF Research Database (Denmark)

    Zhang, Lixue; Christensen, Sune; Bendix, Pól Martin

    2015-01-01

    Single nanoparticle analysis: An interferometric optical approach calibrates sizes of gold nanoparticles (AuNPs) from the interference intensities by calibrating their interferometric signals against the corresponding transmission electron microscopy measurements. This method is used to investigate...

  8. Dynamics of laser interferometric gravitational wave detectors

    Science.gov (United States)

    Rakhmanov, Malik

    2000-11-01

    Dynamics of fields and mirrors in the new laser interferometric gravitational wave detectors is described. The dynamics of fields is formulated in terms of difference equations, which take into account the large delay due to the light transit time in the interferometer arm cavities. Solutions of these field equations are found in both transient and steady-state regimes. The solutions for fields in the transient regime can be used for the measurement of the parameters of Fabry-Perot cavities. The solutions for fields in the steady-state regime can be used for the analysis of noise performance of Fabry-Perot cavities. The dynamics of the mirrors is described in terms of two normal coordinates: the cavity length and its center of mass. Such dynamics is strongly affected by the radiation pressure of light circulating in the cavity. The forces of radiation pressure are nonlinear and nonconservative. These two effects introduce instabilities and give rise to a violation of conservation of energy for the motion of the suspended mirrors. Analytical calculations and numerical simulations of the dynamics are done with applications to the Laser Interferometer Gravitational-Wave Observatory (LIGO). The dynamics of signal recycling and power recycling interferometers is analyzed using the field equations. The response of the interferometers to the input laser field and motion of its mirrors is calculated. Several basic transfer functions are found. These correspond to either a single or a nested cavity. A nested cavity appears either in the dynamics of the differential mode in signal recycling interferometers or in the dynamics of the common mode of power recycling interferometers. The poles of transfer functions of these nested cavities are found. The response of the interferometers to gravitational waves is described: the analysis is done in the rest frame of a local observer which is a natural coordinate system of the detector. This response is given by the interferometer

  9. Compression of interferometric radio-astronomical data

    Science.gov (United States)

    Offringa, A. R.

    2016-11-01

    Context. The volume of radio-astronomical data is a considerable burden in the processing and storing of radio observations that have high time and frequency resolutions and large bandwidths. For future telescopes such as the Square Kilometre Array (SKA), the data volume will be even larger. Aims: Lossy compression of interferometric radio-astronomical data is considered to reduce the volume of visibility data and to speed up processing. Methods: A new compression technique named "Dysco" is introduced that consists of two steps: a normalization step, in which grouped visibilities are normalized to have a similar distribution; and a quantization and encoding step, which rounds values to a given quantization scheme using a dithering scheme. Several non-linear quantization schemes are tested and combined with different methods for normalizing the data. Four data sets with observations from the LOFAR and MWA telescopes are processed with different processing strategies and different combinations of normalization and quantization. The effects of compression are measured in image plane. Results: The noise added by the lossy compression technique acts similarly to normal system noise. The accuracy of Dysco is depending on the signal-to-noise ratio (S/N) of the data: noisy data can be compressed with a smaller loss of image quality. Data with typical correlator time and frequency resolutions can be compressed by a factor of 6.4 for LOFAR and 5.3 for MWA observations with less than 1% added system noise. An implementation of the compression technique is released that provides a Casacore storage manager and allows transparent encoding and decoding. Encoding and decoding is faster than the read/write speed of typical disks. Conclusions: The technique can be used for LOFAR and MWA to reduce the archival space requirements for storing observed data. Data from SKA-low will likely be compressible by the same amount as LOFAR. The same technique can be used to compress data from

  10. Detecting land subsidence near metro lines in the Baoshan district of Shanghai with multi-temporal interferometric synthetic aperture radar

    Institute of Scientific and Technical Information of China (English)

    Tao Li; Guoxiang Liu; Hui Lin; Rui Zhang; Hongguo Jia; Bing Yu

    2014-01-01

    Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi-temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is pre-sented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back-scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and dis-tributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 mm/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in pro-viding detailed subsidence information near MLs.

  11. Validation of Orthorectified Interferometric Radar Imagery and Digital Elevation Models

    Science.gov (United States)

    Smith Charles M.

    2004-01-01

    This work was performed under NASA's Verification and Validation (V&V) Program as an independent check of data supplied by EarthWatch, Incorporated, through the Earth Science Enterprise Scientific Data Purchase (SDP) Program. This document serves as the basis of reporting results associated with validation of orthorectified interferometric interferometric radar imagery and digital elevation models (DEM). This validation covers all datasets provided under the first campaign (Central America & Virginia Beach) plus three earlier missions (Indonesia, Red River: and Denver) for a total of 13 missions.

  12. Refocusing vibrating targets in SAR images

    Science.gov (United States)

    Wang, Qi; Santhanam, Balu; Pepin, Matthew; Atwood, Tom; Hayat, Majeed M.

    2012-06-01

    In synthetic-aperture radar (SAR) returned signals, ground-target vibrations introduce a phase modulation that is linearly proportional to the vibration displacement. Such modulation, termed the micro-Doppler effect, introduces ghost targets along the azimuth direction in reconstructed SAR images that prevents SAR from forming focused images of the vibrating targets. Recently, a discrete fractional Fourier transform (DFrFT) based method was developed to estimate the vibration frequencies and instantaneous vibration accelerations of the vibrating targets from SAR returned signals. In this paper, a demodulation-based algorithm is proposed to reconstruct focused SAR images of vibrating targets by exploiting the estimation results of the DFrFT-based vibration estimation method. For a single-component harmonic vibration, the history of the vibration displacement is first estimated from the estimated vibration frequency and the instantaneous vibration accelerations. Then a reference signal whose phase is modulated by the estimated vibration displacement with a delay of 180 degree is constructed. After that, the SAR phase history from the vibration target is multiplied by the reference signal and the vibration-induced phase modulation is canceled. Finally, the SAR image containing the re-focused vibration target is obtained by applying the 2-D Fourier transform to the demodulated SAR phase history. This algorithm is applied to simulated SAR data and successfully reconstructs the SAR image containing the re-focused vibrating target.

  13. Engaging students in geodesy: A quantitative InSAR module for undergraduate tectonics and geophysics classes

    Science.gov (United States)

    Taylor, H.; Charlevoix, D. J.; Pritchard, M. E.; Lohman, R. B.

    2013-12-01

    In the last several decades, advances in geodetic technology have allowed us to significantly expand our knowledge of processes acting on and beneath the Earth's surface. Many of these advances have come as a result of EarthScope, a community of scientists conducting multidisciplinary Earth science research utilizing freely accessible data from a variety of instruments. The geodetic component of EarthScope includes the acquisition of synthetic aperture radar (SAR) images, which are archived at the UNAVCO facility. Interferometric SAR complements the spatial and temporal coverage of GPS and allows monitoring of ground deformation in remote areas worldwide. However, because of the complex software required for processing, InSAR data are not readily accessible to most students. Even with these challenges, exposure at the undergraduate level is important for showing how geodesy can be applied in various areas of the geosciences and for promoting geodesy as a future career path. Here we present a module focused on exploring the tectonics of the western United States using InSAR data for use in undergraduate tectonics and geophysics classes. The module has two major objectives: address topics concerning tectonics in the western U.S. including Basin and Range extension, Yellowstone hotspot activity, and creep in southern California, and familiarize students with how imperfect real-world data can be manipulated and interpreted. Module questions promote critical thinking skills and data literacy by prompting students to use the information given to confront and question assumptions (e.g. 'Is there a consistency between seismic rates and permanent earthquake deformation? What other factors might need to be considered besides seismicity?'). The module consists of an introduction to the basics of InSAR and three student exercises, each focused on one of the topics listed above. Students analyze pre-processed InSAR data using MATLAB, or an Excel equivalent, and draw on GPS and

  14. Sinking Chao Phraya delta plain, Thailand, derived from SAR interferometry time series analysis

    Science.gov (United States)

    Tanaka, A.; Mio, A.; Saito, Y.

    2013-12-01

    The Bangkok Metropolitan region and its surrounding provinces are located in a low-lying delta plain of the Chao Phraya River. Extensive groundwater use from the late 1950s has caused the decline of groundwater levels in the aquifers and Holocene clay compaction beneath the Bangkok Region, resulting in significant subsidence of the ground. This ground deformation has been monitored using leveling surveys since 1978, and differential InSAR (Interferometric Synthetic Aperture Radar) analysis. It shows that the Bangkok Metropolitan region is subsiding at a rate of about 20 mm/year during the recent years due to law-limited groundwater pumping, although the highest subsidence rate as high as 120 mm/year was recorded in 1981. The subsidence rate in the Bangkok area has significantly decreased since the late 1980s; however, the affected area has spread out to the surrounding areas. The maximum subsidence rate up to 30 mm/year occurred in the outlying southeast and southwest coastal zones in 2002. In this study, we apply a SAR interferometry time series analysis to monitor ground deformations in the lower Chao Phraya delta plain (Lower Central Plain), Thailand, using ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band SAR) data acquired between July 2007 and September 2010. We derive a single reference time series interferogram from the stacking of unwrapped phases under the assumptions that those phases are smoothly and continuously connected, and apply a smoothness-constrained inversion algorithm that optimizes the displacement from the phase unwrapping of multitemporal differential SAR interferograms. The SAR interferometry time series analysis succeeds to monitor the incremental line-of-sight (LOS)-change between SAR scene acquisitions. LOS displacements are converted to vertical displacements, based on the assumption that the ground displacement in this area occurs only in the vertical directions. This reveals an overall pattern of subsidence

  15. Controlling Data Collection to Support SAR Image Rotation

    Science.gov (United States)

    Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.

    2008-10-14

    A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.

  16. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy

    Directory of Open Access Journals (Sweden)

    F. Ferrigno

    2017-06-01

    Full Text Available On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy reactivated, affecting both state road 90 Delle Puglie and the Rome–Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.

  17. Land subsidence due to groundwater withdrawal detected by InSAR time-series in Tazerbo well field, Libya

    Science.gov (United States)

    Tufekci, Nesrin; Schoups, Gerrit; Mahapatra, Pooja; van de Giesen, Nick; Hanssen, Ramon F.

    2014-05-01

    The Tazerbo well field is one of the well fields designed within the Great Man-Made River Project (GMMRP), which aims to deliver water to the eastern coast of Libya through an underground pipe network. It consists of 108 wells in three rows, where the wells are separated 1.3 km in longitude and 10 km in latitude. The planned total groundwater withdrawal from all wells is 1 million m3/day. The water is pumped from the deep sandstone aquifer (Nubian sandstone), which is overlaid by a thick mudstone-siltstone aquitard. Being heavily pumped, the aquifer and fine-grained sediments of the aquitard are expected to compact in time resulting in land subsidence. In order to investigate the surface deformation caused by groundwater pumping in the Tazerbo well field, Interferometric Synthetic Aperture Radar (InSAR) technique was utilized. InSAR is widely used for monitoring land subsidence and can provide sub-cm scale deformation information over large areas. Using the Persistent Scatterer method, SAR time series of 20 Envisat images, spanning from 2004 to 2010, are employed to analyze spatial and temporal distribution of land subsidence induced by groundwater withdrawal. The results are in a good agreement with simulated subsidence. In addition, the spatial distribution of InSAR observations seems to be promising in terms of detecting spatial heterogeneity of aquifer material.

  18. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy)

    Science.gov (United States)

    Ferrigno, Federica; Gigli, Giovanni; Fanti, Riccardo; Intrieri, Emanuele; Casagli, Nicola

    2017-06-01

    On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy) reactivated, affecting both state road 90 Delle Puglie and the Rome-Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC) started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar) system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM) approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.

  19. Assessing Ionospheric effects on L-band SAR data: Implications to co-seismic deformation measurements on the Sichuan Eartquake.

    Science.gov (United States)

    Raucoules, D.; de Michele, M.

    2009-04-01

    SAR data from the Alos L-band sensor (PALSAR) is an efficient tool for ground surface deformation measurements using both radar interferometry (INSAR) and sub-pixel image correlation. On the recent Sichuan earthquake, these methods were successfully used by several Research teams in order to estimate the deformation field and to detect the surface rupture. The main interest of L-band InSAR is due to the fact that results are less affected by temporal decorrelation than C-band InSAR data, especially in highly vegetated areas. However, the L-band deformation maps are severely hampered by ionospheric contributions to the radar signal. In particular, the azimuth offsets (pixel displacement along the orbit) are affected by "stripes" with amplitudes that could be higher than the deformation signal. In this paper, we propose a methodology for estimating the ionospheric contribution to the InSAR signal based on the azimuth pixel offset. The retrieved ionospheric contribution is then used to compute a correction that can we apply both to the correlogram and interferogram. We therefore propose a joint correction of the azimuth offsets and interferometric phases based on features observed on the correlation image. The proposed method is used to improve our deformation maps on the Sichuan Eartquake.

  20. Space-Borne and Ground-Based InSAR Data Integration: The Åknes Test Site

    Directory of Open Access Journals (Sweden)

    Federica Bardi

    2016-03-01

    Full Text Available This work concerns a proposal of the integration of InSAR (Interferometric Synthetic Aperture Radar data acquired by ground-based (GB and satellite platforms. The selected test site is the Åknes rockslide, which affects the western Norwegian coast. The availability of GB-InSAR and satellite InSAR data and the accessibility of a wide literature make the landslide suitable for testing the proposed procedure. The first step consists of the organization of a geodatabase, performed in the GIS environment, containing all of the available data. The second step concerns the analysis of satellite and GB-InSAR data, separately. Two datasets, acquired by RADARSAT-2 (related to a period between October 2008 and August 2013 and by a combination of TerraSAR-X and TanDEM-X (acquired between July 2010 and October 2012, both of them in ascending orbit, processed applying SBAS (Small BAseline Subset method, are available. GB-InSAR data related to five different campaigns of measurements, referred to the summer seasons of 2006, 2008, 2009, 2010 and 2012, are available, as well. The third step relies on data integration, performed firstly from a qualitative point of view and later from a semi-quantitative point of view. The results of the proposed procedure have been validated by comparing them to GPS (Global Positioning System data. The proposed procedure allowed us to better define landslide sectors in terms of different ranges of displacements. From a qualitative point of view, stable and unstable areas have been distinguished. In the sector concerning movement, two different sectors have been defined thanks to the results of the semi-quantitative integration step: the first sector, concerning displacement values higher than 10 mm, and the 2nd sector, where the displacements did not exceed a 10-mm value of displacement in the analyzed period.

  1. Study on Geosynchronous Circular SAR

    Directory of Open Access Journals (Sweden)

    Hong Wen

    2015-06-01

    Full Text Available The concept of Geosynchronous Circular SAR (Geo-CSAR is introduced in this paper. With the design of the geosynchronous orbit parameters, a near-circular satellite sub-track could be formed to enable the staring imaging mode, which supports the advanced applications for wide-field and 3-D information acquisition under long-term consistent observation. This paper also analyzes Geo-CSAR's imaging formation capabilities, and concludes its attractive advantages over low-earth orbit spaceborne SAR in terms of instantaneous coverage, consistent observing area, 3-D positioning accuracy and etc.. Encouraging expectations for Geo-CSAR thus could be positively predicted in military investigation and disaster monitoring management applications.

  2. Reflectors for SAR performance testing.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  3. SAR Image Complex Pixel Representations

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  4. Heterogeneous Fault Mechanisms of the 6 October 2008 MW 6.3 Dangxiong (Tibet Earthquake Using Interferometric Synthetic Aperture Radar Observations

    Directory of Open Access Journals (Sweden)

    Caijun Xu

    2016-03-01

    Full Text Available Most current crustal deformation models do not account for topographic effects, crustal lateral variations, and complex fault geometries. To overcome these limitations, we apply finite element models constrained by interferometric Synthetic Aperture Radar (InSAR images of co-seismic displacements to the 2008 Mw 6.3 Dangxiong earthquake that occurred in Yadong–Gulu rift, southern Tibet. For mountainous plateau environments, InSAR observations are advantageous for studying crustal deformation and crustal medium structure. We evaluate the effect of topography and variations in Poisson’s ratio and elastic moduli on estimation of coseismic deformation from InSAR observations. The results show that coseismic surface displacements are more sensitive to variations in Young’s modulus than to variations in topography and Poisson’s ratio. Therefore, with constant Poisson’s ratio and density, we change the Young’s modulus on each side of the fault to obtain the model that best fits the observations. This is attained when the Young’s moduli in the eastern and western sides of the fault were 2.6 × 1010 Pa and 7.8 × 1010 Pa, respectively. The result is consistent with previous field surveys that the medium on either side of the fault is different.

  5. Investigation of land subsidence in the Houston-Galveston region of Texas by using the Global Positioning System and interferometric synthetic aperture radar, 1993-2000

    Science.gov (United States)

    Bawden, Gerald W.; Johnson, Michaela R.; Kasmarek, Mark C.; Brandt, Justin; Middleton, Clifton S.

    2012-01-01

    Since the early 1900s, groundwater has been the primary source of municipal, industrial, and agricultural water supplies for the Houston-Galveston region, Texas. The region's combination of hydrogeology and nearly century-long use of groundwater has resulted in one of the largest areas of subsidence in the United States; by 1979, as much as 3 meters (m) of subsidence had occurred, and approximately 8,300 square kilometers of land had subsided more than 0.3 m. The U.S. Geological Survey, in cooperation with the Harris-Galveston Subsidence District, used interferometric synthetic aperture radar (InSAR) data obtained for four overlapping scenes from European remote sensing satellites ERS-1 and ERS-2 to analyze land subsidence in the Houston-Galveston region of Texas. The InSAR data were processed into 27 interferograms that delineate and quantify land-subsidence patterns and magnitudes. Contemporaneous data from the Global Positioning System (GPS) were reprocessed by the National Geodetic Survey and analyzed to support, verify, and provide temporal resolution to the InSAR investigation.

  6. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    Directory of Open Access Journals (Sweden)

    Zhiwei Qiu

    Full Text Available This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR research and application.

  7. Signal Processing for Digital Beamforming FMCW SAR

    Directory of Open Access Journals (Sweden)

    Qin Xin

    2014-01-01

    Full Text Available According to the limitations of single channel Frequency Modulation Continuous Wave (FMCW Synthetic Aperture Radar (SAR, Digital Beamforming (DBF technology is introduced to improve system performance. Combined with multiple receive apertures, DBF FMCW SAR can obtain high resolution in low pulse repetition frequency, which can increase the processing gain and decrease the sampling frequency. The received signal model of DBF FMCW SAR is derived. The continuous antenna motion which is the main characteristic of FMCW SAR received signal is taken into account in the whole signal processing. The detailed imaging diagram of DBF FMCW SAR is given. A reference system is also demonstrated in the paper by comparing with a single channel FMCW SAR. The validity of the presented diagram is demonstrated with a point target simulation results.

  8. Building Detection in SAR Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Ryan Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koch, Mark William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moya, Mary M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Goold, Jeremy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. The desire is to present a technique that is effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed technique assumes that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint. Where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. Constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results are provided showing the outcome of the technique.

  9. Unsupervised DInSAR processing chain for multi-scale displacement analysis

    Science.gov (United States)

    Casu, Francesco; Manunta, Michele

    2016-04-01

    Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps at both global and local spatial scale, with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. Moreover, since 2014 the new generation of Copernicus Sentinel satellites has started to acquire data with a short revisit time (12 days) and a global coverage policy, thus flooding the scientific EO community with an unprecedent amount of data. To efficiently manage such amount of data, proper processing facilities (as those coming from the emerging Cloud Computing technologies) have to be used, as well as novel algorithms aimed at their efficient exploitation have to be developed. In this work we present a set of results achieved by exploiting a recently proposed implementation of the SBAS algorithm, namely Parallel-SBAS (P-SBAS), which allows us to effectively process, in an unsupervised way and in a limited time frame, a huge number of SAR images

  10. InSAR Forensics: Tracing InSAR Scatterers in High Resolution Optical Image

    Science.gov (United States)

    Wang, Yuanyuan; Zhu, XiaoXiang

    2015-05-01

    This paper presents a step towards a better interpretation of the scattering mechanism of different objects and their deformation histories in SAR interferometry (InSAR). The proposed technique traces individual SAR scatterer in high resolution optical images where their geometries, materials, and other properties can be better analyzed and classified. And hence scatterers of a same object can be analyzed in group, which brings us to a new level of InSAR deformation monitoring.

  11. Satellite SAR geocoding with refined RPC model

    Science.gov (United States)

    Zhang, Lu; Balz, Timo; Liao, Mingsheng

    2012-04-01

    Recent studies have proved that the Rational Polynomial Camera (RPC) model is able to act as a reliable replacement of the rigorous Range-Doppler (RD) model for the geometric processing of satellite SAR datasets. But its capability in absolute geolocation of SAR images has not been evaluated quantitatively. Therefore, in this article the problems of error analysis and refinement of SAR RPC model are primarily investigated to improve the absolute accuracy of SAR geolocation. Range propagation delay and azimuth timing error are identified as two major error sources for SAR geolocation. An approach based on SAR image simulation and real-to-simulated image matching is developed to estimate and correct these two errors. Afterwards a refined RPC model can be built from the error-corrected RD model and then used in satellite SAR geocoding. Three experiments with different settings are designed and conducted to comprehensively evaluate the accuracies of SAR geolocation with both ordinary and refined RPC models. All the experimental results demonstrate that with RPC model refinement the absolute location accuracies of geocoded SAR images can be improved significantly, particularly in Easting direction. In another experiment the computation efficiencies of SAR geocoding with both RD and RPC models are compared quantitatively. The results show that by using the RPC model such efficiency can be remarkably improved by at least 16 times. In addition the problem of DEM data selection for SAR image simulation in RPC model refinement is studied by a comparative experiment. The results reveal that the best choice should be using the proper DEM datasets of spatial resolution comparable to that of the SAR images.

  12. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR

    Directory of Open Access Journals (Sweden)

    Matthew C. Garthwaite

    2017-06-01

    Full Text Available Trihedral corner reflectors are being increasingly used as point targets in deformation monitoring studies using interferometric synthetic aperture radar (InSAR techniques. The frequency and size dependence of the corner reflector Radar Cross Section (RCS means that no single design can perform equally in all the possible imaging modes and radar frequencies available on the currently orbiting Synthetic Aperture Radar (SAR satellites. Therefore, either a corner reflector design tailored to a specific data type or a compromise design for multiple data types is required. In this paper, I outline the practical and theoretical considerations that need to be made when designing appropriate radar targets, with a focus on supporting multi-frequency SAR data. These considerations are tested by performing field experiments on targets of different size using SAR images from TerraSAR-X, COSMO-SkyMed and RADARSAT-2. Phase noise behaviour in SAR images can be estimated by measuring the Signal-to-Clutter ratio (SCR in individual SAR images. The measured SCR of a point target is dependent on its RCS performance and the influence of clutter near to the deployed target. The SCR is used as a metric to estimate the expected InSAR displacement error incurred by the design of each target and to validate these observations against theoretical expectations. I find that triangular trihedral corner reflectors as small as 1 m in dimension can achieve a displacement error magnitude of a tenth of a millimetre or less in medium-resolution X-band data. Much larger corner reflectors (2.5 m or greater are required to achieve the same displacement error magnitude in medium-resolution C-band data. Compromise designs should aim to satisfy the requirements of the lowest SAR frequency to be used, providing that these targets will not saturate the sensor of the highest frequency to be used. Finally, accurate boresight alignment of the corner reflector can be critical to the overall

  13. Integration of Canopy Height Information Derived from Stereo Imagery with SAR Backscatter Data to Improve Biomass Mapping

    Science.gov (United States)

    Sun, G.; Ranson, J.; Montesano, P. M.; Ni, W.

    2015-12-01

    Accurate forest biomass estimation over large areas is important for studies of global climate change and the carbon cycle. Synthetic Aperture Radar (SAR) is known to be effective for assessing forest biomass. SAR penetrates farther into forest canopies than optical sensors, so SAR data from forested areas can be related to standing woody biomass, especially at longer L and P bands wavelength. The effect of forest structure on radar signature reduces its sensitivity to biomass when the biomass reaches a threshold level (e.g. ~100Mg/ha at L-band). Therefore the ability for forest biomass mapping using only backscattering coefficients is limited. However, including height data in forest biomass mapping using SAR data will improve the sensitivity beyond saturation levels. There are many ways to get information related to forest canopy height including: 1) Lidar, a direct measurement of canopy height; 2) Height of scattering phase center (HSPC) from InSAR; 3) HSPC difference from two bands of InSAR, and 4) Polarimetric Interferometric SAR, which employs the polarization-dependent coherences. Photogrammetry (or stereo imagery) is another technique for quantifying forest vertical structure and is a traditional technique for the extraction of a digital surface model. The launch of spaceborne sensors, the application of digital cameras, the maturation of photogrammetry theory and the development of fully digital and automatic image processing make the application of photogrammetric methods feasible. Our previous studies using ALOS PRISM data have shown that the canopy height derived from PRISM stereo data were highly correlated with LVIS RH50 data. In this study we have integrated this canopy height with L-band SAR imagery data to map forest biomass in our test site in Howland, Maine. The point cloud data from multi-pair stereo imageries of five PRISM scenes were co-registered and used along with the USGS NED data to calculate the mean canopy height at 30m pixels. Multi

  14. Robust radio interferometric calibration using the t-distribution

    NARCIS (Netherlands)

    Kazemi, S.; Yatawatta, S.

    2013-01-01

    A major stage of radio interferometric data processing is calibration or the estimation of systematic errors in the data and the correction for such errors. A stochastic error (noise) model is assumed, and in most cases, this underlying model is assumed to be Gaussian. However, outliers in the data

  15. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    Science.gov (United States)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  16. Introduction to the 30m Ring Interferometric Telescope

    Science.gov (United States)

    Liu, Z.; Qian, S.-B.

    2007-08-01

    For the demand of astronomical limitation observations, such as exploring extra-terrestrial planets, black hole accretion disk and jet in the near-infrared and optical wave band, extremely large telescopes (optical and infrared) have become the principal ground-based astronomical instrumentation. With the maturation of interferometric imaging theory, the borderline between new generation ground-based extremely large telescope and interferometric array for aperture synthesis imaging is increasingly going blurring and the only differences in their technical methods and characteristics are also gradually disappearing. Based on the research result of interferometric imaging in Yunnan Observatory, we bring forward a new concept ground-based extremely large telescope -- 30m Ring Interferometric Telescope (30mRIT). It has the direct imaging ability and resolution like single aperture telescope, and it also can image with high resolution like the aperture synthesis imaging mode. The 30m RIT has a ring spherical primary mirror with 90 segmented mirrors, the width of the ring is 1 meter and the F/D ratio is about 0.8.This report also introduces some high resolution astronomical observe results by one meter ring which is 1 m diameter and 100 mm width. The 30mRIT project is remarkably different from the conventional ground-base ELT and its pivotal techniques have got the support of CAS and China NSF.

  17. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    Science.gov (United States)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  18. Theory, analysis and design of RF interferometric sensors

    CERN Document Server

    Nguyen, Cam

    2012-01-01

    Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed millimeter-wave double-channel homodyne sensor provides a resolution of only 0.01 mm, or 1/840th of the operating wavelength, and can inherently suppress the non-linearity of the sensor's quadrature mixer. The experimental results of displacement and velocity measurement are presented as a way to demonstrate the sensing ability of the RF interferometry and to illustrate its many possible applications in sensing. The book is succinct, ye...

  19. MiniSAR: a miniature, lightweight, low cost, scalable SAR system

    NARCIS (Netherlands)

    Steeghs, T.P.H.; Halsema, D. van; Hoogeboom, P.

    2001-01-01

    TNO-FEL is developing a miniature, lightweight, low cost, and scalable SAR/MTI system called 'MiniSAR'. The MiniSAR system will be unique in its size and architecture. Initially the demonstrator system will be integrated in a two-seater motorglider platform. Wherever possible,

  20. A Research on Airborne Squint Hybrid SAR

    Institute of Scientific and Technical Information of China (English)

    BIANYong; ZHOUYinqing; LIChunsheng

    2004-01-01

    In this paper, we establish the squint mode hybrid SAR (Synthetic aperture radar) geometry. Based on the squint mode SAR geometry, the hybrid SAR signal model in squint case is derived. Based on this signal model, the hybrid SAR imaging process parameter is discussed. Aimed at the squint case, we analyze not only the relationship between the resolution and SAR system parameters, but also the relation between the time extension of the maximum azimuth signal and SAR system parameters. This research establishes the theoretical foundation for the design of squint hybrid SAR and serves as a good guide for the future work of improving the resolution of squint hybrid SAR. Based on the two-step algorithm, by considering the squint angle and cubic phase term, we are going to use the deramp SC-Chirp Scaling algorithm for squint hybrid SAR imaging. This algorithm uses the deramp method for the first step processing, and the SC-Chirp Scaling algorithm for the second step processing. The process procedure of this algorithm includes the squint angle, has the explicit physical meaning, therefore is convenient for analysis. The computer simulation result proves the validity of the analysis.

  1. Bistatic SAR: Signal Processing and Image Formation.

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  2. TanDEM-X Bistatic SAR Processing

    OpenAIRE

    Balss, Ulrich; Niedermeier, Andreas; Breit, Helko

    2010-01-01

    In June, 2010 the German SAR satellite TanDEM-X (TerraSAR-X-Add-on for Digital Elevation Measurements) will be launched. Together with TerraSAR-X, launched June 15, 2007, it will form the first spaceborne bistatic SAR platform. Usually one of the satellite is transmitting (active satellite), while both are receiving. As both satellites fly in a helix orbit constellation, during a recording a satellite has to be passive, if the other one is close to the line of sight to the observation targ...

  3. DETEKCIJA SPREMEMB V RADARSKIH SLIKAH SAR

    OpenAIRE

    Izak, Rok

    2016-01-01

    V magistrskem delu je opisan princip detekcije sprememb površja Zemlje s pomočjo radarskih slik SAR, ki so bile zajete s satelitom TanDEM-X. Opisani so tudi principi delovanja radarja z umetno odprtino, načini zajema podatkov ter osnove interferometrije V prvem sklopu magistrskega dela, je bil cilj predlagati metodo za zaznavo gozdne površine v slikah SAR. V drugem delu so bile s pomočjo SAR interferometrije zaznane spremembe na kroni gozdov v okolici Postojne. Slike SAR, so bile zajete v raz...

  4. High resolution SAR applications and instrument design

    Science.gov (United States)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  5. Environmental Impact Assessment of Rosia Jiu Opencast Area Using AN Integrated SAR Analysis

    Science.gov (United States)

    Poenaru, V. D.; Negula, I. F. Dana; Badea, A.; Cuculici, R.

    2016-06-01

    The satellite data provide a new perspective to analyse and interpret environmental impact assessment as function of topography and vegetation. The main goal of this paper is to investigate the new Staring Spotlight TerraSAR-X mode capabilities to monitor land degradation in Rosia Jiu opencast area taking into account the mining engineering standards and specifications. The second goal is to relate mining activities with spatio-temporal dynamics of land degradation by using differential Synthetic Aperture Radar interferometry (DInSAR). The experimental analysis was carried out on data acquired in the LAN_2277 scientific proposal framework during 2014-2015 period. A set of 25 very height resolution SAR data gathered in the VV polarisation mode with a resolution of 0.45 m x 0.16m and an incidence angle of 37° have been used in this study. Preliminary results showed that altered terrain topography with steep slopes and deep pits has led to the layover of radar signal. Initially, ambiguous results have been obtained due to the highly dynamic character of subsidence induced by activities which imply mass mining methods. By increasing the SAR data number, the land degradation assessment has been improved. Most of the interferometric pairs have low coherence therefore the product coherence threshold was set to 0.3. A coherent and non-coherent analysis is performed to delineate land cover changes and complement the deformation model. Thus, the environmental impact of mining activities is better studied. Moreover, the monitoring of changes in pit depths, heights of stock-piles and waste dumps and levels of tailing dumps provide additional information about production data.

  6. Advanced Differential Radar Interferometry (A-DInSAR) as integrative tool for a structural geological analysis

    Science.gov (United States)

    Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.

    2009-04-01

    Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.

  7. ENVIRONMENTAL IMPACT ASSESSMENT OF ROSIA JIU OPENCAST AREA USING AN INTEGRATED SAR ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. D. Poenaru

    2016-06-01

    Full Text Available The satellite data provide a new perspective to analyse and interpret environmental impact assessment as function of topography and vegetation. The main goal of this paper is to investigate the new Staring Spotlight TerraSAR-X mode capabilities to monitor land degradation in Rosia Jiu opencast area taking into account the mining engineering standards and specifications. The second goal is to relate mining activities with spatio-temporal dynamics of land degradation by using differential Synthetic Aperture Radar interferometry (DInSAR. The experimental analysis was carried out on data acquired in the LAN_2277 scientific proposal framework during 2014-2015 period. A set of 25 very height resolution SAR data gathered in the VV polarisation mode with a resolution of 0.45 m x 0.16m and an incidence angle of 37° have been used in this study. Preliminary results showed that altered terrain topography with steep slopes and deep pits has led to the layover of radar signal. Initially, ambiguous results have been obtained due to the highly dynamic character of subsidence induced by activities which imply mass mining methods. By increasing the SAR data number, the land degradation assessment has been improved. Most of the interferometric pairs have low coherence therefore the product coherence threshold was set to 0.3. A coherent and non-coherent analysis is performed to delineate land cover changes and complement the deformation model. Thus, the environmental impact of mining activities is better studied. Moreover, the monitoring of changes in pit depths, heights of stock-piles and waste dumps and levels of tailing dumps provide additional information about production data.

  8. Estimation of Pine Forest Height and Underlying DEM Using Multi-Baseline P-Band PolInSAR Data

    Directory of Open Access Journals (Sweden)

    Haiqiang Fu

    2016-10-01

    Full Text Available On the basis of the Gaussian vertical backscatter (GVB model, this paper proposes a new method for extracting pine forest height and forest underlying digital elevation model (FUDEM from multi-baseline (MB P-band polarimetric-interferometric radar (PolInSAR data. Considering the linear ground-to-volume relationship, the GVB is linked to the interferometric coherences of different polarizations. Subsequently, an inversion algorithm, weighted complex least squares adjustment (WCLSA, is formulated, including the mathematical model, the stochastic model and the parameter estimation method. The WCLSA method can take full advantage of the redundant observations, adjust the contributions of different observations and avoid null ground-to-volume ratio (GVR assumption. The simulated experiment demonstrates that the WCLSA method is feasible to estimate the pure ground and volume scattering contributions. Finally, the WCLSA method is applied to E-SAR P-band data acquired over Krycklan Catchment covered with mixed pine forest. It is shown that the FUDEM highly agrees with those derived by LiDAR, with a root mean square error (RMSE of 3.45 m, improved by 23.0% in comparison to the three-stage method. The difference between the extracted forest height and LiDAR forest height is assessed with a RMSE of 1.45 m, improved by 37.5% and 26.0%, respectively, for model and inversion aspects in comparison to three-stage inversion based on random volume over ground (RVoG model.

  9. Combined Use of C- and X-Band SAR Data for Subsidence Monitoring in an Urban Area

    Directory of Open Access Journals (Sweden)

    Lorenzo Solari

    2017-04-01

    Full Text Available In this study, we present the detection and characterization of ground displacements in the urban area of Pisa (Central Italy using Interferometric Synthetic Aperture Radar (InSAR products. Thirty RADARSAT-2 and twenty-nine COSMO-SkyMed images have been analyzed with the Small BAseline Subset (SBAS algorithm, in order to quantify the ground subsidence and its temporal evolution in the three-year time interval from 2011 to 2014. A borehole database was reclassified in stratigraphical and geotechnical homogeneous units, providing the geological background needed for the local scale analysis of the recorded displacements. Moreover, the interferometric outputs were compared with the last 30 years’ urban evolution of selected parts of the city. Two deformation patterns were recorded by the InSAR data: very slow vertical movements within the defined stability threshold (±2.5 mm/yr and areas with subsidence rates down to −5 to −7 mm/yr, associated with high peak velocities (−15 to −20 mm/yr registered by single buildings or small groups of buildings. Some of these structures are used to demonstrate that the high subsidence rates are related to the recent urbanization, which is the trigger for the accelerated consolidation process of highly compressible layers. Finally, this urban area was a valuable test site for demonstrating the different results of the C- and X-band data processing, in terms of the density of points and the quality of the time series of deformation.

  10. Asymmetric Fabry-Pérot interferometric cavity for fiber optical sensors

    Institute of Scientific and Technical Information of China (English)

    Shaoji Jiang; Youcheng Liang; Xi Zhu; Hezhou Wang

    2006-01-01

    Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an asymmetric F-P interferometric cavity with good linearity and wide dynamic range is designed. And by choosing the material of two different thin metallic layers, the asymmetric F-P interferometric cavity is successfully fabricated. The design theory and method of this asymmetric F-P interferometric cavity have been described in detailed. In this paper an asymmetric F-P interferometric cavity used in fiber optical sensor is reported.

  11. An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data - A case study in complex temperate forest stands

    Science.gov (United States)

    Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans

    2017-05-01

    Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.

  12. A Synergy Method to Improve Ensemble Weather Predictions and Differential SAR Interferograms

    Science.gov (United States)

    Ulmer, Franz-Georg; Adam, Nico

    2015-11-01

    A compensation of atmospheric effects is essential for mm-sensitivity in differential interferometric synthetic aperture radar (DInSAR) techniques. Numerical weather predictions are used to compensate these disturbances allowing a reduction in the number of required radar scenes. Practically, predictions are solutions of partial differential equations which never can be precise due to model or initialisation uncertainties. In order to deal with the chaotic nature of the solutions, ensembles of predictions are computed. From a stochastic point of view, the ensemble mean is the expected prediction, if all ensemble members are equally likely. This corresponds to the typical assumption that all ensemble members are physically correct solutions of the set of partial differential equations. DInSAR allows adding to this knowledge. Observations of refractivity can now be utilised to check the likelihood of a solution and to weight the respective ensemble member to estimate a better expected prediction. The objective of the paper is to show the synergy between ensemble weather predictions and differential interferometric atmospheric correction. We demonstrate a new method first to compensate better for the atmospheric effect in DInSAR and second to estimate an improved numerical weather prediction (NWP) ensemble mean. Practically, a least squares fit of predicted atmospheric effects with respect to a differential interferogram is computed. The coefficients of this fit are interpreted as likelihoods and used as weights for the weighted ensemble mean. Finally, the derived weighted prediction has minimal expected quadratic errors which is a better solution compared to the straightforward best-fitting ensemble member. Furthermore, we propose an extension of the algorithm which avoids the systematic bias caused by deformations. It makes this technique suitable for time series analysis, e.g. persistent scatterer interferometry (PSI). We validate the algorithm using the well known

  13. Remote Sensing of Deformation of a High Concrete-Faced Rockfill Dam Using InSAR: A Study of the Shuibuya Dam, China

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-03-01

    Full Text Available Settlement is one of the most important deformation characteristics of high concrete faced rockfill dams (CFRDs, >100 m. High CFRDs safety would pose a great threat to the security of people’s lives and property downstream if this kind of deformation were not to be measured correctly, as traditional monitoring approaches have limitations in terms of durability, coverage, and efficiency. It has become urgent to develop new monitoring techniques to complement or replace traditional monitoring approaches for monitoring the safety and operation status of high CFRDs. This study examines the Shuibuya Dam (up to 233.5 m in height in China, which is currently the highest CFRD in the world. We used space-borne Interferometric Synthetic Aperture Radar (InSAR time series to monitor the surface deformation of the Shuibuya Dam. Twenty-one ALOS PALSAR images that span the period from 28 February 2007 to 11 March 2011 were used to map the spatial and temporal deformation of the dam. A high correlation of 0.93 between the InSAR and the in-situ monitoring results confirmed the reliability of the InSAR method; the deformation history derived from InSAR is also consistent with the in-situ settlement monitoring system. In addition, the InSAR results allow continuous investigation of dam deformation over a wide area that includes the entire dam surface as well as the surrounding area, offering a clear picture continuously of the dam deformation.

  14. InSAR Time-Series Analysis of Land Subsidence under Different Land Use Types in the Eastern Beijing Plain, China

    Directory of Open Access Journals (Sweden)

    Chaofan Zhou

    2017-04-01

    Full Text Available In the Beijing plain, the long-term groundwater overexploitation, exploitation, and the utilization of superficial urban space have led to land subsidence. In this study, the spatial–temporal analysis of land subsidence in Beijing was assessed by using the small baseline subset (SBAS interferometric synthetic aperture radar (InSAR technique based on 47 TerraSAR-X SAR images from 2010 to 2015. Distinct variations of the land subsidence were found in the study regions. The maximum annual land subsidence rate was 146 mm/year from 2011 to 2015. The comparison between the SBAS InSAR results and the ground leveling measurements showed that the InSAR land subsidence results achieved a precision of 2 mm. In 2013, the maximum displacement reached 132 and 138 mm/year in the Laiguangying and DongbalizhuangDajiaoting area. Our analysis showed that the serious land subsidence mainly occurred in the following land use types: water area and wetland, paddy field, upland soils, vegetable land, and peasant-inhabited land. Our results could provide a useful reference for groundwater exploitation and urban planning.

  15. Temporal Decorrelation Effect in Carbon Stocks Estimation Using Polarimetric Interferometry Synthetic Aperture Radar (PolInSAR (Case Study: Southeast Sulawesi Tropical Forest

    Directory of Open Access Journals (Sweden)

    Laode M Golok Jaya

    2017-07-01

    Full Text Available This paper was aimed to analyse the effect of temporal decorrelation in carbon stocks estimation. Estimation of carbon stocks plays important roles particularly to understand the global carbon cycle in the atmosphere regarding with climate change mitigation effort. PolInSAR technique combines the advantages of Polarimetric Synthetic Aperture Radar (PolSAR and Interferometry Synthetic Aperture Radar (InSAR technique, which is evidenced to have significant contribution in radar mapping technology in the last few years. In carbon stocks estimation, PolInSAR provides information about vertical vegetation structure to estimate carbon stocks in the forest layers. Two coherence Synthetic Aperture Radar (SAR images of ALOS PALSAR full-polarimetric with 46 days temporal baseline were used in this research. The study was carried out in Southeast Sulawesi tropical forest. The research method was by comparing three interferometric phase coherence images affected by temporal decorrelation and their impacts on Random Volume over Ground (RvoG model. This research showed that 46 days temporal baseline has a significant impact to estimate tree heights of the forest cover where the accuracy decrease from R2=0.7525 (standard deviation of tree heights is 2.75 meters to R2=0.4435 (standard deviation 4.68 meters and R2=0.3772 (standard deviation 3.15 meters respectively. However, coherence optimisation can provide the best coherence image to produce a good accuracy of carbon stocks.

  16. Decentralized adaptive sliding mode control for beam synchronization of tethered InSAR system

    Science.gov (United States)

    Zhang, Jinxiu; Zhang, Zhigang; Wu, Baolin

    2016-10-01

    Beam synchronization problem of tethered interferometric synthetic aperture radar (InSAR) is addressed in this paper. Two antennas of the system are carried by separate satellites connected through a tether to obtain a preferable baseline. A Total Zero Doppler Steering (TZDS) is implemented to mother-satellite to cancel the residual Doppler. Subsequently attitude reference trajectories for the two satellites are generated to achieve the beam synchronization and TZDS. Thereafter, a decentralized adaptive sliding mode control law is proposed to track these reference trajectories in the presence of model uncertainties and external disturbances. Finally, the stability of closed-loop system is proved by the corollary of Barbalat's Lemma. Simulation results show the proposed control law is effective to achieve beam synchronization of the system.

  17. Block-like plate movements in eastern Anatolia observed by InSAR

    KAUST Repository

    Cavalie, Olivier

    2014-01-16

    The question whether continental plates deform internally or move as rigid blocks has been debated for several decades. To further address this question, we use large-scale interferometric synthetic aperture radar (InSAR) data sets to study how eastern Anatolia and its surrounding plates deform. We find that most of the deformation is focused at the North and East Anatolian faults and little intraplate deformation takes place. Anatolia is therefore moving, at least its eastern part, as a uniform block. We estimate the slip velocity and locking depth of the North Anatolian fault at this location to be 20 mm/yr and ~14 km, respectively. High deformation gradient found near the East Anatolian fault, on the other hand, suggests that little stress is accumulating along the eastern sections of that fault.

  18. Development and Assessment of an Automated High-Resolution InSAR Volcano-Monitoring System

    Science.gov (United States)

    Chowdhury, Tanvir A.; Minet, Christian; Fritz, Thomas

    2016-08-01

    Monitoring volcanoes and volcanic areas using synthetic aperture radar (SAR) data is a well-established method of risk assessment. However, acquisition planning, ordering, and downloading are time and work intensive, but inevitable process. It has to be done not only once before the actual processing, but for continuous monitoring, it poses a continuous and expensive effort. Therefore an automatic acquisition and processing system is developed at DLR, which allows pseudo-continuous processing of data sequences over the test site and also be applicable to any other optional test-site extension, including the increase of data volume. This system reduces the load of manual work necessary to perform interferometric stacking and quickly gain first information on evolving geophysical processes at the, but not limited to the Italian supersites.

  19. Analysis of Spaceborne Tandem Configurations for Complementing COSMO with SAR Interferometry

    Directory of Open Access Journals (Sweden)

    G. Fasano

    2005-12-01

    Full Text Available This paper analyses the possibility of using a fifth passive satellite for endowing the Italian COSMO-SkyMed constellation with cross- and along-track SAR interferometric capabilities, by using simultaneously flying and operating antennas. Fundamentals of developed models are described and potential space configurations are investigated, by considering both formations operating on the same orbital plane and on separated planes. The study is mainly aimed at describing achievable baselines and their time histories along the selected orbits. The effects of tuning orbital parameters, such as eccentricity or ascending node phasing, are pointed out, and simulation results show the most favorable tandem configurations in terms of achieved baseline components, percentage of the orbit adequate for interferometry, and covered latitude intervals.

  20. InfoTerra/TerraSAR initiative

    Science.gov (United States)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  1. Satellite SAR data assessment for Silk Road archaeological prospection

    Science.gov (United States)

    Chen, Fulong; Lasaponara, Rosa; Masini, Nicola; Yang, Ruixia

    2015-04-01

    direction of observed targets is beneficial for improved detection of potential linear remains (e.g. Great Wall in Han-dynasty surrounding the Yumen Frontier Pass) owing to the formation of dihedral and helix scatterings based on the theory of radar physics. Morevorer, spatial resolution of multi-mode SAR images for archaeology was compared in the sites of Niya, Yumen Frontier Pass and suspected protectorate of the western regions. Results indicated that high resolution tended to easier detection of ancient targets through the identification of backscattering anomalies. Finally, interferometric analysis was also evaluated to provide complementary information rather than the backscattering. The variation of coherence is closely related to the physical parameters of observed surface, e.g. soil moisture, mild-relief as well as materials; and consequently it is useful for the relic feature enhancement and identification, validated by the PALSAR coherence images in Niya site. Acknowledgement This research was performed within the framework of the project "Smart management of cultural heritage sites in Italy and China: Earth Observation and pilot projects", funded by the Italian Ministry of Foreign Affairs and the Hundred Talents Program of the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (Y2ZZ27101B). The PALSAR data were provided by the European Space Agency to the authors through the Category-1 Project Id. 28640. Reference [1] Lasaponara R., Masini N. 2013, Satellite Synthetic Aperture Radar in Archaeology and Cultural Landscape: An Overview. Archaeological Prospection, 20, 71-78, doi: 10.1002/arp.1452 [2] Chen F., Masini N., Yang R., Milillo P., Feng D., Lasaponara R., 2015 A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data. Remote Sens. 2015, 7, 24-50; doi:10.3390/rs70100024. [3] Cigna, F.; Tapete, D.; Lasaponara, R.; Masini, N. Amplitude change detection with Envisat ASAR to image the cultural landscape

  2. A new implementation of full resolution SBAS-DInSAR processing chain for the effective monitoring of structures and infrastructures

    Science.gov (United States)

    Bonano, Manuela; Buonanno, Sabatino; Ojha, Chandrakanta; Berardino, Paolo; Lanari, Riccardo; Zeni, Giovanni; Manunta, Michele

    2017-04-01

    memory. Moreover, in some processing steps very heavy from the computational point of view, the Graphical Processing Units (GPU) are exploited for the processing of blocks working on a pixel-by-pixel basis, requiring strong modifications on some key parts of the sequential full resolution SBAS-DInSAR processing chain. GPU processing is implemented by efficiently exploiting parallel processing architectures (as CUDA) for increasing the computing performances, in terms of optimization of the available GPU memory, as well as reduction of the Input/Output operations on the GPU and of the whole processing time for specific blocks w.r.t. the corresponding sequential implementation, particularly critical in presence of huge DInSAR datasets. Moreover, to efficiently handle the massive amount of DInSAR measurements provided by the new generation SAR constellations (CSK and Sentinel-1), we perform a proper re-design strategy aimed at the robust assimilation of the full resolution SBAS-DInSAR results into the web-based Geonode platform of the Spatial Data Infrastructure, thus allowing the efficient management, analysis and integration of the interferometric results with different data sources.

  3. PHARUS: Airborne SAR Development in the Netherlands

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Snoeij, P.; Pouwels, H.

    1992-01-01

    The PHARUS project (PHARUS stands for Phased Array Universal SAR) aims for a polarimetric C-band aircraft SAR that will be finalized in 1994. The system will make use of a phased array antenna with solid state amplifiers. The project consists of two phases, a definition phase and a realization

  4. PHARUS: Airborne SAR Development in the Netherlands

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Snoeij, P.; Pouwels, H.

    1992-01-01

    The PHARUS project (PHARUS stands for Phased Array Universal SAR) aims for a polarimetric C-band aircraft SAR that will be finalized in 1994. The system will make use of a phased array antenna with solid state amplifiers. The project consists of two phases, a definition phase and a realization phase

  5. Advanced antennas for SAR spacecraft

    Science.gov (United States)

    Gail, William B.

    1993-01-01

    Single and multi-frequency antenna concepts were developed to evaluate the feasibility of building large aperture polarimetric synthetic aperture radar (SAR) systems to be launched in low cost vehicles such as the Delta 2. The antennas are 18.9 m long by 2.6 m wide (L-band) and achieve single polarization imaging to an incidence angle of 55 degrees and dual/quad imaging to 42 degrees. When combined with strawman spacecraft designs, both concepts meet the mass and volume constraints imposed by a Delta 2 launch.

  6. Spatial and Temporal Characteristics of Land Deformation in Northern Saudi Arabia: Inferences from Radar Interferometric Applications

    Science.gov (United States)

    Othman, A.; Sultan, M.; Gebremichael, E.; Sefry, S.; Yanar, R.; Alharbi, H.; Albalawi, S.; Emil, M. K.; Pankratz, H. G.

    2016-12-01

    Over the past two decades, land deformation phenomena and related losses in public and private property were reported from the northern part of the Kingdom of Saudi Arabia in Al Jowf region (100,212 km²; from lat: 29.25°N to 30.90°N, from long: 37.60°E to 40.70°E). We applied an integrated approach (geotechnical, geology, remote sensing, geodesy, hydrogeology, and GIS) to identify areas affected by these phenomena, quantify the nature and magnitude of deformation, investigate the factors controlling the deformation, and recommend solutions for these problems. We applied a three-fold approach in three different areas (Alisawiyah, Wadi Alsarhan, and Sakaka areas) to accomplish the following: (1) assess the spatial distribution of land deformation and quantify deformation rates using InSAR methods Persistent Scatterer Interferometry (PSI) and Small BAseline Subsets (SBAS); (2) generate a GIS database to encompass all relevant data and derived products (e.g., remote sensing, geology, geotechnical, GPS, groundwater extraction rates, distribution of urban areas, etc.), and (3) correlate findings from the InSAR exercise with relevant spatial and temporal datasets in search of causal effects. Findings revealed the following: (1) high and consistent subsidence rates (5 to 13 mm/yr) from multiple interferometric techniques; (2) subsided areas correlated largely with the distribution of irrigated agricultural land over alluvial and unconfined aquifers (e.g., Tawil and Jauf aquifers), areas characterized by high and a progressive increase in groundwater extraction (1.2 bcm/yr) as evidenced from the satellite-based temporal distribution of irrigated lands (area irrigated lands: 1998: 37,737 ha; 2013: 70,869 ha); (3) high subsidence rates ( 8 mm/yr) were also detected over urban areas (e.g., Sakaka, Dumat Aljandal, and Tubarjal ), subsidence being caused by disposal of wastewater in the subsurface leading to rise in water tables, dissolution of substrate rocks/sediments (e

  7. InSAR-Based Mapping of Tidal Inundation Extent and Amplitude in Louisiana Coastal Wetlands

    Directory of Open Access Journals (Sweden)

    Talib Oliver-Cabrera

    2016-05-01

    Full Text Available The Louisiana coast is among the most productive coastal areas in the US and home to the largest coastal wetland area in the nation. However, Louisiana coastal wetlands have been disappearing at an alarming rate due to natural and anthropogenic processes, including sea level rise, land subsidence and infrastructure development. Wetland loss occurs mainly along the tidal zone, which varies in width and morphology along the Louisiana shoreline. In this study, we use Interferometric Synthetic Aperture Radar (InSAR observations to detect the extent of the tidal inundation zone and evaluate the interaction between tidal currents and coastal wetlands. Our data consist of ALOS and Radarsat-1 observations acquired between 2006–2011 and 2003–2008, respectively. Interferometric processing of the data provides detailed maps of water level changes in the tidal zone, which are validated using sea level data from a tide gauge station. Our results indicate vertical tidal changes up to 30 cm and horizontal tidal flow limited to 5–15 km from open waters. The results also show that the tidal inundation is disrupted by various man-made structures, such as canals and roads, which change the natural tidal flow interaction with the coast.

  8. WETLAND MAPPING WITH SAR/QUAD-POL DATA ACQUIRED DURING TANDEM-X SCIENCE PHASE

    Directory of Open Access Journals (Sweden)

    M. Mleczko

    2016-06-01

    Full Text Available The aim of this study was to exploit fully polarimetric SAR data acquired during TanDEM-X – Science Phase (2014/2015 over herbaceous wetlands of the Biebrza National Park (BbNP in North-Eastern Poland for mapping seasonally flooded grasslands and permanent natural vegetation associations. The main goal of this work was to estimate the advantage of fully polarimetric radar images (QuadPol versus alternative polarization (AltPol modes. The methodology consisted in processing of several data subsets through polarimetric decompositions of complex quad-pol datasets, classification of multitemporal backscattering images, complementing backscattering images with Shannon Entropy, exploitation of interferometric coherence from tandem operations. In each case the multidimensional stack of images has been classified using ISODATA unsupervised clustering algorithm. With 6 QUAD-POL TSX/TDX acquisitions it was possible to distinguish correctly 5 thematic classes related to their water regime: permanent water bodies, temporarily flooded areas, wet grasslands, dry grasslands and common reed. This last category was possible to distinguish from deciduous forest only with Yamaguchi 4 component decomposition. The interferometric coherence calculated for tandem pairs turned out not so efficient as expected for this wetland mapping.

  9. Ambiguity resolution in SAR interferometry by use of three phase centers

    Energy Technology Data Exchange (ETDEWEB)

    Jakowatz, C.V. Jr.; Wahl, D.E.; Thompson, P.A.

    1996-03-01

    In a typical interferometric synthetic aperture radar (IFSAR) system employed for terrain elevation mapping, terrain height is estimated from phase difference data obtained from two phase centers separated spatially in the cross-track direction. In this paper we show how the judicious design of a three phase center IFSAR renders phase unwrapping, i.e., the process of estimating true continuous phases from principal values of phase (wrapped modulo 2{pi}), a much simpler process than that inherent in traditional algorithms. With three phase centers, one IFSAR baseline can be chosen to be relatively small (two of the phase centers close together) so that all of the scene`s terrain relief causes less than one cycle of phase difference. This allows computation of a coarse height map without use of any form of phase unwrapping. The cycle number ambiguities in the phase data derived from the other baseline, chosen to be relatively large (two of the phase centers far apart), can then be resolved by reference to the heights computed from the small baseline data. This basic concept of combining phase data from one small and one large baseline to accomplish phase unwrapping has been previously employed in other interferometric problems, e.g., laser interferometry and direction-of-arrival determination from multiple element arrays, The new algorithm is shown to possess a certain form of immunity to corrupted interferometric phase data that is not inherent in traditional two-dimensional path-following phase unwrappers. This is because path-following algorithms must estimate, either implicity or explicity, those portions of the IFSAR fringe data where discontinuities in phase occur. Such discontinuties typically arise from noisy phase measurements derived from low radar return areas of the SAR imagery, e.g., shadows, or from areas of steep terrain slope.

  10. Shortcomings of InSAR for studying megathrust earthquakes: The case of the M w 9.0 Tohoku-Oki earthquake

    KAUST Repository

    Feng, Guangcai

    2012-05-28

    Interferometric Synthetic Aperture Radar (InSAR) observations are sometimes the only geodetic data of large subduction-zone earthquakes. However, these data usually suffer from spatially long-wavelength orbital and atmospheric errors that can be difficult to distinguish from the coseismic deformation and may therefore result in biased fault-slip inversions. To study how well InSAR constrains fault-slip of large subduction zone earthquakes, we use data of the 11 March 2011 Tohoku-Oki earthquake (Mw9.0) and test InSAR-derived fault-slip models against models constrained by GPS data from the extensive nationwide network in Japan. The coseismic deformation field was mapped using InSAR data acquired from multiple ascending and descending passes of the ALOS and Envisat satellites. We then estimated several fault-slip distribution models that were constrained using the InSAR data alone, onland and seafloor GPS/acoustic data, or combinations of the different data sets. Based on comparisons of the slip models, we find that there is no real gain by including InSAR observations for determining the fault slip distribution of this earthquake. That said, however, some of the main fault-slip patterns can be retrieved using the InSAR data alone when estimating long wavelength orbital/atmospheric ramps as a part of the modeling. Our final preferred fault-slip solution of the Tohoku-Oki earthquake is based only on the GPS data and has maximum reverse- and strike-slip of 36.0 m and 6.0 m, respectively, located northeast of the epicenter at a depth of 6 km, and has a total geodetic moment is 3.6 × 1022 Nm (Mw 9.01), similar to seismological estimates.

  11. SAR processing using SHARC signal processing systems

    Science.gov (United States)

    Huxtable, Barton D.; Jackson, Christopher R.; Skaron, Steve A.

    1998-09-01

    Synthetic aperture radar (SAR) is uniquely suited to help solve the Search and Rescue problem since it can be utilized either day or night and through both dense fog or thick cloud cover. Other papers in this session, and in this session in 1997, describe the various SAR image processing algorithms that are being developed and evaluated within the Search and Rescue Program. All of these approaches to using SAR data require substantial amounts of digital signal processing: for the SAR image formation, and possibly for the subsequent image processing. In recognition of the demanding processing that will be required for an operational Search and Rescue Data Processing System (SARDPS), NASA/Goddard Space Flight Center and NASA/Stennis Space Center are conducting a technology demonstration utilizing SHARC multi-chip modules from Boeing to perform SAR image formation processing.

  12. Composite SAR imaging using sequential joint sparsity

    Science.gov (United States)

    Sanders, Toby; Gelb, Anne; Platte, Rodrigo B.

    2017-06-01

    This paper investigates accurate and efficient ℓ1 regularization methods for generating synthetic aperture radar (SAR) images. Although ℓ1 regularization algorithms are already employed in SAR imaging, practical and efficient implementation in terms of real time imaging remain a challenge. Here we demonstrate that fast numerical operators can be used to robustly implement ℓ1 regularization methods that are as or more efficient than traditional approaches such as back projection, while providing superior image quality. In particular, we develop a sequential joint sparsity model for composite SAR imaging which naturally combines the joint sparsity methodology with composite SAR. Our technique, which can be implemented using standard, fractional, or higher order total variation regularization, is able to reduce the effects of speckle and other noisy artifacts with little additional computational cost. Finally we show that generalizing total variation regularization to non-integer and higher orders provides improved flexibility and robustness for SAR imaging.

  13. SARS: systematic review of treatment effects.

    Directory of Open Access Journals (Sweden)

    Lauren J Stockman

    2006-09-01

    Full Text Available BACKGROUND: The SARS outbreak of 2002-2003 presented clinicians with a new, life-threatening disease for which they had no experience in treating and no research on the effectiveness of treatment options. The World Health Organization (WHO expert panel on SARS treatment requested a systematic review and comprehensive summary of treatments used for SARS-infected patients in order to guide future treatment and identify priorities for research. METHODS AND FINDINGS: In response to the WHO request we conducted a systematic review of the published literature on ribavirin, corticosteroids, lopinavir and ritonavir (LPV/r, type I interferon (IFN, intravenous immunoglobulin (IVIG, and SARS convalescent plasma from both in vitro studies and in SARS patients. We also searched for clinical trial evidence of treatment for acute respiratory distress syndrome. Sources of data were the literature databases MEDLINE, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials (CENTRAL up to February 2005. Data from publications were extracted and evidence within studies was classified using predefined criteria. In total, 54 SARS treatment studies, 15 in vitro studies, and three acute respiratory distress syndrome studies met our inclusion criteria. Within in vitro studies, ribavirin, lopinavir, and type I IFN showed inhibition of SARS-CoV in tissue culture. In SARS-infected patient reports on ribavirin, 26 studies were classified as inconclusive, and four showed possible harm. Seven studies of convalescent plasma or IVIG, three of IFN type I, and two of LPV/r were inconclusive. In 29 studies of steroid use, 25 were inconclusive and four were classified as causing possible harm. CONCLUSIONS: Despite an extensive literature reporting on SARS treatments, it was not possible to determine whether treatments benefited patients during the SARS outbreak. Some may have been harmful. Clinical trials should be designed to validate a standard protocol for dosage

  14. Applications of Radar Interferometric Techniques to Assess Natural Hazards and their Controlling Factors

    Science.gov (United States)

    Sultan, M.; Becker, R.; Gebremichael, E.; Othman, A.; Emil, M.; Ahmed, M.; Elkadiri, R.; Pankratz, H. G.; Chouinard, K.

    2015-12-01

    Radar interferometric techniques including Persistent Scatterer (PS), Small BAseline Subset (SBAS), and two and three pass (differential interferometry) methods were applied to Synthetic Aperture Radar (SAR) datasets. These include the European Space Agency (ESA) ERS-1, ERS-2, Environmental satellite (Envisat), and Phased Array type L-band Synthetic Aperture Radar (PALSAR) to conduct the following: (1) map the spatial distribution of land deformation associated with a wide range of geologic settings, (2) quantify the rates of the observed land deformation, and (3) identify the factors controlling the observed deformation. The research topics/areas include: (1) subsidence associated with sediment compaction in a Delta setting (Nile Delta, Egypt), (2) deformation in a rifting setting (Red Sea rifting along the Red Sea coastal zone and proximal basement outcrops in Egypt and Saudi Arabia), (3) deformation associated with salt dome intrusion and the dissolution of sabkha deposits (Jazan area in Saudi Arabia), (4) mass transport associated with debris flows (Jazan area in Saudi Arabia), and (5) deformation preceding, contemporaneous with, or following large earthquakes (in Nepal; magnitude: 7.8; date: April, 25, 2015) and medium earthquakes (in Harrat Lunayyir volcanic field, central Saudi Arabia; magnitude: 5.7; date: May 19, 2009). The identification of the factor(s) controlling the observed deformation was attained through spatial correlation of extracted radar velocities with relevant temporal and static ground based and remotely sensed geological and cultural data sets (e.g., lithology, structure, precipitation, land use, and earthquake location, magnitude, and focal mechanism) in a Geographical Information System (GIS) environment.

  15. Location and Source Characteristics of the January 6, 2016 North Korean Nuclear Test Constrained by InSAR

    Science.gov (United States)

    Wei, Meng

    2017-02-01

    The interferometric synthetic aperture radar (InSAR) data from the JAXA ALOS-2 satellite show possible deformation associated with the January 6, 2016 North Korean nuclear test whereas the ESA Sentinel-1A data are decorrelated. This is the first time that deformation related to a nuclear test has been measured since 1992. Here, I present two interpretations of the observed deformation: First, the deformation can be explained by a triggered landslide on the western slope of Mt. Mantap, with a displacement of up to 10 cm across a patch of 1 km2. Second, the observation may be from uplift created by the nuclear explosion. In the second interpretation, the location, depth, and cavity size can be estimated from a topography-corrected homogenous half-space model (Mogi). The preferred location of the January 6, 2016 event is 41.2993°N 129.0715°E, with an uncertainty of 100 m. The estimated depth is 420-700 m, and the cavity radius is 23-27 m. Based on empirical data and the assumption of granite as the host rock, the yield is estimated to be 11.6-24.4 kilotons of TNT, which is consistent with previous results based on seismic data. With these two interpretations, I demonstrate that InSAR data provide an independent tool to locate and estimate source characteristics of nuclear tests in North Korea. The ambiguity of interpretation is mainly due to the limited InSAR data acquisition. Future frequent data collection by current and upcoming InSAR satellites will allow full use of InSAR for nuclear monitoring and characterization in North Korea and around the world.

  16. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

    Science.gov (United States)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin

    2016-09-01

    A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.

  17. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    Science.gov (United States)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  18. Common-Path Interferometric Wavefront Sensing for Space Telescopes

    Science.gov (United States)

    Wallace, James Kent

    2011-01-01

    This paper presents an optical configuration for a common-path phase-shifting interferometric wavefront sensor.1 2 This sensor has a host of attractive features which make it well suited for space-based adaptive optics. First, it is strictly reflective and therefore operates broadband, second it is common mode and therefore does not suffer from systematic errors (like vibration) that are typical in other interferometers, third it is a phase-shifting interferometer and therefore benefits from both the sensitivity of interferometric sensors as well as the noise rejection afforded by synchronous detection. Unlike the Shack-Hartman wavefront sensor, it has nearly uniform sensitivity to all pupil modes. Optical configuration, theory and simulations for such a system will be discussed along with predicted performance.

  19. Detection of fast transients with radio interferometric arrays

    CERN Document Server

    Bhat, N D R; Cox, P J; Gupta, Y; Prasad, J; Roy, J; Bailes, M; Burke-Spolaor, S; Kudale, S S; van Straten, W

    2013-01-01

    Next-generation radio arrays, including the SKA and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT)presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis s...

  20. Synchronous interferometric demodulation of Placido mires applied to corneal topography

    CERN Document Server

    Servin, Manuel

    2012-01-01

    This paper presents a novel digital interferometric method to demodulate Placido fringe patterns. This is a synchronous method which uses a computer-stored conic-wavefront as demodulating reference. Here we focuses on the experimental aspects to phase-demodulate Placido mires applied to corneal topography. This synchronous method is applied to two topographic Placido images and their de-modulated corneal-slope deformation is estimated. This conic-interferometric method is highly robust against typical "noisy" signals in Placido topography such as: reflected eyelashes and iris structures. That is because the eyelashes and the iris structure are high frequency "noisy" signals corrupting the reflected Placido mire, so they are filtered-out by this method. Digital synchronous interferometry is here applied for the first time to demodulate corneal topographic concentric-rings images (Patent pending at the USPTO).